WO2012079442A1 - 薄片类介质检测装置及薄片类介质处理装置 - Google Patents

薄片类介质检测装置及薄片类介质处理装置 Download PDF

Info

Publication number
WO2012079442A1
WO2012079442A1 PCT/CN2011/082476 CN2011082476W WO2012079442A1 WO 2012079442 A1 WO2012079442 A1 WO 2012079442A1 CN 2011082476 W CN2011082476 W CN 2011082476W WO 2012079442 A1 WO2012079442 A1 WO 2012079442A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
light
sheet
detecting device
light guiding
Prior art date
Application number
PCT/CN2011/082476
Other languages
English (en)
French (fr)
Inventor
郑磊
姜天信
杨民
刘洋
Original Assignee
山东新北洋信息技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东新北洋信息技术股份有限公司 filed Critical 山东新北洋信息技术股份有限公司
Priority to EP11848828.7A priority Critical patent/EP2653827A4/en
Priority to US13/993,951 priority patent/US8910937B2/en
Publication of WO2012079442A1 publication Critical patent/WO2012079442A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H7/00Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles
    • B65H7/02Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors
    • B65H7/14Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors by photoelectric feelers or detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H9/00Registering, e.g. orientating, articles; Devices therefor
    • B65H9/004Deskewing sheet by abutting against a stop, i.e. producing a buckling of the sheet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/028Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring lateral position of a boundary of the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/04Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving
    • G01B11/043Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving for measuring length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2553/00Sensing or detecting means
    • B65H2553/40Sensing or detecting means using optical, e.g. photographic, elements
    • B65H2553/41Photoelectric detectors
    • B65H2553/412Photoelectric detectors in barrier arrangements, i.e. emitter facing a receptor element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2553/00Sensing or detecting means
    • B65H2553/40Sensing or detecting means using optical, e.g. photographic, elements
    • B65H2553/44Involving light guide, e.g. optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2801/00Application field
    • B65H2801/03Image reproduction devices
    • B65H2801/06Office-type machines, e.g. photocopiers

Definitions

  • Sheet type medium detecting device and sheet type medium processing device The present application claims to be submitted to the China Intellectual Property Office on December 16, 2010, the application number is 201010594606.4, and the name is "sheet type medium detecting device and sheet type medium processing device" Priority of the invention patent application, the entire disclosure of which is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sheet medium detecting device and a sheet medium processing device using the same.
  • a sheet-type medium processing device such as a printer, a scanner, a coin reader, or the like, moves along a medium conveying path to perform processing such as printing, scanning, and recognition.
  • the width of the media feed channel is typically set according to the maximum width of the media.
  • printers used in banks need to print various types of media such as passbooks, deposit slips, and transaction logs.
  • the passbook width is the smallest, and the print transaction log has the largest media width, and the width of the two is at least doubled.
  • the width of the printer's media transport path is adapted to the width of the media used to print the transaction log.
  • the width of the medium conveying path is much larger than the minimum width of the medium, in order to detect the position and state of the medium in the medium conveying path, it is necessary to provide a medium detecting device in the medium conveying path.
  • common media detecting mechanisms are classified into two types.
  • the first type is to set a set of photodetectors at a fixed position of the medium conveying path, and the photodetector usually comprises a light receiver and a light emitter disposed opposite to each other on both sides of the medium conveying path, and the medium can be from between the light receiver and the light emitter by.
  • the light receiver When no medium passes between the light receiver and the light emitter, the light beam emitted by the light emitter is almost completely received by the light receiver, so the light receiver outputs the first electrical signal; when there is medium passing between the light receiver and the light emitter When the medium blocks the light beam emitted from the light emitter to the light receiver, the light receiver cannot receive the light, and thus the light receiver outputs the second electrical signal. Therefore, by detecting the change in the electrical signal output from the optical receiver, it is determined whether or not the medium passes through the fixed position.
  • the disadvantage of this solution is that the medium must be input to the medium conveying path from the position where the medium detecting device is provided, otherwise the medium cannot be detected and the operation flexibility is poor.
  • Another medium detecting device is shown in Fig. 1.
  • a plurality of sets of photodetectors arranged in alignment in the direction perpendicular to the medium conveying direction are disposed in the medium conveying path.
  • each set of photodetectors comprises two optical receivers 10 and light emitters 10' that are opposite and spaced apart from each other by a set distance, and the medium can pass between the light receivers 10 and the light emitters 10'.
  • determining the medium by detecting the change of the electrical signal outputted by the optical receiver Location and status.
  • An object of the present invention is to provide a low-cost sheet medium detecting device and a sheet medium processing device using the same.
  • the present invention provides a sheet-type medium detecting device, comprising: a light guiding strip disposed on one side of the medium conveying passage, and having a plurality of reflecting surfaces arranged at intervals along the length direction, each reflecting surface guiding light The light in the strip is reflected to the other side of the medium conveying passage; a plurality of light receivers, each of which is disposed opposite to a reflecting surface of the light guiding strip on the other side of the medium conveying passage; and a point light source, at least disposed in the guide One end side of the longitudinal direction of the light strip, wherein each of the light reflecting surfaces and the light guiding strip on the side of the point light source are inclined at an obtuse angle.
  • the two ends of the light guiding strip are respectively provided with point light sources, and correspondingly, the light guiding strips on the side of the point light source adjacent to each of the reflecting surfaces are inclined at an obtuse angle. Further, the light reflecting surface and the light guiding strip on the side of the point light source are at an angle of 120 150°.
  • the reflective surface is formed by a cutting groove in the light guiding strip, and the starting point of the cutting groove is located on a side of the light guiding strip away from the medium conveying passage. Further, the cutting depth of the cutting grooves corresponding to the respective reflecting surfaces is deepened as the distance from each reflecting surface to the point source increases. Further, the length of the light guiding strip is adapted to the width of the medium conveying passage.
  • one end side of the light guiding strip facing the point light source has a pit, and the pit forms a concave curved surface.
  • the light guiding strip is composed of a plurality of segments of light guiding strips, and the reflecting surface is formed by a joint surface of two adjacent light guiding strips. Further, the length of each of the reflective surfaces is lengthened as the distance from the reflective surface to the point source increases.
  • a sheet type medium detecting device of the at least one sheet type medium detecting device is located at an entrance of the medium conveying path for detecting the presence of the medium.
  • the sheet medium processing apparatus further includes an alignment baffle of the alignment medium disposed on the medium conveying path, and a sheet type medium detecting device of the at least one sheet type medium detecting device is located upstream of the alignment baffle for detecting Whether the media is aligned.
  • the point light source at the side end is converted into a plurality of line light sources and reflected to the light receiver by providing a reflecting surface corresponding to each light receiver in the light guiding strip, so that it is not necessary to provide a plurality of light emitters, and the medium can be
  • the position and state of the medium in the medium conveying channel are detected at any position of the conveying passage, and the device has low cost and strong adaptability.
  • FIG. 3 is a schematic view of a medium detecting device according to a second embodiment of the present invention
  • Figure 5 is a schematic view of a medium detecting device according to a fourth embodiment of the present invention
  • Figure 6 is a plan view of a sheet-like medium processing device having a medium detecting device according to the present invention
  • 7 is a cross-sectional view taken along line II in the sheet medium processing apparatus shown in FIG. 6
  • FIG. 8 is a schematic view of the first medium detecting apparatus shown in FIG. Description of the reference numerals
  • the medium detecting device includes a point light source 1, a light guiding strip 2, and a light receiving unit 3.
  • the light guiding strip 2 and the light receiving component 3 are respectively located on both sides of the medium conveying passage 4, and the two are oppositely disposed and spaced apart from each other by a set distance, and the medium can pass between the two during the conveying process.
  • the light guiding strip 2 is a rectangular parallelepiped or a cylinder of a transparent material, and its longitudinal direction is parallel to the plane of the medium conveying passage 4.
  • a point light source 1 is disposed at at least one end of the longitudinal direction of the light guiding strip 2, and the point source 1 may be a sphere, a hemisphere, a cylinder, or the like.
  • the light guiding strip 2 converts the light emitted by the point source 1 into a line source perpendicular to the plane of the medium conveying path 4.
  • the light receiving component 3 includes at least two light receivers 31, and each of the two light receivers 31 is arranged in alignment along the length direction of the light guiding strip 2 at intervals and is opposite to the light guiding strip 2.
  • a light reflecting surface 21 is disposed in the light guiding strip 2 corresponding to each of the light receivers 31.
  • the light reflecting surface 21 and the light guiding strip on the side of the point light source 1 are disposed at an obtuse angle, that is, the side of the reflecting surface 21 facing the point light source 1
  • the angle a between the plane of the medium conveying passage 4 is an obtuse angle, and preferably, a is 120° to 150°.
  • the reflecting surface 21 transmits the light reflected by the point source 1 to its corresponding light receiver 31.
  • the point light source 1 is disposed at one end of the light guiding strip 2, and the light receiving component 3 includes two light receivers 31.
  • each of the light receivers 31 corresponds to one of the light reflecting surfaces 21, each of the light receivers 31 can receive sufficient light without the medium blocking.
  • the light receiver 31 When no medium passes, the light receiver 31 receives the light of high intensity, so the light receiver 31 outputs a first electrical signal, such as a high voltage; when there is a medium passing between the light receiver 31 and its corresponding reflective surface 21, The medium blocks the light beam reflected from the light reflecting surface 21 to the light receiver 31, so that the light receiver 31 cannot receive the light, and thus the light receiver 31 outputs a second electrical signal such as a low voltage. Since the intensity of the light received by the optical receiver 31 in both the dielectric barrier and the non-media barrier is very different, that is, the first electrical signal and the second electrical signal are greatly different, thereby outputting the electrical signal by detecting the optical receiver 31.
  • a first electrical signal such as a high voltage
  • the reflective surface 21 can be formed by laterally cutting the light guiding strip 2, and the cutting point is located on a side of the light guiding strip 21 away from the medium conveying passage.
  • the light guiding strip 2 may be composed of a plurality of light guiding strips connected in series, and the reflecting surface 21 may be formed by a joint surface of two adjacent light guiding strips. It should be noted that the light guiding strips may be disposed along the width direction of the medium conveying passage or may be disposed along the medium conveying direction.
  • the medium detecting device converts the point light source at the side end into a plurality of line light sources and reflects the light source to the light receiver by providing a reflecting surface corresponding to each light receiver in the light guiding strip, so that it is not necessary to provide a plurality of light emitters, that is, The position and state of the media within the media transport path can be detected, reducing device costs.
  • the position and state of the medium in the medium conveying passage can be detected at any position of the medium conveying passage, thereby improving the convenience of the user operation.
  • Figure 3 is a schematic view of a medium detecting device in accordance with a second embodiment of the present invention.
  • the point light source 1 is disposed on both end sides of the light guiding strip 2 in the longitudinal direction, and the setting direction of the reflecting surface 21 is matched with the position of the point light source 1.
  • two point light sources 1 are respectively disposed at two ends of the light guiding strip 2 in the longitudinal direction, and the light receiving component 3 includes four light receivers 31, and each of the two light receivers 31 is spaced apart by a set distance along the length of the light guiding strip 2. The directions are aligned and opposed to the light guide strip 2.
  • a reflecting surface 21 is provided corresponding to each of the light receivers 31, and therefore, four reflecting surfaces 21 are provided in the light guiding strip 2.
  • the four reflective surfaces 21 are divided into two groups with the center of the length of the light guiding strip 2 as a dividing line, and the first reflecting surface 211 is matched with the point light source 1 located at the left end of the light guiding strip 2 for use with the reflecting surface 21
  • the light emitted by the closest point source 1 is reflected to its corresponding light receiver 31;
  • the second group of reflecting surfaces 212 cooperates with the point source 1 at the right end of the light guiding strip 2 for the point source closest to the reflecting surface 21 1 emitted light is reflected to its corresponding light receiver 31.
  • the angle a between the side of each of the reflecting surfaces 21 facing the point light source 1 and the plane of the medium conveying path 4 is an obtuse angle.
  • FIG. 4 is a schematic view of a medium detecting device in accordance with a third embodiment of the present invention.
  • FIG. 5 is a schematic view of a medium detecting device in accordance with a fourth embodiment of the present invention.
  • the length of each reflecting surface is proportional to the distance between the reflecting surface and the point source 1 adjacent thereto, that is, the farther the reflecting surface 21 is from the point source 1, the longer the reflecting surface is. .
  • FIGS. 6 is a plan view of a sheet-like medium processing apparatus having a medium detecting device according to the present invention
  • Figure 7 is a cross-sectional view taken along line II in Figure 6
  • Figure 8 is a schematic view of the first medium detecting device shown in Figure 6.
  • the sheet medium processing apparatus includes a first medium detecting device 11 arranged in the medium input direction A, a first conveying roller group 12, a second medium detecting device 13, an alignment shutter 14, The media processing mechanism 15 and the second conveyor roller set 16.
  • the first medium detecting device 11 is configured to detect whether a medium exists at the inlet B of the sheet-type medium processing device; the first conveying roller 12 and the second conveying roller 16 are configured to move the conveying medium in the medium conveying passage 4;
  • the medium detecting device 13 is configured to detect whether the front end of the medium is aligned with the alignment shutter 14;
  • the medium processing mechanism 15 is for processing the medium, and the medium processing mechanism 15 may be a printing mechanism, a scanning mechanism, a read/write magnetic mechanism, or the like.
  • the width L of the medium conveying passage 4 is larger than the widths of the first type medium P1 and the second type medium P2.
  • the first detecting device 11 is located at the entrance B of the sheet-type medium processing device, and includes a point light source 1, a light guiding strip 2, and a light receiving unit 3.
  • the light guiding strip 2 and the light receiving component 3 are respectively located on both sides of the medium conveying passage 4, and the two are oppositely disposed and spaced apart from each other by a set distance, and the medium can pass between the two during the conveying process.
  • the light guiding strip 2 is a rectangular parallelepiped or a cylinder of transparent material, the longitudinal direction of which is parallel to the plane of the medium conveying passage 4, and is arranged perpendicular to the medium input direction A, and the length of the light guiding strip 2 is adapted to the width of the medium conveying passage 4. .
  • Two point light sources 1 are respectively disposed at two ends of the light guiding strip 2 in the longitudinal direction, and the light guiding strip 2 converts the light emitted by the point light source 1 into a line light source emitted in a direction perpendicular to the plane of the medium conveying path 4.
  • the light receiving unit 3 includes eight light receivers 31, and each of the two light receivers 31 is aligned with the distance between the light guiding strips 2 and spaced apart from the light guiding strip 2.
  • a reflecting surface 21 is provided corresponding to each of the light receivers 31, and therefore, eight reflecting surfaces 21 are provided in the light guiding strip 2.
  • the eight reflective surfaces 21 are divided into two groups, and the first reflective surface 21 is matched with the point light source 1 located at the left end of the light guiding strip 2 for use with the reflective surface 21
  • the light emitted by the closest point source 1 is reflected to its corresponding light receiver 31;
  • the second group of reflective surfaces 212' cooperates with the point source 1 at the right end of the light guide strip 2 for closest to the reflective surface 21
  • the light emitted by the point source 1 is reflected to its corresponding light receiver 31, and at the same time, the angle of each side of the reflecting surface 21 facing the point source is at an obtuse angle with the plane of the medium conveying path 4.
  • the first conveying roller group 12 is located downstream of the first medium detecting device 11 along the medium input direction A, and includes a first driving roller 121 and a first driven roller 122 which are disposed tangentially, when the medium is from the first driving roller 121 and the first When passing between the driven rollers 122, the medium can be fed or outputted along the medium conveying path by the sheet-type medium processing device under the driving of the first driving roller 121.
  • the second medium detecting means 13 is located downstream of the first conveying roller set 12 for detecting whether the front end of the medium is aligned with the alignment flap 14. Since the second medium detecting device 13 is exactly the same as the first medium detecting device 11, it will not be repeated here.
  • the alignment flap 14 is located downstream of the second medium detecting device 13 and is spaced apart from the second medium detecting device 13 by a set distance.
  • the alignment shutter 14 is perpendicular to the plane of the medium conveying path 4 and is disposed perpendicular to the medium input direction A, so that the alignment shutter 14 is parallel to the light guiding strip 2 of the second medium detecting device 13.
  • the alignment flap 14 is movable in a direction perpendicular to the plane in which the medium conveying path 4 is located, inserted or detached from the medium conveying path, thereby closing or opening the medium conveying path.
  • the media processing mechanism 15 is located downstream of the alignment shutter 14, and may be a combination of one or more of a processing mechanism such as a printing mechanism, a scanning mechanism, and a read/write magnetic mechanism.
  • the media processing mechanism 15 is a printing mechanism including a print head 151 and a backing plate 152.
  • the pad 152 is disposed parallel to the plane of the medium conveying path and perpendicular to the medium input direction A.
  • the print head 151 is opposed to the pad 152 and can reciprocate along the extending direction of the pad.
  • the medium passes between the printhead 151 and the backing plate 152, and the printhead 151 strikes the ink on the ink ribbon (not shown) onto the medium to form an image or text on the medium.
  • the second conveying roller set 16 is located downstream of the printing mechanism and includes a second driving roller 161 and a second driven roller 162 which are disposed tangentially between the second driving roller 161 and the second driven roller 162.
  • the medium When passing through, the medium can be fed or outputted along the medium conveying path by the sheet-type medium processing device under the driving of the second driving roller 161.
  • the working principle of the sheet medium processing device will be briefly described below. Since the width of the media transport path is greater than the width of the media, the media may deflect when entering the media transport path. In order to avoid media deflection into media Processing positions (such as print position, scan position, read and write magnetic position, etc.) are inaccurate, and the working process of the sheet-type media processing device is divided into an alignment phase and a processing phase.
  • the alignment baffle 14 is inserted into the media delivery channel 4, the media delivery channel 4 is closed, and the media cannot enter the media processing mechanism 15, so that the media front end is aligned with the alignment baffle 14 during transport; during processing, alignment
  • the baffle 14 is detached from the medium conveying path 4, so that the medium conveying path 4 is opened, and therefore, the aligned medium is moved to the medium processing mechanism 15 for corresponding processing.
  • the control device determines whether or not to enter the alignment phase based on the output signal of the first medium detecting device 11, and determines whether or not to enter the processing phase based on the output signal of the second medium detecting device 13.
  • the sheet-type medium processing device determines that the medium B exists in the inlet B, thereby controlling the first conveying roller group 12 to drive the medium input sheet type medium processing device to move toward the alignment shutter 14, and the sheet type medium processing device enters the alignment stage.
  • the control device determines the medium and the alignment plate.
  • the sheet-type medium processing device is aligned to thereby control the alignment flap 14 to disengage from the medium conveying path 4, and to control the movement of the first conveying roller group 12 to the medium processing mechanism 15, and the sheet-type medium processing device enters the processing stage to perform the medium processing operation.
  • the control device controls the second conveying roller group 16 to discharge the medium to the sheet-type medium processing device.
  • the position and state of the medium in the medium conveying passage can be detected at any position of the medium conveying passage, thereby improving the convenience of the user operation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Controlling Sheets Or Webs (AREA)

Description

薄片类介质检测装置及薄片类介质处理装置 本申请要求 2010 年 12 月 16 日提交至中国知识产权局的、 申请号为 201010594606.4、 名称为 "薄片类介质检测装置及薄片类介质处理装置" 的中国发明 专利申请的优先权, 其全部公开内容结合于此供参考。 技术领域 本发明涉及一种薄片类介质检测装置及使用该检测装置的薄片类介质处理装置。 背景技术 薄片类介质处理装置, 如打印机、 扫描仪、 识币器等, 介质沿介质输送通道运动, 进行打印、 扫描、 识别等处理。 为了适应尽可能多的介质类型, 介质输送通道的宽度 通常根据介质的最大宽度设定。 比如, 在银行使用的打印机, 需要打印存折、 存单及 交易日志等各种类型介质。 其中, 存折宽度最小, 打印交易日志的介质宽度最大, 二 者宽度相差至少一倍。 为了同时满足存折、 存单及交易日志的打印, 打印机的介质输 送通道的宽度与用于打印交易日志的介质的宽度适配。 由于介质输送通道宽度远大于 介质的最小宽度, 因此, 为了检测介质在介质输送通道内的位置和状态, 需要在介质 输送通道中设置介质检测装置。 现有技术中, 常见的介质检测机构分为两种。 第一种是在介质输送通道的固定位置设置一组光检测器, 光检测器通常包括位于 介质输送路径两侧相对设置的光接收器和光发射器, 介质可以从光接收器和光发射器 之间通过。 当光接收器和光发射器之间无介质通过时, 光发射器发出的光束几乎全部 被光接收器接收, 因此光接收器输出第一电信号; 当光接收器和光发射器之间有介质 通过时, 介质将光发射器发射给光接收器的光束阻断, 使光接收器无法接收到光线, 因此光接收器输出第二电信号。 所以, 通过检测光接收器输出电信号的变化, 判定固 定位置是否有介质通过。 这种方案的缺点在于, 介质必须从设置有介质检测装置的位 置输入介质输送通道, 否则无法检测介质, 操作灵活性差。 另一种介质检测装置如图 1所示, 在介质输送通道中设置沿垂直于介质输送方向 对齐排列的若干组光检测器。 其中, 每组光检测器包括两个相对并相距设定距离的光 接收器 10和光发射器 10', 介质可以从光接收器 10和光发射器 10'之间通过。 与第一 种介质检测装置检测原理相同, 通过检测光接收器输出电信号的变化, 判定介质所在 位置和状态。 该方案的优点在于不论在通道的哪个位置输入介质, 介质检测装置都能 检测到介质位置及状态, 因此, 操作比较灵活。 但是, 由于光发射器是介质检测装置 的关键部件, 而该方案需要设置多组光发射器, 因此装置成本高。 发明内容 本发明的目的在于提供一种低成本的薄片类介质检测装置及使用该检测装置的薄 片类介质处理装置。 为此, 本发明一方面提供了一种薄片类介质检测装置, 包括: 导光条, 设置在介 质输送通道的一侧, 具有沿长度方向间隔排列的多个反光面, 各反光面将导光条内的 光线反射至介质输送通道另一侧; 多个光接收器, 各光接收器在介质输送通道的另一 侧与导光条的一反光面相对设置; 以及点光源, 至少设置在导光条的长度方向的一端 侧, 其中, 各反光面与点光源一侧的导光条呈钝角倾斜设置。 进一步地, 上述导光条的两端侧分别设有点光源, 相应地, 各反光面与其邻近的 点光源一侧的导光条呈钝角倾斜设置。 进一步地, 上述反光面与点光源一侧的导光条呈 120 150° 夹角。 进一步地, 上述反光面由导光条内的切割槽形成, 切割槽的起始点位于导光条的 远离介质输送通道的一侧。 更进一步地, 各反光面对应的切割槽的切割深度随着各反 光面到点光源的距离增大而加深。 进一步地, 上述导光条的长度与介质输送通道的宽度相适配。 进一步地, 上述导光条的面对点光源的一端侧具有凹坑, 凹坑形成凹弧形曲面。 进一步地, 上述导光条由若干段导光短条组成, 反光面由相邻两导光短条的结合 面形成。 进一步地, 上述各反光面的长度随着反光面到点光源的距离增大而加长。 根据本发明的另一方面, 提供了一种薄片类介质处理装置, 包括在介质输送通道 上设置的介质输送机构、 处理机构、 以及至少一根据上面所描述的薄片类介质检测装 置。 进一步地, 上述至少一薄片类介质检测装置中的一薄片类介质检测装置位于介质 输送通道的入口处, 用于检测介质是否存在。 进一步地, 上述薄片类介质处理装置, 还包括在介质输送通道上设置的对齐介质 的对齐挡板, 至少一薄片类介质检测装置中的一薄片类介质检测装置位于对齐挡板上 游, 用于检测介质是否对齐。 在本发明中, 通过在导光条内对应每个光接收器设置反光面将侧端的点光源转换 为多个线光源反射给光接收器, 因此无需设置多个光发射器, 即可在介质输送通道的 任意位置检测介质在介质输送通道内的位置和状态, 装置成本低、 适应性强。 除了上面所描述的目的、 特征、 和优点之外, 本发明具有的其它目的、 特征、 和 优点, 将结合附图作进一步详细的说明。 附图说明 构成本说明书的一部分、 用于进一步理解本发明的附图示出了本发明的优选实施 例, 并与说明书一起用来说明本发明的原理。 图中: 图 1是现有技术的介质检测装置示意图; 图 2是根据本发明第一实施例的介质检测装置示意图; 图 3是根据本发明第二实施例的介质检测装置示意图; 图 4是根据本发明第三实施例的介质检测装置示意图; 图 5是根据本发明第四实施例的介质检测装置示意图; 图 6是根据本发明的具有介质检测装置的薄片类介质处理装置的俯视图; 图 7是图 6所示薄片类介质处理装置沿 I-I方向剖视图; 以及 图 8是图 6所示的第一介质检测装置的示意图。 附图标记说明
1点光源 2导光条 3光接收组件 4介质输送通道 21反光面 22受光面 23凹坑 31光接收器 211、 21Γ第一组反光面 212、 212'第二组反光面
11第一介质检测装置 12第一输送辊组
121第一主动辊 122第一从动辊
13第二介质检测装置 14对齐挡板
15介质处理机构 151打印头
152垫板 16第二输送辊组。 具体实施方式 以下结合附图对本发明的实施例进行详细说明, 但是本发明可以由权利要求限定 和覆盖的多种不同方式实施。 图 2是根据本发明第一实施例提供的介质检测装置的示意图。 如图 2所示, 介质 检测装置包括点光源 1、导光条 2和光接收组件 3。导光条 2和光接收组件 3分别位于 介质输送通道 4两侧, 二者相对设置并相距设定距离, 介质在输送过程中可以从二者 之间通过。 导光条 2为透明材料的长方体或圆柱体, 其长度方向平行于介质输送通道 4所在 平面。 在导光条 2的长度方向的至少一侧端设置点光源 1, 点光源 1可以为球体、 半 球体或圆柱体等。 导光条 2将点光源 1发射的光线转换成垂直于介质输送通道 4所在 平面的线光源。 光接收组件 3包括至少两个光接收器 31, 每两个光接收器 31间隔设 定距离沿导光条 2长度方向对齐排列, 并与导光条 2相对。 在导光条 2内对应每个光接收器 31设置一个反光面 21, 该反光面 21与点光源 1 一侧的导光条呈钝角倾斜配置, 即反光面 21 正对点光源 1 的一侧与介质输送通道 4 所在平面夹角 a为钝角, 优选地, a为 120° 〜150° 。 反光面 21将点光源 1发射的光 线反射传递给其对应的光接收器 31。 本实施例中, 点光源 1设置在导光条 2的一端, 光接收组件 3包括两个光接收器 31 , 反光面 21正对点光源 1的一侧与介质输送通道 4所在平面夹角为 135 ° 。 因此, 照射在反光面 21的光线被集中地沿垂直于介质输送通道 4所在平面的方向反射。 由于每个光接收器 31对应一个反光面 21, 因此, 在无介质阻挡情况下, 每个光 接收器 31都可以接收到充足的光线。这样, 当光接收器 31和其对应的反光面 21之间 无介质通过时,光接收器 31接收到强度高的光线, 因此光接收器 31输出第一电信号, 如高电压; 当光接收器 31和其对应的反光面 21之间有介质通过时, 介质将反光面 21 反射给光接收器 31 的光束阻断, 使光接收器 31无法接收到光线, 因此光接收器 31 输出第二电信号, 如低电压。 由于光接收器 31 在有介质阻挡和无介质阻挡两种情况下接收到光的强度差异很 大, 即第一电信号和第二电信号差异很大, 从而通过检测光接收器 31输出电信号, 可 以判断出光接收器 31所在位置是否有介质存在, 从而根据光接收器 31相对于介质输 送通道位置可以准确判定介质在通道内的位置和状态。 需要说明的是, 反光面 21可以通过横向切割导光条 2形成, 切割点位于导光条 21远离介质输送通道的一面。 另外, 导光条 2可以由多段导光短条两两相接组成, 反 光面 21可以由两段相邻的导光短条的结合面形成。 需要说明的是, 导光条可以沿介质输送通道宽度方向设置, 也可以沿介质输送方 向设置。 本发明提供的介质检测装置, 通过在导光条内对应每个光接收器设置反光面将侧 端的点光源转换为多个线光源反射给光接收器, 因此无需设置多个光发射器, 即可检 测介质在介质输送通道内的位置和状态, 降低了装置成本。 特别是, 当导光条沿介质 输送通道宽度方向设置时, 能够在介质输送通道的任意位置检测介质在介质输送通道 内的位置和状态, 提高了用户操作的方便性。 图 3是根据本发明第二实施例的介质检测装置示意图。 本实施例与上述实施例的 区别在于, 在导光条 2长度方向的两端侧均设有点光源 1, 反光面 21的设置方向与点 光源 1位置相适配。 具体是, 在导光条 2长度方向的两端分别设置两个点光源 1, 光接收组件 3包括 四个光接收器 31, 每两个光接收器 31间隔设定距离沿导光条 2长度方向对齐排列, 并与导光条 2相对。 在导光条 2内, 对应于每个光接收器 31设置一个反光面 21, 因 此, 导光条 2内共设有四个反光面 21。 其中, 以导光条 2长度中心为分界线, 将四个反光面 21分成两组, 第一组反光面 211与位于导光条 2左端的点光源 1相配合, 用于将与反光面 21最接近的点光源 1发 射的光线反射给其对应光接收器 31 ; 第二组反光面 212与位于导光条 2右端的点光源 1相配合, 用于将与反光面 21最接近的点光源 1发射的光线反射给其对应的光接收器 31, 同时, 每个反光面 21正对点光源 1的一面与介质输送通道 4所在平面夹角 a为钝 角。 本实施例通过在导光条 2两端侧均设置点光源 1, 反光面 21将与其最接近的点光 源 1发射的光线反射给其对应的光接收器 31, 即使导光条 1长度较大, 也不会造成远 离点光源 1的反光面 21反射的光线强度不足, 因此介质检测装置的可靠性更强。 图 4是根据本发明第三实施例的介质检测装置示意图。 本实施例与第一实施例的 区别在于, 导光条 2与点光源 1相对的受光面 22设置有与点光源 1相对的凹坑 23, 凹坑 23形成凹弧形曲面, 该凹坑可以增加入射的光线数量, 减少光线损失。 图 5是根据本发明第四实施例的介质检测装置示意图。 本实施例与第二实施例的 区别在于, 各反光面的长度与该反光面和其邻近的点光源 1之间的距离成正比, 即反 光面 21距点光源 1越远, 反光面越长。相应地, 形成反光面的切割槽的切割深度随着 反光面 21与点光源 1的距离增加而加深。 图 5中, L2大于 Ll。 因此, 消除了靠近点 光源 1的反光面削弱远离点光源 1的反光面的反光亮度的问题。 图 6是根据本发明提供的具有介质检测装置的薄片类介质处理装置的俯视图, 图 7是图 6所示 I-I方向剖视图, 图 8是图 6所示第一介质检测装置示意图。 下面结合图 6至图 8说明根据本发明薄片类介质处理装置。 如图 6至图 8所示, 薄片类介质处理装置包括沿介质输入方向 A依次排布的第一 介质检测装置 11、 第一输送辊组 12、 第二介质检测装置 13、 对齐挡板 14、 介质处理 机构 15和第二输送辊组 16。 其中, 第一介质检测装置 11用于检测薄片类介质处理装 置的入口 B处是否有介质存在; 第一输送辊 12、 第二输送辊 16用于输送介质在介质 输送通道 4内运动;第二介质检测装置 13用于检测介质前端是否与对齐挡板 14对齐; 介质处理机构 15用于对介质进行处理, 介质处理机构 15可以是打印机构、扫描机构、 读写磁机构等。介质输送通道 4的宽度 L大于第一类型介质 P1及第二类型介质 P2的 宽度。 第一检测装置 11位于薄片类介质处理装置的入口 B处, 包括点光源 1、 导光条 2 和光接收组件 3。 导光条 2和光接收组件 3分别位于介质输送通道 4两侧, 二者相对 设置并相距设定距离, 介质在输送过程中可以从二者之间通过。 导光条 2为透明材料 的长方体或圆柱体, 其长度方向平行于介质输送通道 4所在平面, 并沿垂直于介质输 入方向 A设置, 导光条 2长度与介质输送通道 4的宽度相适配。 在导光条 2长度方向 的两端分别设置两个点光源 1, 导光条 2将点光源 1发射的光线转换成沿垂直于介质 输送通道 4所在平面的方向发射的线光源。 光接收组件 3包括八个光接收器 31,每两个光接收器 31间隔设定距离沿导光条 2 长度方向对齐排列, 并与导光条 2相对。在导光条 2内, 对应于每个光接收器 31设置 一个反光面 21, 因此, 导光条 2内共设有八个反光面 21。 其中, 以导光条 2长度中心 为分界线,将八个反光面 21分成两组,第一组反光面 21Γ与位于导光条 2左端的点光 源 1相配合,用于将与反光面 21最接近的点光源 1发射的光线反射给其对应的光接收 器 31;第二组反光面 212'与位于导光条 2右端的点光源 1相配合,用于将与反光面 21 最接近的点光源 1发射的光线反射给其对应的光接收器 31, 同时, 每个反光面 21正 对点光源的一面与介质输送通道 4所在平面夹角为钝角。 第一输送辊组 12沿介质输入方向 A位于第一介质检测装置 11的下游, 包括相对 相切设置的第一主动辊 121和第一从动辊 122, 当介质从第一主动辊 121和第一从动 辊 122之间通过时, 在第一主动辊 121驱动下, 介质可以沿介质输送通道输入或输出 薄片类介质处理装置。 第二介质检测装置 13位于第一输送辊组 12的下游, 用于检测介质前端是否与对 齐挡板 14对齐。 由于第二介质检测装置 13与第一介质检测装置 11设置完全相同, 此 处不再重述。 对齐挡板 14位于第二介质检测装置 13下游,与第二介质检测装置 13相距设定距 离。 对齐挡板 14垂直于介质输送通道 4所在平面, 且垂直于介质输入方向 A设置, 因此对齐挡板 14与第二介质检测装置 13的导光条 2平行。对齐挡板 14可以沿垂直于 介质输送通道 4所在平面的方向移动, 插入或脱离介质输送通道, 从而将介质输送通 道封闭或敞开。 介质处理机构 15位于对齐挡板 14下游, 可以是打印机构、 扫描机构、 读写磁机 构等处理机构中的一个或多个的组合。本实施例中, 介质处理机构 15为打印机构, 包 括打印头 151和垫板 152。 垫板 152平行于介质输送通道所在平面、 垂直于介质输入 方向 A设置, 打印头 151与垫板 152相对, 可以沿垫板延伸方向往返运动。 介质从打 印头 151和垫板 152之间通过, 打印头 151将墨带 (图中未显示) 上的墨汁击打到介 质上, 从而在介质上形成图像或文字。 第二输送辊组 16位于打印机构下游,包括相对相切设置的第二主动辊 161和第二 从动辊 162, 当打印后的介质从第二主动辊 161和第二从动辊 162之间穿过时, 在第 二主动辊 161驱动下, 介质可以沿介质输送通道输入或输出薄片类介质处理装置。 下面简单介绍薄片类介质处理装置工作原理。 由于介质输送通道宽度大于介质宽 度, 因此, 介质在输入介质输送通道时可能会产生偏斜。 为了避免介质偏斜诰成介质 处理位置 (如打印位置、 扫描位置、 读写磁位置等) 不准确, 薄片类介质处理装置的 工作过程分为对齐阶段和处理阶段。 在对齐阶段, 对齐挡板 14插入介质输送通道 4, 将介质输送通道 4封闭, 介质无 法进入介质处理机构 15, 因此, 介质前端在输送过程以对齐挡板 14为基准对齐; 在 处理阶段, 对齐挡板 14脱离介质输送通道 4, 使介质输送通道 4敞开, 因此, 对齐后 的介质向介质处理机构 15运动进行相应的处理。 控制装置根据第一介质检测装置 11 的输出信号判断是否进入对齐阶段,根据第二介质检测装置 13的输出信号判断是否进 入处理阶段。 当介质从入口 B输入薄片类介质处理装置时,无论介质 P1或 P2从哪个位置进入, 只要第一介质检测装置 11中的任意一个光接收器 31输出第二电信号, 薄片类介质处 理装置的控制装置就判定入口 B有介质存在, 从而控制第一输送辊组 12驱动介质输 入薄片类介质处理装置, 向对齐挡板 14运动, 薄片类介质处理装置进入对齐阶段。 当第二介质检测装置 13中至少两个光接收器 31输出第二电信号, 说明介质与至 少两个光接收器 31相对, 由于两点确定一条直线, 因此, 控制装置判定介质与对齐挡 板 14对齐, 从而控制对齐挡板 14脱离介质输送通道 4, 并控制第一输送辊组 12驱动 介质向介质处理机构 15运动,薄片类介质处理装置进入处理阶段,执行介质处理动作。 当介质处理完成后, 控制装置控制第二输送辊组 16将介质排出薄片类介质处理装置。 根据本发明提供的介质检测装置的薄片类介质处理装置, 无需设置多个点光源, 即可在介质输送通道中检测介质在介质输送通道内的存在位置、 存在状态, 并且可以 检测介质的对齐状态, 因此, 降低了装置成本。 特别是, 当导光条沿介质输送通道宽 度方向设置时, 能够在介质输送通道的任意位置检测介质在介质输送通道内的位置和 状态, 提高了用户操作的方便性。 以上仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技术人 员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的任何 修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种薄片类介质检测装置, 其特征在于, 包括:
导光条, 设置在介质输送通道的一侧, 具有沿长度方向间隔排列的多个反 光面, 各所述反光面将所述导光条内的光线反射至所述介质输送通道另一侧; 多个光接收器, 各所述光接收器在所述介质输送通道的另一侧与所述导光 条的一反光面相对设置; 以及
点光源, 至少设置在所述导光条的长度方向的一端侧, 其中, 各所述反光 面与所述点光源一侧的导光条呈钝角倾斜设置。
2. 根据权利要求 1所述的薄片类介质检测装置, 其特征在于, 所述导光条的两端 侧分别设有点光源, 相应地, 各所述反光面与其邻近的所述点光源一侧的导光 条呈钝角倾斜设置。
3. 根据权利要求 1所述的薄片类介质检测装置, 其特征在于, 所述反光面与所述 点光源一侧的导光条呈 120 150° 夹角。
4. 根据权利要求 1所述的薄片类介质检测装置, 其特征在于, 所述反光面由所述 导光条内的切割槽形成, 所述切割槽的起始点位于所述导光板的远离所述介质 输送通道的一侧。
5. 根据权利要求 4所述的薄片类介质检测装置, 其特征在于, 各所述反光面对应 的切割槽的切割深度随着各所述反光面到所述点光源的距离增大而加深。
6. 根据权利要求 1所述的薄片类介质检测装置, 其特征在于, 所述导光条的长度 与所述介质输送通道的宽度相适配。
7. 根据权利要求 1所述的薄片类介质检测装置, 其特征在于, 所述导光条的面对 所述点光源的一端侧设置有凹坑, 所述凹坑形成凹弧形曲面。
8. 根据权利要求 1所述的薄片类介质检测装置, 其特征在于, 所述导光条由若干 段导光短条组成, 所述反光面由相邻两导光短条的结合面形成。
9. 根据权利要求 1所述的薄片类介质检测装置, 其特征在于, 各所述反光面的长 度随着所述反光面到所述点光源的距离增大而加长。
10. 一种薄片类介质处理装置, 包括在介质输送通道上设置的介质输送机构和处理 机构, 其特征在于, 还包括至少一根据权利要求 1至 9中任一项所述的薄片类 介质检测装置。
11. 根据权利要求 10所述的薄片类介质处理装置,其特征在于,所述至少一薄片类 介质检测装置中的一薄片类介质检测装置位于在所述介质输送通道的入口处, 用于检测介质是否存在。
12. 根据权利要求 10所述的薄片类介质处理装置,其特征在于,还包括在所述介质 输送通道上设置的对齐介质的对齐挡板, 所述至少一薄片类介质检测装置中的 一薄片类介质检测装置位于所述对齐挡板上游, 用于检测介质是否对齐。
PCT/CN2011/082476 2010-12-16 2011-11-18 薄片类介质检测装置及薄片类介质处理装置 WO2012079442A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11848828.7A EP2653827A4 (en) 2010-12-16 2011-11-18 Thin-sheet medium detection device and thin-sheet medium processing unit
US13/993,951 US8910937B2 (en) 2010-12-16 2011-11-18 Sheet medium detection device and sheet medium processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010105946064A CN102122000A (zh) 2010-12-16 2010-12-16 薄片类介质检测装置及薄片类介质处理装置
CN201010594606.4 2010-12-16

Publications (1)

Publication Number Publication Date
WO2012079442A1 true WO2012079442A1 (zh) 2012-06-21

Family

ID=44250591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082476 WO2012079442A1 (zh) 2010-12-16 2011-11-18 薄片类介质检测装置及薄片类介质处理装置

Country Status (4)

Country Link
US (1) US8910937B2 (zh)
EP (1) EP2653827A4 (zh)
CN (1) CN102122000A (zh)
WO (1) WO2012079442A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102122000A (zh) * 2010-12-16 2011-07-13 山东新北洋信息技术股份有限公司 薄片类介质检测装置及薄片类介质处理装置
CN103376476B (zh) * 2012-04-16 2016-06-08 山东新北洋信息技术股份有限公司 薄片类介质检测装置及薄片类介质处理装置
US9341466B1 (en) * 2014-12-04 2016-05-17 Xerox Corporation Sheet height sensor using movable and stationary mirrors
CN109070376A (zh) * 2016-05-11 2018-12-21 日本图技株式会社 介质边缘检测装置
US11572243B2 (en) * 2018-01-25 2023-02-07 Hewlett-Packard Development Company, L.P. Media sensors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097910A (ja) * 2001-09-25 2003-04-03 Canon Inc 線光源、シート検出装置および画像形成装置
CN1426570A (zh) * 2000-03-02 2003-06-25 物理光学公司 利用具有漫射体之光导管的扫描器
CN1612073A (zh) * 2003-10-31 2005-05-04 夏普株式会社 纸张检测装置和图像形成装置
CN1892468A (zh) * 2005-06-28 2007-01-10 三星电子株式会社 纸张检测设备和打印方法
CN102122000A (zh) * 2010-12-16 2011-07-13 山东新北洋信息技术股份有限公司 薄片类介质检测装置及薄片类介质处理装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5349199A (en) * 1993-04-29 1994-09-20 Xerox Corporation Sensing apparatus for reducing sheet detection and registration errors by using multiple light beam reflections
US6259082B1 (en) * 1997-07-31 2001-07-10 Rohm Co., Ltd. Image reading apparatus
JP4266495B2 (ja) * 2000-06-12 2009-05-20 グローリー株式会社 紙幣処理機
KR100596235B1 (ko) * 2004-07-02 2006-07-06 엘지전자 주식회사 플라즈마 표시 패널의 구동 장치
JP4597823B2 (ja) * 2005-09-14 2010-12-15 株式会社リコー 画像形成装置
JP5066520B2 (ja) * 2006-07-24 2012-11-07 パナソニック株式会社 面状照明装置及びそれを用いた液晶表示装置
JP2008308300A (ja) * 2007-06-15 2008-12-25 Seiko Epson Corp ターゲット幅検出装置及び画像形成装置
CN201095217Y (zh) * 2007-09-29 2008-08-06 山东新北洋信息技术股份有限公司 纸张探测装置
US20100002461A1 (en) * 2008-07-02 2010-01-07 Rong-Yaw Wu Light guide bar with patterned surface to enhance light uniformity and intensity
TW201109588A (en) * 2009-09-10 2011-03-16 E Pin Optical Industry Co Ltd Light guide with taped saw tooth for linear light source

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1426570A (zh) * 2000-03-02 2003-06-25 物理光学公司 利用具有漫射体之光导管的扫描器
JP2003097910A (ja) * 2001-09-25 2003-04-03 Canon Inc 線光源、シート検出装置および画像形成装置
CN1612073A (zh) * 2003-10-31 2005-05-04 夏普株式会社 纸张检测装置和图像形成装置
CN1892468A (zh) * 2005-06-28 2007-01-10 三星电子株式会社 纸张检测设备和打印方法
CN102122000A (zh) * 2010-12-16 2011-07-13 山东新北洋信息技术股份有限公司 薄片类介质检测装置及薄片类介质处理装置

Also Published As

Publication number Publication date
US20130264770A1 (en) 2013-10-10
US8910937B2 (en) 2014-12-16
EP2653827A1 (en) 2013-10-23
CN102122000A (zh) 2011-07-13
EP2653827A4 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
WO2012079442A1 (zh) 薄片类介质检测装置及薄片类介质处理装置
JP4266495B2 (ja) 紙幣処理機
KR101868226B1 (ko) 지폐집적장치
US8836926B2 (en) Optical detector arrangement for document acceptor
JP2005018688A (ja) 反射式光学センサを用いる紙幣識別装置
JP2609048B2 (ja) 搬送媒体の検出装置
JP3420787B2 (ja) 搬送媒体の検出装置
KR101169454B1 (ko) 지폐 처리 기계
US8382229B2 (en) Lead edge detector for printer
US20200349327A1 (en) Card reader
JP2012153059A (ja) プリント装置
US8395784B2 (en) Method of lead edge detection in an inkjet printer
JP3723006B2 (ja) 端面検出装置
JP2010013228A (ja) 用紙検知装置
WO2013155933A1 (zh) 薄片类介质检测装置及薄片类介质处理装置
JP3055625B1 (ja) プリンタにおける用紙の検出センサ
JP7348788B2 (ja) 後処理装置及び画像形成システム
EP1510977B1 (en) A note skew detector
JPH10218430A (ja) 搬送媒体の検出装置
JP4736597B2 (ja) 媒体検出装置
CN214537793U (zh) 薄片类介质重张检测机构及薄片类介质处理装置
US20190228607A1 (en) Sheet recognition device and sheet recognition method
JP2020090372A (ja) 後処理装置
CN210312650U (zh) 一种薄片类介质处理装置
TWI744946B (zh) 可校正紙張的印表機裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848828

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13993951

Country of ref document: US

Ref document number: 2011848828

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE