WO2012079416A1 - 一种曲面反射镜及其制造方法 - Google Patents

一种曲面反射镜及其制造方法 Download PDF

Info

Publication number
WO2012079416A1
WO2012079416A1 PCT/CN2011/080704 CN2011080704W WO2012079416A1 WO 2012079416 A1 WO2012079416 A1 WO 2012079416A1 CN 2011080704 W CN2011080704 W CN 2011080704W WO 2012079416 A1 WO2012079416 A1 WO 2012079416A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
curved
glass
flat glass
curved mirror
Prior art date
Application number
PCT/CN2011/080704
Other languages
English (en)
French (fr)
Inventor
刘阳
Original Assignee
北京兆阳光热技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2013543504A priority Critical patent/JP2014508959A/ja
Application filed by 北京兆阳光热技术有限公司 filed Critical 北京兆阳光热技术有限公司
Priority to BR112013015039A priority patent/BR112013015039A2/pt
Priority to AP2013006980A priority patent/AP3555A/xx
Priority to EP11849477.2A priority patent/EP2653897A4/en
Priority to CA2821205A priority patent/CA2821205C/en
Priority to AU2011345019A priority patent/AU2011345019B2/en
Priority to KR1020137017435A priority patent/KR101748752B1/ko
Priority to NZ612551A priority patent/NZ612551A/en
Priority to MA36088A priority patent/MA34942B1/fr
Priority to US13/995,029 priority patent/US9541683B2/en
Priority to MX2013006956A priority patent/MX338893B/es
Publication of WO2012079416A1 publication Critical patent/WO2012079416A1/zh
Priority to TNP2013000262A priority patent/TN2013000262A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/1022Metallic coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10706Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer being photo-polymerized
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/82Arrangements for concentrating solar-rays for solar heat collectors with reflectors characterised by the material or the construction of the reflector
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/60Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
    • F24S2025/601Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules by bonding, e.g. by using adhesives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1043Subsequent to assembly
    • Y10T156/1044Subsequent to assembly of parallel stacked sheets only
    • Y10T156/1048Subsequent to assembly of parallel stacked sheets only to form dished or receptacle-like product

Definitions

  • the invention relates to the field of glass products and processing, and in particular to a curved mirror applied to the field of solar energy and a manufacturing method thereof. Background technique
  • the concentrating mirror mainly includes a trough parabolic mirror, a curved parabolic mirror, a curved spherical mirror, and the like.
  • the optical performance requirements of the mirror are often lower than that of a general optical lens. Therefore, the manufacture of the solar mirror surface often does not use the conventional mirror grinding method to reduce the manufacturing cost.
  • curved mirrors usually use a manual adhesive method to adhere a plurality of small thin glass lenses to a larger curved glass.
  • the curved mirror made by spreading thin glass flakes on the curved mirror of the bonded structure has poor specular concentrating performance, low specular reflection precision, and many bubbles between the thin glass flakes and the glue, so weather resistance And corrosion resistance is also poor, affecting the service life.
  • the fabrication of such a curved mirror requires first cutting a large thin glass mirror into a plurality of small pieces, and then attaching the small glass piece to a relatively large curved glass. The process is complicated and complicated, laborious and time consuming, and manual operation is cumbersome. It directly leads to small product output and high production cost, which is not suitable for large-scale serial production.
  • the adhesive is not uniformly hooked, the surface morphology of the mirror may be deteriorated, the reflection precision is lowered, and a high aggregation ratio cannot be achieved, and the product quality cannot be guaranteed.
  • curved mirrors are obtained by deforming a flat mirror or flat glass.
  • the high-temperature thermal deformation manufacturing method first heats the glass to a softened state, and then forms it in a mold. After the forming, the glass blank is subjected to a reflective layer coating and a protective layer coating. The manufacturing cost of this process is quite high.
  • the mechanical cold deformation manufacturing method is to directly press the flat glass mirror on the curved mirror support by mechanical pressing, so that the glass mirror is mechanically deformed according to the curved shape of the mirror support, and between the mirror and the mirror holder. It is fixed by an adhesive or mechanical to form a curved mirror.
  • the curved surface of the curved mirror manufactured in this way is cheaper than the high temperature deformation method, but the mirror holder and the curved mirror do not have a uniform temperature expansion coefficient.
  • the curved mirror manufactured by the mechanical cold deformation manufacturing method is fixed by the use of an adhesive or a machine, so that the protective paint on the back surface of the mirror is exposed to the air. When such a mirror is used outdoors for a long time, the reflective layer is corroded and the life of the mirror is reduced.
  • Chinese Patent Application No. 200810105690. 1 the invention of which is a curved mirror with a highly specular mirror and a manufacturing method thereof, discloses a curved glass composed of a curved glass and a flat glass mirror. .
  • the curved glass used in this solution is still obtained by the hot bending technique and is costly.
  • the application number is 200910302460. 9
  • the invention is a method for manufacturing a curved mirror for a method of manufacturing a curved mirror for a solar heliostat.
  • each mirror consists of a plane mirror and a mirror holder, and is fixed by high temperature heating.
  • the expansion coefficients of the mirror holder and the curved mirror are inconsistent, the shrinkage after cooling is inconsistent, and the curing effect is obtained. Reduced, and degumming may occur during the use of such mirrors.
  • this method needs to experience high vacuum pressure during the manufacturing process of the curved mirror, so the strength of the mirror support structure is required to be high, otherwise the surface precision will be affected.
  • Each mirror needs a high-strength and high-precision mirror holder, which is not conducive to mass production and the cost is not easy to control. Summary of the invention
  • the present invention provides a curved mirror capable of solving the above problems and a method of manufacturing the same.
  • the invention provides a curved mirror.
  • the curved mirror comprises a planar glass structure, an intermediate bonding layer, and a flat glass mirror.
  • the intermediate bonding layer is in the middle of the planar glass structure and the plane glass mirror so as to be mechanically deformed by bending under the support of the mold, and then heated and/or ultraviolet light irradiation and/or room temperature curing mode.
  • the flat glass structure, the intermediate bonding layer, and the flat glass mirror which have been bent and deformed are cured and bonded into a composite curved surface structure.
  • the ultraviolet light irradiation method is an ultraviolet lamp irradiation method or an outdoor sunlight irradiation method.
  • the intermediate bonding layer comprises an additive type.
  • the intermediate bonding layer is a hot melt film
  • the hot melt film is preferably ethylene acetate B. Ester copolymer or polyvinyl butyral.
  • the intermediate bonding layer comprises a hot melt film and a fixing type, and the hot melt film is located above the fixing type.
  • the intermediate bonding layer comprises a liquid photocurable adhesive and a fixed type, and the liquid photocurable adhesive is coated on the fixed type.
  • the liquid photocurable adhesive is preferably a UV adhesive.
  • the intermediate bonding layer is a bonding layer composed of polyvinyl chloride and a general chemical binder.
  • the intermediate bonding layer comprises a common chemical binder and an additive type, and the chemical binder is coated on the addition type.
  • the common chemical binder is a one-component, two-component or multi-component binder, which is heated or naturally cured.
  • the flat glass structure is tempered glass
  • the flat glass mirror is a tempered glass mirror.
  • the flat glass structure has a thickness of 2 mm to 5 mm, and the flat glass mirror has a thickness of 0.5 mm to 3. 2 mm.
  • the thickness of the flat glass is preferably 3 mm, and the thickness of the flat glass mirror is preferably 2 mm.
  • planar glass structure is non-tempered glass
  • flat glass mirror is a non-tempered glass mirror
  • the thickness of the intermediate bonding layer is 0.1 mm to 2 mm.
  • the curved mirror end or all of the curved mirror is disposed on the mirror holder, and the mirror holder is used for fixing the curved mirror to ensure the setting precision of the curved mirror.
  • the curved mirror is a concave mirror or a convex mirror.
  • the flat glass structure is a multi-layered flat glass, and the multi-layer flat glass is molded and fixed by a continuous large-sized adhesive layer.
  • planar glass structure is a double-layer planar glass, and the first planar glass is adjacent to the planar glass mirror, and the second planar glass disposed at the bottom is larger in size than the first planar glass.
  • the plane glass mirror and the first plane glass are arranged offset in the axial direction on the second plane glass to form a large-sized curved mirror.
  • the second planar glass and the first planar glass are identical in size to the planar glass mirror, and are disposed in a solid state in a staggered position in the axial direction.
  • the invention provides a method of making a curved mirror. The method firstly arranges a flat glass mirror, an intermediate bonding layer and a flat glass on a curved supporting device, and then mechanically bends and deforms under the support of the mold, and then irradiates with heat and/or ultraviolet light. / Or room temperature curing method The flat glass structure, the intermediate bonding layer, and the flat glass mirror which have been bent and deformed are cured and pressed to form a composite curved mirror.
  • the step of initially pressing the flat glass mirror and the flat glass on the curved support device by using the elasticity of the flat glass mirror is further included.
  • the curved support device comprises a base and a curved support, and the curvature of the curved support is greater than the curvature of the desired curved mirror, that is, the curved curvature radius is smaller than the radius of curvature of the desired curved mirror to compensate for the curved reflection The amount of springback after the mirror is made, and the correction amount of this curvature is different at each point on the curve.
  • the device formed after the curing and pressing is trimmed and inspected, and then the trimmed and inspected curved mirror is fixed on the mirror holder.
  • the mechanical means is to evacuate the mold or to pressurize the flat glass structure in the mold, the intermediate bonding layer, and the flat glass mirror.
  • the fixed type is fixed in the middle of the double-layer flat glass structure, which reduces the fluidity of the adhesive layer, reduces the springback of the flat glass structure, ensures the thickness of the intermediate bonding layer, and more easily controls the curved mirror. Manufacturing accuracy; and the addition of fixed objects to support the plane mirror, enhance the mechanical properties, reduce the breakage rate, that is, when the curved mirror breaks, the fixed type adheres to the glass fragments, reducing the harm to the operator and the nearby curved mirror surface. ;
  • the flat glass structure is used as the support for the curved mirror.
  • the curved glass with hot bending deformation is much lower in cost, more convenient for large-scale serial production, and the quality of the produced products is high;
  • the metal reflective layer of the mirror is completely sealed, which can block the air, so it has excellent weather resistance and is not easy to corrode, and can be used for a long time in various complicated environments outdoors;
  • the end or all of the curved mirror is arranged on the mirror holder. Because the mirror holder has the curvature and size of the required curved mirror, it can provide more mechanical strength and precision guarantee for the curved mirror, and extend the surface. The life of the mirror.
  • the structure of the mirror is stable, can be used for permanent use without modification, and is easy to install. It can be widely used in various fields of solar thermal focusing and solar thermal power generation.
  • FIG. 1 is a cross-sectional view of a curved mirror according to an embodiment of the present invention
  • FIG. 2 is a perspective view showing the overall structure of a mirror according to an embodiment of the present invention
  • FIG. 3 is an exploded perspective view of a material required for a curved mirror according to an embodiment of the present invention
  • FIG. 4 is a curved surface reflection according to another embodiment of the present invention.
  • FIG. 5 is a flow chart showing a process for fabricating a whole structure of a mirror according to an embodiment of the present invention
  • FIG. 6 is a schematic structural view of a curved surface supporting device according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a curved mirror in accordance with one embodiment of the present invention.
  • the curved mirror 2 is solidified by a flat glass 6, an intermediate bonding layer 7, and a flat glass mirror 8 to form a curved mirror of a composite structure.
  • the flat glass mirror 8 may be a high quality float flat glass body, and is preferably a tempered glass having a thickness of 2 mm.
  • the thickness of the flat glass 6 is preferably 3 mm.
  • the intermediate bonding layer 7 may be selected from a high quality ethylene vinyl acetate copolymer (EVA) sheet or a polyvinyl butyral (PVB) sheet.
  • EVA ethylene vinyl acetate copolymer
  • PVB polyvinyl butyral
  • the intermediate bonding layer 7 may also be provided with a bonding layer composed of a high quality EVA, PVB sheet and a fixed type.
  • the intermediate bonding layer 7 may be coated with a bonding layer composed of a liquid photocurable adhesive and a fixed type, such as the liquid photocuring adhesive being a UV adhesive.
  • the intermediate bonding layer 7 may be a bonding layer composed of a plastic film such as polyvinyl chloride (PVC) and a common chemical binder.
  • PVC polyvinyl chloride
  • the intermediate bonding layer 7 is selected from a bonding layer composed of a common chemical binder and a fixed type.
  • the intermediate bonding layer 7 is directly selected from a common chemical binder.
  • the common chemical binder may be a one-component, two-component or multi-component binder.
  • the planar glass 6 and the planar glass mirror 8 are non-tempered glass.
  • the thickness of the intermediate bonding layer is from 0.1 mm to 2 mm.
  • the curved mirror structure is prepared by using non-tempered, non-frosted ordinary glass.
  • non-tempered glass to reduce the difficulty of edging before tempering; in addition, non-tempered glass is cheaper and has no pollution to the environment; and non-tempered glass can be used to obtain better curved mirror molding, which ensures more High precision and lighter curved mirrors.
  • the curved mirror of the present embodiment is formed by pressing a double-layer glass planar structure, so that the curved mirror after the manufacturing has a certain amount of springback.
  • the following can be used. Several ways:
  • the curved mirror after manufacturing is slightly larger than the required curved mirror in terms of curvature and size to compensate for the rebound amount after the curved mirror is formed;
  • the intermediate bonding layer uses the fixed type as the supporting structure of the adhesive layer, so that the plane glass, the flat glass mirror and the intermediate bonding layer have consistent parameters, so that the curved mirror has good heat during the working process. Stabilization energy; and the fixed type also enhances the bonding support of the flat glass, the flat glass mirror and the intermediate bonding layer, and enhances the resistance to rebound deformation of the flat glass and the flat glass mirror, and reduces the curved mirror The amount of springback after manufacturing is completed, which improves the stability of the curved mirror and prolongs the service life of the product.
  • the fixed type has an adsorption property, which can reduce the fluidity of the adhesive layer and ensure the uniformity of the adhesive layer.
  • the flat composite glass glue can achieve uniform distribution of glue between the double glass.
  • a fixing type is added to the intermediate bonding layer to adsorb the glue, so that the glue is evenly arranged along the curved surface in the middle of the two layers of glass to achieve the purpose of uniform bonding of the glue.
  • the three can form a whole after molding, thereby enhancing the bonding support, improving the anti-planar glass and the flat glass mirror, and reducing the curved mirror.
  • the amount of rebound after manufacturing is completed.
  • the fixed type can effectively control the thickness of the intermediate bonding layer to facilitate the control of the manufacturing precision of the curved mirror.
  • the fixed type can also support the plane mirror. Enhance the mechanical properties of curved mirrors.
  • the fixed type is arranged between the double planes, which reduces the product breakage rate. When the curved mirror breaks, the fixed type can adhere to the glass fragments, thereby reducing the harm to the operator and the nearby curved mirror surface.
  • FIG. 2 is a perspective view showing the overall structure of the mirror according to an embodiment of the present invention.
  • the curved mirror 2 is fixed inside the mirror holder 1, thereby forming the overall structure of the mirror. .
  • the overall structure of the mirror comprises a mirror holder 1, a curved mirror 1 (see Fig. 1 for a specific structure), and a curved support frame 3.
  • the surface of the mirror holder 1 adjacent to the curved mirror 2 is a curved surface, and the curvature and size of the curved surface coincide with the curvature of the curved surface of the back surface of the desired curved mirror 2.
  • the curved mirror 1 is disposed at the end or all of the mirror holder 1 and supported and fixed by the curved support frame 3. Since the mirror has the same curvature and dimensions as the desired curved mirror and can support and secure the curved mirror, it provides higher mechanical strength to the curved mirror and extends the life of the curved mirror.
  • FIG. 3 is an exploded perspective view of the material required for a curved mirror in accordance with one embodiment of the present invention.
  • a curved mirror with an opening (the linear distance between the ends of the curved ends) of 1. 2 m, a length of 2. 4 m and an arc length of 1.22 m is taken as an example, and FIG. 3 is explained in detail.
  • the materials required for the curved mirror are a curved support frame 3, a mirror holder 1, a flat glass 6, an intermediate bonding layer 7, and a flat glass mirror 8.
  • the curvature and size of the curved support frame 3 are the same as the curvature and size of the back surface of the curved mirror 2.
  • the opening of the curved support frame 3 is slightly larger than the opening of the curved mirror, that is, the opening of the curved support frame 3 is slightly larger than 1. 2 m, and the center distance of the two adjacent curved support frames is 2.4 m.
  • the flat glass 6 has a size of 1.22 m long, 2. 4 m wide, and 3 mm thick, and the flat glass 6 is made of tempered glass.
  • the intermediate bonding layer 7 may be a hot melt film, and is made of a copolymer of high quality ethylene and vinyl acetate (EVA) and polyvinyl butyral (PVB) having good weather resistance. And the size of the hot melt film is slightly larger than the size of the flat glass 6, such as the size of the hot melt film being 1. 25 m x 2. 5 m.
  • EVA ethylene and vinyl acetate
  • PVB polyvinyl butyral
  • the intermediate bonding layer 7 may also be a hot melt film and a fixed type, and the hot melt film is disposed on the fixing type.
  • the size of the fixed type is slightly larger than the size of the flat glass 6.
  • the size of the fixed type is 1.25m x 2. 5m, and the fixed type is made of glass fiber. Weibu or non-woven fabric.
  • the intermediate bonding layer 7 can also be formed by applying a liquid photocurable adhesive such as a liquid UV adhesive to the fixed type.
  • a liquid photocurable adhesive such as a liquid UV adhesive
  • the size of the fixed type is slightly larger than the size of the flat glass 6, for example, the size of the fixed type is 1. 25 m x 2. 5 m.
  • the intermediate bonding layer 7 can also be coated with a common chemical binder, and the conventional chemical binder is a one-component, two-component or multi-component binder. Further, the intermediate bonding layer 7 may be a general chemical binder and a fixing type, so that the flat glass mirror 8 is completely bonded to the flat glass 6 and integrally joined in a tightly hooked manner.
  • Such an intermediate bonding layer using a common chemical binder is inexpensive and easy to operate, but the effect is not optimal.
  • the flat glass mirror 8 is thicker than the flat glass 6 and has a thickness of, for example, 1. 2 m X 2. 4 m and a thickness of 2 mm.
  • the curved surface of the mirror holder 1 is upward, and the mirror surface (the side coated with the reflective layer) of the plane glass mirror 8 faces downward and is adjacent to the intermediate bonding layer 7. This way of placing the reflective surface coated with the reflective layer inside minimizes the wear and damage of the coating.
  • the flat glass in Figures 1 to 3 above is a flat glass structure.
  • the flat glass is not limited to a flat glass structure, which can be described in detail as a multi-layer planar glass multi-layer planar glass structure.
  • the curved mirror includes a flat glass mirror 8, an intermediate bonding layer 7, and a planar glass structure.
  • the planar glass structure comprises a first planar glass 13 , an adhesive layer 20 , and a second planar glass 12 .
  • planar glass structure is not limited to the two-layer structure shown in FIG. 4, that is, the invention is not limited to only including the first planar glass 13 and the second planar glass 12, and may also include multiple layers of flat glass. Thereby forming a multilayer planar glass structure.
  • the flat glass structure is fixed by two layers of flat glass (ie, the first flat glass 13 and the second flat glass 12) through the adhesive layer 20; and the specific structure and working principle of the adhesive layer are The structure and working principle of the intermediate bonding layer 7 described above are the same.
  • planar glass structure (including the first planar glass 13 , the bonding layer 20, and the second planar glass 12) is located below the flat glass mirror 8.
  • the two layers of planar glass are different in size and are located at the bottom.
  • the size of the second planar glass 12 is greater than the size of the first planar glass 13 at the top.
  • the first planar glass 13 is regularly arranged on the second planar glass 12, and after being pressed and shaped, it is solidified by the continuous large-sized adhesive layer 20 to form a curved double-layer planar glass structure.
  • the planar glass mirrors 8 which are similar in size to the first planar glass 13 are arranged on the double-layer planar glass structure in a longitudinal direction (ie, the axial direction), and then pass through a continuous large-sized adhesive layer. 20 forms a curved mirror after curing.
  • the second planar glass 12 and the first planar glass 13 of the double-layer planar glass structure are the same size as the planar glass mirror 8.
  • Three pieces of glass ie, the second flat glass 1 2, the first flat glass 13 and the flat glass mirror 8) are arranged offset from each other in the axial direction, and after pressing and setting, each layer of the curved surface passes through a continuous large-sized stick.
  • the layer 20 is cured to form a curved mirror.
  • the curved mirror of the multi-layer planar glass structure can perform large-scale surface forming and curing in the same process.
  • the curved mirror with multi-layer planar glass structure has higher surface precision, and can be bent with a thinner single-piece flat glass and a flat glass mirror to obtain higher curvature, and at the same time, can achieve higher mechanical strength.
  • a single large-sized curved mirror can be bonded with a small-sized glass combination to expand the application range.
  • the curved mirror with multi-layered flat glass completes the surface forming and curing in the same process.
  • FIG. 5 is a flow chart showing the manufacturing process of the entire structure of the mirror according to an embodiment of the present invention.
  • step 51 the preparation, selection and corresponding preparation of the material, including the fabrication of the curved support device, and the selection and preparation of the flat glass 6, the intermediate bonding layer 7, and the flat glass mirror 8.
  • the curved surface supporting device is a device for storing, fixing, and fabricating the curved mirror during forming a curved mirror; and the curved support frame 3 is formed after the curved mirror is formed. And in its operation, means for fixing and supporting the mirror.
  • the selection and manufacture of the material also includes the selection and fabrication of a flat glass, an intermediate bonding layer, and a flat glass mirror, which will be described in detail below.
  • the flat glass 6 can be made of tempered, flat flat glass with a thickness of between 2 ⁇ and 5 ,. And the thickness is preferably 3 mm.
  • the material of the intermediate bonding layer 7 may be a hot melt film, or a hot melt film and a fixed type, or a liquid light curing glue (such as a UV adhesive) and a fixed type, or a common chemical adhesive, or Ordinary chemical binders and fixed types.
  • the intermediate bonding layer 7 When the intermediate bonding layer 7 is a hot melt film, the intermediate bonding layer may be an ethylene vinyl acetate copolymer (EVA), and the intermediate bonding layer has a melting temperature of from 1 20 °C to 140 °C.
  • EVA ethylene vinyl acetate copolymer
  • the fixed type is required to be disposed under the hot melt film.
  • the material selected for the intermediate bonding layer 7 is a liquid photocurable adhesive (such as a UV adhesive) and a fixed type
  • the liquid photocurable adhesive such as a UV adhesive
  • the liquid photocurable adhesive needs to be uniformly applied to the Add a fixed type.
  • the material selected for the intermediate bonding layer 7 is a general chemical binder
  • One is to heat or cold-bond a layer of plastic film such as PVC (polyvinyl chloride) to the back side (the coated side) of the plane mirror 8 and heat-bond another layer of PVC to the plane.
  • PVC polyvinyl chloride
  • the ordinary chemical binder is directly applied to both sides of the biplanar glass to be coated (the plane mirror 8 and the plane mirror 6), and then the biplane glass curved surface is pressed together, when the ordinary After the chemical binder is cured, a curved mirror can be formed.
  • the flat glass mirror 8 may be a flat-quality high-quality float flat glass mirror made of mirror-level coating, and the material is tempered glass, and the thickness is 0. 5mm- 3. 2mm, and the thickness is preferably 2mm. And the size of the flat glass mirror 8 needs to be slightly smaller than the size of the flat glass 6.
  • the flat glass 6, the intermediate bonding layer 7, and the flat glass mirror 8 are superposed on the curved support means.
  • the flat glass mirror 8, the intermediate bonding layer 7, and the flat glass 6 are sequentially disposed on the curved support device such that the four layers are sequentially stacked from bottom to top. Then, the flat glass 6 is initially pressed and fixed by the elasticity of the flat glass mirror 8, so that the flat glass 6 and the flat glass mirror 8 are pressed and arranged according to the convex surface (or concave surface) of the curved support device. And the outer shape of the intermediate bonding layer 7 is slightly larger than the size of the flat glass 6.
  • step 521 the flat glass mirror, the intermediate bonding layer, and the flat glass that have been initially press-fitted are mechanically bent and deformed.
  • a mechanical way to draw the curved support device Vacuum, the flat glass mirror, the intermediate bonding layer, and the flat glass are bent and deformed under atmospheric pressure.
  • Another mechanical method is to directly pressurize the flat glass mirror, the intermediate bonding layer, and the flat glass to bend and deform it.
  • step 530 the laminated flat glass 6, the intermediate bonding layer 7, and the flat glass mirror 8 are cured and pressed by heating or ultraviolet light or natural curing at room temperature.
  • the intermediate bonding layer 7 is a hot melt film
  • the intermediate bonding layer 7 is completely bonded to the flat glass mirror 8 and the flat glass 6 and is tightly and uniformly integrated by using a high pressure and temperature rising manner.
  • the process parameters of the hot melt film are: (1) simultaneous heating and boosting;
  • the intermediate bonding layer 7 is composed of a liquid photocurable adhesive (such as a UV adhesive) and a fixed type
  • the enamel is cured by ultraviolet light irradiation or outdoor sunlight, and preliminary in 1-5 minutes. Curing, 20-100 minutes to bond. And during the ultraviolet lamp or sunlight, the degree of vacuum is less than 10,000 Pa.
  • the use of sunlight to complete the solidification of the curved mirror makes the overall process energy efficient and efficient.
  • the intermediate bonding layer 7 is composed of a plastic film such as polyvinyl chloride (PVC) and a general chemical adhesive
  • PVC polyvinyl chloride
  • the intermediate bonding layer 7 and the flat glass mirror are formed by a low-temperature or normal-temperature natural curing method.
  • the intermediate bonding layer 7 is a conventional binder. Directly using a low-temperature or normal-temperature natural curing method, the intermediate bonding layer 7 is completely bonded to the flat glass mirror 8 and the flat glass 6 and integrated into a uniform and uniform manner.
  • the intermediate bonding layer 7 is composed of a common chemical adhesive and a fixed type
  • the intermediate bonding layer 7 is completely bonded to the flat glass mirror 8 and the flat glass 6 by a low-temperature or normal-temperature natural curing method. Tightly and evenly combined into one.
  • the curved mirror can also mechanically press the flat glass and the flat glass mirror into a curved surface, and then the intermediate bonding layer disposed between the two flat mirrors is solidified with the curved surface to make the three Form a new curved surface as a whole.
  • the intermediate bonding layer between the two mirrors prevents the curved mirror from recovering to a planar state, thereby maintaining the desired curved surface structure.
  • the curing pressure is applied by the flat glass 6, the intermediate bonding layer 7, and the flat glass mirror 8.
  • the integrated body is trimmed and inspected to form the curved mirror 2.
  • the periphery of the intermediate bonding layer 7 is expected to be cut off; then, it is checked whether there are bubbles, whether there are impurities, whether there are problems such as crushing and degumming, and the corresponding repair is performed based on the inspection result to form a higher quality. Curved mirror.
  • the formed curved mirror is mounted to the mirror holder 1.
  • the curved mirror 2 is fixed to the mirror holder 1 using T-shaped and L-shaped pressing members to maintain good strength and to be easily mounted in other systems.
  • FIG. 6 is a schematic view showing the structure of a curved support device according to an embodiment of the present invention.
  • the curved support means 9 is composed of a base 10 and a plurality of equally spaced curved supports 11. Therefore, the manufacturing process of the curved support device 9 is the process of the base 10, the curved support 1 1 and the mounting of the curved support 11 to the base 10.
  • the curved surface supporting device 9 is configured to support the flat glass 6 and the flat glass mirror 8 during the processing of the curved mirror 2, so that the flat glass 6 and the flat glass mirror 8 are fixedly formed into a curved shape. Therefore, the curvature and the size of the curved surface of the curved support 1 1 are similar to the curvature and the size of the back of the curved mirror 2; if the amount of springback after the curved mirror is made, the curved support 1 1 is required to be curved.
  • the curvature is slightly larger than the curvature of the desired curved mirror 2, and its radius of curvature is slightly smaller than the radius of curvature of the desired curved mirror 2 to compensate for the amount of springback after the curved mirror 2 is completed.
  • the supporting structure is added as a supporting structure of the adhesive layer, so that the flat glass, the flat glass mirror, and the flat glass mirror are added.
  • the fixed type and the intermediate bonding layer have consistent parameters, thereby ensuring good thermal stability of the curved mirror during operation.
  • the fixing type enhances the bonding support between the flat glass, the flat glass mirror and the intermediate bonding layer, improves the stability of the curved mirror and prolongs the service life of the product.
  • the curved mirror structure of the present invention may be a concave type structure such as a parabolic surface type, a cylindrical surface type or a compound parabolic surface type, or a convex type structure.
  • the invention can be applied to various fields such as a solar photovoltaic system and a solar thermal system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Energy (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)

Description

一种曲面反射镜及其制造方法 技术领域
本发明涉及玻璃制品及加工领域, 尤其涉及一种应用于太阳能领域的 曲面反射镜及其制造方法。 背景技术
目前, 在许多工业装置中, 尤其是在太阳能聚光系统中, 经常会用到 各种不同形状的聚光反射镜。 聚光反射镜主要有槽式抛物面反射镜、 曲面 抛物面反射镜、 曲面球面反射镜等。
在太阳能聚光应用中, 对反射镜的光学性能要求往往低于一般光学镜 片, 因此太阳能反射镜面的制造往往不使用传统的镜面磨制法, 以降低制 造成本。
现有曲面镜通常是釆用人工胶粘方法将多个小薄玻璃镜片黏贴到较 大曲面玻璃上。 这种通过将薄玻璃小片散布在粘结结构的曲面镜上所制作 出的曲面镜, 镜面聚光性能差, 镜面反射精度低, 且各薄玻璃小片与胶之 间多有气泡, 因此耐候性及耐腐蚀性能也较差, 影响使用寿命。 此外, 这 种结构曲面镜的制作需要先将大薄玻璃镜切割成多个小片, 然后再将该玻 璃小片黏贴在比较大的曲面玻璃上, 工序多且复杂, 费工费时, 人工操作 繁瑣, 直接导致产品产量小, 制作成本高, 不适于大规模系列化生产。 并 且如果粘胶不均勾, 还可能使反射镜表面形貌变差, 反射精度变低, 无法 达到较高的聚集比, 产品质量无法得到保证。
通常情况下, 曲面反射镜是通过将平面镜或平面玻璃进行变形而得 到。 曲面反射镜成形工艺有两大类: 一类是高温热变形制造法, 另一类是 机械冷变形制造法。
高温热变形制造法是先将玻璃加热到软化状态, 然后在模具里成形, 成形后玻璃坯料再进行反射层镀膜和保护层喷涂。 这种工艺的制造成本相 当高昂。
机械冷变形制造法是将平面玻璃镜通过机械挤压方式紧贴在曲面镜 托上, 使玻璃镜按照镜托的曲面形状发生机械变形, 并且镜子和镜托之间 由粘结剂或机械固定, 以形成曲面反射镜。 这种方式制造的曲面反射镜的 曲面比用高温变形法便宜, 但镜托与曲面反射镜不具备一致的温度膨胀系 数。 并且此种机械冷变形制造法所制造出的曲面反射镜, 由于使用了粘结 剂或机械进行固定, 因此会使镜子背面的保护漆暴露在空气中。 长时间在 户外使用此种反射镜,会发生反射层被腐蚀现象,减小了反射镜使用寿命。
申请号为 200810105690. 1 ,发明名称为一种具有高度镜面反射镜的曲 面反射镜及其制作方法的中国专利申请, 公开了一种利用一层曲面玻璃和 一层平面薄玻璃镜组成的曲面玻璃。 然而该方案所使用的曲面玻璃仍利用 热弯技术获得, 成本很高。
申请号为 200910302460. 9 ,发明名称为一种用于太阳能定日镜的曲面 反射镜的制造方法的中国专利申请, 公开了一种制造曲面反射镜的方法。 在该专利申请中, 每片反射镜由平面反射镜和镜托组成, 并通过高温加热 使之固定, 然而由于镜托与曲面反射镜的膨胀系数不一致, 因此会导致冷 却后收缩不一致, 固化效果降低, 并且在使用此种反射镜过程中还可能会 出现脱胶现象。 此外, 这种方法在曲面反射镜制造过程中需要经历高真空 压力, 因此要求镜托结构的强度很高, 否则会影响曲面精度。 而每片反射 镜面都需要一个高强度和高精度的镜托, 不利于大规模生产, 成本不易控 制。 发明内容
本发明提供了一种能解决以上问题的曲面反射镜及其制造方法。
在第一方面, 本发明提供了一种曲面反射镜。 该曲面反射镜包括平面玻 璃结构、 中间粘结层, 平面玻璃镜。 且该中间粘结层处于该平面玻璃结构、 该平面玻璃镜的中间位置 ,以便通过机械方式使其在模具的支撑下弯曲变形 , 再通过加热和 /或紫外光照射和 /或常温固化方式, 将该已经弯曲变形的平面 玻璃结构、 中间粘结层、 平面玻璃镜固化而粘合成一个复合型的曲面结构。
进一步地, 该紫外光照射方式为紫外灯照射方式或者室外阳光照射方 式。
进一步地, 该中间粘结层包含有加固定型物。
进一步地, 该中间粘结层为热熔胶片, 该热熔胶片优选为乙烯醋酸乙 烯酯共聚物或聚乙烯醇丁醛。
进一步地, 该中间粘结层包含有热熔胶片和加固定型物, 且该热熔胶 片位于该加固定型物之上。
进一步地, 该中间粘结层包含有液态光固化胶和加固定型物, 且该液 态光固化胶涂覆于该加固定型物之上。 且该液态光固化胶优选为 UV胶黏 剂。
进一步地, 该中间粘结层是由聚氯乙烯和普通化学粘结剂组成的粘结 层。
进一步地, 该中间粘结层包括普通化学粘结剂和加固定型物, 且该化 学粘结剂涂覆于该加固定型物之上。
进一步地, 该普通化学粘结剂为单组分、 双组分或多组分粘结剂, 釆 用加热或自然固化。
进一步地,该平面玻璃结构为钢化玻璃,该平面玻璃镜为钢化玻璃镜。 该平面玻璃结构的厚度为 2毫米到 5毫米, 该平面玻璃镜厚度为 0. 5毫米 到 3. 2毫米。 且该平面玻璃厚度优选为 3毫米, 该平面玻璃镜厚度优选为 2毫米。
进一步地, 该平面玻璃结构为非钢化玻璃, 该平面玻璃镜为非钢化玻 璃镜。
进一步地, 中间粘结层的厚度为 0. 1毫米到 2毫米。
进一步地, 将该曲面反射镜端边或全部安置于镜托上, 该镜托用于固 定该曲面反射镜, 以保证该曲面反射镜的定型精度。
进一步地, 该曲面反射镜为凹面镜或凸面镜。
进一步地, 所述平面玻璃结构为多层平面玻璃, 且该多层平面玻璃通 过连续大尺寸的粘结层成型固定。
进一步地, 该平面玻璃结构为双层平面玻璃, 且第一平面玻璃靠近所 述平面玻璃镜, 该底部布置的第二平面玻璃尺寸大于该第一平面玻璃。
进一步地, 该平面玻璃镜与该第一平面玻璃在轴向方向上错位布置于 该第二平面玻璃之上, 以组成大尺寸的曲面反射镜。
进一步地, 该第二平面玻璃、 第一平面玻璃与该平面玻璃镜的尺寸一 致, 且在轴向方向上错缝位布置固化成型。 在第二方面, 本发明提供了一种曲面反射镜的制造方法。 该方法首先 将平面玻璃镜、 中间粘结层、 平面玻璃顺次布置于一曲面支撑装置上, 再 通过机械方式使其在模具的支撑下弯曲变形, 然后釆用加热和 /或紫外光照 射和 /或常温固化方式将该已发生弯曲变形的平面玻璃结构、 中间粘结层、 平面玻璃镜进行固化压合, 从而形成了复合型的曲面反射镜。
进一步地, 在所述固化压合步骤之前还包括利用该平面玻璃镜的弹性 将该平面玻璃镜、 平面玻璃初步压合在该曲面支撑装置上的步骤。
进一步地, 该曲面支撑装置包括基座和曲面支撑件, 且该曲面支撑件 的曲率大于所需曲面反射镜的曲率, 即弯曲曲率半径小于所需曲面反射镜 的曲率半径, 以弥补该曲面反射镜制成后的回弹量, 并且此曲率的修正量 在曲线上的各点位置有所不同。
进一步地, 在固化压合步骤之后, 对该固化压合后所形成的设备进行 修边及检验, 然后再将该修边及检验后的曲面反射镜固定于镜托上。
进一步地, 所述机械方式为将所述模具抽真空, 或者将该模具内的平 面玻璃结构、 该中间粘结层、 该平面玻璃镜进行加压。
本发明与现有技术相比具有以下优点:
( 1 ) 釆用平面玻璃结构与平面玻璃镜成型, 不需要热弯工艺, 具有 完全一致的热膨胀系数, 结构稳定, 两者结合紧密均勾, 镜面聚光性能优 异, 镜面反射精度高, 可最大限度减少漫反射, 且能够得到规定曲率的镜 面反射镜;
( 2 )釆用加固定型物固定于双层平面玻璃结构中间 ,降低了胶层的流 动性, 且降低平面玻璃结构的回弹量, 保证了中间粘结层的厚度, 更易控 制曲面反射镜制造精度; 并且加固定型物支撑平面反射镜, 增强了机械性 能, 降低破损率, 即当曲面反射镜破裂时, 加固定型物粘附玻璃碎片, 减 少对操作人员和附近曲面反射镜面的危害;
( 3 ) 将平面玻璃结构作为曲面反射镜的支撑件, 较热弯变形的曲面 玻璃在成本上要降低许多, 更易于大规模系列化生产, 并且所生产出的产 品质量精度都很高;
( 4 )反射镜的金属反射层被完全密封, 能够阻隔空气, 因此耐候性 能优异, 不易腐蚀, 可在户外各种复杂环境中长久使用; ( 5 ) 曲面反射镜端边或全部布置于镜托之上, 因镜托具有所需曲面 反射镜的曲率和尺寸, 其可以为曲面反射镜提供更多的机械强度和精度的 保证, 延长曲面反射镜的使用寿命。
( 6 )反射镜的结构稳定, 能保持永久使用而不变型, 且安装方便, 可广泛应用于各种太阳能集热聚焦、 太阳能热发电领域中。 附图说明
下面将参照附图对本发明的具体实施方案进行更详细的说明, 在附图 图 1是根据本发明一个实施例的曲面反射镜横截面剖视图;
图 2是根据本发明一个实施例的反射镜整体结构立体示意图; 图 3是根据本发明一个实施例的曲面反射镜所需材料的分解示意图; 图 4是根据本发明另一个实施例的曲面反射镜的立体结构示意图; 图 5是根据本发明一个实施例的反射镜整体结构制作工艺流程图; 图 6是根据本发明一个实施例的曲面支撑装置结构示意图。 具体实施方式
图 1是根据本发明一个实施例的曲面反射镜横截面剖视图。 图 1中, 该曲面反射镜 2由平面玻璃 6、 中间粘结层 7和平面玻璃镜 8进行固化成 型而形成复合结构的曲面反射镜。
具体地, 该平面玻璃镜 8可选用优质浮法平面玻璃镜本体, 且优选为 厚度是 2mm的钢化玻璃。 该平面玻璃 6的厚度优选为 3mm。 该中间粘结层 7可选择优质的乙烯醋酸乙烯酯共聚物(EVA )片、 聚乙烯醇丁醛(PVB)片。 或者该中间粘结层 7也可选用由优质的 EVA、 PVB片和加固定型物所组成 的粘结层。 或者该中间粘结层 7还可釆用由液态光固化胶和加固定型物所 组成的粘结层, 如该液态光固化胶为 UV胶黏剂。 或者该中间粘结层 7选 用由塑料薄膜如聚氯乙烯 (PVC ) 与普通化学粘结剂组合而成的粘结层。 或者该中间粘结层 7 选用由普通化学粘结剂和加固定型物所组成的粘结 层。 或者该中间粘结层 7直接选用普通化学粘结剂。 其中, 该普通化学粘 结剂可以是单组分、 双组分或多组分的粘结剂。 在本发明的一个实施例中,平面玻璃 6和平面玻璃镜 8为非钢化玻璃。 优选地, 中间粘结层的厚度为 Q. 1毫米到 2毫米。 优选地, 釆用非钢化、 不磨边的普通玻璃制备曲面反射镜结构。 釆用非钢化玻璃减小钢化前处理 的磨边难度;此外, 釆用非钢化玻璃成本低廉, 且对环境无污染; 且釆用 非钢化玻璃可以获得更好的曲面反射镜成型, 保证了更高的精度和更轻体 的曲面反射镜。
需要特别注意的是, 本实施例的曲面反射镜由于釆用双层玻璃平面结 构进行压合而成, 因此制造完成后的曲面反射镜具有一定回弹量, 为了解 决此问题, 可釆用以下几种方式:
( 1 ) 制造完成后的曲面反射镜在曲率、 尺寸方面都要略大于所需要 的曲面反射镜, 以补偿曲面反射镜成型后的回弹量;
( 2 ) 中间粘结层釆用加固定型物作为胶层的支撑结构, 使平面玻璃、 平面玻璃镜、 中间粘结层具有一致的参数, 使该曲面反射镜在工作过程中 具有良好的热稳定性能; 并且该加固定型物还增强了平面玻璃、 平面玻璃 镜与中间粘结层的粘结支撑作用, 且增强了抗平面玻璃和平面玻璃镜欲回 弹变形能力, 减少了曲面反射镜制造完成后的回弹量, 提高了曲面反射镜 的稳定性, 延长了产品使用寿命。
本实施例优选釆用加固定型物于双层平面玻璃中间固定, 因为加固定 型物具有吸附性能, 其可以降低胶层的流动性, 保证胶层均勾性。 在传统 平面玻璃成型过程中, 平面复合玻璃胶水在双玻璃间可实现胶水的均匀分 布。 但若为曲面成型加工, 因胶水具有流动性, 一般方法无法达到胶水均 匀分布。 因此本实施例在中间粘结层中增加了加固定型物, 以吸附胶水, 使胶水沿曲面均匀布置在两层玻璃中间, 达到胶水均布的目的。 因为加固 定型物布置于双平面玻璃之间, 因此成型后三者可形成一个整体, 进而增 强了粘结支撑作用, 提高了抗平面玻璃和平面玻璃镜欲回弹能力, 减少了 曲面反射镜制造完成后的回弹量。
因为在曲面反射镜制造过程中, 曲面反射镜的曲率与曲面支撑装置、 平面玻璃、 中间粘结层、 平面玻璃镜的厚度有直接关系, 因此保证中间粘 结层的厚度至关重要。 加固定型物可以有效控制中间粘结层的厚度, 以方 便控制曲面反射镜制造精度。 此外, 加固定型物还可以支撑平面反射镜, 增强曲面反射镜的机械性能。 并且将加固定型物布置于双平面之间, 降低 了产品破损率。 当曲面反射镜破裂时, 加固定型物可粘附玻璃碎片, 从而 减少了对操作人员和附近曲面反射镜面所带来的危害。
图 2是根据本发明一个实施例的反射镜整体结构立体示意图; 为了进 —步保证曲面反射镜 2的定型精度,将该曲面反射镜 2固定于镜托 1内部, 从而形成了反射镜整体结构。
图 2 中, 该反射镜整体结构包括镜托 1、 曲面反射镜 1 (具体结构参 见图 1 ) 、 曲面支撑架 3。 该镜托 1靠近曲面反射镜 2的一个面为曲面, 且该曲面的曲率和尺寸与所需曲面反射镜 2背部曲面的曲率一致。 此外, 该曲面反射镜 1端边或全部布置于该镜托 1之上, 并由该曲面支撑架 3所 支撑和固定。 由于镜托曲率和尺寸与所需曲面反射镜相同, 并且可支撑和 固定该曲面反射镜, 因此其可提供给曲面反射镜更高的机械强度, 延长曲 面反射镜的使用寿命。
图 3是根据本发明一个实施例的曲面反射镜所需材料的分解示意图。 现以开口(弧形两端点之间的直线距离)为 1. 2m,长为 2. 4m,弧长为 1. 22m 的曲面反射镜为例, 对图 3进行详细阐述。
图 3中, 该曲面反射镜所需材料分别为曲面支撑架 3、 镜托 1、 平面 玻璃 6、 中间粘结层 7、 平面玻璃镜 8。
该曲面支撑架 3的曲率、 尺寸与该曲面反射镜 2背面的曲率、 尺寸一 致。 该曲面支撑架 3开口稍大于该曲面反射镜的开口, 即该曲面支撑架 3 开口稍大于 1. 2m, 且两相邻曲面支撑架的中心距离为 2. 4m。
该平面玻璃 6的尺寸为 1. 22m长, 2. 4m宽, 3mm厚, 且该平面玻璃 6 的材质为钢化玻璃。
该中间粘结层 7可以是热熔胶片, 且其釆用的是耐候性较好的优质乙 烯与醋酸乙烯脂的共聚物 (EVA ) 、 聚乙烯醇缩丁醛(PVB ) 。 并且该热熔 胶片的尺寸要比该平面玻璃 6尺寸稍大些, 如该热熔胶片尺寸为 1. 25m x 2. 5m。
该中间粘结层 7也可以是热熔胶片和加固定型物, 且该热熔胶片布置 于该加固定型物之上。 并且该加固定型物尺寸比该平面玻璃 6的尺寸稍大 些, 如该加固定型物尺寸为 1. 25m x 2. 5m, 且该加固定型物材质为玻璃纤 维布或无纺布。
该中间粘结层 7还可以通过将液态光固化胶(如液态 UV胶黏剂 ) 涂 覆于加固定型物上而形成该中间粘结层。 并且该加固定型物尺寸要比平面 玻璃 6尺寸稍大, 如该加固定型物尺寸为 1. 25 m x 2. 5m。
该中间粘结层 7也可以釆用普通化学粘结剂, 且该普通化学粘结剂为 单组分、 双组分或多组分粘结剂。 此外, 该中间粘结层 7也可以是普通化 学粘结剂和加固定型物, 以使该平面玻璃镜 8与该平面玻璃 6完全粘结合 并紧密均勾地结合为一体。 此种釆用普通化学粘结剂的中间粘结层, 成本 低廉且操作简单, 不过效果不是最理想。
该平面玻璃镜 8尺寸厚要比该平面玻璃 6尺寸厚度稍小些, 如该平面 玻璃镜 8的尺寸为 1. 2m X 2. 4m , 厚度为 2mm。
图 3中, 该镜托 1的曲面向上, 该平面玻璃镜 8的镜面 (涂有反射层 的一面)朝下且其紧邻中间粘结层 7。 此种将涂有反射层的反射面置于内 部的方式, 大大减少了涂层的磨损和破坏。
以上所述图 1至图 3中的平面玻璃是一层平面玻璃结构。 实际上, 该 平面玻璃并未被限定为一层平面玻璃结构, 该平面玻璃可以是多层平面玻 多层平面玻璃结构做详细阐述。
图 4是根据本发明另一个实施例的曲面反射镜的立体结构示意图。 该 曲面反射镜包括平面玻璃镜 8、 中间粘结层 7和平面玻璃结构。 其中, 该 平面玻璃结构包括第一平面玻璃 1 3、 粘结层 20、 第二平面玻璃 1 2。
需要说明的是, 该平面玻璃结构不限于图 4所示的两层结构, 即本发 明未被限定在仅包含第一平面玻璃 1 3、 第二平面玻璃 1 2 , 还可以包含多 层平面玻璃, 从而形成多层平面玻璃结构。
图 4中, 平面玻璃结构由两层平面玻璃(即第一平面玻璃 1 3、 第二平 面玻璃 1 2 )通过粘结层 20形成曲面后固定; 且该粘结层的具体结构、 工 作原理与前文所述中间粘结层 7的结构及工作原理相同。
图 4 中, 该平面玻璃结构 (包括第一平面玻璃 1 3、 粘结层 20、 第二 平面玻璃 1 2 )位于该平面玻璃镜 8之下。
在本发明的一个实施例中, 该两层平面玻璃尺寸不同, 且位于底部的 第二平面玻璃 1 2的尺寸大于位于顶部的第一平面玻璃 1 3的尺寸。 并且该 第一平面玻璃 1 3规律地布置于该第二平面玻璃 1 2之上, 受压定型后, 通 过连续大尺寸的粘结层 20 固化后形成曲面双层平面玻璃结构。 而与该第 一平面玻璃 1 3尺寸相近的该平面玻璃镜 8在长度方向 (即轴向方向) 上 相互错位地布置于该双层平面玻璃结构之上, 然后通过连续大尺寸的粘结 层 20固化后形成曲面反射镜。
在本发明的另一个实施例中 (图 4并未示出) , 双层平面玻璃结构的 第二平面玻璃 1 2和第一平面玻璃 1 3的尺寸与该平面玻璃镜 8的尺寸相同。 三片玻璃(即第二平面玻璃 1 2、 第一平面玻璃 1 3、 平面玻璃镜 8 )在轴向 方向上相互错位地布置, 受压定型后, 每层曲面之间通过连续大尺寸的粘 结层 20 固化后形成曲面反射镜。 该多层平面玻璃结构的曲面反射镜可以 在同一过程中完成大尺寸的曲面成型和固化。
由此可见, 具有多层平面玻璃结构的曲面反射镜的曲面精度更高, 可 釆用更薄的单片平面玻璃和平面玻璃镜弯曲以获得更高曲率, 同时还能够 达到较高的机械强度。 并且通过错缝排列粘接方式, 可以用较小尺寸的玻 璃组合粘接得到单个大尺寸的曲面镜, 以扩展应用范围。
此外, 该具有多层平面玻璃的曲面反射镜在同一过程中完成曲面成型 和固化。
图 5是根据本发明一个实施例的反射镜整体结构制作工艺流程图。 在步骤 51 0 , 材料的制作、 选取及相应准备工作, 包括曲面支撑装置 的制作, 以及平面玻璃 6、 中间粘结层 7、 平面玻璃镜 8的选取及准备。
需要说明的是, 所述曲面支撑装置是在形成曲面反射镜过程中, 用于 存放、 固定及制作该曲面反射镜的装置; 而前文所述曲面支撑架 3则是在 该曲面反射镜成型后并在其工作过程中, 用于固定及支撑该反射镜的装 置。
该曲面支撑装置的形状、 工作原理、 制作方式将通过图 6及其相应说 明部分得以详述。 在制作该反射镜整体结构过程中, 所述材料的选取、 制 作还包括平面玻璃、 中间粘结层、 平面玻璃镜的选取及制作, 下面将详细 阐述。
该平面玻璃 6可选用钢化、平整的平面玻璃,厚度为 2匪到 5匪之间, 且厚度优选为 3mm。 该中间粘结层 7的材料可选用热熔胶片, 或者热熔胶 片和加固定型物, 或者液态光固化胶(如 UV胶黏剂 ) 和加固定型物, 或 者普通化学粘结剂, 或者普通化学粘结剂和加固定型物。
当该中间粘结层 7为热熔胶片时, 则该中间粘结层可以是乙烯醋酸乙 烯酯共聚物(EVA ) , 且该中间粘结层的熔化温度为 1 20 °C -140 °C。 当该中 间粘结层 7选用的材料为热熔胶片和加固定型物时, 则需要将该加固定型 物布置于该热熔胶片之下。
当该中间粘结层 7选用的材料为液态光固化胶(如 UV胶黏剂 ) 和加 固定型物时, 则需要将该液态光固化胶(如 UV胶黏剂 ) 均匀地涂覆于该 加固定型物上。
当该中间粘结层 7选用的材料为普通化学粘结剂时, 该曲面反射镜的 成型方法有两种。 一种是, 将一层塑料薄膜如 PVC (聚氯乙烯)加热或冷 压粘结于该平面反射镜 8的背面 (具有涂层的一面) , 并将另一层 PVC加 热粘结于该平面玻璃 6的欲粘结面上; 然后将该两层 PVC通过该普通化学 黏胶进行固定, 干胶后既可以形成该曲面反射镜。 另一种是, 直接将该普 通化学粘结剂涂覆于欲涂覆的双平面玻璃(平面反射镜 8和平面反射镜 6 ) 两面, 然后再将该双平面玻璃曲面压合, 当该普通化学粘结剂固化后, 就 可以形成曲面反射镜。
该平面玻璃镜 8 可选用制镜级镀膜制平整的平面优质浮法平面玻璃 镜, 且材质为钢化玻璃, 厚度为 0. 5mm- 3. 2mm , 厚度优选为 2mm。 并且该 平面玻璃镜 8尺寸需要比该平面玻璃 6尺寸稍小些。
在步骤 520 , 将该平面玻璃 6、 中间粘结层 7、 平面玻璃镜 8与该曲面 支撑装置进行叠合。
具体地, 将该平面玻璃镜 8、 中间粘结层 7、 平面玻璃 6顺次布置于 该曲面支撑装置上, 以使此四者自下而上形成依次叠合的层状。 然后利用 该平面玻璃镜 8的弹性初步压合固定, 使该平面玻璃 6与该平面玻璃镜 8 按照该曲面支撑装置的凸面 (或凹面)压紧布置。 并且该中间粘结层 7的 外形尺寸略大于该平面玻璃 6的尺寸。
在步骤 521 , 釆用机械方式使已初步压合固定的该平面玻璃镜、 中间 粘结层、 平面玻璃, 弯曲变形。 一种机械方式是, 将该曲面支撑装置抽成 真空, 在大气压作用下使该平面玻璃镜、 中间粘结层、平面玻璃弯曲变形。 另一种机械方式是, 直接向该平面玻璃镜、 中间粘结层、 平面玻璃, 弯曲 变形进行加压, 以使其弯曲变形。 在步骤 530 , 釆用加热或紫外光照或常 温自然固化方式对叠合后的该平面玻璃 6、 中间粘结层 7、 平面玻璃镜 8 进行固化压合。
具体地, 当该中间粘结层 7为热熔胶片时, 釆用高压并升温方式, 使 该中间粘结层 7与该平面玻璃镜 8和平面玻璃 6完全粘合并紧密均匀地结 合为一体。 其中, 该热熔胶片的工艺参数为: (1)升温与升压同时进行;
(2)初步加热, 温度由 20 °C到 50 °C , 加热时间为 20分钟; (3)加热温度由 50 °C到 120 °C , 加热时间为 1小时; (4)胶袋内降温至 50 °C; (5)整个加热 过程真空度小于 10000Pa o
当该中间粘结层 7 由液态光固化胶(如 UV胶黏剂) 和加固定型物组 成时, 则釆用紫外灯照射或者户外太阳光照射方式使之固化, 且 1-5分钟 内初步固化, 20-100分钟即可粘结完成。 并且在该紫外灯或太阳光照射过 程中, 真空度小于 10000Pa。 此外, 使用太阳光照射来完成曲面反射镜的 固化, 整体工艺节能且高效。
当该中间粘结层 7 由聚氯乙烯 (PVC ) 等塑料薄膜和普通化学粘胶剂 组成时, 釆用低温或常温自然固化方式, 使中间粘结层 7与该平面玻璃镜
8和平面玻璃 6完全粘结合并紧密均匀地结合为一体。
当该中间粘结层 7为普通粘结剂时。 直接釆用低温或常温自然固化方 式, 使中间粘结层 7与该平面玻璃镜 8和平面玻璃 6完全粘结合并紧密均 匀地结合为一体。
当该中间粘结层 7由普通化学粘胶剂和加固定型物组成时, 釆用低温 或常温自然固化方式, 使中间粘结层 7与该平面玻璃镜 8和平面玻璃 6完 全粘结合并紧密均勾地结合为一体。
需要说明的是, 该曲面反射镜还可釆用机械方式将平面玻璃与平面玻 璃镜压合成曲面, 然后再将布置于两平面镜之间的中间粘结层随该曲面而 固化, 以使三者形成新的曲面整体。 由于两平面镜之间的中间粘结层阻止 了曲面反射镜向平面状态恢复, 从而保持了所需的曲面结构。
在步骤 540 , 对由该平面玻璃 6、 中间粘结层 7、 平面玻璃镜 8固化压 合而形成的整体, 进行修边及检验, 以形成该曲面反射镜 2。
具体地, 首先对该中间粘结层 7周边进行预料裁掉; 然后检查整体是 否存在有气泡, 是否有杂质, 是否存在破碎、 脱胶等问题, 并基于该检查 结果进行相应修缮, 以形成较优质的曲面反射镜。
在步骤 550 , 将该形成的曲面反射镜安装到镜托 1上。
具体地, 使用 T型和 L型压紧件将该曲面反射镜 2固定于镜托 1上, 以保持良好的强度, 并且方便安装到其它系统中。
图 6是根据本发明一个实施例的曲面支撑装置结构示意图。 该曲面支 撑装置 9由基座 1 0以及多个等间距布置的曲面支撑件 1 1组成。 因此, 该 曲面支撑装置 9的制作过程就是, 该基座 1 0、 该曲面支撑件 1 1的制作以 及将该曲面支撑件 1 1安装到该基座 1 0上的过程。
该曲面支撑装置 9用以在该曲面反射镜 2加工过程中支撑该平面玻璃 6和平面玻璃镜 8 , 以使该平面玻璃 6和该平面玻璃镜 8 固定成型为曲面 形状。 因此, 该曲面支撑件 1 1 曲面的曲率及尺寸与该曲面反射镜 2背部 的曲率及尺寸相近; 若考虑该曲面反射镜制成后的回弹量, 则需要该曲面 支撑件 1 1 曲面的曲率比所需曲面反射镜 2的曲率稍大, 且其曲率半径比 所需曲面反射镜 2的曲率半径稍小, 以补偿该曲面反射镜 2制作完成后的 回弹量。
此外, 为了进一步克服并减少该曲面反射镜 2的回弹量, 在中间粘结 层 7的选取过程中,选用加固定型物作为胶层的支撑结构,使该平面玻璃、 平面玻璃镜、 加固定型物和中间粘结层具有一致的参数, 从而保证该曲面 反射镜在工作过程中具有良好的热稳定性能。 并且该加固定型物还会增强 该平面玻璃、 平面玻璃镜、 中间粘结层之间的粘结支撑作用, 提高了曲面 反射镜的稳定性, 延长了产品使用寿命。
本申请人特别指出, 本发明的曲面反射镜结构可以是凹面型结构, 如 抛物面面型、 圓柱面面型或复合抛物面面型, 也可以是凸面型结构。 并且 本发明可以应用于太阳能光伏系统和太阳能光热系统等多个领域。
显而易见, 在不偏离本发明的真实精神和范围的前提下, 在此描述的本 发明可以有许多变化。 因此,所有对于本领域技术人员来说显而易见的改变, 都应包括在本权利要求书所涵盖的范围之内。 本发明所要求保护的范围仅由 所述的权利要求书进行限定

Claims

14 权 利 要 求 书
1、 一种曲面反射镜, 包括平面玻璃结构、 中间粘结层, 平面玻璃镜; 该中间粘结层处于该平面玻璃结构、 该平面玻璃镜的中间位置, 以便通过 机械方式使其在模具的支撑下弯曲变形, 再通过加热和 /或紫外光照射和 / 或常温固化方式, 从而将该已经弯曲变形的平面玻璃结构、 中间粘结层、 平面玻璃镜固化而粘合成一个复合型的曲面结构。
2、 根据权利要求 1 所述的一种曲面反射镜, 其特征在于, 所述紫外 光照射方式为紫外灯照射方式或者室外阳光照射方式。
3、 根据权利要求 1 所述的一种曲面反射镜, 其特征在于, 所述中间 粘结层包含有加固定型物。
4、 根据权利要求 1 所述的一种曲面反射镜, 其特征在于, 所述中间 粘结层为热熔胶片。
5、 根据权利要求 4 所述的一种曲面反射镜, 其特征在于, 所述热熔 胶片为乙烯醋酸乙烯酯共聚物或聚乙烯醇丁醛。
6、 根据权利要求 1 所述的一种曲面反射镜, 其特征在于, 所述中间 粘结层包括热熔胶片和加固定型物, 且该热熔胶片位于该加固定型物之 上。
7、 根据权利要求 1 所述的一种曲面反射镜, 其特征在于, 所述中间 粘结层包括液态光固化胶和加固定型物, 且该液态光固化胶涂覆于该加固 定型物之上。
8、 根据权利要求 7 所述的一种曲面反射镜, 其特征在于, 所述液态 光固化胶为 UV胶黏剂。
9、 根据权利要求 1 所述的一种曲面反射镜, 其特征在于, 所述中间 粘结层包括普通化学粘结剂。
1 0、 根据权利要求 1所述的一种曲面反射镜, 其特征在于, 所述中间 粘结层包括普通化学粘结剂和加固定型物, 且该化学粘结剂涂覆于该加固 定型物之上。
1 1、 根据权利要求 9或 1 0所述的一种曲面反射镜, 其特征在于, 所 述普通化学粘结剂为单组分、 双组分或多组分粘结剂。
12、 根据权利要求 3或 6或 7或 1 0所述的一种曲面反射镜, 其特征 15 在于, 所述加固定型物为玻璃纤维布或无纺布。
1 3、 根据权利要求 1所述的一种曲面反射镜, 其特征在于, 该曲面反 射镜端边或全部安置于镜托上, 且该镜托用于固定该曲面反射镜。
14、 根据权利要求 1所述的一种曲面反射镜, 其特征在于, 所述平面 玻璃结构为钢化玻璃, 所述平面玻璃镜为钢化玻璃镜。
15、 根据权利要求 1所述的一种曲面反射镜, 其特征在于, 所述平面 玻璃结构为非钢化玻璃, 所述平面玻璃镜为非钢化玻璃镜。
16、 根据权利要求 15 所述的一种曲面反射镜, 其特征在于, 所述中 间粘结层的厚度为 0. 1毫米到 2毫米。
17、 根据权利要求 1所述的一种曲面反射镜, 其特征在于, 所述平面 玻璃结构的厚度为 2毫米到 5毫米,所述平面玻璃镜厚度为 0. 5毫米到 3. 2 毫米。
18、 根据权利要求 1所述的一种曲面反射镜, 其特征在于, 该曲面反 射镜为凹面镜或凸面镜。
19、 根据权利要求 1所述的一种曲面反射镜, 其特征在于, 该平面玻 璃结构为多层平面玻璃, 且该多层平面玻璃通过连续大尺寸的粘结层成型 固定。
20、 根据权利要求 1所述的一种曲面反射镜, 其特征在于, 该平面玻 璃结构为双层平面玻璃, 且第一平面玻璃靠近所述平面玻璃镜, 该底部布 置的第二平面玻璃尺寸大于该第一平面玻璃。
21、 根据权利要求 1所述的一种曲面反射镜, 其特征在于, 该平面玻 璃镜与所述第一平面玻璃在轴向方向上错位布置于该第二平面玻璃之上, 以组成大尺寸的曲面反射镜。
22、 根据权利要求 1所述的一种曲面反射镜, 其特征在于, 该第二平 面玻璃、 第一平面玻璃与该平面玻璃镜的尺寸一致, 且在轴向方向上错缝 位布置固化成型。
23、 一种曲面反射镜的制造方法, 包括:
将平面玻璃镜、 中间粘结层、 平面玻璃结构顺次布置于一曲面支撑装 置上, 再通过机械方式使其在模具的支撑下弯曲变形, 然后釆用加热和 / 或紫外光照射和 /或常温固化方式将该已经弯曲变形的平面玻璃结构、 中 16 间粘结层、 平面玻璃镜进行固化压合, 从而形成了复合型的曲面反射镜。
24、 根据权利要求 23所述的一种曲面反射镜制造方法, 其特征在于, 所述固化压合步骤之前包括, 利用该平面玻璃镜的弹性将该平面玻璃镜、 平面玻璃结构初步压合在该曲面支撑装置上的步骤。
25、 根据权利要求 23所述的一种曲面反射镜制造方法, 其特征在于, 所述将平面玻璃镜、 中间粘结层、 平面玻璃结构顺次布置于曲面支撑装置 步骤之前包括制作该曲面支撑装置的步骤。
26、 根据权利要求 25所述的一种曲面反射镜制造方法, 其特征在于, 所述曲面支撑装置包括基座和曲面支撑件, 该曲面支撑件的曲率大于所需 曲面反射镜的曲率, 以弥补该曲面反射镜制成后的回弹量。
27、 根据权利要求 23所述的一种曲面反射镜制造方法, 其特征在于, 所述固化压合步骤之后包括, 对该固化压合后形成设备进行修边及检验的 步骤。
28、 根据权利要求 27所述的一种曲面反射镜制造方法, 其特征在于, 所述修边及检验步骤之后包括, 将所形成曲面反射镜固定于镜托上的步骤。
29、 根据权利要求 27所述的一种曲面反射镜制造方法, 其特征在于, 所述机械方式为将所述模具抽真空, 或者将该模具内的平面玻璃结构、 该 中间粘结层、 该平面玻璃镜进行加压。
PCT/CN2011/080704 2010-12-17 2011-10-12 一种曲面反射镜及其制造方法 WO2012079416A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
AU2011345019A AU2011345019B2 (en) 2010-12-17 2011-10-12 Curved reflective mirror and manufacturing method therefor
BR112013015039A BR112013015039A2 (pt) 2010-12-17 2011-10-12 espelho refletor curvado e método de fabricação
AP2013006980A AP3555A (en) 2010-12-17 2011-10-12 Curved reflective mirror and manufacturing method therefor
EP11849477.2A EP2653897A4 (en) 2010-12-17 2011-10-12 Curved reflective mirror and manufacturing method therefor
CA2821205A CA2821205C (en) 2010-12-17 2011-10-12 Curved reflective mirror and manufacturing method thereof
JP2013543504A JP2014508959A (ja) 2010-12-17 2011-10-12 曲面反射鏡およびその製造方法
KR1020137017435A KR101748752B1 (ko) 2010-12-17 2011-10-12 곡면 반사경 및 그 제조방법
US13/995,029 US9541683B2 (en) 2010-12-17 2011-10-12 Curved reflective mirror and manufacturing method thereof
MA36088A MA34942B1 (fr) 2010-12-17 2011-10-12 Miroir incurve et procede de fabrication
NZ612551A NZ612551A (en) 2010-12-17 2011-10-12 Curved reflective mirror and manufacturing method therefor
MX2013006956A MX338893B (es) 2010-12-17 2011-10-12 Espejo reflector curvo y metodo de fabricacion del mismo.
TNP2013000262A TN2013000262A1 (en) 2010-12-24 2013-06-17 Curved reflective mirror and manufacturing method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201010594506.1 2010-12-17
CN201010594506 2010-12-17
CN201010606339.8A CN102565901B (zh) 2010-12-17 2010-12-24 一种曲面反射镜及其制造方法
CN201010606339.8 2010-12-24

Publications (1)

Publication Number Publication Date
WO2012079416A1 true WO2012079416A1 (zh) 2012-06-21

Family

ID=46244061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080704 WO2012079416A1 (zh) 2010-12-17 2011-10-12 一种曲面反射镜及其制造方法

Country Status (16)

Country Link
US (1) US9541683B2 (zh)
EP (1) EP2653897A4 (zh)
JP (1) JP2014508959A (zh)
KR (1) KR101748752B1 (zh)
CN (1) CN102565901B (zh)
AP (1) AP3555A (zh)
AU (1) AU2011345019B2 (zh)
BR (1) BR112013015039A2 (zh)
CA (1) CA2821205C (zh)
CL (1) CL2013001760A1 (zh)
MA (1) MA34942B1 (zh)
MX (1) MX338893B (zh)
MY (1) MY168136A (zh)
NZ (1) NZ612551A (zh)
PE (1) PE20140452A1 (zh)
WO (1) WO2012079416A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9866357B2 (en) 2012-05-23 2018-01-09 Huawei Technologies Co., Ltd. Method and device for transmitting reference signal sequence
CN111239960A (zh) * 2020-02-28 2020-06-05 中国科学院西安光学精密机械研究所 反射镜高精度粘接方法及装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102998773B (zh) * 2012-12-15 2015-06-03 大连宏海新能源发展有限公司 一种太阳能聚光镜片组件的粘接工艺
JP6070259B2 (ja) * 2013-02-22 2017-02-01 セイコーエプソン株式会社 導光装置の製造方法、導光装置及び虚像表示装置
US10551590B2 (en) 2013-02-28 2020-02-04 Corning Incorporated Glass mirror apparatus and methods of manufacturing a glass mirror apparatus
CN103601374B (zh) * 2013-11-15 2015-12-30 西安航空动力股份有限公司 一种太阳能热发电用阳光收集器双曲面反射镜片的粘接方法
DE102014201622A1 (de) 2014-01-30 2015-08-20 Carl Zeiss Smt Gmbh Verfahren zum Herstellen eines Spiegelelements
NL2012607B1 (nl) 2014-04-11 2016-05-09 Aviation Glass & Tech Holding B V Voertuigspiegel, en werkwijze ter vervaardiging van een dergelijke spiegel.
EP3234478A4 (en) * 2014-12-19 2018-07-04 Trevor Powell Reflector assembly for a solar collector
ITTO20150219A1 (it) * 2015-04-15 2016-10-15 Istituto Naz Di Astrofisica Processo per la produzione di un'unita' ottica
CN104960187B (zh) * 2015-05-21 2017-03-01 哈尔滨工业大学 一种聚酰亚胺薄膜曲面预成形装置
CN105676326A (zh) * 2016-04-07 2016-06-15 常州中航蜂窝技术开发有限公司 定日镜镜体
KR102710627B1 (ko) * 2016-12-09 2024-09-27 엘지전자 주식회사 라미네이티드 글라스 및 그 제조 방법
IT201600127758A1 (it) * 2016-12-16 2018-06-16 Suberia Systems Srl Riflettore solare curvo in vetro laminato ad alta precisione ottica, in particolare per un impianto solare termico a concentrazione
JP6991137B2 (ja) * 2017-01-17 2022-01-12 積水化学工業株式会社 充填接合材、保護シート付き充填接合材、積層体、光学デバイス及び光学デバイス用保護パネル
TWI643014B (zh) * 2017-11-29 2018-12-01 泰特博旗濱股份有限公司 弧形電致變色片的製法及其成型裝置
CN108802876B (zh) * 2018-06-12 2021-01-22 深圳市润海源通科技有限公司 一种聚光太阳能模组用曲面镜的镀膜方法
GB201812147D0 (en) * 2018-07-25 2018-09-05 Pilkington Group Ltd Process
CN109852930B (zh) * 2019-03-29 2021-06-15 中国科学院上海技术物理研究所 一种补偿中口径介质膜平面反射镜镀膜形变的方法
CN112125503A (zh) * 2020-09-02 2020-12-25 四川旭虹光电科技有限公司 一种曲面玻璃热弯成型的方法
CN112874272B (zh) * 2021-01-29 2024-01-26 福耀玻璃工业集团股份有限公司 一种一体化玻璃
CN113876157B (zh) * 2021-11-25 2023-05-12 郑州明航文教用品有限公司 一种磁性软镜子及其制作工艺
CN114632679B (zh) * 2022-03-01 2023-04-07 中天恒泽科技(深圳)有限公司 一种玻璃镜背涂方法及系统
CN114988678B (zh) * 2022-05-31 2024-07-12 宁夏吉光新能源有限公司 一种双曲面聚光反射镜的制造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4124277A (en) * 1977-02-16 1978-11-07 Martin Marietta Corporation Parabolic mirror construction
US5069540A (en) * 1990-10-18 1991-12-03 Gonder Warren W Parabolic solar collector body and method
CN2305622Y (zh) * 1997-04-17 1999-01-27 韩志刚 用于太阳能真空集热管的聚光装置
CN101389909A (zh) * 2006-01-06 2009-03-18 Nep太阳能私人有限公司 太阳能集热系统的反射器及太阳能集热系统
CN201255776Y (zh) * 2008-07-14 2009-06-10 姜仕刚 太阳能热发电复合反射镜
CN101571605A (zh) * 2008-04-30 2009-11-04 李建坤 一种具有高度镜面反射的曲面镜及其制作方法
CN101661125A (zh) * 2009-05-20 2010-03-03 陈应天 一种用于太阳能定日镜的曲面反射镜的制造方法
CN201945704U (zh) * 2010-12-17 2011-08-24 北京兆阳光热技术有限公司 一种曲面反射镜
CN202025101U (zh) * 2011-04-28 2011-11-02 北京兆阳光热技术有限公司 一种曲面反射镜结构
CN202075436U (zh) * 2011-04-28 2011-12-14 北京兆阳光热技术有限公司 一种曲面反射镜

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7022A (en) * 1850-01-15 Cideb-mill
IT1128006B (it) * 1979-02-09 1986-05-28 Bfg Glassgroup Produzione di specchi
US4372027A (en) * 1980-04-03 1983-02-08 Solar Kinetics, Inc. Method of manufacturing parabolic trough solar collector
US4451119A (en) * 1981-04-02 1984-05-29 Eastman Kodak Company Composite mirror and method of construction
JPS63223601A (ja) * 1987-03-12 1988-09-19 Nippon Sheet Glass Co Ltd 曲面鏡およびその製造方法
JPH0314601U (zh) * 1990-02-20 1991-02-14
JP3506524B2 (ja) * 1995-03-27 2004-03-15 三井化学株式会社 反射体及びそれを用いた反射部材及びその製造方法
JP2006103287A (ja) * 2004-10-08 2006-04-20 Ricoh Co Ltd 複合フィルム、複合積層体の製造方法、反射鏡の製造方法、画像投影装置および複合フィルムの成形方法
US20070221313A1 (en) * 2006-03-23 2007-09-27 Centre Luxembourgeois De Recherches Pour Le Verre Et La Ceramique S.A. (C.R.V.C.) Method of making reflector for solar collector or the like and corresponding product
US20070291384A1 (en) * 2006-06-14 2007-12-20 Guardian Industries Corp. Method of making reflector for solar collector or the like, and corresponding product, including reflective coating designed for improved adherence to laminating layer
TWM330414U (en) * 2007-10-08 2008-04-11 hong-yi Cai Lamp shell with optical reflection illumination structure
CN201311497Y (zh) * 2008-11-20 2009-09-16 皇明太阳能集团有限公司 定日镜用反射镜
CN101614448B (zh) * 2009-07-17 2011-12-28 中科力函(深圳)热声技术有限公司 太阳能集热器镜单元及其制作方法
US20120087029A1 (en) * 2010-10-08 2012-04-12 Guardian Industries Corp. Mirrors for concentrating solar power (CSP) or concentrating photovoltaic (CPV) applications, and/or methods of making the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4124277A (en) * 1977-02-16 1978-11-07 Martin Marietta Corporation Parabolic mirror construction
US5069540A (en) * 1990-10-18 1991-12-03 Gonder Warren W Parabolic solar collector body and method
CN2305622Y (zh) * 1997-04-17 1999-01-27 韩志刚 用于太阳能真空集热管的聚光装置
CN101389909A (zh) * 2006-01-06 2009-03-18 Nep太阳能私人有限公司 太阳能集热系统的反射器及太阳能集热系统
CN101571605A (zh) * 2008-04-30 2009-11-04 李建坤 一种具有高度镜面反射的曲面镜及其制作方法
CN201255776Y (zh) * 2008-07-14 2009-06-10 姜仕刚 太阳能热发电复合反射镜
CN101661125A (zh) * 2009-05-20 2010-03-03 陈应天 一种用于太阳能定日镜的曲面反射镜的制造方法
CN201945704U (zh) * 2010-12-17 2011-08-24 北京兆阳光热技术有限公司 一种曲面反射镜
CN202025101U (zh) * 2011-04-28 2011-11-02 北京兆阳光热技术有限公司 一种曲面反射镜结构
CN202075436U (zh) * 2011-04-28 2011-12-14 北京兆阳光热技术有限公司 一种曲面反射镜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2653897A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9866357B2 (en) 2012-05-23 2018-01-09 Huawei Technologies Co., Ltd. Method and device for transmitting reference signal sequence
US10454642B2 (en) 2012-05-23 2019-10-22 Huawei Technologies Co., Ltd. Method and device for transmitting reference signal sequence
CN111239960A (zh) * 2020-02-28 2020-06-05 中国科学院西安光学精密机械研究所 反射镜高精度粘接方法及装置

Also Published As

Publication number Publication date
KR101748752B1 (ko) 2017-06-19
EP2653897A4 (en) 2018-01-17
US20130265667A1 (en) 2013-10-10
PE20140452A1 (es) 2014-04-17
CA2821205A1 (en) 2012-06-21
AP3555A (en) 2016-01-18
AU2011345019A1 (en) 2013-07-11
CN102565901A (zh) 2012-07-11
CN102565901B (zh) 2014-06-04
JP2014508959A (ja) 2014-04-10
KR20130092608A (ko) 2013-08-20
US9541683B2 (en) 2017-01-10
MX2013006956A (es) 2013-10-03
AU2011345019B2 (en) 2014-09-04
MA34942B1 (fr) 2014-03-01
AP2013006980A0 (en) 2013-07-31
CA2821205C (en) 2016-05-31
NZ612551A (en) 2014-08-29
MX338893B (es) 2016-05-04
CL2013001760A1 (es) 2014-01-24
EP2653897A1 (en) 2013-10-23
MY168136A (en) 2018-10-11
BR112013015039A2 (pt) 2016-08-09

Similar Documents

Publication Publication Date Title
WO2012079416A1 (zh) 一种曲面反射镜及其制造方法
US4115177A (en) Manufacture of solar reflectors
CN101661125B (zh) 一种用于太阳能定日镜的曲面反射镜的制造方法
US20030005954A1 (en) Solar cell module and method of manufacturing the same
CN102759765B (zh) 一种曲面反射镜及其制造方法
CN103675990B (zh) 弯曲导光板及其制作方法
CA2642372A1 (en) Method of making reflector for solar collector or the like and corresponding product
GB2471818A (en) Method of manufacturing large dish reflectors for a solar concentrator apparatus
CN102338930A (zh) 光学薄膜材质之太阳能聚光结构及其制备方法
WO2013014998A1 (ja) 集光器及びこれを備えた集光装置
CN101571605A (zh) 一种具有高度镜面反射的曲面镜及其制作方法
CN103529503B (zh) 一种用于聚光太阳能模组的双曲面反射镜
US20110032629A1 (en) Electromagnetic energy concentrating device and method therefor
CN202025101U (zh) 一种曲面反射镜结构
EP2122269B1 (en) Method and equipment for producing a solar concentrator
CN101587235A (zh) 一种挠曲柱面聚光镜组构造
CN201804152U (zh) 张力结构太阳能聚光镜
CN108123007B (zh) 一种超薄双玻光伏组件的制备方法及其产物
CN201945704U (zh) 一种曲面反射镜
EP3701200A1 (en) Method, arrangement and production line for manufacturing a parabolic trough solar collector
CN202256854U (zh) 光学薄膜材质之太阳能聚光结构
CN205450431U (zh) 聚光镜片
CN2835899Y (zh) 一种平板型太阳能集热器
CN105717620A (zh) 聚光镜片
CN202003079U (zh) 太阳能定日镜的玻璃微弧曲面聚光镜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849477

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2821205

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2013543504

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013001760

Country of ref document: CL

Ref document number: 13995029

Country of ref document: US

Ref document number: 001431-2013

Country of ref document: PE

Ref document number: MX/A/2013/006956

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20137017435

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011345019

Country of ref document: AU

Date of ref document: 20111012

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011849477

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013015039

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013015039

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130617