WO2012081221A1 - Magnetron-driving power supply and high-frequency heating device equipped with same - Google Patents

Magnetron-driving power supply and high-frequency heating device equipped with same Download PDF

Info

Publication number
WO2012081221A1
WO2012081221A1 PCT/JP2011/006922 JP2011006922W WO2012081221A1 WO 2012081221 A1 WO2012081221 A1 WO 2012081221A1 JP 2011006922 W JP2011006922 W JP 2011006922W WO 2012081221 A1 WO2012081221 A1 WO 2012081221A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform information
magnetron
input
input voltage
input current
Prior art date
Application number
PCT/JP2011/006922
Other languages
French (fr)
Japanese (ja)
Inventor
安井 健治
英明 守屋
末永 治雄
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012548644A priority Critical patent/JPWO2012081221A1/en
Publication of WO2012081221A1 publication Critical patent/WO2012081221A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/681Circuits comprising an inverter, a boost transformer and a magnetron
    • H05B6/682Circuits comprising an inverter, a boost transformer and a magnetron wherein the switching control is based on measurements of electrical values of the circuit
    • H05B6/685Circuits comprising an inverter, a boost transformer and a magnetron wherein the switching control is based on measurements of electrical values of the circuit the measurements being made at the low voltage side of the circuit

Definitions

  • the present invention relates to a magnetron driving power source having a magnetron used for a microwave oven or the like as a load.
  • Conventional known magnetron driving power supplies adjust the power supplied to the magnetron by adjusting the output pulse width of the inverter control circuit.
  • the power supplied to the magnetron is increased by increasing the output pulse width of the inverter control circuit, and conversely, the power is reduced by decreasing the output pulse width. With this configuration, the heating output of the magnetron can be continuously varied.
  • the heater also serves as the magnetron cathode
  • the transformer that supplies power to the magnetron also supplies power to the heater. Therefore, the power supplied to the heater also follows the change in power supplied to the magnetron. It was changing.
  • Magnetron is a vacuum tube that generates microwaves inside by emitting thermoelectrons from the cathode, so it is necessary to control the temperature of the heater (cathode) within an appropriate range in order to maintain stable oscillation.
  • the power supplied to the heater also changes following the change in the power supplied to the magnetron. Therefore, if the temperature of the heater is kept within an appropriate range, only a slight change in the output power can be obtained. There was a problem that the heating output could not be changed continuously.
  • FIG. 11 is a block diagram of the magnetron driving power source disclosed in Patent Document 1. In FIG.
  • this heating control system includes a magnetron 101, a high voltage transformer 103 that supplies high voltage power to the high voltage rectifier circuit 102 that supplies secondary winding power to the magnetron 101, and simultaneously supplies power to the heater 115 of the magnetron 101,
  • the inverter circuit 105 that rectifies the AC power supply 104 and converts it into AC having a predetermined frequency and supplies the AC voltage to the high-voltage transformer 103, the power detection means 106 that detects input power or output power of the inverter circuit 105, and a desired heating output
  • An output setting unit 107 that outputs an output signal corresponding to the setting, and a power adjustment unit 116 that compares the output of the power detection means 106 with the output setting signal to control the DC level of the power adjustment signal so as to obtain a desired heating output;
  • the output 106 of the power detection means is the output level 11 of the reference voltage generation means.
  • the oscillation detection means 119 whose output oscillation detection signal changes from LO to HI, the comparison voltage generation circuit 120 that generates a voltage corresponding to the output setting signal, and the waveform shaping that compares the output signal with the level conversion circuit
  • a waveform shaping circuit 121 that shapes the signal and the output of the rectifier circuit 110 that rectifies the voltage of the AC power supply 104 based on the waveform shaping signal and the oscillation detection signal, and the output signal of the waveform shaping circuit 121 is the comparison voltage generation circuit.
  • a comparison circuit 111 that outputs a comparison reference voltage when the output is smaller than the output 120 and an inverting amplification when larger, and a signal that outputs a pulse width control signal by superimposing the output signal of the comparison circuit 111 on the power adjustment signal
  • the output of the superimposing means 112, the oscillation circuit 113, and the oscillation circuit 113 is pulse width modulated by the pulse width control signal, and this modulation output It has a structure comprising an inverter control circuit 114 for driving the more the inverter circuit 105.
  • the above high-frequency heating device adjusts the power supplied to the magnetron 101 by the output pulse width of the inverter control circuit 114.
  • the output pulse width of the inverter control circuit 114 becomes wide and the power supplied to the magnetron 101 becomes large.
  • the heating output of the magnetron 101 can be continuously varied by continuously changing the output voltage of the signal superimposing means 112.
  • the waveform shaping circuit 121 that inputs the rectified voltage of the AC power supply 104 and outputs the rectified voltage to the comparison circuit 111 performs shaping according to the output setting.
  • the output of the waveform shaping circuit 121 is inverted and amplified by a comparison circuit 111 having a reference voltage generation circuit 120 that generates a reference signal of a level corresponding to the heating output setting signal as a reference voltage, and the inverted amplification signal and the power adjustment unit
  • the pulse width control signal which is the output signal of the signal superimposing means 112
  • the pulse width control signal has a lower level near the maximum amplitude of the AC power source 104 when the heating output setting is low than when the heating output setting is high. Accordingly, the non-oscillation portion of the magnetron 101 becomes higher, and the oscillation period per cycle of the AC power supply of the magnetron 101 becomes longer. As a result, the power supplied to the heater 115 increases.
  • the input current waveform of the inverter circuit 105 is convex upward near the envelope peak and becomes a waveform close to a sine wave, and the power source current harmonic is suppressed.
  • the waveform shaping circuit 121 controls the power supply current harmonics to be low by controlling the power supply current harmonics to be small at high output so that a large amount of heater current is input when the pulse width modulation signal is low output.
  • the change in the heater current can be reduced, a highly reliable high-frequency heating device can be realized.
  • the ON / OFF drive pulse of the switching transistor is subjected to pulse width modulation using a modulated waveform obtained by processing and shaping the commercial power supply waveform, and waveform shaping by prospective control so that the input current waveform approaches a sine wave. Therefore, the waveform shaping cannot keep up with fluctuations in the characteristics of the magnetron, fluctuations in the voltage between the anode and the cathode due to the anode temperature of the magnetron and the load in the microwave oven, and fluctuations in the power supply voltage.
  • FIG. 12 is a block diagram of a magnetron driving power source disclosed in Patent Document 2.
  • FIG. 12 is a block diagram of a magnetron driving power source disclosed in Patent Document 2.
  • the high-frequency heating device includes an inverter circuit, a control circuit that controls the switching transistor 239 of the inverter circuit, and a magnetron 250.
  • the inverter circuit includes an AC power supply 220, a diode bridge type rectifier circuit 231, a smoothing circuit 230, a resonance circuit 236, a switching transistor 239, and a voltage doubler rectifier circuit 244.
  • the AC voltage of the AC power source 220 is rectified by the diode bridge type rectifier circuit 231 and converted into a unidirectional voltage by the smoothing circuit 230 including the inductor 234 and the capacitor 235.
  • the high frequency high frequency power is transmitted to the secondary winding 243 through the high voltage transformer 241 by the inverter circuit including the resonance circuit 236 including the primary winding of the resonance capacitor 237 and the high voltage transformer 241 and the inverter circuit including the switching transistor 239.
  • the high-voltage and high-frequency power induced in the secondary winding 243 is converted into a DC high voltage by a voltage doubler rectifier circuit 244 including high-voltage capacitors 245 and 247 and high-voltage diodes 246 and 248, and between the anode 252 and the cathode 251 of the magnetron 250. Supplied.
  • the high-voltage transformer 241 has a tertiary winding 242, and the heater power of the magnetron 250 is supplied by the tertiary winding 242 to heat the heater.
  • the control circuit for controlling the switching transistor 239 of the inverter circuit is configured by CT 271 and the like, and is configured to control the power from the input current detection unit for detecting the input current to the inverter circuit, the input voltage detection unit for detecting the voltage of the AC power supply, and the comparison circuit 274.
  • a drive circuit for turning ON / OFF the switching transistor 239 of the inverter circuit which is composed of a mix circuit 275 that mixes information 291, a sawtooth wave generation circuit 283, and a PWM comparator 282, is pulse width modulated.
  • the conventional magnetron driving power supply has the following problems. That is, particularly when the input current to the inverter circuit is small, the signal amplitude of the input current detector may be lower than the signal amplitude of the input voltage detector.
  • the pulse width modulation of the drive signal transmitted to the switching transistor has a degree of modulation suitable to some extent in order to maintain the power factor, and the effect of preventing an extreme decrease in the power factor can be exhibited.
  • a situation occurs in which the on-time for the switching transistor to perform the soft switching operation is insufficient.
  • Soft switching technology is a technology that reduces the switching loss by slowing the voltage or current change at the switching timing by the action of the resonant circuit, but it is necessary to store a predetermined energy in the resonant circuit for the soft switching operation. is there.
  • the circuit method described in the prior art document is a method of voltage resonance type soft switching.
  • this method if the on-time of the switching transistor is not more than a certain level, the accumulation of energy in the resonance circuit is insufficient and the soft circuit is soft.
  • the switching transistor is turned on, the switching operation is lost, and the switching transistor is turned on in a state where a voltage is applied.
  • the magnetron cannot generate microwaves unless the cathode is heated to a predetermined temperature as described above.
  • the operation of the magnetron has a steady state in which microwaves are generated and a start-up control state in which the cathode is heated, and the operating condition requirements for each state are different.
  • pulse width modulation control is also performed.
  • different controls are required, since the conventional power supply for driving a magnetron does not separate the pulse width modulation control for start-up control and steady control, if the operating conditions such as the power supply voltage are different, both pulse width modulation controls There is a possibility of interfering and inhibiting stable operation.
  • the conventional magnetron driving power source has the following problems. That is, particularly when the input current to the inverter circuit is small, the signal amplitude of the input current detector may be lower than the signal amplitude of the input voltage detector. In this case, the pulse width modulation of the drive signal transmitted to the switching transistor has a degree of modulation suitable to some extent in order to maintain the power factor, and the effect of preventing an extreme decrease in the power factor can be exhibited. A situation occurs in which the on-time for the switching transistor to perform the soft switching operation is insufficient.
  • Soft switching technology is a technology that reduces the switching loss by slowing the voltage or current change at the switching timing by the action of the resonant circuit, but it is necessary to store a predetermined energy in the resonant circuit for the soft switching operation. is there.
  • the circuit method described in the prior art document is a method of voltage resonance type soft switching. However, in this method, if the on-time of the switching transistor is not more than a certain level, the accumulation of energy in the resonance circuit is insufficient and the soft circuit is soft. When the switching transistor is turned on, the switching operation is lost, and the switching transistor is turned on in a state where a voltage is applied. If such an operation occurs, the loss at turn-on becomes excessive, and there is a possibility that the heat generated in the switching transistor becomes excessive.
  • the magnetron cannot generate microwaves unless the cathode is heated to a predetermined temperature as described above. For this reason, the operation of the magnetron has a steady state in which microwaves are generated and a start-up control state in which the cathode is heated, and the operating condition requirements for each state are different. Naturally, pulse width modulation control is also performed. Although different controls are required, since the conventional power supply for driving a magnetron does not separate the pulse width modulation control for start-up control and steady control, if the operating conditions such as the power supply voltage are different, both pulse width modulation controls There is a possibility of interfering and inhibiting stable operation.
  • the present invention solves the above-described conventional problems, and an object thereof is to provide a magnetron driving power source that can operate with an optimum pulse width modulation pattern for each control request by separating start-up control and steady-state control. .
  • an object of the present invention is to provide a magnetron driving power source that does not increase the turn-on loss of the switching transistor.
  • the magnetron driving power source is a magnetron that rectifies the voltage of an AC power source, modulates the on-time of the high-frequency switching of the switching transistor, and converts it to high-frequency power.
  • a driving power source for detecting an input current from an AC power source to the inverter circuit and outputting input current waveform information; and detecting an input voltage input from the AC power source to the inverter circuit An input voltage detector that outputs input voltage waveform information; a selector that selects one of the input current waveform information and the input voltage waveform information; and the input current waveform information selected by the selector and the input Switching that converts any of the voltage waveform information into a drive signal for the switching transistor of the inverter circuit
  • the selection unit are those magnetrons to select the input voltage waveform information in a period of active state, the magnetron is configured to select the input current waveform information and becomes the oscillation state.
  • the startup control when the magnetron is in the non-oscillation state can generate a pulse width modulation control pattern based on the input voltage waveform information, and when the magnetron shifts to the oscillation state, the pulse width modulation control pattern can be generated based on the input current waveform information.
  • pulse width modulation control can be generated with completely different signal relationships between startup control and steady state control, an optimal pulse width modulation pattern can be generated for each control requirement, and a more stable magnetron drive power supply Control can be realized.
  • the magnetron driving power source of the present invention controls an inverter circuit that rectifies the voltage of the AC power source and modulates the on-time of the high-frequency switching of the switching transistor to convert it to high-frequency power. And a magnetron driving power source for supplying power to the magnetron via a rectifier circuit for rectifying the high-frequency power, wherein the input current from the AC power source to the inverter circuit is detected and input current waveform information is output.
  • a current detection unit an input voltage detection unit that detects an input voltage input from the AC power supply to the inverter circuit and outputs input voltage waveform information; and one of the input current waveform information and the input voltage waveform information.
  • a selection unit to be selected, and any of the input current waveform information and the input voltage waveform information selected by the selection unit A switching conversion unit that converts the drive signal of the switching circuit of the inverter circuit into a drive signal; and a power command unit that commands the power that the inverter circuit supplies to the magnetron.
  • the selection unit includes the input voltage detection unit and the input current. When the signal waveform information having the larger output amplitude is selected from among the detection units, and the magnetron is ready to oscillate, the signal amplitude of the input voltage waveform information is reduced, and the power indicated by the power command unit is a predetermined value.
  • the signal amplitude obtained by the selection unit is reduced, and the switching conversion unit compares the signal waveform information selected by the selection unit with a triangular wave using a PWM comparator, and drives the switching transistor based on the magnitude relationship.
  • the signal is configured.
  • the start-up control when the magnetron is in the non-oscillation state generates a pulse width modulation control pattern based on the input voltage waveform information, and the signal amplitude based on the input voltage waveform information decreases when the magnetron enters the oscillation state.
  • the pulse width modulation control pattern can be generated according to the information, and the pulse width modulation control can be generated with completely different signal relations between the start control and the steady control, so the optimum pulse width modulation pattern for each control requirement Can be realized, and more stable control of the magnetron drive power supply can be realized, and even if the magnetron is controlled to a low output state, the on-time of the switching transistor of the inverter circuit is not reduced too much, and soft switching Because it can operate reliably, it can always operate with low loss. That.
  • the power source for driving the magnetron of the present invention can optimally design the pulse width modulation control pattern of the start control and the steady control according to each control request, so that it is possible to realize more stable control of the power source for driving the magnetron. it can.
  • the magnetron driving power source according to the present invention can optimally design the pulse width modulation control patterns for start-up control and steady control according to the respective control requirements, so that more stable control of the magnetron driving power source and low power can be achieved. Loss operation can be realized.
  • FIG. 1 is a block diagram of a magnetron drive power supply according to a first embodiment of the present invention.
  • Configuration diagram of the input current detection unit according to the first embodiment Configuration diagram of the mix circuit according to the first embodiment Waveform diagram showing input voltage waveform information, input current waveform information, and output signal of the mix circuit according to the first embodiment
  • Block diagram of magnetron drive power supply according to the second embodiment of the present invention Waveform diagram showing input voltage waveform information, input current waveform information, and output signal of the mix circuit according to the second embodiment Waveform diagram showing input voltage waveform information, input current waveform information, and output signal of the mix circuit according to the third embodiment of the present invention
  • Block diagram of magnetron drive power supply according to Embodiment 4 of the present invention Circuit diagram showing a mix circuit of a magnetron drive power supply according to a fourth embodiment of the present invention.
  • Waveform diagram of magnetron drive power supply according to the fourth embodiment of the present invention Block diagram of a conventional magnetron drive power supply Block diagram of a conventional magnetr
  • a first invention is a magnetron driving power source that controls an inverter circuit that rectifies a voltage of an AC power source, modulates a high-frequency switching on-time of a switching transistor, and converts it into high-frequency power, and converts the AC power source to the inverter
  • An input current detector that detects an input current to the circuit and outputs input current waveform information
  • an input voltage detector that detects an input voltage input from the AC power source to the inverter circuit and outputs input voltage waveform information
  • a selection unit that selects any one of the input current waveform information and the input voltage waveform information, and any one of the input current waveform information and the input voltage waveform information selected by the selection unit.
  • a switching conversion unit that converts the driving signal of the switching transistor into a drive signal.
  • the input voltage waveform information is selected during the period of the state, and the input current waveform information is selected when the magnetron is ready to oscillate.
  • the pulse width is determined by the input voltage waveform information.
  • a modulation control pattern is generated, and after the oscillation is enabled, a pulse width modulation control pattern is generated based on the input current waveform information. Therefore, in each state, the inverter circuit is operated with the optimum pulse width modulation pattern to increase switching loss and power factor. It is possible to perform an operation for preventing the deterioration of the image.
  • the selection unit of the first invention is connected between the input current detection unit and the input voltage detection unit and the switching conversion unit, and either of the input current waveform information and the input voltage waveform information and the inverter circuit Combining power control information for controlling the input current to be a predetermined value, it is composed of a synthesis circuit that generates an on-voltage signal for the switching transistor, and the switching converter is turned on so that the peak voltage of the semiconductor switch element is suppressed. The voltage signal is converted into a drive signal for the switching transistor.
  • the pulse width modulation control pattern is generated from the input voltage waveform information when the magnetron is in the activated state, and the pulse width modulation control pattern is generated from the input current waveform information after the oscillation is enabled. It is possible to operate the inverter circuit with an optimal pulse width modulation pattern to prevent an increase in switching loss and a decrease in power factor.
  • a clock generator is provided in the magnetron driving power supply of the first or second invention, and the clock generator generates a clock in synchronization with the cycle of the AC power supply.
  • the selection switching of the input voltage waveform information is synchronized with the clock output of the clock generator.
  • the pulse width modulation control pattern is generated from the input voltage waveform information when the magnetron is in the activated state, and the pulse width modulation control pattern is generated from the input current waveform information after the oscillation is enabled. It is possible to operate the inverter circuit with an optimal pulse width modulation pattern to prevent an increase in switching loss and a decrease in power factor.
  • the switching timing between the start control and the steady control can be performed at a predetermined timing by the clock pulse, the unstable elements of the control accompanying the control switching can be reduced.
  • the clock generation unit of the third aspect of the invention generates a clock pulse at a timing when the absolute value of the AC power supply voltage changes from a decrease to an increase, and the selection unit generates an input current waveform by the clock pulse of the clock generation unit.
  • the information and the input voltage waveform information are selectively switched.
  • the pulse width modulation control pattern is generated from the input voltage waveform information when the magnetron is in the activated state, and the pulse width modulation control pattern is generated from the input current waveform information after the oscillation is enabled. It is possible to operate the inverter circuit with an optimal pulse width modulation pattern to prevent an increase in switching loss and a decrease in power factor.
  • the switching timing between the start control and the steady control can be performed at the time when the amplitude of the AC voltage is the lowest, it is possible to prevent the switching control from becoming unstable due to the control switching.
  • the clock generation unit of the third aspect of the invention generates a clock that divides the period of the AC power supply by 2, and the selection unit generates a clock for selecting and switching input current waveform information and input voltage waveform information. It is configured to synchronize with the clock output of the unit.
  • the pulse width modulation control pattern is generated from the input voltage waveform information when the magnetron is in the activated state, and the pulse width modulation control pattern is generated from the input current waveform information after the oscillation is enabled. It is possible to operate the inverter circuit with an optimal pulse width modulation pattern to prevent an increase in switching loss and a decrease in power factor.
  • the switching timing between the start control and the steady control can be performed at the time when the amplitude of the AC voltage is the lowest, it is possible to prevent the switching control from becoming unstable due to the control switching.
  • the selection unit is configured to perform selection switching between input current waveform information and input voltage waveform information, particularly at the rising or falling edge of the clock output of the clock generation unit of the fifth invention.
  • the pulse width modulation control pattern is generated from the input voltage waveform information when the magnetron is in the activated state, and the pulse width modulation control pattern is generated from the input current waveform information after the oscillation is enabled. It is possible to operate the inverter circuit with an optimal pulse width modulation pattern to prevent an increase in switching loss and a decrease in power factor.
  • the switching timing between the start control and the steady control can be performed at the time when the amplitude of the AC voltage is the lowest, it is possible to prevent the switching control from becoming unstable due to the control switching.
  • a seventh invention is a magnetron driving power source that controls an inverter circuit that rectifies the voltage of an AC power source and modulates the on-time of high-frequency switching of a switching transistor to convert it into high-frequency power, and from the AC power source to the inverter circuit
  • An input current detector that detects input current to output input current waveform information
  • an input voltage detector that detects input voltage input from the AC power supply to the inverter circuit
  • a selection unit that selects either the input current waveform information or the input voltage waveform information, and converts either the selected input current waveform information or the input voltage waveform information into a drive signal for a switching transistor of the inverter circuit
  • a switching converter that generates a clock and a clock generator that generates a clock in synchronization with the cycle of the AC power supply.
  • the selection unit is configured to select a larger one of the output signals of the input current detection unit and the input voltage detection unit, and the output of the input voltage detection unit is gradually decreased by a predetermined number of steps.
  • the timing of gradual decrease is synchronized with the clock output of the clock generator.
  • the pulse width modulation control pattern is generated from the input voltage waveform information when the magnetron is in the activated state, and the pulse width modulation control pattern is generated from the input current waveform information after the oscillation is enabled. It is possible to operate the inverter circuit with an optimal pulse width modulation pattern to prevent an increase in switching loss and a decrease in power factor.
  • the switching timing between the start control and the steady control can be performed at the time when the amplitude of the AC voltage is the lowest, it is possible to prevent the switching control from becoming unstable due to the control switching.
  • the output of the input voltage detection unit of the seventh aspect of the invention is stepwise so that the output voltage is reduced to half the amplitude in the first stage and the output voltage becomes zero in the second stage. It is configured to decrease to
  • the pulse width modulation control pattern is generated from the input voltage waveform information when the magnetron is in the activated state, and the pulse width modulation control pattern is generated from the input current waveform information after the oscillation is enabled. It is possible to operate the inverter circuit with an optimal pulse width modulation pattern to prevent an increase in switching loss and a decrease in power factor.
  • the switching timing between the start control and the steady control can be performed at the time when the amplitude of the AC voltage is the lowest, it is possible to prevent the switching control from becoming unstable due to the control switching.
  • a predetermined delay time is particularly provided between the first stage and the second stage of the eighth invention.
  • the pulse width modulation control pattern is generated from the input voltage waveform information when the magnetron is in the activated state, and the pulse width modulation control pattern is generated from the input current waveform information after the oscillation is enabled. It is possible to operate the inverter circuit with an optimal pulse width modulation pattern to prevent an increase in switching loss and a decrease in power factor.
  • the switching timing between the start control and the steady control can be performed at the time when the amplitude of the AC voltage is the lowest, it is possible to prevent the switching control from becoming unstable due to the control switching.
  • the magnetron driving power source of the seventh aspect is provided with a clock count unit, and the clock count unit counts the clock of the clock generation unit and counts the clock a predetermined number of times from the first stage. It is set as the structure which transfers to the stage.
  • the pulse width modulation control pattern is generated from the input voltage waveform information when the magnetron is in the activated state, and the pulse width modulation control pattern is generated from the input current waveform information after the oscillation is enabled. It is possible to operate the inverter circuit with an optimal pulse width modulation pattern to prevent an increase in switching loss and a decrease in power factor.
  • the switching timing between the start control and the steady control can be performed at the time when the amplitude of the AC voltage is the lowest, it is possible to prevent the switching control from becoming unstable due to the control switching.
  • the input voltage detection unit of the seventh aspect of the invention is configured to reduce the output voltage amplitude by a predetermined value every time the clock is counted by the clock counting unit.
  • the pulse width modulation control pattern is generated from the input voltage waveform information when the magnetron is in the activated state, and the pulse width modulation control pattern is generated from the input current waveform information after the oscillation is enabled. It is possible to operate the inverter circuit with an optimal pulse width modulation pattern to prevent an increase in switching loss and a decrease in power factor.
  • the switching timing between the start control and the steady control can be performed at the time when the amplitude of the AC voltage is the lowest, it is possible to prevent the switching control from becoming unstable due to the control switching.
  • the inverter circuit that rectifies the voltage of the AC power supply, modulates the on-time of the high-frequency switching of the switching transistor and converts it to high-frequency power, and controls the inverter circuit to the magnetron via the rectifier circuit that rectifies the high-frequency power.
  • a power source for driving a magnetron that supplies power
  • an input current detection unit that detects an input current from the AC power supply to the inverter circuit and outputs input current waveform information, and is input from the AC power supply to the inverter circuit
  • An input voltage detection unit that detects input voltage and outputs input voltage waveform information; a selection unit that selects one of the input current waveform information and the input voltage waveform information; and the input selected by the selection unit Either the current waveform information or the input voltage information is converted into a drive signal for the switching transistor of the inverter circuit.
  • a switching converter that performs power conversion, and a power command unit that commands the power supplied to the magnetron by the inverter circuit, and the selection unit is a signal having a larger output amplitude of the input voltage detection unit and the input current detection unit.
  • the signal amplitude of the input voltage waveform information is reduced, and the signal obtained by the selection unit when the power indicated by the power command unit is a predetermined value or less.
  • the amplitude is reduced, and the switching converter compares the signal waveform information selected by the selector with a triangular wave by a PWM comparator, and uses the magnitude relationship as a drive signal for the switching transistor.
  • the input current waveform is very small, so the input voltage waveform
  • the pulse width modulation control pattern is generated according to the input voltage waveform information, and the signal based on the input voltage waveform information is gradually reduced after the oscillation is enabled, so the input current waveform information is prioritized and the pulse width modulation control pattern is gradually given priority. Therefore, it is possible to operate the inverter circuit with an optimal pulse width modulation pattern in both the start-up state and the oscillation state to prevent an increase in switching loss and a decrease in power factor.
  • the pulse width modulation pattern is output so that the switching transistor of the inverter circuit performs a soft switching operation, so that a low-loss circuit operation is always possible, and an abnormal temperature of the switching transistor due to an increase in switching loss. It is possible to prevent the rise.
  • the selection unit of the thirteenth aspect is constituted by a voltage-current conversion unit and a current injection unit is provided, and the current injection unit is a signal amplitude waveform selected by injecting a current into the selection unit.
  • the input current is at a very low level, so the input voltage waveform information is prioritized and the pulse width modulation control pattern is generated based on the input voltage waveform information.
  • the pulse width modulation control pattern is generated. Therefore, the optimum pulse width modulation is performed in each of the magnetron in the activated state and the oscillation state.
  • the inverter circuit can be operated with a pattern to prevent the switching loss from increasing and the power factor from being lowered. Even when the output power of the magnetron is low, since the pulse width modulation pattern is output so that the switching transistor of the inverter circuit performs soft switching operation, circuit operation with low loss is always possible, and switching transistor abnormalities due to increased switching loss It is possible to prevent a significant temperature rise.
  • the amount of current injected by the current injection section of the fourteenth aspect of the invention is configured to be inversely proportional to the output voltage of the power command section. Since the amount of injected current in the current injection section changes at the same time as the conversion power of the inverter changes, the amount of current injection in the current injection section changes according to the conversion power of the inverter circuit. There is no point where the pulse width modulation control pattern changes. For this reason, since the discontinuity of the control is eliminated, the unstable element of the control is eliminated, and the magnetron can be driven stably with respect to all the converted power.
  • FIG. 1 is a block diagram for explaining a magnetron driving power source according to a first embodiment of the present invention.
  • the magnetron driving power source includes an inverter circuit including a switching transistor 37 and a resonance circuit 34, a control unit that controls on / off of the switching transistor 37, and a magnetron 50.
  • the control unit includes a PWM comparator 79 that transmits a drive pulse to the switching transistor 37, a sawtooth wave generation circuit 78, a mix circuit 73 as a selection unit, and a shunt resistor 70 as an input current detection unit.
  • the AC voltage of the AC power supply 20 is rectified by a bridge-type rectifier circuit 30 composed of four diodes, rectified to a unidirectional voltage, and supplied to the inverter circuit by a smoothing circuit 31 including an inductor 32 and a capacitor 33. Is done.
  • An inverter circuit composed of a resonance circuit composed of a capacitor 35 and a primary winding 36 of a high-voltage transformer 40 and a switching transistor 37 excites high-frequency power by controlling the switching transistor 37 on and off, High voltage and high frequency power is induced in the secondary winding 41.
  • the high-frequency and high-frequency power induced in the secondary winding 41 is supplied between the anode 52 and the cathode 51 of the magnetron 50 through a voltage doubler rectifier circuit 47 including capacitors 44 and 45 and diodes 43 and 46.
  • the high-voltage transformer 40 is provided with a tertiary winding 42 and is configured to simultaneously supply heater power for heating the cathode 51 to the magnetron 50 simultaneously with the above-described operation.
  • control circuit that controls the switching transistor 37 of the inverter circuit.
  • the shunt resistor 70 provided between the bridge-type rectifier circuit 30 and the smoothing circuit 31 and the amplifier circuit that amplifies the voltage at both ends form an input current shaping circuit 71 to generate input current waveform information 91.
  • An input current detection unit An input current detection unit.
  • the input current waveform information 91 is smoothed by the smoothing circuit 75, and this is compared with a signal from the output setting unit 76 that generates an output setting signal corresponding to the heating output setting by the comparison circuit 77.
  • the comparison circuit 77 compares the input current signal smoothed by the smoothing circuit 75 with the setting signal generated by the output setting unit 76 in order to control the magnitude of the input power of the inverter circuit.
  • the current may be detected by a shunt resistor as in the configuration of the present embodiment, the input current may be detected by a current transformer, or a signal such as a collector current or a collector voltage of a switching transistor may be used. Good. That is, the information for power control input to the comparison circuit 77 is not restricted to the configuration shown in this embodiment mode.
  • the control circuit also includes an input voltage detection unit including a pair of diodes that detect and rectify the voltage of the AC power supply 20 and a shaping circuit 72 that shapes the rectified voltage and generates input voltage waveform information 92.
  • the input voltage waveform information 92, the input current waveform information 91, and the power control information 93 from the comparison circuit 77 are mixed and filtered by the mixing circuit 73 to output the ON signal width information 94 of the switching transistor 37, and the sawtooth wave generating circuit.
  • the sawtooth wave from 78 is compared with the PWM comparator 79 and the switching transistor 37 of the inverter circuit is ON / OFF controlled by pulse width modulation.
  • the on / off control of the switching transistor 37 with respect to the input current waveform information is converted with a polarity that shortens the on-time when the input current is large, and conversely increases it when it is small.
  • the input voltage waveform information is also converted with a polarity that shortens the on-time when the input voltage is high, and conversely lengthens the on-time when the input voltage is low.
  • FIG. 3 shows an example of the mix circuit 73.
  • the mix circuit 73 has four input terminals, each of which receives input current waveform information 91, input voltage waveform information 92, power control information 93, and switching signal 95.
  • the circuit shown in FIG. It is configured to transmit to.
  • the mix circuit 73 selects any one of the input current waveform information 91 and the input voltage waveform information 92 and converts the selected one into an on / off control signal for the switching transistor 37 of the inverter circuit. To use.
  • V is the maximum value of the voltage applied to the switching transistor 37
  • E is the voltage of the capacitor 33
  • LP is the primary winding inductance of the high-voltage transformer 40
  • C is the capacitance of the capacitor 35
  • Ton is the switching transistor 37.
  • the sum of the instantaneous error or the correction amount of the ideal signal waveform and the input current waveform information 91 in a short period such as a half cycle of the AC power supply is substantially zero because the magnitude of the input current is controlled by other means. It is.
  • the portion where the input current does not flow due to the non-linear load is corrected in the flowing direction, the portion where the input current is large is decreased on the contrary to establish the above substantially zero.
  • the magnetron 50 cannot oscillate microwaves unless the cathode 51 is heated to an appropriate temperature. In this state, the magnetron 50 exhibits an almost infinite resistance value. For this reason, in order to start the magnetron 50 at high speed, it is necessary to increase the power supplied to the cathode 51 as much as possible in the start-up control.
  • the pulse width modulation of the ON signal width of the switching transistor 37 is compared with the case where the pulse width modulation is not performed based on the input current waveform information 91, when the pulse width modulation is applied, the envelope waveform of the supply current of the cathode 51 is trapezoidal. And more power can be supplied. As a result, the cathode 51 can be heated to an appropriate temperature in a shorter time.
  • the mix circuit 73 of the power source for driving the magnetron is configured to connect the input voltage waveform information 92 and the input current waveform information 91 to a common emitter resistor 737 through buffer transistors 735 and 739, respectively.
  • the emitter voltage of the buffer transistor 735 or 739 operates so as to output the voltage of the input current waveform information 91 or the input voltage waveform information 92.
  • the emitter resistor 737 is connected to each of the buffer transistors 735 and 739 through a common emitter. Therefore, the signal information having the larger amplitude of the input voltage waveform information 92 and the input current waveform information 91 is reflected in the ON signal width information 94. It becomes the composition which is done.
  • the voltage divided by the resistors 731 and 732 causes a voltage drop corresponding to the current flowing through the buffer transistors 735 and 739, and generates a signal obtained by inverting the waveform information.
  • the buffer circuit 733 is inserted in order to separate the impedance between the voltage dividing point and the capacitor 741 so that the impedance influence from the capacitor 741 does not affect the divided voltages of the resistors 731 and 732.
  • the above waveform information is superimposed as voltage information on the ON signal width information 94 via the capacitor 741, and the ON signal width of the switching transistor 37 is subjected to pulse width modulation.
  • FIG. 4 is a waveform diagram showing the input voltage waveform information 92, the input current waveform information 91, the switching signal 95, and the ON signal width information 94 which is the output signal of the mix circuit of the magnetron driving power source of this embodiment. It is the wave form diagram which expanded the timing which changes to a steady state from a starting state.
  • the output signal of the mix circuit 73 is the input voltage waveform information 92.
  • a signal amplitude reflecting the above is output.
  • the amplitude of the input voltage waveform information 92 is adjusted so that the power supplied to the cathode 51 can be maximized. If this signal amplitude is large, Since the input voltage waveform information 92 is output from the mix circuit even in the steady oscillation state, a high power factor cannot be realized in the steady oscillation state.
  • the switching circuit 74 is provided so as to cut the input voltage waveform information 92 when it is detected that the magnetron 50 is in an oscillation state.
  • the output of the mix circuit 73 can be determined by the input current waveform information 91. Therefore, even when the input current is small, a high power factor can always be maintained. It becomes possible.
  • the ON time of the switching transistor 37 is set to be somewhat long. Will do.
  • the energy accumulated during the switching period can be secured in the resonance circuit 34 provided in the inverter circuit, and the soft switching operation can be stably performed even when the conversion power of the inverter circuit is low. It is possible to prevent an excessive increase in loss of 37.
  • FIG. 5 is a block diagram showing a magnetron driving power source according to the second embodiment of the present invention.
  • the components denoted by the same reference numerals as those of the above-described embodiment perform the same functions, and detailed description thereof is omitted here.
  • the control unit of the magnetron driving power supply includes a clock generation circuit 81 which is an input voltage detection unit, and the clock generation circuit 81 which is an input voltage detection unit determines the timing at which the switching circuit 74 operates. This is a point synchronized with a generated clock pulse.
  • the clock generation circuit 81 Since the clock generation circuit 81 detects the timing of changing the clock from the input voltage waveform information 92, it can generate a clock pulse synchronized with the cycle of the AC power supply 20.
  • the clock generation circuit 81 generates a clock that divides the cycle of the AC power supply by two.
  • the switching circuit 74 operates so as to switch the signal of the input voltage waveform information 92 at the timing when the signal of the clock generation circuit 81 changes after the switching signal 95 is determined to be steady.
  • the switching timing may be the rising edge of the clock pulse, the falling edge, or the timing at which the absolute value of the AC power supply voltage starts to increase from the decrease.
  • FIG. 6 shows the signal waveform of the input voltage waveform information 92, the signal waveform of the input current waveform information 91, the output signal waveform of the steady state determination circuit 80 (switching signal 95), and the output of the clock generation circuit 81 in the magnetron drive power supply of this embodiment. It is a waveform diagram showing a signal waveform and a signal waveform of ON signal width information 94.
  • the signal waveform of the input voltage waveform information 92 is switched at a timing synchronized with the clock waveform of the clock generation circuit 81. Since the switching signal 95 can be randomly generated with respect to the cycle of the AC power supply 20, the stationary determination cannot always be determined at the best time for the stability of the control.
  • FIG. 7 is a waveform diagram showing an example of the third embodiment of the present invention. Since the configuration of the inverter circuit is the same as that of the second embodiment, the drawings are omitted here.
  • the signal amplitude of the input voltage waveform information 92 is divided into several steps in synchronization with the clock pulse of the clock generation circuit 81 and gradually decreased.
  • the output of the input voltage detecting unit is reduced stepwise so that the output voltage is reduced to 1 ⁇ 2 amplitude in the first stage and the output voltage becomes 0 (zero) in the second stage.
  • a predetermined delay time may be provided between the first stage and the second stage.
  • the inverter circuit may further include a clock count unit. The clock count unit counts the clock of the clock generation unit, and shifts to the second stage when the clock is counted a predetermined number of times from the first stage.
  • the input voltage detection unit may reduce the output voltage amplitude by a predetermined value each time the clock is counted by the clock counting unit.
  • the solid line of the signal waveform of the input current waveform information 91 indicates a signal waveform in a state where a high power output is instructed by the output setting unit, and the broken line indicates a signal in a state where a relatively low power output is instructed. The waveform is shown.
  • the signal amplitude of the input current waveform information 91 has a large amplitude at the time of predetermined power conversion in a state where a high power output is instructed, but in a state where a relatively low power output is instructed, stable control is achieved. However, the amplitude of the input current waveform information 91 remains small.
  • the signal amplitude of the on signal width information 94 also changes abruptly, and there is a large change in the on signal width of the switching transistor 37 before and after the control is switched, and power stabilization control is not performed. May lead to stability.
  • the signal amplitude of the input voltage waveform information 92 is gradually reduced at several stages, so that a rapid change accompanying switching can be mitigated, and unstable elements of control accompanying switching can be eliminated. I can do it.
  • FIG. 8 is a block diagram for explaining the magnetron driving power source according to the first embodiment of the present invention.
  • the magnetron driving power source includes an inverter circuit including a switching transistor 37 and a resonance circuit 34, a control unit for controlling on / off of the switching transistor 37, and a magnetron 50.
  • the control unit includes a PWM comparator 79 that transmits a drive pulse to the switching transistor, a sawtooth wave generation circuit 78, a mix circuit 73 as a selection unit, an input current detection unit, an input voltage detection unit, and the like.
  • the AC voltage of the AC power supply 20 is rectified by a bridge-type rectifier circuit 30 composed of four diodes, rectified to a unidirectional voltage, and supplied to the inverter circuit by a smoothing circuit 31 including an inductor 32 and a capacitor 33. Is done.
  • An inverter circuit composed of a resonance circuit 34 and a switching transistor 37 constituted by a capacitor 35 and a primary winding 36 of a high-voltage transformer 40 excites high-frequency power by controlling on / off of the switching transistor 37.
  • High voltage high frequency power is induced in the secondary winding 41.
  • the high-voltage and high-frequency power induced in the secondary winding 41 is supplied between the anode 52 and the cathode 51 of the magnetron 50 through the voltage doubler rectifier circuit 47 including the capacitors 44 and 45 diodes 43 and 46.
  • the high-voltage transformer 40 is provided with a tertiary winding 42 and is configured to simultaneously supply heater power for heating the cathode 51 to the magnetron 50 simultaneously with the above-described operation.
  • an input current shaping circuit 71 includes a current detection unit as an input current detection unit including a shunt resistor 70 provided between the bridge-type rectifier circuit 30 and the smoothing circuit 31, and an amplifier circuit that amplifies the voltage at both ends thereof. And an input current detector for generating the input current waveform information 91.
  • the input current waveform information 91 is smoothed by the smoothing circuit 75, and the signal from the output setting unit 76 that generates an output setting signal corresponding to the heating output setting is compared by the comparison circuit 77.
  • the comparison circuit 77 compares the input current signal smoothed by the smoothing circuit 75 with the setting signal generated by the output setting unit 76 to control the magnitude of the input power of the inverter circuit, and inputs the magnetron driving power source. Feedback control is performed so that the current becomes equal to the setting signal.
  • the input current may be detected by a voltage generated by passing a current through a resistor such as a shunt resistor as in the configuration of the present embodiment, or the input current may be detected by a current transformer.
  • the output may be obtained by rectifying and smoothing, or a signal such as a collector current or a collector voltage of a switching transistor that changes according to the magnitude of the input current may be used. That is, the information for power control input to the comparison circuit 77 is not restricted to the configuration shown in this embodiment mode.
  • the control circuit also includes an input voltage detection unit including a pair of diodes that detect and rectify the voltage of the AC power supply 20 and a shaping circuit 72 that shapes the rectified voltage and generates input voltage waveform information 92.
  • the input voltage waveform information 92, the input current waveform information 91, and the power control information 93 from the comparison circuit 77 are mixed and filtered by the mixing circuit 73 to output the ON signal width information 94 of the switching transistor 37, and the sawtooth wave generating circuit.
  • the sawtooth wave output from 78 is compared with the PWM comparator 79, and the pulse width modulation is performed to control on / off of the switching transistor 37 of the inverter circuit.
  • the on / off control of the switching transistor 37 with respect to the input current waveform information 91 is converted with a polarity that shortens the on-time when the input current is large and conversely increases it when it is small.
  • the input voltage waveform information 92 is also converted with a polarity that shortens the on-time when the input voltage is high and conversely increases the on-time when the input voltage is low.
  • FIG. 9 shows an example of the mix circuit 73.
  • the mix circuit 73 has five input terminals, each of which receives input current waveform information 91, input voltage waveform information 92, power control information 93, steady state determination signal 97, and output setting signal 96.
  • Information 94 is transmitted to the PWM comparator 79.
  • the input current waveform information 91 and the input voltage waveform information 92 are converted into an on / off control signal for the switching transistor 37 of the inverter circuit and used.
  • the portion where the input current does not flow due to the non-linear load is corrected in the flowing direction, the portion where the input current is large is decreased on the contrary to establish the above substantially zero.
  • the portion where the input current is large is decreased on the contrary to establish the above substantially zero.
  • the input current is corrected with the reverse polarity of the waveform so as to cancel the change in the input current waveform and the excess or deficiency with respect to the ideal waveform.
  • the magnetron 50 cannot oscillate microwaves unless the cathode 51 is heated to an appropriate temperature. In this state, the magnetron 50 exhibits an almost infinite resistance value. For this reason, in order to start the magnetron 50 at high speed, it is necessary to increase the power supplied to the cathode 51 as much as possible in the start-up control.
  • the pulse width modulation of the ON signal width of the switching transistor 37 is compared with the case where the pulse width modulation is not performed based on the input voltage waveform information 92, the envelope waveform of the supply current of the cathode 51 is trapezoidal when pulse width modulation is applied. More power can be supplied. As a result, the cathode 51 can be heated to an appropriate temperature in a shorter time.
  • the mix circuit 73 of the power source for driving the magnetron is configured to connect the input voltage waveform information 92 and the input current waveform information 91 to a common emitter resistor 737 through buffer transistors 735 and 739, respectively.
  • the emitter voltage of the buffer transistor 735 or 739 operates so as to output the voltage of the input current waveform information 91 or the input voltage waveform information 92.
  • the emitter resistor 737 is connected to each of the buffer transistors 735 and 739 through a common emitter. Therefore, the signal information having the larger amplitude of the input voltage waveform information 92 and the input current waveform information 91 is reflected in the ON signal width information 94. It becomes the composition which is done.
  • the voltage divided by the resistors 731 and 732 causes a voltage drop corresponding to the current flowing through the buffer transistors 735 and 739, and generates a signal obtained by inverting the waveform information.
  • the buffer circuit 733 is inserted in order to separate the impedance between the voltage dividing point and the capacitor 741 so that the impedance influence from the capacitor 741 does not affect the voltage divided by the resistors 731 and 732.
  • the above waveform information is superimposed as voltage information on the ON signal width information 94 via the capacitor 741, and the ON signal width of the switching transistor 37 is subjected to pulse width modulation.
  • the amplitude of the input voltage waveform information 92 applied to the buffer transistor 735 is switched by the amplitude switching means 98 between the non-oscillation state and the oscillation enabled state.
  • a steady state determination signal 97 is issued.
  • the steady determination signal 97 charges the capacitor 748 with a constant current by turning on the switch of the switching circuit 74.
  • the voltage of the capacitor 748 increases with a constant slope with respect to time. Since the buffer transistor 749 operates to flow a current corresponding to this voltage to the resistor, a current corresponding to the voltage of the capacitor 748 flows to the current mirror 747.
  • the buffer transistor 749 allows a current corresponding to the input voltage waveform information 92 to flow through the resistor
  • the current mirror 746 allows a current corresponding to the input voltage waveform information 92 to flow.
  • the current of the resistor 780 is a difference between the currents of the current mirror 747 and the current mirror 746, the current decreases as the voltage of the capacitor 748 increases. For this reason, when the voltage of the capacitor 748 rises, the voltage applied to the resistor 780 decreases to substantially zero. Therefore, the input current waveform information 91 always indicates the current value of the emitter resistor 737 after a certain time has elapsed since the steady state determination signal 97 is generated. Therefore, the ON signal width information 94 is created based on the input current waveform information 91.
  • the current value of the constant current source 750 is configured to be large so that the current injected into the voltage dividing points of the resistors 731 and 732 increases. As a result, the input current waveform information 91 converted into current by the buffer transistor 739 is canceled. For this reason, when the output setting signal 96 is small, the output of the mix circuit is not affected by the input current waveform information 91 and outputs the ON signal width information 94 of the switching transistor 37. When the output setting is small, Since the pulse width modulation control cannot be performed, it is possible to prevent the soft switching operation from being disabled due to a short on-time of the switching transistor 37.
  • FIG. 10 is a waveform diagram showing the input voltage waveform information 92, the input current waveform information 91, the steady state determination signal 97, and the ON signal width information 94 of the mix circuit of the magnetron driving power supply according to the present embodiment. It is the wave form diagram which expanded the timing which changes to a steady state.
  • the magnetron 50 During the period when the cathode of the magnetron 50 is not heated to a sufficient temperature, the magnetron 50 exhibits an almost infinite impedance, so the input current waveform is substantially zero. For this reason, the signal amplitude reflecting the input voltage waveform information 92 is output from the output signal of the mix circuit 73. (Period T0 to T1) When the cathode 51 of the magnetron 50 is heated and ready to oscillate, the impedance decreases and the input current begins to flow. In the start-up control state of heating the cathode 51 of the magnetron 50, the amplitude of the input voltage waveform information 92 is adjusted so that the power supplied to the cathode 51 can be maximized.
  • the switching circuit 74 is provided so as to cut the input voltage waveform information 92 when it is detected that the magnetron 50 is in an oscillation state.
  • the mix circuit 73 as a selection part may provide the current injection part comprised by a voltage current conversion part.
  • the current injection unit reduces the signal amplitude waveform selected by injecting current into the mix circuit 73.
  • the amount of current injected by the current injection unit is preferably inversely proportional to the output voltage of the output setting unit 76.
  • the output of the mix circuit 73 can be determined by the input current waveform information 91. Therefore, even when the input current is small, a high power factor can always be maintained. It becomes possible. Further, when the input current waveform is small, the amplitude of the output signal of the mix circuit 73 is also small, so that the degree of modulation near the voltage peak point of the AC power supply 20 is also small. As a result, the ON time of the switching transistor 37 is set to be somewhat long. Will do. As a result, the energy accumulated in the resonance circuit 34 provided in the inverter circuit during the switching period can be secured, and the soft switching operation can be stably performed even when the conversion power of the inverter circuit is low. It is possible to prevent an excessive increase in loss of 37.
  • the magnetron driving power source performs pulse width modulation of the ON signal width of the switching transistor based on the input current waveform information and the input voltage waveform information, and performs pulse width modulation at the time of starting and steady oscillation of the magnetron, respectively.
  • a heating device or a garbage disposal machine using dielectric heating such as a microwave oven
  • the present invention can also be applied to applications such as a microwave power source of a plasma power source that is a semiconductor manufacturing apparatus.
  • the magnetron driving power source performs pulse width modulation of the ON signal width of the switching element switching transistor based on the input current waveform information and the input voltage waveform information, and pulse width modulation at the time of starting and steady oscillation of the magnetron. Since each can be designed independently, power conversion can be performed while maintaining a high power factor, and stable switching operation can be realized even at low power.
  • the present invention can also be applied to applications such as a garbage processing machine or a microwave power source of a plasma power source as a semiconductor manufacturing apparatus.

Abstract

Provided are a magnetron-driving power supply and a high-frequency heating device equipped with the same, such that the power supply can operate with a high power factor without being affected by variations in the type or characteristics of the magnetron. A voltage from an alternating current power supply (20) is rectified; one of input voltage waveform information (92) and input current waveform information (91) of an inverter circuit which conducts high-frequency switching to transmit electric power is selected, wherein the one having a greater amplitude than the other is selected; the selected one of input voltage waveform information (92) and input current waveform information (91) is superimposed on electric power control information (93) by a mixing circuit (73) to pulse-width modulate the switching of a switching transistor (37); and the signal amplitude is changed between start-up control and steady-state control. In this way, the pulse-width modulation control pattern for each of the start-up control and the steady-state control can be optimally designed according to respective control requirements, and therefore, more stable control of the magnetron-driving power supply can be achieved.

Description

マグネトロン駆動用電源およびそれを備えた高周波加熱装置Magnetron driving power source and high-frequency heating apparatus including the same
 本発明は、電子レンジなどに用いられるマグネトロンを負荷とするマグネトロン駆動用電源に関するものである。 The present invention relates to a magnetron driving power source having a magnetron used for a microwave oven or the like as a load.
 従来の公知のマグネトロン駆動用電源は、マグネトロンに供給する電力の調整をインバータ制御回路の出力パルス幅を調整することで行っている。インバータ制御回路の出力パルス幅を広くすることでマグネトロンに供給する電力を大きくし、逆に狭くすることで電力を絞る構成となっている。この構成によってマグネトロンの加熱出力を連続的に可変することが可能となっていた。 Conventional known magnetron driving power supplies adjust the power supplied to the magnetron by adjusting the output pulse width of the inverter control circuit. The power supplied to the magnetron is increased by increasing the output pulse width of the inverter control circuit, and conversely, the power is reduced by decreasing the output pulse width. With this configuration, the heating output of the magnetron can be continuously varied.
 また、ヒータはマグネトロンのカソードも兼ねているので、マグネトロンに電力を供給するトランスは、ヒータにも電力を供給しているため、マグネトロンに供給する電力の変化に追随してヒータに供給する電力も変化していた。 In addition, since the heater also serves as the magnetron cathode, the transformer that supplies power to the magnetron also supplies power to the heater. Therefore, the power supplied to the heater also follows the change in power supplied to the magnetron. It was changing.
 マグネトロンは熱電子をカソードから放出することによってその内部でマイクロ波を発生させる真空管であるため安定な発振を持続させるためにはヒータ(カソード)の温度を適正な範囲に制御する必要がある。 Magnetron is a vacuum tube that generates microwaves inside by emitting thermoelectrons from the cathode, so it is necessary to control the temperature of the heater (cathode) within an appropriate range in order to maintain stable oscillation.
 しかしながら、前述のようにマグネトロンの供給電力の変化に追随してヒータへの供給電力も変化してしまうため、ヒータの温度を適正な範囲に保とうとすると、わずかな出力電力の変化幅しか取れず、加熱出力を連続的に変えることが出来なくなるという問題があった。 However, as described above, the power supplied to the heater also changes following the change in the power supplied to the magnetron. Therefore, if the temperature of the heater is kept within an appropriate range, only a slight change in the output power can be obtained. There was a problem that the heating output could not be changed continuously.
 これを解決する高周波加熱装置として特許文献1、2にて開示された高周波加熱装置およびその制御方式がある。図11は特許文献1に示されたマグネトロン駆動用電源のブロック図である。 There are a high-frequency heating device and a control method thereof disclosed in Patent Documents 1 and 2 as a high-frequency heating device that solves this problem. FIG. 11 is a block diagram of the magnetron driving power source disclosed in Patent Document 1. In FIG.
 図11において、この加熱制御方式はマグネトロン101と、マグネトロン101に二次巻線電力を供給する高圧整流回路102に高圧電力を供給すると同時にマグネトロン101のヒータ115に電力を供給する高圧トランス103と、交流電源104を整流しそれを所定の周波数の交流に変換し、高圧トランス103に供給するインバータ回路105と、インバータ回路105の入力電力あるいは出力電力を検出する電力検知手段106と、所望する加熱出力設定に対応した出力信号を出力する出力設定部107と、電力検知手段106の出力と前記出力設定信号を比較し所望する加熱出力となるよう電力調整信号の直流レベルをコントロールする電力調整部116と、電力検知手段の106出力が基準電圧発生手段の出力レベル118以上になると出力である発振検知信号がLOからHIとなる発振検知手段119と、前記出力設定信号に対応した電圧を発生する比較電圧発生回路120と、出力信号をレベル変換回路によって比較した波形整形信号と、交流電源104の電圧を整流する整流回路110の出力を前記波形整形信号と前記発振検知信号に基づいて整形する波形整形回路121と、波形整形回路121の出力信号を前記比較電圧発生回路120の出力と比較し、小さいときは比較基準電圧を出力し、大きいときは反転増幅する比較回路111と、比較回路111の出力信号を前記電力調整信号に重畳しパルス幅制御信号を出力する信号重畳手段112と、発振回路113と、発振回路113の出力を前記パルス幅制御信号によりパルス幅変調し、この変調出力により前記インバータ回路105を駆動するインバータ制御回路114を備える構成となっている。 In FIG. 11, this heating control system includes a magnetron 101, a high voltage transformer 103 that supplies high voltage power to the high voltage rectifier circuit 102 that supplies secondary winding power to the magnetron 101, and simultaneously supplies power to the heater 115 of the magnetron 101, The inverter circuit 105 that rectifies the AC power supply 104 and converts it into AC having a predetermined frequency and supplies the AC voltage to the high-voltage transformer 103, the power detection means 106 that detects input power or output power of the inverter circuit 105, and a desired heating output An output setting unit 107 that outputs an output signal corresponding to the setting, and a power adjustment unit 116 that compares the output of the power detection means 106 with the output setting signal to control the DC level of the power adjustment signal so as to obtain a desired heating output; The output 106 of the power detection means is the output level 11 of the reference voltage generation means. When the above is reached, the oscillation detection means 119 whose output oscillation detection signal changes from LO to HI, the comparison voltage generation circuit 120 that generates a voltage corresponding to the output setting signal, and the waveform shaping that compares the output signal with the level conversion circuit A waveform shaping circuit 121 that shapes the signal and the output of the rectifier circuit 110 that rectifies the voltage of the AC power supply 104 based on the waveform shaping signal and the oscillation detection signal, and the output signal of the waveform shaping circuit 121 is the comparison voltage generation circuit. A comparison circuit 111 that outputs a comparison reference voltage when the output is smaller than the output 120 and an inverting amplification when larger, and a signal that outputs a pulse width control signal by superimposing the output signal of the comparison circuit 111 on the power adjustment signal The output of the superimposing means 112, the oscillation circuit 113, and the oscillation circuit 113 is pulse width modulated by the pulse width control signal, and this modulation output It has a structure comprising an inverter control circuit 114 for driving the more the inverter circuit 105.
 上記の高周波加熱装置は、マグネトロン101に供給する電力の調整をインバータ制御回路114の出力パルス幅によって行っている。信号重畳手段112の出力電圧が高くなると前記インバータ制御回路114の出力パルス幅は広くなり、マグネトロン101に供給する電力は大きくなる。 The above high-frequency heating device adjusts the power supplied to the magnetron 101 by the output pulse width of the inverter control circuit 114. When the output voltage of the signal superimposing means 112 becomes high, the output pulse width of the inverter control circuit 114 becomes wide and the power supplied to the magnetron 101 becomes large.
 この装置において信号重畳手段112の出力電圧は連続的に変えることによってマグネトロン101の加熱出力を連続的に可変することが可能となっている。この構成によると、交流電源104の整流電圧を入力し比較回路111へ出力する波形整形回路121によって出力設定に応じて整形される。 In this apparatus, the heating output of the magnetron 101 can be continuously varied by continuously changing the output voltage of the signal superimposing means 112. According to this configuration, the waveform shaping circuit 121 that inputs the rectified voltage of the AC power supply 104 and outputs the rectified voltage to the comparison circuit 111 performs shaping according to the output setting.
 この波形整形回路121の出力を、加熱出力設定信号に対応したレベルの基準信号を発生する比較電圧発生回路120を基準電圧として持つ比較回路111によって反転増幅し、この反転増幅信号と電力調節部の出力を重畳することによって、信号重畳手段112の出力信号である前記パルス幅制御信号は、加熱出力設定が高出力時と比較して、低出力時には交流電源104の振幅最大付近のレベルはより低くなり、前記マグネトロン101の非発振部分はより高くなるため、マグネトロン101の交流電源の1周期あたりの発振期間は長くなる。これによりヒータ115に供給される電力は大きくなる。 The output of the waveform shaping circuit 121 is inverted and amplified by a comparison circuit 111 having a reference voltage generation circuit 120 that generates a reference signal of a level corresponding to the heating output setting signal as a reference voltage, and the inverted amplification signal and the power adjustment unit By superimposing the output, the pulse width control signal, which is the output signal of the signal superimposing means 112, has a lower level near the maximum amplitude of the AC power source 104 when the heating output setting is low than when the heating output setting is high. Accordingly, the non-oscillation portion of the magnetron 101 becomes higher, and the oscillation period per cycle of the AC power supply of the magnetron 101 becomes longer. As a result, the power supplied to the heater 115 increases.
 さらに、高出力時にはインバータ回路105の入力電流波形が、エンベロープピーク付近で上に凸であり正弦波に近い波形となり、電源電流高調波が抑えられる。 Furthermore, at the time of high output, the input current waveform of the inverter circuit 105 is convex upward near the envelope peak and becomes a waveform close to a sine wave, and the power source current harmonic is suppressed.
 このように、波形整形回路121によりパルス幅変調信号を低出力時にはヒータ電流が多く入るように、高出力時は電源電流高調波が小さくなるように制御することで、電源電流高調波を低く抑えかつヒータ電流の変化を小さくすることが出来るので、信頼性の高い高周波加熱装置を実現することができるというものである。 In this way, the waveform shaping circuit 121 controls the power supply current harmonics to be low by controlling the power supply current harmonics to be small at high output so that a large amount of heater current is input when the pulse width modulation signal is low output. In addition, since the change in the heater current can be reduced, a highly reliable high-frequency heating device can be realized.
 しかしながら、この制御においては、スイッチングトランジスタのON/OFF駆動パルスに、商用電源波形を加工・整形した変調波形を用いてパルス幅変調し、入力電流波形が正弦波に近づくように見込み制御による波形整形をしているため、マグネトロンの特性ばらつき、マグネトロンのアノード温度や電子レンジ庫内の負荷によるアノードカソード間電圧の変動、さらに電源電圧の変動に対してまでは波形整形が追随しきれていない。 However, in this control, the ON / OFF drive pulse of the switching transistor is subjected to pulse width modulation using a modulated waveform obtained by processing and shaping the commercial power supply waveform, and waveform shaping by prospective control so that the input current waveform approaches a sine wave. Therefore, the waveform shaping cannot keep up with fluctuations in the characteristics of the magnetron, fluctuations in the voltage between the anode and the cathode due to the anode temperature of the magnetron and the load in the microwave oven, and fluctuations in the power supply voltage.
 そこで、上記の課題にたいして特許文献2に開示された制御方式がある。図12は特許文献2に示されたマグネトロン駆動用電源のブロック図である。 Therefore, there is a control method disclosed in Patent Document 2 for the above problem. FIG. 12 is a block diagram of a magnetron driving power source disclosed in Patent Document 2. In FIG.
 図12において高周波加熱装置はインバータ回路と、インバータ回路のスイッチングトランジスタ239を制御する制御回路と、マグネトロン250とからなる。インバータ回路は、交流電源220とダイオードブリッジ型整流回路231と、平滑回路230と、共振回路236と、スイッチングトランジスタ239と、倍電圧整流回路244からなっている。 12, the high-frequency heating device includes an inverter circuit, a control circuit that controls the switching transistor 239 of the inverter circuit, and a magnetron 250. The inverter circuit includes an AC power supply 220, a diode bridge type rectifier circuit 231, a smoothing circuit 230, a resonance circuit 236, a switching transistor 239, and a voltage doubler rectifier circuit 244.
 交流電源220の交流電圧はダイオードブリッジ型整流回路231で整流され、インダクタ234とコンデンサ235からなる平滑回路230によって、単方向電圧に変換される。共振コンデンサ237と高圧トランス241の一次巻線からなる共振回路236とスイッチングトランジスタ239からなるインバータ回路によって高周波交流に変換され、高圧トランス241を介してその二次巻線243に高圧高周波電力が伝送される。 The AC voltage of the AC power source 220 is rectified by the diode bridge type rectifier circuit 231 and converted into a unidirectional voltage by the smoothing circuit 230 including the inductor 234 and the capacitor 235. The high frequency high frequency power is transmitted to the secondary winding 243 through the high voltage transformer 241 by the inverter circuit including the resonance circuit 236 including the primary winding of the resonance capacitor 237 and the high voltage transformer 241 and the inverter circuit including the switching transistor 239. The
 二次巻線243に誘起された高圧高周波電力は高圧コンデンサ245、247、高圧ダイオード246、248からなる倍電圧整流回路244によって直流高電圧に変換されマグネトロン250のアノード252とカソード251との間に供給される。 The high-voltage and high-frequency power induced in the secondary winding 243 is converted into a DC high voltage by a voltage doubler rectifier circuit 244 including high- voltage capacitors 245 and 247 and high- voltage diodes 246 and 248, and between the anode 252 and the cathode 251 of the magnetron 250. Supplied.
 また、高圧トランス241には三次巻線242があり、この三次巻線242によってマグネトロン250のヒータ電力が供給され、ヒータを加熱する構成となっている。 The high-voltage transformer 241 has a tertiary winding 242, and the heater power of the magnetron 250 is supplied by the tertiary winding 242 to heat the heater.
 インバータ回路のスイッチングトランジスタ239を制御する制御回路はCT271等によって構成されインバータ回路への入力電流を検出する入力電流検出部と交流電源の電圧を検出する入力電圧検出部と比較回路274からの電力制御情報291をミックスするミックス回路275と、ノコギリ波発生回路283と、PWMコンパレータ282によって構成され、インバータ回路のスイッチングトランジスタ239をON/OFFする駆動信号をパルス幅変調している。 The control circuit for controlling the switching transistor 239 of the inverter circuit is configured by CT 271 and the like, and is configured to control the power from the input current detection unit for detecting the input current to the inverter circuit, the input voltage detection unit for detecting the voltage of the AC power supply, and the comparison circuit 274. A drive circuit for turning ON / OFF the switching transistor 239 of the inverter circuit, which is composed of a mix circuit 275 that mixes information 291, a sawtooth wave generation circuit 283, and a PWM comparator 282, is pulse width modulated.
 この構成においては入力電流波形情報290のみならず、入力電圧波形情報294もミックス回路275に入力されているためマグネトロン250の特性ばらつきやマグネトロン250のアノード温度や電子レンジ庫内の負荷によるアノードカソード間電圧の変動、さらに電源電圧の変動に対しても、それらの影響を受けない入力電波形整形を比較的単純な構成で実現することできるというものである。 In this configuration, since not only the input current waveform information 290 but also the input voltage waveform information 294 is input to the mix circuit 275, the characteristics between the magnetron 250, the anode temperature of the magnetron 250, and the anode-cathode due to the load in the microwave oven Input voltage waveform shaping that is not affected by voltage fluctuations and power supply voltage fluctuations can be realized with a relatively simple configuration.
日本国特開平7-176375号公報Japanese Unexamined Patent Publication No. 7-176375 日本国特開2007-149446号公報Japanese Unexamined Patent Publication No. 2007-149446
 しかしながら、従来の構成のマグネトロン駆動用電源では、以下に述べるような課題を有している。すなわち、特にインバータ回路への入力電流が小さい場合、入力電圧検出部の信号振幅に対して入力電流検出部の信号振幅が低い場合が発生する。 However, the conventional magnetron driving power supply has the following problems. That is, particularly when the input current to the inverter circuit is small, the signal amplitude of the input current detector may be lower than the signal amplitude of the input voltage detector.
 この場合、スイッチングトランジスタに伝送される駆動信号のパルス幅変調は力率を維持するためにはある程度適した変調度となって、力率の極端な低下を防ぐ効果は発揮できるが、一方で、スイッチングトランジスタがソフトスイッチング動作を行うためのオン時間が不足してしまう事態が発生する。 In this case, the pulse width modulation of the drive signal transmitted to the switching transistor has a degree of modulation suitable to some extent in order to maintain the power factor, and the effect of preventing an extreme decrease in the power factor can be exhibited. A situation occurs in which the on-time for the switching transistor to perform the soft switching operation is insufficient.
 特に、マグネトロン駆動用電源は最大の変換電力が大きいためスイッチングトランジスタのスイッチング損失を軽減するためにソフトスイッチング技術を適用している。ソフトスイッチング技術は共振回路の作用によってスイッチングのタイミングにおいて電圧または電流の変化を緩やかにしてスイッチング損失を軽減する技術であるが、ソフトスイッチング動作のためには共振回路に所定のエネルギーを蓄積する必要がある。 Especially, since the maximum conversion power is large in the magnetron drive power supply, soft switching technology is applied to reduce the switching loss of the switching transistor. Soft switching technology is a technology that reduces the switching loss by slowing the voltage or current change at the switching timing by the action of the resonant circuit, but it is necessary to store a predetermined energy in the resonant circuit for the soft switching operation. is there.
 先行技術文献に記載された回路方式は電圧共振型のソフトスイッチングの一方式であるが、この方式の場合スイッチングトランジスタのオン時間がある程度以上で無ければ共振回路へのエネルギーの蓄積が不足し、ソフトスイッチング動作を損ねて、スイッチングトランジスタがターンオンする際に電圧が印加された状態でターンオンする動作に陥ってしまう。 The circuit method described in the prior art document is a method of voltage resonance type soft switching. However, in this method, if the on-time of the switching transistor is not more than a certain level, the accumulation of energy in the resonance circuit is insufficient and the soft circuit is soft. When the switching transistor is turned on, the switching operation is lost, and the switching transistor is turned on in a state where a voltage is applied.
 このような動作に陥るとターンオン時の損失が過大となりスイッチングトランジスタの発熱が過剰なものになる可能性がある。 If this happens, there is a possibility that the loss at turn-on will be excessive and the switching transistor will generate excessive heat.
 また、マグネトロンは前述のようにカソードを所定の温度に加熱しないとマイクロ波を発生することができない。 Also, the magnetron cannot generate microwaves unless the cathode is heated to a predetermined temperature as described above.
 このため、マグネトロンの動作としてはマイクロ波を発生している定常状態とカソードを加熱する起動制御の状態があり、それぞれの状態に対し動作条件の要求は異なったものとなり、当然パルス幅変調制御も異なった制御が必要になるが、従来の構成のマグネトロン駆動用電源では起動制御と定常制御のパルス幅変調制御を切り離していないため、電源電圧などの動作条件が異なると双方のパルス幅変調制御が干渉し安定な動作を阻害する可能性がある。 For this reason, the operation of the magnetron has a steady state in which microwaves are generated and a start-up control state in which the cathode is heated, and the operating condition requirements for each state are different. Naturally, pulse width modulation control is also performed. Although different controls are required, since the conventional power supply for driving a magnetron does not separate the pulse width modulation control for start-up control and steady control, if the operating conditions such as the power supply voltage are different, both pulse width modulation controls There is a possibility of interfering and inhibiting stable operation.
 また、従来の構成のマグネトロン駆動用電源では、以下に述べるような課題を有している。すなわち、特にインバータ回路への入力電流が小さい場合、入力電圧検出部の信号振幅に対して入力電流検出部の信号振幅が低い場合が発生する。この場合、スイッチングトランジスタに伝送される駆動信号のパルス幅変調は力率を維持するためにはある程度適した変調度となって、力率の極端な低下を防ぐ効果は発揮できるが、一方で、スイッチングトランジスタがソフトスイッチング動作を行うためのオン時間が不足してしまう事態が発生する。 In addition, the conventional magnetron driving power source has the following problems. That is, particularly when the input current to the inverter circuit is small, the signal amplitude of the input current detector may be lower than the signal amplitude of the input voltage detector. In this case, the pulse width modulation of the drive signal transmitted to the switching transistor has a degree of modulation suitable to some extent in order to maintain the power factor, and the effect of preventing an extreme decrease in the power factor can be exhibited. A situation occurs in which the on-time for the switching transistor to perform the soft switching operation is insufficient.
 特に、マグネトロン駆動用電源は最大の変換電力が大きいためスイッチングトランジスタのスイッチング損失を軽減するためにソフトスイッチング技術を適用している。ソフトスイッチング技術は共振回路の作用によってスイッチングのタイミングにおいて電圧または電流の変化を緩やかにしてスイッチング損失を軽減する技術であるが、ソフトスイッチング動作のためには共振回路に所定のエネルギーを蓄積する必要がある。先行技術文献に記載された回路方式は電圧共振型のソフトスイッチングの一方式であるが、この方式の場合スイッチングトランジスタのオン時間がある程度以上で無ければ共振回路へのエネルギーの蓄積が不足し、ソフトスイッチング動作を損ねて、スイッチングトランジスタがターンオンする際に電圧が印加された状態でターンオンする動作に陥ってしまう。このような動作に陥るとターンオン時の損失が過大となりスイッチングトランジスタの発熱が過剰なものになる可能性がある。 Especially, since the maximum conversion power is large in the magnetron drive power supply, soft switching technology is applied to reduce the switching loss of the switching transistor. Soft switching technology is a technology that reduces the switching loss by slowing the voltage or current change at the switching timing by the action of the resonant circuit, but it is necessary to store a predetermined energy in the resonant circuit for the soft switching operation. is there. The circuit method described in the prior art document is a method of voltage resonance type soft switching. However, in this method, if the on-time of the switching transistor is not more than a certain level, the accumulation of energy in the resonance circuit is insufficient and the soft circuit is soft. When the switching transistor is turned on, the switching operation is lost, and the switching transistor is turned on in a state where a voltage is applied. If such an operation occurs, the loss at turn-on becomes excessive, and there is a possibility that the heat generated in the switching transistor becomes excessive.
 また、マグネトロンは前述のようにカソードを所定の温度に加熱しないとマイクロ波を発生することができない。このため、マグネトロンの動作としてはマイクロ波を発生している定常状態とカソードを加熱する起動制御の状態があり、それぞれの状態に対し動作条件の要求は異なったものとなり、当然パルス幅変調制御も異なった制御が必要になるが、従来の構成のマグネトロン駆動用電源では起動制御と定常制御のパルス幅変調制御を切り離していないため、電源電圧などの動作条件が異なると双方のパルス幅変調制御が干渉し安定な動作を阻害する可能性がある。 Also, the magnetron cannot generate microwaves unless the cathode is heated to a predetermined temperature as described above. For this reason, the operation of the magnetron has a steady state in which microwaves are generated and a start-up control state in which the cathode is heated, and the operating condition requirements for each state are different. Naturally, pulse width modulation control is also performed. Although different controls are required, since the conventional power supply for driving a magnetron does not separate the pulse width modulation control for start-up control and steady control, if the operating conditions such as the power supply voltage are different, both pulse width modulation controls There is a possibility of interfering and inhibiting stable operation.
 本発明は、前記従来の課題を解決するもので、起動制御と定常制御を切り離し、夫々の制御要求に対して最適なパルス幅変調パターンで動作できるマグネトロン駆動用電源を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object thereof is to provide a magnetron driving power source that can operate with an optimum pulse width modulation pattern for each control request by separating start-up control and steady-state control. .
 また、本発明は、前記従来の課題を解決するもので、起動制御と定常制御を切り離し、夫々の制御要求に対して最適なパルス幅変調パターンで動作でき、かつマグネトロンを低出力に制御する条件であってもスイッチングトランジスタのターンオン損失の増加を招かないマグネトロン駆動用電源を提供することを目的とする。 Further, the present invention solves the above-described conventional problems, and separates start-up control and steady-state control, can operate with an optimum pulse width modulation pattern for each control request, and can control the magnetron at a low output. However, an object of the present invention is to provide a magnetron driving power source that does not increase the turn-on loss of the switching transistor.
 前記従来の課題を解決するために、本発明のマグネトロン駆動用電源は、交流電源の電圧を整流し、スイッチングトランジスタの高周波スイッチングのオン時間を変調して高周波電力に変換するインバータ回路を制御するマグネトロン駆動用電源であって、交流電源から前記インバータ回路への入力電流を検出し、入力電流波形情報を出力する入力電流検出部と、前記交流電源から前記インバータ回路へ入力される入力電圧を検出し、入力電圧波形情報を出力する入力電圧検出部と、前記入力電流波形情報と前記入力電圧波形情報のいずれかを選択する選択部と、前記選択部によって選択された前記入力電流波形情報と前記入力電圧波形情報のいずれかを前記インバータ回路のスイッチングトランジスタの駆動信号に変換するスイッチング変換部とを備え、前記選択部はマグネトロンが起動状態の期間においては前記入力電圧波形情報を選択し、マグネトロンが発振可能状態になると前記入力電流波形情報を選択する構成としたものである。 In order to solve the above-described conventional problems, the magnetron driving power source according to the present invention is a magnetron that rectifies the voltage of an AC power source, modulates the on-time of the high-frequency switching of the switching transistor, and converts it to high-frequency power. A driving power source for detecting an input current from an AC power source to the inverter circuit and outputting input current waveform information; and detecting an input voltage input from the AC power source to the inverter circuit An input voltage detector that outputs input voltage waveform information; a selector that selects one of the input current waveform information and the input voltage waveform information; and the input current waveform information selected by the selector and the input Switching that converts any of the voltage waveform information into a drive signal for the switching transistor of the inverter circuit And a section, the selection unit are those magnetrons to select the input voltage waveform information in a period of active state, the magnetron is configured to select the input current waveform information and becomes the oscillation state.
 これによって、マグネトロンが非発振状態での起動制御は入力電圧波形情報によってパルス幅変調制御パターンを生成し、マグネトロンが発振状態に移行すると入力電流波形情報によってパルス幅変調制御パターンを生成することができる。 As a result, the startup control when the magnetron is in the non-oscillation state can generate a pulse width modulation control pattern based on the input voltage waveform information, and when the magnetron shifts to the oscillation state, the pulse width modulation control pattern can be generated based on the input current waveform information. .
 また、起動制御と定常制御で全く異なった信号関係でパルス幅変調制御を生成することが出来るので夫々の制御要求に対して最適なパルス幅変調パターンを生成し、より安定したマグネトロン駆動用電源の制御を実現することができる。 In addition, since pulse width modulation control can be generated with completely different signal relationships between startup control and steady state control, an optimal pulse width modulation pattern can be generated for each control requirement, and a more stable magnetron drive power supply Control can be realized.
 また、前記従来の課題を解決するために、本発明のマグネトロン駆動用電源は、交流電源の電圧を整流し、スイッチングトランジスタの高周波スイッチングのオン時間を変調して高周波電力に変換するインバータ回路を制御し、前記高周波電力を整流する整流回路を介してマグネトロンに電力を供給するマグネトロン駆動用電源であって、前記交流電源から前記インバータ回路への入力電流を検出し、入力電流波形情報を出力する入力電流検出部と、前記交流電源から前記インバータ回路へ入力される入力電圧を検出し、入力電圧波形情報を出力する入力電圧検出部と、前記入力電流波形情報と前記入力電圧波形情報のいずれかを選択する選択部と、前記選択部によって選択された前記入力電流波形情報と前記入力電圧波形情報のいずれかを前記インバータ回路のスイッチングトランジスタの駆動信号に変換するスイッチング変換部と、前記インバータ回路が前記マグネトロンに供給する電力を指令する電力指令部とを備え、前記選択部は前記入力電圧検出部と前記入力電流検出部のうち出力振幅の大きいほうの信号波形情報を選択し、前記マグネトロンが発振可能状態になると前記入力電圧波形情報の信号振幅を減ずるとともに、前記電力指令部によって指示される電力が所定の値以下のときは前記選択部によって得られる信号振幅を減じ、前記スイッチング変換部は前記選択部によって選択された信号波形情報と三角波をPWMコンパレータによって比較し、その大小関係を基に前記スイッチングトランジスタの駆動信号とする構成としたものである。 In order to solve the above-described conventional problems, the magnetron driving power source of the present invention controls an inverter circuit that rectifies the voltage of the AC power source and modulates the on-time of the high-frequency switching of the switching transistor to convert it to high-frequency power. And a magnetron driving power source for supplying power to the magnetron via a rectifier circuit for rectifying the high-frequency power, wherein the input current from the AC power source to the inverter circuit is detected and input current waveform information is output. A current detection unit; an input voltage detection unit that detects an input voltage input from the AC power supply to the inverter circuit and outputs input voltage waveform information; and one of the input current waveform information and the input voltage waveform information. A selection unit to be selected, and any of the input current waveform information and the input voltage waveform information selected by the selection unit A switching conversion unit that converts the drive signal of the switching circuit of the inverter circuit into a drive signal; and a power command unit that commands the power that the inverter circuit supplies to the magnetron. The selection unit includes the input voltage detection unit and the input current. When the signal waveform information having the larger output amplitude is selected from among the detection units, and the magnetron is ready to oscillate, the signal amplitude of the input voltage waveform information is reduced, and the power indicated by the power command unit is a predetermined value. In the following cases, the signal amplitude obtained by the selection unit is reduced, and the switching conversion unit compares the signal waveform information selected by the selection unit with a triangular wave using a PWM comparator, and drives the switching transistor based on the magnitude relationship. The signal is configured.
 これによって、マグネトロンが非発振状態での起動制御は入力電圧波形情報によってパルス幅変調制御パターンを生成し、マグネトロンが発振状態に移行すると入力電圧波形情報に基づく信号振幅が小さくなるため、入力電流波形情報によってパルス幅変調制御パターンを生成することができ、起動制御と定常制御で全く異なった信号関係でパルス幅変調制御を生成することが出来るので夫々の制御要求に対して最適なパルス幅変調パターンを生成し、より安定したマグネトロン駆動用電源の制御を実現することができ、かつマグネトロンを低出力の状態に制御してもインバータ回路のスイッチングトランジスタのオン時間が少なくなりすぎることがなくなり、ソフトスイッチング動作を確実に行えるため常に低損失な動作を行うことができる。 As a result, the start-up control when the magnetron is in the non-oscillation state generates a pulse width modulation control pattern based on the input voltage waveform information, and the signal amplitude based on the input voltage waveform information decreases when the magnetron enters the oscillation state. The pulse width modulation control pattern can be generated according to the information, and the pulse width modulation control can be generated with completely different signal relations between the start control and the steady control, so the optimum pulse width modulation pattern for each control requirement Can be realized, and more stable control of the magnetron drive power supply can be realized, and even if the magnetron is controlled to a low output state, the on-time of the switching transistor of the inverter circuit is not reduced too much, and soft switching Because it can operate reliably, it can always operate with low loss. That.
 本発明のマグネトロン駆動用電源は、起動制御と定常制御のパルス幅変調制御パターンを夫々の制御要求に応じて最適に設計することができるのでより安定したマグネトロン駆動用電源の制御を実現することができる。また、本発明のマグネトロン駆動用電源は、起動制御と定常制御のパルス幅変調制御パターンを夫々の制御要求に応じて最適に設計することができるので、より安定したマグネトロン駆動用電源の制御と低損失動作を実現することができる。 The power source for driving the magnetron of the present invention can optimally design the pulse width modulation control pattern of the start control and the steady control according to each control request, so that it is possible to realize more stable control of the power source for driving the magnetron. it can. In addition, the magnetron driving power source according to the present invention can optimally design the pulse width modulation control patterns for start-up control and steady control according to the respective control requirements, so that more stable control of the magnetron driving power source and low power can be achieved. Loss operation can be realized.
本発明の実施の形態1にかかるマグネトロン駆動用電源のブロック図1 is a block diagram of a magnetron drive power supply according to a first embodiment of the present invention. 同実施の形態1にかかる入力電流検出部の構成図Configuration diagram of the input current detection unit according to the first embodiment 同実施の形態1にかかるミックス回路の構成図Configuration diagram of the mix circuit according to the first embodiment 同実施の形態1にかかる入力電圧波形情報、入力電流波形情報およびミックス回路の出力信号を示す波形図Waveform diagram showing input voltage waveform information, input current waveform information, and output signal of the mix circuit according to the first embodiment 本発明の実施の形態2にかかるマグネトロン駆動用電源のブロック図Block diagram of magnetron drive power supply according to the second embodiment of the present invention 同実施の形態2にかかる入力電圧波形情報、入力電流波形情報およびミックス回路の出力信号を示す波形図Waveform diagram showing input voltage waveform information, input current waveform information, and output signal of the mix circuit according to the second embodiment 本発明の実施の形態3にかかる入力電圧波形情報、入力電流波形情報およびミックス回路の出力信号を示す波形図Waveform diagram showing input voltage waveform information, input current waveform information, and output signal of the mix circuit according to the third embodiment of the present invention 本発明の実施の形態4にかかるマグネトロン駆動用電源のブロック図Block diagram of magnetron drive power supply according to Embodiment 4 of the present invention 本発明の実施の形態4にかかるマグネトロン駆動用電源のミックス回路を示す回路図Circuit diagram showing a mix circuit of a magnetron drive power supply according to a fourth embodiment of the present invention. 本発明の実施の形態4にかかるマグネトロン駆動用電源の波形図Waveform diagram of magnetron drive power supply according to the fourth embodiment of the present invention 従来のマグネトロン駆動用電源のブロック図Block diagram of a conventional magnetron drive power supply 従来のマグネトロン駆動用電源のブロック図Block diagram of a conventional magnetron drive power supply
 第1の発明は、交流電源の電圧を整流し、スイッチングトランジスタの高周波スイッチングのオン時間を変調して高周波電力に変換するインバータ回路を制御するマグネトロン駆動用電源であって、前記交流電源から前記インバータ回路への入力電流を検出し、入力電流波形情報を出力する入力電流検出部と、前記交流電源から前記インバータ回路へ入力される入力電圧を検出し、入力電圧波形情報を出力する入力電圧検出部と、前記入力電流波形情報と前記入力電圧波形情報のいずれかを選択する選択部と、前記選択部によって選択された前記入力電流波形情報と前記入力電圧波形情報のいずれかを、前記インバータ回路のスイッチングトランジスタの駆動信号に変換するスイッチング変換部と、を備え、前記選択部はマグネトロンが起動状態の期間においては前記入力電圧波形情報を選択し、マグネトロンが発振可能状態になると前記入力電流波形情報を選択する構成としたものであり、マグネトロンが起動状態のときは入力電圧波形情報によってパルス幅変調制御パターンを生成し、発振可能状態以降は入力電流波形情報によってパルス幅変調制御パターンを生成するので夫々の状態において最適なパルス幅変調パターンでインバータ回路を動作させ、スイッチング損失の増加や力率の低下を防止する動作が可能となる。 A first invention is a magnetron driving power source that controls an inverter circuit that rectifies a voltage of an AC power source, modulates a high-frequency switching on-time of a switching transistor, and converts it into high-frequency power, and converts the AC power source to the inverter An input current detector that detects an input current to the circuit and outputs input current waveform information, and an input voltage detector that detects an input voltage input from the AC power source to the inverter circuit and outputs input voltage waveform information A selection unit that selects any one of the input current waveform information and the input voltage waveform information, and any one of the input current waveform information and the input voltage waveform information selected by the selection unit. A switching conversion unit that converts the driving signal of the switching transistor into a drive signal. The input voltage waveform information is selected during the period of the state, and the input current waveform information is selected when the magnetron is ready to oscillate. When the magnetron is in the activated state, the pulse width is determined by the input voltage waveform information. A modulation control pattern is generated, and after the oscillation is enabled, a pulse width modulation control pattern is generated based on the input current waveform information. Therefore, in each state, the inverter circuit is operated with the optimum pulse width modulation pattern to increase switching loss and power factor. It is possible to perform an operation for preventing the deterioration of the image.
 第2の発明は、特に第1の発明の選択部は入力電流検出部および入力電圧検出部とスイッチング変換部の間に接続され、入力電流波形情報および入力電圧波形情報のうちいずれかとインバータ回路の入力電流が所定値になるよう制御する電力制御情報とを合成し、スイッチングトランジスタのオン電圧信号を生成する合成回路により構成され、スイッチング変換部は半導体スイッチ素子のピーク電圧が抑制されるようにオン電圧信号をスイッチングトランジスタの駆動信号に変換する構成としたものである。 In the second invention, in particular, the selection unit of the first invention is connected between the input current detection unit and the input voltage detection unit and the switching conversion unit, and either of the input current waveform information and the input voltage waveform information and the inverter circuit Combining power control information for controlling the input current to be a predetermined value, it is composed of a synthesis circuit that generates an on-voltage signal for the switching transistor, and the switching converter is turned on so that the peak voltage of the semiconductor switch element is suppressed. The voltage signal is converted into a drive signal for the switching transistor.
 本発明によれば、マグネトロンが起動状態のときは入力電圧波形情報によってパルス幅変調制御パターンを生成し、発振可能状態以降は入力電流波形情報によってパルス幅変調制御パターンを生成するので夫々の状態において最適なパルス幅変調パターンでインバータ回路を動作させ、スイッチング損失の増加や力率の低下を防止する動作が可能となる。 According to the present invention, the pulse width modulation control pattern is generated from the input voltage waveform information when the magnetron is in the activated state, and the pulse width modulation control pattern is generated from the input current waveform information after the oscillation is enabled. It is possible to operate the inverter circuit with an optimal pulse width modulation pattern to prevent an increase in switching loss and a decrease in power factor.
 第3の発明は、特に第1ないし第2の発明のマグネトロン駆動用電源にクロック生成部を設け、クロック生成部は交流電源の周期に同期してクロックを生成し、選択部による入力電流波形情報と入力電圧波形情報の選択切替はクロック生成部のクロック出力に同期する構成としたものである。 According to a third aspect of the invention, a clock generator is provided in the magnetron driving power supply of the first or second invention, and the clock generator generates a clock in synchronization with the cycle of the AC power supply. The selection switching of the input voltage waveform information is synchronized with the clock output of the clock generator.
 本発明によれば、マグネトロンが起動状態のときは入力電圧波形情報によってパルス幅変調制御パターンを生成し、発振可能状態以降は入力電流波形情報によってパルス幅変調制御パターンを生成するので夫々の状態において最適なパルス幅変調パターンでインバータ回路を動作させ、スイッチング損失の増加や力率の低下を防止する動作が可能となる。 According to the present invention, the pulse width modulation control pattern is generated from the input voltage waveform information when the magnetron is in the activated state, and the pulse width modulation control pattern is generated from the input current waveform information after the oscillation is enabled. It is possible to operate the inverter circuit with an optimal pulse width modulation pattern to prevent an increase in switching loss and a decrease in power factor.
 また、起動制御と定常制御の切替のタイミングをクロックパルスによって所定のタイミングで行うことが出来るので、制御の切替に伴う制御の不安定要素を軽減することが出来る。 Also, since the switching timing between the start control and the steady control can be performed at a predetermined timing by the clock pulse, the unstable elements of the control accompanying the control switching can be reduced.
 第4の発明は、特に第3の発明のクロック生成部は交流電源電圧の絶対値が減少から増加に転ずるタイミングでクロックパルスを生成し、選択部はクロック生成部のクロックパルスによって、入力電流波形情報と入力電圧波形情報の選択切替を行う構成としたものである。 In the fourth aspect of the invention, in particular, the clock generation unit of the third aspect of the invention generates a clock pulse at a timing when the absolute value of the AC power supply voltage changes from a decrease to an increase, and the selection unit generates an input current waveform by the clock pulse of the clock generation unit. The information and the input voltage waveform information are selectively switched.
 本発明によれば、マグネトロンが起動状態のときは入力電圧波形情報によってパルス幅変調制御パターンを生成し、発振可能状態以降は入力電流波形情報によってパルス幅変調制御パターンを生成するので夫々の状態において最適なパルス幅変調パターンでインバータ回路を動作させ、スイッチング損失の増加や力率の低下を防止する動作が可能となる。 According to the present invention, the pulse width modulation control pattern is generated from the input voltage waveform information when the magnetron is in the activated state, and the pulse width modulation control pattern is generated from the input current waveform information after the oscillation is enabled. It is possible to operate the inverter circuit with an optimal pulse width modulation pattern to prevent an increase in switching loss and a decrease in power factor.
 また、起動制御と定常制御の切替タイミングを交流電圧の振幅が最も低い時点で行うことが出来るので制御の切替にともなうスイッチング制御が不安定になることを防止することが出来る。 In addition, since the switching timing between the start control and the steady control can be performed at the time when the amplitude of the AC voltage is the lowest, it is possible to prevent the switching control from becoming unstable due to the control switching.
 第5の発明は、特に第3の発明のクロック生成部は交流電源の周期を2分周するクロックを生成し、選択部は、入力電流波形情報と入力電圧波形情報の選択切替を、クロック生成部のクロック出力に同期させる構成としたものである。 In the fifth aspect of the invention, in particular, the clock generation unit of the third aspect of the invention generates a clock that divides the period of the AC power supply by 2, and the selection unit generates a clock for selecting and switching input current waveform information and input voltage waveform information. It is configured to synchronize with the clock output of the unit.
 本発明によれば、マグネトロンが起動状態のときは入力電圧波形情報によってパルス幅変調制御パターンを生成し、発振可能状態以降は入力電流波形情報によってパルス幅変調制御パターンを生成するので夫々の状態において最適なパルス幅変調パターンでインバータ回路を動作させ、スイッチング損失の増加や力率の低下を防止する動作が可能となる。 According to the present invention, the pulse width modulation control pattern is generated from the input voltage waveform information when the magnetron is in the activated state, and the pulse width modulation control pattern is generated from the input current waveform information after the oscillation is enabled. It is possible to operate the inverter circuit with an optimal pulse width modulation pattern to prevent an increase in switching loss and a decrease in power factor.
 また、起動制御と定常制御の切替タイミングを交流電圧の振幅が最も低い時点で行うことが出来るので制御の切替にともなうスイッチング制御が不安定になることを防止することが出来る。 In addition, since the switching timing between the start control and the steady control can be performed at the time when the amplitude of the AC voltage is the lowest, it is possible to prevent the switching control from becoming unstable due to the control switching.
 第6の発明は、選択部が特に第5の発明のクロック生成部のクロック出力の立ち上がりまたは立下りエッジで、入力電流波形情報と入力電圧波形情報との選択切替を行う構成としたものである。 According to a sixth aspect of the invention, the selection unit is configured to perform selection switching between input current waveform information and input voltage waveform information, particularly at the rising or falling edge of the clock output of the clock generation unit of the fifth invention. .
 本発明によれば、マグネトロンが起動状態のときは入力電圧波形情報によってパルス幅変調制御パターンを生成し、発振可能状態以降は入力電流波形情報によってパルス幅変調制御パターンを生成するので夫々の状態において最適なパルス幅変調パターンでインバータ回路を動作させ、スイッチング損失の増加や力率の低下を防止する動作が可能となる。 According to the present invention, the pulse width modulation control pattern is generated from the input voltage waveform information when the magnetron is in the activated state, and the pulse width modulation control pattern is generated from the input current waveform information after the oscillation is enabled. It is possible to operate the inverter circuit with an optimal pulse width modulation pattern to prevent an increase in switching loss and a decrease in power factor.
 また、起動制御と定常制御の切替タイミングを交流電圧の振幅が最も低い時点で行うことが出来るので制御の切替にともなうスイッチング制御が不安定になることを防止することが出来る。 In addition, since the switching timing between the start control and the steady control can be performed at the time when the amplitude of the AC voltage is the lowest, it is possible to prevent the switching control from becoming unstable due to the control switching.
 第7の発明は、交流電源の電圧を整流し、スイッチングトランジスタの高周波スイッチングのオン時間を変調して高周波電力に変換するインバータ回路を制御するマグネトロン駆動用電源であって、交流電源から前記インバータ回路への入力電流を検出し、入力電流波形情報を出力する入力電流検出部と、交流電源から前記インバータ回路へ入力される入力電圧を検出し、入力電圧波形情報を出力する入力電圧検出部と、前記入力電流波形情報と前記入力電圧波形情報のいずれかを選択する選択部と、選択された前記入力電流波形情報と前記入力電圧波形情報のいずれかを前記インバータ回路のスイッチングトランジスタの駆動信号に変換するスイッチング変換部と前記交流電源の周期に同期してクロックを生成するクロック生成部と、を備え、前記選択部は前記入力電流検出部および前記入力電圧検出部の出力信号のいずれか大きいほうの信号を選択するとともに、前記入力電圧検出部の出力は所定の段階数で漸減するように構成され、漸減させるタイミングは前記クロック生成部のクロック出力に同期する構成としたものである。 A seventh invention is a magnetron driving power source that controls an inverter circuit that rectifies the voltage of an AC power source and modulates the on-time of high-frequency switching of a switching transistor to convert it into high-frequency power, and from the AC power source to the inverter circuit An input current detector that detects input current to output input current waveform information; an input voltage detector that detects input voltage input from the AC power supply to the inverter circuit; and outputs input voltage waveform information; A selection unit that selects either the input current waveform information or the input voltage waveform information, and converts either the selected input current waveform information or the input voltage waveform information into a drive signal for a switching transistor of the inverter circuit A switching converter that generates a clock and a clock generator that generates a clock in synchronization with the cycle of the AC power supply. The selection unit is configured to select a larger one of the output signals of the input current detection unit and the input voltage detection unit, and the output of the input voltage detection unit is gradually decreased by a predetermined number of steps. The timing of gradual decrease is synchronized with the clock output of the clock generator.
 本発明によれば、マグネトロンが起動状態のときは入力電圧波形情報によってパルス幅変調制御パターンを生成し、発振可能状態以降は入力電流波形情報によってパルス幅変調制御パターンを生成するので夫々の状態において最適なパルス幅変調パターンでインバータ回路を動作させ、スイッチング損失の増加や力率の低下を防止する動作が可能となる。 According to the present invention, the pulse width modulation control pattern is generated from the input voltage waveform information when the magnetron is in the activated state, and the pulse width modulation control pattern is generated from the input current waveform information after the oscillation is enabled. It is possible to operate the inverter circuit with an optimal pulse width modulation pattern to prevent an increase in switching loss and a decrease in power factor.
 また、起動制御と定常制御の切替タイミングを交流電圧の振幅が最も低い時点で行うことが出来るので制御の切替にともなうスイッチング制御が不安定になることを防止することが出来る。 In addition, since the switching timing between the start control and the steady control can be performed at the time when the amplitude of the AC voltage is the lowest, it is possible to prevent the switching control from becoming unstable due to the control switching.
 第8の発明は、特に第7の発明の入力電圧検出部の出力は第1の段階で1/2の振幅に出力電圧を減じ、第2の段階で出力電圧が0となるように段階的に減ずるように構成したものである。 In the eighth aspect of the invention, in particular, the output of the input voltage detection unit of the seventh aspect of the invention is stepwise so that the output voltage is reduced to half the amplitude in the first stage and the output voltage becomes zero in the second stage. It is configured to decrease to
 本発明によれば、マグネトロンが起動状態のときは入力電圧波形情報によってパルス幅変調制御パターンを生成し、発振可能状態以降は入力電流波形情報によってパルス幅変調制御パターンを生成するので夫々の状態において最適なパルス幅変調パターンでインバータ回路を動作させ、スイッチング損失の増加や力率の低下を防止する動作が可能となる。 According to the present invention, the pulse width modulation control pattern is generated from the input voltage waveform information when the magnetron is in the activated state, and the pulse width modulation control pattern is generated from the input current waveform information after the oscillation is enabled. It is possible to operate the inverter circuit with an optimal pulse width modulation pattern to prevent an increase in switching loss and a decrease in power factor.
 また、起動制御と定常制御の切替タイミングを交流電圧の振幅が最も低い時点で行うことが出来るので制御の切替にともなうスイッチング制御が不安定になることを防止することが出来る。 In addition, since the switching timing between the start control and the steady control can be performed at the time when the amplitude of the AC voltage is the lowest, it is possible to prevent the switching control from becoming unstable due to the control switching.
 第9の発明は、特に第8の発明の第1の段階と第2の段階の間に所定の遅れ時間を設ける構成としたものである。 In the ninth invention, a predetermined delay time is particularly provided between the first stage and the second stage of the eighth invention.
 本発明によれば、マグネトロンが起動状態のときは入力電圧波形情報によってパルス幅変調制御パターンを生成し、発振可能状態以降は入力電流波形情報によってパルス幅変調制御パターンを生成するので夫々の状態において最適なパルス幅変調パターンでインバータ回路を動作させ、スイッチング損失の増加や力率の低下を防止する動作が可能となる。 According to the present invention, the pulse width modulation control pattern is generated from the input voltage waveform information when the magnetron is in the activated state, and the pulse width modulation control pattern is generated from the input current waveform information after the oscillation is enabled. It is possible to operate the inverter circuit with an optimal pulse width modulation pattern to prevent an increase in switching loss and a decrease in power factor.
 また、起動制御と定常制御の切替タイミングを交流電圧の振幅が最も低い時点で行うことが出来るので制御の切替にともなうスイッチング制御が不安定になることを防止することが出来る。 In addition, since the switching timing between the start control and the steady control can be performed at the time when the amplitude of the AC voltage is the lowest, it is possible to prevent the switching control from becoming unstable due to the control switching.
 第10の発明は、特に第7の発明のマグネトロン駆動用電源にクロックカウント部を設け、前記クロックカウント部はクロック生成部のクロックをカウントし第1の段階から所定の回数クロックをカウントすると第2の段階に移行する構成としたものである。 According to a tenth aspect of the invention, in particular, the magnetron driving power source of the seventh aspect is provided with a clock count unit, and the clock count unit counts the clock of the clock generation unit and counts the clock a predetermined number of times from the first stage. It is set as the structure which transfers to the stage.
 本発明によれば、マグネトロンが起動状態のときは入力電圧波形情報によってパルス幅変調制御パターンを生成し、発振可能状態以降は入力電流波形情報によってパルス幅変調制御パターンを生成するので夫々の状態において最適なパルス幅変調パターンでインバータ回路を動作させ、スイッチング損失の増加や力率の低下を防止する動作が可能となる。 According to the present invention, the pulse width modulation control pattern is generated from the input voltage waveform information when the magnetron is in the activated state, and the pulse width modulation control pattern is generated from the input current waveform information after the oscillation is enabled. It is possible to operate the inverter circuit with an optimal pulse width modulation pattern to prevent an increase in switching loss and a decrease in power factor.
 また、起動制御と定常制御の切替タイミングを交流電圧の振幅が最も低い時点で行うことが出来るので制御の切替にともなうスイッチング制御が不安定になることを防止することが出来る。 In addition, since the switching timing between the start control and the steady control can be performed at the time when the amplitude of the AC voltage is the lowest, it is possible to prevent the switching control from becoming unstable due to the control switching.
 第11の発明は、特に第7の発明の入力電圧検出部はクロックカウント部によってクロックがカウントされるたびにその出力電圧振幅を所定の値で減ずる構成としたものである。 In the eleventh aspect of the invention, in particular, the input voltage detection unit of the seventh aspect of the invention is configured to reduce the output voltage amplitude by a predetermined value every time the clock is counted by the clock counting unit.
 本発明によれば、マグネトロンが起動状態のときは入力電圧波形情報によってパルス幅変調制御パターンを生成し、発振可能状態以降は入力電流波形情報によってパルス幅変調制御パターンを生成するので夫々の状態において最適なパルス幅変調パターンでインバータ回路を動作させ、スイッチング損失の増加や力率の低下を防止する動作が可能となる。 According to the present invention, the pulse width modulation control pattern is generated from the input voltage waveform information when the magnetron is in the activated state, and the pulse width modulation control pattern is generated from the input current waveform information after the oscillation is enabled. It is possible to operate the inverter circuit with an optimal pulse width modulation pattern to prevent an increase in switching loss and a decrease in power factor.
 また、起動制御と定常制御の切替タイミングを交流電圧の振幅が最も低い時点で行うことが出来るので制御の切替にともなうスイッチング制御が不安定になることを防止することが出来る。 In addition, since the switching timing between the start control and the steady control can be performed at the time when the amplitude of the AC voltage is the lowest, it is possible to prevent the switching control from becoming unstable due to the control switching.
 第13の発明は、交流電源の電圧を整流し、スイッチングトランジスタの高周波スイッチングのオン時間を変調して高周波電力に変換するインバータ回路を制御し、前記高周波電力を整流する整流回路を介してマグネトロンに電力を供給するマグネトロン駆動用電源であって、前記交流電源から前記インバータ回路への入力電流を検出し、入力電流波形情報を出力する入力電流検出部と、前記交流電源から前記インバータ回路へ入力される入力電圧を検出し、入力電圧波形情報を出力する入力電圧検出部と、前記入力電流波形情報と前記入力電圧波形情報のいずれかを選択する選択部と、前記選択部によって選択された前記入力電流波形情報と前記入力電圧情報のいずれかを前記インバータ回路のスイッチングトランジスタの駆動信号に変換するスイッチング変換部と、前記インバータ回路が前記マグネトロンに供給する電力を指令する電力指令部とを備え、前記選択部は前記入力電圧検出部と前記入力電流検出部のうち出力振幅の大きいほうの信号波形情報を選択し、前記マグネトロンが発振可能状態になると前記入力電圧波形情報の信号振幅を減ずるとともに、前記電力指令部によって指示される電力が所定の値以下のときは前記選択部によって得られる信号振幅を減じ、前記スイッチング変換部は前記選択部によって選択された信号波形情報と三角波をPWMコンパレータによって比較し、その大小関係を基に前記スイッチングトランジスタの駆動信号とする構成としたものであり、マグネトロンが起動状態のときは入力電流は非常に小さいレベルであるため入力電圧波形情報が優先され入力電圧波形情報によってパルス幅変調制御パターンを生成し、発振可能状態以降は入力電圧波形情報に基づく信号は漸減されるため、次第に入力電流波形情報が優先されてパルス幅変調制御パターンを生成するのでマグネトロンが起動状態、発振状態の夫々の状態において最適なパルス幅変調パターンでインバータ回路を動作させ、スイッチング損失の増加や力率の低下を防止する動作が可能となるとともに、マグネトロンの出力電力が低出力の場合においてもインバータ回路のスイッチングトランジスタがソフトスイッチング動作するようにパルス幅変調パターンを出力するため常に低損失な回路動作が可能となり、スイッチング損失の増加によるスイッチングトランジスタの異常な温度上昇を防止することが可能となる。 In a thirteenth aspect of the invention, the inverter circuit that rectifies the voltage of the AC power supply, modulates the on-time of the high-frequency switching of the switching transistor and converts it to high-frequency power, and controls the inverter circuit to the magnetron via the rectifier circuit that rectifies the high-frequency power. A power source for driving a magnetron that supplies power, an input current detection unit that detects an input current from the AC power supply to the inverter circuit and outputs input current waveform information, and is input from the AC power supply to the inverter circuit An input voltage detection unit that detects input voltage and outputs input voltage waveform information; a selection unit that selects one of the input current waveform information and the input voltage waveform information; and the input selected by the selection unit Either the current waveform information or the input voltage information is converted into a drive signal for the switching transistor of the inverter circuit. A switching converter that performs power conversion, and a power command unit that commands the power supplied to the magnetron by the inverter circuit, and the selection unit is a signal having a larger output amplitude of the input voltage detection unit and the input current detection unit. When the waveform information is selected and the magnetron is ready to oscillate, the signal amplitude of the input voltage waveform information is reduced, and the signal obtained by the selection unit when the power indicated by the power command unit is a predetermined value or less. The amplitude is reduced, and the switching converter compares the signal waveform information selected by the selector with a triangular wave by a PWM comparator, and uses the magnitude relationship as a drive signal for the switching transistor. When the is in the startup state, the input current waveform is very small, so the input voltage waveform The pulse width modulation control pattern is generated according to the input voltage waveform information, and the signal based on the input voltage waveform information is gradually reduced after the oscillation is enabled, so the input current waveform information is prioritized and the pulse width modulation control pattern is gradually given priority. Therefore, it is possible to operate the inverter circuit with an optimal pulse width modulation pattern in both the start-up state and the oscillation state to prevent an increase in switching loss and a decrease in power factor. Even when the output power is low, the pulse width modulation pattern is output so that the switching transistor of the inverter circuit performs a soft switching operation, so that a low-loss circuit operation is always possible, and an abnormal temperature of the switching transistor due to an increase in switching loss. It is possible to prevent the rise.
 第14の発明は、特に第13の発明の選択部は電圧電流変換部によって構成するとともに電流注入部を設け、前記電流注入部は前記選択部に電流を注入することによって選択された信号振幅波形を減ずる構成としたものであり、マグネトロンが起動状態のときは入力電流は非常に小さいレベルであるため入力電圧波形情報が優先され入力電圧波形情報によってパルス幅変調制御パターンを生成し、発振可能状態以降は入力電圧波形情報に基づく信号は漸減されるため、次第に入力電流波形情報が優先されてパルス幅変調制御パターンを生成するのでマグネトロンが起動状態、発振状態の夫々の状態において最適なパルス幅変調パターンでインバータ回路を動作させ、スイッチング損失の増加や力率の低下を防止する動作が可能となるともに、マグネトロンの出力電力が低出力の場合においてもインバータ回路のスイッチングトランジスタがソフトスイッチング動作するようにパルス幅変調パターンを出力するため常に低損失な回路動作が可能となり、スイッチング損失の増加によるスイッチングトランジスタの異常な温度上昇を防止することが可能となる。 According to a fourteenth aspect of the invention, in particular, the selection unit of the thirteenth aspect is constituted by a voltage-current conversion unit and a current injection unit is provided, and the current injection unit is a signal amplitude waveform selected by injecting a current into the selection unit. When the magnetron is in the starting state, the input current is at a very low level, so the input voltage waveform information is prioritized and the pulse width modulation control pattern is generated based on the input voltage waveform information. After that, since the signal based on the input voltage waveform information is gradually reduced, the input current waveform information is gradually prioritized and the pulse width modulation control pattern is generated. Therefore, the optimum pulse width modulation is performed in each of the magnetron in the activated state and the oscillation state. The inverter circuit can be operated with a pattern to prevent the switching loss from increasing and the power factor from being lowered. Even when the output power of the magnetron is low, since the pulse width modulation pattern is output so that the switching transistor of the inverter circuit performs soft switching operation, circuit operation with low loss is always possible, and switching transistor abnormalities due to increased switching loss It is possible to prevent a significant temperature rise.
 第15の発明は、特に第14の発明の電流注入部が注入する電流量は電力指令部の出力電圧に反比例するように構成としたものであり、電力指令部の出力電圧に応じてインバータ回路の変換電力が変化すると同時に電流注入部の注入電流量が変化するため、インバータ回路の変換電力に応じて電流注入部の電流注入量が変化することになり、パルス幅変調パターンの生成において急にパルス幅変調制御パターンが変化するポイントがなくなる。このため制御の不連続性が解消されるため制御の不安定要素をなくし、すべての変換電力に対して安定なマグネトロンの駆動が可能となる。 In the fifteenth aspect of the invention, in particular, the amount of current injected by the current injection section of the fourteenth aspect of the invention is configured to be inversely proportional to the output voltage of the power command section. Since the amount of injected current in the current injection section changes at the same time as the conversion power of the inverter changes, the amount of current injection in the current injection section changes according to the conversion power of the inverter circuit. There is no point where the pulse width modulation control pattern changes. For this reason, since the discontinuity of the control is eliminated, the unstable element of the control is eliminated, and the magnetron can be driven stably with respect to all the converted power.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
 (実施の形態1)
 図1は本発明の実施の形態1にかかるマグネトロン駆動用電源を説明するブロック図である。図1においてマグネトロン駆動用電源はスイッチングトランジスタ37および共振回路34からなるインバータ回路と、スイッチングトランジスタ37のオンオフを制御する制御部と、マグネトロン50とから構成される。
(Embodiment 1)
FIG. 1 is a block diagram for explaining a magnetron driving power source according to a first embodiment of the present invention. In FIG. 1, the magnetron driving power source includes an inverter circuit including a switching transistor 37 and a resonance circuit 34, a control unit that controls on / off of the switching transistor 37, and a magnetron 50.
 制御部にはスイッチングトランジスタ37へ駆動パルスを伝達するPWMコンパレータ79、のこぎり波発生回路78、選択部としてのミックス回路73、入力電流検出部であるシャント抵抗器70を含む。 The control unit includes a PWM comparator 79 that transmits a drive pulse to the switching transistor 37, a sawtooth wave generation circuit 78, a mix circuit 73 as a selection unit, and a shunt resistor 70 as an input current detection unit.
 交流電源20の交流電圧は4つのダイオードからなるブリッジ型整流回路30で整流され、単方向電圧に整流されインダクタ32とコンデンサ33によって構成される平滑回路31によって平滑された直流電圧がインバータ回路に供給される。 The AC voltage of the AC power supply 20 is rectified by a bridge-type rectifier circuit 30 composed of four diodes, rectified to a unidirectional voltage, and supplied to the inverter circuit by a smoothing circuit 31 including an inductor 32 and a capacitor 33. Is done.
 コンデンサ35と高圧トランス40の1次巻線36によって構成される共振回路とスイッチングトランジスタ37からなるインバータ回路はスイッチングトランジスタ37をオンオフ制御することによって高周波電力を励起し、高圧トランス40を介して、その2次巻線41に高圧高周波電力を誘起する。 An inverter circuit composed of a resonance circuit composed of a capacitor 35 and a primary winding 36 of a high-voltage transformer 40 and a switching transistor 37 excites high-frequency power by controlling the switching transistor 37 on and off, High voltage and high frequency power is induced in the secondary winding 41.
 2次巻線41に誘起された高圧高周波電力は、コンデンサ44,45、ダイオード43,46からなる倍電圧整流回路47を介してマグネトロン50のアノード52及びカソード51間に供給される。また、高圧トランス40には3次巻線42が設けられており、前述の動作と同時にマグネトロン50にカソード51を加熱するヒータ電力を同時に供給する構成となっている。 The high-frequency and high-frequency power induced in the secondary winding 41 is supplied between the anode 52 and the cathode 51 of the magnetron 50 through a voltage doubler rectifier circuit 47 including capacitors 44 and 45 and diodes 43 and 46. The high-voltage transformer 40 is provided with a tertiary winding 42 and is configured to simultaneously supply heater power for heating the cathode 51 to the magnetron 50 simultaneously with the above-described operation.
 次にインバータ回路のスイッチングトランジスタ37を制御する制御回路(制御部)について説明する。 Next, a control circuit (control unit) that controls the switching transistor 37 of the inverter circuit will be described.
 図2のようにブリッジ型整流回路30と平滑回路31間に設けたシャント抵抗器70と、その両端電圧を増幅する増幅回路とで入力電流整形回路71を形成し、入力電流波形情報91を生成する入力電流検出部を有する。 As shown in FIG. 2, the shunt resistor 70 provided between the bridge-type rectifier circuit 30 and the smoothing circuit 31 and the amplifier circuit that amplifies the voltage at both ends form an input current shaping circuit 71 to generate input current waveform information 91. An input current detection unit.
 この入力電流波形情報91は平滑回路75で平滑化され、これと、加熱出力設定に対応した出力設定信号を生成する出力設定部76からの信号を比較回路77で比較する。比較回路77はインバータ回路の入力電力の大きさを制御するため平滑回路75で平滑化された入力電流信号と出力設定部76で生成される設定信号との比較を行う。 The input current waveform information 91 is smoothed by the smoothing circuit 75, and this is compared with a signal from the output setting unit 76 that generates an output setting signal corresponding to the heating output setting by the comparison circuit 77. The comparison circuit 77 compares the input current signal smoothed by the smoothing circuit 75 with the setting signal generated by the output setting unit 76 in order to control the magnitude of the input power of the inverter circuit.
 したがって、本実施の形態の構成のようにシャント抵抗で電流検出してもよいし、入力電流をカレントトランスで検出してもよいし、スイッチングトランジスタのコレクタ電流あるいはコレクタ電圧などの信号を用いてもよい。すなわち比較回路77に入力される電力制御のための情報は本実施の形態に示した構成に束縛されるものではない。 Therefore, the current may be detected by a shunt resistor as in the configuration of the present embodiment, the input current may be detected by a current transformer, or a signal such as a collector current or a collector voltage of a switching transistor may be used. Good. That is, the information for power control input to the comparison circuit 77 is not restricted to the configuration shown in this embodiment mode.
 制御回路は交流電源20の電圧を検出して整流する一組のダイオードと、整流した電圧を波形整形して入力電圧波形情報92を生成する整形回路72からなる入力電圧検出部をも備える。 The control circuit also includes an input voltage detection unit including a pair of diodes that detect and rectify the voltage of the AC power supply 20 and a shaping circuit 72 that shapes the rectified voltage and generates input voltage waveform information 92.
 これら入力電圧波形情報92と入力電流波形情報91と比較回路77からの電力制御情報93をミックス回路73でミックスしフィルタリングすることでスイッチングトランジスタ37のオン信号幅情報94を出力し、のこぎり波発生回路78からののこぎり波とPWMコンパレータ79で比較して、パルス幅変調してインバータ回路のスイッチングトランジスタ37をオンオフ制御するように構成している。 The input voltage waveform information 92, the input current waveform information 91, and the power control information 93 from the comparison circuit 77 are mixed and filtered by the mixing circuit 73 to output the ON signal width information 94 of the switching transistor 37, and the sawtooth wave generating circuit. The sawtooth wave from 78 is compared with the PWM comparator 79 and the switching transistor 37 of the inverter circuit is ON / OFF controlled by pulse width modulation.
 入力電流波形情報に対するスイッチングトランジスタ37のオンオフ制御は、入力電流が大きいときはオン時間を短く、逆に小さいときは長くする極性で変換される。同じように入力電圧波形情報も、入力電圧が高いときはオン時間を短く、逆に低いときはオン時間を長くする極性で変換される。 The on / off control of the switching transistor 37 with respect to the input current waveform information is converted with a polarity that shortens the on-time when the input current is large, and conversely increases it when it is small. Similarly, the input voltage waveform information is also converted with a polarity that shortens the on-time when the input voltage is high, and conversely lengthens the on-time when the input voltage is low.
 図3にミックス回路73の一例を示す。ミックス回路73の入力端子は4つであり、各々入力電流波形情報91、入力電圧波形情報92、電力制御情報93、切替信号95が入力され、図示の回路によってオン信号幅情報94をPWMコンパレータ79に伝送するよう構成している。 FIG. 3 shows an example of the mix circuit 73. The mix circuit 73 has four input terminals, each of which receives input current waveform information 91, input voltage waveform information 92, power control information 93, and switching signal 95. The circuit shown in FIG. It is configured to transmit to.
 以上のような構成で、ミックス回路73は、入力電流波形情報91および入力電圧波形情報92のうちいずれかを選択し、選択されたいずれかをインバータ回路のスイッチングトランジスタ37のオンオフ制御信号に変換して利用するものである。 With the configuration as described above, the mix circuit 73 selects any one of the input current waveform information 91 and the input voltage waveform information 92 and converts the selected one into an on / off control signal for the switching transistor 37 of the inverter circuit. To use.
 このような構成とすることでマグネトロン50が定常発振している状態において入力電流波形の歪を補正するように交流電源の電圧振幅が大きい期間ではスイッチングトランジスタ37のオン時間を短くするよう補正し、逆に交流電源電圧の振幅が小さい期間ではスイッチングトランジスタ37のオン時間を長くするように補正するようにスイッチングトランジスタ37のオン信号幅をパルス幅変調する。スイッチングトランジスタ37に印加される電圧波形は、数式(1)のように表現することができる。数式(1)において、Vはスイッチングトランジスタ37の印加電圧の最大値、Eはコンデンサ33の電圧、LPは高圧トランス40の1次巻線インダクタンス、Cはコンデンサ35の容量、Tonはスイッチングトランジスタ37のオン時間を示している。このため、スイッチングトランジスタ37のオン時間を増減することで、印加電圧を制御することができる。すなわち、オン時間を短くすると、スイッチングトランジスタ37に印加されるピーク電圧を抑制することが可能となる。 By adopting such a configuration, correction is made so that the on-time of the switching transistor 37 is shortened in a period in which the voltage amplitude of the AC power supply is large so as to correct distortion of the input current waveform in a state where the magnetron 50 is oscillating constantly. Conversely, the ON signal width of the switching transistor 37 is subjected to pulse width modulation so that the ON time of the switching transistor 37 is corrected to be increased in a period in which the amplitude of the AC power supply voltage is small. The voltage waveform applied to the switching transistor 37 can be expressed as Equation (1). In Equation (1), V is the maximum value of the voltage applied to the switching transistor 37, E is the voltage of the capacitor 33, LP is the primary winding inductance of the high-voltage transformer 40, C is the capacitance of the capacitor 35, and Ton is the switching transistor 37. Indicates on-time. Therefore, the applied voltage can be controlled by increasing / decreasing the ON time of the switching transistor 37. That is, when the ON time is shortened, the peak voltage applied to the switching transistor 37 can be suppressed.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 この結果、交流電源の半周期のごとき短い期間において理想信号波形と入力電流波形情報91の瞬時誤差あるいは補正量の総和は、他の手段で入力電流の大きさ等が制御されているので略ゼロである。また、非線形負荷に起因して入力電流が流れない部分は流す方向に補正するため、入力電流が大きい部分を逆に減少させて上記の略ゼロを成立させている。 As a result, the sum of the instantaneous error or the correction amount of the ideal signal waveform and the input current waveform information 91 in a short period such as a half cycle of the AC power supply is substantially zero because the magnitude of the input current is controlled by other means. It is. In addition, since the portion where the input current does not flow due to the non-linear load is corrected in the flowing direction, the portion where the input current is large is decreased on the contrary to establish the above substantially zero.
 これは非線形負荷であっても、その電流波形があたかも線形負荷とみなせるように補正することであり、商用電源電圧波形は正弦波なので線形負荷に流れる電流波形と同じく理想波形は正弦波になる。このように入力電流波形の変化や、理想波形に対する過不足を打ち消すようにその波形の逆極性で入力電流が補正される。 This is to correct the current waveform so that it can be regarded as a linear load even if it is a non-linear load, and since the commercial power supply voltage waveform is a sine wave, the ideal waveform is a sine wave as well as the current waveform flowing through the linear load. In this way, the input current is corrected with the reverse polarity of the waveform so as to cancel the change in the input current waveform and the excess or deficiency with respect to the ideal waveform.
 したがって、マグネトロン50のような非線形負荷によって生じる商用電源周期内の急峻な電流変化、すなわち歪はこの制御ループによって打ち消され入力電流波形整形が行われ、歪の少なく力率の高い動作を実現することが出来る。 Therefore, a steep current change in a commercial power supply cycle caused by a non-linear load such as the magnetron 50, that is, distortion is canceled out by this control loop, input current waveform shaping is performed, and operation with low distortion and high power factor is realized. I can do it.
 一方、マグネトロン50はカソード51を適正な温度にまで加熱しないとマイクロ波を発振することが出来ず、この状態のときマグネトロン50はほぼ無限大の抵抗値を示す。このため、マグネトロン50を高速に起動するためには起動制御においてカソード51への供給電力を出来るだけ多くすることが必要となる。 On the other hand, the magnetron 50 cannot oscillate microwaves unless the cathode 51 is heated to an appropriate temperature. In this state, the magnetron 50 exhibits an almost infinite resistance value. For this reason, in order to start the magnetron 50 at high speed, it is necessary to increase the power supplied to the cathode 51 as much as possible in the start-up control.
 入力電流波形情報91によってスイッチングトランジスタ37のオン信号幅をパルス幅変調する場合と、パルス幅変調をしない場合とを比較するとパルス幅変調をかけた場合、カソード51の供給電流のエンベロープ波形が台形波状になりより多くの電力を供給することが出来る。この結果、カソード51をより短時間で適正な温度に加熱することが出来るようになる。 When the pulse width modulation of the ON signal width of the switching transistor 37 is compared with the case where the pulse width modulation is not performed based on the input current waveform information 91, when the pulse width modulation is applied, the envelope waveform of the supply current of the cathode 51 is trapezoidal. And more power can be supplied. As a result, the cathode 51 can be heated to an appropriate temperature in a shorter time.
 本実施の形態のマグネトロン駆動用電源のミックス回路73は入力電圧波形情報92と入力電流波形情報91を夫々バッファトランジスタ735、739を介して共通のエミッタ抵抗737に接続する構成としている。この構成にすることによってバッファトランジスタ735あるいは739のエミッタ電圧は入力電流波形情報91あるいは入力電圧波形情報92の電圧を出力するように動作する。 The mix circuit 73 of the power source for driving the magnetron according to the present embodiment is configured to connect the input voltage waveform information 92 and the input current waveform information 91 to a common emitter resistor 737 through buffer transistors 735 and 739, respectively. With this configuration, the emitter voltage of the buffer transistor 735 or 739 operates so as to output the voltage of the input current waveform information 91 or the input voltage waveform information 92.
 エミッタ抵抗737は各々のバッファトランジスタ735、739に共通エミッタで接続している、このため入力電圧波形情報92と入力電流波形情報91のうち振幅の大きいほうの信号情報がオン信号幅情報94に反映される構成となっている。抵抗731、732で分圧されている電圧はこのバッファトランジスタ735、739に流れる電流分電圧降下を起こし、波形情報を反転した信号を生成する。 The emitter resistor 737 is connected to each of the buffer transistors 735 and 739 through a common emitter. Therefore, the signal information having the larger amplitude of the input voltage waveform information 92 and the input current waveform information 91 is reflected in the ON signal width information 94. It becomes the composition which is done. The voltage divided by the resistors 731 and 732 causes a voltage drop corresponding to the current flowing through the buffer transistors 735 and 739, and generates a signal obtained by inverting the waveform information.
 バッファ回路733はこの分圧点のインピーダンスとコンデンサ741との間をインピーダンス分離するために挿入し、コンデンサ741から先のインピーダンス影響を抵抗731、732の分圧に及ぼさないようにしている。上記の波形情報はコンデンサ741を介してオン信号幅情報94に電圧情報として重畳され、スイッチングトランジスタ37のオン信号幅をパルス幅変調する。 The buffer circuit 733 is inserted in order to separate the impedance between the voltage dividing point and the capacitor 741 so that the impedance influence from the capacitor 741 does not affect the divided voltages of the resistors 731 and 732. The above waveform information is superimposed as voltage information on the ON signal width information 94 via the capacitor 741, and the ON signal width of the switching transistor 37 is subjected to pulse width modulation.
 図4は本実施の形態のマグネトロン駆動用電源の入力電圧波形情報92、入力電流波形情報91、切替信号95およびミックス回路の出力信号であるオン信号幅情報94を示す波形図で特にマグネトロン50が起動状態から定常状態に遷移するタイミングを拡大した波形図である。 FIG. 4 is a waveform diagram showing the input voltage waveform information 92, the input current waveform information 91, the switching signal 95, and the ON signal width information 94 which is the output signal of the mix circuit of the magnetron driving power source of this embodiment. It is the wave form diagram which expanded the timing which changes to a steady state from a starting state.
 マグネトロン50のカソードが十分な温度に加熱されていない期間ではマグネトロン50は略無限大のインピーダンスを示すため入力電流波形は略ゼロの状態であるこのためミックス回路73の出力信号は入力電圧波形情報92を反映した信号振幅が出力される。(期間T0~T1)マグネトロン50のカソード51が加熱され発振可能状態になるとインピーダンスが低下し、入力電流が流れ始める。 During a period in which the cathode of the magnetron 50 is not heated to a sufficient temperature, the magnetron 50 exhibits an almost infinite impedance, so that the input current waveform is substantially zero. Therefore, the output signal of the mix circuit 73 is the input voltage waveform information 92. A signal amplitude reflecting the above is output. (Period T0 to T1) When the cathode 51 of the magnetron 50 is heated and ready to oscillate, the impedance decreases and the input current begins to flow.
 マグネトロン50のカソード51を加熱する起動制御の状態はカソード51への供給電力を最大に出来るような振幅になるように入力電圧波形情報92の振幅を調整しているが、この信号振幅が大きいと定常発振状態においても入力電圧波形情報92がミックス回路から出力されてしまうため、定常発振状態において高い力率を実現することが出来ない。 In the start-up control state of heating the cathode 51 of the magnetron 50, the amplitude of the input voltage waveform information 92 is adjusted so that the power supplied to the cathode 51 can be maximized. If this signal amplitude is large, Since the input voltage waveform information 92 is output from the mix circuit even in the steady oscillation state, a high power factor cannot be realized in the steady oscillation state.
 そのため本実施の形態ではマグネトロン50が発振状態になったことを検出すると入力電圧波形情報92をカットするように切替回路74を設けている。このように構成することで、マグネトロン50が発振状態に移行すると入力電流波形情報91によってミックス回路73の出力を決定することが出来るので入力電流が小さいときにおいても常に高い力率を維持することが可能となる。 Therefore, in this embodiment, the switching circuit 74 is provided so as to cut the input voltage waveform information 92 when it is detected that the magnetron 50 is in an oscillation state. With this configuration, when the magnetron 50 shifts to the oscillation state, the output of the mix circuit 73 can be determined by the input current waveform information 91. Therefore, even when the input current is small, a high power factor can always be maintained. It becomes possible.
 また、入力電流波形が小さいときはミックス回路73の出力信号の振幅も小さくなるため交流電源20の電圧ピーク点近傍での変調度も小さくなるため結果的にスイッチングトランジスタ37のオン時間をある程度長く設定することになる。 Further, when the input current waveform is small, the amplitude of the output signal of the mix circuit 73 is also small, so that the degree of modulation near the voltage peak point of the AC power supply 20 is also small. As a result, the ON time of the switching transistor 37 is set to be somewhat long. Will do.
 この結果、インバータ回路に備えられた共振回路34にスイッチング期間中に蓄積するエネルギーが確保できるようになり、インバータ回路の変換電力が低い状態においてもソフトスイッチング動作を安定に行うことができ、スイッチングトランジスタ37の過度な損失増加を防止することが可能となる。 As a result, the energy accumulated during the switching period can be secured in the resonance circuit 34 provided in the inverter circuit, and the soft switching operation can be stably performed even when the conversion power of the inverter circuit is low. It is possible to prevent an excessive increase in loss of 37.
 (実施の形態2)
 図5は本発明の実施の形態2のマグネトロン駆動用電源を示すブロック図である。前述の実施の形態と同一の符号を付した構成要素は同一の機能を果たすものであり、ここでは詳細な説明は割愛する。前述の実施の形態と異なる点は、マグネトロン駆動用電源の制御部が入力電圧検出部であるクロック生成回路81を含み、切替回路74が作動するタイミングを入力電圧検出部であるクロック生成回路81が発生するクロックパルスに同期させた点である。
(Embodiment 2)
FIG. 5 is a block diagram showing a magnetron driving power source according to the second embodiment of the present invention. The components denoted by the same reference numerals as those of the above-described embodiment perform the same functions, and detailed description thereof is omitted here. The difference from the above-described embodiment is that the control unit of the magnetron driving power supply includes a clock generation circuit 81 which is an input voltage detection unit, and the clock generation circuit 81 which is an input voltage detection unit determines the timing at which the switching circuit 74 operates. This is a point synchronized with a generated clock pulse.
 クロック生成回路81は入力電圧波形情報92からクロックを変化させるタイミングを検出するため、交流電源20の周期に同期したクロックパルスを発することが出来る。また、クロック生成回路81は、交流電源の周期を2分周するクロックを生成する。 Since the clock generation circuit 81 detects the timing of changing the clock from the input voltage waveform information 92, it can generate a clock pulse synchronized with the cycle of the AC power supply 20. The clock generation circuit 81 generates a clock that divides the cycle of the AC power supply by two.
 切替回路74は切替信号95が定常判定となったのち、クロック生成回路81の信号が変化したタイミングで入力電圧波形情報92の信号を切り替えるように動作する。この切替のタイミングはクロックパルスの立ち上がりエッジであってもよいし、立下りエッジであってもよいし、交流電源電圧の絶対値が減少から増加に転ずるタイミングでもよい。 The switching circuit 74 operates so as to switch the signal of the input voltage waveform information 92 at the timing when the signal of the clock generation circuit 81 changes after the switching signal 95 is determined to be steady. The switching timing may be the rising edge of the clock pulse, the falling edge, or the timing at which the absolute value of the AC power supply voltage starts to increase from the decrease.
 図6は本実施の形態のマグネトロン駆動電源における入力電圧波形情報92の信号波形、入力電流波形情報91の信号波形、定常判定回路80の出力信号波形(切替信号95)、クロック生成回路81の出力信号波形、オン信号幅情報94の信号波形を示す波形図である。 FIG. 6 shows the signal waveform of the input voltage waveform information 92, the signal waveform of the input current waveform information 91, the output signal waveform of the steady state determination circuit 80 (switching signal 95), and the output of the clock generation circuit 81 in the magnetron drive power supply of this embodiment. It is a waveform diagram showing a signal waveform and a signal waveform of ON signal width information 94.
 前述の実施の形態と異なる点は入力電圧波形情報92の信号波形がクロック生成回路81のクロック波形に同期したタイミングで切替を行っている点である。切替信号95は交流電源20の周期に対してランダムに発生しうるので、定常判定が確定するタイミングは必ずしも制御の安定にとって最良の時点で定常判定を確定することは出来ない。 The difference from the above embodiment is that the signal waveform of the input voltage waveform information 92 is switched at a timing synchronized with the clock waveform of the clock generation circuit 81. Since the switching signal 95 can be randomly generated with respect to the cycle of the AC power supply 20, the stationary determination cannot always be determined at the best time for the stability of the control.
 すなわち、交流電源20の振幅が最大になった時点で定常判定が確定する可能性が含まれており、この状態で波形情報を切り替えると交流電源20のピーク点近傍ではインバータ回路の変換電力の瞬時値も最大となっているのでわずかな制御の揺らぎがスイッチング動作の不安定を招く恐れがある。 That is, there is a possibility that the steady state determination is confirmed when the amplitude of the AC power supply 20 becomes maximum, and when the waveform information is switched in this state, the instantaneous conversion power of the inverter circuit near the peak point of the AC power supply 20 is included. Since the value is also the maximum, a slight fluctuation in control may cause the switching operation to become unstable.
 本実施の形態のようにクロック生成回路81によって交流電源20に同期したクロックパルスを生成し、このクロックパルスをトリガとして波形情報の切替を行うと交流電源20の位相に対して制御の切替を行う位相を固定することが可能となり、切替に伴う制御の不安定要素をなくすことが出来る。 When a clock pulse synchronized with the AC power supply 20 is generated by the clock generation circuit 81 as in the present embodiment and the waveform information is switched using this clock pulse as a trigger, the control is switched with respect to the phase of the AC power supply 20. It becomes possible to fix the phase, and it is possible to eliminate an unstable element of control accompanying switching.
 (実施の形態3)
 図7は本発明の実施の形態3の例を示す波形図である。インバータ回路の構成は前述の実施の形態2と同様であるためここでは図面を割愛した。
(Embodiment 3)
FIG. 7 is a waveform diagram showing an example of the third embodiment of the present invention. Since the configuration of the inverter circuit is the same as that of the second embodiment, the drawings are omitted here.
 本実施の形態では入力電圧波形情報92の信号振幅をクロック生成回路81のクロックパルスに同期して何段階かに分割して漸減させるように構成している。例えば、入力電圧検出部の出力は第1の段階で1/2の振幅に出力電圧を減じ、第2の段階で出力電圧が0(ゼロ)となるように段階的に減ずる。また、第1の段階と第2の段階との間に所定の遅れ時間を設ける構成としてもよい。更に、インバータ回路は、クロックカウント部を更に設けてもよい。クロックカウント部は、クロック生成部のクロックをカウントし第1の段階から所定の回数クロックをカウントすると第2の段階に移行する。更に、入力電圧検出部は、クロックカウント部によってクロックがカウントされるたびに、その出力電圧振幅を所定の値で減じてもよい。図中、入力電流波形情報91の信号波形の実線は大電力の出力を出力設定部によって指示されている状態の信号波形を示し、破線は比較的小電力の出力を指示されている状態の信号波形を示している。 In the present embodiment, the signal amplitude of the input voltage waveform information 92 is divided into several steps in synchronization with the clock pulse of the clock generation circuit 81 and gradually decreased. For example, the output of the input voltage detecting unit is reduced stepwise so that the output voltage is reduced to ½ amplitude in the first stage and the output voltage becomes 0 (zero) in the second stage. Also, a predetermined delay time may be provided between the first stage and the second stage. Further, the inverter circuit may further include a clock count unit. The clock count unit counts the clock of the clock generation unit, and shifts to the second stage when the clock is counted a predetermined number of times from the first stage. Further, the input voltage detection unit may reduce the output voltage amplitude by a predetermined value each time the clock is counted by the clock counting unit. In the figure, the solid line of the signal waveform of the input current waveform information 91 indicates a signal waveform in a state where a high power output is instructed by the output setting unit, and the broken line indicates a signal in a state where a relatively low power output is instructed. The waveform is shown.
 大電力の出力を指示されている状態では入力電流波形情報91の信号振幅も所定の電力変換時には大きな振幅を持っているが、比較的小電力の出力を指示している状態では安定制御にいたっても入力電流波形情報91の振幅は小さいままである。 The signal amplitude of the input current waveform information 91 has a large amplitude at the time of predetermined power conversion in a state where a high power output is instructed, but in a state where a relatively low power output is instructed, stable control is achieved. However, the amplitude of the input current waveform information 91 remains small.
 このため、波形情報を急激に切り替えるとオン信号幅情報94の信号振幅も急激に変化することになり、制御を切り替える前後でスイッチングトランジスタ37のオン信号幅に大きな変化があり、電力安定制御の不安定を招く恐れがある。 For this reason, when the waveform information is switched suddenly, the signal amplitude of the on signal width information 94 also changes abruptly, and there is a large change in the on signal width of the switching transistor 37 before and after the control is switched, and power stabilization control is not performed. May lead to stability.
 しかしながら本実施の形態では入力電圧波形情報92の信号振幅をいくつかの段階で漸減しているため切替に伴う急激な変化を緩和することができ、切替に伴う制御の不安定要素をなくすことが出来る。 However, in the present embodiment, the signal amplitude of the input voltage waveform information 92 is gradually reduced at several stages, so that a rapid change accompanying switching can be mitigated, and unstable elements of control accompanying switching can be eliminated. I can do it.
 (実施の形態4)
 図8は本発明の実施の形態1にかかるマグネトロン駆動用電源を説明するブロック図である。
(Embodiment 4)
FIG. 8 is a block diagram for explaining the magnetron driving power source according to the first embodiment of the present invention.
 図8においてマグネトロン駆動用電源はスイッチングトランジスタ37および共振回路34からなるインバータ回路と、スイッチングトランジスタ37のオンオフを制御する制御部と、マグネトロン50とから構成される。制御部にはスイッチングトランジスタへ駆動パルスを伝達するPWMコンパレータ79、のこぎり波発生回路78、選択部としてのミックス回路73、入力電流検出部、入力電圧検出部等を含む。交流電源20の交流電圧は4つのダイオードからなるブリッジ型整流回路30で整流され、単方向電圧に整流されインダクタ32とコンデンサ33によって構成される平滑回路31によって平滑された直流電圧がインバータ回路に供給される。 8, the magnetron driving power source includes an inverter circuit including a switching transistor 37 and a resonance circuit 34, a control unit for controlling on / off of the switching transistor 37, and a magnetron 50. The control unit includes a PWM comparator 79 that transmits a drive pulse to the switching transistor, a sawtooth wave generation circuit 78, a mix circuit 73 as a selection unit, an input current detection unit, an input voltage detection unit, and the like. The AC voltage of the AC power supply 20 is rectified by a bridge-type rectifier circuit 30 composed of four diodes, rectified to a unidirectional voltage, and supplied to the inverter circuit by a smoothing circuit 31 including an inductor 32 and a capacitor 33. Is done.
 コンデンサ35と高圧トランス40の1次巻線36によって構成される共振回路34とスイッチングトランジスタ37からなるインバータ回路はスイッチングトランジスタ37をオンオフ制御することによって高周波電力を励起し、高圧トランス40を介して、その2次巻線41に高圧高周波電力を誘起する。2次巻線41に誘起された高圧高周波電力は、コンデンサ44、45ダイオード43、46からなる倍電圧整流回路47を介してマグネトロン50のアノード52カソード51間に供給される。また、高圧トランス40には3次巻線42が設けられており、前述の動作と同時にマグネトロン50にカソード51を加熱するヒータ電力を同時に供給する構成となっている。 An inverter circuit composed of a resonance circuit 34 and a switching transistor 37 constituted by a capacitor 35 and a primary winding 36 of a high-voltage transformer 40 excites high-frequency power by controlling on / off of the switching transistor 37. High voltage high frequency power is induced in the secondary winding 41. The high-voltage and high-frequency power induced in the secondary winding 41 is supplied between the anode 52 and the cathode 51 of the magnetron 50 through the voltage doubler rectifier circuit 47 including the capacitors 44 and 45 diodes 43 and 46. The high-voltage transformer 40 is provided with a tertiary winding 42 and is configured to simultaneously supply heater power for heating the cathode 51 to the magnetron 50 simultaneously with the above-described operation.
 次にインバータ回路のスイッチングトランジスタ37を制御する制御回路について説明する。 Next, a control circuit that controls the switching transistor 37 of the inverter circuit will be described.
 図2のようにブリッジ型整流回路30と平滑回路31間に設けたシャント抵抗器70からなる入力電流検出部としての電流検出部と、その両端電圧を増幅する増幅回路とで入力電流整形回路71を形成し、入力電流波形情報91を生成する入力電流検出部を有する。この入力電流波形情報91は平滑回路75で平滑化され、これと、加熱出力設定に対応した出力設定信号を生成する出力設定部76からの信号を比較回路77で比較する。比較回路77はインバータ回路の入力電力の大きさを制御するため平滑回路75で平滑化された入力電流信号と出力設定部76で生成される設定信号との比較を行い、マグネトロン駆動用電源の入力電流が設定信号と等しくなるように帰還制御を行う。 As shown in FIG. 2, an input current shaping circuit 71 includes a current detection unit as an input current detection unit including a shunt resistor 70 provided between the bridge-type rectifier circuit 30 and the smoothing circuit 31, and an amplifier circuit that amplifies the voltage at both ends thereof. And an input current detector for generating the input current waveform information 91. The input current waveform information 91 is smoothed by the smoothing circuit 75, and the signal from the output setting unit 76 that generates an output setting signal corresponding to the heating output setting is compared by the comparison circuit 77. The comparison circuit 77 compares the input current signal smoothed by the smoothing circuit 75 with the setting signal generated by the output setting unit 76 to control the magnitude of the input power of the inverter circuit, and inputs the magnetron driving power source. Feedback control is performed so that the current becomes equal to the setting signal.
 入力電流の検出は本実施の形態の構成のようにシャント抵抗のような抵抗体に電流を通電することによって発生する電圧によって入力電流検出してもよいし、入力電流をカレントトランスで検出し、その出力を整流平滑することによって得てもよいし、入力電流の大小に応じて変化するスイッチングトランジスタのコレクタ電流あるいはコレクタ電圧などの信号を用いてもよい。すなわち比較回路77に入力される電力制御のための情報は本実施の形態に示した構成に束縛されるものではない。 The input current may be detected by a voltage generated by passing a current through a resistor such as a shunt resistor as in the configuration of the present embodiment, or the input current may be detected by a current transformer. The output may be obtained by rectifying and smoothing, or a signal such as a collector current or a collector voltage of a switching transistor that changes according to the magnitude of the input current may be used. That is, the information for power control input to the comparison circuit 77 is not restricted to the configuration shown in this embodiment mode.
 制御回路は交流電源20の電圧を検出して整流する一組のダイオードと、整流した電圧を波形整形して入力電圧波形情報92を生成する整形回路72からなる入力電圧検出部をも備える。これら入力電圧波形情報92と入力電流波形情報91と比較回路77からの電力制御情報93をミックス回路73でミックスしフィルタリングすることでスイッチングトランジスタ37のオン信号幅情報94を出力し、のこぎり波発生回路78から出力された、のこぎり波とPWMコンパレータ79で比較して、パルス幅変調してインバータ回路のスイッチングトランジスタ37をオンオフ制御するように構成している。 The control circuit also includes an input voltage detection unit including a pair of diodes that detect and rectify the voltage of the AC power supply 20 and a shaping circuit 72 that shapes the rectified voltage and generates input voltage waveform information 92. The input voltage waveform information 92, the input current waveform information 91, and the power control information 93 from the comparison circuit 77 are mixed and filtered by the mixing circuit 73 to output the ON signal width information 94 of the switching transistor 37, and the sawtooth wave generating circuit. The sawtooth wave output from 78 is compared with the PWM comparator 79, and the pulse width modulation is performed to control on / off of the switching transistor 37 of the inverter circuit.
 入力電流波形情報91に対するスイッチングトランジスタ37のオンオフ制御は、入力電流が大きいときはオン時間を短く、逆に小さいときは長くする極性で変換される。同じように入力電圧波形情報92も、入力電圧が高いときはオン時間を短く、逆に低いときはオン時間を長くする極性で変換される。 The on / off control of the switching transistor 37 with respect to the input current waveform information 91 is converted with a polarity that shortens the on-time when the input current is large and conversely increases it when it is small. Similarly, the input voltage waveform information 92 is also converted with a polarity that shortens the on-time when the input voltage is high and conversely increases the on-time when the input voltage is low.
 図9にミックス回路73の一例を示す。ミックス回路73の入力端子は5つであり、各々入力電流波形情報91、入力電圧波形情報92、電力制御情報93、定常判定信号97、出力設定信号96が入力され、図示の回路によってオン信号幅情報94をPWMコンパレータ79に伝送するよう構成している。 FIG. 9 shows an example of the mix circuit 73. The mix circuit 73 has five input terminals, each of which receives input current waveform information 91, input voltage waveform information 92, power control information 93, steady state determination signal 97, and output setting signal 96. Information 94 is transmitted to the PWM comparator 79.
 以上のような構成で、入力電流波形情報91および入力電圧波形情報92をインバータ回路のスイッチングトランジスタ37のオンオフ制御信号に変換して利用するものである。 With the configuration as described above, the input current waveform information 91 and the input voltage waveform information 92 are converted into an on / off control signal for the switching transistor 37 of the inverter circuit and used.
 このような構成とすることでマグネトロン50が定常発振している状態において入力電流波形の歪を補正するように交流電源の電圧振幅が大きい期間ではスイッチングトランジスタ37のオン時間を短くするよう補正し、逆に交流電源電圧の振幅が小さい期間ではスイッチングトランジスタ37のオン時間を長くするように補正するようにスイッチングトランジスタ37のオン信号幅をパルス幅変調する。この結果交流電源の半周期のごとき短い期間において理想信号波形と入力電流波形情報91の瞬時誤差あるいは補正量の総和は、他の手段で入力電流の大きさ等が制御されているので略ゼロである。また、非線形負荷に起因して入力電流が流れない部分は流す方向に補正するため、入力電流が大きい部分を逆に減少させて上記の略ゼロを成立させている。これは非線形負荷であっても、その電流波形があたかも線形負荷とみなせるように補正することであり、商用電源電圧波形は正弦波なので線形負荷に流れる電流波形と同じく理想波形は正弦波になる。このように入力電流波形の変化や、理想波形に対する過不足を打ち消すようにその波形の逆極性で入力電流が補正される。したがって、マグネトロン50のような非線形負荷によって生じる商用電源周期内の急峻な電流変化、すなわち歪はこの制御ループによって打ち消され入力電流波形整形が行われ、歪の少なく力率の高い動作を実現することが出来る。 By adopting such a configuration, correction is made so that the on-time of the switching transistor 37 is shortened in a period in which the voltage amplitude of the AC power supply is large so as to correct distortion of the input current waveform in a state where the magnetron 50 is oscillating constantly. Conversely, the ON signal width of the switching transistor 37 is subjected to pulse width modulation so that the ON time of the switching transistor 37 is corrected to be increased in a period in which the amplitude of the AC power supply voltage is small. As a result, the sum of the instantaneous error or the correction amount of the ideal signal waveform and the input current waveform information 91 in a short period such as a half cycle of the AC power supply is substantially zero because the magnitude of the input current is controlled by other means. is there. In addition, since the portion where the input current does not flow due to the non-linear load is corrected in the flowing direction, the portion where the input current is large is decreased on the contrary to establish the above substantially zero. Even if it is a non-linear load, it is corrected so that the current waveform can be regarded as a linear load, and since the commercial power supply voltage waveform is a sine wave, the ideal waveform is a sine wave as well as the current waveform flowing through the linear load. In this way, the input current is corrected with the reverse polarity of the waveform so as to cancel the change in the input current waveform and the excess or deficiency with respect to the ideal waveform. Therefore, a steep current change within a commercial power cycle caused by a non-linear load such as the magnetron 50, that is, distortion is canceled out by this control loop, input current waveform shaping is performed, and operation with low distortion and high power factor is realized. I can do it.
 一方、マグネトロン50はカソード51を適正な温度にまで加熱しないとマイクロ波を発振することが出来ず、この状態のときマグネトロン50はほぼ無限大の抵抗値を示す。このため、マグネトロン50を高速に起動するためには起動制御においてカソード51への供給電力を出来るだけ多くすることが必要となる。入力電圧波形情報92によってスイッチングトランジスタ37のオン信号幅をパルス幅変調する場合と、パルス幅変調をしない場合とを比較するとパルス幅変調をかけた場合カソード51の供給電流のエンベロープ波形が台形波状になりより多くの電力を供給することが出来る。この結果、カソード51をより短時間で適正な温度に加熱することが出来るようになる。 On the other hand, the magnetron 50 cannot oscillate microwaves unless the cathode 51 is heated to an appropriate temperature. In this state, the magnetron 50 exhibits an almost infinite resistance value. For this reason, in order to start the magnetron 50 at high speed, it is necessary to increase the power supplied to the cathode 51 as much as possible in the start-up control. When the pulse width modulation of the ON signal width of the switching transistor 37 is compared with the case where the pulse width modulation is not performed based on the input voltage waveform information 92, the envelope waveform of the supply current of the cathode 51 is trapezoidal when pulse width modulation is applied. More power can be supplied. As a result, the cathode 51 can be heated to an appropriate temperature in a shorter time.
 本実施の形態のマグネトロン駆動用電源のミックス回路73は入力電圧波形情報92と入力電流波形情報91を夫々バッファトランジスタ735、739を介して共通のエミッタ抵抗737に接続する構成としている。この構成にすることによってバッファトランジスタ735あるいは739のエミッタ電圧は入力電流波形情報91あるいは入力電圧波形情報92の電圧を出力するように動作する。エミッタ抵抗737は各々のバッファトランジスタ735、739に共通エミッタで接続している、このため入力電圧波形情報92と入力電流波形情報91のうち振幅の大きいほうの信号情報がオン信号幅情報94に反映される構成となっている。抵抗731、732で分圧されている電圧はこのバッファトランジスタ735、739に流れる電流分電圧降下を起こし、波形情報を反転した信号を生成する。バッファ回路733はこの分圧点のインピーダンスとコンデンサ741との間をインピーダンス分離するために挿入し、コンデンサ741から先のインピーダンス影響を抵抗731、732の分圧に及ぼさないようにしている。上記の波形情報はコンデンサ741を介してオン信号幅情報94に電圧情報として重畳され、スイッチングトランジスタ37のオン信号幅をパルス幅変調する。 The mix circuit 73 of the power source for driving the magnetron according to the present embodiment is configured to connect the input voltage waveform information 92 and the input current waveform information 91 to a common emitter resistor 737 through buffer transistors 735 and 739, respectively. With this configuration, the emitter voltage of the buffer transistor 735 or 739 operates so as to output the voltage of the input current waveform information 91 or the input voltage waveform information 92. The emitter resistor 737 is connected to each of the buffer transistors 735 and 739 through a common emitter. Therefore, the signal information having the larger amplitude of the input voltage waveform information 92 and the input current waveform information 91 is reflected in the ON signal width information 94. It becomes the composition which is done. The voltage divided by the resistors 731 and 732 causes a voltage drop corresponding to the current flowing through the buffer transistors 735 and 739, and generates a signal obtained by inverting the waveform information. The buffer circuit 733 is inserted in order to separate the impedance between the voltage dividing point and the capacitor 741 so that the impedance influence from the capacitor 741 does not affect the voltage divided by the resistors 731 and 732. The above waveform information is superimposed as voltage information on the ON signal width information 94 via the capacitor 741, and the ON signal width of the switching transistor 37 is subjected to pulse width modulation.
 バッファトランジスタ735に加えられる入力電圧波形情報92は振幅切替手段98によってマグネトロン50が非発振の状態と発振可能状態とでその振幅が切り替えられるようになっている。定常判定回路80によってマグネトロン50が発振可能状態になったことを検出すると定常判定信号97が発せられる。定常判定信号97は切替回路74のスイッチをONすることによってコンデンサ748を一定の電流で充電する。この結果、コンデンサ748の電圧は時間に対して一定の傾きで増加する。バッファトランジスタ749はこの電圧に応じた電流を抵抗に流す動作をするため、カレントミラー747にはコンデンサ748の電圧に応じた電流が流れる。一方、バッファトランジスタ749は入力電圧波形情報92に応じた電流を抵抗に流すので、カレントミラー746は入力電圧波形情報92に応じた電流を流している。ここで、抵抗780の電流はカレントミラー747とカレントミラー746の電流の差となるため、コンデンサ748の電圧増加に伴ってその電流が減少していくことになる。このため、コンデンサ748の電圧が上昇すると抵抗780にかかる電圧は略0まで減少するため、定常判定信号97が発せられてある時間が経過すると常に入力電流波形情報91がエミッタ抵抗737の電流値を決定することになり、オン信号幅情報94は入力電流波形情報91を基に作成されることになる。 The amplitude of the input voltage waveform information 92 applied to the buffer transistor 735 is switched by the amplitude switching means 98 between the non-oscillation state and the oscillation enabled state. When the steady state determination circuit 80 detects that the magnetron 50 is ready to oscillate, a steady state determination signal 97 is issued. The steady determination signal 97 charges the capacitor 748 with a constant current by turning on the switch of the switching circuit 74. As a result, the voltage of the capacitor 748 increases with a constant slope with respect to time. Since the buffer transistor 749 operates to flow a current corresponding to this voltage to the resistor, a current corresponding to the voltage of the capacitor 748 flows to the current mirror 747. On the other hand, since the buffer transistor 749 allows a current corresponding to the input voltage waveform information 92 to flow through the resistor, the current mirror 746 allows a current corresponding to the input voltage waveform information 92 to flow. Here, since the current of the resistor 780 is a difference between the currents of the current mirror 747 and the current mirror 746, the current decreases as the voltage of the capacitor 748 increases. For this reason, when the voltage of the capacitor 748 rises, the voltage applied to the resistor 780 decreases to substantially zero. Therefore, the input current waveform information 91 always indicates the current value of the emitter resistor 737 after a certain time has elapsed since the steady state determination signal 97 is generated. Therefore, the ON signal width information 94 is created based on the input current waveform information 91.
 また、出力設定信号96が小さい場合は定電流源750の電流値が大きくなるように構成することで抵抗731、732の分圧点に注入する電流が多くなる。この結果、バッファトランジスタ739によって電流に変換された入力電流波形情報91を相殺する。このため出力設定信号96が小さい場合にはミックス回路の出力は入力電流波形情報91の影響を受けずにスイッチングトランジスタ37のオン信号幅情報94を出力することになり、出力設定が小さい場合にはパルス幅変調制御がきかなくなるため、スイッチングトランジスタ37のオン時間が不足することによってソフトスイッチング動作ができなくなることを防ぐことが可能になる。 In addition, when the output setting signal 96 is small, the current value of the constant current source 750 is configured to be large so that the current injected into the voltage dividing points of the resistors 731 and 732 increases. As a result, the input current waveform information 91 converted into current by the buffer transistor 739 is canceled. For this reason, when the output setting signal 96 is small, the output of the mix circuit is not affected by the input current waveform information 91 and outputs the ON signal width information 94 of the switching transistor 37. When the output setting is small, Since the pulse width modulation control cannot be performed, it is possible to prevent the soft switching operation from being disabled due to a short on-time of the switching transistor 37.
 なお、ここではコンデンサ748を充電する構成にて動作の説明をしているが、もちろん放電する極性で回路を構成してもよく、本実施の形態の効果を果たすことが可能である。 Note that although the operation is described with the configuration in which the capacitor 748 is charged here, it is needless to say that the circuit may be configured with the polarity to be discharged, and the effect of this embodiment can be achieved.
 図10は本実施の形態のマグネトロン駆動用電源の入力電圧波形情報92、入力電流波形情報91、定常判定信号97およびミックス回路のオン信号幅情報94を示す波形図で特にマグネトロン50が起動状態から定常状態に遷移するタイミングを拡大した波形図である。 FIG. 10 is a waveform diagram showing the input voltage waveform information 92, the input current waveform information 91, the steady state determination signal 97, and the ON signal width information 94 of the mix circuit of the magnetron driving power supply according to the present embodiment. It is the wave form diagram which expanded the timing which changes to a steady state.
 マグネトロン50のカソードが十分な温度に加熱されていない期間ではマグネトロン50は略無限大のインピーダンスを示すため入力電流波形は略ゼロの状態である。このためミックス回路73の出力信号は入力電圧波形情報92を反映した信号振幅が出力される。(期間T0~T1)マグネトロン50のカソード51が加熱され発振可能状態になるとインピーダンスが低下し、入力電流が流れ始める。マグネトロン50のカソード51を加熱する起動制御の状態はカソード51への供給電力を最大に出来るような振幅になるように入力電圧波形情報92の振幅を調整しているが、この信号振幅が大きいと定常発振状態においても入力電圧波形情報92がミックス回路から出力されてしまうため、定常発振状態において高い力率を実現することが出来ない。そのため本実施の形態ではマグネトロン50が発振状態になったことを検出すると入力電圧波形情報92をカットするように切替回路74を設けている。また、選択部としてのミックス回路73は、電圧電流変換部によって構成する電流注入部を設けてもよい。電流注入部は、ミックス回路73に電流を注入することによって選択された信号振幅波形を減ずる。更に、電流注入部が注入する電流量は、出力設定部76の出力電圧に反比例することが好ましい。 During the period when the cathode of the magnetron 50 is not heated to a sufficient temperature, the magnetron 50 exhibits an almost infinite impedance, so the input current waveform is substantially zero. For this reason, the signal amplitude reflecting the input voltage waveform information 92 is output from the output signal of the mix circuit 73. (Period T0 to T1) When the cathode 51 of the magnetron 50 is heated and ready to oscillate, the impedance decreases and the input current begins to flow. In the start-up control state of heating the cathode 51 of the magnetron 50, the amplitude of the input voltage waveform information 92 is adjusted so that the power supplied to the cathode 51 can be maximized. If this signal amplitude is large, Since the input voltage waveform information 92 is output from the mix circuit even in the steady oscillation state, a high power factor cannot be realized in the steady oscillation state. Therefore, in the present embodiment, the switching circuit 74 is provided so as to cut the input voltage waveform information 92 when it is detected that the magnetron 50 is in an oscillation state. Moreover, the mix circuit 73 as a selection part may provide the current injection part comprised by a voltage current conversion part. The current injection unit reduces the signal amplitude waveform selected by injecting current into the mix circuit 73. Furthermore, the amount of current injected by the current injection unit is preferably inversely proportional to the output voltage of the output setting unit 76.
 このように構成することで、マグネトロン50が発振状態に移行すると入力電流波形情報91によってミックス回路73の出力を決定することが出来るので入力電流が小さいときにおいても常に高い力率を維持することが可能となる。また、入力電流波形が小さいときはミックス回路73の出力信号の振幅も小さくなるため交流電源20の電圧ピーク点近傍での変調度も小さくなるため結果的にスイッチングトランジスタ37のオン時間をある程度長く設定することになる。この結果、インバータ回路に備えられた共振回路34にスイッチング期間中に蓄積するエネルギーが確保できるようになり、インバータ回路の変換電力が低い状態においてもソフトスイッチング動作を安定に行うことが出来、スイッチングトランジスタ37の過度な損失増加を防止することが可能となる。 With this configuration, when the magnetron 50 shifts to the oscillation state, the output of the mix circuit 73 can be determined by the input current waveform information 91. Therefore, even when the input current is small, a high power factor can always be maintained. It becomes possible. Further, when the input current waveform is small, the amplitude of the output signal of the mix circuit 73 is also small, so that the degree of modulation near the voltage peak point of the AC power supply 20 is also small. As a result, the ON time of the switching transistor 37 is set to be somewhat long. Will do. As a result, the energy accumulated in the resonance circuit 34 provided in the inverter circuit during the switching period can be secured, and the soft switching operation can be stably performed even when the conversion power of the inverter circuit is low. It is possible to prevent an excessive increase in loss of 37.
 以上のように、本発明にかかるマグネトロン駆動用電源は入力電流波形情報と入力電圧波形情報によってスイッチングトランジスタのオン信号幅をパルス幅変調するとともにマグネトロンの起動時と定常発振時のパルス幅変調をそれぞれ独立で設計できる。 As described above, the magnetron driving power source according to the present invention performs pulse width modulation of the ON signal width of the switching transistor based on the input current waveform information and the input voltage waveform information, and performs pulse width modulation at the time of starting and steady oscillation of the magnetron, respectively. Can be designed independently.
 このため、高い力率を維持して電力変換するとともに低電力時においても安定なスイッチング動作を実現できるので、電子レンジで代表されるような誘電加熱を利用した加熱装置や生ゴミ処理機、あるいは半導体製造装置であるプラズマ電源のマイクロ波電源などの用途にも適用できる。 For this reason, power conversion is performed while maintaining a high power factor, and stable switching operation can be realized even at low power, so a heating device or a garbage disposal machine using dielectric heating such as a microwave oven, or The present invention can also be applied to applications such as a microwave power source of a plasma power source that is a semiconductor manufacturing apparatus.
 以上のように、本発明にかかるマグネトロン駆動用電源は入力電流波形情報と入力電圧波形情報によってスイッチング素子スイッチングトランジスタのオン信号幅をパルス幅変調するとともにマグネトロンの起動時と定常発振時のパルス幅変調をそれぞれ独立で設計できるため、高い力率を維持して電力変換するとともに低電力時においても安定なスイッチング動作を実現できるので、電子レンジで代表されるような誘電加熱を利用した加熱装置や生ゴミ処理機、あるいは半導体製造装置であるプラズマ電源のマイクロ波電源などの用途にも適用できる。 As described above, the magnetron driving power source according to the present invention performs pulse width modulation of the ON signal width of the switching element switching transistor based on the input current waveform information and the input voltage waveform information, and pulse width modulation at the time of starting and steady oscillation of the magnetron. Since each can be designed independently, power conversion can be performed while maintaining a high power factor, and stable switching operation can be realized even at low power. The present invention can also be applied to applications such as a garbage processing machine or a microwave power source of a plasma power source as a semiconductor manufacturing apparatus.
 なお、本出願は、2010年12月15日出願の日本特許出願(特願2010-278779)及び2011年10月26日出願の日本特許出願(特願2011-234873)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on December 15, 2010 (Japanese Patent Application No. 2010-278787) and a Japanese patent application filed on October 26, 2011 (Japanese Patent Application No. 2011-234873). The contents are incorporated herein by reference.
 20 交流電源
 30 ブリッジ型整流回路
 31、75 平滑回路
 34 共振回路
 37 スイッチングトランジスタ
 40 高圧トランス
 47 倍電圧整流回路
 50 マグネトロン
 73 ミックス回路
 74 切替回路
 76 出力設定部
 78 のこぎり波発生回路
 79 PWMコンパレータ
 80 定常判定回路
 91 入力電流波形情報
 92 入力電圧波形情報
 93 電力制御情報
 94 オン信号幅情報
 95 切替信号
 96 出力設定信号
 97 定常判定信号
DESCRIPTION OF SYMBOLS 20 AC power supply 30 Bridge type rectifier circuit 31, 75 Smoothing circuit 34 Resonant circuit 37 Switching transistor 40 High voltage transformer 47 Voltage doubler rectifier circuit 50 Magnetron 73 Mix circuit 74 Switching circuit 76 Output setting part 78 Sawtooth wave generation circuit 79 PWM comparator 80 Steady determination Circuit 91 Input current waveform information 92 Input voltage waveform information 93 Power control information 94 ON signal width information 95 Switching signal 96 Output setting signal 97 Steady state determination signal

Claims (15)

  1.  交流電源の電圧を整流し、スイッチングトランジスタの高周波スイッチングのオン時間を変調して高周波電力に変換するインバータ回路を制御するマグネトロン駆動用電源であって、
     前記交流電源から前記インバータ回路への入力電流を検出し、入力電流波形情報を出力する入力電流検出部と、
     前記交流電源から前記インバータ回路へ入力される入力電圧を検出し、入力電圧波形情報を出力する入力電圧検出部と、
     前記入力電流波形情報と前記入力電圧波形情報のいずれかを選択する選択部と、
     前記選択部によって選択された前記入力電流波形情報と前記入力電圧波形情報のいずれかを、前記インバータ回路のスイッチングトランジスタの駆動信号に変換するスイッチング変換部と、を備え、
     前記選択部は、マグネトロンが起動状態の期間においては前記入力電圧波形情報を選択し、前記マグネトロンが発振可能状態になると前記入力電流波形情報を選択するマグネトロン駆動用電源。
    A magnetron drive power supply that controls an inverter circuit that rectifies the voltage of an AC power supply, modulates the on-time of high-frequency switching of the switching transistor, and converts it into high-frequency power,
    An input current detector that detects an input current from the AC power source to the inverter circuit and outputs input current waveform information;
    An input voltage detection unit that detects an input voltage input from the AC power source to the inverter circuit and outputs input voltage waveform information;
    A selection unit for selecting one of the input current waveform information and the input voltage waveform information;
    A switching converter that converts any of the input current waveform information and the input voltage waveform information selected by the selection unit into a drive signal of a switching transistor of the inverter circuit;
    The selection unit is a magnetron driving power source that selects the input voltage waveform information while the magnetron is in an activated state, and selects the input current waveform information when the magnetron is ready to oscillate.
  2.  前記選択部は、前記入力電流検出部および前記入力電圧検出部と前記スイッチング変換部との間に接続され、前記入力電流波形情報および前記入力電圧波形情報のうちいずれかと前記インバータ回路の入力電流が所定値になるよう制御する電力制御情報とを合成し、前記スイッチングトランジスタのオン電圧信号を生成する合成回路により構成され、
     前記スイッチング変換部は、半導体スイッチ素子のピーク電圧が抑制されるように前記オン電圧信号を前記スイッチングトランジスタの駆動信号に変換する請求項1に記載のマグネトロン駆動用電源。
    The selection unit is connected between the input current detection unit and the input voltage detection unit and the switching conversion unit, and any one of the input current waveform information and the input voltage waveform information and an input current of the inverter circuit are Combining power control information for controlling to be a predetermined value, and composed of a combining circuit that generates an on-voltage signal of the switching transistor,
    2. The magnetron driving power source according to claim 1, wherein the switching converter converts the on-voltage signal into a driving signal for the switching transistor so that a peak voltage of the semiconductor switching element is suppressed.
  3.  前記交流電源の周期に同期してクロックを生成するクロック生成部と、を更に備え、
     前記選択部による前記入力電流波形情報と前記入力電圧波形情報との選択切替は、前記クロック生成部のクロック出力に同期する請求項1または2に記載のマグネトロン駆動用電源。
    A clock generation unit that generates a clock in synchronization with the cycle of the AC power supply,
    3. The magnetron driving power supply according to claim 1, wherein selection switching between the input current waveform information and the input voltage waveform information by the selection unit is synchronized with a clock output of the clock generation unit.
  4.  前記クロック生成部は、交流電源電圧の絶対値が減少から増加に転ずるタイミングでクロックパルスを生成し、
     前記選択部は、前記クロック生成部の前記クロックパルスによって、前記入力電流波形情報と前記入力電圧波形情報との選択切替を行う請求項3に記載のマグネトロン駆動用電源。
    The clock generation unit generates a clock pulse at a timing when the absolute value of the AC power supply voltage starts to increase from a decrease,
    The magnetron driving power source according to claim 3, wherein the selection unit performs selection switching between the input current waveform information and the input voltage waveform information according to the clock pulse of the clock generation unit.
  5.  前記クロック生成部は、前記交流電源の周期を2分周するクロックを生成し、
     前記選択部は、前記入力電流波形情報と前記入力電圧波形情報との選択切替を、前記クロック生成部のクロック出力に同期させる請求項3に記載のマグネトロン駆動用電源。
    The clock generation unit generates a clock that divides the period of the AC power supply by two,
    The magnetron driving power source according to claim 3, wherein the selection unit synchronizes selection switching between the input current waveform information and the input voltage waveform information with a clock output of the clock generation unit.
  6.  前記選択部は、前記クロック生成部のクロック出力の立ち上がりまたは立下りエッジで、前記入力電流波形情報と前記入力電圧波形情報との選択切替を行う請求項5に記載のマグネトロン駆動用電源。 6. The magnetron driving power source according to claim 5, wherein the selection unit performs selection switching between the input current waveform information and the input voltage waveform information at a rising or falling edge of a clock output of the clock generation unit.
  7.  交流電源の電圧を整流し、スイッチングトランジスタの高周波スイッチングのオン時間を変調して高周波電力に変換するインバータ回路を制御するマグネトロン駆動用電源であって、
     前記交流電源から前記インバータ回路への入力電流を検出し、入力電流波形情報を出力する入力電流検出部と、
     前記交流電源から前記インバータ回路へ入力される入力電圧を検出し、入力電圧波形情報を出力する入力電圧検出部と、
     前記入力電流波形情報と前記入力電圧波形情報のいずれかを選択する選択部と、
     前記選択された前記入力電流波形情報と前記入力電圧波形情報のいずれかを前記インバータ回路のスイッチングトランジスタの駆動信号に変換するスイッチング変換部と、
     前記交流電源の周期に同期してクロックを生成するクロック生成部と、を備え、
     前記選択部は、前記入力電流検出部および前記入力電圧検出部の出力信号のいずれか大きいほうの信号を選択するとともに、前記入力電圧検出部の出力は所定の段階数で漸減するように構成され、漸減させるタイミングは前記クロック生成部のクロック出力に同期するマグネトロン駆動用電源。
    A magnetron drive power supply that controls an inverter circuit that rectifies the voltage of an AC power supply, modulates the on-time of high-frequency switching of the switching transistor, and converts it into high-frequency power,
    An input current detector that detects an input current from the AC power source to the inverter circuit and outputs input current waveform information;
    An input voltage detection unit that detects an input voltage input from the AC power source to the inverter circuit and outputs input voltage waveform information;
    A selection unit for selecting one of the input current waveform information and the input voltage waveform information;
    A switching converter that converts any one of the selected input current waveform information and the input voltage waveform information into a drive signal of a switching transistor of the inverter circuit;
    A clock generation unit that generates a clock in synchronization with the cycle of the AC power supply,
    The selection unit is configured to select a larger one of the output signals of the input current detection unit and the input voltage detection unit, and the output of the input voltage detection unit is gradually decreased by a predetermined number of steps. The power to drive the magnetron is synchronized with the clock output of the clock generator.
  8.  前記入力電圧検出部の出力は第1の段階で1/2の振幅に出力電圧を減じ、第2の段階で出力電圧が0となるように段階的に減ずる請求項7に記載のマグネトロン駆動用電源。 8. The magnetron driving device according to claim 7, wherein the output of the input voltage detector decreases the output voltage to ½ amplitude in the first stage and gradually decreases so that the output voltage becomes 0 in the second stage. Power supply.
  9.  第1の段階と第2の段階の間に所定の遅れ時間を設ける請求項8に記載のマグネトロン駆動用電源。 The magnetron driving power source according to claim 8, wherein a predetermined delay time is provided between the first stage and the second stage.
  10.  クロックカウント部を設け、前記クロックカウント部はクロック生成部のクロックをカウントし第1の段階から所定の回数クロックをカウントすると第2の段階に移行する請求項9に記載のマグネトロン駆動用電源。 10. The magnetron driving power source according to claim 9, wherein a clock count unit is provided, and the clock count unit counts the clock of the clock generation unit and shifts to the second stage when the clock is counted a predetermined number of times from the first stage.
  11.  前記入力電圧検出部は、前記クロックカウント部によってクロックがカウントされるたびにその出力電圧振幅を所定の値で減ずる請求項10に記載のマグネトロン駆動用電源。 11. The magnetron driving power source according to claim 10, wherein the input voltage detection unit decreases the output voltage amplitude by a predetermined value each time the clock is counted by the clock counting unit.
  12.  請求項1~11のいずれか1項に記載のマグネトロン駆動用電源を備えた高周波加熱装置。 A high-frequency heating apparatus comprising the magnetron driving power source according to any one of claims 1 to 11.
  13.  交流電源の電圧を整流し、スイッチングトランジスタの高周波スイッチングのオン時間を変調して高周波電力に変換するインバータ回路を制御し、前記高周波電力を整流する整流回路を介してマグネトロンに電力を供給するマグネトロン駆動用電源であって、
     前記交流電源から前記インバータ回路への入力電流を検出し、入力電流波形情報を出力する入力電流検出部と、
     前記交流電源から前記インバータ回路へ入力される入力電圧を検出し、入力電圧波形情報を出力する入力電圧検出部と、
     前記入力電流波形情報と前記入力電圧波形情報のいずれかを選択する選択部と、
     前記選択部によって選択された前記入力電流波形情報と前記入力電圧波形情報のいずれかを前記インバータ回路のスイッチングトランジスタの駆動信号に変換するスイッチング変換部と、
     前記インバータ回路が前記マグネトロンに供給する電力を指令する電力指令部と、を備え、
     前記選択部は、前記入力電圧検出部と前記入力電流検出部のうち出力振幅の大きいほうの信号波形情報を選択し、
     前記マグネトロンが発振可能状態になると前記入力電圧波形情報の信号振幅を減ずるとともに、前記電力指令部によって指示される電力が所定の値以下のときは前記選択部によって得られる信号振幅を減じ、
     前記スイッチング変換部は、前記選択部によって選択された信号波形情報と三角波とをPWMコンパレータによって比較し、その大小関係を基に前記スイッチングトランジスタの駆動信号とするマグネトロン駆動用電源。
    Magnetron drive that controls the inverter circuit that rectifies the voltage of the AC power supply, modulates the high-frequency switching on-time of the switching transistor and converts it into high-frequency power, and supplies power to the magnetron via the rectifier circuit that rectifies the high-frequency power Power supply,
    An input current detector that detects an input current from the AC power source to the inverter circuit and outputs input current waveform information;
    An input voltage detection unit that detects an input voltage input from the AC power source to the inverter circuit and outputs input voltage waveform information;
    A selection unit for selecting one of the input current waveform information and the input voltage waveform information;
    A switching converter that converts any of the input current waveform information and the input voltage waveform information selected by the selector into a drive signal of a switching transistor of the inverter circuit;
    A power command unit that commands the power supplied to the magnetron by the inverter circuit,
    The selection unit selects signal waveform information having a larger output amplitude from the input voltage detection unit and the input current detection unit,
    When the magnetron is ready to oscillate, the signal amplitude of the input voltage waveform information is reduced, and when the power commanded by the power command unit is a predetermined value or less, the signal amplitude obtained by the selection unit is reduced,
    The switching conversion unit is a magnetron driving power source that compares the signal waveform information selected by the selection unit with a triangular wave by a PWM comparator and uses the magnitude relationship as a driving signal for the switching transistor.
  14.  前記選択部は電圧電流変換部によって構成するとともに電流注入部を設け、前記電流注入部は前記選択部に電流を注入することによって選択された信号振幅波形を減ずる請求項13に記載のマグネトロン駆動用電源。 The magnetron driving device according to claim 13, wherein the selection unit includes a voltage-current conversion unit and a current injection unit, and the current injection unit reduces the selected signal amplitude waveform by injecting a current into the selection unit. Power supply.
  15.  前記電流注入部が注入する電流量は前記電力指令部の出力電圧に反比例する請求項14に記載のマグネトロン駆動用電源。 The magnetron driving power source according to claim 14, wherein the amount of current injected by the current injection unit is inversely proportional to the output voltage of the power command unit.
PCT/JP2011/006922 2010-12-15 2011-12-12 Magnetron-driving power supply and high-frequency heating device equipped with same WO2012081221A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012548644A JPWO2012081221A1 (en) 2010-12-15 2011-12-12 Magnetron driving power source and high-frequency heating apparatus including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-278779 2010-12-15
JP2010278779 2010-12-15
JP2011234873 2011-10-26
JP2011-234873 2011-10-26

Publications (1)

Publication Number Publication Date
WO2012081221A1 true WO2012081221A1 (en) 2012-06-21

Family

ID=46244340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006922 WO2012081221A1 (en) 2010-12-15 2011-12-12 Magnetron-driving power supply and high-frequency heating device equipped with same

Country Status (2)

Country Link
JP (1) JPWO2012081221A1 (en)
WO (1) WO2012081221A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089952A (en) * 2012-10-05 2014-05-15 Panasonic Corp Power control device for high frequency dielectric heating
CN103836682A (en) * 2012-11-26 2014-06-04 美的集团股份有限公司 Induction cooker with multiple cooking ranges
WO2016094389A2 (en) 2014-12-08 2016-06-16 B/E Aerospace, Inc. Quasi-resonant magnetron power supply
CN111243919A (en) * 2020-02-28 2020-06-05 广东美的厨房电器制造有限公司 Control system of magnetron, method for the same, and high-frequency heating apparatus
US11944733B2 (en) 2021-11-18 2024-04-02 Mozarc Medical Us Llc Sodium and bicarbonate control

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113950176B (en) * 2021-10-14 2023-05-23 四川大学 Magnetron anode power supply ripple mixing multi-frequency heating device and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202705A (en) * 2005-01-24 2006-08-03 Mitsubishi Electric Corp Induction heating cooker and induction heating cooking method
JP2007149444A (en) * 2005-11-25 2007-06-14 Matsushita Electric Ind Co Ltd Power control device for high frequency induction heating, and its control method
JP2007149447A (en) * 2005-11-25 2007-06-14 Matsushita Electric Ind Co Ltd Power control device for high frequency dielectric heating and its control method
JP2007324018A (en) * 2006-06-02 2007-12-13 Matsushita Electric Ind Co Ltd Power control device for high-frequency dielectric heating, and its control method
JP2007328982A (en) * 2006-06-07 2007-12-20 Matsushita Electric Ind Co Ltd Power controller for high-frequency dielectric heating and its control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202705A (en) * 2005-01-24 2006-08-03 Mitsubishi Electric Corp Induction heating cooker and induction heating cooking method
JP2007149444A (en) * 2005-11-25 2007-06-14 Matsushita Electric Ind Co Ltd Power control device for high frequency induction heating, and its control method
JP2007149447A (en) * 2005-11-25 2007-06-14 Matsushita Electric Ind Co Ltd Power control device for high frequency dielectric heating and its control method
JP2007324018A (en) * 2006-06-02 2007-12-13 Matsushita Electric Ind Co Ltd Power control device for high-frequency dielectric heating, and its control method
JP2007328982A (en) * 2006-06-07 2007-12-20 Matsushita Electric Ind Co Ltd Power controller for high-frequency dielectric heating and its control method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089952A (en) * 2012-10-05 2014-05-15 Panasonic Corp Power control device for high frequency dielectric heating
CN103836682A (en) * 2012-11-26 2014-06-04 美的集团股份有限公司 Induction cooker with multiple cooking ranges
CN103836682B (en) * 2012-11-26 2016-12-21 美的集团股份有限公司 A kind of electromagnetic oven with multiple kitchen range
WO2016094389A2 (en) 2014-12-08 2016-06-16 B/E Aerospace, Inc. Quasi-resonant magnetron power supply
CN107005169A (en) * 2014-12-08 2017-08-01 B/E航空公司 Quasi-resonance magnetron electric supply
EP3231076A4 (en) * 2014-12-08 2018-08-15 B/E Aerospace, Inc. Quasi-resonant magnetron power supply
CN107005169B (en) * 2014-12-08 2020-01-31 B/E航空公司 Quasi-resonant magnetron power supply
CN111243919A (en) * 2020-02-28 2020-06-05 广东美的厨房电器制造有限公司 Control system of magnetron, method for the same, and high-frequency heating apparatus
CN111243919B (en) * 2020-02-28 2023-01-24 广东美的厨房电器制造有限公司 Control system of magnetron, method for the same, and high-frequency heating apparatus
US11944733B2 (en) 2021-11-18 2024-04-02 Mozarc Medical Us Llc Sodium and bicarbonate control

Also Published As

Publication number Publication date
JPWO2012081221A1 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
CN107017774B (en) Switching power supply device
US5923542A (en) Method and apparatus for driving piezoelectric transformer
US7768801B2 (en) Current resonant DC-DC converter of multi-output type
WO2012081221A1 (en) Magnetron-driving power supply and high-frequency heating device equipped with same
JPH1126178A (en) Discharge lamp lighting device
JP2008173000A (en) Inverter apparatus
JP2006114419A (en) High frequency heating power supply device
JP2001314079A (en) Switching power supply circuit
JP2007149444A (en) Power control device for high frequency induction heating, and its control method
EP1521507A1 (en) Method and apparatus for driving a discharge lamp
US7012381B2 (en) DC—DC converter and device for operation of a high pressure discharge lamp using the converter
JP2005302375A (en) High-frequency heating device
KR101021073B1 (en) Device and method for operating a discharge lamp
JPH03212171A (en) Switching power supply for microwave oven
EP1811813B1 (en) High-frequency heating power source
JP5042881B2 (en) Switching power supply
JP2013069610A (en) Magnetron driving power supply
US7078868B2 (en) DC—DC converter and device for operation of a high pressure discharge lamp using said converter
JP2005317306A (en) High frequency heating device
JP2010074895A (en) Power supply device
RU2572086C2 (en) Power supply source for magnetron
JP5138166B2 (en) Power control apparatus for high frequency dielectric heating and control method thereof
JP7356102B2 (en) Wireless power supply device
JPH05242962A (en) High-frequency power unit for microwave oven
JP5042882B2 (en) Switching power supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848860

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012548644

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11848860

Country of ref document: EP

Kind code of ref document: A1