WO2012085067A1 - Cellule rayonnante a deux etats de phase pour reseau transmetteur - Google Patents

Cellule rayonnante a deux etats de phase pour reseau transmetteur Download PDF

Info

Publication number
WO2012085067A1
WO2012085067A1 PCT/EP2011/073565 EP2011073565W WO2012085067A1 WO 2012085067 A1 WO2012085067 A1 WO 2012085067A1 EP 2011073565 W EP2011073565 W EP 2011073565W WO 2012085067 A1 WO2012085067 A1 WO 2012085067A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiating element
switching means
cell
radiating
conductive
Prior art date
Application number
PCT/EP2011/073565
Other languages
English (en)
Inventor
Laurent Dussopt
Antonio Clemente
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to US13/995,877 priority Critical patent/US9099775B2/en
Priority to EP11802728.3A priority patent/EP2656438B1/fr
Publication of WO2012085067A1 publication Critical patent/WO2012085067A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • H01Q3/247Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching by switching different parts of a primary active element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0018Space- fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays

Definitions

  • the present invention relates to a radiating cell with two phase states and suitable for producing a network antenna or a lens antenna. It applies in particular to the realization of transmitter networks implementing several configurable cells to control the radiation pattern of the antenna.
  • Transmitting network antennas are commonly used in the 1 -100 GHz frequency range to focus radiation; for this reason, they are therefore also often called discrete lens antennas (or “discrete-lens antenna” in English).
  • Such a type of network antenna comprises a large number of individual radiating cells adapted to receive an electromagnetic field on one side and to transmit it on the opposite face with a minimum attenuation and a known phase shift.
  • This type of antenna is generally known to form a wave projector transforming at their output properties of the wave at their input.
  • a grating antenna which comprises a reception surface 11 which is generally illuminated by one or more primary sources 101, the other surface 1 12, also called transmission surface forming the radiating aperture of the antenna.
  • the two surfaces 1 1 1 1 and 1 12 are generally separated by a phase shifter 1 13 to allow the modification of the phase and the direction of the radiation emitted by the primary source (s).
  • the antennal network operates identically in transmission or reception as long as the network does not contain a non-reciprocal element such as an amplifier or certain magnetic components. In the opposite case, the antennal network is designed to operate exclusively either in transmission or in reception.
  • Transmitter networks widely used and used in military applications and / or consumer communication systems have many advantages, including: • energy efficiency at high microwave frequencies (of the order of several GHz) and beyond, thanks to the transmission by radiation in the air between the primary source and the phase shift cells;
  • Resonators in sections arranged between the two slots make it possible to ensure electromagnetic coupling between these two slots, and switches placed at different points of these resonators. allow to select a coupling mode among four possible modes, each mode corresponding to different transmission phases of 90 ° from each other.
  • the resonators of this structure form a filter, each section of these resonators forms a resonant circuit coupled to a slot antenna. By operating the switches, the resonance frequency of the complete structure is changed.
  • This cell makes it possible to generate four phase states with low transmission losses.
  • control lines • a high number of components and complex control means of the components, the control lines to be connected to the radiating elements which, in addition, induces significant disturbances.
  • An object of the invention is to propose a high bandwidth radiating cell defined at -3 dB of transmission with respect to the nominal frequency of the cell, for example of the order of 15% or 20%, and which can be integrated in a transmitter network whose radiation pattern is configurable.
  • the subject of the invention is a radiating cell for forming an integrable antenna in a network and capable of transmitting microwave signals, the cell comprising a first radiating element and a second radiating element arranged on either side of the antenna.
  • the second radiating element comprising at least one conductive surface capable of radiating, characterized in that it comprises at least a first and a second switching means, said means each comprising an on state and a blocked state between two accesses , one of said accesses is connected to the second radiating element, said switching means being oppositely controlled so that when said first switching means is in the on state, said second means is in the off state, these first and second means switching means being further controlled so that the current flowing in the conductive surface is in phase opposition depending on whether the first switching means is in the on state or the second switching means is in the on state.
  • the second radiating element comprises first and second surfaces disjoint and electrically isolated from one another.
  • said first and second surfaces form a planar antenna, said first surface being connected to the first radiating element, said second surface comprising peripheral conductive zones of the second radiating element, the switching means being arranged in an interface between said first surface and said second surface.
  • This variant has the advantage that it is simple to achieve.
  • the first surface acts as a conductive line to the switches that are placed near the edges of the antenna so as to produce effective excitation of the antenna.
  • the second surface comprises the peripheral zones of the second antenna, adapted to produce effective radiation or to effectively capture incident signals.
  • the first conductive surface of the second radiating element is connected to the first radiating element (201) via a through connection.
  • a connection mode is simple to implement and induces a very low attenuation of the power signals.
  • the conductive surfaces are isolated by a slot formed around a junction point between said first surface and said through connection.
  • the switching means are arranged relative to each other substantially symmetrically with respect to the center of the second radiating element. This arrangement of the switching means makes it possible to circulate currents in phase opposition, according to whether the current passes through the first switching means or the second switching means.
  • junction point between said first surface and said through connection is located substantially in the center of the second radiating element.
  • the first surface is preferably circumscribed to a small zone located in the median zone of the patch to avoid the appearance of parasitic currents.
  • the junction point between said first surface and said through connection is located outside a middle zone of the second radiating element.
  • said first and second surfaces form a planar antenna, said first surface being a lower surface disposed close to the ground plane and being connected to the first radiating element, said second surface being an upper surface disposed opposite to the lower surface and the first switching means being disposed between the lower surface and the first radiating element, the second switching means being disposed between the upper surface and the first radiating element, each of the two crossing connection switching means and at least one junction point between each lower or upper surface and the first radiating element being provided for this through connection.
  • the first radiating element forms a planar antenna whose junction point between the first radiating element and said through connection is located substantially in the center of the first radiating element which comprises an insulating zone at least partially surrounding said junction point, so as to form a conductive line connecting said junction point to a peripheral zone of the first conductive element.
  • This embodiment has the particular advantage of being compact, the two antennas can be placed opposite one another. Thus, with this configuration, it is possible to have a larger number of cells in a transmitter network.
  • the first radiating element forms a planar antenna whose junction point between the first radiating element and the said through connection is located outside the middle of this first radiating element.
  • the angular position of the first radiating element about an axis orthogonal to the plane of this element and passing through said junction point is chosen as a function of the desired polarization of the signal transmitted by the cell.
  • This embodiment allows to act on the position of the first antenna, the rotation thereof around the junction point to choose the polarization of the signal to be transmitted.
  • the ground plane is connected to the first radiating element, the cell comprising a conductive control line connected to the second surface of the second element, said conductive control line being able to carry an electric current to polarize. said switching means.
  • Such means are very simple to control the switches.
  • the ground plane is connected to the second surface of the second radiating element, the cell comprising a conductive control line connected to the first radiating element, said conductive control line being able to carry an electric current for polarizing said switching means.
  • the ground plane and the control line are connected to the radiating elements via connections passing through at least one dielectric layer.
  • the first switching means are a diode whose anode is connected to the second surface and whose cathode is connected to the first surface
  • the second switching means being a diode whose anode is connected to the second surface and whose cathode is connected to the first surface
  • the invention also relates to a network comprising at least two radiating cells according to the invention, each of said two cells being controlled to modify the phase state of the signal transmitted by this cell, so as to configure the radiation pattern of said network.
  • FIGS. 2a, 2b, 2c and 2d diagrams representing a first embodiment of the cell according to the invention
  • FIGS. 3a, 3b and 3c diagrams representing a second embodiment of the cell according to the invention
  • - Figures 4a, 4b and 4c diagrams showing an example of a cell according to the invention with control means for choosing the phase shift applied to the signal
  • FIG. 5 curves showing the evolution of the reflection and transmission coefficients of the cell of FIGS. 4a, 4b and 4c as a function of the frequency of the transmitted signal
  • FIG. 6 a diagram representing an example of a transmitter network comprising reconfigurable cells according to the invention.
  • the figures are not to scale, and they are oriented with respect to an axis XYZ having two orthogonal directions X and Y horizontal and a vertical direction Z perpendicular to the other two directions.
  • the radiating cell of the invention is capable of transmitting / receiving electromagnetic waves (in the Z direction) at a working frequency ft (or nominal frequency) corresponding to a wavelength ⁇ , typically this frequency is between 100 MHz and 100 GHz, preferably between 1 GHz and 10 GHz.
  • the cell according to the invention can generate two transmission phase states separated by 180 °, the phase being controlled by an electrical control signal.
  • This cell thus makes it possible to produce a transmitter network comprising a large number of cells and whose phase law is electrically controllable by a set of control signals with a phase quantization of ⁇ 90 °.
  • This control of the phase shift of the radiating cell of the invention is obtained thanks to the use of simple switching means which are alternately in on or off state.
  • These switching means may be radio frequency switches such as diodes, MEMS, phototransistors or any other component having a similar functionality with two on / off states. These components are usually reciprocal; also, the cell can therefore operate identically in reception or transmission.
  • the cell of the invention has low losses which are more identical losses in the two phase states.
  • the cell may comprise, above the first radiating element and / or the second radiating element, a stack comprising an alternation of substrate of metal layers.
  • FIGS. 2a, 2b, 2c and 2d show a first embodiment of a cell according to the invention.
  • FIG. 2a is a bottom view of the cell 200
  • FIGS. 2b and 2d are a cross-sectional view of the cell 200 and its variant respectively
  • FIG. 2c is a view from above of the cell 200.
  • the cell 200 comprises two elementary antennas disposed on either side of a ground plane 203.
  • an elementary antenna comprises a radiating element separated by the ground plane of at least one dielectric layer
  • the cell 200 thus comprises a first radiating element 201 and a second radiating element 202 disposed of and other of the ground plane 203 enclosed in an assembly 204 of at least two substrates (or dielectric layers forming a substrate) 204 ', 204 ".
  • Each elementary antenna can be produced by a planar or patch antenna (in English) which is a planar antenna whose radiating element is a generally square conductive surface separated from a conductive reflector plane (or ground plane) by a dielectric layer .
  • the realization of such a planar antenna resembles a double-sided printed circuit, substrate, and is therefore favorable to industrial production, in particular for easy integration into an antenna array.
  • the two radiating elements 201, 202 are connected by a connection 205 passing through the substrate 204 and passing through an opening 206 formed in the ground plane 203.
  • the connection 205 has no contact with the ground plane 203 which forms a shield electromagnetic between the two radiating elements 201, 202.
  • connection 205 and the first radiating element 201 are connected at a connection point 21 1.
  • This connection point 21 1 is preferably located near an edge of this element 201 so as to improve the radiation of this element.
  • connection 205 and the second radiating element 202 are connected at a connection point 212 preferably located at or near the center of this element 202, and preferably at a distance from the center of not more than a quarter of the width of the radiating element 202, so as to favor the main mode of resonance of the radiating element along its length and not to excite other undesired modes.
  • a slot 220 is formed in the second radiating element 202 around the connection point 212, so as to create two disjoint surfaces 221, 222 in this radiating element 202.
  • a first conductive surface portion, called “internal surface” 221 is located in contact with the connection point 212, and is separated from a second conductive surface portion, called “outer surface” 222 which surrounds the inner surface 221 without contacting her.
  • the slot 220 thus makes it possible to electrically isolate the inner surface 221 of the outer surface 222.
  • the second radiating element 202 has a symmetrical geometry, which makes it possible to minimize the excitation of unwanted resonance modes which would degrade the polarization of the electromagnetic field radiated by the antenna.
  • the first conductive surface 221 forms a narrow substantially rectangular conduction band extending between two opposite peripheral zones of the second radiating element 202, the switching means 231, 232 being disposed in interface between each of said peripheral zones and said conduction band.
  • “Narrow” means a width small enough to prevent the appearance of spurious radiation, but sufficiently large to routing a current between the aforementioned junction point and each of the switching means.
  • two switches 231, 232 are placed in junction between the inner surface 221 and the outer surface 222 to establish current passages through the slot of the second radiating element 202.
  • connection point 212 An incident current arriving via the connection point 212 can thus flow through the inner surface 221, pass through that of the switches 231 or 232 which is closed and then circulate in the outer surface 222. Reciprocally a current generated by the reception of a wave on the outer surface 222 of the second radiating element 202 can flow to the connection point 212 only through one of the two switches 231, 232 closed and then to the first radiating element 201, via the through connection 205.
  • the switches 231, 232 are arranged symmetrically and diametrically opposite to the connection point 212, so that a current from the first switch 231 excites the outer surface 222 of the second radiating element 202 with a phase state opposite to that corresponding to a current from the second switch 232.
  • At least one transmission line (not shown in the figures) can be arranged close to one of the two radiating elements in order to supply power to this element which in turn transmits it to the other radiating element thanks to the through connection 205.
  • the excitation point is either the point of the switch 231 or the point of the switch 232, knowing that the two elements are interconnected, which generates the excitation of a single mode of spread.
  • the switches 231, 232 are alternately controlled, so that when the first switch 231 is open, the second switch 232 is closed, and when the first switch 231 is closed, the second switch 232 is opened.
  • This control mode makes it possible to place the cell 200 in two different states:
  • the receiving mode cell 200 on the first radiating element 201 and transmitting on the second radiating element 202 is described, but the cell 200 can operate reciprocally to transmit a signal received on the second radiating element 202 to the first radiating element 201 , especially when the cell 200 does not include non-reciprocal elements such as an amplifier, a mixer or a non-integrated phase shifter.
  • non-reciprocal elements such as an amplifier, a mixer or a non-integrated phase shifter.
  • the radiating elements may be patch antennas 201, 202 of square shape, but a rectangular, circular, elliptical, triangular, for example, could be used.
  • An antenna shaped like a dipole or spiral could also be used.
  • the two conductive surfaces 221, 222 are, respectively, lower and upper surface of the radiating element and are disjoint and separated from one another. another by a dielectric layer to electrically isolate them.
  • the lower surface 221 is close to the ground plane and the upper surface 222 is opposed to the lower surface 221.
  • the first switch 231 is connected to the lower surface 221 on the one hand and the first radiating element 201 on the other hand
  • the second switch 232 is connected to the upper surface 222 on the one hand and to the first element radiating 201 on the other hand, the switch which is closed serving as a connection between the two radiating elements.
  • An opening provided in the ground plane 205 allows the passage of these two switches inside the structure of the radiating cell 200.
  • the supply of these two surfaces is provided by at least one transmission line so as to generate a blocking or passing state for each switch alternately.
  • the relative angular position of the two radiating elements 201, 202 can be modified.
  • the radiating elements can be aligned, as in FIG. 2b, or their relative angular position can be modified.
  • the first radiating element 201 can be rotated about the axis of rotation formed by the connection 205, so as to change the polarization of the transmitted signal.
  • the first radiating element 201 can be turned at 90 °, so that a signal received in vertical polarization is transmitted in horizontal polarization by the second radiating element 202.
  • additional radiating elements 201, 202 may be positioned above / below the two patches 201, 202 mentioned above, according to the principle of coupled superimposed patches, known to those skilled in the art, principle also referred to as "stacked patch antennas".
  • the slot 220 may be annular, circular, elliptical or have another form; this slot 220 makes it possible to create two separate conductive surfaces 221, 222, the first conducting surface
  • the second surface 222 comprising the peripheral conductive zones of the second radiating element 202, that is to say the areas close to the edges of this element 202 which are conducive to good radiation, the second surface 222 being larger than the first surface 221 for the 'surround.
  • an insulating material could be used to insulate the two conductive surfaces 221, 222.
  • the through connection 205 splits into two branches, each of these branches being connected to the first access of a switch, the switches being placed in opposite directions, the second ports of the switches being connected to locations diametrically opposite the conductive surface 222 of the second radiating element 202.
  • an external conductive passage at the conductive surface of the second radiating element 202 connects the first radiating element 201 to each of the switches 231, 232.
  • a conductive line starting from the first antenna 201 opens onto an access of a switch located near an edge of the second radiating element 202.
  • the switches operate in opposition and are arranged to excite the second radiating element 202 by currents in phase opposition.
  • radio frequency switch technologies can be employed in the cell according to the invention, for example diodes, transistors, photodiodes, phototransistors, MEMS (Micro Electro Mechanical Systems), NEMS (Nano Electro Mechanical Systems).
  • switches 231, 232 may be made using two independent components or with a single component comprising two switches and comprising a switch function 1 - to-2, function sometimes designated by the acronym SPDT for " Single Double Throw Pole ", that is, a function with one input and two switched outputs.
  • SPDT Single Double Throw Pole
  • the type of device to implement to control the switches depends in particular on the chosen switch technology.
  • the following devices may for example be used:
  • Figure 3a is a bottom view of cell 300
  • Figure 3b is a cross-sectional view of cell 300
  • Figure 3c is a top view of cell 300.
  • connection point 31 1 of the first radiating element 301 is located at the center of the surface of this element 301, so as to minimize the bulk of the cell, since the two elements radiating 301, 302 are found face to face.
  • a U-shaped slot 320 is formed around the connection point 31 1, so that the connection point 31 1 is located on a conductive strip 341 formed in FIG. inside the U, this conductive strip 341 terminating at the periphery 361 of the first radiating element 301.
  • the conductive strip 341 thus acts as a conduction line for effectively exciting the first radiating element 301 at its periphery.
  • peripheral means an area located at a distance from the edge of the radiating element less than one-third of the width of this element, preferably less than a quarter of its width.
  • switches 331, 332, 333 and 334 are provided, the switch 334 being in the closed position.
  • FIGS. 4a, 4b and 4c show an exemplary embodiment of the cell according to the invention operating around a central frequency of 9.5 GHz, the cell comprising control means making it possible to choose the phase shift applied to the transmitted signal.
  • Figure 4a is a bottom view of cell 400
  • Figure 4b is a cross-sectional view of cell 400
  • Figure 4c is a top view of cell 400.
  • the cell 400 comprises a ground plane 403 framed by two Rogers type RO4003 substrates 451, 452, whose relative permittivity is equal to 3.38 and the thickness is equal to 1 .524 mm.
  • the cell 400 also comprises a gluing film 40 mm thick. This film is visible in FIG. 4b between the ground plane 403 and line 407. Its role is the bonding of the substrates and the electrical insulation between the line 407 and the ground plane 403.
  • the first substrate 451 comprises on its underside a first rectangular radiating element 401, 8.2x7.4 mm in size, and provided with a slot 140 in U, the ground plane 403 being disposed on the upper face of the first substrate 451.
  • the second substrate 452 comprises a second rectangular radiating element 402 of the same dimensions as the first element
  • the two radiating elements 401, 402 are connected by a vertical connection 405 placed in the center of the cell 400 and passing through an opening 406 made in the ground plane 403.
  • the second radiating element 402 comprises, in the example, two diodes 431, 432 of MACOM type MA4AGP907 placed at two opposite ends of the annular slot 420.
  • the anode of the first diode 431 is connected to the conductive surface 422 surrounding the annular slot 420, while the cathode of the same diode 431 is connected to the conductive surface included within the annular slot 420.
  • the anode of the second diode 432 is connected to the conductive surface 421 within the annular slot 420, while the cathode of the second diode 432 is connected to the conductive surface 422 surrounding the annular slot 420.
  • the polarization of the diodes 431, 432 is effected by a conductive line 407 placed on the lower face of the second substrate 452 and connected to the second radiating element 402 by a second through connection 405 '.
  • This through connection 405 ' is placed on the center line, shown in dashed lines in FIG. 4a, of this second element
  • connection point 413 connecting the through connection 405 'and the second element 402 corresponds to a point of zero voltage between the second element 402 and the ground plane 403; this position minimizing the disturbance of the second radiating element 402 by this through connection 405 '.
  • connection 405 "connects the first radiator 401 and the ground plane 403.
  • the diodes 431, 432 are controlled by a positive or negative current between the conductive line 407 and the ground plane 403.
  • the diodes 433, 434 are then inverted polarized, to place them in opposite states passing / blocked or blocked. passing.
  • the conductive line 407 is connected to the first radiating element 401 and the ground plane 403 is connected to the radiating surface 422 of the second radiating element 402; in this case, the polarization of the switches follows the same principle but is reversed.
  • FIG. 5 illustrates, by curves, the evolution of the reflection coefficients S1 1 and transmission S21 of the cell 400 of FIGS. 4a, 4b and 4c as a function of the frequency of the signal transmitted by this cell.
  • the transmission losses are identical in the two polarization states of the diodes (that is, if the first switch is off and the second switch is on, or if the first switch is on and the second switch is off); these losses are equal to 1 .8 dB at the frequency of 9.5 GHz, which is much better than the performances obtained with the achievements of the prior art.
  • the bandwidth at -3 dB is 1.75 GHz, or about 17%.
  • FIG. 6 shows an example of a transmitter network comprising reconfigurable cells according to the invention.
  • the network 600 of this example comprises a square of 7 ⁇ 7 cells 601 identical, each of which can be controlled independently, so as to control the radiation pattern of the network.
  • Such a transmitter network can be used in military radar systems at microwave frequencies. It can also be used in applications such as terrestrial or satellite long-distance communications systems, short or medium-range wireless links (eg wireless LAN or wireless metro network), or radar or imaging at millimeter or submillimeter frequencies.
  • An advantage of the cell according to the invention is its simplicity of implementation. Indeed, the switches are not necessarily implanted inside the cell, but can be implemented according to the embodiments of the outer side and on one side moreover.
  • the cell according to the invention has low losses, particularly because of the use of only two switches.
  • the losses are identical in the two phase states, because these two states are generated by symmetrical configurations.
  • the cell according to the invention can benefit from bandwidth widening techniques.
  • the radiating elements or patches may be designed to operate over a wide bandwidth, using a low permittivity substrate and coupled patches above each of the patch antennas of the cell.
  • the cell according to the invention operates according to a switching principle between several feed points of the antenna, as opposed to the principle of disturbance or switching of resonators which are inherently low band.
  • the dimensions of the cell are reduced, in particular because of the connection mode between the two radiating elements, which makes it possible to have a cell whose lateral dimensions are less than half a wavelength. It is also desirable to have cells of small dimensions (that is to say less than or equal to half a wavelength) to optimize their efficiency.
  • the structure may be entirely symmetrical in the sense that the two radiating elements can be identical and both provided with a rectangular or annular slot in the middle separating the conductive surfaces.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

La présente invention concerne une cellule rayonnante à deux états de phase convenant pour un réseau transmetteur apte à transmettre des signaux hyperfréquences, la cellule comprenant une première antenne (201) et une deuxième antenne (202) disposées de part et d'autre d'un ensemble (204) comportant deux couches de substrat (204', 204") séparées par un plan de masse (203), la deuxième antenne (202) comprenant un élément conducteur apte à rayonner (221, 222), la cellule comprenant au moins deux moyens de commutation (231, 232), lesdits moyens comportant chacun un état passant et un état bloqué entre deux accès, dont un desdits accès est connecté au deuxième élément rayonnant, lesdits moyens de commutation étant commandés en opposition. L'invention s'applique notamment à la réalisation de réseaux transmetteurs mettant en œuvre plusieurs cellules configurables pour contrôler le diagramme de rayonnement.

Description

Cellule rayonnante à deux états de phase pour réseau transmetteur
La présente invention concerne une cellule rayonnante à deux états de phase et apte à réaliser une antenne réseau ou une antenne lentille. Elle s'applique notamment à la réalisation de réseaux transmetteurs mettant en œuvre plusieurs cellules configurables pour contrôler le diagramme de rayonnement de l'antenne.
Les antennes réseaux transmetteurs, parfois désignées par l'appellation anglo-saxonne « transmit-array antenna >> sont communément utilisées dans le domaine de fréquence 1 -100 GHz pour focaliser un rayonnement ; pour cette raison, elles sont donc également souvent appelées antennes lentille discrète (ou « discrete-lens antenna >> en anglais).
Un tel type d'antennes réseau comprend un grand nombre de cellules rayonnantes individuelles aptes à recevoir un champ électromagnétique sur une face et de le transmettre sur la face opposée avec une atténuation minimale et un déphasage connu. Ce type d'antennes est généralement connu pour former un projecteur d'onde transformant à leur sortie les propriétés de l'onde se présentant à leur entrée.
Comme illustré en figure 1 , un exemple d'une antenne réseau est donné qui comprend une surface de réception 1 1 1 qui est généralement éclairée par une ou plusieurs sources primaires 101 , l'autre surface 1 12, appelée également surface de transmission constituant l'ouverture rayonnante de l'antenne.
Les deux surfaces 1 1 1 et 1 12 sont séparées généralement par un dispositif de déphasage 1 13 pour permettre la modification de la phase et de la direction du rayonnement émis par la ou les source(s) primaire(s).
Le réseau antennaire fonctionne de manière identique en émission ou réception tant que le réseau ne contient pas d'élément non réciproque tel qu'un amplificateur ou certains composants magnétiques. Dans le cas contraire, le réseau antennaire est conçu pour fonctionner exclusivement soit en émission, soit en réception.
Les réseaux transmetteurs largement répandus et utilisés dans des applications militaires et/ou systèmes de communication grand public, comportent de multiples avantages, notamment : • l'efficacité énergétique aux fréquences micro-ondes élevées (de l'ordre de plusieurs GHz) et au-delà grâce à la transmission par rayonnement dans l'air entre la source primaire et les cellules de déphasage ;
« la simplicité et coût de réalisation pour des réseaux comprenant un grand nombre d'éléments (plusieurs centaines et au-delà) correspondant à des antennes très directives ;
• un encombrement, une masse, et un coût de réalisation réduits grâce au fait que ces réseaux sont réalisés en technologie planaire, généralement sur circuit imprimé ;
• un diagramme de rayonnement pourvu d'une bonne pureté de polarisation grâce à la structure de réseau d'antennes élémentaires dont les imperfections peuvent se compenser mutuellement et permettre de générer un faisceau en polarisation linéaire ou circulaire très pure ;
• une bonne qualité du diagramme de rayonnement au niveau de la forme du faisceau et des lobes secondaires grâce à la position de la source primaire située dans la direction opposée à la direction du faisceau principal généré par le réseau.
Pour étendre les possibilités offertes par ces réseaux transmetteurs, des systèmes sous une forme compacte, efficaces et peu complexes ont été conçus mais dont le faisceau (ou la phase/direction de rayonnement) en sortie est fixe. Cependant, des recherches ont été menées pour permettre d'avoir des systèmes dont on peut contrôler le déphasage en transmission de manière électronique afin de contrôler le diagramme de rayonnement de l'antenne et ainsi dépointer le faisceau et/ou modifier sa forme. Plusieurs techniques ont été proposées à ces fins.
Par exemple, une cellule reconfigurable (non symétrique) utilisant comme antennes des fentes rayonnantes perpendiculaires l'une à l'autre et situées de part et d'autre d'un assemblage de deux substrats a été proposée dans la demande de brevet internationale référencée sous le numéro de publication WO2009023551 .
Des résonateurs en tronçons disposés entre les deux fentes permettent d'assurer un couplage électromagnétique entre ces deux fentes, et des interrupteurs placés en différents points de ces résonateurs permettent de sélectionner un mode de couplage parmi quatre modes possibles, chaque mode correspondant à des phases de transmission différentes de 90° l'une de l'autre.
Les résonateurs de cette structure forment un filtre, chaque tronçon de ces résonateurs forme un circuit résonnant couplé à une antenne à fente. En actionnant les interrupteurs, on modifie la fréquence de résonance de la structure complète.
Cette cellule permet donc de générer quatre états de phase avec de faibles pertes de transmission.
Toutefois, un inconvénient de cette cellule est sa faible bande passante (de l'ordre de quelques pourcents), qui est une conséquence directe de l'utilisation de la technique de couplage, lequel repose sur des résonateurs ayant nécessairement une dispersion fréquentielle de phase importante.
Une autre technique, sous la forme d'un réseau transmetteur séparant complètement les deux antennes et le circuit de déphasage a été proposée dans A. Munoz-Acevedo, P. Padilla, M. Sierra-Castaner, "Ku band Active transmitarray based on microwave phase shifters," European Conférence on Antennas and Propagation, 2009. Cette approche permet d'utiliser un circuit de déphasage couvrant toute la gamme de 360° de phase possible.
Cependant, la réalisation d'un tel réseau transmetteur est complexe car il requiert des déphaseurs non intégrés, donc de grandes dimensions, et connectés perpendiculairement au plan des antennes.
II est également connu de J.Y. Lau, S.V. Hum, "A low-cost reconfigurable transmitarray élément," IEEE AP-S Int. Symp., 2009, une cellule reconfigurable comportant deux antennes patch séparées par un plan de masse et couplés par une fente, dite fente de couplage, pratiquée dans le plan de masse. Chaque antenne patch est séparée en deux parties par une fente médiane. Des diodes à capacité variable sont placées sur ces fentes ainsi que sur la fente de couplage. En commandant la tension de polarisation de ces diodes, la fréquence de résonance des patchs et de la fente de couplage varie ainsi que la phase de transmission sur une gamme pouvant atteindre 360°. L'avantage principal de cette solution est de permettre une variation continue de la phase de transmission sur une gamme importante proche de 360°.
Toutefois, les résultats expérimentaux ont fait apparaître plusieurs inconvénients :
• un niveau de perte important de l'ordre de 3 dB et variant de manière significative en fonction de la phase de transmission ;
• une faible bande passante due à l'utilisation de résonateurs ;
• un nombre de composants élevé et des moyens de commande complexes des composants, les lignes de commandes devant être connectées aux éléments rayonnants ce qui, de surcroît, induit des perturbations significatives.
Un but de l'invention est de proposer une cellule rayonnante à large bande passante définie à -3dB de transmission par rapport à la fréquence nominale de la cellule, par exemple de l'ordre de 15% ou 20%, et qui peut être intégrée dans un réseau transmetteur dont le diagramme de rayonnement est configurable.
A cet effet, l'invention a pour objet une cellule rayonnante pour former une antenne intégrable dans un réseau et apte à transmettre des signaux hyperfréquences, la cellule comprenant un premier élément rayonnant et un deuxième élément rayonnant disposés de part et d'autre d'un plan de masse , le deuxième élément rayonnant comprenant au moins une surface conductrice apte à rayonner caractérisée en ce qu'elle comprend au moins un premier et un deuxième moyens de commutation, lesdits moyens comportant chacun un état passant et un état bloqué entre deux accès, dont un desdits accès est connecté au deuxième élément rayonnant, lesdits moyens de commutation étant commandés en opposition pour que lorsque ledit premier moyen de commutation est à l'état passant, ledit deuxième moyen soit à l'état bloqué, ces premier et deuxième moyens de commutation étant en outre commandés pour que le courant circulant dans la surface conductrice soit en opposition de phase selon que le premier moyen de commutation est à l'état passant ou que le deuxième moyen de commutation est à l'état passant. Selon une variante de l'invention, le deuxième élément rayonnant comprend des première et deuxième surfaces disjointes et isolées l'une de l'autre électriquement.
Selon une variante de l'invention, lesdites première et deuxième surfaces forment une antenne planaire, ladite première surface étant reliée au premier élément rayonnant, ladite deuxième surface comprenant des zones conductrices périphériques du deuxième élément rayonnant, les moyens de commutation étant disposés en interface entre ladite première surface et ladite deuxième surface. Cette variante présente notamment l'avantage qu'elle est simple à réaliser. La première surface a un rôle de ligne conductrice vers les interrupteurs qui sont placés près des bords de l'antenne de manière à produire une excitation efficace de l'antenne. La deuxième surface comprend les zones périphériques de la deuxième antenne, adaptées à produire un rayonnement efficace ou à capter efficacement des signaux incidents.
Selon une variante de l'invention, la première surface conductrice du deuxième élément rayonnant est reliée au premier élément rayonnant (201 ) par une connexion traversante. Un tel mode de connexion est simple à réaliser et induit une très faible atténuation des signaux en puissance.
Selon une variante de l'invention, les surfaces conductrices sont isolées par une fente formée autour d'un point de jonction entre ladite première surface et ladite connexion traversante.
Selon une variante de l'invention, les moyens de commutation sont disposés l'un relativement à l'autre de manière sensiblement symétrique par rapport au centre du deuxième élément rayonnant. Cette disposition des moyens de commutations permet de faire circuler des courants en opposition de phase, selon que le courant passe à travers les premiers moyens de commutation ou les deuxièmes moyens de commutation.
Selon une variante de l'invention le point de jonction entre ladite première surface et ladite connexion traversante est situé sensiblement au centre du deuxième élément rayonnant.
Il est à noter que lorsque l'élément rayonnant est non carré, la première surface est de préférence circonscrite à une petite zone située dans la zone médiane du patch pour éviter l'apparition de courants parasites. Selon une variante de l'invention, le point de jonction entre ladite première surface et ladite connexion traversante est situé hors d'une zone milieu du deuxième élément rayonnant.
Selon une variante de l'invention, lesdites première et deuxième surfaces forment une antenne planaire, ladite première surface étant une surface inférieure disposée proche du plan de masse et étant reliée au premier élément rayonnant, ladite deuxième surface étant une surface supérieure disposée opposée à la surface inférieure et le premier moyen de commutation étant disposé entre la surface inférieure et le premier élément rayonnant, le deuxième moyen de commutation étant disposé entre la surface supérieure et le premier élément rayonnant, chacun des deux moyens de commutation formant connexion traversante et au moins un point de jonction entre chaque surface inférieure ou supérieure et le premier élément rayonnant étant prévu pour cette connexion traversante.
Selon une variante de l'invention, le premier élément rayonnant forme une antenne planaire dont le point de jonction entre le premier élément rayonnant et ladite connexion traversante est situé sensiblement au centre du premier élément rayonnant qui, comprend une zone isolante entourant au moins partiellement ledit point de jonction, de manière à former une ligne conductrice reliant ledit point de jonction à une zone périphérique du premier élément conducteur. Ce mode de réalisation présente notamment l'avantage d'être compact, les deux antennes pouvant être placées en regard l'une de l'autre. Ainsi, avec cette configuration, il est possible de disposer un plus grand nombre de cellules dans un réseau transmetteur.
Selon une variante de l'invention, le premier élément rayonnant forme une antenne planaire dont le point de jonction entre le premier élément rayonnant et ladite connexion traversante est situé en dehors du milieu de ce premier élément rayonnant.
Selon une variante de l'invention, la position angulaire du premier élément rayonnant autour d'un axe orthogonal au plan de cet élément et passant par ledit point de jonction est choisie en fonction de la polarisation souhaitée du signal transmis par la cellule. Ce mode de réalisation permet d'agir sur la position de la première antenne, la rotation de celle-ci autour du point de jonction permettant de choisir la polarisation du signal à transmettre. Selon une variante de l'invention, le plan de masse est connecté au premier élément rayonnant, la cellule comprenant une ligne conductrice de commande reliée à la deuxième surface du deuxième élément, ladite ligne conductrice de commande étant apte à transporter un courant électrique pour polariser lesdits moyens de commutation. De tels moyens sont très simples pour commander les interrupteurs.
Selon une variante de l'invention, le plan de masse est connecté à la deuxième surface du deuxième élément rayonnant, la cellule comprenant une ligne conductrice de commande reliée au premier élément rayonnant, ladite ligne conductrice de commande étant apte à transporter un courant électrique pour polariser lesdits moyens de commutation.
Selon une variante de l'invention, le plan de masse et la ligne de commande sont connectées aux éléments rayonnants via des connexions traversant au moins une couche diélectrique.
Selon une variante de l'invention, les premiers moyens de commutation sont une diode dont l'anode est connectée à la deuxième surface et dont la cathode est connectée à la première surface, les deuxièmes moyens de commutation étant une diode dont l'anode est connectée à la deuxième surface et dont la cathode étant connectée à la première surface.
L'invention a aussi pour objet un réseau comprenant, au moins deux cellules rayonnantes selon l'invention, chacune desdites deux cellules étant commandée pour modifier l'état de phase du signal transmis par cette cellule, de manière à configurer le diagramme de rayonnement dudit réseau.
D'autres caractéristiques apparaîtront à la lecture de la description détaillée donnée à titre d'exemple et non limitative qui suit faite en regard de dessins annexés qui représentent :
- la figure 1 , un schéma illustrant le principe de fonctionnement d'une antenne à réseau transmetteur ; cette figure a déjà été présentée plus haut ;
- les figures 2a, 2b, 2c et 2d, des schémas représentant un premier mode de réalisation de la cellule selon l'invention ;
- les figures 3a, 3b et 3c, des schémas représentant un deuxième mode de réalisation de la cellule selon l'invention ; - les figures 4a, 4b et 4c, des schémas représentant un exemple de cellule selon l'invention avec des moyens de commande permettant de choisir le déphasage appliqué au signal ;
- la figure 5, des courbes présentant l'évolution des coefficients de réflexion et de transmission de la cellule des figures 4a, 4b et 4c en fonction de la fréquence du signal transmis ;
- la figure 6, un schéma représentant un exemple de réseau transmetteur comprenant des cellules reconfigurables selon l'invention.
Dans ces figures, les mêmes références sont utilisées pour désigner les mêmes éléments.
Dans la suite de la description, les caractéristiques et fonctions bien connues de l'homme du métier ne sont pas décrites en détail.
De plus, les figures ne sont pas à l'échelle, et elles sont orientées par rapport à un axe XYZ comportant deux directions orthogonales X et Y horizontales et une direction verticale Z perpendiculaire aux deux autres directions.
Les termes « haut »/ « bas », « au-dessus »/ « au-dessous », « inférieur »/ « supérieur >> sont définis par rapport à la direction Z.
La cellule rayonnante de l'invention est apte à émettre/recevoir des ondes électromagnétiques (selon la direction Z) à une fréquence de travail ft (ou fréquence nominale) correspondant à une longueur d'onde λΐ, typiquement cette fréquence est comprise entre 100MHz et 100GHz, de préférence entre 1 GHz et 10GHz.
De manière générale, la cellule selon l'invention peut générer deux états de phase de transmission séparés de 180°, la phase étant contrôlée par un signal de commande électrique. Cette cellule permet donc de réaliser un réseau transmetteur comprenant un grand nombre de cellules et dont la loi de phase est pilotable électriquement par un ensemble de signaux de commande avec une quantification de phase de ±90°.
Ce pilotage du déphasage de la cellule rayonnante de l'invention est obtenu grâce à l'utilisation de moyens de commutation simples qui sont alternativement en état passant ou bloqué. Ces moyens de commutation peuvent être des interrupteurs radiofréquences tels que des diodes, des MEMS, des phototransistors ou tout autre composant ayant une fonctionnalité similaire avec deux états passant/bloqué. Ces composants sont généralement réciproques ; aussi, la cellule peut donc fonctionner de manière identique en réception ou émission.
Grâce à l'utilisation de ces interrupteurs, la cellule de l'invention présente de faibles pertes qui plus est sont des pertes identiques dans les deux états de phase.
Pour élargir la bande passante de la cellule, la cellule peut comprendre, au-dessus du premier élément rayonnant et/ou du deuxième élément rayonnant, un empilement comprenant une alternance de substrat de couches métalliques.
Les figures 2a, 2b, 2c et 2d présentent un premier mode de réalisation d'une cellule selon l'invention. La figure 2a est une vue du dessous de la cellule 200, les figures 2b et 2d sont une vue en coupe transversale de la cellule 200 et de sa variante respectivement, et la figure 2c est une vue du dessus de la cellule 200.
Dans cet exemple, la cellule 200 comprend deux antennes élémentaires disposées de part et d'autre d'un plan de masse 203.
Plus particulièrement, si l'on considère qu'une antenne élémentaire comporte un élément rayonnant séparé par le plan de masse d'au moins une couche diélectrique, la cellule 200 comprend donc un premier élément rayonnant 201 et un deuxième élément rayonnant 202 disposés de part et d'autre du plan de masse 203 enserré dans un assemblage 204 d'au moins deux substrats (ou couches diélectriques formant substrat) 204', 204".
Chaque antenne élémentaire peut être réalisée par une antenne planaire ou patch (en anglais) qui est une antenne plane dont l'élément rayonnant est une surface conductrice généralement carrée, séparée d'un plan réflecteur conducteur (ou plan de masse) par une couche diélectrique. La réalisation d'une telle antenne planaire ressemble à un circuit imprimé double face, substrat, et est donc favorable à une production industrielle, notamment pour une intégration facile dans un réseau d'antennes. Les deux éléments rayonnants 201 , 202 sont reliées par une connexion 205 traversant le substrat 204 et passant à travers une ouverture 206 formée dans le plan de masse 203. La connexion 205 n'a aucun contact avec le plan de masse 203 qui forme un blindage électromagnétique entre les deux éléments rayonnants 201 , 202.
La connexion 205 et le premier élément rayonnant 201 sont reliés au niveau d'un point de connexion 21 1 . Ce point de connexion 21 1 est situé de préférence près d'un bord de cet élément 201 de manière à améliorer le rayonnement de cet élément.
La connexion 205 et le deuxième élément rayonnant 202 sont reliés au niveau d'un point de connexion 212 situé de préférence au centre ou proche du centre de cet élément 202, et de préférence, à une distance du centre n'excédant pas un quart de la largeur de l'élément rayonnant 202, de manière à privilégier le mode principal de résonance de l'élément rayonnant selon sa longueur et ne pas exciter d'autres modes non désirés.
Une fente 220 est formée dans le deuxième élément rayonnant 202 autour du point de connexion 212, de sorte à créer deux surfaces disjointes 221 , 222 dans cet élément rayonnant 202.
Une première portion de surface conductrice, dite « surface interne >> 221 est située en contact avec le point de connexion 212, et est séparée d'une seconde portion de surface conductrice, dite « surface externe >> 222 qui entoure la surface interne 221 sans entrer en contact avec elle.
La fente 220 permet ainsi d'isoler électriquement la surface interne 221 de la surface externe 222. Dans l'exemple, le deuxième élément rayonnant 202 a une géométrie symétrique, ce qui permet de minimiser l'excitation de modes de résonance non désirés qui dégraderaient la polarisation du champ électromagnétique rayonné par l'antenne.
La première surface conductrice 221 forme une étroite bande de conduction sensiblement rectangulaire et s'étendant entre deux zones périphériques opposées du deuxième élément rayonnant 202, les moyens de commutation 231 , 232 étant disposés en interface entre chacune desdites zones périphériques et ladite bande de conduction.
Par « étroite », on entend une largeur suffisamment petite pour éviter l'apparition de rayonnements parasites, mais suffisamment grande pour acheminer un courant entre le point de jonction précité et chacun des moyens de commutation.
Selon l'invention, deux interrupteurs 231 , 232 sont placés en jonction entre la surface interne 221 et la surface externe 222 pour établir des passages de courant à travers la fente du deuxième élément rayonnant 202.
Un courant incident arrivant par le point de connexion 212 peut ainsi circuler par la surface interne 221 , passer par celui des interrupteurs 231 ou 232 qui est fermé puis circuler dans la surface externe 222. Réciproquement un courant engendré par la réception d'une onde sur la surface externe 222 du deuxième élément rayonnant 202 ne pourra circuler vers le point de connexion 212 qu'à travers l'un des deux interrupteurs 231 , 232 fermé pour ensuite être conduit vers le premier élément rayonnant 201 , via la connexion traversante 205.
Les interrupteurs 231 , 232 sont disposés de manière symétrique et diamétralement opposée par rapport au point de connexion 212, de sorte qu'un courant issu du premier interrupteur 231 excite la surface externe 222 du deuxième élément rayonnant 202 avec un état de phase opposé à celui correspondant à un courant issu du second interrupteur 232.
Il est à noter qu'au moins une ligne de transmission (non représentée sur les figures) peut être disposée proche de l'un des deux éléments rayonnants afin d'apporter l'alimentation à cet élément qui à son tour la transmet à l'autre élément rayonnant grâce à la connexion traversante 205.
Dans le présent exemple, le point d'excitation est soit le point de l'interrupteur 231 ou le point de l'interrupteur 232, sachant que les deux éléments sont reliés entre eux, ce qui engendre l'excitation d'un seul mode de propagation.
Les interrupteurs 231 , 232 sont commandés en alternance, de sorte que lorsque le premier interrupteur 231 est ouvert, le second interrupteur 232 est fermé, et que lorsque le premier interrupteur 231 est fermé, le second interrupteur 232 est ouvert. Ce mode de commande permet de placer la cellule 200 dans deux états différents :
• un premier état dans lequel un signal issu du premier élément rayonnant 201 est conduit vers la surface externe 222 du deuxième élément rayonnant 202 via le premier interrupteur 231 pour engendrer un rayonnement avec une phase φι ;
• un deuxième état dans lequel un signal issu du premier élément rayonnant 201 est conduit vers la surface externe 222 du deuxième élément rayonnant 202 via le deuxième interrupteur 232 pour engendrer un rayonnement avec une phase φ2 égale à φι + 180°.
Le fonctionnement de la cellule 200 en mode réception sur le premier élément rayonnant 201 et émission sur le deuxième élément rayonnant 202 est décrit, mais la cellule 200 peut fonctionner réciproquement pour transmettre un signal reçu sur le deuxième élément rayonnant 202 vers le premier élément rayonnant 201 , notamment lorsque la cellule 200 ne comporte pas d'éléments non réciproques tels qu'un amplificateur, un mélangeur voire un déphaseur non intégré.
L'exemple présenté en figure 2 peut être modifié pour donner lieu à plusieurs variantes de réalisation. Dans l'exemple, les éléments rayonnants peuvent être des antennes patch 201 , 202 de forme carrée, mais une forme rectangulaire, circulaire, elliptique, triangulaire, par exemple, pourrait être employée. Une antenne en forme de dipôle ou de spirale pourrait également être utilisée.
Selon une variante du premier mode de réalisation de l'invention, illustrée sur la figure 2d, les deux surfaces conductrices 221 , 222 sont, respectivement, surface inférieure et supérieure de l'élément rayonnant et sont disjointes et séparées l'une de l'autre par une couche diélectrique pour les isoler électriquement. La surface inférieure 221 est proche du plan de masse et la surface supérieure 222 est opposée à la surface inférieure 221 .
Dans cette variante, le premier interrupteur 231 est relié à la surface inférieure 221 d'une part et au premier élément rayonnant 201 d'autre part, et le deuxième interrupteur 232 est relié à la surface supérieure 222 d'une part et au premier élément rayonnant 201 d'autre part, l'interrupteur qui est fermé faisant office de connexion entre les deux éléments rayonnants.
Une ouverture prévue dans le plan de masse 205 permet le passage de ces deux interrupteurs à l'intérieur de la structure de la cellule rayonnante 200. L'alimentation de ces deux surfaces est apportée par au moins une ligne de transmission de façon à générer un état bloquant ou passant pour chaque interrupteur alternativement.
Par ailleurs, la position angulaire relative des deux éléments rayonnants 201 , 202 peut être modifiée. Autrement dit, les éléments rayonnants peuvent être alignés, comme dans la figure 2b, ou leur position angulaire relative peut être modifiée.
En effet, par exemple, le premier élément rayonnant 201 peut être tourné autour de l'axe de rotation formé par la connexion 205, de manière à changer la polarisation du signal transmis. Ainsi, le premier élément rayonnant 201 peut être tourné à 90°, de manière à ce qu'un signal reçu en polarisation verticale soit transmis en polarisation horizontale par le deuxième élément rayonnant 202.
De plus, pour élargir la bande passante, des éléments rayonnants 201 , 202 supplémentaires peuvent être positionnées au-dessus/dessous des deux patchs 201 , 202 précités, selon le principe des patchs superposés couplés, connu de l'homme de l'art, principe aussi désigné par l'expression anglo-saxonne « stacked patch antennas ».
Par ailleurs, la fente 220 peut être annulaire, circulaire, elliptique ou avoir une encore autre forme ; cette fente 220 permet de créer deux surfaces conductrices séparées 221 , 222, la première surface conductrice
221 étant reliée au premier élément rayonnant 201 , et la deuxième surface conductrice 222 étant apte à rayonner, cette deuxième surface conductrice
222 comprenant les zones conductrices périphériques du deuxième élément rayonnant 202, c'est-à-dire les zones proches des bords de cet élément 202 qui sont propices à un bon rayonnement, la deuxième surface 222 étant plus grande que la première surface 221 pour l'entourer.
Au lieu d'une fente, un matériau isolant pourrait être employé pour isoler les deux surfaces conductrices 221 , 222.
Par ailleurs, la présence de deux surfaces conductrices 221 , 222 séparées à la surface du deuxième élément rayonnant 202 n'est pas nécessaire. Par exemple, la connexion traversante 205 se dédouble en deux branches, chacune de ces branches étant connectée au premier accès d'un interrupteur, les interrupteurs étant placés dans des sens opposés, les deuxièmes accès des interrupteurs étant connectés à des endroits diamétralement opposés de la surface conductrice 222 du deuxième élément rayonnant 202.
Selon encore une autre variante du premier mode de réalisation moins compact que celui des figures 2a, 2b, 2c, un passage conducteur extérieur à la surface conductrice du deuxième élément rayonnant 202 relie le premier élément rayonnant 201 à chacun des interrupteurs 231 , 232. Par exemple, une ligne conductrice partant de la première antenne 201 débouche sur un accès d'un interrupteur situé près d'un bord du deuxième élément rayonnant 202.
Dans tous les cas, les interrupteurs fonctionnent en opposition et sont agencés de manière à exciter le deuxième élément rayonnant 202 par des courants en opposition de phase.
De multiples technologies d'interrupteurs radiofréquence peuvent être employées dans la cellule selon l'invention, par exemple des diodes, des transistors, des photodiodes, des phototransistors, des MEMS (Micro Electro Mechanical Systems), NEMS (Nano Electro Mechanical Systems).
En outre, les interrupteurs 231 , 232 peuvent être réalisés à l'aide de deux composants indépendants ou bien avec un composant unique comprenant deux interrupteurs et comprenant une fonction d'interrupteurs 1 - vers-2, fonction parfois désignée par le sigle SPDT pour « Single Pôle Double Throw », c'est-à-dire une fonction pourvu d'une entrée et de deux sorties commutées.
Le type de dispositif à mettre en œuvre pour commander les interrupteurs dépend notamment de la technologie d'interrupteur choisie. Les dispositifs suivants pourront par exemple être employés :
des lignes de commande conductrices directement connectées à la seconde antenne patch 202 ou aux interrupteurs 231 , 232, comme illustré plus loin aux figures 4a, 4b, 4c ;
une fibre optique si un interrupteur de type photo-électrique est utilisé ; ■ un faisceau laser généré par des moyens extérieurs et excitant un interrupteur de type photo-électrique ;
une onde électromagnétique selon des principes de la téléalimentation, connus du domaine de la RFID (Radio Frequency Identification). Un deuxième mode de réalisation est illustré aux figures 3a, 3b et
3c.
La figure 3a est une vue du dessous de la cellule 300, la figure 3b est une vue en coupe transversale de la cellule 300, et la figure 3c est une vue du dessus de la cellule 300.
Dans l'exemple des figures 3a, 3b et 3c, le point de connexion 31 1 du premier élément rayonnant 301 est situé au centre de la surface de cet élément 301 , de manière à minimiser l'encombrement de la cellule, car les deux éléments rayonnants 301 , 302 se retrouvent face à face.
Afin d'assurer un fonctionnement satisfaisant du premier élément rayonnant 301 , une fente 320 en U est formée autour du point de connexion 31 1 , de manière à ce que le point de connexion 31 1 se situe sur une bande conductrice 341 formée à l'intérieur du U, cette bande conductrice 341 aboutissant au niveau de la périphérie 361 du premier élément rayonnant 301 . La bande conductrice 341 agit donc comme une ligne de conduction permettant d'exciter efficacement le premier élément rayonnant 301 au niveau de sa périphérie.
Par « périphérie >> ou « zone périphérique », ont entend une zone située à une distance du bord de l'élément rayonnant inférieure à un tiers de la largeur de cet élément, de préférence inférieure à un quart de sa largeur.
Quatre interrupteurs 331 , 332, 333 et 334 sont prévus, l'interrupteur 334 étant en position fermée.
Les figures 4a, 4b et 4c présentent un exemple de réalisation de la cellule selon l'invention fonctionnant autour d'une fréquence centrale de 9.5 GHz, la cellule comprenant des moyens de commande permettant de choisir le déphasage appliqué au signal transmis.
La figure 4a est une vue du dessous de la cellule 400, la figure 4b est une vue en coupe transversale de la cellule 400, et la figure 4c est une vue du dessus de la cellule 400.
La cellule 400 comprend un plan de masse 403 encadré par deux substrats 451 , 452 de type Rogers RO4003, dont la permittivité relative est égale à 3.38 et l'épaisseur est égale à 1 .524 mm.
La cellule 400 comprend également un film de collage de 40 mm d'épaisseur. Ce film est visible sur la figure 4b entre le plan de masse 403 et la ligne 407. Son rôle est le collage des substrats et l'isolation électrique entre la ligne 407 et le plan de masse 403.
Le premier substrat 451 comprend sur sa face inférieure un premier élément rayonnant rectangulaire 401 , de dimensions 8.2x7.4 mm, et pourvu d'une fente 140 en U, le plan de masse 403 étant disposé sur la face supérieure du premier substrat 451 .
Le deuxième substrat 452 comprend un deuxième élément rayonnant rectangulaire 402 de mêmes dimensions que le premier élément
401 , mais pourvu d'une fente annulaire 420 sur sa face supérieure.
Les deux éléments rayonnants 401 , 402 sont reliés par une connexion 405 verticale placée au centre de la cellule 400 et passant à travers une ouverture 406 pratiquée dans le plan de masse 403.
Le deuxième élément rayonnant 402 comprend, dans l'exemple, deux diodes 431 , 432 de type MACOM MA4AGP907 placées à deux extrémités opposées de la fente annulaire 420.
L'anode de la première diode 431 est connectée à la surface conductrice 422 ceignant la fente annulaire 420, tandis que la cathode de cette même diode 431 est connectée à la surface conductrice comprise à l'intérieur de la fente annulaire 420. A l'opposé, l'anode de la deuxième diode 432 est connectée à la surface conductrice 421 comprise à l'intérieur de la fente annulaire 420, tandis que la cathode de la deuxième diode 432 est connectée à la surface conductrice 422 ceignant la fente annulaire 420.
La polarisation des diodes 431 , 432 est effectuée par une ligne conductrice 407 placée sur la face inférieure du second substrat 452 et reliée au deuxième élément rayonnant 402 par une deuxième connexion traversante 405'. Cette connexion traversante 405' est placée sur la ligne médiane, représentée en pointillés sur la figure 4a, de ce deuxième élément
402, de sorte que le point de connexion 413 faisant jonction entre la connexion traversante 405' et ce deuxième élément 402 correspond à un point de tension nulle entre ce deuxième élément 402 et le plan de masse 403 ; cette position minimisant la perturbation du deuxième élément rayonnant 402 par cette connexion traversante 405'.
Similairement, une autre connexion 405" connecte le premier élément rayonnant 401 et le plan de masse 403. Les diodes 431 , 432 sont commandées par un courant positif ou négatif entre la ligne conductrice 407 et le plan de masse 403. Les diodes 433, 434 sont alors polarisées de manière inversée, pour les placer dans des états opposés passant/bloqué ou bloqué/passant.
Selon un autre mode de réalisation, la ligne conductrice 407 est raccordée au premier élément rayonnant 401 et le plan de masse 403 est raccordé à la surface rayonnante 422 du deuxième élément rayonnant 402 ; dans ce cas, la polarisation des interrupteurs suit le même principe mais est inversée.
La figure 5 illustre, par des courbes, l'évolution des coefficients de réflexion S1 1 et de transmission S21 de la cellule 400 des figures 4a, 4b et 4c en fonction de la fréquence du signal transmis par cette cellule.
Les pertes de transmission sont identiques dans les deux états de polarisation des diodes (c'est-à-dire si le premier interrupteur est bloqué et le deuxième interrupteur est passant, ou si le premier interrupteur est passant et le deuxième interrupteur est bloqué) ; ces pertes sont égales à 1 .8 dB à la fréquence de 9.5 GHz, ce qui est bien meilleur que les performances obtenues avec les réalisations de l'art antérieur. La bande passante à -3 dB est de 1 .75 GHz, soit environ 17%.
La figure 6 présente un exemple de réseau transmetteur comprenant des cellules reconfigurables selon l'invention.
Le réseau 600 de cet exemple comprend un carré de 7x7 cellules 601 identiques, chacune d'entre elle pouvant être commandée indépendamment, de manière à contrôler le diagramme de rayonnement du réseau.
Un tel réseau transmetteur peut être utilisé dans des systèmes radar militaire aux fréquences micro-ondes. Il peut également être employé dans des applications telles que les systèmes de communications longue distance terrestres ou satellitaires, les liaisons sans fil à courte ou moyenne portée (par exemple un réseau local sans fil ou un réseau métropolitain sans fil), ou encore les dispositifs de radar ou d'imagerie aux fréquences millimétriques ou submillimétriques. Un avantage de la cellule selon l'invention est sa simplicité de réalisation. En effet, les interrupteurs ne sont pas forcément implantés à l'intérieur de la cellule, mais peuvent être implantés selon les modes de réalisation du côté extérieur et sur une seule face de surcroît.
En outre, pour faciliter encore la réalisation de la cellule, il est possible de grouper les deux interrupteurs en un seul composant à fixer grâce à un procédé de report classique.
La cellule selon l'invention bénéficie de faibles pertes, notamment du fait de l'utilisation de seulement deux interrupteurs. De plus, les pertes sont identiques dans les deux états de phase, car ces deux états sont engendrés par des configurations symétriques.
Par ailleurs, la cellule selon l'invention peut bénéficier de techniques d'élargissement de la bande passante. Par exemple, les éléments rayonnants ou patchs peuvent être conçus pour fonctionner sur une large bande passante, en utilisant un substrat de faible permittivité et des patchs couplés au-dessus de chacune des antennes patch de la cellule.
De plus, il est à noter que la cellule selon l'invention fonctionne selon un principe de commutation entre plusieurs points d'alimentation de l'antenne, par opposition au principe de perturbation ou de commutation de résonateurs qui sont intrinsèquement faible bande.
Enfin, les dimensions de la cellule sont réduites, notamment grâce au mode de connexion entre les deux éléments rayonnants, qui permet d'avoir une cellule dont les dimensions latérales sont inférieures à une demi- longueur d'onde. Il est d'ailleurs souhaitable d'avoir des cellules de petites dimensions (c'est-à-dire inférieures ou égales à une demi-longueur d'onde) pour optimiser leur efficacité.
D'autres variantes peuvent être prévues également sans sortir de la portée de l'invention. Il est par exemple possible que la structure soit entièrement symétrique dans le sens où les deux éléments rayonnants peuvent être identiques et pourvus tous les deux de fente rectangulaire ou annulaire au milieu séparant les surfaces conductrices.
Il est également possible d'avoir un interrupteur sur le premier élément rayonnant et un autre interrupteur sur le deuxième élément rayonnant de sorte que les deux interrupteurs soient commandés de façon inversée afin de créer les deux états de phase désirés.

Claims

REVENDICATIONS
1 . Cellule rayonnante (200, 300, 400) pour former une antenne intégrable dans un réseau (600) et apte à transmettre des signaux hyperfréquences, la cellule comprenant un premier élément rayonnant (201 ) et un deuxième élément rayonnant (202) reliés par une connexion traversante et disposés de part et d'autre d'un plan de masse (203), le deuxième élément rayonnant (202) comprenant au moins une surface conductrice apte à rayonner (221 , 222), le deuxième élément rayonnant (202) comprenant des première et deuxième surfaces disjointes et isolées l'une de l'autre électriquement, caractérisée en ce qu'elle comprend au moins un premier et un deuxième moyens de commutation (231 , 232), lesdits moyens comportant chacun un état passant et un état bloqué entre deux accès, dont un desdits accès est connecté au deuxième élément rayonnant, lesdits moyens de commutation étant commandés en opposition pour que lorsque ledit premier moyen de commutation est à l'état passant, ledit deuxième moyen est à l'état bloqué, ces premier et deuxième moyens de commutation étant en outre commandés pour que le courant circulant dans ladite surface conductrice (221 , 222) soit en opposition de phase selon que le premier moyen de commutation (231 ) est à l'état passant ou que le deuxième moyen de commutation (232) est à l'état passant..
2. Cellule rayonnante selon la revendication 1 , dans laquelle lesdites première et deuxième surfaces forment une antenne planaire, ladite première surface (221 ) étant reliée au premier élément rayonnant (201 ), ladite deuxième surface (222) comprenant des zones conductrices périphériques du deuxième élément rayonnant (202), les moyens de commutation (231 , 232) étant disposés en interface entre ladite première (221 ) surface et ladite deuxième surface (222).
3. Cellule rayonnante selon la revendication 2, dans laquelle la première surface conductrice (221 ) du deuxième élément rayonnant (202) est reliée au premier élément rayonnant (201 ) par la connexion (205) traversante.
4. Cellule rayonnante selon la revendication 3, dans laquelle plusieurs surfaces conductrices (221 , 222) sont isolées par une fente formée autour d'un point de jonction (212) entre ladite première surface (221 ) et ladite connexion traversante (205).
5. Cellule rayonnante selon la revendication 4, dans laquelle les moyens de commutation (231 ) sont disposés l'un relativement par rapport à l'autre de manière symétrique par rapport au centre du deuxième élément rayonnant (202).
6. Cellule rayonnante selon la revendication 4 ou 5, caractérisée en ce que le point de jonction (212) entre ladite première surface (221 ) et ladite connexion traversante (205) est situé au centre du deuxième élément rayonnant (202).
7. Cellule rayonnante selon la revendication 4 ou 5, caractérisé en ce que le point de jonction (212) entre ladite première surface (221 ) et ladite connexion traversante (205) est situé hors d'une zone milieu du deuxième élément rayonnant (202).
8. Cellule rayonnante selon la revendication 1 , dans laquelle lesdites première et deuxième surfaces forment une antenne planaire, ladite première surface (221 ) étant une surface inférieure disposée proche du plan de masse (203) et étant reliée au premier élément rayonnant (201 ), ladite deuxième surface (222) étant une surface supérieure disposée opposée à la surface inférieure, le premier moyen de commutation (231 ) étant disposé entre la surface inférieure et le premier élément rayonnant (201 ) et le deuxième moyen de commutation est disposé entre la surface supérieure et le premier élément rayonnant (201 ), et chacun des deux moyens de commutation formant connexion traversante et au moins un point de jonction entre chaque surface inférieure ou supérieure et le premier élément rayonnant (201 ) étant prévu pour cette connexion traversante.
9. Cellule rayonnante selon l'une quelconque des revendications 3 à 8, dans laquelle le premier élément rayonnant (301 ) forme une antenne planaire dont le point de jonction (31 1 ) entre le premier élément rayonnant (301 ) et ladite connexion traversante (305) est situé au centre du premier élément rayonnant (301 ) qui , comprend une zone isolante (320) entourant au moins partiellement ledit point de jonction (31 1 ), de manière à former une ligne conductrice (341 ) reliant ledit point de jonction (31 1 ) à une zone périphérique (361 ) du premier élément conducteur (301 ).
10. Cellule rayonnante selon l'une quelconque des revendications
3 à 8, dans laquelle le premier élément rayonnant (201 ) forme une antenne planaire dont le point de jonction (21 1 ) entre le premier élément rayonnant (201 ) et ladite connexion traversante (205) est situé en dehors du milieu de ce premier élément rayonnant (201 ).
1 1 . Cellule rayonnante selon l'une quelconque des revendications précédentes, dans laquelle la position angulaire du premier élément rayonnant (201 ) autour d'un axe orthogonal au plan de cet élément (201 ) et passant par ledit point de jonction (21 1 ) est choisie en fonction de la polarisation souhaitée du signal transmis par la cellule.
12. Cellule rayonnante selon l'une quelconque des revendications 1 à 1 1 , dans laquelle le plan de masse (403) est connecté au premier élément rayonnant (401 ), la cellule (400) comprenant une ligne conductrice de commande (407) reliée à la deuxième surface (422) du deuxième élément (402), ladite ligne conductrice de commande (407) étant apte à transporter un courant électrique pour polariser lesdits moyens de commutation (431 , 432).
13. Cellule rayonnante selon l'une quelconque des revendications
1 à 1 1 , dans laquelle le plan de masse (403) est connecté à la deuxième surface (422) du deuxième élément rayonnant (402), la cellule (400) comprenant une ligne conductrice de commande (407) reliée au premier élément rayonnant (401 ), ladite ligne conductrice de commande (407) étant apte à transporter un courant électrique pour polariser lesdits moyens de commutation (431 , 432).
14. Cellule rayonnante selon l'une des revendications 12 ou 13, dans laquelle le plan de masse (403) et la ligne de commande (407) sont connectées aux éléments rayonnants (401 , 402) via des connexions (405', 405") traversant au moins une couche diélectrique (451 , 452).
15. Cellule rayonnante selon l'une quelconque des revendications 1 à 14, dans laquelle les premiers moyens de commutation sont une diode
(431 ) dont l'anode est connectée à la deuxième surface (422) et dont la cathode est connectée à la première surface (421 ), les deuxièmes moyens de commutation étant une diode (432) dont l'anode est connectée à la deuxième surface et dont la cathode étant connectée à la première surface (421 ).
16. Réseau transmetteur (600) comprenant au moins deux cellules rayonnantes (601 ) selon l'une quelconque des revendications précédentes, chacune desdites deux cellules (601 ) étant commandée pour modifier l'état de phase du signal transmis par cette cellule, de manière à configurer le diagramme de rayonnement dudit réseau.
PCT/EP2011/073565 2010-12-24 2011-12-21 Cellule rayonnante a deux etats de phase pour reseau transmetteur WO2012085067A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/995,877 US9099775B2 (en) 2010-12-24 2011-12-21 Radiating cell having two phase states for a transmitting network
EP11802728.3A EP2656438B1 (fr) 2010-12-24 2011-12-21 Cellule rayonnante a deux etats de phase pour reseau transmetteur

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1061253A FR2969832B1 (fr) 2010-12-24 2010-12-24 Cellule rayonnante a deux etats de phase pour reseau transmetteur
FR1061253 2010-12-24

Publications (1)

Publication Number Publication Date
WO2012085067A1 true WO2012085067A1 (fr) 2012-06-28

Family

ID=44504359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/073565 WO2012085067A1 (fr) 2010-12-24 2011-12-21 Cellule rayonnante a deux etats de phase pour reseau transmetteur

Country Status (4)

Country Link
US (1) US9099775B2 (fr)
EP (1) EP2656438B1 (fr)
FR (1) FR2969832B1 (fr)
WO (1) WO2012085067A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3125362A1 (fr) 2015-07-28 2017-02-01 Commissariat à l'Energie Atomique et aux Energies Alternatives Cellule elementaire d'un reseau transmetteur pour une antenne reconfigurable
CN111211414A (zh) * 2020-03-06 2020-05-29 电子科技大学 一种新型的可重构单脉冲天线
EP3840122A1 (fr) 2019-12-18 2021-06-23 Commissariat à l'Energie Atomique et aux Energies Alternatives Cellule élémentaire d'un réseau transmetteur
EP3840115A1 (fr) 2019-12-18 2021-06-23 Commissariat à l'Energie Atomique et aux Energies Alternatives Antenne à cavité résonante compacte
CN114614263A (zh) * 2022-03-28 2022-06-10 西安电子科技大学 一种双层金属表面的低剖面宽频带透射阵列天线
US11489256B2 (en) 2019-12-05 2022-11-01 Commissariat à l'Energie Atomique et aux Energies Alternatives Wireless transmitter that performs frequency multiplexing of channels
EP4087060A1 (fr) * 2021-05-07 2022-11-09 Commissariat à l'énergie atomique et aux énergies alternatives Cellule d'antenne a reseau transmetteur
US12003040B2 (en) 2021-05-07 2024-06-04 Commissariat à l'Energie Atomique et aux Energies Alternatives Transmitarray antenna cell

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013212819A1 (de) * 2013-07-01 2015-01-08 Siemens Aktiengesellschaft Radarsystem für den medizinischen Einsatz
US10854761B1 (en) * 2015-03-30 2020-12-01 Southern Methodist University Electronic switch and active artificial dielectric
US9515390B1 (en) * 2015-06-11 2016-12-06 The United States Of America As Represented By The Secretary Of The Navy Discrete phased electromagnetic reflector based on two-state elements
WO2017053875A1 (fr) * 2015-09-23 2017-03-30 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Filtre coupe-bande commuté à état de dérivation en phase linéaire à faibles pertes
FR3046513A1 (fr) 2016-01-04 2017-07-07 Commissariat Energie Atomique Emetteur recepteur ibfd a module de transposition de frequence non reciproque
TWI667842B (zh) * 2016-04-15 2019-08-01 和碩聯合科技股份有限公司 天線系統及控制方法
WO2018089340A1 (fr) * 2016-11-10 2018-05-17 Commscope Technologies Llc Antennes de station de base à lentille ayant une stabilisation de largeur de faisceau d'azimut
FR3065329B1 (fr) * 2017-04-14 2019-07-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Cellule elementaire d'un reseau transmetteur pour une antenne reconfigurable
GB201811092D0 (en) 2018-07-05 2018-08-22 Npl Management Ltd Reflectarray antenna element
US11942697B2 (en) 2019-01-15 2024-03-26 Nec Corporation Phase control device, antenna system, and method of controlling phase of electromagnetic wave
KR20210117639A (ko) * 2020-03-19 2021-09-29 엘지이노텍 주식회사 커버형 안테나
RU2752282C1 (ru) * 2020-12-04 2021-07-26 Самсунг Электроникс Ко., Лтд. Проходная антенная решетка с бесконтактной структурой и однобитным управлением для формирования многолучевой диаграммы направленности
FR3125173A1 (fr) * 2021-07-07 2023-01-13 Commissariat A L'energie Atomique Et Aux Energies Alternatives Cellule d’antenne à réseau transmetteur

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4053895A (en) * 1976-11-24 1977-10-11 The United States Of America As Represented By The Secretary Of The Air Force Electronically scanned microstrip antenna array
DE3150235A1 (de) * 1981-12-18 1983-06-30 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Passives strahlerelement
EP0646983A2 (fr) * 1993-10-04 1995-04-05 Amtech Corporation Antenne microbande à rayonnement rétrodiffusé modulé
WO2009023551A1 (fr) 2007-08-10 2009-02-19 Arizona Board Of Regents And On Behalf Of Arizona State University Réseau d'antenne reconfigurable mems intégré hybride (himra)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4367474A (en) * 1980-08-05 1983-01-04 The United States Of America As Represented By The Secretary Of The Army Frequency-agile, polarization diverse microstrip antennas and frequency scanned arrays
US4379296A (en) * 1980-10-20 1983-04-05 The United States Of America As Represented By The Secretary Of The Army Selectable-mode microstrip antenna and selectable-mode microstrip antenna arrays
US4521781A (en) * 1983-04-12 1985-06-04 The United States Of America As Represented By The Secretary Of The Army Phase scanned microstrip array antenna
US5835062A (en) * 1996-11-01 1998-11-10 Harris Corporation Flat panel-configured electronically steerable phased array antenna having spatially distributed array of fanned dipole sub-arrays controlled by triode-configured field emission control devices
US6195047B1 (en) * 1998-10-28 2001-02-27 Raytheon Company Integrated microelectromechanical phase shifting reflect array antenna
US6417807B1 (en) * 2001-04-27 2002-07-09 Hrl Laboratories, Llc Optically controlled RF MEMS switch array for reconfigurable broadband reflective antennas
AU2003228322A1 (en) * 2002-03-15 2003-09-29 The Board Of Trustees Of The Leland Stanford Junior University Dual-element microstrip patch antenna for mitigating radio frequency interference

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4053895A (en) * 1976-11-24 1977-10-11 The United States Of America As Represented By The Secretary Of The Air Force Electronically scanned microstrip antenna array
DE3150235A1 (de) * 1981-12-18 1983-06-30 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Passives strahlerelement
EP0646983A2 (fr) * 1993-10-04 1995-04-05 Amtech Corporation Antenne microbande à rayonnement rétrodiffusé modulé
WO2009023551A1 (fr) 2007-08-10 2009-02-19 Arizona Board Of Regents And On Behalf Of Arizona State University Réseau d'antenne reconfigurable mems intégré hybride (himra)

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. MUNOZ-ACEVEDO; P. PADILLA; M. SIERRA-CASTANER: "Ku band Active transmitarray based on microwave phase shifters", EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, 2009
COLAN G M RYAN ET AL: "A Wideband Transmitarray Using Dual-Resonant Double Square Rings", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 58, no. 5, 1 May 2010 (2010-05-01), pages 1486 - 1493, XP011303863, ISSN: 0018-926X *
J.Y. LAU; S.V. HUM: "A low-cost reconfigurable transmitarray element", IEEE AP-S INT. SYMP., 2009
KAOUACH H ET AL: "Design and demonstration of 1-bit and 2-bit transmit-arrays at X-band frequencies", MICROWAVE CONFERENCE, 2009. EUMC 2009. EUROPEAN, IEEE, PISCATAWAY, NJ, USA, 29 September 2009 (2009-09-29), pages 918 - 921, XP031551470, ISBN: 978-1-4244-4748-0 *
KING-WAI LAM ET AL: "Implementation of transmitarray antenna concept by using aperture-coupled microstrip patches", PROCEEDINGS OF 1997 ASIA-PACIFIC MICROWAVE CONFERENCE, vol. 1, 1 January 1997 (1997-01-01), pages 433 - 436, XP055006170, DOI: 10.1109/APMC.1997.659416 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3125362A1 (fr) 2015-07-28 2017-02-01 Commissariat à l'Energie Atomique et aux Energies Alternatives Cellule elementaire d'un reseau transmetteur pour une antenne reconfigurable
FR3039711A1 (fr) * 2015-07-28 2017-02-03 Commissariat Energie Atomique Cellule elementaire d'un reseau transmetteur pour une antenne reconfigurable.
US9941592B2 (en) 2015-07-28 2018-04-10 Commissariat à l'Energie Atomique et aux Energies Alternatives Transmitarray unit cell for a reconfigurable antenna
US11489256B2 (en) 2019-12-05 2022-11-01 Commissariat à l'Energie Atomique et aux Energies Alternatives Wireless transmitter that performs frequency multiplexing of channels
FR3105612A1 (fr) 2019-12-18 2021-06-25 Commissariat à l'Energie Atomique et aux Energies Alternatives Antenne à cavité résonante compacte
EP3840115A1 (fr) 2019-12-18 2021-06-23 Commissariat à l'Energie Atomique et aux Energies Alternatives Antenne à cavité résonante compacte
EP3840122A1 (fr) 2019-12-18 2021-06-23 Commissariat à l'Energie Atomique et aux Energies Alternatives Cellule élémentaire d'un réseau transmetteur
FR3105613A1 (fr) 2019-12-18 2021-06-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives Cellule élémentaire d’un réseau transmetteur
CN111211414A (zh) * 2020-03-06 2020-05-29 电子科技大学 一种新型的可重构单脉冲天线
EP4087060A1 (fr) * 2021-05-07 2022-11-09 Commissariat à l'énergie atomique et aux énergies alternatives Cellule d'antenne a reseau transmetteur
FR3122780A1 (fr) * 2021-05-07 2022-11-11 Commissariat A L'energie Atomique Et Aux Energies Alternatives Cellule d’antenne à réseau transmetteur
US12003040B2 (en) 2021-05-07 2024-06-04 Commissariat à l'Energie Atomique et aux Energies Alternatives Transmitarray antenna cell
CN114614263A (zh) * 2022-03-28 2022-06-10 西安电子科技大学 一种双层金属表面的低剖面宽频带透射阵列天线
CN114614263B (zh) * 2022-03-28 2023-01-31 西安电子科技大学 一种双层金属表面的低剖面宽频带透射阵列天线

Also Published As

Publication number Publication date
EP2656438B1 (fr) 2015-04-01
EP2656438A1 (fr) 2013-10-30
FR2969832B1 (fr) 2013-01-18
US9099775B2 (en) 2015-08-04
US20130271346A1 (en) 2013-10-17
FR2969832A1 (fr) 2012-06-29

Similar Documents

Publication Publication Date Title
EP2656438B1 (fr) Cellule rayonnante a deux etats de phase pour reseau transmetteur
EP2571098B1 (fr) Cellule déphaseuse rayonnante reconfigurable basée sur des résonances fentes et microrubans complémentaires
EP1580844B1 (fr) Cellule déphaseuse à polarisation linéaire et à longueur résonante variable au moyen de commutateurs mems
EP3125362B1 (fr) Cellule elementaire d'un reseau transmetteur pour une antenne reconfigurable
EP2564466B1 (fr) Element rayonnant compact a cavites resonantes
EP3392959B1 (fr) Cellule élémentaire d'un reseau transmetteur pour une antenne reconfigurable
EP2869400B1 (fr) Répartiteur de puissance compact bipolarisation, réseau de plusieurs répartiteurs, élément rayonnant compact et antenne plane comportant un tel répartiteur
FR3070224A1 (fr) Antenne plaquee presentant deux modes de rayonnement differents a deux frequences de travail distinctes, dispositif utilisant une telle antenne
EP3540853B1 (fr) Antenne à réseau transmetteur large bande
FR3007215A1 (fr) Source pour antenne parabolique
EP3180816B1 (fr) Source multibande a cornet coaxial avec systemes de poursuite monopulse pour antenne a reflecteur
EP1305846B1 (fr) Reflecteur hyperfrequence actif a bipolarisation, notamment pour antenne a balayage electronique
FR2801729A1 (fr) Reflecteur hyperfrequence actif a balayage electronique
FR2704359A1 (fr) Antenne plane.
FR3047845A1 (fr) Plaque de reflexion electromagnetique a structure de metamateriau et dispositif miniature d'antenne comportant une telle plaque
EP1551078A1 (fr) Antenne omnidirectionnelle configurable
CA2808511C (fr) Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aeroporte et systeme de telecommunication par satellite comportant au moins une telle antenne
EP1157444B1 (fr) Antenne a balayage electronique bi-bande, a reflecteur hyperfrequence actif
FR3102311A1 (fr) Antenne-reseau
FR2858469A1 (fr) Antenne a cavite resonante, reconfigurable
WO2023218008A1 (fr) Antenne faible profil à balayage electronique bidimensionnel
FR2907262A1 (fr) Cellule dephaseuse a dephaseur analogique pour antenne de type"reflectarray".
WO2002037606A1 (fr) Antenne multibande

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11802728

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011802728

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13995877

Country of ref document: US