WO2012077645A1 - Method for processing hard substrate laminated body and method for manufacturing plate-shaped product - Google Patents

Method for processing hard substrate laminated body and method for manufacturing plate-shaped product Download PDF

Info

Publication number
WO2012077645A1
WO2012077645A1 PCT/JP2011/078094 JP2011078094W WO2012077645A1 WO 2012077645 A1 WO2012077645 A1 WO 2012077645A1 JP 2011078094 W JP2011078094 W JP 2011078094W WO 2012077645 A1 WO2012077645 A1 WO 2012077645A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard substrate
meth
hard
acrylate
cutting
Prior art date
Application number
PCT/JP2011/078094
Other languages
French (fr)
Japanese (ja)
Inventor
啓之 栗村
隼人 宮崎
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to JP2012547850A priority Critical patent/JPWO2012077645A1/en
Publication of WO2012077645A1 publication Critical patent/WO2012077645A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/07Cutting armoured, multi-layered, coated or laminated, glass products
    • C03B33/076Laminated glass comprising interlayers
    • C03B33/078Polymeric interlayers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/10Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of plate glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/037Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/04Cutting or splitting in curves, especially for making spectacle lenses

Definitions

  • the present invention relates to a method for processing a hard substrate laminate.
  • the present invention also relates to a method for manufacturing a plate-like product such as a protective glass of a display element.
  • Display devices of various electronic devices such as TVs, notebook computers, car navigation systems, calculators, mobile phones, electronic notebooks, and PDAs (Personal Digital Assistants) include liquid crystal displays (LCD), organic EL displays (OELD), electroluminescent displays ( Display elements such as ELD), field emission displays (FED), and plasma displays (PDP) are used. And in order to protect a display element, it is common to install the plate glass product for protection facing a display element.
  • LCD liquid crystal displays
  • OELD organic EL displays
  • ELD electroluminescent displays
  • FED field emission displays
  • PDP plasma displays
  • This flat glass product is obtained by processing a flat glass into a size and shape suitable for each display device. In order to meet the price level required in the market, it is possible to process a large amount of flat glass products with high production efficiency. Desired.
  • Patent Document 1 proposes a method for increasing the production efficiency of a sheet glass product. Specifically, “a large number of material glass sheets (1) are stacked, and each material glass sheet (1) is integrally fixed by a peelable fixing material (2) interposed between each material glass sheet (1). Forming the material glass block (A), dividing the material glass block (A) in the plane direction to form a small-area divided glass block (B), and processing at least the outer periphery of the divided glass block (B) A product glass block (C) having a product shape in plan view is formed, and after the end face processing of the product glass block (C), the product glass block (C) is individually separated. “Processing method” is proposed (claim 1).
  • an object of the present invention is to provide a method capable of efficiently and satisfactorily processing a hard substrate laminate such as a glass block described in Patent Document 1. Moreover, this invention makes it another subject to provide the manufacturing method of the plate-shaped product using the said processing method.
  • each cutting portion is provided at a position corresponding to an adhesive layer between a plurality of opposing substrates constituting the hard substrate laminate, and cutting is performed at a time.
  • each of a plurality of cutting parts is brought into contact between each substrate at a target position with high accuracy, and chipping, cracks, chips, etc. generated at the edges of mutually facing surfaces between each substrate are detected. It has been found that it can be removed efficiently and efficiently.
  • the present invention completed on the basis of the above knowledge, in one aspect, Preparing a hard substrate laminate in which two or more hard substrates are bonded together with an adhesive; A cutting tool provided with a cutting portion provided at a position corresponding to each adhesive layer between the hard substrates, and from the side surface of the laminated body, the edges of the adjacent hard substrates facing each other at a time Cutting process; It is a processing method of the hard board
  • the cutting with the cutting tool is performed by cutting the hard substrate from an edge portion of adjacent surfaces of the hard substrate adjacent to each other in a cross section of the hard substrate laminate.
  • a V-shaped groove having a ridge line is formed on the adhesive layer between the substrates.
  • the cutting tool is attached to a spindle and rotated.
  • the spindle is an ultrasonic spindle.
  • the intervals between the plurality of hard substrates are controlled to be constant during the cutting step.
  • the interval between the hard substrates is controlled to be constant by including a granular material that does not dissolve in the adhesive component in the adhesive.
  • At least a portion of the cutting portion of the cutting tool that contacts the hard substrate is formed of super steel, high speed steel, or diamond. ing.
  • the cutting portion of the cutting tool is formed of super steel or high-speed steel with diamond electrodeposited on its surface.
  • the method for processing a hard substrate laminate according to the present invention includes a step of further polishing a side surface of the hard substrate laminate cut by the cutting tool.
  • the hard substrate laminate is a large hard substrate laminate in which two or more large hard substrates are bonded together with an adhesive. Is cut and formed in the thickness direction.
  • the translucent hard substrate is a plate glass.
  • This invention is another one side.
  • WHEREIN It is a manufacturing method of the plate-shaped product including the process of forming several plate-shaped products using the hard substrate laminated body to which the processing method of the hard substrate laminated body concerning this invention was given. .
  • a hard substrate laminate can be processed efficiently and satisfactorily, and a plate-like product with improved processing accuracy can be industrially produced.
  • the present invention can be suitably used, for example, when mass-producing protective glass for display elements.
  • FIG. 1 is a schematic view of a large-sized translucent hard substrate laminate 10 before performing cutting processing and external processing.
  • substrate 11 which comprises the large-sized translucent hard board
  • Plate glass tempered plate glass, raw material plate glass, a glass substrate with a transparent conductive film, an electrode, and a circuit are formed.
  • each large transparent translucent substrate 11 to be laminated has the same size.
  • the large-sized translucent hard substrate laminate 10 has two or more translucent hard substrates 11 laminated thereon. If the overall thickness of the large-sized translucent hard substrate laminate 10 is too thin, the mechanical strength becomes weak, and when the translucent hard substrate laminate 10 fixed to the cradle with an adhesive is peeled off for processing.
  • the material of the light-transmitting hard substrate 11 it is preferably 5 or more (the total thickness of the substrate 11 is 0.52 mm or more), more preferably about 10 to 30 (substrate 11).
  • the translucent hard substrate 11 having a total thickness of about 1.5 to 66 mm is laminated via a photocurable adhesive.
  • a predetermined printing pattern or plating pattern for performing one of the functions of the plate-like product can be attached to the surface of each translucent hard substrate 11.
  • the print pattern include a mobile phone display screen design
  • the plating pattern include a metal wiring pattern such as Al or AlNd, and a rotary encoder provided with a chromium plating pattern.
  • the translucent hard substrate 11 is laminated, for example, after pasting the translucent hard substrates 11 each having a photocurable adhesive applied to one or both of the laminating surfaces, to the translucent hard substrates 11. It can be carried out by irradiating light for curing the adhesive spread between the layers. By repeating this a desired number of times, the light transmissive hard substrate laminate 10 in which the desired number of light transmissive hard substrates 11 are laminated can be produced. The light irradiation may be performed every time one light-transmitting hard substrate 11 is stacked, or may be performed collectively after stacking a plurality of sheets as long as light reaches the adhesive.
  • the amount of light irradiated to cure the adhesive each time the optical hard substrate is bonded is preferably 1000 to 10000 mJ / cm 2 , more preferably 1200 to 6000 mJ / cm 2, and 1500 to Even more preferably, it is 3000 mJ / cm 2 .
  • the irradiation time is preferably 10 to 200 seconds, more preferably 20 to 100 seconds.
  • any known photocurable adhesive can be used and is not particularly limited.
  • (C) an adhesive composition containing a photopolymerization initiator is preferred.
  • A) As a polyfunctional (meth) acrylate two or more (meth) acryloylated polyfunctional (meth) acrylate oligomer / polymer or two or more (meth) acryloyl groups at the oligomer / polymer terminal or side chain
  • Polyfunctional (meth) acrylate monomers having can be used.
  • 1,2-polybutadiene terminated urethane (meth) acrylate for example, “TE-2000”, “TEA-1000” manufactured by Nippon Soda Co., Ltd.
  • hydrogenated product thereof for example, “TEAI-1000” manufactured by Nippon Soda Co., Ltd.
  • 1,4-polybutadiene terminated urethane (meth) acrylate eg “BAC-45” manufactured by Osaka Organic Chemical Co., Ltd.
  • polyisoprene terminated (meth) acrylate for example, “UV-2000B”, “UV-3000B”, “UV-7000B” manufactured by Nippon Synthetic Chemical Co., Ltd.
  • the urethane (meth) acrylate is a reaction between a polyol compound (hereinafter represented by X), an organic polyisocyanate compound (hereinafter represented by Y), and a hydroxy (meth) acrylate (hereinafter represented by Z). The urethane (meth) acrylate obtained by this.
  • polyol compound (X) examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butylene glycol, 1,4-butanediol, polybutylene glycol, 1, 5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 2,2-butylethyl-1,3-propanediol, neopentyl glycol, cyclohexanedimethanol, hydrogenated bisphenol A, polycaprolactone, trimethylolethane, trimethylolpropane, poly At least polyhydric alcohols such as limethylolpropane, pen
  • the organic polyisocyanate compound (Y) is not particularly limited.
  • aromatic, aliphatic, cycloaliphatic, and alicyclic polyisocyanates can be used.
  • Isocyanate (TDI), diphenylmethane diisocyanate (MDI), hydrogenated diphenylmethane diisocyanate (H-MDI), polyphenylmethane polyisocyanate (crude MDI), modified diphenylmethane diisocyanate (modified MDI), hydrogenated xylylene diisocyanate (H-XDI) ), Xylylene diisocyanate (XDI), hexamethylene diisocyanate (HMDI), trimethylhexamethylene diisocyanate (TMXDI), tetramethylxylylene diisocyanate (m-TMXDI), isophorone diisocyanate Polyisocyanates such as nate (IPDI), norbornene diisocyanate (NBDI), 1,3-bis (isocyanatomethyl) cyclohexane (H6XDI), trimer compounds of these polyisocyanates, reaction products of these polyiso
  • H-XDI hydrogenated xylylene diisocyanate
  • IPDI isophorone diisocyanate
  • Z examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxyethyl acryloyl phosphate, and 4-butyl.
  • polyester-based urethane (meth) acrylate and / or polyether-based urethane (meth) acrylate are preferable, and polyester-based urethane (meth) acrylate is more preferable because of its great effect.
  • the weight average molecular weight of the polyfunctional (meth) acrylate oligomer / polymer is preferably 7000 to 60000, more preferably 13000 to 40000.
  • the weight average molecular weight can be determined by preparing a calibration curve with commercially available standard polystyrene using GPC system (SC-8010 manufactured by Tosoh Corporation) using tetrahydrofuran as a solvent under the following conditions.
  • Flow rate 1.0 ml / min
  • Set temperature 40 ° C
  • Sample injection volume 100 ⁇ l (sample solution concentration 1 mg / ml)
  • Liquid feeding pressure 39 kg / cm 2
  • Detector RI detector
  • Bifunctional (meth) acrylate monomers include 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (me
  • 1,6-hexadiol di (meth) acrylate and / or dicyclopentanyl di (meth) acrylate is preferable, and dicyclopentanyl di (meth) acrylate is more preferable from the viewpoint of great effect.
  • the trifunctional (meth) acrylate monomer include trimethylolpropane tri (meth) acrylate and tris [(meth) acryloxyethyl] isocyanurate.
  • Examples of the tetrafunctional or higher (meth) acrylate monomer include dimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, or dipenta Examples include erythritol hexa (meth) acrylate.
  • the polyfunctional (meth) acrylate is preferably hydrophobic. Hydrophobic polyfunctional (meth) acrylate refers to (meth) acrylate having no hydroxyl group.
  • the cured product of the composition swells at the time of cutting, so that the position shift occurs and the processing accuracy may be inferior. Even if it is hydrophilic, it may be used as long as the cured product of the composition is not greatly swollen or partially dissolved by water.
  • the polyfunctional (meth) acrylates it is preferable to contain a polyfunctional (meth) acrylate oligomer / polymer and / or a bifunctional (meth) acrylate monomer in terms of high effect. It is more preferable to use a polymer and a bifunctional (meth) acrylate monomer in combination.
  • the content ratio is 100 parts by mass in total of the polyfunctional (meth) acrylate oligomer / polymer and the bifunctional (meth) acrylate monomer.
  • Multifunctional (meth) acrylate oligomer / polymer: bifunctional (meth) acrylate monomer 10 to 90:90 to 10, preferably 25 to 75:75 to 25, more preferably 30 to 70:70 to 30 Is most preferred.
  • Monofunctional (meth) acrylate monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate , Isodecyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, phenyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclo Pentenyloxyethyl (meth) acrylate, isobornyl (meth) acrylate, methoxylated cyclodecatriene (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxy
  • Monofunctional (meth) acrylate is more preferably hydrophobic as in (A).
  • Hydrophobic polyfunctional (meth) acrylate refers to (meth) acrylate having no hydroxyl group.
  • water-solubility the cured product of the composition swells at the time of cutting, so that the position shift occurs and the processing accuracy may be inferior. Even if it is hydrophilic, it may be used as long as the cured product of the composition is not swollen or partially dissolved by water.
  • phenolethylene oxide 2 mol-modified (meth) acrylate, 2- (1,2-cyclohexacarboximido) ethyl (meth) acrylate and 2-hydroxy-3 are more effective.
  • -One or more of the group consisting of phenoxypropyl (meth) acrylate is preferred.
  • Phenol ethylene oxide 2 mol modified (meth) acrylate may be used in combination with 2- (1,2-cyclohexacarboximido) ethyl (meth) acrylate and / or 2-hydroxy-3-phenoxypropyl (meth) acrylate More preferred.
  • phenol ethylene oxide 2 mol modified (meth) acrylate: 2- (1,2-cyclohexacarboximido) ethyl (meth) acrylate and / or 2-hydroxy-3-phenoxypropyl (meth) acrylate 5-80: 9
  • the amount of polyfunctional (meth) acrylate used is preferably 5 to 95 parts by weight, more preferably 15 to 60 parts by weight, more preferably 20 to 20 parts by weight based on 100 parts by weight of the total amount of (A) and (B). 50 parts by mass is preferred.
  • the photopolymerization initiator is blended for sensitization with visible light or ultraviolet active light to promote photocuring of the resin composition, and various known photopolymerization initiators can be used. .
  • a photoinitiator can be used 1 type or in combination of 2 or more types.
  • One or more of the group consisting of [2-hydroxy-ethoxy] -ethyl ester are preferred.
  • the content of the photopolymerization initiator is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 10 parts by mass with respect to 100 parts by mass in total of (A) and (B).
  • component (C) makes it possible to cure without depending on the amount of light irradiation, further increases the degree of crosslinking of the cured product of the composition, and does not cause misalignment during cutting, It is further preferable in terms of improving peelability.
  • the photo-curable adhesive preferably contains a particulate material (D) that does not dissolve in the components (A), (B), and (C) of the adhesive.
  • the material of the particulate material (D) may be either generally used organic particles or inorganic particles.
  • the organic particles include polyethylene particles, polypropylene particles, crosslinked polymethyl methacrylate particles, and crosslinked polystyrene particles.
  • Inorganic particles include ceramic particles such as glass, silica, alumina, and titanium.
  • the granular material is preferably spherical from the viewpoint of improving processing accuracy, that is, controlling the film thickness of the adhesive layer 12.
  • the average particle diameter of the granular material by the laser method is preferably in the range of 50 to 200 ⁇ m.
  • the average particle size of the granular material is 50 ⁇ m or more, the cutting tool tip does not decrease the life even if the cutting tool tip having inferior strength is used in the cutting tool, and further, the cutting efficiency is improved.
  • it is 200 ⁇ m or less, the amount of adhesive used is reduced and the cost is reduced, resulting in excellent productivity.
  • a more preferable average particle diameter (D50) is 70 to 150 ⁇ m, and further preferably 80 to 120 ⁇ m.
  • the particle size distribution is measured by a laser diffraction type particle size distribution measuring device.
  • the amount of the granular material (D) used is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the total amount of (A) and (B), from the viewpoint of adhesiveness, processing accuracy, and peelability. 0.05 to 10 parts by mass is more preferable, and 0.1 to 6 parts by mass is most preferable.
  • a polymerization inhibitor (E) can be added to the photocurable adhesive to improve storage stability.
  • Polymerization inhibitors include methyl hydroquinone, hydroquinone, 2,2-methylene-bis (4-methyl-6-tertiary butylphenol), catechol, hydroquinone monomethyl ether, monotertiary butyl hydroquinone, 2,5-ditertiary butyl hydroquinone.
  • the amount of the polymerization inhibitor (E) used is preferably 0.001 to 3 parts by mass and more preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of the total amount of (A) and (B). If it is 0.001 mass part or more, storage stability will be ensured, and if it is 3 mass parts or less, favorable adhesiveness will be obtained and it will not become uncured.
  • the dividing method is not particularly limited, but a disk cutter (diamond disc, cemented carbide disc), fixed abrasive type or loose abrasive type wire saw, laser beam, etching (eg, chemical etching using hydrofluoric acid, sulfuric acid, etc.) And electrolytic etching), water jet, and red tropics (nichrome wire), etc., may be used alone or in combination to divide into rectangular parallelepiped shapes of the same size. Etching can also be used for surface treatment of the cut surfaces after division.
  • a disk cutter diamond disc, cemented carbide disc
  • etching eg, chemical etching using hydrofluoric acid, sulfuric acid, etc.
  • segmented into the cradle is fixed, and a desired external shape process is performed to the translucent hard board
  • FIG. 3 the schematic diagram of the translucent hard board
  • each of the divided light-transmitting hard substrate laminates 14 can be integrally processed into the shape of the target plate product, so that the production speed of the plate product can be greatly increased.
  • the outer shape processing may be performed by any known means, and examples thereof include grinding with a rotating grindstone, drilling with an ultrasonic vibration drill, processing with a rotating brush, and the like.
  • End face processing of translucent hard substrate laminate 14 Next, end face processing is performed on the translucent hard substrate laminate 14 that has been subjected to desired outer diameter processing.
  • the translucent hard substrate laminate 14 after the outer diameter processing may have chipping, cracking, chipping, or the like on its end surface, but this end surface processing also has the purpose of removing them.
  • a cutting tool 16 having a cutting portion 18 is used for the end face processing.
  • FIG. 4 the cross-sectional schematic diagram of the cutting tool 16 which has the cutting part 18 with which the front-end
  • the cutting tool 16 includes a shaft portion 17 that is attached to a spindle, which will be described later, and is rotationally driven, and a cutting portion 18 that is provided at the tip of the shaft portion 17.
  • the cutting part 18 is configured such that a plurality of protrusions 19 having an isosceles triangular cross section are arranged at predetermined intervals so as to stand vertically from the shaft part 17 and over the entire circumference of the shaft part 17.
  • the circumferential direction of the shaft portion 17 is “a direction parallel to the adhesive layer 12 ′ between the translucent hard substrates 11 ′ when provided in opposition to the translucent hard substrate 11 ′”.
  • the form of the cutting part 18 is not limited to that of the above-described form.
  • the cutting part 18 includes a shaft part 17 and a contact part having a spherical tip formed so as to extend vertically from the shaft part 17. Also good. Moreover, you may be comprised by the axial part 17 and the front-end
  • FIG. The size of the cutting tool 16 is not particularly limited.
  • the angle 19a of the protrusion 19 is not particularly limited.
  • the cross section may be formed into a right-angled isosceles triangle shape so as to take a face at 45 ° and remove the sharpness of the edge.
  • the material for forming the cutting part 18 is not particularly limited as long as it can satisfactorily scrape off the translucent hard substrate 11 ′ constituting the translucent hard substrate laminate 14 to be cut.
  • the portion in contact with the conductive hard substrate 11 ′ is preferably made of super steel, high speed steel, or diamond.
  • the contact portion is formed of such a material, it is possible to cut the light-transmitting hard substrate laminate 14 to be cut particularly easily and accurately when the material constituting the light-transmitting hard substrate laminate 14 is a plate glass or the like.
  • the whole cutting part 18 may be formed with such a material, and may be formed by the electrodeposition etc. on the main body formed with the metal material.
  • the cutting portion 18 main body may be formed of super steel or high speed steel, and diamond may be formed on the main body by electrodeposition.
  • an ultrasonic spindle is used as a driving device for the cutting tool 16.
  • the ultrasonic spindle is a hollow main body sleeve formed in the spindle, an ultrasonic vibrator provided in the main body sleeve, coaxially connected to the ultrasonic vibrator, and fixed to the inner wall of the main body sleeve. And a support horn.
  • the support horn transmits the ultrasonic vibration excited by the ultrasonic vibrator to the cutting tool 16 to which the support horn is attached.
  • cutting waste enters the cutting portion 18 of the cutting tool 16 and clogging occurs.
  • the clogging with the cutting scraps reduces the life of the cutting tool 16 and further reduces the cutting efficiency. For this reason, in cutting, it is important not to cause clogging due to cutting waste entering the cutting portion 18 of the cutting tool 16.
  • an ultrasonic spindle is used as a drive device, it is possible to proceed with processing while finely crushing and removing the processing surface by combining ultrasonic vibration with rotational motion. For this reason, it is not necessary to have a rotational speed of about 30000 rpm, which is used in normal rotational drive type cutting, and processing at a rotational speed of about 2500 rpm is possible. Therefore, there is an advantage that the life of the cutting tool 16 is improved and noise in the processing is reduced.
  • a cooling liquid is used at the time of processing.
  • a cavitation phenomenon occurs in the cooling liquid, and the cutting waste is repelled.
  • a flow is generated in the cooling liquid by a pumping action due to vibration between the translucent hard substrate laminate 14 and the cutting part 18, and the dischargeability of the cutting waste is improved. For this reason, the clogging of the cutting part 18 can be suppressed favorably.
  • the usage-amount of a cooling fluid can also be suppressed, manufacturing cost becomes favorable compared with the normal rotational drive type cutting process.
  • the end face processing on the translucent hard substrate laminate 14 having the desired outer diameter processing first, as shown in FIG. A cutting tool 16 attached to an unillustrated) is provided in alignment. At this time, the cutting tool 16 is provided such that the plurality of cutting portions 18 are arranged in a direction parallel to the adhesive layer 12 ′ of the translucent hard substrate laminate 14. Moreover, the space
  • the adhesive is controlled to be constant by including a granular material that does not dissolve in the adhesive components. Further, the interval between the substrates may be controlled to be constant using an external fixing device.
  • the ultrasonic spindle is actuated to bring the cutting portion 18 of the cutting tool 16 into contact with rotation, so that the adjacent translucent hard substrates 11 ′ face each other. Cut the edges of the surface to be cut at once.
  • the plurality of cutting portions 18 in parallel with the cutting tool can always contact each substrate with high accuracy. Accordingly, the edges of the mutually facing surfaces of the adjacent translucent hard substrates 11 'can be cut at a desired width and depth at a time.
  • the projecting portions 19 having an isosceles triangular cross section formed so that the cutting portion 18 stands vertically from the shaft portion 17 and over the entire circumference of the shaft portion 17 are spaced apart from each other by a predetermined interval.
  • the hard substrate laminate 14 is bonded to the hard substrate 11 ′ from the edges of the mutually opposing surfaces of the adjacent hard substrates 11 ′ in the cross section, as shown in FIG. 5.
  • a V-shaped groove 21 having a ridge line is formed in the adhesive layer 12 ′ over the adhesive layer 12 ′.
  • the cutting portion 18 of the cutting tool 16 is brought into contact between the substrates in a state where the substrate intervals of the translucent hard substrate laminate 14 are controlled to be constant with each other. It is not limited to this. That is, when the intervals between the substrates of the translucent hard substrate laminate 14 are not constant, it is also possible to arrange the cutting parts 18 arranged in parallel so as to correspond to each other between the substrates by adjoining them. The edges of the mutually opposing surfaces of the translucent hard substrate 11 ′ can be cut at a time.
  • the side surface of the hard substrate laminate 14 cut by the cutting tool 16 is polished.
  • Any known polishing means can be used as long as it can satisfactorily polish the hard substrate 11 ′ to be polished.
  • polish with a brush for example using the slurry containing abrasives, such as cerium oxide.
  • the brush is not particularly limited.
  • nylon, PVC, PP, pig hair, wool, horse hair, brass, cerium oxide, aluminum oxide, silicon carbide, aluminum silicate, etc. are kneaded into nylon, PVC, PP, etc. Can be made of rare materials.
  • the substrate side surface can be finished to a smoother surface.
  • FIG. 6 is a schematic cross-sectional view of the translucent hard substrate laminate 20 after end face processing
  • FIG. 7 is a schematic plan view of the translucent hard substrate laminate 20 after end face processing.
  • UV-3000B As a polyfunctional (meth) acrylate, “UV-3000B” (abbreviated as “UV-3000B” hereinafter referred to as urethane acrylate) manufactured by Nippon Gosei Co., Ltd., a weight average molecular weight of 18000, a polyol compound is a polyester polyol, and an organic polyisocyanate compound is isophorone diisocyanate.
  • Preparation of plate glass laminate 12 sheets of plate glass (width 530 mm ⁇ length 420 mm ⁇ thickness 0.7 mm) are prepared as a light-transmitting hard substrate, and bonded together via the photocurable adhesive containing crosslinked polystyrene particles.
  • a laminate was produced. Specifically, after 40 g of the above-mentioned photo-curable adhesive is applied on the first sheet glass, the second sheet glass is bonded onto the first sheet glass, and the surface of the second sheet glass is then bonded. The photocurable adhesive was cured by UV irradiation.
  • the UV irradiation amount was 3000 mJ / cm 2 (measured by an integrating illuminometer with a 365 nm light receiver), and the UV irradiation time was 40 seconds.
  • a plate glass laminate having a thickness of 8 mm (this thickness is the total thickness of the laminate of 12 plate glasses) made of 12 plate glasses was produced.
  • each plate glass laminate was cut in the thickness direction along a predetermined cutting line by a disc cutter to produce a divided plate glass laminate.
  • each plate glass was divided into a width of 100 mm, a length of 50 mm, and a thickness of 0.7 mm (this thickness is the thickness of one plate glass).
  • the outer shape was processed by fixing the plate glass laminate divided into the cradle and grinding the plate glass laminate on the cradle using a rotating grindstone. At this time, some of the edges of the plate glass had chipping, cracks, and / or chips.
  • a cutting tool as shown in FIG. 4 was prepared.
  • the shaft portion and the protrusion main body are made of super steel, and diamond is electrodeposited on the surface of the protrusion main body.
  • the cutting tool was attached to a 40 kHZ ultrasonic spindle unit URT40-F41 manufactured by Takesho.
  • the cutting tool attached to the ultrasonic spindle is installed at a position where the plurality of protrusions correspond to the adhesive layers of the sheet glass laminate, and as shown in FIG. From the edge of the opposite surface of the adjacent plate glass to the adhesive layer between the plate glasses in the cross section of the plate glass laminate, the ridge line is projected to the adhesive layer from the edge of the projection to the adhesive layer. Cutting was performed so as to form a V-shaped groove having the shape. At this time, the ultrasonic spindle had a rotational frequency of 2500 rpm at 40 kHz. Cutting was performed until the V-shaped groove inclined at 45 ° on the side surface of the plate glass laminate had a depth of 0.2 mm.
  • Example 2 As Example 2, the same process as Example 1 was performed except that a cutting tool equipped with a normal spindle (not applying ultrasonic vibration) that was not an ultrasonic spindle was used in the cutting process. In the same manner as in Example 1, chipping, cracking, and / or chipping were removed satisfactorily from the edge portion of the plate glass laminate that had been subjected to end face processing in this manner. However, in the cutting process, compared with Example 1 using an ultrasonic spindle, noise increased, and clogging of the cut portion with cutting waste was conspicuous.
  • Example 3 As Example 3, the same process as in Example 1 was performed except that the photocurable adhesive (II) was used instead of the photocurable adhesive (I). 1. Preparation of photocurable adhesive (II) The following components (A) to (E) were mixed to prepare a photocurable adhesive (II).
  • UV-3000B urethane acrylate, hereinafter abbreviated as “UV-3000B”
  • UV-3000B dicyclopentanyl diacrylate (manufactured by Nippon Kayaku Co., Ltd.) KAYARADR-684 ”, hereinafter abbreviated as“ R-684 ”)
  • R-684 KAYARADR-684
  • R-684 25 parts by mass
  • C 10 parts by mass of benzyldimethyl ketal
  • Example 4 As Example 4, the same process as Example 3 was performed except that a cutting tool equipped with a normal spindle (not applying ultrasonic vibration) that was not an ultrasonic spindle was used in the cutting process. In the same manner as in Example 1, chipping, cracking, and / or chipping were removed satisfactorily from the edge portion of the plate glass laminate that had been subjected to end face processing in this manner. However, in the cutting process, compared with Example 3 using an ultrasonic spindle, noise increased, and clogging of the cut portion with cutting waste was conspicuous.
  • Comparative Example 1 As Comparative Example 1, a sheet glass is laminated using a photocurable adhesive (I) that does not contain polystyrene particles (except that it does not contain polystyrene particles, and has the same composition as the photocurable adhesive (I)). Thus, the thickness control between the plate glasses in the plate glass laminate was not performed, and in the cutting process, in place of the cutting tool according to the present invention, except that a brush formed of nylon was used, Example 1 and A similar process was performed. Many chippings, cracks, and / or chips remained from the edges of the plate glass laminate subjected to the end face processing in this way and were not removed well.
  • a photocurable adhesive (I) that does not contain polystyrene particles (except that it does not contain polystyrene particles, and has the same composition as the photocurable adhesive (I)).
  • each glass sheet is not controlled to be constant, and since it was cut with a brush made of nylon, a plurality of cutting parts could be cut at appropriate positions with respect to the edge of the glass sheet. This is probably because the edge of the laminated sheet glass could not be cut uniformly.
  • Table 1 shows the physical properties of the photocurable adhesive (I) and the photocurable adhesive (II) used in the above Examples and Comparative Examples.
  • the evaluation method is as follows.
  • Tensile shear adhesive strength (adhesive strength): Measured according to JIS K 6850. Specifically, heat-resistant Pyrex (registered trademark) glass (25 mm ⁇ 25 mm ⁇ 2.0 mm) was used as the adherend. Adhesion site is 8mm in diameter, and two heat-resistant Pyrex (registered trademark) glass is bonded together with the produced photo-curing adhesive, and a wavelength of 365 nm is integrated by a fusion device using an electrodeless discharge lamp.
  • Curing was performed under the condition of a light amount of 2000 mJ / cm 2 to prepare a tensile shear bond strength test piece.
  • the prepared test piece was measured for tensile shear bond strength at a tensile rate of 10 mm / min in an environment of a temperature of 23 ° C. and a humidity of 50% using a universal testing machine.
  • Peeling test produced under the same conditions as above except that a photocurable adhesive was applied to the heat-resistant Pyrex (registered trademark) glass and bonded to blue plate glass (150 mm ⁇ 150 mm ⁇ thickness 1.7 mm) as a support. The cured photocurable adhesive was cured to prepare a peel test specimen.
  • the obtained specimen was immersed in warm water (80 ° C.), the time for the heat-resistant Pyrex (registered trademark) glass to peel was measured, and the peeled state was also observed.
  • the blue plate glass (A) of 80 mm ⁇ thickness 1 mm and the blue plate glass (B) (used as a support) used in the peel test were bonded and cured in the same manner as described above.
  • the blue sheet glass (A) portion of the adhesion test specimen was cut into a 10 mm square using a dicing apparatus.
  • the blue plate glass (A) did not fall off during the cutting, indicating good workability.
  • disconnected only the blue plate glass (A) part was immersed in 80 degreeC warm water, all peeled in 10 minutes. Also, 10 pieces of the peeled test specimens were taken out at random, and each piece on the back surface (surface temporarily fixed with an adhesive) of the test specimen was observed using an optical microscope, and the glass was missing. The maximum width was measured, and the average value and standard deviation were obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Milling Processes (AREA)

Abstract

Provided is a method which is capable of processing a hard substrate laminated body efficiently and preferably. The method for processing the hard substrate laminated body includes a step of preparing a hard substrate laminated body (14) obtained by bonding two or more hard substrates to each other with an adhesive and a step of cutting, at a time, edge portions of surfaces of adjacent hard substrates (11') which are opposed to each other from a side surface of the laminated body (14) with a cutting tool (16) provided with a cutting portion (18) which is provided on a position corresponding to each of adhesive layers between the hard substrates.

Description

硬質基板積層体の加工方法及び板状製品の製造方法Method for processing hard substrate laminate and method for manufacturing plate-like product
 本発明は硬質基板積層体の加工方法に関する。また、本発明は表示素子の保護ガラスなどの板状製品の製造方法に関する。 The present invention relates to a method for processing a hard substrate laminate. The present invention also relates to a method for manufacturing a plate-like product such as a protective glass of a display element.
 テレビ、ノートパソコン、カーナビゲーション、電卓、携帯電話、電子手帳、及びPDA(Personal Digital Assistant)といった各種電子機器の表示装置には、液晶ディスプレイ(LCD)、有機ELディスプレイ(OELD)、電界発光ディスプレイ(ELD)、電界放出ディスプレイ(FED)、及びプラズマディスプレイ(PDP)等の表示素子が使用されている。そして、表示素子を保護するため、表示素子と対向させて保護用の板ガラス製品を設置するのが一般である。 Display devices of various electronic devices such as TVs, notebook computers, car navigation systems, calculators, mobile phones, electronic notebooks, and PDAs (Personal Digital Assistants) include liquid crystal displays (LCD), organic EL displays (OELD), electroluminescent displays ( Display elements such as ELD), field emission displays (FED), and plasma displays (PDP) are used. And in order to protect a display element, it is common to install the plate glass product for protection facing a display element.
 この板ガラス製品は板ガラスを各表示装置に適した大きさ及び形状に加工したものであるが、市場で要求される価格レベルに対応するために、大量の板ガラス製品を高い生産効率で加工することが求められる。 This flat glass product is obtained by processing a flat glass into a size and shape suitable for each display device. In order to meet the price level required in the market, it is possible to process a large amount of flat glass products with high production efficiency. Desired.
 そこで、特開2009-256125号公報(特許文献1)では、板ガラス製品の生産効率を高める方法が提案されている。具体的には「多数の素材板ガラス(1)を積み重ねるとともに、各素材板ガラス(1)を、各素材板ガラス(1)間に介在させた剥離可能な固着材(2)により一体的に固着してなる素材ガラスブロック(A)を形成し、該素材ガラスブロック(A)を面方向に分割して小面積の分割ガラスブロック(B)を形成し、該分割ガラスブロック(B)の少なくとも外周を加工して平面視製品形状となる製品ガラスブロック(C)を形成し、該製品ガラスブロック(C)を端面加工した後、該製品ガラスブロック(C)を個別に分離したことを特徴とする板ガラスの加工方法」を提案している(請求項1)。これにより、「多数の素材板ガラスを積み重ねた状態で、分割、外形加工、及び端面加工を行うようにしたので、少ない工程で多数の板ガラス製品を得ることができ、生産性に富む」ことが記載されている(段落0007)。 Therefore, Japanese Patent Laid-Open No. 2009-256125 (Patent Document 1) proposes a method for increasing the production efficiency of a sheet glass product. Specifically, “a large number of material glass sheets (1) are stacked, and each material glass sheet (1) is integrally fixed by a peelable fixing material (2) interposed between each material glass sheet (1). Forming the material glass block (A), dividing the material glass block (A) in the plane direction to form a small-area divided glass block (B), and processing at least the outer periphery of the divided glass block (B) A product glass block (C) having a product shape in plan view is formed, and after the end face processing of the product glass block (C), the product glass block (C) is individually separated. "Processing method" is proposed (claim 1). As a result, "Since a large number of material glass sheets are stacked, division, outer shape processing, and end face processing are performed, so that a large number of glass sheet products can be obtained in a small number of steps, and the productivity is high." (Paragraph 0007).
特開2009-256125号公報JP 2009-256125 A
 しかしながら、従来の加工方法では、複数枚のガラス基板が積層された積層体に対して一度に端面加工を行うと、各基板間の間隔が一定でない場合に、ガラス基板を切削する切削用工具の切削部を、目的とする位置である各基板間に精度良く接触させることができず、各ガラス基板の上下縁に生じたチッピング、ヒビ、又は、欠け等を良好に除去することが困難となる。 However, in the conventional processing method, when end face processing is performed at once on a laminated body in which a plurality of glass substrates are stacked, a cutting tool for cutting a glass substrate is used when the distance between the substrates is not constant. The cutting part cannot be accurately brought into contact between the substrates at the target positions, and it becomes difficult to remove chips, cracks, chips, etc. generated on the upper and lower edges of each glass substrate. .
 そこで、本発明は特許文献1に記載されているガラスブロックなどの硬質基板積層体を効率よく良好に加工することのできる方法を提供することを課題とする。また、本発明は当該加工方法を利用した板状製品の製造方法を提供することを別の課題とする。 Therefore, an object of the present invention is to provide a method capable of efficiently and satisfactorily processing a hard substrate laminate such as a glass block described in Patent Document 1. Moreover, this invention makes it another subject to provide the manufacturing method of the plate-shaped product using the said processing method.
 本発明者らは上記課題を解決するために鋭意検討したところ、硬質基板積層体を構成する複数の対向し合う基板間の接着剤層に対応する位置にそれぞれの切削部を設けて一度に切削加工することで、複数の切削部それぞれを目的とする位置である各基板間に精度良く接触させて、各基板間の互いに対向する面の縁部に生じたチッピング、ヒビ、又は、欠け等を良好に且つ効率よく除去することが可能となることを見出した。 The inventors of the present invention have intensively studied to solve the above-described problems. As a result, each cutting portion is provided at a position corresponding to an adhesive layer between a plurality of opposing substrates constituting the hard substrate laminate, and cutting is performed at a time. By machining, each of a plurality of cutting parts is brought into contact between each substrate at a target position with high accuracy, and chipping, cracks, chips, etc. generated at the edges of mutually facing surfaces between each substrate are detected. It has been found that it can be removed efficiently and efficiently.
 以上の知見を基礎として完成した本発明は一側面において、
 2枚以上の硬質基板同士が接着剤で貼り合わせられた硬質基板積層体を準備する工程と、
 前記硬質基板間の各接着剤層に対応する位置にそれぞれ設けられた切削部を備える切削用工具で、前記積層体の側面から、隣り合う前記硬質基板の互いに対向する面の縁部を一度に切削する工程と、
を含む硬質基板積層体の加工方法である。
The present invention completed on the basis of the above knowledge, in one aspect,
Preparing a hard substrate laminate in which two or more hard substrates are bonded together with an adhesive;
A cutting tool provided with a cutting portion provided at a position corresponding to each adhesive layer between the hard substrates, and from the side surface of the laminated body, the edges of the adjacent hard substrates facing each other at a time Cutting process;
It is a processing method of the hard board | substrate laminated body containing this.
 本発明に係る硬質基板積層体の加工方法は一実施形態において、前記切削用工具による切削は、前記硬質基板積層体の断面において、隣り合う前記硬質基板の互いに対向する面の縁部から前記硬質基板間の接着剤層にかけて、前記接着剤層に稜線を有するV字溝を形成するように行う。 In one embodiment of the method for processing a hard substrate laminate according to the present invention, the cutting with the cutting tool is performed by cutting the hard substrate from an edge portion of adjacent surfaces of the hard substrate adjacent to each other in a cross section of the hard substrate laminate. A V-shaped groove having a ridge line is formed on the adhesive layer between the substrates.
 本発明に係る硬質基板積層体の加工方法は別の一実施形態において、前記切削用工具は、スピンドルに取り付けられて回転駆動される。 In another embodiment of the method for processing a hard substrate laminate according to the present invention, the cutting tool is attached to a spindle and rotated.
 本発明に係る硬質基板積層体の加工方法は更に別の一実施形態において、前記スピンドルが超音波スピンドルである。 In another embodiment of the method for processing a hard substrate laminate according to the present invention, the spindle is an ultrasonic spindle.
 本発明に係る硬質基板積層体の加工方法は更に別の一実施形態において、前記切削工程の間、複数の前記硬質基板の間隔を一定に制御する。 In another embodiment of the method for processing a hard substrate laminate according to the present invention, the intervals between the plurality of hard substrates are controlled to be constant during the cutting step.
 本発明に係る硬質基板積層体の加工方法は更に別の一実施形態において、前記硬質基板の間隔を、接着剤に、接着剤の成分に溶解しない粒状物質を含ませることで一定に制御する。 In another embodiment of the method for processing a hard substrate laminate according to the present invention, the interval between the hard substrates is controlled to be constant by including a granular material that does not dissolve in the adhesive component in the adhesive.
 本発明に係る硬質基板積層体の加工方法は更に別の一実施形態において、前記切削用工具の切削部の少なくとも前記硬質基板に接触する部分が超鋼、高速度鋼、又は、ダイヤモンドで形成されている。 In yet another embodiment of the method for processing a hard substrate laminate according to the present invention, at least a portion of the cutting portion of the cutting tool that contacts the hard substrate is formed of super steel, high speed steel, or diamond. ing.
 本発明に係る硬質基板積層体の加工方法は更に別の一実施形態において、前記切削用工具の切削部が、表面にダイヤモンドが電着された超鋼又は高速度鋼で形成されている。 In another embodiment of the method for processing a hard substrate laminate according to the present invention, the cutting portion of the cutting tool is formed of super steel or high-speed steel with diamond electrodeposited on its surface.
 本発明に係る硬質基板積層体の加工方法は更に別の一実施形態において、前記切削用工具で切削された前記硬質基板積層体の側面を、さらに研磨する工程を含む。 In yet another embodiment, the method for processing a hard substrate laminate according to the present invention includes a step of further polishing a side surface of the hard substrate laminate cut by the cutting tool.
 本発明に係る硬質基板積層体の加工方法は更に別の一実施形態において、前記硬質基板積層体は、2枚以上の大判の硬質基板同士が接着剤で貼り合わせられた大判の硬質基板積層体を、その厚み方向に切断して分割形成されたものである。 In another embodiment of the processing method for a hard substrate laminate according to the present invention, the hard substrate laminate is a large hard substrate laminate in which two or more large hard substrates are bonded together with an adhesive. Is cut and formed in the thickness direction.
 本発明に係る硬質基板積層体の加工方法は更に別の一実施形態において、透光性硬質基板が板ガラスである。 In another embodiment of the method for processing a hard substrate laminate according to the present invention, the translucent hard substrate is a plate glass.
 本発明は別の一側面において、本発明に係る硬質基板積層体の加工方法が施された硬質基板積層体を用いて複数の板状製品を形成する工程を含む板状製品の製造方法である。 This invention is another one side. WHEREIN: It is a manufacturing method of the plate-shaped product including the process of forming several plate-shaped products using the hard substrate laminated body to which the processing method of the hard substrate laminated body concerning this invention was given. .
 本発明によれば、硬質基板積層体を効率よく良好に加工することができ、加工精度の向上した板状製品を工業的に生産することが可能となる。本発明は例えば表示素子の保護ガラスを量産する際に好適に使用することができる。 According to the present invention, a hard substrate laminate can be processed efficiently and satisfactorily, and a plate-like product with improved processing accuracy can be industrially produced. The present invention can be suitably used, for example, when mass-producing protective glass for display elements.
切断加工を行う前の大判の透光性硬質基板積層体の模式図である。It is a schematic diagram of the large-sized translucent hard board | substrate laminated body before performing a cutting process. 切断加工により切り出された透光性硬質基板積層体の模式図である。It is a schematic diagram of the translucent hard board | substrate laminated body cut out by the cutting process. 外径加工線が示された透光性硬質基板積層体の模式図である。It is a schematic diagram of the translucent hard board | substrate laminated body by which the outer diameter process line was shown. 先端部分が拡大された、切削部を有する切削用工具、及び、切削対象の透光性硬質基板積層体の断面模式図である。It is the cross-sectional schematic diagram of the cutting tool which has a cutting part by which the front-end | tip part was expanded, and the translucent hard board | substrate laminated body of cutting object. 端面切削後の透光性硬質基板積層体の断面模式図である。It is a cross-sectional schematic diagram of the translucent hard board | substrate laminated body after end surface cutting. 端面加工後の透光性硬質基板積層体の断面模式図である。It is a cross-sectional schematic diagram of the translucent hard board | substrate laminated body after an end surface process. 端面加工後の透光性硬質基板積層体の平面模式図である。It is a plane schematic diagram of the translucent hard board | substrate laminated body after an end surface process.
 以下、本発明の実施形態について図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
<1.透光性硬質基板積層体10の準備>
 本実施形態では、限定的ではないが、硬質基板として、透光性硬質基板を用いる。図1は、切断加工や外形加工を行う前の大判の透光性硬質基板積層体10の模式図である。大判の透光性硬質基板積層体10を構成する大判の透光性硬質基板11としては、特に制限はないが、板ガラス(強化板ガラス、素材板ガラス、透明導電膜付きガラス基板、電極や回路が形成されたガラス基板等)、サファイア基板、石英基板、プラスチック基板、フッ化マグネシウム基板などが挙げられる。一枚の大判の透光性硬質基板11の大きさに特に制限はないが、典型的には10000~250000mm2程度の面積を有し、0.1~2mm程度の厚みを有する。積層される一枚ごとの大判の透光性硬質基板11は同じサイズであるのが一般的である。大判の透光性硬質基板積層体10は2枚以上の透光性硬質基板11が積層されている。大判の透光性硬質基板積層体10の全体の厚みが薄すぎると機械的強度が弱くなり、加工のために受け台に接着剤により固定した透光性硬質基板積層体10を剥離する際に割れやすくなることから、透光性硬質基板11の材質にもよるが、好ましくは5枚以上(基板11の合計の厚みとしては0.52mm以上)、より好ましくは10~30枚程度(基板11の合計の厚みとしては1.5~66mm程度)の透光性硬質基板11が光硬化性接着剤を介して積層される。
<1. Preparation of Translucent Hard Substrate Laminate 10>
In this embodiment, although not limited, a light-transmitting hard substrate is used as the hard substrate. FIG. 1 is a schematic view of a large-sized translucent hard substrate laminate 10 before performing cutting processing and external processing. Although there is no restriction | limiting in particular as the large-sized translucent hard board | substrate 11 which comprises the large-sized translucent hard board | substrate laminated body 10, Plate glass (tempered plate glass, raw material plate glass, a glass substrate with a transparent conductive film, an electrode, and a circuit are formed. And a sapphire substrate, a quartz substrate, a plastic substrate, a magnesium fluoride substrate, and the like. Not particularly limited to the size of a single large-sized light-transmitting hard substrate 11, but typically have a 2 degree of area 10000 ~ 250000mm, having a thickness of about 0.1 ~ 2 mm. In general, each large transparent translucent substrate 11 to be laminated has the same size. The large-sized translucent hard substrate laminate 10 has two or more translucent hard substrates 11 laminated thereon. If the overall thickness of the large-sized translucent hard substrate laminate 10 is too thin, the mechanical strength becomes weak, and when the translucent hard substrate laminate 10 fixed to the cradle with an adhesive is peeled off for processing. Depending on the material of the light-transmitting hard substrate 11, it is preferably 5 or more (the total thickness of the substrate 11 is 0.52 mm or more), more preferably about 10 to 30 (substrate 11). The translucent hard substrate 11 having a total thickness of about 1.5 to 66 mm is laminated via a photocurable adhesive.
 限定的ではないが、各透光性硬質基板11の表面には板状製品の機能の一つを奏するための所定の印刷パターンやめっきパターンを付すことができる。印刷パターンの例としては携帯電話の表示画面のデザイン、めっきパターンの例としてはAlやAlNdなどの金属配線パターン、クロムめっきパターンが施されているロータリーエンコーダーが挙げられる。 Although not limited, a predetermined printing pattern or plating pattern for performing one of the functions of the plate-like product can be attached to the surface of each translucent hard substrate 11. Examples of the print pattern include a mobile phone display screen design, and examples of the plating pattern include a metal wiring pattern such as Al or AlNd, and a rotary encoder provided with a chromium plating pattern.
 透光性硬質基板11の積層は例えば、一方又は両方の貼り合わせ面に光硬化性接着剤が塗布された各透光性硬質基板11同士を貼り合わせた後に、両透光性硬質基板11に挟まれて広がっている接着剤を硬化するための光を照射することによって実施することができる。これを所望の回数だけ繰り返すことにより、所望の枚数の透光性硬質基板11が積層された透光性硬質基板積層体10を作製することができる。光照射は、透光性硬質基板11を1枚積層する度に実施してもよく、接着剤へ光が到達する限りにおいて、複数枚を積層した後にまとめて実施してもよい。このとき光照射量が強すぎると透光性硬質基板積層体の剥離性や外観が経時劣化しやすくなる一方で、光照射量が弱すぎると接着剤の硬化が不十分となることから、透光性硬質基板を貼り合わせる毎に接着剤を硬化するために照射する光の照射量を1000~10000mJ/cm2とすることが好ましく、1200~6000mJ/cm2とすることがより好ましく、1500~3000mJ/cm2とすることが更により好ましい。照射時間は10~200秒が好ましく、20~100秒がより好ましい。 The translucent hard substrate 11 is laminated, for example, after pasting the translucent hard substrates 11 each having a photocurable adhesive applied to one or both of the laminating surfaces, to the translucent hard substrates 11. It can be carried out by irradiating light for curing the adhesive spread between the layers. By repeating this a desired number of times, the light transmissive hard substrate laminate 10 in which the desired number of light transmissive hard substrates 11 are laminated can be produced. The light irradiation may be performed every time one light-transmitting hard substrate 11 is stacked, or may be performed collectively after stacking a plurality of sheets as long as light reaches the adhesive. At this time, if the light irradiation amount is too strong, the peelability and appearance of the translucent hard substrate laminate are likely to deteriorate over time, while if the light irradiation amount is too weak, the adhesive will not be cured sufficiently. The amount of light irradiated to cure the adhesive each time the optical hard substrate is bonded is preferably 1000 to 10000 mJ / cm 2 , more preferably 1200 to 6000 mJ / cm 2, and 1500 to Even more preferably, it is 3000 mJ / cm 2 . The irradiation time is preferably 10 to 200 seconds, more preferably 20 to 100 seconds.
 光硬化性接着剤としては、公知の任意のものが使用でき特に制限はないが、例えばWO2008/018252に記載のような(A)多官能(メタ)アクリレート、(B)単官能(メタ)アクリレート、及び(C)光重合開始剤を含有する接着性組成物が好適である。
 (A)多官能(メタ)アクリレートとしては、オリゴマー/ポリマー末端又は側鎖に2個以上(メタ)アクロイル化された多官能(メタ)アクリレートオリゴマー/ポリマーや、2個以上の(メタ)アクロイル基を有する多官能(メタ)アクリレートモノマーを使用することができる。例えば、多官能(メタ)アクリレートオリゴマー/ポリマーとしては、1,2-ポリブタジエン末端ウレタン(メタ)アクリレート(例えば、日本曹達社製「TE-2000」、「TEA-1000」)、その水素添加物(例えば、日本曹達社製「TEAI-1000」)、1,4-ポリブタジエン末端ウレタン(メタ)アクリレート(例えば、大阪有機化学社製「BAC-45」)、ポリイソプレン末端(メタ)アクリレート、ポリエステル系ウレタン(メタ)アクリレート(例えば、日本合成化学社製「UV-2000B」、「UV-3000B」、「UV-7000B」、根上工業社製「KHP-11」、「KHP-17」)、ポリエーテル系ウレタン(メタ)アクリレート(例えば、日本合成化学社製「UV-3700B」、「UV-6100B」)、又はビスフェノールA型エポキシ(メタ)アクリレート、などが挙げられる。
 ここで、ウレタン(メタ)アクリレートとは、ポリオール化合物(以後、Xで表す)と有機ポリイソシアネート化合物(以後、Yで表す)とヒドロキシ(メタ)アクリレート(以後、Zで表す)とを反応させることにより得られる、ウレタン(メタ)アクリレートをいう。
 ポリオール化合物(X)としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、1,4-ブタンジオール、ポリブチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、2,2-ブチルエチル-1,3-プロパンジオール、ネオペンチルグリコール、シクロヘキサンジメタノール、水素化ビスフェノールA、ポリカプロラクトン、トリメチロールエタン、トリメチロールプロパン、ポリトリメチロールプロパン、ペンタエリスリトール、ポリペンタエリスリトール、ソルビトール、マンニトール、グリセリン、ポリグリセリン、ポリテトラメチレングリコール等の多価アルコールや、ポリエチレンオキサイド、ポリプロピレンオキサイド、エチレンオキサイド/プロピレンオキサイドのブロック又はランダム共重合の少なくとも1種の構造を有するポリエーテルポリオール、該多価アルコール又はポリエーテルポリオールと無水マレイン酸、マレイン酸、フマル酸、無水イタコン酸、イタコン酸、アジピン酸、イソフタル酸等の多塩基酸との縮合物であるポリエステルポリオール、カプロラクトン変性ポリテトラメチレンポリオール等のカプロラクトン変性ポリオール、ポリオレフィン系ポリオール、ポリカーボネート系ポリオール、ポリブタジエンポリオール、ポリイソプレンポリオール、水素化ポリブタジエンポリオール、水素化ポリイソプレンポリオール等のポリジエン系ポリオール、ポリジメチルシロキサンポリオール等のシリコーンポリオール等が挙げられる。これらの中では、ポリエーテルポリオール及び/又はポリエステルポリオールがより好ましく、ポリエステルポリオールが最も好ましい。
 有機ポリイソシアネート化合物(Y)としては、格別に限定される必要はないが、例えば芳香族系、脂肪族系、環式脂肪族系、脂環式系等のポリイソシアネートが使用でき、中でもトリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、水添化ジフェニルメタンジイソシアネート(H-MDI)、ポリフェニルメタンポリイソシアネート(クルードMDI)、変性ジフェニルメタンジイソシアネート(変性MDI)、水添化キシリレンジイソシアネート(H-XDI)、キシリレンジイソシアネート(XDI)、ヘキサメチレンジイソシアネート(HMDI)、トリメチルヘキサメチレンジイソシアネート(TMXDI)、テトラメチルキシリレンジイソシアネート(m-TMXDI)、イソホロンジイソシアネート(IPDI)、ノルボルネンジイソシアネート(NBDI)、1,3-ビス(イソシアナトメチル)シクロヘキサン(H6XDI)等のポリイソシアネート或いはこれらポリイソシアネートの三量体化合物、これらポリイソシアネートとポリオールの反応生成物等が好適に用いられる。これらの中では、水添化キシリレンジイソシアネート(H-XDI)及び/又はイソホロンジイソシアネート(IPDI)が好ましい。
 ヒドロキシ(メタ)アクリレート(Z)としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチルアクリロイルホスフェート、4-ブチルヒドロキシ(メタ)アクリレート、2-(メタ)アクリロイロキシエチル-2-ヒドロキシプロピルフタレート、グリセリンジ(メタ)アクリレート、2-ヒドロキシ-3-アクリロイロキシプロピル(メタ)アクリレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート等が挙げられる。これらの中では、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレートからなる群のうちの1種以上が好ましい。
 これらの中では、効果が大きい点で、ポリエステル系ウレタン(メタ)アクリート及び/又はポリエーテル系ウレタン(メタ)アクリレートが好ましく、ポリエステル系ウレタン(メタ)アクリートがより好ましい。
 多官能(メタ)アクリレートオリゴマー/ポリマーの重量平均分子量は、7000~60000が好ましく、13000~40000がより好ましい。重量平均分子量は、下記の条件にて、溶剤としてテトラヒドロフランを用い、GPCシステム(東ソ-社製 SC-8010)を使用し、市販の標準ポリスチレンで検量線を作成して求めることができる。
 流速:1.0ml/min
 設定温度:40℃
 カラム構成:東ソー社製「TSK guardcolumn MP(×L)」6.0mmID×4.0cm1本、および東ソー社製「TSK-GEL MULTIPOREHXL-M」 7.8mmID×30.0cm(理論段数16,000段)2本、計3本(全体として理論段数32,000段)
 サンプル注入量:100μl(試料液濃度1mg/ml)
 送液圧力:39kg/cm2
 検出器:RI検出器
 2官能(メタ)アクリレートモノマーとしては、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、2-エチル-2-ブチル-プロパンジオールジ(メタ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、ステアリン酸変性ペンタエリストールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシジエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシプロポキシフェニル)プロパン、又は2,2-ビス(4-(メタ)アクリロキシテトラエトキシフェニル)プロパン等が挙げられる。これらの中では、効果が大きい点で、1,6-ヘキサジオールジ(メタ)アクリレート及び/又はジシクロペンタニルジ(メタ)アクリレートが好ましく、ジシクロペンタニルジ(メタ)アクリレートがより好ましい。
 3官能(メタ)アクリレートモノマーとしては、トリメチロールプロパントリ(メタ)アクリレート、トリス[(メタ)アクリロイキシエチル]イソシアヌレート等が挙げられる。
 4官能以上の(メタ)アクリレートモノマーとしては、ジメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、又はジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。
 (A)多官能(メタ)アクリレートは、疎水性のものが好ましい。疎水性の多官能(メタ)アクリレートとは、水酸基を有さない(メタ)アクリレートをいう。水溶性の場合には、切削加工時に組成物の硬化体が膨潤することにより位置ずれを起こし、加工精度が劣る懼れがあるため好ましくない。親水性であっても、その組成物の硬化体が水により大きく膨潤又は一部溶解することがなければ、使用してもよい。
 多官能(メタ)アクリレートの中では、効果が大きい点で、多官能(メタ)アクリレートオリゴマー/ポリマー及び/又は2官能(メタ)アクリレートモノマーを含有することが好ましく、多官能(メタ)アクリレートオリゴマー/ポリマーと2官能(メタ)アクリレートモノマーを併用することがより好ましい。
 多官能(メタ)アクリレートオリゴマー/ポリマーと2官能(メタ)アクリレートモノマーを併用する場合の含有割合は、多官能(メタ)アクリレートオリゴマー/ポリマーと2官能(メタ)アクリレートモノマーの合計100質量部中、質量比で、多官能(メタ)アクリレートオリゴマー/ポリマー:2官能(メタ)アクリレートモノマー=10~90:90~10が好ましく、25~75:75~25がより好ましく、30~70:70~30が最も好ましい。
 (B)単官能(メタ)アクリレートモノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、フェニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニロキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メトキシ化シクロデカトリエン(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、グリシジル(メタ)アクリレート、カプロラクトン変性テトラヒドロフルフリル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、t-ブチルアミノエチル(メタ)アクリレート、エトキシカルボニルメチル(メタ)アクリレート、フェノールエチレンオキサイド変性(メタ)アクリレート、フェノール(エチレンオキサイド2モル変性)(メタ)アクリレート、フェノール(エチレンオキサイド4モル変性)(メタ)アクリレート、パラクミルフェノールエチレンオキサイド変性(メタ)アクリレート、ノニルフェノールエチレンオキサイド変性(メタ)アクリレート、ノニルフェノール(エチレンオキサイド4モル変性)(メタ)アクリレート、ノニルフェノール(エチレンオキサイド8モル変性)(メタ)アクリレート、ノニルフェノール(プロピレンオキサイド2.5モル変性)(メタ)アクリレート、2-エチルヘキシルカルビトール(メタ)アクリレート、エチレンオキシド変性フタル酸(メタ)アクリレート、エチレンオキシド変性コハク酸(メタ)アクリレート、トリフロロエチル(メタ)アクリレート、アクリル酸、メタクリル酸、ω-カルボキシ-ポリカプロラクトンモノ(メタ)アクリレート、フタル酸モノヒドロキシエチル(メタ)アクリレート、(メタ)アクリル酸ダイマー、β-(メタ)アクロイルオキシエチルハイドロジェンサクシネート、n-(メタ)アクリロイルオキシアルキルヘキサヒドロフタルイミド、2-(1,2-シクロヘキサカルボキシイミド)エチル(メタ)アクリレート、エトキシエチレングリコールジ(メタ)アクリレート、ベンジル(メタ)アクリレート等が挙げられる。また、マレイン酸、フマル酸も使用できる。(B)単官能(メタ)アクリレートは、(A)同様に疎水性のものがより好ましい。疎水性の多官能(メタ)アクリレートとは、水酸基を有さない(メタ)アクリレートをいう。水溶性の場合には、切削加工時に組成物の硬化体が膨潤することにより位置ずれを起こし、加工精度が劣る懼れがあるため好ましくない。親水性であっても、その組成物の硬化体が水によって膨潤又は一部溶解することがなければ、使用してもよい。
 単官能(メタ)アクリレートの中では、効果が大きい点で、フェノールエチレンオキサイド2モル変性(メタ)アクリレート、2-(1,2-シクロヘキサカルボキシイミド)エチル(メタ)アクリレート及び2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレートからなる群のうちの1種以上が好ましい。フェノールエチレンオキサイド2モル変性(メタ)アクリレートと、2-(1,2-シクロヘキサカルボキシイミド)エチル(メタ)アクリレート及び/又は2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレートとを併用することがより好ましい。
 フェノールエチレンオキサイド2モル変性(メタ)アクリレートと、2-(1,2-シクロヘキサカルボキシイミド)エチル(メタ)アクリレート及び/又は2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレートとを併用する場合の含有割合は、フェノールエチレンオキサイド2モル変性(メタ)アクリレート、2-(1,2-シクロヘキサカルボキシイミド)エチル(メタ)アクリレート及び2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレートの合計100質量部中、質量比で、フェノールエチレンオキサイド2モル変性(メタ)アクリレート:2-(1,2-シクロヘキサカルボキシイミド)エチル(メタ)アクリレート及び/又は2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート=5~80:95~20が好ましく、15~60:85~40がより好ましく、20~45:80~55が最も好ましい。
 (A)多官能(メタ)アクリレートの使用量は、(A)及び(B)の合計量100質量部に対して、5~95質量部が好ましく、15~60質量部がより好ましく、20~50質量部が好ましい。5質量部以上であれば、組成物の硬化体を温水に浸漬した時に被着物より当該硬化体が剥離する性質(以下、単に「剥離性」という)が充分に助長されるし、組成物の硬化体がフィルム状に剥離できる。95質量部以下であれば、初期の接着性が低下する懼れもない。
 (C)光重合開始剤は、可視光線や紫外線の活性光線により増感させて樹脂組成物の光硬化を促進するために配合するものであり、公知の各種光重合開始剤が使用可能である。具体的にはベンゾフェノン又はその誘導体;ベンジル又はその誘導体;アントラキノン又はその誘導体;ベンゾイン;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル、ベンジルジメチルケタール等のベンゾイン誘導体;ジエトキシアセトフェノン、4-t-ブチルトリクロロアセトフェノン等のアセトフェノン誘導体;2-ジメチルアミノエチルベンゾエート;p-ジメチルアミノエチルベンゾエート;ジフェニルジスルフィド;チオキサントン又はその誘導体;カンファーキノン;7,7-ジメチル-2,3-ジオキソビシクロ[2.2.1]ヘプタン-1-カルボン酸、7,7-ジメチル-2,3-ジオキソビシクロ[2.2.1]ヘプタン-1-カルボキシ-2-ブロモエチルエステル、7,7-ジメチル-2,3-ジオキソビシクロ[2.2.1]ヘプタン-1-カルボキシ-2-メチルエステル、7,7-ジメチル-2,3-ジオキソビシクロ[2.2.1]ヘプタン-1-カルボン酸クロライド等のカンファーキノン誘導体;2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1等のα-アミノアルキルフェノン誘導体;ベンゾイルジフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ベンゾイルジエトキシポスフィンオキサイド、2,4,6-トリメチルベンゾイルジメトキシフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジエトキシフェニルホスフィンオキサイド等のアシルホスフィンオキサイド誘導体、オキシ-フェニル-アセチックアシッド2-[2-オキソ-2-フェニル-アセトキシ-エトキシ]-エチルエステル及び/又はオキシ-フェニル-アセチックアシッド2-[2-ヒドロキシ-エトキシ]-エチルエステル等が挙げられる。光重合開始剤は1種又は2種以上を組み合わせて用いることができる。これらの中では、効果が大きい点で、ベンジルジメチルケタール、オキシ-フェニル-アセチックアシッド2-[2-オキソ-2-フェニル-アセトキシ-エトキシ]-エチルエステル及びオキシ-フェニル-アセチックアシッド2-[2-ヒドロキシ-エトキシ]-エチルエステルからなる群のうちの1種又は2種以上が好ましい。
 (C)光重合開始剤の含有量は、(A)及び(B)の合計100質量部に対して、0.1~20質量部が好ましく、0.5~10質量部がより好ましい。0.1質量部以上であれば、硬化促進の効果が確実に得られるし、20質量部以下で充分な硬化速度を得ることができる。(C)成分を1質量部以上添加することは、光照射量に依存することなく硬化可能となり、さらに組成物の硬化体の架橋度が高くなり、切削加工時に位置ずれ等を起こさなくなる点や剥離性が向上する点で、さらに好ましい。
Any known photocurable adhesive can be used and is not particularly limited. For example, (A) polyfunctional (meth) acrylate and (B) monofunctional (meth) acrylate as described in WO2008 / 018252. And (C) an adhesive composition containing a photopolymerization initiator is preferred.
(A) As a polyfunctional (meth) acrylate, two or more (meth) acryloylated polyfunctional (meth) acrylate oligomer / polymer or two or more (meth) acryloyl groups at the oligomer / polymer terminal or side chain Polyfunctional (meth) acrylate monomers having can be used. For example, as the polyfunctional (meth) acrylate oligomer / polymer, 1,2-polybutadiene terminated urethane (meth) acrylate (for example, “TE-2000”, “TEA-1000” manufactured by Nippon Soda Co., Ltd.), hydrogenated product thereof ( For example, “TEAI-1000” manufactured by Nippon Soda Co., Ltd.), 1,4-polybutadiene terminated urethane (meth) acrylate (eg “BAC-45” manufactured by Osaka Organic Chemical Co., Ltd.), polyisoprene terminated (meth) acrylate, polyester urethane (Meth) acrylate (for example, “UV-2000B”, “UV-3000B”, “UV-7000B” manufactured by Nippon Synthetic Chemical Co., Ltd. “KHP-11”, “KHP-17” manufactured by Negami Kogyo Co., Ltd.), polyether type Urethane (meth) acrylate (for example, “UV-3700B”, “UV” manufactured by Nippon Synthetic Chemical Co., Ltd. 6100B "), or bisphenol A type epoxy (meth) acrylate, and the like.
Here, the urethane (meth) acrylate is a reaction between a polyol compound (hereinafter represented by X), an organic polyisocyanate compound (hereinafter represented by Y), and a hydroxy (meth) acrylate (hereinafter represented by Z). The urethane (meth) acrylate obtained by this.
Examples of the polyol compound (X) include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butylene glycol, 1,4-butanediol, polybutylene glycol, 1, 5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 2,2-butylethyl-1,3-propanediol, neopentyl glycol, cyclohexanedimethanol, hydrogenated bisphenol A, polycaprolactone, trimethylolethane, trimethylolpropane, poly At least polyhydric alcohols such as limethylolpropane, pentaerythritol, polypentaerythritol, sorbitol, mannitol, glycerin, polyglycerin, polytetramethylene glycol, block or random copolymerization of polyethylene oxide, polypropylene oxide, ethylene oxide / propylene oxide Polyether polyol having one type of structure, a polycondensate of the polyhydric alcohol or polyether polyol and a polybasic acid such as maleic anhydride, maleic acid, fumaric acid, itaconic anhydride, itaconic acid, adipic acid, and isophthalic acid Polyester polyols, caprolactone-modified polytetramethylene polyols and other caprolactone-modified polyols, polyolefin-based polyols, polycarbonate-based poly Lumpur, polybutadiene polyols, polyisoprene polyols, hydrogenated polybutadiene polyols, polydiene polyols such as hydrogenated polyisoprene polyol, silicone polyol, such as polydimethylsiloxane polyols and the like. Among these, polyether polyol and / or polyester polyol are more preferable, and polyester polyol is most preferable.
The organic polyisocyanate compound (Y) is not particularly limited. For example, aromatic, aliphatic, cycloaliphatic, and alicyclic polyisocyanates can be used. Isocyanate (TDI), diphenylmethane diisocyanate (MDI), hydrogenated diphenylmethane diisocyanate (H-MDI), polyphenylmethane polyisocyanate (crude MDI), modified diphenylmethane diisocyanate (modified MDI), hydrogenated xylylene diisocyanate (H-XDI) ), Xylylene diisocyanate (XDI), hexamethylene diisocyanate (HMDI), trimethylhexamethylene diisocyanate (TMXDI), tetramethylxylylene diisocyanate (m-TMXDI), isophorone diisocyanate Polyisocyanates such as nate (IPDI), norbornene diisocyanate (NBDI), 1,3-bis (isocyanatomethyl) cyclohexane (H6XDI), trimer compounds of these polyisocyanates, reaction products of these polyisocyanates and polyols, etc. Preferably used. Of these, hydrogenated xylylene diisocyanate (H-XDI) and / or isophorone diisocyanate (IPDI) are preferred.
Examples of the hydroxy (meth) acrylate (Z) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxyethyl acryloyl phosphate, and 4-butyl. Hydroxy (meth) acrylate, 2- (meth) acryloyloxyethyl-2-hydroxypropyl phthalate, glycerin di (meth) acrylate, 2-hydroxy-3-acryloyloxypropyl (meth) acrylate, caprolactone modified 2-hydroxyethyl (Meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, caprolactone-modified 2-hydroxyethyl (meth) acrylate, etc. . Among these, one or more members selected from the group consisting of 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 2-hydroxybutyl (meth) acrylate are preferable.
Among these, polyester-based urethane (meth) acrylate and / or polyether-based urethane (meth) acrylate are preferable, and polyester-based urethane (meth) acrylate is more preferable because of its great effect.
The weight average molecular weight of the polyfunctional (meth) acrylate oligomer / polymer is preferably 7000 to 60000, more preferably 13000 to 40000. The weight average molecular weight can be determined by preparing a calibration curve with commercially available standard polystyrene using GPC system (SC-8010 manufactured by Tosoh Corporation) using tetrahydrofuran as a solvent under the following conditions.
Flow rate: 1.0 ml / min
Set temperature: 40 ° C
Column configuration: “TSK guardcolumn MP (× L)” manufactured by Tosoh Corporation 6.0 mmID × 4.0 cm1 and “TSK-GEL MULTIPOREHXL-M” 7.8 mmID × 30.0 cm (16,000 theoretical plates) 2), 3 in total (32,000 theoretical plates as a whole)
Sample injection volume: 100 μl (sample solution concentration 1 mg / ml)
Liquid feeding pressure: 39 kg / cm 2
Detector: RI detector Bifunctional (meth) acrylate monomers include 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) Acrylate, 1,9-nonanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, 2-ethyl-2-butyl-propanediol di (meth) acrylate, neo Pentyl glycol modified trimethylolpropane di (meth) acrylate, stearic acid modified pentaerythritol di (meth) acrylate, polypropylene glycol di (meth) acrylate, 2,2-bis (4- (meth) acryloxydiethoxyphenyl) propane , 2,2-bis (4 -(Meth) acryloxypropoxyphenyl) propane, 2,2-bis (4- (meth) acryloxytetraethoxyphenyl) propane, and the like. Among these, 1,6-hexadiol di (meth) acrylate and / or dicyclopentanyl di (meth) acrylate is preferable, and dicyclopentanyl di (meth) acrylate is more preferable from the viewpoint of great effect.
Examples of the trifunctional (meth) acrylate monomer include trimethylolpropane tri (meth) acrylate and tris [(meth) acryloxyethyl] isocyanurate.
Examples of the tetrafunctional or higher (meth) acrylate monomer include dimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, or dipenta Examples include erythritol hexa (meth) acrylate.
(A) The polyfunctional (meth) acrylate is preferably hydrophobic. Hydrophobic polyfunctional (meth) acrylate refers to (meth) acrylate having no hydroxyl group. In the case of water-solubility, the cured product of the composition swells at the time of cutting, so that the position shift occurs and the processing accuracy may be inferior. Even if it is hydrophilic, it may be used as long as the cured product of the composition is not greatly swollen or partially dissolved by water.
Among the polyfunctional (meth) acrylates, it is preferable to contain a polyfunctional (meth) acrylate oligomer / polymer and / or a bifunctional (meth) acrylate monomer in terms of high effect. It is more preferable to use a polymer and a bifunctional (meth) acrylate monomer in combination.
When the polyfunctional (meth) acrylate oligomer / polymer and the bifunctional (meth) acrylate monomer are used in combination, the content ratio is 100 parts by mass in total of the polyfunctional (meth) acrylate oligomer / polymer and the bifunctional (meth) acrylate monomer. Multifunctional (meth) acrylate oligomer / polymer: bifunctional (meth) acrylate monomer = 10 to 90:90 to 10, preferably 25 to 75:75 to 25, more preferably 30 to 70:70 to 30 Is most preferred.
(B) Monofunctional (meth) acrylate monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate , Isodecyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, phenyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclo Pentenyloxyethyl (meth) acrylate, isobornyl (meth) acrylate, methoxylated cyclodecatriene (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxy Propyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, glycidyl (meth) acrylate , Caprolactone-modified tetrahydrofurfuryl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, t-butyl Aminoethyl (meth) acrylate, ethoxycarbonylmethyl (meth) acrylate, phenol ethylene oxide modified (meth) acrylate, phenol (ethylene oxide 2 mol modified) (meth) Chryrate, phenol (ethylene oxide 4 mol modified) (meth) acrylate, paracumylphenol ethylene oxide modified (meth) acrylate, nonylphenol ethylene oxide modified (meth) acrylate, nonylphenol (ethylene oxide 4 mol modified) (meth) acrylate, nonylphenol ( Ethylene oxide 8 mol modified) (meth) acrylate, nonylphenol (propylene oxide 2.5 mol modified) (meth) acrylate, 2-ethylhexyl carbitol (meth) acrylate, ethylene oxide modified phthalic acid (meth) acrylate, ethylene oxide modified succinic acid ( (Meth) acrylate, trifluoroethyl (meth) acrylate, acrylic acid, methacrylic acid, ω-carboxy-polycaprolactone (Meth) acrylate, monohydroxyethyl phthalate (meth) acrylate, (meth) acrylic acid dimer, β- (meth) acryloyloxyethyl hydrogen succinate, n- (meth) acryloyloxyalkyl hexahydrophthalimide, 2 -(1,2-cyclohexacarboximido) ethyl (meth) acrylate, ethoxyethylene glycol di (meth) acrylate, benzyl (meth) acrylate and the like. Maleic acid and fumaric acid can also be used. (B) Monofunctional (meth) acrylate is more preferably hydrophobic as in (A). Hydrophobic polyfunctional (meth) acrylate refers to (meth) acrylate having no hydroxyl group. In the case of water-solubility, the cured product of the composition swells at the time of cutting, so that the position shift occurs and the processing accuracy may be inferior. Even if it is hydrophilic, it may be used as long as the cured product of the composition is not swollen or partially dissolved by water.
Among monofunctional (meth) acrylates, phenolethylene oxide 2 mol-modified (meth) acrylate, 2- (1,2-cyclohexacarboximido) ethyl (meth) acrylate and 2-hydroxy-3 are more effective. -One or more of the group consisting of phenoxypropyl (meth) acrylate is preferred. Phenol ethylene oxide 2 mol modified (meth) acrylate may be used in combination with 2- (1,2-cyclohexacarboximido) ethyl (meth) acrylate and / or 2-hydroxy-3-phenoxypropyl (meth) acrylate More preferred.
In the case of using together 2 mol of phenol ethylene oxide modified (meth) acrylate and 2- (1,2-cyclohexacarboximido) ethyl (meth) acrylate and / or 2-hydroxy-3-phenoxypropyl (meth) acrylate The content ratio is 100 parts by mass in total of phenol ethylene oxide 2 mol modified (meth) acrylate, 2- (1,2-cyclohexacarboximido) ethyl (meth) acrylate and 2-hydroxy-3-phenoxypropyl (meth) acrylate. In a mass ratio, phenol ethylene oxide 2 mol modified (meth) acrylate: 2- (1,2-cyclohexacarboximido) ethyl (meth) acrylate and / or 2-hydroxy-3-phenoxypropyl (meth) acrylate = 5-80: 9 Preferably to 20, 15 to 60: and more preferably 85 to 40 and 20 to 45 80 - 55 most preferred.
(A) The amount of polyfunctional (meth) acrylate used is preferably 5 to 95 parts by weight, more preferably 15 to 60 parts by weight, more preferably 20 to 20 parts by weight based on 100 parts by weight of the total amount of (A) and (B). 50 parts by mass is preferred. If it is 5 parts by mass or more, the property that the cured body will peel from the adherend when the cured body of the composition is immersed in warm water (hereinafter simply referred to as “peelability”) is sufficiently promoted. The cured product can be peeled into a film. If it is 95 mass parts or less, there is no possibility that initial adhesiveness will fall.
(C) The photopolymerization initiator is blended for sensitization with visible light or ultraviolet active light to promote photocuring of the resin composition, and various known photopolymerization initiators can be used. . Specifically, benzophenone or a derivative thereof; benzyl or a derivative thereof; anthraquinone or a derivative thereof; benzoin; a benzoin derivative such as benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isobutyl ether, or benzyl dimethyl ketal; diethoxyacetophenone, 4 Acetophenone derivatives such as t-butyltrichloroacetophenone; 2-dimethylaminoethyl benzoate; p-dimethylaminoethyl benzoate; diphenyl disulfide; thioxanthone or derivatives thereof; camphorquinone; 7,7-dimethyl-2,3-dioxobicyclo [ 2.2.1] Heptane-1-carboxylic acid, 7,7-dimethyl-2,3-dioxobicyclo [2.2.1] heptane-1-carboxy-2 Bromoethyl ester, 7,7-dimethyl-2,3-dioxobicyclo [2.2.1] heptane-1-carboxy-2-methyl ester, 7,7-dimethyl-2,3-dioxobicyclo [2 2.1] Camphorquinone derivatives such as heptane-1-carboxylic acid chloride; 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethyl Α-aminoalkylphenone derivatives such as amino-1- (4-morpholinophenyl) -butanone-1; benzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, benzoyldiethoxyphosphine oxide, 2, 4,6-trimethylbenzoyldimethoxyphenylphosphine oxide, 2 Acylphosphine oxide derivatives such as 1,4,6-trimethylbenzoyldiethoxyphenylphosphine oxide, oxy-phenyl-acetic acid 2- [2-oxo-2-phenyl-acetoxy-ethoxy] -ethyl ester and / or oxy-phenyl -Acetic acid 2- [2-hydroxy-ethoxy] -ethyl ester and the like. A photoinitiator can be used 1 type or in combination of 2 or more types. Among these, benzyldimethyl ketal, oxy-phenyl-acetic acid 2- [2-oxo-2-phenyl-acetoxy-ethoxy] -ethyl ester and oxy-phenyl-acetic acid 2- One or more of the group consisting of [2-hydroxy-ethoxy] -ethyl ester are preferred.
(C) The content of the photopolymerization initiator is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 10 parts by mass with respect to 100 parts by mass in total of (A) and (B). If it is 0.1 mass part or more, the effect of hardening acceleration | stimulation will be acquired reliably, and sufficient curing rate can be obtained if it is 20 mass parts or less. The addition of 1 part by mass or more of component (C) makes it possible to cure without depending on the amount of light irradiation, further increases the degree of crosslinking of the cured product of the composition, and does not cause misalignment during cutting, It is further preferable in terms of improving peelability.
 光硬化性接着剤は、接着剤の成分(A)、(B)及び(C)に溶解しない粒状物質(D)を含有するのが好ましい。これにより、硬化後の組成物が一定の厚みを保持できるため、後述のように加工精度が向上する。 The photo-curable adhesive preferably contains a particulate material (D) that does not dissolve in the components (A), (B), and (C) of the adhesive. Thereby, since the composition after hardening can hold | maintain fixed thickness, a process precision improves as mentioned later.
 粒状物質(D)の材質としては、一般的に使用される有機粒子、又は無機粒子いずれでもかまわない。具体的には、有機粒子としては、ポリエチレン粒子、ポリプロピレン粒子、架橋ポリメタクリル酸メチル粒子、架橋ポリスチレン粒子などが挙げられる。無機粒子としてはガラス、シリカ、アルミナ、チタンなどセラミック粒子が挙げられる。 The material of the particulate material (D) may be either generally used organic particles or inorganic particles. Specifically, examples of the organic particles include polyethylene particles, polypropylene particles, crosslinked polymethyl methacrylate particles, and crosslinked polystyrene particles. Inorganic particles include ceramic particles such as glass, silica, alumina, and titanium.
 粒状物質は、加工精度の向上、つまり接着剤層12の膜厚制御の観点から球状であることが好ましい。粒状物質のレーザー法による平均粒径は50~200μmの範囲にあることが好ましい。前記粒状物質の平均粒径が50μm以上であると、切削用工具において強度に劣る切削部先端を使用しても切削用工具の寿命を低下することがなく、さらに、切削加工効率が向上し、200μm以下であると接着剤の使用量が少なくなりコスト安になるため生産性に優れる。より好ましい平均粒径(D50)は70~150μmであり、更に好ましくは80~120μmである。粒径分布は、レーザー回折式粒度分布測定装置により測定される。
 粒状物質(D)の使用量は、接着性、加工精度、剥離性の観点から、(A)及び(B)の合計量100質量部に対して、0.01~20質量部が好ましく、0.05~10質量部がより好ましく、0.1~6質量部が最も好ましい。
 光硬化性接着剤には、貯蔵安定性向上のため重合禁止剤(E)を添加することができる。重合禁止剤としては、メチルハイドロキノン、ハイドロキノン、2,2-メチレン-ビス(4-メチル-6-ターシャリーブチルフェノール)、カテコール、ハイドロキノンモノメチルエーテル、モノターシャリーブチルハイドロキノン、2,5-ジターシャリーブチルハイドロキノン、p-ベンゾキノン、2,5-ジフェニル-p-ベンゾキノン、2,5-ジターシャリーブチル-p-ベンゾキノン、ピクリン酸、クエン酸、フェノチアジン、ターシャリーブチルカテコール、2-ブチル-4-ヒドロキシアニソール及び2,6-ジターシャリーブチル-p-クレゾール等が挙げられる。
 重合禁止剤(E)の使用量は、(A)及び(B)の合計量100質量部に対して、0.001~3質量部が好ましく、0.01~2質量部がより好ましい。0.001質量部以上であれば、貯蔵安定性が確保されるし、3質量部以下であれば、良好な接着性が得られ、未硬化になることもない。
The granular material is preferably spherical from the viewpoint of improving processing accuracy, that is, controlling the film thickness of the adhesive layer 12. The average particle diameter of the granular material by the laser method is preferably in the range of 50 to 200 μm. When the average particle size of the granular material is 50 μm or more, the cutting tool tip does not decrease the life even if the cutting tool tip having inferior strength is used in the cutting tool, and further, the cutting efficiency is improved. When it is 200 μm or less, the amount of adhesive used is reduced and the cost is reduced, resulting in excellent productivity. A more preferable average particle diameter (D50) is 70 to 150 μm, and further preferably 80 to 120 μm. The particle size distribution is measured by a laser diffraction type particle size distribution measuring device.
The amount of the granular material (D) used is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the total amount of (A) and (B), from the viewpoint of adhesiveness, processing accuracy, and peelability. 0.05 to 10 parts by mass is more preferable, and 0.1 to 6 parts by mass is most preferable.
A polymerization inhibitor (E) can be added to the photocurable adhesive to improve storage stability. Polymerization inhibitors include methyl hydroquinone, hydroquinone, 2,2-methylene-bis (4-methyl-6-tertiary butylphenol), catechol, hydroquinone monomethyl ether, monotertiary butyl hydroquinone, 2,5-ditertiary butyl hydroquinone. P-benzoquinone, 2,5-diphenyl-p-benzoquinone, 2,5-ditertiarybutyl-p-benzoquinone, picric acid, citric acid, phenothiazine, tertiary butylcatechol, 2-butyl-4-hydroxyanisole and 2 , 6-ditertiary butyl-p-cresol and the like.
The amount of the polymerization inhibitor (E) used is preferably 0.001 to 3 parts by mass and more preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of the total amount of (A) and (B). If it is 0.001 mass part or more, storage stability will be ensured, and if it is 3 mass parts or less, favorable adhesiveness will be obtained and it will not become uncured.
<2.透光性硬質基板積層体10の切断加工>
 続いて、大判の透光性硬質基板積層体10を受け台に固定した後、図1に示した切断線13に沿って厚み方向に切断し、所望の数の分割された透光性硬質基板積層体14を形成する。図2に、この切断加工により切り出された透光性硬質基板積層体14の模式図を示す。分割方法は特に制限はないが、円板カッター(ダイヤモンドディスク、超硬合金ディスク)、固定砥粒式又は遊離砥粒式ワイヤソー、レーザービーム、エッチング(例:フッ酸や硫酸等を用いた化学エッチングや電解エッチング)、ウオータージェット、及び赤熱帯(ニクロム線)などの切断手段をそれぞれ単独で又は組み合わせて使用して、同サイズの直方体形状に分割する方法が挙げられる。エッチングは分割後の切断面の表面処理に用いることもできる。このように、透光性硬質基板積層体14は大判の透光性硬質基板積層体10を準備した後にそれを分割することで作製しているため、製造効率が良好となる。
<2. Cutting processing of translucent hard substrate laminate 10>
Then, after fixing the large-sized translucent hard board | substrate laminated body 10 to a cradle, it cut | disconnects in the thickness direction along the cutting line 13 shown in FIG. 1, and divided the desired number of translucent hard board | substrates. The laminated body 14 is formed. In FIG. 2, the schematic diagram of the translucent hard board | substrate laminated body 14 cut out by this cutting process is shown. The dividing method is not particularly limited, but a disk cutter (diamond disc, cemented carbide disc), fixed abrasive type or loose abrasive type wire saw, laser beam, etching (eg, chemical etching using hydrofluoric acid, sulfuric acid, etc.) And electrolytic etching), water jet, and red tropics (nichrome wire), etc., may be used alone or in combination to divide into rectangular parallelepiped shapes of the same size. Etching can also be used for surface treatment of the cut surfaces after division. Thus, since the translucent hard board | substrate laminated body 14 is produced by dividing | segmenting it after preparing the large-sized translucent hard board | substrate laminated body 10, manufacturing efficiency becomes favorable.
<3.透光性硬質基板積層体14の外形加工>
 次に、受け台に分割された透光性硬質基板積層体14を固定し、受け台上の透光性硬質基板積層体14に所望の外形加工を行う。図3に、外径加工線15が示された透光性硬質基板積層体14の模式図を示す。この工程では、分割された透光性硬質基板積層体14毎に目的とする板状製品の形状に一体的に加工を行うことができるため、板状製品の生産速度を格段に高められるという利点がある。外形加工は公知の任意の手段によって行えばよいが、例えば回転砥石による研削、超音波振動ドリルによる孔開け、回転ブラシによる加工等が挙げられる。
<3. External processing of translucent hard substrate laminate 14>
Next, the translucent hard board | substrate laminated body 14 divided | segmented into the cradle is fixed, and a desired external shape process is performed to the translucent hard board | substrate laminated body 14 on a cradle. In FIG. 3, the schematic diagram of the translucent hard board | substrate laminated body 14 by which the outer diameter process line 15 was shown is shown. In this step, each of the divided light-transmitting hard substrate laminates 14 can be integrally processed into the shape of the target plate product, so that the production speed of the plate product can be greatly increased. There is. The outer shape processing may be performed by any known means, and examples thereof include grinding with a rotating grindstone, drilling with an ultrasonic vibration drill, processing with a rotating brush, and the like.
<4.透光性硬質基板積層体14の端面加工>
 次に、所望の外径加工が施された透光性硬質基板積層体14に端面加工を行う。外径加工後の透光性硬質基板積層体14は、その端面にチッピング、ヒビ、又は、欠け等が発生している場合があるが、この端面加工は、それらを除去する目的も備えている。端面加工には、切削部18を有する切削用工具16を用いる。ここで、図4に、先端部分が拡大された、切削部18を有する切削用工具16、及び、切削対象の透光性硬質基板積層体14の断面模式図を示す。切削用工具16は、後述のスピンドルに取り付けられて回転駆動される軸部17と、軸部17の先端に設けられた切削部18とで構成されている。切削部18は、軸部17から垂直に起立するように且つ軸部17の全周にわたって形成された、断面が二等辺三角形状の突部19が、所定の間隔を空けて複数配置されて構成されている。ここで、軸部17の周方向は、「透光性硬質基板11’に対向して設けられたときに、透光性硬質基板11’間の接着剤層12’に平行な方向」とする。切削部18の形態としては、上述の形態のものに限らず、例えば、軸部17と、軸部17から垂直に伸びるように形成された、先端が球面状の接触部とで構成されていても良い。また、軸部17と、軸部17から垂直に伸びるように形成された、先端が突状の接触部とで構成されていても良い。切削用工具16のサイズは特に限定されないが、例えば、図4に示すように、軸部17を好ましくは0.7~3.0mm径(=c)、より好ましくは1.0~2.0mm径(=c)、最も好ましくは1.6mm径(=c)に形成することができる。また、突部19の角度19aについても特に限定されず、例えば、透光性硬質基板11’の約90°の縁部に対して好ましくは30~60°、より好ましくは40~50°、最も好ましくは45°で面を取り、縁部の鋭さを取り除くように、断面が直角二等辺三角形状に形成してもよい。この場合、透光性硬質基板11’側面を切削した突部19の高さ(a)と底面の直径(b)との関係は好ましくはb=1a~3a、より好ましくはb=1.5a~2.0a、最も好ましくはb=2aとなっている。また、このとき、突部19を稜線部分において、高さ(a)を引いた残りの径が好ましくは1.0~3.0mm(=d)、より好ましくは1.5~2.5mm(=d)、最も好ましくは2.0mm(=d)に形成することができる。このような形態により、切削部18を透光性硬質基板積層体14の各基板間に精度良く対応させて基板縁部を良好に切削することが可能となる。切削部18の形成材料としては、切削対象となる透光性硬質基板積層体14を構成する透光性硬質基板11’を良好に削り取ることができるものであれば特に限定されないが、少なくとも透光性硬質基板11’に接触する部分が超鋼、高速度鋼、又は、ダイヤモンドで形成されているのが好ましい。接触部がこのような材料で形成されていれば、切削対象となる透光性硬質基板積層体14を構成するものが板ガラス等の場合に特に容易且つ精度良く切削することが可能となる。また、切削部18全体がこのような材料で形成されていてもよく、金属材料で形成された本体上に電着等により形成されていてもよい。具体的には、例えば、切削部18本体が超鋼又は高速度鋼で形成されており、本体上にダイヤモンドが電着により形成されたものであってもよい。
<4. End face processing of translucent hard substrate laminate 14>
Next, end face processing is performed on the translucent hard substrate laminate 14 that has been subjected to desired outer diameter processing. The translucent hard substrate laminate 14 after the outer diameter processing may have chipping, cracking, chipping, or the like on its end surface, but this end surface processing also has the purpose of removing them. . For the end face processing, a cutting tool 16 having a cutting portion 18 is used. Here, in FIG. 4, the cross-sectional schematic diagram of the cutting tool 16 which has the cutting part 18 with which the front-end | tip part was expanded and the translucent hard board | substrate laminated body 14 of cutting object is shown. The cutting tool 16 includes a shaft portion 17 that is attached to a spindle, which will be described later, and is rotationally driven, and a cutting portion 18 that is provided at the tip of the shaft portion 17. The cutting part 18 is configured such that a plurality of protrusions 19 having an isosceles triangular cross section are arranged at predetermined intervals so as to stand vertically from the shaft part 17 and over the entire circumference of the shaft part 17. Has been. Here, the circumferential direction of the shaft portion 17 is “a direction parallel to the adhesive layer 12 ′ between the translucent hard substrates 11 ′ when provided in opposition to the translucent hard substrate 11 ′”. . The form of the cutting part 18 is not limited to that of the above-described form. For example, the cutting part 18 includes a shaft part 17 and a contact part having a spherical tip formed so as to extend vertically from the shaft part 17. Also good. Moreover, you may be comprised by the axial part 17 and the front-end | tip protrusion contact part formed so that it might extend perpendicularly | vertically from the axial part 17. FIG. The size of the cutting tool 16 is not particularly limited. For example, as shown in FIG. 4, the shaft portion 17 is preferably 0.7 to 3.0 mm in diameter (= c), more preferably 1.0 to 2.0 mm. Diameter (= c), most preferably 1.6 mm diameter (= c). Further, the angle 19a of the protrusion 19 is not particularly limited. For example, it is preferably 30 to 60 °, more preferably 40 to 50 ° with respect to the edge portion of about 90 ° of the translucent hard substrate 11 ′, most preferably Preferably, the cross section may be formed into a right-angled isosceles triangle shape so as to take a face at 45 ° and remove the sharpness of the edge. In this case, the relationship between the height (a) of the projection 19 obtained by cutting the side surface of the translucent hard substrate 11 ′ and the diameter (b) of the bottom surface is preferably b = 1a to 3a, more preferably b = 1.5a. 2.0a, most preferably b = 2a. At this time, the remaining diameter obtained by subtracting the height (a) at the ridge portion of the protrusion 19 is preferably 1.0 to 3.0 mm (= d), more preferably 1.5 to 2.5 mm ( = D), most preferably 2.0 mm (= d). With such a configuration, it is possible to cut the substrate edge portion satisfactorily by causing the cutting portion 18 to correspond accurately between the substrates of the translucent hard substrate laminate 14. The material for forming the cutting part 18 is not particularly limited as long as it can satisfactorily scrape off the translucent hard substrate 11 ′ constituting the translucent hard substrate laminate 14 to be cut. The portion in contact with the conductive hard substrate 11 ′ is preferably made of super steel, high speed steel, or diamond. If the contact portion is formed of such a material, it is possible to cut the light-transmitting hard substrate laminate 14 to be cut particularly easily and accurately when the material constituting the light-transmitting hard substrate laminate 14 is a plate glass or the like. Moreover, the whole cutting part 18 may be formed with such a material, and may be formed by the electrodeposition etc. on the main body formed with the metal material. Specifically, for example, the cutting portion 18 main body may be formed of super steel or high speed steel, and diamond may be formed on the main body by electrodeposition.
 本実施形態では、切削用工具16の駆動装置として超音波スピンドルを用いる。超音波スピンドルは、スピンドル内に形成された中空の本体スリーブと、本体スリーブの中に設けられた超音波振動子と、超音波振動子に同軸上に連接され且つ本体スリーブの内壁に固定された支持ホーンとを備えている。支持ホーンは、超音波振動子により励起された超音波振動を取り付けられる切削用工具16へ伝達する。一般に、透光性硬質基板積層体14の切削においては、切削用工具16の切削部18に、切削屑が入り込んで目詰まりが発生する。切削屑による目詰まりは、切削用工具16の寿命を低下させ、さらに、切削加工効率の低下を引き起こす。このため、切削加工では、切削用工具16の切削部18に切削屑が入り込んで目詰まりを起こさせないことが重要となる。これに対し、超音波スピンドルを駆動装置として用いれば、回転運動に超音波振動を複合させて加工表面を微細に粉砕除去しながら加工を進めることができる。このため、通常の回転駆動型の切削加工で用いられる30000rpm程度の回転数まで必要とならず、2500rpm程度の回転数での加工が可能となる。従って、切削用工具16の寿命が良好となり、さらに、加工における騒音が減少するという利点がある。また、切削部18の先端では、加工時に冷却液を使用しているが、この冷却液にキャビテーション現象が発生し、切削屑がはじき飛ばされる。さらに、透光性硬質基板積層体14と切削部18との間には振動によるポンプ作用で冷却液に流れが発生し、切削屑の排出性が向上する。このため、切削部18の目詰まりを良好に抑制することができる。また、冷却液の使用量も抑制することができるため、通常の回転駆動型の切削加工に比べて製造コストが良好となる。 In this embodiment, an ultrasonic spindle is used as a driving device for the cutting tool 16. The ultrasonic spindle is a hollow main body sleeve formed in the spindle, an ultrasonic vibrator provided in the main body sleeve, coaxially connected to the ultrasonic vibrator, and fixed to the inner wall of the main body sleeve. And a support horn. The support horn transmits the ultrasonic vibration excited by the ultrasonic vibrator to the cutting tool 16 to which the support horn is attached. In general, when cutting the light-transmitting hard substrate laminate 14, cutting waste enters the cutting portion 18 of the cutting tool 16 and clogging occurs. The clogging with the cutting scraps reduces the life of the cutting tool 16 and further reduces the cutting efficiency. For this reason, in cutting, it is important not to cause clogging due to cutting waste entering the cutting portion 18 of the cutting tool 16. On the other hand, if an ultrasonic spindle is used as a drive device, it is possible to proceed with processing while finely crushing and removing the processing surface by combining ultrasonic vibration with rotational motion. For this reason, it is not necessary to have a rotational speed of about 30000 rpm, which is used in normal rotational drive type cutting, and processing at a rotational speed of about 2500 rpm is possible. Therefore, there is an advantage that the life of the cutting tool 16 is improved and noise in the processing is reduced. Further, at the tip of the cutting portion 18, a cooling liquid is used at the time of processing. However, a cavitation phenomenon occurs in the cooling liquid, and the cutting waste is repelled. Furthermore, a flow is generated in the cooling liquid by a pumping action due to vibration between the translucent hard substrate laminate 14 and the cutting part 18, and the dischargeability of the cutting waste is improved. For this reason, the clogging of the cutting part 18 can be suppressed favorably. Moreover, since the usage-amount of a cooling fluid can also be suppressed, manufacturing cost becomes favorable compared with the normal rotational drive type cutting process.
 次に、所望の外径加工が施された透光性硬質基板積層体14に端面加工として、まず、図4に示すように、透光性硬質基板積層体14に対して、超音波スピンドル(不図示)に取り付けられた切削用工具16を位置合わせして設ける。このとき、切削用工具16は、その複数の切削部18が透光性硬質基板積層体14の接着剤層12’に平行な方向に並ぶように設ける。また、隣り合う透光性硬質基板積層体14の間隔は、それぞれ一定に制御されている。この制御方法としては、接着剤に接着剤の成分に溶解しない粒状物質を含ませることで一定に制御している。また、外部の固定装置を用いて各基板間隔を一定に制御しても良い。次に、透光性硬質基板積層体14の側面から、超音波スピンドルを作動させて切削用工具16の切削部18を回転させながら接触させて、隣り合う透光性硬質基板11’の互いに対向する面の縁部を一度に切削する。このとき、透光性硬質基板積層体14の各基板間隔が一定に制御されているため、切削用工具の並列する複数の切削部18が各基板間に常時精度良く接触することができる。従って、隣り合う透光性硬質基板11’の互いに対向する面の縁部を所望の幅及び深さで一度に切削することができる。また、このとき、切削部18が、軸部17から垂直に起立するように且つ軸部17の全周にわたって形成された、断面が二等辺三角形状の突部19が、所定の間隔を空けて複数配置されて構成されているため、図5に示すように、硬質基板積層体14は、その断面において、隣り合う硬質基板11’の互いに対向する面の縁部から硬質基板11’間の接着剤層12’にかけて、接着剤層12’に稜線を有するV字溝21が形成される。これにより、透光性硬質基板積層体14の端面の縁部に生じたチッピング、ヒビ、又は、欠け等が良好に除去される。 Next, as the end face processing on the translucent hard substrate laminate 14 having the desired outer diameter processing, first, as shown in FIG. A cutting tool 16 attached to an unillustrated) is provided in alignment. At this time, the cutting tool 16 is provided such that the plurality of cutting portions 18 are arranged in a direction parallel to the adhesive layer 12 ′ of the translucent hard substrate laminate 14. Moreover, the space | interval of the adjacent translucent hard board | substrate laminated body 14 is each controlled uniformly. As this control method, the adhesive is controlled to be constant by including a granular material that does not dissolve in the adhesive components. Further, the interval between the substrates may be controlled to be constant using an external fixing device. Next, from the side surface of the translucent hard substrate laminate 14, the ultrasonic spindle is actuated to bring the cutting portion 18 of the cutting tool 16 into contact with rotation, so that the adjacent translucent hard substrates 11 ′ face each other. Cut the edges of the surface to be cut at once. At this time, since the intervals between the substrates of the translucent hard substrate laminate 14 are controlled to be constant, the plurality of cutting portions 18 in parallel with the cutting tool can always contact each substrate with high accuracy. Accordingly, the edges of the mutually facing surfaces of the adjacent translucent hard substrates 11 'can be cut at a desired width and depth at a time. At this time, the projecting portions 19 having an isosceles triangular cross section formed so that the cutting portion 18 stands vertically from the shaft portion 17 and over the entire circumference of the shaft portion 17 are spaced apart from each other by a predetermined interval. As shown in FIG. 5, the hard substrate laminate 14 is bonded to the hard substrate 11 ′ from the edges of the mutually opposing surfaces of the adjacent hard substrates 11 ′ in the cross section, as shown in FIG. 5. A V-shaped groove 21 having a ridge line is formed in the adhesive layer 12 ′ over the adhesive layer 12 ′. As a result, chipping, cracks, chips, or the like generated at the edge of the end face of the translucent hard substrate laminate 14 are satisfactorily removed.
 なお、本実施形態では、透光性硬質基板積層体14の各基板間隔を互いに一定に制御した状態で、切削用工具16の切削部18をその基板間に接触させていく形態としているが、これに限られない。すなわち、透光性硬質基板積層体14の各基板間隔が一定でないときは、当該基板間にそれぞれ対応するように切削用工具16の並列した切削部18を位置合わせして設けることでも、隣り合う透光性硬質基板11’の互いに対向する面の縁部を一度に切削することができる。 In the present embodiment, the cutting portion 18 of the cutting tool 16 is brought into contact between the substrates in a state where the substrate intervals of the translucent hard substrate laminate 14 are controlled to be constant with each other. It is not limited to this. That is, when the intervals between the substrates of the translucent hard substrate laminate 14 are not constant, it is also possible to arrange the cutting parts 18 arranged in parallel so as to correspond to each other between the substrates by adjoining them. The edges of the mutually opposing surfaces of the translucent hard substrate 11 ′ can be cut at a time.
 次に、切削用工具16で切削された硬質基板積層体14の側面を研磨する。研磨手段は、研磨対象となる硬質基板11’を良好に研磨することができるものであれば、公知のものを用いることができる。このとき、例えば、酸化セリウム等の研磨剤を含有したスラリーを用いて、ブラシによって研磨してもよい。ブラシとしては、特に限定されないが、例えば、ナイロン、PVC、PP、豚毛、羊毛、馬毛、真鍮、酸化セリウム、酸化アルミニウム、シリコンカーバイド、アルミニウムシリケイト等が、ナイロン、PVC、PP等に練り込まれた素材で形成することができる。このように、切削後に硬質基板11’の側面をさらに研磨することにより、基板側面をより滑らかな表面に仕上げることができる。 Next, the side surface of the hard substrate laminate 14 cut by the cutting tool 16 is polished. Any known polishing means can be used as long as it can satisfactorily polish the hard substrate 11 ′ to be polished. At this time, you may grind | polish with a brush, for example using the slurry containing abrasives, such as cerium oxide. The brush is not particularly limited. For example, nylon, PVC, PP, pig hair, wool, horse hair, brass, cerium oxide, aluminum oxide, silicon carbide, aluminum silicate, etc. are kneaded into nylon, PVC, PP, etc. Can be made of rare materials. Thus, by further polishing the side surface of the hard substrate 11 ′ after cutting, the substrate side surface can be finished to a smoother surface.
 図6に端面加工後の透光性硬質基板積層体20の断面模式図を、図7に端面加工後の透光性硬質基板積層体20の平面模式図をそれぞれ示す。このように、本発明によれば透光性硬質基板積層体の端面の縁部に生じたチッピング、ヒビ、又は、欠け等が良好に除去されるため、端面加工精度の良好な積層体が得られる。 6 is a schematic cross-sectional view of the translucent hard substrate laminate 20 after end face processing, and FIG. 7 is a schematic plan view of the translucent hard substrate laminate 20 after end face processing. As described above, according to the present invention, chipping, cracks, chips, or the like generated at the edge of the end face of the translucent hard substrate laminate can be satisfactorily removed, so that a laminate with good end face processing accuracy can be obtained. It is done.
<5.板状製品の形成>
 続いて、透光性硬質基板積層体14から、貼り合わせられていた透光性硬質基板11’同士を剥離し、これを用いて複数の板状製品を形成する。
<5. Formation of plate products>
Subsequently, the light-transmitting hard substrates 11 ′ that have been bonded together are peeled from the light-transmitting hard substrate laminate 14, and a plurality of plate-like products are formed using this.
 以上、本発明の実施形態について図面を参照しながら説明してきたが、本発明はこれらの実施形態に限られるものではなく、種々のバリエーションが可能である。 The embodiments of the present invention have been described above with reference to the drawings. However, the present invention is not limited to these embodiments, and various variations are possible.
 本発明及びその利点をより良く理解するために以下の実験例を提供する。 In order to better understand the present invention and its advantages, the following experimental examples are provided.
<実施例1>
1.光硬化性接着剤(I)の作製
 以下の(A)~(E)の成分を混合して光硬化性接着剤(I)を作製した。
(A)多官能(メタ)アクリレートとして、日本合成社製「UV-3000B」(ウレタンアクリレート以下「UV-3000B」と略す、重量平均分子量18000、ポリオール化合物はポリエステルポリオール、有機ポリイソシアネート化合物はイソホロンジイソシアネート、ヒドロキシ(メタ)アクリレートは2-ヒドロキシエチルアクリレート)20質量部、ジシクロペンタニルジアクリレート(日本化薬社製「KAYARAD R-684」、以下「R-684」と略す)15質量部、
(B)単官能(メタ)アクリレートとして、2-(1,2-シクロヘキサカルボキシイミド)エチルアクリレート(東亜合成社製「アロニックスM-140」、以下「M-140」と略す)50質量部、フェノールエチレンオキサイド2モル変性アクリレート(東亜合成社製「アロニックスM-101A」)15質量部、
(C)光重合開始剤としてベンジルジメチルケタール(BASF社製「IRGACURE651」、以下「BDK」と略す)10質量部、
(D)粒状物質として平均粒径100μmの球状架橋ポリスチレン粒子(ガンツ化成社製「GS-100S」)1質量部、
(E)重合禁止剤として2,2-メチレン-ビス(4-メチル-6-ターシャリーブチルフェノール)(住友化学社製「スミライザーMDP-S」、以下「MDP」と略す)0.1質量部
2.板ガラス積層体の作製
 透光性硬質基板として板ガラス(横530mm×縦420mm×厚み0.7mm)を12枚用意し、架橋ポリスチレン粒子を含有した上記光硬化性接着剤を介して貼り合わせ、板ガラスの積層体を作製した。具体的には、1枚目の板ガラス上に上記光硬化性接着剤を40g塗布した後、1枚目の板ガラスの上に2枚目の板ガラスを貼り合わせて2枚目の板ガラスの表面側からUV照射し、上記光硬化性接着剤を硬化させた。UV照射量は3000mJ/cm2(365nmの受光器による積算照度計による測定)とし、UV照射時間は40秒とした。この手順を繰り返すことで、12枚の板ガラスからなる厚み8mm(この厚みは12枚の板ガラスを合計した積層体の厚みである)の板ガラス積層体を作製した。
<Example 1>
1. Preparation of Photocurable Adhesive (I) The following components (A) to (E) were mixed to prepare a photocurable adhesive (I).
(A) As a polyfunctional (meth) acrylate, “UV-3000B” (abbreviated as “UV-3000B” hereinafter referred to as urethane acrylate) manufactured by Nippon Gosei Co., Ltd., a weight average molecular weight of 18000, a polyol compound is a polyester polyol, and an organic polyisocyanate compound is isophorone diisocyanate. 20 parts by mass of hydroxy (meth) acrylate is 2-hydroxyethyl acrylate), 15 parts by mass of dicyclopentanyl diacrylate (“KAYARAD R-684” manufactured by Nippon Kayaku Co., Ltd., hereinafter abbreviated as “R-684”),
(B) As a monofunctional (meth) acrylate, 50 parts by mass of 2- (1,2-cyclohexacarboxyimide) ethyl acrylate (“Aronix M-140” manufactured by Toagosei Co., Ltd., hereinafter abbreviated as “M-140”); 15 parts by mass of phenol ethylene oxide 2 mol modified acrylate (“Aronix M-101A” manufactured by Toa Gosei Co., Ltd.)
(C) 10 parts by mass of benzyldimethyl ketal (“IRGACURE651” manufactured by BASF, hereinafter abbreviated as “BDK”) as a photopolymerization initiator,
(D) 1 part by weight of spherical crosslinked polystyrene particles having an average particle size of 100 μm (“GS-100S” manufactured by Ganz Kasei Co., Ltd.)
(E) 2,2-methylene-bis (4-methyl-6-tertiary butylphenol) as a polymerization inhibitor (“Sumilyzer MDP-S” manufactured by Sumitomo Chemical Co., Ltd., hereinafter abbreviated as “MDP”) 0.1 parts by mass 2 . Preparation of plate glass laminate 12 sheets of plate glass (width 530 mm × length 420 mm × thickness 0.7 mm) are prepared as a light-transmitting hard substrate, and bonded together via the photocurable adhesive containing crosslinked polystyrene particles. A laminate was produced. Specifically, after 40 g of the above-mentioned photo-curable adhesive is applied on the first sheet glass, the second sheet glass is bonded onto the first sheet glass, and the surface of the second sheet glass is then bonded. The photocurable adhesive was cured by UV irradiation. The UV irradiation amount was 3000 mJ / cm 2 (measured by an integrating illuminometer with a 365 nm light receiver), and the UV irradiation time was 40 seconds. By repeating this procedure, a plate glass laminate having a thickness of 8 mm (this thickness is the total thickness of the laminate of 12 plate glasses) made of 12 plate glasses was produced.
3.板ガラス積層体の切断加工
 次に、板ガラスの積層体を受け台に固定した後、円板カッターによって所定の切断線に沿って厚み方向に切断し、分割された板ガラスの積層体を作製した。このとき、各板ガラスは、横100mm×縦50mm×厚み0.7mm(この厚みは板ガラス1枚の厚みである)に分割された。
3. Next, after fixing the plate glass laminate to the cradle, the plate glass laminate was cut in the thickness direction along a predetermined cutting line by a disc cutter to produce a divided plate glass laminate. At this time, each plate glass was divided into a width of 100 mm, a length of 50 mm, and a thickness of 0.7 mm (this thickness is the thickness of one plate glass).
4.板ガラス積層体の外形加工
 次に、受け台に分割された板ガラス積層体を固定し、受け台上の板ガラス積層体に回転砥石を用いて研削することで外形を加工した。このとき、板ガラスの縁部にはチッピング、ヒビ、及び/又は、欠けが発生したものもあった。
4). Next, the outer shape was processed by fixing the plate glass laminate divided into the cradle and grinding the plate glass laminate on the cradle using a rotating grindstone. At this time, some of the edges of the plate glass had chipping, cracks, and / or chips.
5.板ガラス積層体の端面加工
 次に、図4に示すような切削用工具を準備した。切削用工具の切削部は、図4に示す軸部の径(c)が1.6mmφで、突部が断面において直角二等辺三角形状(b=2a)であり、突部19の稜線部分において、高さ(a)を引いた残りの径が2.0mm(=d)であった。切削用工具は、軸部及び突部本体が超鋼で形成されており、突部本体表面には、ダイヤモンドが電着されていた。
 次に、切削用工具を岳将社製40kHZ超音波スピンドルユニット URT40-F41に取り付けた。
 次に、超音波スピンドルに取り付けた切削用工具を、その複数の突部が板ガラス積層体の各接着剤層に対応するような位置に設置し、図4に示すように、板ガラス積層体の側面から突部をその稜線が各接着剤層へ接触するように進め、板ガラス積層体の断面において、隣り合う板ガラスの互いに対向する面の縁部から板ガラス間の接着剤層にかけて、接着剤層に稜線を有するV字溝を形成するように切削加工を行った。このとき、超音波スピンドルは40kHzで回転数2500rpmであった。切削は、板ガラス積層体の側面の45°に傾斜するV字溝が深さ0.2mmとなるまで行った。
5. End face processing of sheet glass laminate Next, a cutting tool as shown in FIG. 4 was prepared. The cutting portion of the cutting tool has a shaft portion diameter (c) shown in FIG. 4 of 1.6 mmφ, and the protrusion has a right-angled isosceles triangle shape (b = 2a) in the cross section. The remaining diameter after subtracting the height (a) was 2.0 mm (= d). In the cutting tool, the shaft portion and the protrusion main body are made of super steel, and diamond is electrodeposited on the surface of the protrusion main body.
Next, the cutting tool was attached to a 40 kHZ ultrasonic spindle unit URT40-F41 manufactured by Takesho.
Next, the cutting tool attached to the ultrasonic spindle is installed at a position where the plurality of protrusions correspond to the adhesive layers of the sheet glass laminate, and as shown in FIG. From the edge of the opposite surface of the adjacent plate glass to the adhesive layer between the plate glasses in the cross section of the plate glass laminate, the ridge line is projected to the adhesive layer from the edge of the projection to the adhesive layer. Cutting was performed so as to form a V-shaped groove having the shape. At this time, the ultrasonic spindle had a rotational frequency of 2500 rpm at 40 kHz. Cutting was performed until the V-shaped groove inclined at 45 ° on the side surface of the plate glass laminate had a depth of 0.2 mm.
 このようにして端面加工が行われた板ガラス積層体の縁部からは、チッピング、ヒビ、及び/又は、欠けが良好に除去されていた。 The chipping, cracks, and / or chips were well removed from the edge of the sheet glass laminate that had been subjected to end face processing in this way.
<実施例2>
 実施例2として、超音波スピンドルではない通常の(超音波振動を付与しない)スピンドルを取り付けた切削用工具を切削工程で用いた以外は、実施例1と同様の工程を行った。
 このようにして端面加工が行われた板ガラス積層体の縁部からは、実施例1と同様に、チッピング、ヒビ、及び/又は、欠けが良好に除去されていた。
 しかしながら、切削工程において、超音波スピンドルを用いた実施例1と比べると、騒音が増大し、さらに切削屑による切削部への目詰まりが目立った。
<Example 2>
As Example 2, the same process as Example 1 was performed except that a cutting tool equipped with a normal spindle (not applying ultrasonic vibration) that was not an ultrasonic spindle was used in the cutting process.
In the same manner as in Example 1, chipping, cracking, and / or chipping were removed satisfactorily from the edge portion of the plate glass laminate that had been subjected to end face processing in this manner.
However, in the cutting process, compared with Example 1 using an ultrasonic spindle, noise increased, and clogging of the cut portion with cutting waste was conspicuous.
<実施例3>
 実施例3として、光硬化性接着剤(I)の代わりに、光硬化性接着剤(II)を用いた以外は、実施例1と同様の工程を行った。
1.光硬化性接着剤(II)の作製
 以下の(A)~(E)の成分を混合して光硬化性接着剤(II)を作製した。
(A)多官能(メタ)アクリレートとして、日本合成社製「UV-3000B」(ウレタンアクリレート、以下「UV-3000B」と略す)20質量部、ジシクロペンタニルジアクリレート(日本化薬社製「KAYARADR-684」、以下「R-684」と略す)25質量部、
(B)単官能(メタ)アクリレートとして、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート(東亜合成社製「アロニックスM-5700」、以下「M-5700」と略す)35質量部、フェノールエチレンオキサイド2モル変性アクリレート(東亜合成社製「アロニックスM-101A」)20質量部、
(C)光重合開始剤としてベンジルジメチルケタール(BASF社製「IRGACURE651」、以下「BDK」と略す)10質量部、
(D)粒状物質として平均粒径100μmの球状架橋ポリスチレン粒子(ガンツ化成社製「GS-100S」)1質量部、
(E)重合禁止剤として2,2-メチレン-ビス(4-メチル-6-ターシャリーブチルフェノール)(住友化学社製「スミライザーMDP-S」、以下「MDP」と略す)0.1質量部
 このようにして端面加工が行われた板ガラス積層体の縁部からは、チッピング、ヒビ、及び/又は、欠けが良好に除去されていた。
<Example 3>
As Example 3, the same process as in Example 1 was performed except that the photocurable adhesive (II) was used instead of the photocurable adhesive (I).
1. Preparation of photocurable adhesive (II) The following components (A) to (E) were mixed to prepare a photocurable adhesive (II).
(A) As a polyfunctional (meth) acrylate, 20 parts by mass of “UV-3000B” (urethane acrylate, hereinafter abbreviated as “UV-3000B”) manufactured by Nippon Gosei Co., Ltd., dicyclopentanyl diacrylate (manufactured by Nippon Kayaku Co., Ltd.) KAYARADR-684 ”, hereinafter abbreviated as“ R-684 ”), 25 parts by mass,
(B) As monofunctional (meth) acrylate, 35 parts by mass of 2-hydroxy-3-phenoxypropyl (meth) acrylate (“Aronix M-5700” manufactured by Toa Gosei Co., Ltd., hereinafter abbreviated as “M-5700”), phenolethylene 20 parts by mass of oxide 2 mol modified acrylate (“Aronix M-101A” manufactured by Toa Gosei Co., Ltd.)
(C) 10 parts by mass of benzyldimethyl ketal (“IRGACURE651” manufactured by BASF, hereinafter abbreviated as “BDK”) as a photopolymerization initiator,
(D) 1 part by weight of spherical crosslinked polystyrene particles having an average particle size of 100 μm (“GS-100S” manufactured by Ganz Kasei Co., Ltd.)
(E) 0.1 part by mass of 2,2-methylene-bis (4-methyl-6-tertiary butylphenol) (“Sumilyzer MDP-S” manufactured by Sumitomo Chemical Co., Ltd., hereinafter abbreviated as “MDP”) as a polymerization inhibitor Thus, chipping, cracks, and / or chips were well removed from the edge portion of the sheet glass laminate that had been subjected to the end face processing.
<実施例4>
 実施例4として、超音波スピンドルではない通常の(超音波振動を付与しない)スピンドルを取り付けた切削用工具を切削工程で用いた以外は、実施例3と同様の工程を行った。
 このようにして端面加工が行われた板ガラス積層体の縁部からは、実施例1と同様に、チッピング、ヒビ、及び/又は、欠けが良好に除去されていた。
 しかしながら、切削工程において、超音波スピンドルを用いた実施例3と比べると、騒音が増大し、さらに切削屑による切削部への目詰まりが目立った。
<Example 4>
As Example 4, the same process as Example 3 was performed except that a cutting tool equipped with a normal spindle (not applying ultrasonic vibration) that was not an ultrasonic spindle was used in the cutting process.
In the same manner as in Example 1, chipping, cracking, and / or chipping were removed satisfactorily from the edge portion of the plate glass laminate that had been subjected to end face processing in this manner.
However, in the cutting process, compared with Example 3 using an ultrasonic spindle, noise increased, and clogging of the cut portion with cutting waste was conspicuous.
<比較例1>
 比較例1として、ポリスチレン粒子を含有しない光硬化性接着剤(I)(ポリスチレン粒子を含有しないこと以外は、上記光硬化性接着剤(I)と同じ組成である)を用いて板ガラスを張り合わせることで、板ガラス積層体における各板ガラス間の厚さ制御を行わず、さらに切削工程において、本発明に係る切削用工具の代わりに、ナイロンで形成されたブラシを用いた以外は、実施例1と同様の工程を行った。
 このようにして端面加工が行われた板ガラス積層体の縁部からは、チッピング、ヒビ、及び/又は、欠けが多く残っており、良好に除去されていなかった。これは、各板ガラス間の厚さが一定に制御されておらず、また、ナイロンで形成されたブラシで切削したため、複数の切削部がそれぞれ板ガラスの縁部に対して適切な位置で切削できておらず、積層した板ガラスの縁部を均一に切削できなかったためであると考えられる。
<Comparative Example 1>
As Comparative Example 1, a sheet glass is laminated using a photocurable adhesive (I) that does not contain polystyrene particles (except that it does not contain polystyrene particles, and has the same composition as the photocurable adhesive (I)). Thus, the thickness control between the plate glasses in the plate glass laminate was not performed, and in the cutting process, in place of the cutting tool according to the present invention, except that a brush formed of nylon was used, Example 1 and A similar process was performed.
Many chippings, cracks, and / or chips remained from the edges of the plate glass laminate subjected to the end face processing in this way and were not removed well. This is because the thickness between each glass sheet is not controlled to be constant, and since it was cut with a brush made of nylon, a plurality of cutting parts could be cut at appropriate positions with respect to the edge of the glass sheet. This is probably because the edge of the laminated sheet glass could not be cut uniformly.
 以下に、上記実施例及び比較例で用いた光硬化性接着剤(I)と光硬化性接着剤(II)の物性を表1に示した。評価方法は下記の通りである。
 引張せん断接着強さ(接着強さ):JIS K 6850に従い測定した。具体的には被着材として耐熱パイレックス(登録商標)ガラス(25mm×25mm×2.0mm)を用いた。接着部位を直径8mmとして、作製した光硬化性接着剤にて、2枚の耐熱パイレックス(登録商標)ガラスを貼り合わせ、無電極放電ランプを使用したフュージョン社製硬化装置により、365nmの波長の積算光量2000mJ/cm2の条件にて硬化させ、引張せん断接着強さ試験片を作製した。作製した試験片は、万能試験機を使用して、温度23℃、湿度50%の環境下、引張速度10mm/minで引張せん断接着強さを測定した。
 剥離試験:上記耐熱パイレックス(登録商標)ガラスに光硬化性接着剤を塗布し、支持体として青板ガラス(150mm×150mm×厚さ1.7mm)に貼り合わせた以外は上記と同様な条件で作製した光硬化性接着剤を硬化させ、剥離試験体を作製した。得られた試験体を、温水(80℃)に浸漬し、耐熱パイレックス(登録商標)ガラスが剥離する時間を測定し、また剥離状態も観察した。
 切断試験片10個の裏面片の欠けの最大幅、切断試験片10個の裏面片の欠けの最大幅の標準偏差:接着剤(I)と接着剤(II)を用いて、縦80mm×横80mm×厚さ1mmの青板ガラス(A)と、剥離試験で用いた青板ガラス(B)(支持体として使用)とを、上記と同様に接着硬化させた。この接着試験体の青板ガラス(A)部分をダイシング装置を使用して10mm角に切断した。切断中に青板ガラス(A)の脱落は発生せず、良好な加工性を示した。青板ガラス(A)部分のみを切断した接着試験体を80℃の温水に浸漬したところ、10分ですべて剥離した。また、その剥離した切断試験片を無作為に10個取り出し、その切断試験片の裏面(接着剤で仮固定した面)の各片を、光学顕微鏡を用いて観察し、ガラスが欠けている箇所の最大幅を測定し、その平均値と標準偏差を求めた。
Table 1 shows the physical properties of the photocurable adhesive (I) and the photocurable adhesive (II) used in the above Examples and Comparative Examples. The evaluation method is as follows.
Tensile shear adhesive strength (adhesive strength): Measured according to JIS K 6850. Specifically, heat-resistant Pyrex (registered trademark) glass (25 mm × 25 mm × 2.0 mm) was used as the adherend. Adhesion site is 8mm in diameter, and two heat-resistant Pyrex (registered trademark) glass is bonded together with the produced photo-curing adhesive, and a wavelength of 365 nm is integrated by a fusion device using an electrodeless discharge lamp. Curing was performed under the condition of a light amount of 2000 mJ / cm 2 to prepare a tensile shear bond strength test piece. The prepared test piece was measured for tensile shear bond strength at a tensile rate of 10 mm / min in an environment of a temperature of 23 ° C. and a humidity of 50% using a universal testing machine.
Peeling test: produced under the same conditions as above except that a photocurable adhesive was applied to the heat-resistant Pyrex (registered trademark) glass and bonded to blue plate glass (150 mm × 150 mm × thickness 1.7 mm) as a support. The cured photocurable adhesive was cured to prepare a peel test specimen. The obtained specimen was immersed in warm water (80 ° C.), the time for the heat-resistant Pyrex (registered trademark) glass to peel was measured, and the peeled state was also observed.
Standard deviation of maximum width of chip of 10 back specimens and maximum width of chip of 10 back specimens: 80 mm x horizontal by using adhesive (I) and adhesive (II) The blue plate glass (A) of 80 mm × thickness 1 mm and the blue plate glass (B) (used as a support) used in the peel test were bonded and cured in the same manner as described above. The blue sheet glass (A) portion of the adhesion test specimen was cut into a 10 mm square using a dicing apparatus. The blue plate glass (A) did not fall off during the cutting, indicating good workability. When the adhesion test body which cut | disconnected only the blue plate glass (A) part was immersed in 80 degreeC warm water, all peeled in 10 minutes. Also, 10 pieces of the peeled test specimens were taken out at random, and each piece on the back surface (surface temporarily fixed with an adhesive) of the test specimen was observed using an optical microscope, and the glass was missing. The maximum width was measured, and the average value and standard deviation were obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
10 大判の透光性硬質基板積層体
11 大判の透光性硬質基板
11’ 透光性硬質基板
12 大判の接着剤層
12’ 接着剤層
13 切断線
14 透光性硬質基板積層体
15 外径加工線
16 切削用工具
17 軸部
18 切削部
19 突部
19a 突部19の角度
20 端面加工後の透光性硬質基板積層体
21 V字溝
DESCRIPTION OF SYMBOLS 10 Large-sized translucent hard board | substrate laminated body 11 Large-sized translucent hard board | substrate 11 'Translucent hard board | substrate 12 Large-sized adhesive layer 12' Adhesive layer 13 Cutting line 14 Translucent hard board | substrate laminated body 15 Outer diameter Processing line 16 Cutting tool 17 Shaft portion 18 Cutting portion 19 Protrusion portion 19a Angle 20 of protrusion portion 19 Translucent hard substrate laminate 21 after end face processing V-shaped groove

Claims (12)

  1.  2枚以上の硬質基板同士が接着剤で貼り合わせられた硬質基板積層体を準備する工程と、
     前記硬質基板間の各接着剤層に対応する位置にそれぞれ設けられた切削部を備える切削用工具で、前記積層体の側面から、隣り合う前記硬質基板の互いに対向する面の縁部を一度に切削する工程と、
    を含む硬質基板積層体の加工方法。
    Preparing a hard substrate laminate in which two or more hard substrates are bonded together with an adhesive;
    A cutting tool provided with a cutting portion provided at a position corresponding to each adhesive layer between the hard substrates, and from the side surface of the laminated body, the edges of the adjacent hard substrates facing each other at a time Cutting process;
    A processing method for a hard substrate laminate including:
  2.  前記切削用工具による切削は、前記硬質基板積層体の断面において、隣り合う前記硬質基板の互いに対向する面の縁部から前記硬質基板間の接着剤層にかけて、前記接着剤層に稜線を有するV字溝を形成するように行う請求項1に記載の硬質基板積層体の加工方法。 Cutting with the cutting tool is performed in the cross section of the hard substrate laminate, from the edge of the adjacent hard substrate to the adhesive layer between the hard substrates to the adhesive layer between the hard substrates. The processing method of the hard board | substrate laminated body of Claim 1 performed so that a character groove may be formed.
  3.  前記切削用工具は、スピンドルに取り付けられて回転駆動される請求項1又は2に記載の硬質基板積層体の加工方法。 The processing method of a hard substrate laminate according to claim 1 or 2, wherein the cutting tool is attached to a spindle and driven to rotate.
  4.  前記スピンドルが超音波スピンドルである請求項3に記載の硬質基板積層体の加工方法。 The method for processing a hard substrate laminate according to claim 3, wherein the spindle is an ultrasonic spindle.
  5.  前記切削工程の間、複数の前記硬質基板の間隔を一定に制御する請求項1~4のいずれかに記載の硬質基板積層体の加工方法。 The method for processing a hard substrate laminate according to any one of claims 1 to 4, wherein the interval between the plurality of hard substrates is controlled to be constant during the cutting step.
  6.  前記硬質基板の間隔は、接着剤に、接着剤の成分に溶解しない粒状物質を含ませることで一定に制御する請求項5に記載の硬質基板積層体の加工方法。 The processing method for a hard substrate laminate according to claim 5, wherein the interval between the hard substrates is controlled to be constant by including a granular material that does not dissolve in the adhesive component in the adhesive.
  7.  前記切削用工具の切削部の少なくとも前記硬質基板に接触する部分が超鋼、高速度鋼、又は、ダイヤモンドで形成されている請求項1~6のいずれかに記載の硬質基板積層体の加工方法。 The method for processing a hard substrate laminate according to any one of claims 1 to 6, wherein at least a portion of the cutting portion of the cutting tool that is in contact with the hard substrate is formed of super steel, high-speed steel, or diamond. .
  8.  前記切削用工具の切削部が、表面にダイヤモンドが電着された超鋼又は高速度鋼で形成されている請求項7に記載の硬質基板積層体の加工方法。 The method for processing a hard substrate laminate according to claim 7, wherein the cutting portion of the cutting tool is formed of super steel or high speed steel having a surface electrodeposited with diamond.
  9.  前記切削用工具で切削された前記硬質基板積層体の側面を、さらに研磨する工程を含む請求項1~8のいずれかに記載の硬質基板積層体の加工方法。 The method for processing a hard substrate laminate according to any one of claims 1 to 8, further comprising a step of polishing a side surface of the hard substrate laminate cut by the cutting tool.
  10.  前記硬質基板積層体は、2枚以上の大判の硬質基板同士が接着剤で貼り合わせられた大判の硬質基板積層体を、その厚み方向に切断して分割形成されたものである請求項1~9のいずれかに記載の硬質基板積層体の加工方法。 The hard substrate laminate is formed by dividing a large-sized hard substrate laminate in which two or more large-size hard substrates are bonded together with an adhesive, by cutting in the thickness direction. The processing method of the hard board | substrate laminated body in any one of 9.
  11.  透光性硬質基板が板ガラスである請求項1~10のいずれかに記載の硬質基板積層体の加工方法。 The method for processing a hard substrate laminate according to any one of claims 1 to 10, wherein the translucent hard substrate is a plate glass.
  12.  請求項1~11のいずれかに記載の硬質基板積層体の加工方法が施された透光性硬質基板積層体を用いて複数の板状製品を形成する工程を含む板状製品の製造方法。 A method for producing a plate-like product, including a step of forming a plurality of plate-like products using the light-transmitting hard substrate laminate subjected to the processing method of the hard substrate laminate according to any one of claims 1 to 11.
PCT/JP2011/078094 2010-12-08 2011-12-05 Method for processing hard substrate laminated body and method for manufacturing plate-shaped product WO2012077645A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012547850A JPWO2012077645A1 (en) 2010-12-08 2011-12-05 Method for processing hard substrate laminate and method for manufacturing plate-like product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-273709 2010-12-08
JP2010273709 2010-12-08

Publications (1)

Publication Number Publication Date
WO2012077645A1 true WO2012077645A1 (en) 2012-06-14

Family

ID=46207133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078094 WO2012077645A1 (en) 2010-12-08 2011-12-05 Method for processing hard substrate laminated body and method for manufacturing plate-shaped product

Country Status (3)

Country Link
JP (1) JPWO2012077645A1 (en)
TW (1) TW201233646A (en)
WO (1) WO2012077645A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102806501A (en) * 2012-07-23 2012-12-05 郑春晓 Grinding tool for end face grinding and multi-piece mirror glass laminating processing method thereof
WO2014002447A1 (en) * 2012-06-27 2014-01-03 シャープ株式会社 Substrate-edge grinding method, and substrate-edge grinding device
JP2014122315A (en) * 2012-12-21 2014-07-03 Hoya Corp Temporary tacking material for glass plate adhesion and glass processing method
WO2015046471A1 (en) * 2013-09-27 2015-04-02 電気化学工業株式会社 Laminate and manufacturing method thereof
WO2017009893A1 (en) * 2015-07-10 2017-01-19 株式会社タイテックソリューションズ Method for manufacturing substrate
CN110722462A (en) * 2019-10-24 2020-01-24 深圳市华星光电技术有限公司 Grinding wheel for preparing display panel and preparation method of display panel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI727683B (en) * 2020-02-27 2021-05-11 態金材料科技股份有限公司 Manufacturing method and products of anti-reflective optical glass

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135710U (en) * 1984-08-07 1986-03-05 株式会社 エフエスケ− rotary cutting tool
JPH01240213A (en) * 1988-03-23 1989-09-25 Cmk Corp Method and device for chamfering flat plate
JPH04256513A (en) * 1991-02-08 1992-09-11 Hitachi Tool Eng Ltd End mill or blade
JPH09168947A (en) * 1995-12-18 1997-06-30 Takeshiyou:Kk Work periphery grinding method by ultrasonic micro vibration
JP2000141188A (en) * 1998-11-09 2000-05-23 Ngk Insulators Ltd Glass disc chamfering method, and glass disc laminating jig used for the same
JP2007049044A (en) * 2005-08-11 2007-02-22 Takemasa:Kk Dicing tool
JP2007118174A (en) * 2005-09-29 2007-05-17 Hoya Corp Polishing brush, polishing member, polishing method, polishing device, manufacturing method for glass substrate for magnetic disk, and method for magnetic disk
WO2008018252A1 (en) * 2006-08-10 2008-02-14 Denki Kagaku Kogyo Kabushiki Kaisha Adhesive composition and method for temporarily fixing member by using the same
JP2008200800A (en) * 2007-02-20 2008-09-04 Showa Denko Kk Polishing method for disc-like substrate and grinding device
JP2009256125A (en) * 2008-04-15 2009-11-05 Shoda Techtron Corp Processing method of plate glass

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07186023A (en) * 1993-12-27 1995-07-25 Central Glass Co Ltd Laminated glass hole part chamfering drill
JPH11219521A (en) * 1998-01-30 1999-08-10 Nippon Electric Glass Co Ltd Production of glass substrate for magnetic disk
JP4392882B2 (en) * 1998-11-30 2010-01-06 Hoya株式会社 Manufacturing method of flat glass products

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135710U (en) * 1984-08-07 1986-03-05 株式会社 エフエスケ− rotary cutting tool
JPH01240213A (en) * 1988-03-23 1989-09-25 Cmk Corp Method and device for chamfering flat plate
JPH04256513A (en) * 1991-02-08 1992-09-11 Hitachi Tool Eng Ltd End mill or blade
JPH09168947A (en) * 1995-12-18 1997-06-30 Takeshiyou:Kk Work periphery grinding method by ultrasonic micro vibration
JP2000141188A (en) * 1998-11-09 2000-05-23 Ngk Insulators Ltd Glass disc chamfering method, and glass disc laminating jig used for the same
JP2007049044A (en) * 2005-08-11 2007-02-22 Takemasa:Kk Dicing tool
JP2007118174A (en) * 2005-09-29 2007-05-17 Hoya Corp Polishing brush, polishing member, polishing method, polishing device, manufacturing method for glass substrate for magnetic disk, and method for magnetic disk
WO2008018252A1 (en) * 2006-08-10 2008-02-14 Denki Kagaku Kogyo Kabushiki Kaisha Adhesive composition and method for temporarily fixing member by using the same
JP2008200800A (en) * 2007-02-20 2008-09-04 Showa Denko Kk Polishing method for disc-like substrate and grinding device
JP2009256125A (en) * 2008-04-15 2009-11-05 Shoda Techtron Corp Processing method of plate glass

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002447A1 (en) * 2012-06-27 2014-01-03 シャープ株式会社 Substrate-edge grinding method, and substrate-edge grinding device
JPWO2014002447A1 (en) * 2012-06-27 2016-05-30 シャープ株式会社 Substrate edge grinding method and substrate edge grinding apparatus
CN102806501A (en) * 2012-07-23 2012-12-05 郑春晓 Grinding tool for end face grinding and multi-piece mirror glass laminating processing method thereof
JP2014122315A (en) * 2012-12-21 2014-07-03 Hoya Corp Temporary tacking material for glass plate adhesion and glass processing method
WO2015046471A1 (en) * 2013-09-27 2015-04-02 電気化学工業株式会社 Laminate and manufacturing method thereof
WO2017009893A1 (en) * 2015-07-10 2017-01-19 株式会社タイテックソリューションズ Method for manufacturing substrate
CN110722462A (en) * 2019-10-24 2020-01-24 深圳市华星光电技术有限公司 Grinding wheel for preparing display panel and preparation method of display panel

Also Published As

Publication number Publication date
JPWO2012077645A1 (en) 2014-05-19
TW201233646A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
WO2012077645A1 (en) Method for processing hard substrate laminated body and method for manufacturing plate-shaped product
KR101696331B1 (en) Method for processing light-transmitting rigid substrate laminate and method for manufacturing plate shaped product
JP5956449B2 (en) Method for processing hard substrate laminate and method for manufacturing plate-like product
WO2013172353A1 (en) Processing apparatus and method for processing laminated article
JPWO2013039226A1 (en) Composition and method for temporarily fixing member using the same
JP6081363B2 (en) Processing method of glass substrate laminate
WO2013084953A1 (en) Method for manufacturing light-transmitting hard-substrate laminate
WO2015046471A1 (en) Laminate and manufacturing method thereof
JP6081103B2 (en) Stirring apparatus and method for producing small-sized flat plate member
WO2014192941A1 (en) Hard substrate laminate and hard substrate laminate manufacturing method
TWI546188B (en) Processing method of hard substrate laminated body
JP5916620B2 (en) Method for peeling translucent hard substrate laminate and method for producing plate product using the same
JP5831887B2 (en) Method for processing translucent hard substrate laminate and method for producing plate-like product using the same
WO2015083832A1 (en) Rigid substrate with protected end surfaces, and method for manufacturing same
WO2014192942A1 (en) Laminate and manufacturing method therefor
JP2017206398A (en) Method for producing light transmissive hard substrate laminated body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847682

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012547850

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11847682

Country of ref document: EP

Kind code of ref document: A1