WO2012077980A2 - Stem cell culturing apparatus - Google Patents

Stem cell culturing apparatus Download PDF

Info

Publication number
WO2012077980A2
WO2012077980A2 PCT/KR2011/009440 KR2011009440W WO2012077980A2 WO 2012077980 A2 WO2012077980 A2 WO 2012077980A2 KR 2011009440 W KR2011009440 W KR 2011009440W WO 2012077980 A2 WO2012077980 A2 WO 2012077980A2
Authority
WO
WIPO (PCT)
Prior art keywords
light source
stem cell
cell culture
light
culture apparatus
Prior art date
Application number
PCT/KR2011/009440
Other languages
French (fr)
Korean (ko)
Other versions
WO2012077980A3 (en
Inventor
황해령
글렌 칼더헤드로버트
Original Assignee
(주)루트로닉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)루트로닉 filed Critical (주)루트로닉
Publication of WO2012077980A2 publication Critical patent/WO2012077980A2/en
Publication of WO2012077980A3 publication Critical patent/WO2012077980A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/22Transparent or translucent parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/34Internal compartments or partitions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/10Means for providing, directing, scattering or concentrating light by light emitting elements located inside the reactor, e.g. LED or OLED
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion

Definitions

  • the present invention relates to a stem cell culture apparatus, and in particular, in the visible light region to increase the proliferation rate and lifespan of the stem cells using a wavelength of the wavelength of the near-infrared region to separate the light source and the culture environment, It is about a stem cell culture apparatus that is not affected by the temperature.
  • Stem cells are immature cells that have not yet differentiated and are cells that have the capacity to divide and replicate indefinitely while maintaining an undifferentiated state in in vitro culture. In addition, it is a parent cell capable of differentiating into many different kinds of cells that make up an organism depending on the time of development and location of the individual. Extracting these stem cells and transplanting them into the patient's diseased area restores the damaged cells to normal, healing the disease or regenerating tissue and organs.
  • stem cell research requires a sufficient amount of stem cells, but there are practical problems to gather enough cells.
  • stem cells have a problem that can face serious ethical problems, depending on their origin.
  • stem cells are pluripotent stem cells that form when the fertilized egg first divides (up to 8 cell stages after fertilization of eggs and sperm), and embryonic stem cells that are produced by continuous division of these pluripotent stem cells. It can be divided into cells, pluripotent cells, and multifunctional stem cells (adult stem cells, multipotent cells) contained in mature tissues and organs.
  • Embryonic stem cells have caused considerable controversy and some countries have banned the use of embryonic stem cells.
  • Adult stem cells are collected from a patient and transplanted into the patient, also known as autologous stem cells, and virtually no prohibition problem.
  • Successful use of autologous platelet rich plasma (PRP) for wound and bone treatment involves stem cells isolated from PRP.
  • PRP platelet rich plasma
  • autologous stem cells are very small and it is difficult to proliferate in sufficient amounts for the main procedure.
  • Exogenous stem cells derived from outside the patient can be secured in a sufficiently larger number than autologous stem cells.
  • Ethically acceptable sources of external origin include human organs and tissues, cord blood, animal embryonic stem cells (not controversial), and human amniotic fluid donated to specific stem cell banking institutions. The latter provides abundant multifunctional stem cells and has been approved by the Titan for various stem cell sources.
  • the inventors of the present invention have found that when the stem cells are regularly irradiated with light of a specific wavelength band, the proliferation rate and lifespan of the stem cells are significantly increased. At this time, in order for the light to affect the proliferation and life of the stem cells, the amount of light must be provided to the stem cells. Therefore, the distance between the stem cells and the light source should be close, but at the same time, the output of the light source should be high enough. A problem has been found that directly affects.
  • Another object of the present invention is to remove a stem cell culture apparatus from which factors that may affect the culture environment of stem cells by heat generation of a light source.
  • the object of the present invention is a hermetic culture chamber for receiving a container containing the stem cells to be cultured therein, a light source control unit for controlling the light source and the light source for irradiating light to the container and located on the culture chamber, the light source control unit It is achieved by a stem cell culture apparatus characterized by having a proliferation mode of stem cells or a maintenance mode of stem cells.
  • the stem cell culture apparatus it is preferable to further include a temperature control means for controlling the temperature inside the culture chamber.
  • the stem cell culture apparatus may further include a gas control means for adjusting the gas concentration in the culture chamber, wherein the gas concentration is preferably determined as the ratio of O2 and CO2.
  • the light source is preferably a light emitting diode (LED) or a laser diode (LD). In this case, it is preferable to defocus when using the laser diode LD.
  • the wavelength of the light irradiated from the light source is preferably in the range of 400 nm to 940 nm, and in particular, the energy of the light irradiated from the light source to the container is preferably 1 to 15 J / cm 2.
  • the propagation mode of the light source control unit is a control mode of operating the light source once to two times in two weeks
  • the maintenance mode is a control mode of operating one to five times in two months.
  • the stem cell culture apparatus it is preferable to further include a light source temperature control means for controlling the temperature of the light source.
  • the light source temperature control means is an air-cooled or air-cooled refrigerant tank including a cooling fan, one end is connected to the refrigerant tank inlet hose for introducing the refrigerant, one end is connected to the refrigerant tank outflow hose and inlet hose for outflow of the refrigerant
  • connected to the other end of the outlet hose may be a water cooling including a refrigerant circulation for cooling and circulating the refrigerant.
  • the stem cell culture apparatus it is preferable to further include a distance adjusting means for adjusting the height of the light source up and down so as to adjust the distance between the container and the light source.
  • the culture chamber further includes a light-transparent transparent partition on the upper portion, and the light source preferably irradiates light into the culture chamber through the transparent partition.
  • the stem cell culture apparatus preferably further comprises a light blocking member which is a cover for blocking external light to the light source and the transparent partition wall, wherein the light blocking member is air for circulating the air inside the sealing means with the outside It may further include a circulation means.
  • a light blocking member which is a cover for blocking external light to the light source and the transparent partition wall, wherein the light blocking member is air for circulating the air inside the sealing means with the outside It may further include a circulation means.
  • Cultivating stem cells using the stem cell culture apparatus according to the present invention has an effect of significantly increasing the proliferation rate and lifespan of the stem cells, in particular to effectively prevent the influence of the light source on the temperature, which is an important factor in the culture of stem cells There is an advantage.
  • FIG. 1 is a conceptual diagram of a stem cell culture apparatus according to an embodiment of the present invention
  • Figure 2 is a conceptual diagram of a light source and a light source temperature control means of the stem cell culture apparatus according to an embodiment of the present invention
  • Figure 3 is a cross-sectional view of the refrigerant tank of the stem cell culture apparatus according to an embodiment of the present invention.
  • FIG. 1 is a conceptual diagram showing the inside of the stem cell culture apparatus according to an embodiment of the present invention.
  • Stem cell culture apparatus of this embodiment is composed of a culture chamber 100, gas control means 200, temperature control means (not shown), the light source 300, the light source temperature control means (310).
  • the culture chamber 100 is not shown as a structure for receiving the container 10 containing the stem cells therein, but the door 10 is provided with a door that can be inserted into or removed from the culture chamber 100, the culture chamber 100 Windows can be installed to observe the inside. When the window is installed, it is preferable that a curtain or the like is provided to cover the window so that external light does not flow inside when it is not observed. Such doors and windows may be integrally formed.
  • the container 10 accommodated in the culture chamber 100 may be a test tube, a flask, a culture dish.
  • Stem cells accommodated and cultured in the container 10 may be stem cells of all types of humans and animals, such as neuroepithelial stem cells, mesenchymal stem cells, hematopoietic stem cells.
  • the culture chamber 100 is coupled to the gas control means 200 that can appropriately control the gas concentration in the air in the culture chamber 100 to the stem cell culture to provide an environment such as a temperature suitable for stem cell culture do.
  • the gas control means 200 needs to include an appropriate O 2 / CO 2 ratio in the culture of stem cells and gas circulation means for maintaining such a gas atmosphere.
  • the gas circulation means preferably includes an inlet for introducing a gas having an appropriate O 2 / CO 2 ratio into the culture chamber 100 and an outlet for discharging the gas inside the culture chamber 100.
  • the culture chamber 100 is coupled to a temperature control means (not shown) for adjusting the internal temperature of the culture chamber 100
  • the temperature control means (not shown) is a direct combination of the heating means and cooling means as a configuration Combined to heat or cool the inner wall of the chamber 100 or indirectly to control the temperature of the culture chamber 100 by heating or cooling the gas introduced through the gas control means 200 to enter the culture chamber 100 Can be configured.
  • the culture chamber 100 also has a temperature sensor or gas sensor that can confirm whether the gas control means 200 is properly adjusting the culture environment and the culture chamber 100 that calculates the data of these sensors and displays them outside the culture chamber 100.
  • a control unit may be added, and such a culture chamber 100 may further include a light source 200, a temperature control unit (not shown), a gas control unit 200, and a distance control unit, in addition to simply displaying data of a sensor. 320 and the like can be configured to control.
  • control panel of the control unit In order to control the control unit in a state in which the user is separated from the inside of the culture chamber 100, the control panel of the control unit is located outside the culture chamber 100, and the control panel controls the light irradiation time and light irradiation operation set by the user. Includes control buttons for adjusting parameters such as remaining time, LED output (mW), light output characteristics (continuous wave or pulse frequency setting), light wavelength, and a display that outputs the adjusted results.
  • control buttons for adjusting parameters such as remaining time, LED output (mW), light output characteristics (continuous wave or pulse frequency setting), light wavelength, and a display that outputs the adjusted results.
  • the upper portion of the culture chamber 100 includes a transparent transparent partition wall 110, and the upper portion of the transparent partition wall 110 includes a light source 300 for irradiating light adjusted to the inside of the culture chamber 100.
  • the transparent transparent partition wall 110 may use a glass panel in general, but may use an optical filter capable of blocking light of a specific wavelength depending on the purpose.
  • the transparent partition wall 110 passes light but blocks air or heat to block the temperature inside the culture chamber 100 from being affected by the heat of the light source 300.
  • the light source 300 is preferably a surface light source using an array of light emitting diodes or laser diodes, and the wavelength band is selected from the visible region in the near infrared range of 400 nm to 940 nm, and the range of the wavelength band is narrow (1 nm or less). It is preferable. When using a laser semiconductor array, each laser semiconductor is defocused so that uniform light is irradiated to the container. In addition, it is preferable that the light source 300 can adjust the light wavelength range, and the adjustment of the light wavelength range may be implemented by replacing the diode head or by arranging light emitting diodes having different emission wavelength characteristics in an array.
  • a separate light source control unit may be provided outside.
  • the light source control unit may be integrally formed with the control unit of the culture chamber 100.
  • the light source controller precisely adjusts the wavelength, energy level, and frequency of the light.
  • the light source control unit is preferably such that the energy of the light reaching the container by the light output is 1 to 15 J / cm 2.
  • the light source control unit may have a proliferation mode for proliferating and a maintenance mode for maintaining the proliferated stem cells.
  • the propagation mode is a control mode for operating the light source once to seven times in two weeks
  • the maintenance mode is a control mode for operating one to five times every two months.
  • the light source 300 is coupled to the light source temperature control means 310 for cooling the heat of the light source (300).
  • the light emitting diode 300 is a semiconductor, heat generation is insignificant, but heat generation of the driving circuit of the light emitting diode is transmitted to the light emitting diode, which affects its operating characteristics, thereby shifting the wavelength of light from the ideal wavelength band.
  • the light source 300 is a semiconductor laser, both the semiconductor laser and the heat generation of the circuit should be considered.
  • the light source temperature regulating means 310 removes the heat of the driving circuit so that the light emitting diode can irradiate light of an ideal wavelength band.
  • the light source temperature regulating means 310 may use various cooling means such as an air cooling method in which a cooling fan is coupled to the opposite side of the light irradiation surface of the light source 300 or a water cooling method by circulation of the refrigerant.
  • the light source temperature control unit 310 includes a refrigerant tank 312, an inlet hose 316, an outlet hose 317, and a refrigerant circulation unit 318.
  • the coolant tank is coupled to a surface opposite to the light irradiation surface of the light source 300 to allow heat generated in the driving circuit of the light source 300 to escape to the coolant stored in the coolant tank.
  • the refrigerant tank 312 includes an inlet 314 and an outlet 315 for inflow of refrigerant into the refrigerant tank 312, and an inlet hose 316 and an outlet for the inlet 314 and the outlet 315, respectively.
  • Hose 317 is coupled.
  • Refrigerant of the refrigerant tank is introduced and discharged into the refrigerant tank 312 by the inlet hose 316 and the outlet hose 317 connected to the refrigerant tank, respectively, and the other end of the inlet hose 316 and the outlet hose 317
  • the refrigerant circulation part 318 is connected.
  • the refrigerant circulation part 318 receives the refrigerant from the outflow hose 317 and cools it, and is configured to discharge the cooled refrigerant back to the inlet hose 316 at a constant pressure so that the refrigerant receives heat from the refrigerant tank 312 as a whole.
  • the refrigerant is circulated while releasing heat from the circulation unit 318.
  • the refrigerant tank 312 may be a tank shape having a generally empty space for storing the refrigerant, but as shown in FIG. It can have a structure that can be delivered to.
  • a heat transfer member 311 which is a plate made of a material having a high heat transfer rate such as a metal material, is provided. Can be formed.
  • the light source 300 is coupled to the distance adjusting means 320 for adjusting the light irradiation height of the light source 300 is configured to adjust the distance between the stem cells and the light source 300.
  • the light source 300 is supported by the support 321 horizontally supported, the distance adjusting means 320 is coupled to the vertical rod (rod) such that the support 321 is movable up and down and the light source 300 and the stem Adjust the distance to the container 100 containing the cells.
  • the control of the distance adjusting means 320 is preferably configured to be controlled by the light source control unit or the culture chamber 100 control unit.
  • Light blocking member 330 to block may be installed.
  • the light source temperature control means 310 is air-cooled, the air does not escape to the outside by the light blocking member 330 and thus the light source 300 may not be cooled even though the light source temperature control means 310 is present. have.
  • the air circulation means 340 capable of circulating the internal air and the outside air of the light blocking member 330 is preferably installed in the light blocking member 330, the air circulation means 340 is to be a simple ventilation hole It can be but consists of a fan that actively introduces or discharges air.
  • Pig tissue is a good example of biocompatibility in humans.
  • specially treated pig skin is commonly used for transplantation treatment of human burns, and pig heart valves are used as replacements for human heart valves.
  • stem cells With regard to stem cells, the best cell for research is pluripotent stem cells from embryos. Because the source contains a variety of fragments, the number of embryos available for each animal is significant, and neuroepithelial stem cells (NSCs) are relatively easy to obtain from the embryonic midbrain conduit. Neuroepithelial stem cells are genetically destined to differentiate into many types of neural tissues, especially neurons and astrocytes.
  • NSCs neuroepithelial stem cells
  • Pig neuronal epithelial stem cells were grown in culture, and experiments were performed to maintain the number of cultured neuroepithelial stem cells for a certain period.
  • the culture dish was irradiated with a defocused laser beam of 830 nm.
  • GaAlAs diode laser (Model: OhLaser-3D1, JMLL Co., Ltd.) was used as the laser beam generator. Irradiated about 3 times every 2 weeks, but separated the experimental group 1, 2, 4, 6, 8, 10 and 15 J respectively. The energy of / cm 2 was investigated.
  • the laser beam generating means was placed at exactly the same height from the culture dish so that the defocused laser beam was 5 cm in diameter in the culture dish.
  • Each experimental group was treated in exactly the same way, and a control group without irradiating a laser beam was prepared for comparison with the experimental group.
  • the proliferation of neurospheres was evaluated 1, 2, 4 and 6 weeks after light irradiation, and the evaluation method was used to evaluate whether the neural spheres contained stem cells by using Nestin staining on the sample neurospheres. .
  • the number of neurospheres was maintained with statistical significance in both the experimental group irradiated with the laser beam once and the experimental group irradiated twice with the control group until 12 months.
  • the quality and quantity of stem cells of each neurosphere were also maintained.
  • the control group the number of neurospheres began to decrease on the second month of evaluation, and after 12 months, the neurospheres remained few and the quality and quantity of stem cells were very low, and some of them were differentiated. Irradiation of the laser beam once a month was evaluated as being most suitable for the maintenance of propagated neurospheres.
  • mice had Parkinson's disease and Huntingdon's disease, and were divided into two groups, a transplanted group and a non-grafted group.
  • neurospheres cultured in the substantia nigra were transplanted.
  • the specimens were stained to determine whether the nervous system (Golgi stain) or astrocytes (Holzer stain) are growing in the transplant area. At the same time, it was also confirmed that the disease-related behavior was improved.
  • Parkinson's and Huntingdon's groups had improved gait for 6 months from 6 weeks after transplantation.
  • the incidence of in situ in the Parkinson's disease group was reduced, and memory in the Huntingdon's group was improved (Maze Training).
  • new dopaminergic neurons (Golgi staining) grew in the ventral epidermal region of the midbrain, and the nervous system grew. It was confirmed.
  • neuronal cells (Holzer staining) showing green fluorescence were grown.

Abstract

The present invention relates to a stem cell culturing apparatus which uses light of a specific wavelength to increase the proliferation rate and life of a stem cell. The stem cell culturing apparatus of the present invention comprises: a sealed culturing chamber which accommodates therein a vessel containing a stem cell to be cultured, and which has a transparent partition wall in an upper portion thereof; gas adjusting means for adjusting an internal environment of the culturing chamber; and a light source arranged outside the culturing chamber to irradiate light to the inside of the culturing chamber through the transparent partition wall.

Description

줄기세포 배양장치Stem Cell Culture Device
본 발명은 줄기세포 배양장치에 대한 것으로서, 특히 가시광선 영역에서 근적외선 영역의 파장 중 특정 대역의 파장 광을 이용해 줄기세포의 증식율과 수명을 높이되 광원과 배양환경을 분리해 광원으로 인해 배양환경의 온도 등이 영향을 받지 않도록 하는 줄기세포 배양장치에 대한 것이다.The present invention relates to a stem cell culture apparatus, and in particular, in the visible light region to increase the proliferation rate and lifespan of the stem cells using a wavelength of the wavelength of the near-infrared region to separate the light source and the culture environment, It is about a stem cell culture apparatus that is not affected by the temperature.
줄기세포(stem cell)란 아직 분화하지 않은 미성숙 상태의 세포로 체외 배양에서도 미분화 상태를 유지하면서 무한정으로 분열, 복제할 수 있는 능력을 갖고있는 세포를 말한다. 또한, 개체의 발달 시기와 위치하는 장소 등에 따라 생물체를 이루는 많은 종류의 서로 다른 세포로 분화해 나갈 수 있는 모세포이다. 이러한 줄기세포를 추출, 환자의 병부위에 이식하면 손상된 세포가 정상적으로 복원돼 병이 치료되거나 조직과 장기가 재생되는 효과를 볼 수 있다.Stem cells are immature cells that have not yet differentiated and are cells that have the capacity to divide and replicate indefinitely while maintaining an undifferentiated state in in vitro culture. In addition, it is a parent cell capable of differentiating into many different kinds of cells that make up an organism depending on the time of development and location of the individual. Extracting these stem cells and transplanting them into the patient's diseased area restores the damaged cells to normal, healing the disease or regenerating tissue and organs.
줄기세포 연구에는 충분한 양의 줄기세포가 필요하지만 충분한 세포를 모으기 위해서는 현실적인 문제점이 존재한다. 또한, 줄기세포는 그 유래에 따라 심각한 윤리적 문제에 직면할 수 있는 문제점을 가지고 있다.Stem cell research requires a sufficient amount of stem cells, but there are practical problems to gather enough cells. In addition, stem cells have a problem that can face serious ethical problems, depending on their origin.
사람의 경우 줄기세포는 그 유래에 따라 수정란이 처음 분열할 때 형성되는 만능 줄기세포(난자와 정자의 수정이후 8세포기까지), 이 만능 줄기세포들이 계속 분열해 만들어지는 배아 줄기세포(전분화능세포, pluripotent cell), 성숙한 조직과 기관에 들어있는 다기능 줄기세포(성체 줄기세포, multipotent cell) 등으로 나눌 수 있다.In humans, stem cells are pluripotent stem cells that form when the fertilized egg first divides (up to 8 cell stages after fertilization of eggs and sperm), and embryonic stem cells that are produced by continuous division of these pluripotent stem cells. It can be divided into cells, pluripotent cells, and multifunctional stem cells (adult stem cells, multipotent cells) contained in mature tissues and organs.
배아 줄기세포의 경우 상당한 논란을 일으키면서 몇몇 국가에서는 배아 줄기세포의 사용을 금지하기도 하였다. 성체 줄기세포는 환자에게서 채취하여 그 환자에게 재이식되는데 일명 자가 줄기세포라고도 불리며, 사실상 사용 금지문제가 거의 없다. 자가 PRP(Platelet Rich Plasma, 혈소판 농축혈장)가 상처 및 뼈 치료에 성공적으로 사용되는 것은 PRP에서 분리된 줄기세포와 관계된다.Embryonic stem cells have caused considerable controversy and some countries have banned the use of embryonic stem cells. Adult stem cells are collected from a patient and transplanted into the patient, also known as autologous stem cells, and virtually no prohibition problem. Successful use of autologous platelet rich plasma (PRP) for wound and bone treatment involves stem cells isolated from PRP.
그러나 자가 줄기세포의 수는 극히 적고 주요 시술을 위해 충분한 양으로 증식시키에는 어려움이 있다. 환자 외부에서 유래된 외인성 줄기세포는 자가 줄기세포보다 충분히 많은 수로 확보된 수 있다. 윤리적으로 허용 가능한 외부 유래 소스는 특수한 줄기세포 은행 기관에 기증된 인간의 장기와 조직, 제대혈, 동물 배아 줄기세포(논란에서 자유롭지는 않다) 그리고 인간 양수가 있다. 후자는 풍부한 다기능 줄기세포를 제공하며, 다양한 줄기세포 소스에 대해 바티칸으로부터 승인을 받은 바 있다.However, the number of autologous stem cells is very small and it is difficult to proliferate in sufficient amounts for the main procedure. Exogenous stem cells derived from outside the patient can be secured in a sufficiently larger number than autologous stem cells. Ethically acceptable sources of external origin include human organs and tissues, cord blood, animal embryonic stem cells (not controversial), and human amniotic fluid donated to specific stem cell banking institutions. The latter provides abundant multifunctional stem cells and has been approved by the Vatican for various stem cell sources.
본 발명의 발명자는 특정 파장대역의 광을 정기적으로 줄기세포에 조사하면 줄기세포의 증식율과 수명이 월등히 높아진다는 것을 발견하였다. 이때 광이 줄기세포의 증식 및 수명에 영향을 주기 위해서는 줄기세포에 충분한 광량을 제공해야 하므로 줄기세포와 광원과의 거리가 가까워야 하나 동시에 광원의 출력이 충분히 높아야 하므로 광원에서 발생되는 열이 줄기세포에 직접적으로 영향을 주는 문제점이 발견되었다.The inventors of the present invention have found that when the stem cells are regularly irradiated with light of a specific wavelength band, the proliferation rate and lifespan of the stem cells are significantly increased. At this time, in order for the light to affect the proliferation and life of the stem cells, the amount of light must be provided to the stem cells. Therefore, the distance between the stem cells and the light source should be close, but at the same time, the output of the light source should be high enough. A problem has been found that directly affects.
따라서 본 발명의 목적은 특정 파장대역의 광을 이용하여 줄기세포의 증식율과 수명을 늘리는 줄기세포 배양장치를 제공하는 것에 있다.It is therefore an object of the present invention to provide a stem cell culture apparatus for increasing the proliferation rate and life span of stem cells using light of a specific wavelength band.
본 발명의 다른 목적은 광원의 발열에 의해 줄기세포의 배양환경에 영향을 줄 수 있는 요인을 제거한 줄기세포 배양장치를 제거하는 것에 있다.Another object of the present invention is to remove a stem cell culture apparatus from which factors that may affect the culture environment of stem cells by heat generation of a light source.
본 발명의 상기 목적은 내부에 배양 대상 줄기세포를 담은 용기를 수용하는 밀폐형 배양챔버, 배양챔버 상부에 위치하며 용기로 광을 조사하기 위한 광원 및 광원을 제어하는 광원제어부를 포함하고, 광원제어부는 줄기세포의 증식모드 또는 줄기세포의 유지모드를 갖는 것을 특징으로 하는 줄기세포 배양장치에 의해 달성된다.The object of the present invention is a hermetic culture chamber for receiving a container containing the stem cells to be cultured therein, a light source control unit for controlling the light source and the light source for irradiating light to the container and located on the culture chamber, the light source control unit It is achieved by a stem cell culture apparatus characterized by having a proliferation mode of stem cells or a maintenance mode of stem cells.
본 발명에 따른 줄기세포 배양장치에서 배양챔버 내부의 온도을 조절하는 온도조절수단을 더 포함하는 것이 바람직하다.In the stem cell culture apparatus according to the present invention, it is preferable to further include a temperature control means for controlling the temperature inside the culture chamber.
또한, 본 발명에 따른 줄기세포 배양장치에서 배양챔버 내부의 가스농도를 조절하는 가스조절수단을 더 포함할 수 있으며, 이때 가스농도는 O2와 CO2의 비율로서 결정되는 것이 바람직하다.In addition, the stem cell culture apparatus according to the present invention may further include a gas control means for adjusting the gas concentration in the culture chamber, wherein the gas concentration is preferably determined as the ratio of O2 and CO2.
본 발명에 따른 줄기세포 배양장치에서 광원은 발광다이오드(LED) 또는 레이저다이오드(LD)를 이용하는 것이 바람직하다. 이때 레이저다이오드(LD)를 사용한 경우 디포커스되도록 하는 것이 바람직하다. 광원에서 조사되는 광의 파장은 400nm 내지 940nm 범위인 것이 바람직하며, 특히 광원으로부터 용기로 조사되는 광의 에너지는 1 내지 15J/cm2인 것이 바람직하다.In the stem cell culture apparatus according to the present invention, the light source is preferably a light emitting diode (LED) or a laser diode (LD). In this case, it is preferable to defocus when using the laser diode LD. The wavelength of the light irradiated from the light source is preferably in the range of 400 nm to 940 nm, and in particular, the energy of the light irradiated from the light source to the container is preferably 1 to 15 J / cm 2.
본 발명에 따른 줄기세포 배양장치에서 광원제어부의 증식모드는 광원을 2주에 1회 내지 7회 작동시키는 제어모드이며, 유지모드는 2달에 1회 내지 5회 작동시키는 제어모드이다.In the stem cell culture apparatus according to the present invention, the propagation mode of the light source control unit is a control mode of operating the light source once to two times in two weeks, and the maintenance mode is a control mode of operating one to five times in two months.
본 발명에 따른 줄기세포 배양장치에서 광원의 온도를 조절하기 위한 광원온도조절수단을 더 포함하는 것이 바람직하다. 이때 광원온도조절수단은 냉각팬을 포함하는 공냉식이거나 광원에 결합된 냉매 탱크, 일단이 냉매 탱크에 연결되어 냉매를 유입시키는 유입호스, 일단이 냉매 탱크에 연결되어 냉매를 유출시키는 유출호스 및 유입호스와 유출호스의 타단에 연결되어 냉매를 냉각시키고 순환시키는 냉매순환부를 포함하는 수냉식일 수 있다.In the stem cell culture apparatus according to the present invention, it is preferable to further include a light source temperature control means for controlling the temperature of the light source. At this time, the light source temperature control means is an air-cooled or air-cooled refrigerant tank including a cooling fan, one end is connected to the refrigerant tank inlet hose for introducing the refrigerant, one end is connected to the refrigerant tank outflow hose and inlet hose for outflow of the refrigerant And connected to the other end of the outlet hose may be a water cooling including a refrigerant circulation for cooling and circulating the refrigerant.
본 발명에 따른 줄기세포 배양장치에서 용기와 광원 사이의 거리를 조절할 수 있도록 광원의 높이를 상하로 조절할 수 있는 거리조절수단을 더 포함하는 것이 바람직하다.In the stem cell culture apparatus according to the present invention, it is preferable to further include a distance adjusting means for adjusting the height of the light source up and down so as to adjust the distance between the container and the light source.
본 발명에 따른 줄기세포 배양장치에서 배양챔버는 상부에 광투과성의 투명격벽을 더 포함하고 상기 광원은 상기 투명격벽을 통해 상기 배양챔버 내부로 광을 조사하는 것이 바람직하다.In the stem cell culture apparatus according to the present invention, the culture chamber further includes a light-transparent transparent partition on the upper portion, and the light source preferably irradiates light into the culture chamber through the transparent partition.
본 발명에 따른 줄기세포 배양장치에서 광원 및 투명격벽에 대해 외부 광을 차단하는 덮개인 광차단부재를 더 포함하는 것이 바람직하며, 이때 광차단부재는 밀폐수단 내부의 공기를 외부와 순환시키기 위한 공기순환수단을 더 포함할 수 있다.In the stem cell culture apparatus according to the present invention preferably further comprises a light blocking member which is a cover for blocking external light to the light source and the transparent partition wall, wherein the light blocking member is air for circulating the air inside the sealing means with the outside It may further include a circulation means.
본 발명에 따른 줄기세포 배양장치를 이용하여 줄기세포를 배양하면 줄기세포의 증식율과 수명이 월등히 높아지는 효과가 있으며, 특히 줄기세포의 배양시 중요한 요인인 온도에 광원이 영향을 주는 것을 효율적으로 방지하는 이점이 있다.Cultivating stem cells using the stem cell culture apparatus according to the present invention has an effect of significantly increasing the proliferation rate and lifespan of the stem cells, in particular to effectively prevent the influence of the light source on the temperature, which is an important factor in the culture of stem cells There is an advantage.
도 1은 본 발명의 일실시예에 따른 줄기세포 배양장치의 개념도,1 is a conceptual diagram of a stem cell culture apparatus according to an embodiment of the present invention,
도 2는 본 발명의 일실시예에 따른 줄기세포 배양장치의 광원 및 광원온도조절수단의 개념도,Figure 2 is a conceptual diagram of a light source and a light source temperature control means of the stem cell culture apparatus according to an embodiment of the present invention,
도 3은 본 발명의 일실시예에 따른 줄기세포 배양장치의 냉매 탱크에 대한 단면도이다.Figure 3 is a cross-sectional view of the refrigerant tank of the stem cell culture apparatus according to an embodiment of the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as being limited to their ordinary or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best describe their invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.
이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일실시예에 따른 줄기세포 배양장치의 내부를 나타낸 개념도이다.1 is a conceptual diagram showing the inside of the stem cell culture apparatus according to an embodiment of the present invention.
본 실시예의 줄기세포 배양장치는 배양챔버(100), 가스조절수단(200), 온도조절수단(미도시), 광원(300), 광원온도조절수단(310) 등으로 구성된다.Stem cell culture apparatus of this embodiment is composed of a culture chamber 100, gas control means 200, temperature control means (not shown), the light source 300, the light source temperature control means (310).
배양챔버(100)는 내부에 줄기세포를 담은 용기(10)를 수용하는 구조로서 도시되지는 않았으나 위 용기(10)를 배양챔버(100) 내에 넣거나 뺄 수 있는 도어가 구비되며, 배양챔버(100) 내부를 관찰할 수 있는 윈도우가 설치될 수 있다. 윈도우가 설치된 경우 관찰하지 않은 때 내부에 외부 광이 유입되지 않도록 윈도우를 가리는 커튼 등이 구비되는 것이 바람직하다. 이러한 도어와 윈도우는 일체로 구성될 수 있다.The culture chamber 100 is not shown as a structure for receiving the container 10 containing the stem cells therein, but the door 10 is provided with a door that can be inserted into or removed from the culture chamber 100, the culture chamber 100 Windows can be installed to observe the inside. When the window is installed, it is preferable that a curtain or the like is provided to cover the window so that external light does not flow inside when it is not observed. Such doors and windows may be integrally formed.
배양챔버(100)에 수용되는 용기(10)는 시험관, 플라스크, 배양접시가 사용될 수 있다. 용기(10)에 수용되어 배양되는 줄기세포는 신경상피 줄기세포, 중간엽줄기세포, 조혈모세포 등 인간과 동물의 모든 형태의 줄기세포가 될 수 있다.The container 10 accommodated in the culture chamber 100 may be a test tube, a flask, a culture dish. Stem cells accommodated and cultured in the container 10 may be stem cells of all types of humans and animals, such as neuroepithelial stem cells, mesenchymal stem cells, hematopoietic stem cells.
배양챔버(100)에는 배양챔버(100) 내부의 공기 중 가스농도를 줄기세포배양에 적절하게 조절할 수 있는 가스조절수단(200)이 결합되어 줄기세포배양에 적절한 온도 등의 환경을 제공할 수 있도록 한다. 특히 가스조절수단(200)에는 줄기세포의 배양에 있어서 적절한 O2/CO2 비율 및 이러한 가스 분위기의 유지를 위한 가스 순환수단이 포함될 필요가 있다. 가스 순환수단은 적절한 O2/CO2 비율을 갖는 가스를 배양챔버(100) 내부로 유입시키는 유입구와 배양챔버(100) 내부의 가스를 배출하는 배출구를 포함하는 것이 바람직하다.The culture chamber 100 is coupled to the gas control means 200 that can appropriately control the gas concentration in the air in the culture chamber 100 to the stem cell culture to provide an environment such as a temperature suitable for stem cell culture do. In particular, the gas control means 200 needs to include an appropriate O 2 / CO 2 ratio in the culture of stem cells and gas circulation means for maintaining such a gas atmosphere. The gas circulation means preferably includes an inlet for introducing a gas having an appropriate O 2 / CO 2 ratio into the culture chamber 100 and an outlet for discharging the gas inside the culture chamber 100.
또한 배양챔버(100)에는 배양챔버(100)의 내부 온도를 조절하기 위한 온도조절수단(미도시)이 결합되며, 온도조절수단(미도시)은 가열수단과 냉각수단이 결합된 구성으로서 직접 배양챔버(100)의 내벽을 가열하거나 냉각하도록 결합되거나 가스조절수단(200)을 통해 유입되는 가스를 가열 또는 냉각하여 배양챔버(100) 내부로 유입시킴으로써 간접적으로 배양챔버(100)의 온도를 조절하도록 구성될 수 있다.In addition, the culture chamber 100 is coupled to a temperature control means (not shown) for adjusting the internal temperature of the culture chamber 100, the temperature control means (not shown) is a direct combination of the heating means and cooling means as a configuration Combined to heat or cool the inner wall of the chamber 100 or indirectly to control the temperature of the culture chamber 100 by heating or cooling the gas introduced through the gas control means 200 to enter the culture chamber 100 Can be configured.
배양챔버(100)에는 또한 가스조절수단(200)이 적절히 배양환경을 조절하고 있는지 확인할 수 있는 온도센서나 가스센서와 이 센서들의 데이터를 연산해 배양챔버(100) 외부에 표시하는 배양챔버(100) 제어부가 부가될 수 있으며, 이러한 배양챔버(100) 제어부는 단순히 센서의 데이터를 표시하는 것 이외에도 후술하는 광원(200), 온도조절수단(미도시), 가스조절수단(200) 및 거리조절수단(320) 등을 제어할 수 있도록 구성될 수 있다.The culture chamber 100 also has a temperature sensor or gas sensor that can confirm whether the gas control means 200 is properly adjusting the culture environment and the culture chamber 100 that calculates the data of these sensors and displays them outside the culture chamber 100. A control unit may be added, and such a culture chamber 100 may further include a light source 200, a temperature control unit (not shown), a gas control unit 200, and a distance control unit, in addition to simply displaying data of a sensor. 320 and the like can be configured to control.
사용자가 배양챔버(100) 내부와 격리된 상태에서 제어부를 제어하기 위해 제어부의 제어패널은 배양챔버(100)의 외부에 위치하도록 하며, 제어패널은 사용자가 설정한 광조사 시간과 광조사 동작의 남은 시간, LED출력(mW), 광출력특성(연속파 또는 펄스 주파수 설정), 광파장 등의 파라미터를 조정하는 컨트롤 버튼과 조정된 결과를 출력하는 디스플레이가 포함된다.In order to control the control unit in a state in which the user is separated from the inside of the culture chamber 100, the control panel of the control unit is located outside the culture chamber 100, and the control panel controls the light irradiation time and light irradiation operation set by the user. Includes control buttons for adjusting parameters such as remaining time, LED output (mW), light output characteristics (continuous wave or pulse frequency setting), light wavelength, and a display that outputs the adjusted results.
배양챔버(100)의 상부는 광투과성 투명격벽(110)을 포함하며, 투명격벽(110)의 상부에는 배양챔버(100)의 내부로 조정된 광을 조사하는 광원(300)을 포함한다. 광투과성 투명격벽(110)은 통상적으로 유리패널을 사용할 수 있으나 목적에 따라서는 특정파장의 광을 차단할 수 있는 광필터를 사용할 수 있다. 투명격벽(110)은 광은 통과시키되 공기나 열을 차단하여 광원(300)의 열에 의해 배양챔버(100) 내부의 온도가 영향을 받는 것을 차단하는 역할을 한다.The upper portion of the culture chamber 100 includes a transparent transparent partition wall 110, and the upper portion of the transparent partition wall 110 includes a light source 300 for irradiating light adjusted to the inside of the culture chamber 100. The transparent transparent partition wall 110 may use a glass panel in general, but may use an optical filter capable of blocking light of a specific wavelength depending on the purpose. The transparent partition wall 110 passes light but blocks air or heat to block the temperature inside the culture chamber 100 from being affected by the heat of the light source 300.
광원(300)은 발광다이오드 또는 레이저다이오드의 어레이를 사용한 면광원인 것이 바람직하며, 파장 대역은 400nm 내지 940nm 범위의 근적외선에서 가시광선 영역 중에서 선택되고, 그 파장 대역의 범위는 협소한(1nm 이하) 것이 바람직하다. 레이저 반도체 어레이를 사용할 경우 각 레이저 반도체는 디포커스되어 용기에 균일한 광이 조사되도록 한다. 또한, 광원(300)은 광파장 범위를 조절할 수 있는 것이 바람직하며, 광파장 범위의 조절은 다이오드 헤드를 교체하거나 방출 파장 특성이 다른 발광다이오드들을 어레이에 적절하게 배열하여 구현할 수 있다.The light source 300 is preferably a surface light source using an array of light emitting diodes or laser diodes, and the wavelength band is selected from the visible region in the near infrared range of 400 nm to 940 nm, and the range of the wavelength band is narrow (1 nm or less). It is preferable. When using a laser semiconductor array, each laser semiconductor is defocused so that uniform light is irradiated to the container. In addition, it is preferable that the light source 300 can adjust the light wavelength range, and the adjustment of the light wavelength range may be implemented by replacing the diode head or by arranging light emitting diodes having different emission wavelength characteristics in an array.
광원(300)의 광출력이나 그 주기, 자팡의 연속적 또는 펄스폭을 조절하기 위해 별도의 광원제어부가 외부에 마련될 수 있다. 이때 광원제어부는 위 배양챔버(100) 제어부에 일체로 형성될 수 있다. 광원제어부는 광의 파장과 에너지 레벨, 주파수를 정밀하게 조절하는 것이 바람직하다.In order to adjust the light output of the light source 300 or its period, the continuous or pulse width of the japan, a separate light source control unit may be provided outside. In this case, the light source control unit may be integrally formed with the control unit of the culture chamber 100. Preferably, the light source controller precisely adjusts the wavelength, energy level, and frequency of the light.
특히 광원제어부는 광출력에 의해 용기에 도달되는 광의 에너지가 1 내지 15J/cm2가 되도록 것이 바람직하다. 또한, 광원제어부의 줄기세포를 증식시키기 위한 증식모드와 증식된 줄기세포를 유지시키기 위한 유지모드를 갖을 수 있다. 증식모드는 광원을 2주에 1회 내지 7회 작동시키는 제어모드이며, 유지모드는 2달에 1회 내지 5회 작동시키는 제어모드이다.In particular, the light source control unit is preferably such that the energy of the light reaching the container by the light output is 1 to 15 J / cm 2. In addition, the light source control unit may have a proliferation mode for proliferating and a maintenance mode for maintaining the proliferated stem cells. The propagation mode is a control mode for operating the light source once to seven times in two weeks, and the maintenance mode is a control mode for operating one to five times every two months.
한편, 광원(300)에는 광원(300)의 열을 냉각시키기 위한 광원온도조절수단(310)이 결합된다. 광원(300)은 반도체인 발광다이오드를 사용할 경우 발열이 미미하나 발광다이오드의 구동회로의 발열이 발광다이오드에 전달되어 그 동작특성에 영향을 미쳐 이상적인 파장대역으로부터 광의 파장대역이 이동될 수 있다. 광원(300)이 반도체 레이저인 경우 반도체 레이저와 회로의 발열 모두를 고려하여야 한다. 광원온도조절수단(310)은 이러한 구동회로의 열을 제거함으로써 발광다이오드가 이상적인 파장대역의 광을 조사할 수 있도록 한다.On the other hand, the light source 300 is coupled to the light source temperature control means 310 for cooling the heat of the light source (300). When the light emitting diode 300 is a semiconductor, heat generation is insignificant, but heat generation of the driving circuit of the light emitting diode is transmitted to the light emitting diode, which affects its operating characteristics, thereby shifting the wavelength of light from the ideal wavelength band. When the light source 300 is a semiconductor laser, both the semiconductor laser and the heat generation of the circuit should be considered. The light source temperature regulating means 310 removes the heat of the driving circuit so that the light emitting diode can irradiate light of an ideal wavelength band.
광원온도조절수단(310)은 광원(300)의 광조사면 반대면에 냉각팬이 결합된 공냉식을 사용하거나 냉매의 순환에 의한 수냉식 등 다양한 냉각수단이 이용될 수 있다.The light source temperature regulating means 310 may use various cooling means such as an air cooling method in which a cooling fan is coupled to the opposite side of the light irradiation surface of the light source 300 or a water cooling method by circulation of the refrigerant.
도 2는 광원온도조절수단(310)이 수냉식인 경우의 예시적인 구조이다. 기본적으로 광원온도조절수단(310)은 냉매 탱크(312), 유입호스(316), 유출호스(317) 및 냉매순환부(318)를 포함하여 구성된다. 냉매 탱크는 광원(300)의 광조사면에 대해 반대면에 결합되어 광원(300)의 구동 회로에서 발생되는 열이 냉매 탱크에 저장된 냉매로 빠져나오도록 한다. 냉매 탱크(312)에는 냉매가 냉매 탱크(312) 내부에 유입되는 유입구(314)와 유출되는 유출구(315)를 포함하며, 유입구(314)와 유출구(315)에는 각각 유입 호스(316)와 유출 호스(317)가 결합된다. 냉매 탱크의 냉매는 냉매 탱크에 각각 일단이 연결된 유입 호스(316)와 유출 호스(317)에 의해 냉매 탱크(312)로 유입 및 유출되며, 유입 호스(316)와 유출 호스(317)의 타단에는 냉매순환부(318)가 연결된다. 냉매순환부(318)에서는 유출 호스(317)로부터 냉매를 유입받아 냉각시키며, 냉각된 냉매를 다시 유입 호스(316)로 일정한 압력으로 내보내도록 구성되어 전체적으로 냉매가 냉매 탱크(312)에서 열을 받고 냉매순환부(318)에서 열을 배출하면서 순환되도록 한다.2 is an exemplary structure when the light source temperature control means 310 is water-cooled. Basically, the light source temperature control unit 310 includes a refrigerant tank 312, an inlet hose 316, an outlet hose 317, and a refrigerant circulation unit 318. The coolant tank is coupled to a surface opposite to the light irradiation surface of the light source 300 to allow heat generated in the driving circuit of the light source 300 to escape to the coolant stored in the coolant tank. The refrigerant tank 312 includes an inlet 314 and an outlet 315 for inflow of refrigerant into the refrigerant tank 312, and an inlet hose 316 and an outlet for the inlet 314 and the outlet 315, respectively. Hose 317 is coupled. Refrigerant of the refrigerant tank is introduced and discharged into the refrigerant tank 312 by the inlet hose 316 and the outlet hose 317 connected to the refrigerant tank, respectively, and the other end of the inlet hose 316 and the outlet hose 317 The refrigerant circulation part 318 is connected. The refrigerant circulation part 318 receives the refrigerant from the outflow hose 317 and cools it, and is configured to discharge the cooled refrigerant back to the inlet hose 316 at a constant pressure so that the refrigerant receives heat from the refrigerant tank 312 as a whole. The refrigerant is circulated while releasing heat from the circulation unit 318.
도 3은 냉매 탱크의 단면도로서 냉매 탱크(312)는 통상적으로 냉매를 저장하는 빈 공간을 갖는 탱크 형상일 수 있으나 도 3에서와 같이 내부에 격벽(313)을 포함함으로써 유로를 형성하여 열을 효율적으로 전달받을 수 있는 구조를 가질 수 있다. 또한, 광원(300)으로부터 냉매 탱크(312) 내부의 냉매로 열전달이 용이하도록 광원(300)과 냉매 탱크(312) 사이에는 금속 재료와 같은 열전달율이 높은 재료로 이루어진 판재인 열전달부재(311)가 형성될 수 있다.3 is a cross-sectional view of the refrigerant tank, the refrigerant tank 312 may be a tank shape having a generally empty space for storing the refrigerant, but as shown in FIG. It can have a structure that can be delivered to. In addition, between the light source 300 and the coolant tank 312 to facilitate the heat transfer from the light source 300 to the coolant in the coolant tank 312, a heat transfer member 311, which is a plate made of a material having a high heat transfer rate such as a metal material, is provided. Can be formed.
또한, 광원(300)에는 광원(300)의 광조사높이를 조절할 수 있는 거리조절수단(320)이 결합되어 줄기세포와 광원(300)과의 거리를 조절할 수 있도록 구성된다. 광원(300)은 수평으로 지지하는 지지대(321)에 의해 지지되고, 거리조절수단(320)은 수직 로드(rod)에 이러한 지지대(321)가 상하로 이동가능하도록 결합되고 광원(300)과 줄기세포를 담은 용기(100)와의 거리를 조절한다. 이때 거리조절수단(320)의 제어는 위 광원제어부 또는 배양챔버(100) 제어부에서 조절할 수 있도록 구성되는 것이 바람직하다.In addition, the light source 300 is coupled to the distance adjusting means 320 for adjusting the light irradiation height of the light source 300 is configured to adjust the distance between the stem cells and the light source 300. The light source 300 is supported by the support 321 horizontally supported, the distance adjusting means 320 is coupled to the vertical rod (rod) such that the support 321 is movable up and down and the light source 300 and the stem Adjust the distance to the container 100 containing the cells. At this time, the control of the distance adjusting means 320 is preferably configured to be controlled by the light source control unit or the culture chamber 100 control unit.
한편, 광원(300)에서 조사되는 광이 아닌 외부 광이 투명격벽(110)을 통해 배양챔버(100) 내부로 유입되는 것을 방지하기 위해 투명격벽(110)과 광원(300)을 둘러싸고 외부 광을 차단하는 광차단부재(330)가 설치될 수 있다. 특히 광원온도조절수단(310)이 공냉식인 경우 광차단부재(330)에 의해 외부로 공기가 빠져나오지 못해 광원온도조절수단(310)이 있음에도 불구하고 광원(300)이 냉각되지 못하는 상태가 될 수 있다. 이를 위해 광차단부재(330)의 내부 공기와 외부 공기를 순환시킬 수 있는 공기순환수단(340)이 광차단부재(330)에 설치되는 것이 바람직하며, 공기순환수단(340)은 단순한 통풍구가 될 수 있으나 적극적으로 공기를 유입시키거나 유출시키는 팬으로 구성될 수 있다.On the other hand, in order to prevent the external light that is not irradiated from the light source 300 is introduced into the culture chamber 100 through the transparent partition wall 110 and surrounds the transparent partition wall 110 and the light source 300 and the external light. Light blocking member 330 to block may be installed. In particular, when the light source temperature control means 310 is air-cooled, the air does not escape to the outside by the light blocking member 330 and thus the light source 300 may not be cooled even though the light source temperature control means 310 is present. have. To this end, the air circulation means 340 capable of circulating the internal air and the outside air of the light blocking member 330 is preferably installed in the light blocking member 330, the air circulation means 340 is to be a simple ventilation hole It can be but consists of a fan that actively introduces or discharges air.
<실험예>Experimental Example
돼지의 조직은 인간에 생체적합성을 갖는 좋은 예이다. 예를 들어 특별히 처리된 돼지 피부는 인간의 화상치료의 이식 치료용으로 일반적으로 사용되고 있으며, 돼지의 심장 판막은 인간의 심장 판막의 대체용으로 사용되고 있다.Pig tissue is a good example of biocompatibility in humans. For example, specially treated pig skin is commonly used for transplantation treatment of human burns, and pig heart valves are used as replacements for human heart valves.
줄기세포와 관련하여 연구를 위한 최고의 세포는 배아로부터 얻는 전분화능 줄기세포이다. 그 근원은 다양한 조각들을 포함하므로 각 동물마다 얻을 수 있는 배아의 수는 상당하고, 신경상피 줄기세포(NSCs)는 배아의 중뇌 도관으로부터 비교적 쉽게 얻을 수 있다. 신경상피 줄기세포는 유전적으로 여러 종류의 신경 조직 특히 뉴런과 성상세포로 분화될 운명이다.With regard to stem cells, the best cell for research is pluripotent stem cells from embryos. Because the source contains a variety of fragments, the number of embryos available for each animal is significant, and neuroepithelial stem cells (NSCs) are relatively easy to obtain from the embryonic midbrain conduit. Neuroepithelial stem cells are genetically destined to differentiate into many types of neural tissues, especially neurons and astrocytes.
돼지의 신경상피 줄기세포를 배양액에서 증식시키고, 배양된 신경상피 줄기세포의 수를 일정 기간 이상 유지시키는 실험을 하였다.Pig neuronal epithelial stem cells were grown in culture, and experiments were performed to maintain the number of cultured neuroepithelial stem cells for a certain period.
1. 실험준비1. Preparation for Experiment
발생 후 14일된 돼지의 배아로부터 중간뇌판(mesencephalic plate)를 분리하고, 신경상피 줄기세포를 현미경으로 통해 추출하였다. 증식된 줄기세포가 다른 동물에게 제대로 이식될 수 있는 확인하는 추가적인 실험을 위해 돼지는 트랜스제닉(transgenic)된 '그린 피그(Green Pigs)'를 사용하여 호스트 조직과 도너 조직을 식별할 수 있도록 하였다. 추출된 세포는 소태아혈청(Fetal Bovine Serum) 15%, 항생물질들을 포함하는 배양액을 담은 배양 접시에서 배양되었다. 세포는 37℃에서 배양되고, 뉴로스피어(Neurospheres)의 형성이 관찰된 것이다. 형성된 뉴로스피어는 네스틴(Nestin) 면역염색법에 의해 진정한 줄기세포를 포함하는지 확인되었다.Mesencephalic plates were separated from embryos of 14-day-old pigs, and neuroepithelial stem cells were extracted under a microscope. For further experiments to verify that proliferated stem cells can be properly transplanted into other animals, pigs were able to identify host tissues and donor tissues using transgenic 'Green Pigs'. The extracted cells were cultured in a petri dish containing 15% Fetal Bovine Serum and a culture solution containing antibiotics. The cells were incubated at 37 ° C. and the formation of neurospheres was observed. The neurospheres formed were confirmed to contain true stem cells by Nestin immunostaining.
2. 증식실험2. Growth experiment
뉴로스피어의 형성 후 배양 접시에는 830nm의 디포커스(defocus)된 레이저빔이 조사되었다. 레이저빔 발생장치로는 GaAlAs 다이오드 레이저(모델명: OhLaser-3D1, JMLL사)가 사용되었으며, 2주에 3회 정도 조사하되 실험군을 분리하여 각각 1, 2, 4, 6, 8, 10 및 15 J/cm2의 에너지를 조사하였다. 레이저빔 발생수단은 배양 접시로부터 정확히 같은 높이에 있도록 하여 디포커스된 레이저빔이 배양접시에서 직경 5cm가 되도록 하였다. 각 실험군은 정확히 같은 방법으로 다루어졌으며, 실험군과의 비교를 위해 레이저빔을 조사하지 않은 대조군을 준비하였다.After the formation of the neurosphere, the culture dish was irradiated with a defocused laser beam of 830 nm. GaAlAs diode laser (Model: OhLaser-3D1, JMLL Co., Ltd.) was used as the laser beam generator. Irradiated about 3 times every 2 weeks, but separated the experimental group 1, 2, 4, 6, 8, 10 and 15 J respectively. The energy of / cm 2 was investigated. The laser beam generating means was placed at exactly the same height from the culture dish so that the defocused laser beam was 5 cm in diameter in the culture dish. Each experimental group was treated in exactly the same way, and a control group without irradiating a laser beam was prepared for comparison with the experimental group.
뉴로스피어의 증식은 광조사 후 1주, 2주, 4주 그리고 6주 후에 평가되었으며, 평가방법으로 샘플 뉴로스피어에 대해 네스틴(Nestin) 염색을 이용하여 뉴로스피어에 줄기세포가 포함하는지 평가하였다.The proliferation of neurospheres was evaluated 1, 2, 4 and 6 weeks after light irradiation, and the evaluation method was used to evaluate whether the neural spheres contained stem cells by using Nestin staining on the sample neurospheres. .
증식실험의 결과 뉴로스피어는 레이저빔을 조사하지 않은 경우부터 10J/cm2까지 레이저빔의 에너지가 높아질수록 그 수가 증가된 것이 확인되었다. 증식된 모든 뉴로스피어는 훌륭한 생존 줄기세포의 수를 가지고 포지티브로 염색되었다. 15J/cm2의 레이저빔을 조사한 표본에서는 뉴로스피어의 수가 급격히 줄어들었으나 여전히 대조군에 비해서는 높게 유지되었다. 특히 6주 후의 평가에서는 6, 8, 10J/cm2의 레이저빔을 조사한 표본에서 통계적 유의성을 가졌으며(p(모비율)=0.05, 0.01, 0.001), 특히 10J/cm2의 레이저빔이 줄기세포의 증식에 가장 적절한 것으로 나타났다.As a result of the proliferation experiment, it was confirmed that the number of neurospheres was increased as the energy of the laser beam increased from 10 J / cm 2 without the laser beam irradiation. All propagated neurospheres were positively stained with good numbers of viable stem cells. In the sample irradiated with a laser beam of 15 J / cm 2, the number of neurospheres decreased drastically but still remained higher than that of the control group. Especially, after 6 weeks of evaluation, the samples irradiated with 6, 8, 10J / cm2 laser beams had statistical significance (p (parent ratio) = 0.05, 0.01, 0.001), especially 10J / cm2 laser beams It appeared to be most suitable for proliferation.
3. 유지실험3. Maintenance experiment
증식된 뉴로스피어 배양물들을 인큐베이터에 유지하면서 매달 1회 내지 2회 지속파의 830nm로 디포커스된 레이저빔을 증식실험에서 가장 효과적인 것으로 확인된 10J/cm2의 에너지로 조사하였다. 한편 실험군과의 대조를 위해 레이저빔을 조사하지 않은 대조군을 준비하였다. 실험 시작 후 1, 2, 4, 6, 8 ,12개월에 뉴로스피어의 수가 유지되는지 여부를 확인하였으며, 샘플 뉴로스피어에 대해 네스틴 염색을 적용하여 줄기세포의 양과 질을 확인하였다.While maintaining the propagated neurosphere cultures in an incubator, a laser beam defocused at 830 nm of continuous wave once or twice a month was irradiated with an energy of 10 J / cm 2 which was found to be most effective in the propagation experiment. Meanwhile, a control group not irradiated with a laser beam was prepared for contrast with the experimental group. It was confirmed whether the number of neurospheres is maintained at 1, 2, 4, 6, 8, 12 months after the start of the experiment, and the amount and quality of stem cells by applying Nestin staining to the sample neurospheres.
실험결과 레이저빔을 1회를 조사한 실험군과 2회를 조사한 실험군 모두 12개월까지 대조군과 비교하여 통계적 유의성을 가지고 뉴로스피어의 수가 유지되었다. 각 뉴로스피어의 줄기세포의 질과 양도 함께 유지된 것이 확인되었다. 대조군의 경우 2개월째 평가에서 뉴로스피어의 수가 줄어들기 시작하였으며, 12개월 후에는 뉴로스피어가 거의 남아있지 않았고, 줄기세포의 질과 양도 매우 낮은 것으로 확인되었으며, 일부는 분화된 모습을 보였다. 레이저빔을 매달 1회 조사한 경우 증식된 뉴로스피어의 유지에 가장 적절한 것으로 평가되었다.As a result, the number of neurospheres was maintained with statistical significance in both the experimental group irradiated with the laser beam once and the experimental group irradiated twice with the control group until 12 months. The quality and quantity of stem cells of each neurosphere were also maintained. In the control group, the number of neurospheres began to decrease on the second month of evaluation, and after 12 months, the neurospheres remained few and the quality and quantity of stem cells were very low, and some of them were differentiated. Irradiation of the laser beam once a month was evaluated as being most suitable for the maintenance of propagated neurospheres.
4. 이식실험4. Transplant Experiment
생후 12주된 수컷 실험쥐를 사용하여 앞에서 배양된 돼지의 뉴로스피어의 이식실험을 진행하였다. 실험쥐는 모두 파킨슨병과 헌팅던병을 보유하고 있으며, 이식을 하는 실험군과 이식을 하지 않은 대조군으로 나누었다. 실험군에 대해서는 흑질(Substantia nigra)에 배양된 뉴로스피어를 이식하였다.A 12-week-old male mouse was used to carry out transplantation of neurospheres of pigs cultured above. Both mice had Parkinson's disease and Huntingdon's disease, and were divided into two groups, a transplanted group and a non-grafted group. For the experimental group, neurospheres cultured in the substantia nigra were transplanted.
실험군에 대해서는 2주마다 일부 표본을 해부하여 자외선 조사에 의해 그린 형광물질을 확인함으로써 도너 조직의 생존여부를 확인하고, 네스틴 염색으로 줄기세포의 생존을 확인하였다.In the experimental group, some samples were dissected every two weeks to confirm the survival of donor tissue by checking green fluorescent material by ultraviolet irradiation, and stem cell survival was confirmed by nestin staining.
또한 표본에 대해 염색을 통해 이식영역에서 신경계(Golgi 염색) 또는 성상세포(Holzer 염색)가 자라나고 있는지 확인하였다. 또한, 동시에 질병과 관련된 행동이 개선되었는지 확인하였다.In addition, the specimens were stained to determine whether the nervous system (Golgi stain) or astrocytes (Holzer stain) are growing in the transplant area. At the same time, it was also confirmed that the disease-related behavior was improved.
실험결과 실험군에 대해 파킨슨병과 헌팅던병 그룹 모두 이식 후 6주 후부터 6개월 동안 걸음걸이가 개선된 것이 확인되었다. 특히 파키슨병 그룹의 제자리 돌기 성향이 줄고, 헌팅던병 그룹의 기억력이 향상되었다(Maze Training). 표본의 조직 실험에서는 파킨슨병 그룹의 경우 중뇌의 복측피개영역에서 새로운 도파민작용성 뉴런(Golgi 염색)이 자라나 신경계가 자라난 것이 확인되었고, 이들 모두 자외선에 그린 형광을 띄어 호스트가 아닌 도너로부터 발생된 것을 확인하였다. 헌팅던 그룹의 경우 그린 형광을 나타내는 신경 세포(Holzer 염색)가 자라난 것이 확인되었다.Experimental results showed that the Parkinson's and Huntingdon's groups had improved gait for 6 months from 6 weeks after transplantation. In particular, the incidence of in situ in the Parkinson's disease group was reduced, and memory in the Huntingdon's group was improved (Maze Training). In the histological experiments of the Parkinson's disease group, new dopaminergic neurons (Golgi staining) grew in the ventral epidermal region of the midbrain, and the nervous system grew. It was confirmed. In the Huntingdon group, neuronal cells (Holzer staining) showing green fluorescence were grown.

Claims (16)

  1. 내부에 배양 대상 줄기세포를 담은 용기를 수용하는 밀폐형 배양챔버;An airtight culture chamber containing a container containing stem cells to be cultured therein;
    상기 배양챔버 상부에 위치하며 상기 용기로 광을 조사하기 위한 광원 및 상기 광원을 제어하는 광원제어부를 포함하되,Located above the culture chamber and includes a light source for irradiating light to the vessel and a light source control unit for controlling the light source,
    상기 광원제어부는 상기 줄기세포의 증식모드 또는 상기 줄기세포의 유지모드 중 어느 하나 이상을 갖는 것을 특징으로 하는 줄기세포 배양장치.The light source control unit stem cell culture apparatus characterized in that it has any one or more of the proliferation mode of the stem cells or the maintenance mode of the stem cells.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 배양챔버 내부의 온도을 조절하는 온도조절수단을 더 포함하는 것을 특징으로 하는 줄기세포 배양장치.Stem cell culture apparatus further comprises a temperature control means for adjusting the temperature inside the culture chamber.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 배양챔버 내부의 가스농도를 조절하는 가스조절수단을 더 포함하는 것을 특징으로 하는 줄기세포 배양장치.Stem cell culture apparatus further comprises a gas control means for adjusting the gas concentration in the culture chamber.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 가스농도는 O2와 CO2의 비율인 것을 특징으로 하는 줄기세포 배양장치.The gas concentration is stem cell culture apparatus, characterized in that the ratio of O2 and CO2.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 광원은 발광다이오드(LED) 또는 레이저다이오드(LD)를 이용하는 것을 특징으로 하는 줄기세포 배양장치.The light source is a stem cell culture device, characterized in that using a light emitting diode (LED) or a laser diode (LD).
  6. 제 1 항에 있어서,The method of claim 1,
    상기 광원에서 조사되는 광의 파장은 400nm 내지 940nm 범위인 것을 특징으로 하는 줄기세포 배양장치.Stem cell culture apparatus characterized in that the wavelength of the light irradiated from the light source is in the range of 400nm to 940nm.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 광원으로부터 상기 용기로 조사되는 광의 에너지는 1 내지 15J/cm2인 것을 특징으로 하는 줄기세포 배양장치.The energy of the light irradiated from the light source to the container is a stem cell culture device, characterized in that 1 to 15J / cm2.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 증식모드는 상기 광원을 2주에 1회 내지 7회 작동시키는 것을 특징으로 하는 줄기세포 배양장치.The proliferation mode is a stem cell culture device, characterized in that for operating the light source once every two to seven times.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 유지모드는 2달에 1회 내지 5회 작동시키는 것을 특징으로 하는 줄기세포 배양장치.The maintenance mode is a stem cell culture device, characterized in that for operation once every five months.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 광원의 온도를 조절하기 위한 광원온도조절수단을 더 포함하는 것을 특징으로 하는 줄기세포 배양장치.Stem cell culture apparatus further comprises a light source temperature control means for adjusting the temperature of the light source.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 광원온도조절수단은 냉각팬을 포함하는 것을 특징으로 하는 줄기세포 배양장치.The light source temperature control means stem cell culture apparatus characterized in that it comprises a cooling fan.
  12. 제 10 항에 있어서, 상기 광원온도조절수단은,The method of claim 10, wherein the light source temperature adjusting means,
    상기 광원에 결합된 냉매 탱크;A refrigerant tank coupled to the light source;
    일단이 상기 냉매 탱크에 연결되어 냉매를 유입시키는 유입호스;An inlet hose whose one end is connected to the coolant tank to introduce a coolant;
    일단이 상기 냉매 탱크에 연결되어 냉매를 유출시키는 유출호스; 및An outlet hose whose one end is connected to the coolant tank to discharge the coolant; And
    상기 유입호스와 상기 유출호스의 타단에 연결되어 상기 냉매를 냉각시키고 순환시키는 냉매순환부를 포함하는 줄기세포 배양장치.Stem cell culture apparatus comprising a refrigerant circulation portion connected to the other end of the inlet hose and the outlet hose to cool and circulate the refrigerant.
  13. 제 1 항에 있어서,The method of claim 1,
    상기 용기와 상기 광원 사이의 거리를 조절할 수 있도록 상기 광원의 높이를 상하로 조절할 수 있는 거리조절수단을 더 포함하는 줄기세포 배양장치.Stem cell culture apparatus further comprises a distance adjusting means for adjusting the height of the light source up and down to adjust the distance between the container and the light source.
  14. 제 1 항에 있어서,The method of claim 1,
    상기 배양챔버는 상부에 광투과성의 투명격벽을 더 포함하고 상기 광원은 상기 투명격벽을 통해 상기 배양챔버 내부로 광을 조사하는 줄기세포 배양장치.The culture chamber further comprises a light-transparent transparent partition on the top and the light source is a stem cell culture apparatus for irradiating light into the culture chamber through the transparent partition.
  15. 제 14 항에 있어서,The method of claim 14,
    상기 광원 및 상기 투명격벽에 대해 외부 광을 차단하는 덮개인 광차단부재를 더 포함하는 줄기세포 배양장치.Stem cell culture apparatus further comprising a light blocking member that is a cover for blocking external light to the light source and the transparent partition.
  16. 제 14 항에 있어서,The method of claim 14,
    상기 광차단부재는 상기 밀폐수단 내부의 공기를 외부와 순환시키기 위한 공기순환수단을 더 포함하는 줄기세포 배양장치.The light blocking member further comprises an air circulation means for circulating the air inside the sealing means with the outside.
PCT/KR2011/009440 2010-12-07 2011-12-07 Stem cell culturing apparatus WO2012077980A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100124223A KR101270133B1 (en) 2010-12-07 2010-12-07 Apparatus for culturing stem cells
KR10-2010-0124223 2010-12-07

Publications (2)

Publication Number Publication Date
WO2012077980A2 true WO2012077980A2 (en) 2012-06-14
WO2012077980A3 WO2012077980A3 (en) 2012-10-04

Family

ID=46207607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009440 WO2012077980A2 (en) 2010-12-07 2011-12-07 Stem cell culturing apparatus

Country Status (2)

Country Link
KR (1) KR101270133B1 (en)
WO (1) WO2012077980A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107711507A (en) * 2017-11-13 2018-02-23 华侨大学 A kind of Plant Tissue Breeding integrated apparatus
CN111154648A (en) * 2019-12-27 2020-05-15 新乡医学院三全学院 Stem cell source exosome culture device
CN112322459A (en) * 2020-10-14 2021-02-05 广州市粤家科技发展有限公司 Light source intensity adjusting device for microbial cultivation
CN114181828A (en) * 2021-12-03 2022-03-15 深圳市新一仑生物科技有限公司 Stem cell automatic amplification culture equipment based on modularization
CN117070349A (en) * 2023-08-28 2023-11-17 杭州诚佑生物科技有限公司 Culture dish for improving activity of stem cells based on red light irradiation principle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102072158B1 (en) * 2018-06-07 2020-01-31 박준한 Mixing Fluid Injection Apparatus
WO2019245078A1 (en) * 2018-06-20 2019-12-26 주식회사 디오스템스 Stem cell proliferation device
WO2019245079A1 (en) * 2018-06-20 2019-12-26 주식회사 디오스템스 Filter assembly and stem cell proliferation device including same
KR102572369B1 (en) * 2020-11-11 2023-08-30 단국대학교 천안캠퍼스 산학협력단 Photobiomodulation test chamber device for cell and animals

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004065051A (en) * 2002-08-02 2004-03-04 Hamamatsu Photonics Kk Cell culture apparatus and method therefor
KR200419404Y1 (en) * 2006-04-11 2006-06-20 윤택림 Light radiator for cell stimulation
KR200425122Y1 (en) * 2006-06-13 2006-08-29 (주)바이오아테코 a culture medium
JP2007222089A (en) * 2006-02-24 2007-09-06 Sumitomo Chemical Co Ltd Microorgansim culture system with light irradiation, and method of microorganism culture experiment
KR100799988B1 (en) * 2006-11-30 2008-01-31 연세대학교 산학협력단 The bio-reactor which exerts various mechanical stimula for nurturing of stem cell and the method of nuturing of stem cell which uses it
KR20090080390A (en) * 2008-01-21 2009-07-24 전남대학교산학협력단 Incubator having multiple cell culture system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2824071B1 (en) * 2001-04-26 2003-08-01 Cell Tissue Progress THERMAL REGULATION CELL AND TISSUE CULTURE DEVICE
KR100967624B1 (en) * 2008-02-20 2010-07-05 전남대학교산학협력단 The apparatus and method for optical-fiber-guided light emission to maintain the cultivation conditions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004065051A (en) * 2002-08-02 2004-03-04 Hamamatsu Photonics Kk Cell culture apparatus and method therefor
JP2007222089A (en) * 2006-02-24 2007-09-06 Sumitomo Chemical Co Ltd Microorgansim culture system with light irradiation, and method of microorganism culture experiment
KR200419404Y1 (en) * 2006-04-11 2006-06-20 윤택림 Light radiator for cell stimulation
KR200425122Y1 (en) * 2006-06-13 2006-08-29 (주)바이오아테코 a culture medium
KR100799988B1 (en) * 2006-11-30 2008-01-31 연세대학교 산학협력단 The bio-reactor which exerts various mechanical stimula for nurturing of stem cell and the method of nuturing of stem cell which uses it
KR20090080390A (en) * 2008-01-21 2009-07-24 전남대학교산학협력단 Incubator having multiple cell culture system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FERNANDA DE P. EDUARDO ET AL.: 'Stem cell proliferation under low intensity laser irradiation: a preliminary study.' LASERS IN SURGERY AND MEDICINE. vol. 40, no. 6, August 2008, ISSN 1096-9101 pages 433 - 438 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107711507A (en) * 2017-11-13 2018-02-23 华侨大学 A kind of Plant Tissue Breeding integrated apparatus
CN107711507B (en) * 2017-11-13 2022-09-30 华侨大学 Plant tissue culture integrated device
CN111154648A (en) * 2019-12-27 2020-05-15 新乡医学院三全学院 Stem cell source exosome culture device
CN111154648B (en) * 2019-12-27 2022-10-25 新乡医学院三全学院 Stem cell source exosome culture device
CN112322459A (en) * 2020-10-14 2021-02-05 广州市粤家科技发展有限公司 Light source intensity adjusting device for microbial cultivation
CN114181828A (en) * 2021-12-03 2022-03-15 深圳市新一仑生物科技有限公司 Stem cell automatic amplification culture equipment based on modularization
CN114181828B (en) * 2021-12-03 2022-10-28 深圳市新一仑生物科技有限公司 Stem cell automatic amplification culture equipment based on modularization
CN117070349A (en) * 2023-08-28 2023-11-17 杭州诚佑生物科技有限公司 Culture dish for improving activity of stem cells based on red light irradiation principle
CN117070349B (en) * 2023-08-28 2024-01-19 杭州诚佑生物科技有限公司 Culture dish for improving activity of stem cells based on red light irradiation principle

Also Published As

Publication number Publication date
KR101270133B1 (en) 2013-05-31
WO2012077980A3 (en) 2012-10-04
KR20120063154A (en) 2012-06-15

Similar Documents

Publication Publication Date Title
WO2012077980A2 (en) Stem cell culturing apparatus
JP6463275B2 (en) Human and large mammalian lung bioreactors
US8507266B2 (en) Apparatus and method for tissue engineering
Telfer Fertility preservation: progress and prospects for developing human immature oocytes in vitro
US20060057712A1 (en) Incubator and cell culturing method
WO2013154381A1 (en) Method for selective cell attachment/detachment, cell patternization and cell harvesting by means of near infrared rays
EP1673434B1 (en) Laboratory apparatus with two cabinets
WO2011105818A2 (en) Cell culture unit and cell culture device including the same
Burrows A METHOD OF FURNISHING A CONTINUOUS SUPPLY OF NEW MEDIUM TO A TISSUE CULTURE IN VITRO¹
Liu et al. Enteric neural stem cells expressing insulin-like growth factor 1: a novel cellular therapy for Hirschsprung's disease in mouse model
KR102157896B1 (en) Cell cultivation device capable of identifying cell cultivation state using transmittance of light and cell cultivation monitoring and control system
CN206751851U (en) A kind of light source can control cell culture incubator
CN108624554B (en) Method for two-way regulation of human umbilical cord mesenchymal stem cell proliferation through non-gene modification light control
CN215935771U (en) Wild glossy ganoderma is with multi-functional artificial containers
CN112569227B (en) 3D (three-dimensional) transplantation material system with nerve protection function and application thereof
KR102191186B1 (en) Cell cultivation device capable of identifying cell cultivation state using transmittance of light and cell cultivation monitoring and control system
CN117070349B (en) Culture dish for improving activity of stem cells based on red light irradiation principle
Aguilera-Castrejon et al. Highly conducive ex utero mouse embryogenesis from pre-gastrulation to late organogenesis
TWI671399B (en) Cell culture device and cell culture system
CN113502261B (en) Large-scale 3D low-oxygen mesenchymal stem cell culture system capable of efficiently differentiating into lipid
Osunkwo et al. Specificity of Organoids for Precision Tissue Regeneration: A Review
RU2572574C1 (en) Method of culturing tumour stem cells of glioblastoma
Pirkić et al. In vitro cultivation of porcine limbal transplants
Bashiri et al. In vivo and in vitro sperm production: an overview of the challenges and advances in male fertility restoration
HANAA et al. Separation and Culturing of Stem Cells from the Gastric Mucosa of the Adult Male Albino Rats

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846128

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11846128

Country of ref document: EP

Kind code of ref document: A2