WO2014192941A1 - Hard substrate laminate and hard substrate laminate manufacturing method - Google Patents

Hard substrate laminate and hard substrate laminate manufacturing method Download PDF

Info

Publication number
WO2014192941A1
WO2014192941A1 PCT/JP2014/064508 JP2014064508W WO2014192941A1 WO 2014192941 A1 WO2014192941 A1 WO 2014192941A1 JP 2014064508 W JP2014064508 W JP 2014064508W WO 2014192941 A1 WO2014192941 A1 WO 2014192941A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylate
meth
adhesive
hard substrate
laminate
Prior art date
Application number
PCT/JP2014/064508
Other languages
French (fr)
Japanese (ja)
Inventor
幸雄 江田
博則 武末
敏成 伊林
賢司 田中
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to JP2015519976A priority Critical patent/JPWO2014192941A1/en
Publication of WO2014192941A1 publication Critical patent/WO2014192941A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/07Cutting armoured, multi-layered, coated or laminated, glass products
    • C03B33/076Laminated glass comprising interlayers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/07Cutting armoured, multi-layered, coated or laminated, glass products
    • C03B33/076Laminated glass comprising interlayers
    • C03B33/078Polymeric interlayers

Definitions

  • the present invention relates to a method for manufacturing a hard substrate laminate.
  • Display devices for various electronic devices such as TVs, notebook computers, car navigation systems, calculators, mobile phones (including smartphones), tablet terminals, electronic notebooks, and PDAs (Personal Digital Assistants) include liquid crystal displays (LCDs) and organic EL displays.
  • Display elements such as a display (OELD), an electroluminescence display (ELD), a field emission display (FED), and a plasma display (PDP) are used. And in order to protect a display element, it is common to install the plate glass product for protection facing a display element.
  • Such a flat glass product is obtained by processing a flat glass into a size and shape suitable for each display device, but it needs to be manufactured with good production efficiency in order to meet the price level required in the market. .
  • Patent Document 1 discloses a glass laminate in which a plurality of plate glasses having substantially the same shape and size in plan view are sequentially laminated in producing a chamfered plate glass product. And manufacturing the sheet glass product characterized by chamfering the individual sheet glass constituting the glass laminate by etching the glass laminate.
  • paragraphs 0029 and 0030 of Patent Document 1 it is also described that it is preferable to form an adhesive material layer on the entire bonding surface (main surface) of the plate glasses to be bonded to each other.
  • Patent Document 2 stacks a large number of material sheet glasses (1) and integrates each material sheet glass (1) with a peelable fixing material (2) interposed between each material sheet glass (1).
  • a material glass block (A) formed by adhering is formed, the material glass block (A) is divided in a plane direction to form a small-area divided glass block (B), and at least the divided glass block (B)
  • a product glass block (C) having a product shape in plan view is formed by processing the outer periphery, and the product glass block (C) is individually separated after the end face processing of the product glass block (C).
  • the processing method of the plate glass to perform is described.
  • paragraph 0009 of Patent Document 2 it is described that the material plate glasses are stacked while interposing a liquid sticking agent, and by pressing them in the thickness direction, the sticking agent is spread between the material plate glasses in a film shape. Yes.
  • This invention is made
  • the present inventors have intensively studied in order to solve the above-mentioned problems.
  • an adhesive is applied to the main surface of the hard substrate in a predetermined pattern, and the hard substrates are bonded to each other. It has been found that the production efficiency of the plate-like product can be significantly increased without sacrificing the processing dimensional accuracy by making the laminate positively provided with voids.
  • the present invention completed on the basis of the above knowledge is a hard substrate laminate in which two or more hard substrates are bonded together with an adhesive in the first aspect, and the laminate is cut in the thickness direction. It is planned to obtain a desired number of divided hard substrate laminates, and an adhesive is continuously present between the hard substrates across all the processing lines at the time of cutting, and each hard substrate Between the layers, there is a laminate in which a void without an adhesive exists in at least one of the regions surrounded by the processing line.
  • no adhesive is present in a region of 40% or more of the regions surrounded by the processing lines between the hard substrates. There are voids.
  • the present invention is at least one hard substrate laminate that is divided after the laminate according to the invention is cut in the thickness direction along a processing line.
  • the porosity is 5 to 99.5%.
  • the porosity is 40 to 95%.
  • the divided hard substrate laminate is scheduled to be further processed in shape, and the hard substrate in a portion to be removed by the shape processing There are no voids between them.
  • the width dimension of the adhesive straddling the processing line from the processing line is 0.1 mm or more.
  • the adhesive is curable.
  • the adhesive comprises (A) a polyfunctional (meth) acrylate, (B) a monofunctional (meth) acrylate, and (C ) Contains a polymerization initiator.
  • (A) polyfunctional (meth) acrylate, (B) monofunctional (meth) acrylate, (C-1) photopolymerization Contains an initiator.
  • the adhesive comprises (A) polyfunctional (meth) acrylate, (B) monofunctional (meth) acrylate, (C— 2) Contains a thermal polymerization initiator.
  • the adhesive comprises (A) polyfunctional (meth) acrylate, (B) monofunctional (meth) acrylate, (C— 1) contains a photopolymerization initiator, and (C-2) a thermal polymerization initiator.
  • the adhesive further contains (F) a decomposition accelerator.
  • the present invention in the third aspect, is a method for producing a hard substrate laminate according to the first aspect of the present invention, Step 1 of preparing a first hard substrate; Step 2 for preparing a second hard substrate; Step 3 of applying an adhesive to the bonding surface of the first hard substrate and / or the second hard substrate; After contacting the first hard substrate and the second hard substrate at the respective one side edges, the step 4 of sequentially bonding the two hard substrates toward the side edges facing the one side edges; Including In step 3, the amount of adhesive applied is such that a gap is generated between the hard substrates after step 4, and the adhesive is a first parallel to the bonding direction along the processing line at the time of cutting. Forming a second application line perpendicular to the laminating direction with the application line, the first application line is continuous or discontinuous, and the second application line is discontinuous; It is a manufacturing method.
  • the first coating line is continuous.
  • the second coating line and the first coating line are formed so as not to intersect.
  • the hard substrate laminate is regarded as a first hard substrate, and Steps 1 to 4 are repeated at least once to obtain at least three hard substrates.
  • a step of forming the bonded hard substrate laminate is performed.
  • the adhesive is curable.
  • the adhesive comprises (A) a polyfunctional (meth) acrylate, (B) a monofunctional (meth) acrylate, and (C) a polymerization initiator. contains.
  • the adhesive comprises (A) polyfunctional (meth) acrylate, (B) monofunctional (meth) acrylate, and (C-1) photopolymerization initiation.
  • Step 4 includes irradiating light for curing the adhesive between the bonded hard substrates.
  • the adhesive comprises (A) polyfunctional (meth) acrylate, (B) monofunctional (meth) acrylate, and (C-2) thermal polymerization initiation. Contains agents.
  • the adhesive comprises (A) polyfunctional (meth) acrylate, (B) monofunctional (meth) acrylate, and (C-1) photopolymerization initiation.
  • Step 4 includes irradiating light for curing the adhesive between the two hard substrates bonded together, and (C-2) a thermal polymerization initiator.
  • the adhesive further contains (F) a decomposition accelerator.
  • the bonding in step 4 is performed by a roll press.
  • Step 6 of processing the divided hard substrate laminate to obtain a product-shaped hard substrate laminate, Step 7 of peeling the product-shaped hard substrate laminate to obtain a plurality of plate products Is a method of manufacturing a plate-like product.
  • the step 6 of obtaining the product-shaped hard substrate laminate by processing the divided hard substrate laminate includes shape processing.
  • the adhesive for bonding the hard substrates to each other exists only on a part of the main surface, so that the operation of separating the individual hard substrates from the laminate becomes easy, and the separation operation can be performed in a short time.
  • the adhesive since the adhesive is arranged in an appropriate pattern, the processing dimensional accuracy is not impaired.
  • the amount of the adhesive which is a consumable agent, can be reduced, the processing cost can be reduced, and the time for cleaning the adhesive adhered to the surface of the hard substrate after the separation operation can be shortened.
  • the present invention is extremely useful in industrially producing a large number of plate products.
  • the hard substrate that can be used in the present invention is not particularly limited, but it needs to be translucent when a photocurable adhesive is used as an adhesive or for the purpose of protecting a display element.
  • plate glass material plate glass, tempered plate glass, glass substrate with a transparent conductive film, glass substrate with electrodes and circuits formed thereon
  • sapphire substrate quartz substrate, plastic substrate, magnesium fluoride substrate, etc.
  • the adhesive agent etc. whose main hardening forms are a thermosetting type and a moisture hardening type can be used.
  • thermosetting type examples include a two-component mixed type and a one-component type.
  • the thermosetting adhesive includes those that cure at room temperature.
  • a hard substrate that does not have translucency can also be used as the hard substrate.
  • an adhesive whose main curing form is a thermosetting type or a moisture curing type can be used.
  • each hard substrate is generally the same size.
  • the surface of each hard substrate can be provided with a predetermined printing pattern or plating pattern for performing one of the functions of the plate-like product.
  • An example of the print pattern is a design of a display screen of a mobile phone, and an example of the plating pattern is a rotary encoder provided with a chrome plating pattern.
  • the substrate surface may be provided with one or more selected from the group consisting of a metal layer, a resin layer, a silica layer, an organosilicate layer, and a transparent electrode layer.
  • FIG. 1 shows a schematic diagram of an example of a large-sized hard substrate laminate before division.
  • the hard substrate laminate 10 two or more hard substrates 11 are bonded together with an adhesive.
  • the laminate 10 is scheduled to be cut in the thickness direction along the dotted line 13 (cutting line) shown in FIG. 2 to obtain a desired number of divided hard substrate laminates 14.
  • the “cutting line” as used in the present invention is a virtual line for convenience to indicate the location of the hard substrate laminate to be cut, and whether or not a line is actually drawn on the surface of the hard substrate laminate. Absent. Accordingly, it is possible to provide a “line” or “mark” for specifying a cutting position at the time of cutting, or not to provide it.
  • the overall thickness of the large-sized hard substrate laminate 10 is too thin, the mechanical strength becomes weak, and it becomes easy to break when peeling the hard substrate laminate 10 fixed to the cradle with an adhesive for processing.
  • the material of the hard substrate 11 preferably 5 or more (the total thickness of the substrate 11 is 0.52 mm or more), more preferably about 10 to 30 (the total thickness of the substrate 11 is 1.5). (About 66 mm) is laminated with an adhesive.
  • the spread state of the adhesive 12 after the large-sized hard substrates 11 are bonded to each other is schematically shown here.
  • the adhesive 12 is continuously present between the hard substrates 11 across all the processing lines 13 at the time of cutting, and the hard substrates 11 are bonded to at least one of the regions surrounded by the processing lines 13.
  • Each area surrounded by cutting lines 13 on the four sides is an area that is processed into a plate-like product after division, and is provided with a print pattern 15.
  • the adhesive 12 exists continuously (or integrally) across all the processing lines 13 at the time of cutting, it becomes possible to prevent the hard substrate constituting the laminate from being separated at the time of cutting processing. Accuracy is improved. In addition, it prevents the processing liquid used for cutting and the etching liquid used for end face processing from entering the voids and causing the harmful effect that the main surface or part of the film formed on the main surface is corroded. Also plays a role. On the other hand, the presence of voids without adhesive reduces the peeling time, improves the work efficiency when separating each hard substrate from the laminate, reduces the amount of adhesive used, and further the separation operation There is an advantage that it contributes to shortening of the time for cleaning the adhesive adhered to the surface of the hard substrate later.
  • voids without an adhesive exist in a region of 40% or more of the regions surrounded by the processing lines 13 between the hard substrates, and a number of 50% or more. More preferably, there are voids without adhesive in the region, more preferably voids without adhesive in the region of 80% or more, and presence of adhesive in the region of 92% or more. It is more preferable that voids that do not exist are present, and it is even more preferable that voids that do not have an adhesive exist in 100% of the number of regions. Taking FIG. 3 as an example, there are twelve regions surrounded by the cutting line 13, and if there are gaps in six or more of them, the condition of 50% or more is satisfied.
  • the degree of voids can also be evaluated using the void ratio defined by the following equation as an index.
  • the adhesive mass in the divided laminate after cutting is W 1
  • the adhesive mass when assuming that the porosity of the divided laminate is 0% is W 0
  • the porosity (%) It is represented by (1 ⁇ W 1 / W 0 ) ⁇ 100.
  • W 1 can be calculated by subtracting the mass of the hard substrate from the mass of the laminate.
  • W 0 can be calculated from the thickness of each adhesive layer, the area of the hard substrate, and the specific gravity of the adhesive.
  • the porosity is preferably higher for the reasons described above, the porosity should be more than 0%, preferably 5% or more, more preferably 10% or more, and 40% or more. Is most preferred. However, if the porosity is too high, it is necessary to use a positively-controllable positive displacement application device when applying the adhesive, and in addition, it is necessary to use a member with a small nozzle diameter, and the adhesive itself In addition to increasing the cost of the apparatus, such as the need for temperature control equipment for strictly controlling the viscosity (and instability), tact is reduced. Therefore, it should be less than 100%, preferably 99.5% or less, more preferably 95% or less, still more preferably 90% or less, and 85% or less. Most preferred.
  • d is preferably 0.1 mm or more, and more preferably 0.3 mm or more.
  • the upper limit of d is not particularly limited as long as the porosity satisfies the above-described range.
  • Step 1 of preparing a first hard substrate Step 2 for preparing a second hard substrate; Step 3 of applying an adhesive to the bonding surface of the first hard substrate and / or the second hard substrate; After contacting the first hard substrate and the second hard substrate at the respective one side edges, the step 4 of sequentially bonding the two hard substrates toward the side edges facing the one side edges; including.
  • the hard substrate laminate as a first hard substrate and repeating steps 1 to 4 at least once, it is possible to form a hard substrate laminate in which at least three hard substrates are bonded together. . Any number of hard substrates can be stacked depending on the number of repetitions.
  • step 3 the amount of adhesive applied is such that a gap is generated between the hard substrates after step 4, and the adhesive is a first parallel to the bonding direction along the processing line at the time of cutting. A second coating line orthogonal to the coating line and the bonding direction is formed.
  • the first coating line may be formed either continuously or discontinuously, but it is preferable that the first application line is continuous because the adhesive is easily continuous along the cutting line after bonding.
  • a discontinuous application line conditions occur in the application interval and amount, and if the conditions are not met, voids are generated on the processing line, whereas in the case of a continuous application line, discontinuity occurs when pasting. This means that it is not necessary to fill in a large part, that is, it can be continuous without depending on the interval or the amount.
  • the second coating line is discontinuous, there is an aspect in which both the first coating line and the second coating line become complicated if both are discontinuous.
  • the second coating line is formed discontinuously. This is to create a passage for air. If you only want to create an air escape path, it is possible to make the first application line discontinuous and make the second application line continuous, but force is applied in the direction of bonding, and air easily moves in the same direction. Therefore, by creating a laminar flow state as much as possible, the coating shape is easily stabilized, so that the second coating line is made discontinuous. In addition, it is preferable to prevent the second coating line from intersecting the first coating line because voids are less likely to occur on the cutting line. If a gap is generated on the cutting line, the dimensional accuracy at the time of the cutting process is adversely affected, such as the ingress of liquid used in the subsequent process and the positional shift due to the small adhesion area.
  • the coating line may be formed on either the first hard substrate or the second hard substrate, or may be formed on both.
  • the above-described coating line may be formed by partially coating each substrate. In short, it is only necessary that the adhesive spreads between the hard substrates so that a gap is generated at an appropriate position after bonding, and the above-mentioned coating pattern is an example and is not limited thereto.
  • FIG. 4 shows an example of a suitable application pattern of the adhesive.
  • the vertical linear application line 17 is continuously formed on the cutting line 13, while the horizontal linear application line 18 is applied discontinuously so as not to intersect with the vertical application line 17.
  • the vertical linear coating line 17 is parallel to the bonding direction, and the horizontal linear coating line 18 is perpendicular to the bonding direction.
  • the thickness of the coating line is preferably 6.0 ⁇ 10 ⁇ 5 cm 2 or more in terms of a cross-sectional area from the viewpoint of effectively preventing the generation of voids on the cut processing line, and 1.91 ⁇ 10 ⁇ 3. More preferably, it is cm 2 or more.
  • the thickness of the coating line is preferably 11.9 ⁇ 10 ⁇ 3 cm 2 or less in terms of cross-sectional area and 7.54 ⁇ 10 ⁇ 3 cm 2 or less from the viewpoint of securing a sufficient gap. It is more preferable.
  • Step 4 when the vertical and horizontal application lines are crossed as shown in FIG. 5, it is easy to entrain air at the time of bonding, and voids are likely to be generated on the cutting line.
  • the adhesive examples include, but are not limited to, a moisture curable adhesive, a thermosetting adhesive, a photocurable adhesive, or a combination thereof. From the viewpoint of productivity and workability, a photo-curing adhesive is preferable. On the other hand, from the viewpoint of making the curing property of the interlayer adhesive between hard substrates as uniform as possible, the main reaction form is thermosetting adhesion. The use of an agent is preferred. Examples of the thermosetting adhesive include a two-component mixed adhesive and a one-component adhesive. When using a photocurable adhesive, it can be laminated by irradiating light for curing the adhesive spread between both substrates after the light-transmitting hard substrates are bonded together. . In order to suppress the movement of the adhesive sandwiched between the substrates, it is desirable to perform the light irradiation every time one transparent hard substrate is laminated.
  • the wavelength of the light to be irradiated may be appropriately changed according to the characteristics of the adhesive to be used. For example, microwaves, infrared rays, visible light, ultraviolet rays, X-rays, ⁇ rays, electron beams and the like can be irradiated.
  • the irradiation light is ultraviolet light because it can be used easily and has relatively high energy.
  • light refers to not only visible light but also electromagnetic waves (energy rays) including a wide wavelength region.
  • the translucent hard substrate 11 is laminated, for example, by bonding the translucent hard substrates 11 each having a photocurable adhesive applied to one or both bonded surfaces in a predetermined pattern, and then transmitting both translucent substrates. It can be carried out by irradiating light for curing the adhesive spread between the conductive hard substrates 11. By repeating this a desired number of times, the light transmissive hard substrate laminate 10 in which the desired number of light transmissive hard substrates 11 are laminated can be produced. The light irradiation may be performed every time one light-transmitting hard substrate 11 is stacked, or may be performed collectively after stacking a plurality of sheets as long as light reaches the adhesive.
  • the adhesive is not sufficiently cured. Furthermore, if the amount of light irradiation is too large, the cured adhesive layer may not be uniform and unevenness may occur. Due to such unevenness, the cutting fluid, abrasive slurry, and etchant used during cutting, cutting, grinding, and polishing enter between the substrates, causing the substrate to peel off or corrode the metal pattern or printing paint formed on the substrate. May occur.
  • the amount of light irradiated for curing the adhesive every time the light-transmitting hard substrate is bonded is 10 to 10000 mJ / cm 2, and 1000 to 6000 mJ / cm 2. Is more preferably 10 to 3000 mJ / cm 2 .
  • the irradiation time is preferably 1 to 200 seconds, and more preferably 1 to 100 seconds.
  • any known adhesive can be used as the curable adhesive, and is not particularly limited.
  • (A) a polyfunctional (meth) acrylate as described in WO2008 / 018252, WO2012 / 0667205, WO2013 / 039226, (B Adhesive compositions containing monofunctional (meth) acrylates and (C) polymerization initiators are preferred.
  • 1,2-polybutadiene-terminated urethane (meth) acrylate for example, “TE-2000”, “TEA-1000” manufactured by Nippon Soda Co., Ltd.
  • hydrogenated product thereof for example, “TEAI-1000” manufactured by Nippon Soda Co., Ltd.
  • 1,4-polybutadiene terminated urethane (meth) acrylate eg “BAC-45” manufactured by Osaka Organic Chemical Co., Ltd.
  • polyisoprene terminated (meth) acrylate for example, “UV-2000B”, “UV-3000B”, “UV-7000B” manufactured by Nippon Synthetic Chemical Co., Ltd.
  • the urethane (meth) acrylate is a reaction between a polyol compound (hereinafter represented by X), an organic polyisocyanate compound (hereinafter represented by Y), and a hydroxy (meth) acrylate (hereinafter represented by Z) (for example, , Urethane (meth) acrylate obtained by polyaddition reaction).
  • polyol compound (X) examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butylene glycol, 1,4-butanediol, polybutylene glycol, 1, 5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 2,2-butylethyl-1,3-propanediol, neopentyl glycol, cyclohexanedimethanol, hydrogenated bisphenol A, polycaprolactone, trimethylolethane, trimethylolpropane, poly At least a polyhydric alcohol such as trimethylolpropane, pent
  • the organic polyisocyanate compound (Y) is not particularly limited.
  • aromatic, aliphatic, cycloaliphatic, and alicyclic polyisocyanates can be used.
  • hydroxy (meth) acrylate (Z) examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxyethyl (meth) acryloyl phosphate, 4-butylhydroxy (meth) acrylate, 2- (meth) acryloyloxyethyl-2-hydroxypropyl phthalate, glycerin di (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, Caprolactone-modified 2-hydroxyethyl (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, caprolactone-modified 2-hydroxyethyl (meth) acrylate Over doors and the like.
  • Examples of the trifunctional (meth) acrylate monomer include trimethylolpropane tri (meth) acrylate and tris [(meth) acryloxyethyl] isocyanurate.
  • Examples of tetrafunctional or higher functional (meth) acrylate monomers include dimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, or dipenta Examples include erythritol hexa (meth) acrylate.
  • polyfunctional (meth) acrylates it is preferable to contain a polyfunctional (meth) acrylate oligomer / polymer and / or a bifunctional (meth) acrylate monomer in terms of high effect. It is more preferable to use a polymer and a bifunctional (meth) acrylate monomer in combination.
  • the content ratio is 100 parts by mass in total of the polyfunctional (meth) acrylate oligomer / polymer and the bifunctional (meth) acrylate monomer.
  • Multifunctional (meth) acrylate oligomer / polymer: bifunctional (meth) acrylate monomer 10 to 90:90 to 10, preferably 25 to 75:75 to 25, more preferably 40 to 65:60 to 35 Is most preferred.
  • the polyfunctional (meth) acrylate is preferably hydrophobic.
  • Hydrophobic polyfunctional (meth) acrylate refers to (meth) acrylate having no hydroxyl group.
  • the cured product of the composition swells at the time of cutting, so that the position shift occurs and the processing accuracy may be inferior. Even if it is hydrophilic, it may be used as long as the cured product of the composition is not greatly swollen or partially dissolved by water.
  • Monofunctional (meth) acrylate monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate , Isodecyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, phenyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclo Pentenyloxyethyl (meth) acrylate, isobornyl (meth) acrylate, methoxylated cyclodecatriene (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydr
  • R 1 is preferably hydrogen.
  • R 2 is preferably an alkylene group having 2 to 4 carbon atoms, more preferably an alkylene group having 2 to 3 carbon atoms.
  • the hydrogen of the alkylene group may be substituted with a hydroxyl group.
  • m is preferably 1 to 3.
  • one or more members selected from the group consisting of 2-hydroxy-3-phenoxypropyl (meth) acrylate and phenol ethylene oxide 2 molar modified (meth) acrylate are preferable.
  • R 4 is preferably hydrogen.
  • R 5 is preferably an alkylene group having 2 to 4 carbon atoms, and more preferably an alkylene group having 2 to 3 carbon atoms.
  • n is preferably 1 to 3.
  • 2- (1,2-cyclohexadicarboximido) ethyl (meth) acrylate is preferable.
  • R 1 is hydrogen or an alkyl group.
  • R 2 is an alkylene group, and hydrogen in the alkylene group may be substituted with a hydroxyl group.
  • R 3 is hydrogen or a methyl group.
  • M is 1-6.
  • R 4 is hydrogen or an alkyl group.
  • R 5 is an alkylene group, and hydrogen in the alkylene group may be substituted with a hydroxyl group.
  • R 6 is hydrogen or a methyl group.
  • N is 1 to 6.
  • phenolethylene oxide 2 mol-modified (meth) acrylate, 2- (1,2-cyclohexadicarboximido) ethyl (meth) acrylate and 2-hydroxy-3 are more effective.
  • One or more of the group consisting of -phenoxypropyl (meth) acrylate is preferred.
  • Phenolethylene oxide 2 mol modified (meth) acrylate and 2- (1,2-cyclohexadicarboximido) ethyl (meth) acrylate and / or 2-hydroxy-3-phenoxypropyl (meth) acrylate may be used in combination More preferred.
  • phenol ethylene oxide 2 mol modified (meth) acrylate: 2- (1,2-cyclohexadicarboximido) ethyl (meth) acrylate and / or 2-hydroxy-3-phenoxypropyl (meth) acrylate 5-80: Is preferably 5 to 20, 15 to 60: and more preferably 85 to 40 and 20 to 40: 80 to 60 being most preferred.
  • Monofunctional (meth) acrylate is more preferably hydrophobic as in (A).
  • Hydrophobic polyfunctional (meth) acrylate refers to (meth) acrylate having no hydroxyl group.
  • the cured product of the composition swells at the time of cutting, so that the position shift occurs and the processing accuracy may be inferior. Even if it is hydrophilic, it may be used as long as the cured product of the composition is not swollen or partially dissolved by water.
  • the amount of (A) polyfunctional (meth) acrylate used is preferably 15 to 95 parts by mass, and preferably 20 to 50 parts by mass, out of 100 parts by mass of the total amount of (A) and (B). If it is 15 parts by mass or more, the property that the cured product is peeled off from the adherend when the cured product of the composition is immersed in warm water (hereinafter simply referred to as “peelability”) is sufficiently promoted. The cured product can be peeled into a film. If it is 95 mass parts or less, there is no possibility that initial adhesiveness will fall.
  • the polymerization initiator is blended to accelerate the curing of the resin composition, and various known polymerization initiators can be used.
  • the polymerization initiator include (C-1) photoradical polymerization initiator (hereinafter also referred to as photopolymerization initiator), (C-2) thermal radical polymerization initiator (hereinafter also referred to as thermal polymerization initiator), and the like. Is mentioned.
  • the photopolymerization initiator is used for a photocurable adhesive, and is blended to accelerate photocuring of the resin composition by sensitizing with actinic light of visible light or ultraviolet light. Yes, various known photopolymerization initiators can be used.
  • a photoinitiator can be used 1 type or in combination of 2 or more types.
  • One or more of the group consisting of [2-hydroxy-ethoxy] -ethyl ester are preferred.
  • the content of the photopolymerization initiator is preferably 0.1 to 30 parts by mass, more preferably 0.5 to 25 parts by mass with respect to 100 parts by mass in total of (A) and (B). Most preferred is 1 to 20 parts by mass. If it is 0.1 mass part or more, the effect of hardening acceleration
  • the addition of 1 part by mass or more of component (C-1) makes it possible to cure without depending on the amount of light irradiation, further increases the degree of crosslinking of the cured product of the composition, and does not cause misalignment during cutting, It is further preferable in terms of improving peelability.
  • the thermal polymerization initiator is used for a thermosetting adhesive, and is blended in order to promote thermal curing of the resin composition by heat.
  • Various known thermal polymerization initiators are used. It can be used.
  • curability can be reliably obtained when it is used for laminating the hard substrate 11 having no translucency.
  • Organic peroxides include diacyl peroxides such as lauroyl peroxide and benzoyl peroxide, t-butylperoxy-3,5,5-trimethylhexanoate, cumylperoxyneodecanoate Hexyl peroxybivalate, t-butyl peroxyisobutyrate, t-butyl peroxybivalate, t-butyl peroxyacetate, t-butyl peroxybenzoate, tertiary butyl peroxy-2-ethylhexanate, etc.
  • diacyl peroxides such as lauroyl peroxide and benzoyl peroxide, t-butylperoxy-3,5,5-trimethylhexanoate, cumylperoxyneodecanoate Hexyl peroxybivalate, t-butyl peroxyisobutyrate, t-butyl peroxybivalate, t-butyl peroxyacetate,
  • Alkyl peroxyesters diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, dinormalpropyl peroxydicarbonate, bis (4-tertiarybutylcyclohexyl) peroxydicarbonate, di-2- Peroxydicarbonates such as toxiethylperoxydicarbonate, dimethoxyisopropylperoxydicarbonate, di (3-methyl-3-methoxybutyl) peroxydicarbonate and diallylperoxydicarbonate, t-butylperoxyisopropylcarbonate Peroxycarbonates such as di-t-butylperoxycyclohexane and di- (t-butylperoxy) butane, dicumyl peroxide, t-butylcumyl peroxide, di-t Dialkyl peroxides such as butyl peroxide, hydroperoxides such as cumene hydroperoxide and
  • the amount of the thermal polymerization initiator used is preferably 0.01 to 10 parts by weight, more preferably 0.05 to 5 parts by weight, based on 100 parts by weight of the total amount of (A) and (B). Preferably, 1 to 3 parts by mass is most preferable. If it is 0.01 mass part or more, sclerosis
  • the curable adhesive preferably contains a particulate substance (D) that does not dissolve in the components (A), (B), and (C) of the adhesive.
  • the material of the particulate material (D) either generally used organic particles or inorganic particles may be used.
  • the organic particles include polyethylene particles, polypropylene particles, crosslinked poly (meth) acrylate methyl particles, and crosslinked polystyrene particles.
  • Inorganic particles include ceramic particles such as glass, silica, alumina, and titanium. Among these, organic particles are preferable, and crosslinked polystyrene particles are more preferable.
  • the granular material is preferably spherical from the viewpoint of improving processing accuracy, that is, controlling the thickness of the adhesive layer 12.
  • the average particle diameter of the granular material by the laser method is preferably in the range of 50 to 200 ⁇ m. If the average particle size of the granular material is less than 50 ⁇ m, the cutting tool tip having poor strength is used in the cutting tool, so that the life of the cutting tool is reduced, and further, the cutting efficiency may be reduced. If it exceeds 1, the amount of adhesive used will increase and the cost will be high, which may result in poor productivity.
  • a more preferable average particle diameter (D50) is 70 to 150 ⁇ m, and further preferably 80 to 120 ⁇ m. The particle size distribution is measured by a laser diffraction type particle size distribution measuring device.
  • the amount of the granular material (D) used is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the total amount of (A) and (B), from the viewpoint of adhesiveness, processing accuracy, and peelability. 2 to 10 parts by mass is more preferable, and 0.2 to 6 parts by mass is most preferable.
  • a polymerization inhibitor (E) can be added to the curable adhesive to improve storage stability.
  • Polymerization inhibitors include methyl hydroquinone, hydroquinone, 2,2-methylene-bis (4-methyl-6-tertiary butylphenol), catechol, hydroquinone monomethyl ether, monotertiary butyl hydroquinone, 2,5-ditertiary butyl hydroquinone.
  • P-benzoquinone 2,5-diphenyl-p-benzoquinone, 2,5-ditertiarybutyl-p-benzoquinone, picric acid, citric acid, phenothiazine, tertiary butylcatechol, 2-butyl-4-hydroxyanisole and 2 , 6-ditertiary butyl-p-cresol and the like.
  • the amount of the soot polymerization inhibitor (E) used is preferably 0.001 to 3 parts by mass, more preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of the total amount of (A) and (B). If it is 0.001 mass part or more, storage stability will be ensured, and if it is 3 mass parts or less, favorable adhesiveness will be obtained and it will not become uncured.
  • a decomposition accelerator may be contained. Thereby, sclerosis
  • the decomposition accelerator is preferably a decomposition accelerator that accelerates the decomposition of the organic peroxide.
  • the following is mentioned as a decomposition accelerator which accelerates
  • examples of the decomposition accelerator include organic acid metal salts and organic metal chelates.
  • examples of organic acid metal salts and organic metal chelates include cobalt naphthenate, copper naphthenate, manganese naphthenate, cobalt octenoate, copper octenoate, manganese octenoate, cobalt octylate, copper acetylacetonate, and titanium acetylacetonate.
  • Other decomposition accelerators include thiourea derivatives, mercaptobenzimidazoles, amines and the like. These (F) decomposition accelerators can use 1 type (s) or 2 or more types.
  • the amount of the (F) decomposition accelerator used is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass in total of (A) and (B). Most preferred is 3 to 3 parts by weight. If it is 0.01 mass part or more, sclerosis
  • a curable adhesive containing a thermal polymerization initiator and (F) a decomposition accelerator is typically provided as a two-component composition.
  • the two-component type it is preferable that all the essential components of the curable adhesive are not mixed during storage, and the curable adhesive is stored separately in the first agent and the second agent. In this case, it can be used as a two-part curable adhesive by applying both agents simultaneously or separately to a member and contacting and curing.
  • the first agent contains at least (C-2) a thermal polymerization initiator and the second agent contains at least (F) a decomposition accelerator.
  • the composition can be cured only by mixing two components without heating.
  • (C-1) a photopolymerization initiator, (C-2) a thermal polymerization initiator, and (F) a decomposition accelerator may be used in combination.
  • a photopolymerization initiator, (C-2) a thermal polymerization initiator, and (F) a decomposition accelerator are used in combination
  • (C-1) the photopolymerization initiator includes the first agent and the second agent. It may be contained in either one or both.
  • a plate-like product can be produced from the hard substrate laminate according to the present invention.
  • the hard substrate laminate is cut in the thickness direction to obtain a desired number of divided hard substrate laminates, and the divided hard substrates.
  • the process 6 includes a step 6 of obtaining a product-shaped hard substrate laminate by processing the laminate, and a step 7 of peeling the product-shaped hard substrate laminate to obtain a plurality of plate-like products.
  • the hard substrate laminate is divided in the thickness direction to form a desired number of divided hard substrate laminates.
  • the dividing method is not particularly limited, but a disk cutter (diamond disc, cemented carbide disc), fixed abrasive type or loose abrasive type wire saw, laser beam, etching (eg, chemical etching using hydrofluoric acid, sulfuric acid, etc.) And electrolytic etching), water jet, and electrotrophic (nichrome wire) may be used alone or in combination to divide into rectangular parallelepiped shapes of the same size. Etching can also be used for surface treatment of the cut surfaces after division.
  • step 6 desired shape processing is performed on each of the divided hard substrate laminates.
  • This process has an advantage that the production rate of the plate-like product can be significantly increased because the processing can be performed integrally with the shape of the target plate-like product for each of the divided hard substrate laminates.
  • Shape processing may be performed by any known means. For example, grinding with a rotating grindstone, drilling with an ultrasonic vibration drill, end surface processing with a rotating brush, drilling with etching, end surface processing with etching, outer shape processing with etching, burner Flame processing using Water jets can also be used. The processing methods can be used alone or in combination. Etching can also be used for surface treatment after shape processing.
  • step 7 the hard substrates laminated after the shape processing are heated to separate the hard substrates that have been bonded together to form a plurality of plate-like products.
  • a heating method Since the fixing agent softens to film shape and isolate
  • the suitable water temperature varies depending on the adhesive employed, but is preferably 40 ° C. or higher, more preferably 60 to 95 ° C., and most preferably 80 to 90 ° C.
  • Photocurable adhesive 1 was prepared by mixing the following components (A) to (E).
  • C-1) 10 parts by mass of benzyldimethyl ketal (“IRGACURE651” manufactured by BASF) as a photopolymerization initiator,
  • D 1 part by weight of spherical crosslinked polystyrene particles having an average particle diameter (D50) of 100 ⁇ m (“GS-100S” manufactured by Ganz Kasei Co., Ltd.)
  • E 0.1 part by mass of 2,2-methylene-bis (4-methyl-6-tertiary butylphenol) (“Sumilyzer MDP-S” manufactured by Sumitomo Chemical Co., Ltd.) as a polymerization inhibitor
  • both the vertical and horizontal application lines were continuously formed on the cutting line. As a result, intersections occurred in the vertical and horizontal coating lines. Moreover, the porosity between plate glass was changed by changing the thickness (cross-sectional area) of an application line for every test piece. For the cross-sectional area of the coating line, an average value was calculated from the coating amount and line length of the adhesive.
  • the second sheet glass is used as the first sheet glass with this as an axis. While tilting down, they were bonded together in the roll press format toward the opposite side edges so as to push out excess air. Then, UV irradiation was carried out from the surface side of the 2nd sheet glass, and the said photocurable adhesive agent was hardened.
  • the light irradiation amount was 500 mJ / cm 2 (measured by an integrating illuminometer with a 365 nm light receiver), and the UV irradiation time was 10 seconds.
  • each plate glass is divided into 24 plate glass laminates each having a size of 100 mm in length, 50 mm in width, and 0.7 mm in thickness (this thickness is the thickness of one sheet glass), except for the edge material at the periphery. It was.
  • the outer shape is processed into a shape as shown in FIG. 6 in a plan view by a method of grinding the end face by applying a rotating grindstone so as to face the cut end faces of each of the divided laminates.
  • a method of grinding the end face by applying a rotating grindstone so as to face the cut end faces of each of the divided laminates.
  • the sheet glass laminated body after the outer shape processing was immersed in an etching tank for etching.
  • the etching solution in the etching tank was hydrofluoric acid having a concentration of 15% by mass, and etching was performed for 10 minutes while controlling the solution temperature at 25 ° C.
  • Whether or not it was peeled off was judged by visual observation based on whether or not the working fluid entered the interface. ⁇ If the machining fluid did not enter at all during cutting, ⁇ , although there is some liquid ingress during cutting, the degree of penetration is very slight, and it is configured on the board so that it does not cause functional problems in appearance. In the case where no abnormalities such as defects were observed in the film to be obtained, ⁇ , and invasion was observed, the film was damaged, and in the case where defects in appearance and functions were observed, it was marked as x.
  • machining fluid Is the cutting fluid used during cutting and outline machining invaded into the gap inside the machining line, or whether the machining liquid has penetrated from the gap on the machining line toward the main surface of the hard substrate? The presence or absence of contamination of the substrate surface caused by intrusion was visually evaluated.
  • Etching solution intrusion After end face processing, the etching solution enters the gap inside the cutting line from the interface between the adhesive and the hard substrate, or the etching solution penetrates from the gap on the processing line toward the main surface of the hard substrate It was visually evaluated whether or not.
  • Photocurable Adhesive 2 was prepared by mixing the following components (A) to (E).
  • UV-3000B urethane acrylate, weight average molecular weight 18000, manufactured by Nihon Gosei Co., Ltd.
  • polyol compound is polyester polyol
  • organic polyisocyanate compound is isophorone diisocyanate
  • hydroxy (meth) acrylate is 2 -Hydroxyethyl acrylate
  • C-1) 25 parts by mass of benzyldimethyl ketal (“IRGACURE651” manufactured by BASF) as a photopolymerization initiator,
  • D 1 part by weight of spherical crosslinked polystyrene particles having an average particle size of 100 ⁇ m (“GS-100S” manufactured by Ganz Kasei Co., Ltd.)
  • E 0.1 part by mass of 2,2-methylene-bis (4-methyl-6-tertiary butylphenol) (“Sumilyzer MDP-S” manufactured by Sumitomo Chemical Co., Ltd.) as a polymerization inhibitor;
  • C-2) 2 parts by weight of cumene hydroperoxide (Nippon Yushi Co., Ltd.
  • UV- 3000B (urethane acrylate, weight average molecular weight 18000, polyol compound is polyester polyol, organic polyisocyanate compound is isophorone diisocyanate, hydroxy (meth) acrylate is 2-hydroxyethyl acrylate), 15 parts by mass, dicyclopentanyl diacrylate (Nipponization) 15 parts by mass of “KAYARAD R-684” manufactured by Yakuhin Co., Ltd.
  • C-1 25 parts by mass of benzyldimethyl ketal (“IRGACURE651” manufactured by BASF) as a photopolymerization initiator
  • D 1 part by weight of spherical crosslinked polystyrene particles having an average particle size of 100 ⁇ m (“GS-100S” manufactured by Ganz Kasei Co., Ltd.)
  • E 0.1 part by mass of 2,2-methylene-bis (4-methyl-6-tertiary butylphenol) (“Sumilyzer MDP-S” manufactured by Sumitomo Chemical Co., Ltd.) as a polymerization inhibitor
  • F 2 parts by mass of cobalt octylate (“Cobalt octylate” manufactured by Shinto Paint Co., Ltd.) as a decomposition accelerator
  • a plate glass laminate was produced in the same manner as in Experimental Example 1 using the photocurable adhesive 3.
  • thermosetting adhesive 4 The following components (A) to (F) were mixed to prepare a thermosetting adhesive 4.
  • First Agent> As a polyfunctional (meth) acrylate, “UV-3000B” manufactured by Nippon Gosei Co., Ltd.
  • (C-2) 3 parts by weight of cumene hydroperoxide (Nippon Yushi Co., Ltd. “Park Mill H”) as an organic peroxide
  • (D) Cross-linked polymethyl methacrylate particles having an average particle size of 35 ⁇ m (Negami Kogyo Art Pearl GR-200, spherical, hereinafter abbreviated as “GR-200”) 0.6 parts by mass; ⁇ Second Agent>
  • (D) Cross-linked polymethyl methacrylate particles having an average particle size of 35 ⁇ m (Negami Kogyo Art Pearl GR-200, spherical, hereinafter abbreviated as “GR-200”) 0.6 parts by mass; (E) 0.1 part by mass of 2,2-methylene-bis (4-methyl-6-tertiary butylphenol) (“Sumilyzer MDP-S” manufactured by Sumitomo Chemical Co., Ltd.) as a polymerization inhibitor; (F) 3 parts by mass of cobalt octylate (“Cobalt octylate” manufactured by Shinto Paint Co., Ltd.) as a decomposition accelerator
  • thermosetting adhesive 4 was prepared by weighing and mixing the first agent and the second agent in equal amounts.
  • the second sheet glass is used as the first sheet glass with this as an axis. While tilting down, they were bonded together in the roll press format toward the opposite side edges so as to push out excess air.
  • plate glass laminates having various porosity ratios of 12 mm and a thickness of 8 mm (this thickness is a thickness of a laminate obtained by adding 12 plate glasses) were produced. After laminating 12 sheets, the plate glass laminate was produced by allowing it to stand at room temperature for 30 minutes to ensure the curing of the adhesive and to fix it to the cradle.
  • the vertical application line was formed linearly and continuously at the time of adhesive agent application
  • the machining dimensional accuracy was good, and there was no penetration of machining liquid or etching liquid.
  • the stripping time was shortened as the porosity increased.
  • the porosity is preferably 5% or more, and more preferably 10% or more.
  • the porosity is preferably 99.5% or less, more preferably 95% or less, and most preferably 85% or less.
  • the hard substrate laminate according to the comparative example was a continuous application line (that is, a lattice shape) in which the adhesive application pattern was orthogonal, it was involved at the time of bonding regardless of the application amount or the adhesive type. The air filled in the cut surface and the like was pushed out by the air, and voids were generated on the cut line.
  • the coating amount is small and the porosity is high, it is not possible to obtain a sufficient area to cover the cutting line with the adhesive. Almost the entire surface of the laminate was covered with the adhesive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

Provided is a hard substrate laminate useful for manufacturing sheet glass products with high production efficiency and low cost. A hard substrate laminate in which at least two hard substrates have been bonded to each other with an adhesive, the hard substrate laminate being intended for cutting of said laminate in the thickness direction to obtain a desired number of divided hard substrate laminates. Between the respective hard substrates, the adhesive is continuously present straddling all of the lines to be processed during cutting and between the respective hard substrates, there is a gap, in which there is no adhesive, in at least one of the areas surrounded by the processing lines.

Description

硬質基板積層体および硬質基板積層体の製造方法Rigid substrate laminate and method for producing rigid substrate laminate
 本発明は硬質基板積層体の製造方法に関する。 The present invention relates to a method for manufacturing a hard substrate laminate.
 テレビ、ノートパソコン、カーナビゲーション、電卓、携帯電話(スマートフォンを含む)、タブレット型端末、電子手帳、及びPDA(Personal Digital Assistant)といった各種電子機器の表示装置には、液晶ディスプレイ(LCD)、有機ELディスプレイ(OELD)、電界発光ディスプレイ(ELD)、電界放出ディスプレイ(FED)、及びプラズマディスプレイ(PDP)等の表示素子が使用されている。そして、表示素子を保護するため、表示素子と対向させて保護用の板ガラス製品を設置するのが一般的である。 Display devices for various electronic devices such as TVs, notebook computers, car navigation systems, calculators, mobile phones (including smartphones), tablet terminals, electronic notebooks, and PDAs (Personal Digital Assistants) include liquid crystal displays (LCDs) and organic EL displays. Display elements such as a display (OELD), an electroluminescence display (ELD), a field emission display (FED), and a plasma display (PDP) are used. And in order to protect a display element, it is common to install the plate glass product for protection facing a display element.
 このような板ガラス製品は、板ガラスを各表示装置に適した大きさ及び形状に加工したものであるが、市場で要求される価格レベルに対応するために、良好な生産効率で作製する必要がある。 Such a flat glass product is obtained by processing a flat glass into a size and shape suitable for each display device, but it needs to be manufactured with good production efficiency in order to meet the price level required in the market. .
 そこで、特許文献1は、面取りされている板ガラス製品を製造するにあたって、平面視上の形状および大きさが実質的に同等である複数枚の板ガラスが接着した状態で順次積層されているガラス積層体を作製し、このガラス積層体にエッチングを施すことによって該ガラス積層体を構成している個々の板ガラスを面取りすることを特徴とする板ガラス製品の製造方法が記載されている。特許文献1の段落0029及び0030には、互いに接着させようとする板ガラス同士の接着面(主表面)全体に接着性材料層を形成することが好ましいことも記載されている。 Therefore, Patent Document 1 discloses a glass laminate in which a plurality of plate glasses having substantially the same shape and size in plan view are sequentially laminated in producing a chamfered plate glass product. And manufacturing the sheet glass product characterized by chamfering the individual sheet glass constituting the glass laminate by etching the glass laminate. In paragraphs 0029 and 0030 of Patent Document 1, it is also described that it is preferable to form an adhesive material layer on the entire bonding surface (main surface) of the plate glasses to be bonded to each other.
 一方で、特許文献2は、多数の素材板ガラス(1)を積み重ねるとともに、各素材板ガラス(1)を、各素材板ガラス(1)間に介在させた剥離可能な固着材(2)により一体的に固着してなる素材ガラスブロック(A)を形成し、該素材ガラスブロック(A)を面方向に分割して小面積の分割ガラスブロック(B)を形成し、該分割ガラスブロック(B)の少なくとも外周を加工して平面視製品形状となる製品ガラスブロック(C)を形成し、該製品ガラスブロック(C)を端面加工した後、該製品ガラスブロック(C)を個別に分離したことを特徴とする板ガラスの加工方法が記載されている。特許文献2の段落0009には素材板ガラスを液状の固着剤を介在させながら積み重ね、これらを厚さ方向に押圧することにより、固着剤を各素材板ガラス間で膜状に広がらせることが記載されている。 On the other hand, Patent Document 2 stacks a large number of material sheet glasses (1) and integrates each material sheet glass (1) with a peelable fixing material (2) interposed between each material sheet glass (1). A material glass block (A) formed by adhering is formed, the material glass block (A) is divided in a plane direction to form a small-area divided glass block (B), and at least the divided glass block (B) A product glass block (C) having a product shape in plan view is formed by processing the outer periphery, and the product glass block (C) is individually separated after the end face processing of the product glass block (C). The processing method of the plate glass to perform is described. In paragraph 0009 of Patent Document 2, it is described that the material plate glasses are stacked while interposing a liquid sticking agent, and by pressing them in the thickness direction, the sticking agent is spread between the material plate glasses in a film shape. Yes.
特開2000-169166号公報JP 2000-169166 A 特開2009-256125号公報JP 2009-256125 A
 上記先行技術文献においては、板ガラス積層体を構成する各ガラスの主表面全体が接着剤で被覆されることを推奨又は前提としており、接着剤をパターニングして塗布するという思想は見られない。そのため、上記先行技術文献においては、板ガラス積層体を個々の板ガラスに分離する際の時間短縮、個々の板ガラスに分離後の残留接着剤の洗浄、接着剤使用量の最適化といった点で未だ改善の余地が残されている。特に、板ガラス製品の主表面の面積が大きくなればなるほど接着剤の使用量や剥離時間は増加することが予想され、高い生産効率で安価に板ガラス製品を製造するための更なる技術改良が必要である。 In the above prior art documents, it is recommended or presupposed that the entire main surface of each glass constituting the plate glass laminate is covered with an adhesive, and there is no idea that the adhesive is patterned and applied. Therefore, in the above-mentioned prior art documents, it is still improved in terms of shortening the time when separating the plate glass laminate into individual plate glasses, cleaning the residual adhesive after separation into individual plate glasses, and optimizing the amount of adhesive used. There is room for it. In particular, the larger the area of the main surface of the flat glass product, the more the amount of adhesive used and the peeling time are expected to increase, and further technical improvements are required to produce a flat glass product with high production efficiency at low cost. is there.
 本発明は上記事情に鑑みてなされたものであり、高い生産効率で安価に板ガラス製品を製造する上で有用な硬質基板積層体を提供することを課題とする。また、本発明はそのような硬質基板積層体の製造方法を提供することを別の課題とする。また、本発明は本発明に係る硬質基板積層体を用いた板状製品の製造方法を提供することを更に別の課題とする。 This invention is made | formed in view of the said situation, and makes it a subject to provide a hard substrate laminated body useful when manufacturing a plate glass product with high production efficiency and low cost. Moreover, this invention makes it another subject to provide the manufacturing method of such a hard board | substrate laminated body. Moreover, this invention makes it another subject to provide the manufacturing method of the plate-shaped product using the hard board | substrate laminated body which concerns on this invention.
 本発明者らは上記課題を解決するために鋭意検討したところ、硬質基板の主表面に接着剤を所定のパターンで塗布して硬質基板同士を貼り合わせ、これにより、貼り合わされた硬質基板間に積極的に空隙を設けた積層体とすることで、加工寸法精度を犠牲にすることなく板状製品の生産効率を大幅に高めることができることを見出した。 The present inventors have intensively studied in order to solve the above-mentioned problems. As a result, an adhesive is applied to the main surface of the hard substrate in a predetermined pattern, and the hard substrates are bonded to each other. It has been found that the production efficiency of the plate-like product can be significantly increased without sacrificing the processing dimensional accuracy by making the laminate positively provided with voids.
 以上の知見を基礎として完成した本発明は第一の側面において、2枚以上の硬質基板同士が接着剤で貼り合わせられた硬質基板積層体であって、当該積層体は厚み方向に切断して所望の数の分割された硬質基板積層体を得ることが予定されており、各硬質基板間には接着剤が切断時の加工線のすべてを跨いで連続的に存在し、且つ、各硬質基板間には当該加工線によって囲まれた領域の少なくとも一つに接着剤の存在しない空隙が存在する積層体である。 The present invention completed on the basis of the above knowledge is a hard substrate laminate in which two or more hard substrates are bonded together with an adhesive in the first aspect, and the laminate is cut in the thickness direction. It is planned to obtain a desired number of divided hard substrate laminates, and an adhesive is continuously present between the hard substrates across all the processing lines at the time of cutting, and each hard substrate Between the layers, there is a laminate in which a void without an adhesive exists in at least one of the regions surrounded by the processing line.
 本発明の第一の側面に係る硬質基板積層体の一実施形態においては、各硬質基板間において、前記加工線によって囲まれた領域のうち、40%以上の数の領域に接着剤の存在しない空隙が存在する。 In one embodiment of the hard substrate laminate according to the first aspect of the present invention, no adhesive is present in a region of 40% or more of the regions surrounded by the processing lines between the hard substrates. There are voids.
 本発明の第一の側面に係る硬質基板積層体の一実施形態においては、各硬質基板間において、前記加工線によって囲まれた領域のうち、92%以上の数の領域に接着剤の存在しない空隙が存在する。 In one embodiment of the hard substrate laminate according to the first aspect of the present invention, no adhesive is present in 92% or more of the regions surrounded by the processing lines between the hard substrates. There are voids.
 本発明は第二の側面において、本発明に係る上記積層体を加工線に沿って厚み方向に切断した後の分割された少なくとも一つの硬質基板積層体である。 In the second aspect, the present invention is at least one hard substrate laminate that is divided after the laminate according to the invention is cut in the thickness direction along a processing line.
 本発明の第二の側面に係る硬質基板積層体の一実施形態においては、空隙率が5~99.5%である。 In one embodiment of the hard substrate laminate according to the second aspect of the present invention, the porosity is 5 to 99.5%.
 本発明の第二の側面に係る硬質基板積層体の一実施形態においては、空隙率が40~95%である。 In one embodiment of the hard substrate laminate according to the second aspect of the present invention, the porosity is 40 to 95%.
 本発明の第二の側面に係る硬質基板積層体の一実施形態においては、分割された硬質基板積層体は更に形状加工されることが予定されており、形状加工によって除去される部位の硬質基板間には空隙が存在しない。 In one embodiment of the hard substrate laminate according to the second aspect of the present invention, the divided hard substrate laminate is scheduled to be further processed in shape, and the hard substrate in a portion to be removed by the shape processing There are no voids between them.
 本発明の第一の側面に係る硬質基板積層体の一実施形態においては、前記加工線を跨ぐ接着剤の前記加工線からの幅寸法が0.1mm以上である。 In one embodiment of the hard substrate laminate according to the first aspect of the present invention, the width dimension of the adhesive straddling the processing line from the processing line is 0.1 mm or more.
 本発明の第一又は第二の側面に係る硬質基板積層体の一実施形態においては、接着剤が硬化性である。 In one embodiment of the hard substrate laminate according to the first or second aspect of the present invention, the adhesive is curable.
 本発明の第一又は第二の側面に係る硬質基板積層体の一実施形態においては、接着剤が、(A)多官能(メタ)アクリレート、(B)単官能(メタ)アクリレート、及び(C)重合開始剤を含有する。 In one embodiment of the hard substrate laminate according to the first or second aspect of the present invention, the adhesive comprises (A) a polyfunctional (meth) acrylate, (B) a monofunctional (meth) acrylate, and (C ) Contains a polymerization initiator.
 本発明の第一又は第二の側面に係る硬質基板積層体の一実施形態においては、(A)多官能(メタ)アクリレート、(B)単官能(メタ)アクリレート、(C-1)光重合開始剤を含有する。 In one embodiment of the hard substrate laminate according to the first or second aspect of the present invention, (A) polyfunctional (meth) acrylate, (B) monofunctional (meth) acrylate, (C-1) photopolymerization Contains an initiator.
 本発明の第一又は第二の側面に係る硬質基板積層体の一実施形態においては、接着剤が、(A)多官能(メタ)アクリレート、(B)単官能(メタ)アクリレート、(C-2)熱重合開始剤を含有する。 In one embodiment of the hard substrate laminate according to the first or second aspect of the present invention, the adhesive comprises (A) polyfunctional (meth) acrylate, (B) monofunctional (meth) acrylate, (C— 2) Contains a thermal polymerization initiator.
 本発明の第一又は第二の側面に係る硬質基板積層体の一実施形態においては、接着剤が、(A)多官能(メタ)アクリレート、(B)単官能(メタ)アクリレート、(C-1)光重合開始剤、及び(C-2)熱重合開始剤を含有する。 In one embodiment of the hard substrate laminate according to the first or second aspect of the present invention, the adhesive comprises (A) polyfunctional (meth) acrylate, (B) monofunctional (meth) acrylate, (C— 1) contains a photopolymerization initiator, and (C-2) a thermal polymerization initiator.
 本発明の第一又は第二の側面に係る硬質基板積層体の一実施形態においては、接着剤が、更に(F)分解促進剤を含有する。 In one embodiment of the hard substrate laminate according to the first or second aspect of the present invention, the adhesive further contains (F) a decomposition accelerator.
 本発明は第三の側面において、本発明の第一の側面に係る硬質基板積層体の製造方法であって、
 第一の硬質基板を準備する工程1と、
 第二の硬質基板を準備する工程2と、
 第一の硬質基板及び/又は第二の硬質基板の貼り合わせ面に接着剤を塗布する工程3と、
 第一の硬質基板と第二の硬質基板をそれぞれの一側縁で接触させた後、当該一側縁に対向する側縁に向かって順次、両硬質基板を貼り合わせる工程4と、
を含み、
 工程3において、塗布される接着剤の量は工程4の後に硬質基板間に空隙が生じる程度の量であり、また、接着剤は切断時の加工線に沿って貼り合わせ方向に平行な第一塗布ラインと貼り合わせ方向に直角な第二塗布ラインを形成し、第一塗布ラインは連続的又は不連続的であり、第二塗布ラインは不連続的である、
製造方法である。
The present invention, in the third aspect, is a method for producing a hard substrate laminate according to the first aspect of the present invention,
Step 1 of preparing a first hard substrate;
Step 2 for preparing a second hard substrate;
Step 3 of applying an adhesive to the bonding surface of the first hard substrate and / or the second hard substrate;
After contacting the first hard substrate and the second hard substrate at the respective one side edges, the step 4 of sequentially bonding the two hard substrates toward the side edges facing the one side edges;
Including
In step 3, the amount of adhesive applied is such that a gap is generated between the hard substrates after step 4, and the adhesive is a first parallel to the bonding direction along the processing line at the time of cutting. Forming a second application line perpendicular to the laminating direction with the application line, the first application line is continuous or discontinuous, and the second application line is discontinuous;
It is a manufacturing method.
 本発明の第三の側面に係る製造方法の一実施形態においては、第一塗布ラインが連続的である。 In one embodiment of the manufacturing method according to the third aspect of the present invention, the first coating line is continuous.
 本発明の第三の側面に係る製造方法の一実施形態においては、第二塗布ラインと第一塗布ラインは交差しないように形成される。 In one embodiment of the manufacturing method according to the third aspect of the present invention, the second coating line and the first coating line are formed so as not to intersect.
 本発明の第三の側面に係る製造方法の一実施形態においては、前記硬質基板積層体を第一の硬質基板に見立てて、工程1~4を少なくとも1回繰り返し、少なくとも3枚の硬質基板が貼り合わせられた硬質基板積層体を形成する工程を行う。 In an embodiment of the manufacturing method according to the third aspect of the present invention, the hard substrate laminate is regarded as a first hard substrate, and Steps 1 to 4 are repeated at least once to obtain at least three hard substrates. A step of forming the bonded hard substrate laminate is performed.
 本発明の第三の側面に係る製造方法の一実施形態においては、接着剤が硬化性である。 In one embodiment of the manufacturing method according to the third aspect of the present invention, the adhesive is curable.
 本発明の第三の側面に係る製造方法の一実施形態においては、接着剤が、(A)多官能(メタ)アクリレート、(B)単官能(メタ)アクリレート、及び(C)重合開始剤を含有する。 In one embodiment of the production method according to the third aspect of the present invention, the adhesive comprises (A) a polyfunctional (meth) acrylate, (B) a monofunctional (meth) acrylate, and (C) a polymerization initiator. contains.
 本発明の第三の側面に係る製造方法の一実施形態においては、接着剤が、(A)多官能(メタ)アクリレート、(B)単官能(メタ)アクリレート、(C-1)光重合開始剤を含有し、工程4は貼り合わせられた両硬質基板間の接着剤を硬化するための光を照射することを含む。 In one embodiment of the production method according to the third aspect of the present invention, the adhesive comprises (A) polyfunctional (meth) acrylate, (B) monofunctional (meth) acrylate, and (C-1) photopolymerization initiation. Step 4 includes irradiating light for curing the adhesive between the bonded hard substrates.
 本発明の第三の側面に係る製造方法の一実施形態においては、接着剤が、(A)多官能(メタ)アクリレート、(B)単官能(メタ)アクリレート、(C-2)熱重合開始剤を含有する。 In one embodiment of the production method according to the third aspect of the present invention, the adhesive comprises (A) polyfunctional (meth) acrylate, (B) monofunctional (meth) acrylate, and (C-2) thermal polymerization initiation. Contains agents.
 本発明の第三の側面に係る製造方法の一実施形態においては、接着剤が、(A)多官能(メタ)アクリレート、(B)単官能(メタ)アクリレート、(C-1)光重合開始剤、及び(C-2)熱重合開始剤を含有し、工程4は貼り合わせられた両硬質基板間の接着剤を硬化するための光を照射することを含む。 In one embodiment of the production method according to the third aspect of the present invention, the adhesive comprises (A) polyfunctional (meth) acrylate, (B) monofunctional (meth) acrylate, and (C-1) photopolymerization initiation. Step 4 includes irradiating light for curing the adhesive between the two hard substrates bonded together, and (C-2) a thermal polymerization initiator.
 本発明の第三の側面に係る製造方法の一実施形態においては、接着剤が、更に(F)分解促進剤を含有する。 In one embodiment of the manufacturing method according to the third aspect of the present invention, the adhesive further contains (F) a decomposition accelerator.
 本発明の第三の側面に係る製造方法の一実施形態においては、工程4における貼り合わせがロールプレスにより実施される。 In one embodiment of the manufacturing method according to the third aspect of the present invention, the bonding in step 4 is performed by a roll press.
 本発明は第四の側面において、
 本発明の第一の側面に係る硬質基板積層体を厚み方向に切断し、所望の数の分割された硬質基板積層体を得る工程5と、
 分割された硬質基板積層体を加工して製品形状の硬質基板積層体を得る工程6と、
 製品形状の硬質基板積層体を剥離し、複数の板状製品を得る工程7と、
を含む板状製品の製造方法である。
In the fourth aspect of the present invention,
Cutting the hard substrate laminate according to the first aspect of the present invention in the thickness direction to obtain a desired number of divided hard substrate laminates; and
Step 6 of processing the divided hard substrate laminate to obtain a product-shaped hard substrate laminate,
Step 7 of peeling the product-shaped hard substrate laminate to obtain a plurality of plate products,
Is a method of manufacturing a plate-like product.
 本発明の第四の側面に係る製造方法の一実施形態においては、分割された硬質基板積層体を加工して製品形状の硬質基板積層体を得る工程6には、形状加工が含まれる。 In one embodiment of the manufacturing method according to the fourth aspect of the present invention, the step 6 of obtaining the product-shaped hard substrate laminate by processing the divided hard substrate laminate includes shape processing.
 本発明によれば、ガラス基板等の製造において、加工寸法精度を犠牲にすることなく生産効率を高めることができる。すなわち、本発明では硬質基板同士を貼り合わせている接着剤が主表面の一部にしか存在しないため、積層体から個々の硬質基板を分離する操作が容易となり、短時間での分離操作が可能となる一方で、接着剤が適切なパターンで配置されているため加工寸法精度を損なうことはない。更には、消耗剤である接着剤の使用量を削減できることから加工コストが削減できると共に、分離操作後に硬質基板の表面に付着している接着剤を洗浄する際の時間も短縮できる。このように、本発明は多数の板状製品を工業的に生産する上で極めて有用である。 According to the present invention, production efficiency can be increased without sacrificing processing dimensional accuracy in the production of glass substrates and the like. That is, in the present invention, the adhesive for bonding the hard substrates to each other exists only on a part of the main surface, so that the operation of separating the individual hard substrates from the laminate becomes easy, and the separation operation can be performed in a short time. On the other hand, since the adhesive is arranged in an appropriate pattern, the processing dimensional accuracy is not impaired. Furthermore, since the amount of the adhesive, which is a consumable agent, can be reduced, the processing cost can be reduced, and the time for cleaning the adhesive adhered to the surface of the hard substrate after the separation operation can be shortened. Thus, the present invention is extremely useful in industrially producing a large number of plate products.
分割前の大判の硬質基板積層体の一例を示す模式図である。It is a schematic diagram which shows an example of the large-sized hard board | substrate laminated body before a division | segmentation. 硬質基板積層体の切断加工線の一例を示す模式図である。It is a schematic diagram which shows an example of the cutting process line of a hard board | substrate laminated body. 大判の硬質基板同士を貼り合わせた後の接着剤の広がりの様子を示す模式図である。It is a schematic diagram which shows the mode of the spreading | diffusion of the adhesive agent after bonding large format hard board | substrates. 本発明に係る接着剤の塗布パターンの一例を示す模式図である。It is a schematic diagram which shows an example of the application pattern of the adhesive agent which concerns on this invention. 比較例に係る接着剤の塗布パターンの一例を示す模式図である。It is a schematic diagram which shows an example of the application pattern of the adhesive agent which concerns on a comparative example. 外形加工後の分割された硬質基板積層体の平面視形状を表す図である。It is a figure showing the planar view shape of the divided hard substrate laminated body after an external shape process.
以下、本発明の実施形態について図面を参照しながら詳細に説明する。以下、本発明は、特記しない限り、(C-1)光重合開始剤を含有する光硬化性接着剤を使用した場合について説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Hereinafter, unless otherwise specified, the present invention will describe a case where a photocurable adhesive containing a (C-1) photopolymerization initiator is used.
 <1.硬質基板積層体>
 本発明で使用可能な硬質基板としては、特に制限はないが、接着剤として光硬化性接着剤を使用するときや表示素子の保護目的で使用するときは透光性であることが必要であり、例えば、板ガラス(素材板ガラス、強化板ガラス、透明導電膜付きガラス基板、電極や回路が形成されたガラス基板等)、サファイア基板、石英基板、プラスチック基板、フッ化マグネシウム基板などが好適に使用可能である。また、透光性を有する硬質基板であっても、主たる硬化形態が熱硬化型、湿気硬化型である接着剤なども使用可能である。熱硬化型としては、2液混合型、1液型等が挙げられる。本発明においては、熱硬化型接着剤には常温で硬化するものも含む。硬質基板として、透光性を有しない硬質基板を使用することもでき、この場合は、主たる硬化形態が熱硬化型や湿気硬化型である接着剤などを使用することができる。
<1. Rigid substrate laminate>
The hard substrate that can be used in the present invention is not particularly limited, but it needs to be translucent when a photocurable adhesive is used as an adhesive or for the purpose of protecting a display element. For example, plate glass (material plate glass, tempered plate glass, glass substrate with a transparent conductive film, glass substrate with electrodes and circuits formed thereon), sapphire substrate, quartz substrate, plastic substrate, magnesium fluoride substrate, etc. can be suitably used. is there. Moreover, even if it is a hard board | substrate which has translucency, the adhesive agent etc. whose main hardening forms are a thermosetting type and a moisture hardening type can be used. Examples of the thermosetting type include a two-component mixed type and a one-component type. In the present invention, the thermosetting adhesive includes those that cure at room temperature. A hard substrate that does not have translucency can also be used as the hard substrate. In this case, an adhesive whose main curing form is a thermosetting type or a moisture curing type can be used.
 切断前の大判の硬質基板の大きさに特に制限はないが、典型的には10000~250000mm2程度の面積を有し、0.1~2mm程度の厚みを有する。各硬質基板は同じサイズであるのが一般的である。限定的ではないが、各硬質基板の表面には板状製品の機能の一つを奏するための所定の印刷パターンやめっきパターンを付すことができる。印刷パターンの例としては携帯電話の表示画面のデザイン、めっきパターンの例としてはクロムめっきパターンが施されているロータリーエンコーダーが挙げられる。また、基板表面には金属層、樹脂層、シリカ層、オルガノシリケート層及び透明電極層よりなる群から選択される1種又は2種以上を備えることも可能である。 Not particularly limited to the size of the hard substrate before cutting large-sized, but typically have a 2 degree of area 10000 ~ 250000mm, having a thickness of about 0.1 ~ 2 mm. Each hard substrate is generally the same size. Although not limited, the surface of each hard substrate can be provided with a predetermined printing pattern or plating pattern for performing one of the functions of the plate-like product. An example of the print pattern is a design of a display screen of a mobile phone, and an example of the plating pattern is a rotary encoder provided with a chrome plating pattern. Further, the substrate surface may be provided with one or more selected from the group consisting of a metal layer, a resin layer, a silica layer, an organosilicate layer, and a transparent electrode layer.
 図1には、分割前の大判の硬質基板積層体の一例の模式図を示す。硬質基板積層体10は2枚以上の硬質基板11同士が接着剤で貼り合わせられている。当該積層体10は図2に示す点線13(切断加工線)に沿って厚み方向に切断することにより、所望の数の分割された硬質基板積層体14を得ることが予定されている。本発明でいう“切断加工線”は、切断される硬質基板積層体の箇所を示すための便宜上の仮想線であり、硬質基板積層体の表面に実際に線が引かれているか否かは問わない。従って、切断時に切断箇所を特定するための“線”や“マーク”を設けることも可能であるし、設けないことも可能である。 FIG. 1 shows a schematic diagram of an example of a large-sized hard substrate laminate before division. In the hard substrate laminate 10, two or more hard substrates 11 are bonded together with an adhesive. The laminate 10 is scheduled to be cut in the thickness direction along the dotted line 13 (cutting line) shown in FIG. 2 to obtain a desired number of divided hard substrate laminates 14. The “cutting line” as used in the present invention is a virtual line for convenience to indicate the location of the hard substrate laminate to be cut, and whether or not a line is actually drawn on the surface of the hard substrate laminate. Absent. Accordingly, it is possible to provide a “line” or “mark” for specifying a cutting position at the time of cutting, or not to provide it.
 大判の硬質基板積層体10の全体の厚みが薄すぎると機械的強度が弱くなり、加工のために受け台に接着剤により固定した硬質基板積層体10を剥離する際に割れやすくなることから、硬質基板11の材質にもよるが、好ましくは5枚以上(基板11の合計の厚みとしては0.52mm以上)、より好ましくは10~30枚程度(基板11の合計の厚みとしては1.5~66mm程度)の硬質基板11が接着剤を介して積層される。 If the overall thickness of the large-sized hard substrate laminate 10 is too thin, the mechanical strength becomes weak, and it becomes easy to break when peeling the hard substrate laminate 10 fixed to the cradle with an adhesive for processing. Although it depends on the material of the hard substrate 11, preferably 5 or more (the total thickness of the substrate 11 is 0.52 mm or more), more preferably about 10 to 30 (the total thickness of the substrate 11 is 1.5). (About 66 mm) is laminated with an adhesive.
 図3を参照すると、ここには、大判の硬質基板11同士を貼り合わせた後の接着剤12の広がりの様子が模式的に示されている。硬質基板11間には接着剤12が切断時の加工線13すべてを跨いで連続的に存在し、且つ、各硬質基板11間には当該加工線13によって囲まれた領域の少なくとも一つに接着剤の存在しない空隙16が存在する。四辺が切断加工線13によって囲まれた各領域は分割後に板状製品に加工される領域であり、印刷パターン15が施されている。 Referring to FIG. 3, the spread state of the adhesive 12 after the large-sized hard substrates 11 are bonded to each other is schematically shown here. The adhesive 12 is continuously present between the hard substrates 11 across all the processing lines 13 at the time of cutting, and the hard substrates 11 are bonded to at least one of the regions surrounded by the processing lines 13. There are voids 16 where no agent is present. Each area surrounded by cutting lines 13 on the four sides is an area that is processed into a plate-like product after division, and is provided with a print pattern 15.
 接着剤12が切断時の加工線13すべてを跨いで連続的に(又は一体的に)存在していることによって、切断加工時に積層体を構成する硬質基板が分離するのを防止可能となり、寸法精度が向上する。また、切断加工時に使用する加工液や端面加工時に使用するエッチング液が空隙に浸入して、主表面または主表面上に構成される膜等の一部が腐食されるという弊害を生じるのを防止する役割も果たす。一方、接着剤の存在しない空隙が存在することによって、剥離時間が短縮し、積層体から各硬質基板を分離する際の作業効率が向上し、接着剤の使用量が低減され、更には分離操作後に硬質基板の表面に付着している接着剤を洗浄する際の時間短縮に寄与するという利点が得られる。 Since the adhesive 12 exists continuously (or integrally) across all the processing lines 13 at the time of cutting, it becomes possible to prevent the hard substrate constituting the laminate from being separated at the time of cutting processing. Accuracy is improved. In addition, it prevents the processing liquid used for cutting and the etching liquid used for end face processing from entering the voids and causing the harmful effect that the main surface or part of the film formed on the main surface is corroded. Also plays a role. On the other hand, the presence of voids without adhesive reduces the peeling time, improves the work efficiency when separating each hard substrate from the laminate, reduces the amount of adhesive used, and further the separation operation There is an advantage that it contributes to shortening of the time for cleaning the adhesive adhered to the surface of the hard substrate later.
 剥離性や生産効率やコスト低減の観点からは、空隙の数は多い方が好ましい。具体的には、各硬質基板間において、前記加工線13によって囲まれた領域のうち、40%以上の数の領域に接着剤の存在しない空隙が存在することが好ましく、50%以上の数の領域に接着剤の存在しない空隙が存在することがより好ましく、80%以上の数の領域に接着剤の存在しない空隙が存在することがより好ましく、92%以上の数の領域に接着剤の存在しない空隙が存在することがより好ましく、100%の数の領域に接着剤の存在しない空隙が存在することが更により好ましい。図3を例にすれば、切断加工線13によって囲まれた領域は12個あるので、そのうち6個以上に空隙が存在すると50%以上という条件を満たすことになる。 From the viewpoint of peelability, production efficiency and cost reduction, a larger number of voids is preferable. Specifically, it is preferable that voids without an adhesive exist in a region of 40% or more of the regions surrounded by the processing lines 13 between the hard substrates, and a number of 50% or more. More preferably, there are voids without adhesive in the region, more preferably voids without adhesive in the region of 80% or more, and presence of adhesive in the region of 92% or more. It is more preferable that voids that do not exist are present, and it is even more preferable that voids that do not have an adhesive exist in 100% of the number of regions. Taking FIG. 3 as an example, there are twelve regions surrounded by the cutting line 13, and if there are gaps in six or more of them, the condition of 50% or more is satisfied.
 また、空隙の多少は次式によって定義される空隙率を指標としても評価することができる。切断後の分割された積層体中の接着剤質量をW1とし、当該分割された積層体の空隙率が0%と仮定したときの接着剤質量をW0とすると、空隙率(%)=(1-W1/W0)×100で表される。W1は積層体の質量から硬質基板の質量を控除することで計算可能である。W0は各接着剤層の厚み、硬質基板の面積、及び接着剤の比重から計算可能である。 The degree of voids can also be evaluated using the void ratio defined by the following equation as an index. When the adhesive mass in the divided laminate after cutting is W 1, and the adhesive mass when assuming that the porosity of the divided laminate is 0% is W 0 , the porosity (%) = It is represented by (1−W 1 / W 0 ) × 100. W 1 can be calculated by subtracting the mass of the hard substrate from the mass of the laminate. W 0 can be calculated from the thickness of each adhesive layer, the area of the hard substrate, and the specific gravity of the adhesive.
 上述した理由により空隙率は高い方が好ましいので、空隙率は0%超とすべきであり、5%以上であるのが好ましく、10%以上であるのがより好ましく、40%以上であるのが最も好ましい。但し、空隙率は高すぎると、接着剤の塗布時に、精密にコントロール可能な容積式の塗布装置を使用しなければならず、加え、ノズル径が小径な部材を用いる必要があり、接着剤自体の粘度(と不安定性)制御を厳密に行うための温調設備が必要になる等、装置コストが増大することに加え、タクトが減少する。したがって、100%未満とすべきであり、99.5%以下であるのが好ましく、95%以下であるのがより好ましく、90%以下であるのが更により好ましく、85%以下であるのが最も好ましい。 Since the porosity is preferably higher for the reasons described above, the porosity should be more than 0%, preferably 5% or more, more preferably 10% or more, and 40% or more. Is most preferred. However, if the porosity is too high, it is necessary to use a positively-controllable positive displacement application device when applying the adhesive, and in addition, it is necessary to use a member with a small nozzle diameter, and the adhesive itself In addition to increasing the cost of the apparatus, such as the need for temperature control equipment for strictly controlling the viscosity (and instability), tact is reduced. Therefore, it should be less than 100%, preferably 99.5% or less, more preferably 95% or less, still more preferably 90% or less, and 85% or less. Most preferred.
 再び図3を参照する。前記加工線を跨ぐ接着剤の前記加工線からの幅寸法をdとすると、dは大きいほうが、接着強度が増大するため、切断加工時の寸法精度が向上し、また、加工液やエッチング液の浸入防止効果も高くなるので、dは0.1mm以上であることが好ましく、0.3mm以上であることがより好ましい。dの上限は、空隙率が上述した範囲を満たす限り特に制限はない。 Refer to FIG. 3 again. Assuming that the width dimension of the adhesive straddling the processing line from the processing line is d, the larger d is, the higher the adhesive strength is, so that the dimensional accuracy at the time of cutting processing is improved, and the processing liquid and etching liquid Since the penetration preventing effect is also enhanced, d is preferably 0.1 mm or more, and more preferably 0.3 mm or more. The upper limit of d is not particularly limited as long as the porosity satisfies the above-described range.
 <2.硬質基板積層体の製造方法>
 本発明に係る硬質基板積層体の製造方法の一実施形態においては、
 第一の硬質基板を準備する工程1と、
 第二の硬質基板を準備する工程2と、
 第一の硬質基板及び/又は第二の硬質基板の貼り合わせ面に接着剤を塗布する工程3と、
 第一の硬質基板と第二の硬質基板をそれぞれの一側縁で接触させた後、当該一側縁に対向する側縁に向かって順次、両硬質基板を貼り合わせる工程4と、
を含む。
<2. Manufacturing method of hard substrate laminate>
In one embodiment of the method for producing a hard substrate laminate according to the present invention,
Step 1 of preparing a first hard substrate;
Step 2 for preparing a second hard substrate;
Step 3 of applying an adhesive to the bonding surface of the first hard substrate and / or the second hard substrate;
After contacting the first hard substrate and the second hard substrate at the respective one side edges, the step 4 of sequentially bonding the two hard substrates toward the side edges facing the one side edges;
including.
 前記硬質基板積層体を第一の硬質基板に見立てて、工程1~4を少なくとも1回繰り返すことで、少なくとも3枚の硬質基板が貼り合わせられた硬質基板積層体を形成することが可能である。繰り返しの数によって任意の数の硬質基板を積層することが可能である。 By considering the hard substrate laminate as a first hard substrate and repeating steps 1 to 4 at least once, it is possible to form a hard substrate laminate in which at least three hard substrates are bonded together. . Any number of hard substrates can be stacked depending on the number of repetitions.
 本発明に係る硬質基板積層体を製造する上では工程3において接着剤を適切なパターンで塗布することが重要である。工程3において、塗布される接着剤の量は工程4の後に硬質基板間に空隙が生じる程度の量であり、また、接着剤は切断時の加工線に沿って貼り合わせ方向に平行な第一塗布ラインと貼り合わせ方向に直交する第二塗布ラインを形成する。 In manufacturing the hard substrate laminate according to the present invention, it is important to apply the adhesive in an appropriate pattern in Step 3. In step 3, the amount of adhesive applied is such that a gap is generated between the hard substrates after step 4, and the adhesive is a first parallel to the bonding direction along the processing line at the time of cutting. A second coating line orthogonal to the coating line and the bonding direction is formed.
 第一塗布ラインは連続的及び不連続的の何れで形成してもよいが、貼り合わせ後に接着剤が切断加工線に沿って連続化しやすいことから連続的とするのが好ましい。これは不連続塗布ラインの場合、塗布間隔や量に条件が生じ、その条件を満たせないと加工ライン上に空隙が発生するのに対して、連続塗布ラインの場合、貼り合わせた際に不連続な部分を埋める必要が無い、すなわち間隔や量に依存せずに連続化可能ということである。また、第二塗布ラインは不連続であるため、第一塗布ライン及び第二塗布ラインを共に不連続にすると両者の調整が複雑化するという側面もある。 The first coating line may be formed either continuously or discontinuously, but it is preferable that the first application line is continuous because the adhesive is easily continuous along the cutting line after bonding. In the case of a discontinuous application line, conditions occur in the application interval and amount, and if the conditions are not met, voids are generated on the processing line, whereas in the case of a continuous application line, discontinuity occurs when pasting. This means that it is not necessary to fill in a large part, that is, it can be continuous without depending on the interval or the amount. In addition, since the second coating line is discontinuous, there is an aspect in which both the first coating line and the second coating line become complicated if both are discontinuous.
 上述したように、第二塗布ラインは不連続的に形成される。これは空気の抜け道を作るためである。空気の抜け道を作るだけであれば第一塗布ラインを不連続的にし、第二塗布ラインを連続的にすることも考えられるが、貼り合せる方向に力がかかり、同方向に空気が移動しやすいことから、可能な限り、層流状態を作り出すことで、塗布形状が安定しやすくなるため、第二塗布ラインを不連続にする。また、第二塗布ラインを第一塗布ラインと交差させないようにする方が切断加工線上に空隙が生じにくくなるので好ましい。切断加工線上に空隙が生じると、後の工程で用いられる液の浸入や、接着面積が小さいことによる、位置ズレなど、切断加工時の寸法精度に悪影響を与える。 As described above, the second coating line is formed discontinuously. This is to create a passage for air. If you only want to create an air escape path, it is possible to make the first application line discontinuous and make the second application line continuous, but force is applied in the direction of bonding, and air easily moves in the same direction. Therefore, by creating a laminar flow state as much as possible, the coating shape is easily stabilized, so that the second coating line is made discontinuous. In addition, it is preferable to prevent the second coating line from intersecting the first coating line because voids are less likely to occur on the cutting line. If a gap is generated on the cutting line, the dimensional accuracy at the time of the cutting process is adversely affected, such as the ingress of liquid used in the subsequent process and the positional shift due to the small adhesion area.
 なお、上記の塗布ラインは第一の硬質基板及び第二の硬質基板の何れか一方に形成してもよいし、両方に形成してもよい。各基板に部分的に塗布して全体としては上述した塗布ラインが形成されるようにしても良い。要は貼り合わせ後に、適切な位置に空隙が生じるように接着剤が硬質基板間に広がればよく、上記塗布パターンは例示であってこれらに限定されるものではない。 Note that the coating line may be formed on either the first hard substrate or the second hard substrate, or may be formed on both. The above-described coating line may be formed by partially coating each substrate. In short, it is only necessary that the adhesive spreads between the hard substrates so that a gap is generated at an appropriate position after bonding, and the above-mentioned coating pattern is an example and is not limited thereto.
 図4には接着剤の好適な塗布パターンの一例が示されている。縦方向の直線状塗布ライン17は切断加工線13上に連続的に形成する一方、横方向の直線状塗布ライン18は縦方向の塗布ライン17と交差しない様、不連続的に塗布されている。そして、縦方向の直線状塗布ライン17は貼り合わせ方向と平行であり、横方向の直線状塗布ライン18は貼り合わせ方向に対して直角である。 FIG. 4 shows an example of a suitable application pattern of the adhesive. The vertical linear application line 17 is continuously formed on the cutting line 13, while the horizontal linear application line 18 is applied discontinuously so as not to intersect with the vertical application line 17. . The vertical linear coating line 17 is parallel to the bonding direction, and the horizontal linear coating line 18 is perpendicular to the bonding direction.
 塗布ラインの太さは、切断加工線上に空隙が生じるのを効果的に防止する観点から、断面積で6.0×10-5cm2以上であることが好ましく、1.91×10-3cm2以上であることがより好ましい。また、塗布ラインの太さは、十分な空隙を確保する観点からは、断面積で11.9×10-3cm2以下であることが好ましく、7.54×10-3cm2以下であることがより好ましい。 The thickness of the coating line is preferably 6.0 × 10 −5 cm 2 or more in terms of a cross-sectional area from the viewpoint of effectively preventing the generation of voids on the cut processing line, and 1.91 × 10 −3. More preferably, it is cm 2 or more. The thickness of the coating line is preferably 11.9 × 10 −3 cm 2 or less in terms of cross-sectional area and 7.54 × 10 −3 cm 2 or less from the viewpoint of securing a sufficient gap. It is more preferable.
 工程4においては、第一の硬質基板と第二の硬質基板をそれぞれの一端縁で接触させた後、当該一側縁に対向する側縁に向かって順次、両硬質基板を貼り合わせる。例えば、図4では、縦方向の塗布ラインに沿って下から上に向かって第一の硬質基板と第二の硬質基板が順次貼り合わせられる。これにより、意図した場所に空隙を設けることができると共に、意図しない場所に空隙が生じるのを防止することができる。また、貼り合わせるときの押圧によって接着剤は硬質基板間に広がり、不連続であった第二塗布ラインは第一塗布ラインと連結し、図3に示したような、接着剤全体が連結して連続化(又は一体化)した塗布パターンが得られる。貼り合わせは硬質基板サイズに寄らず、硬質基板の層間に存在する余分な空気を外部に押し出すことが可能なロールプレスによって実施するのが好ましい。 In step 4, the first hard substrate and the second hard substrate are brought into contact with each other at one end edge, and then both the hard substrates are sequentially bonded to the side edge facing the one side edge. For example, in FIG. 4, the first hard substrate and the second hard substrate are sequentially bonded together from the bottom to the top along the vertical coating line. Thereby, it is possible to provide a gap at an intended place and to prevent a gap from being generated at an unintended place. In addition, the adhesive spreads between the hard substrates by pressing at the time of bonding, the discontinuous second application line is connected to the first application line, and the entire adhesive as shown in FIG. 3 is connected. A continuous (or integrated) coating pattern is obtained. The bonding is preferably carried out by a roll press capable of extruding excess air existing between the layers of the hard substrate without depending on the size of the hard substrate.
 工程4において、図5に示すように縦方向及び横方向の塗布ラインを交差させると、貼り合わせ時に空気を巻き込みやすくなり、切断加工線上に空隙が発生しやすくなる。 In Step 4, when the vertical and horizontal application lines are crossed as shown in FIG. 5, it is easy to entrain air at the time of bonding, and voids are likely to be generated on the cutting line.
 接着剤としては、限定的ではないが、湿気硬化型接着剤、熱硬化性接着剤、光硬化性接着剤等、または、これらの併用型が挙げられる。生産性及び作業性の観点からは光硬化性接着剤が好ましく、一方、硬質基板同士の層間接着剤の硬化性を極力均一な状態とする観点からは、おもな反応形態が熱硬化性接着剤であるものの使用が好ましい。熱硬化性接着剤としては、2液混合型接着剤、1液型接着剤等が挙げられる。光硬化性接着剤を使用する場合は、透光性硬質基板同士を貼り合わせた後に、両基板に挟まれて拡がっている接着剤を硬化するための光を照射することによって積層することができる。光照射は、基板間に挟まれた接着剤の移動を抑制するために、透光性硬質基板を1枚積層する度に実施することが望ましい。 Examples of the adhesive include, but are not limited to, a moisture curable adhesive, a thermosetting adhesive, a photocurable adhesive, or a combination thereof. From the viewpoint of productivity and workability, a photo-curing adhesive is preferable. On the other hand, from the viewpoint of making the curing property of the interlayer adhesive between hard substrates as uniform as possible, the main reaction form is thermosetting adhesion. The use of an agent is preferred. Examples of the thermosetting adhesive include a two-component mixed adhesive and a one-component adhesive. When using a photocurable adhesive, it can be laminated by irradiating light for curing the adhesive spread between both substrates after the light-transmitting hard substrates are bonded together. . In order to suppress the movement of the adhesive sandwiched between the substrates, it is desirable to perform the light irradiation every time one transparent hard substrate is laminated.
 照射する光の波長は、使用する接着剤の特性に応じて適宜変更すればよいが、例えばマイクロ波、赤外線、可視光、紫外線、X線、γ線、電子線等を照射することができる。簡便に使用でき、比較的高エネルギーをもつことから一般的には照射光は紫外線である。このように、本発明において、光とは可視光のみならず、幅広い波長領域を包含する電磁波(エネルギー線)を指す。 The wavelength of the light to be irradiated may be appropriately changed according to the characteristics of the adhesive to be used. For example, microwaves, infrared rays, visible light, ultraviolet rays, X-rays, γ rays, electron beams and the like can be irradiated. In general, the irradiation light is ultraviolet light because it can be used easily and has relatively high energy. Thus, in the present invention, light refers to not only visible light but also electromagnetic waves (energy rays) including a wide wavelength region.
 透光性硬質基板11の積層は例えば、一方又は両方の貼り合わせ面に光硬化性接着剤が所定のパターンにて塗布された各透光性硬質基板11同士を貼り合わせた後に、両透光性硬質基板11に挟まれて広がっている接着剤を硬化するための光を照射することによって実施することができる。これを所望の回数だけ繰り返すことにより、所望の枚数の透光性硬質基板11が積層された透光性硬質基板積層体10を作製することができる。光照射は、透光性硬質基板11を1枚積層する度に実施してもよく、接着剤へ光が到達する限りにおいて、複数枚を積層した後にまとめて実施してもよい。このとき光照射量が強すぎると透光性硬質基板積層体の剥離性や外観が経時劣化しやすくなる一方で、光照射量が弱すぎると接着剤の硬化が不十分となる。さらに、光照射量が多すぎると硬化した接着剤の層が均一とならず、ムラが生じてしまうおそれがある。このようなムラが原因で、切断、切削、研削、研磨時に用いる切削液や研磨材スラリー、エッチング液が基板間に入り込んでしまい、基板剥離や基板上に形成された金属パターンや印刷塗料の腐食を発生させることがある。これらの観点から、透光性硬質基板を貼り合わせる毎に接着剤を硬化するために照射する光の照射量を10~10000mJ/cm2とすることが好ましく、1000~6000mJ/cm2とすることがより好ましく、10~3000mJ/cm2とすることが更により好ましい。照射時間は1~200秒が好ましく、1~100秒がより好ましい。 The translucent hard substrate 11 is laminated, for example, by bonding the translucent hard substrates 11 each having a photocurable adhesive applied to one or both bonded surfaces in a predetermined pattern, and then transmitting both translucent substrates. It can be carried out by irradiating light for curing the adhesive spread between the conductive hard substrates 11. By repeating this a desired number of times, the light transmissive hard substrate laminate 10 in which the desired number of light transmissive hard substrates 11 are laminated can be produced. The light irradiation may be performed every time one light-transmitting hard substrate 11 is stacked, or may be performed collectively after stacking a plurality of sheets as long as light reaches the adhesive. At this time, if the light irradiation amount is too strong, the peelability and appearance of the translucent hard substrate laminate are likely to deteriorate over time, while if the light irradiation amount is too weak, the adhesive is not sufficiently cured. Furthermore, if the amount of light irradiation is too large, the cured adhesive layer may not be uniform and unevenness may occur. Due to such unevenness, the cutting fluid, abrasive slurry, and etchant used during cutting, cutting, grinding, and polishing enter between the substrates, causing the substrate to peel off or corrode the metal pattern or printing paint formed on the substrate. May occur. From these viewpoints, it is preferable that the amount of light irradiated for curing the adhesive every time the light-transmitting hard substrate is bonded is 10 to 10000 mJ / cm 2, and 1000 to 6000 mJ / cm 2. Is more preferably 10 to 3000 mJ / cm 2 . The irradiation time is preferably 1 to 200 seconds, and more preferably 1 to 100 seconds.
 硬化性接着剤としては、公知の任意のものが使用でき特に制限はないが、例えばWO2008/018252、WO2012/067205、WO2013/039226に記載のような(A)多官能(メタ)アクリレート、(B)単官能(メタ)アクリレート、及び(C)重合開始剤を含有する接着性組成物が好適である。 Any known adhesive can be used as the curable adhesive, and is not particularly limited. For example, (A) a polyfunctional (meth) acrylate as described in WO2008 / 018252, WO2012 / 0667205, WO2013 / 039226, (B Adhesive compositions containing monofunctional (meth) acrylates and (C) polymerization initiators are preferred.
(A)多官能(メタ)アクリレートとしては、オリゴマー/ポリマー末端又は側鎖に2個以上(メタ)アクロイル化された多官能(メタ)アクリレートオリゴマー/ポリマーや、2個以上の(メタ)アクロイル基を有する多官能(メタ)アクリレートモノマーを使用することができる。例えば、多官能(メタ)アクリレートオリゴマー/ポリマーとしては、1,2-ポリブタジエン末端ウレタン(メタ)アクリレート(例えば、日本曹達社製「TE-2000」、「TEA-1000」)、その水素添加物(例えば、日本曹達社製「TEAI-1000」)、1,4-ポリブタジエン末端ウレタン(メタ)アクリレート(例えば、大阪有機化学社製「BAC-45」)、ポリイソプレン末端(メタ)アクリレート、ポリエステル系ウレタン(メタ)アクリレート(例えば、日本合成化学社製「UV-2000B」、「UV-3000B」、「UV-7000B」、根上工業社製「KHP-11」、「KHP-17」)、ポリエーテル系ウレタン(メタ)アクリレート(例えば、日本合成化学社製「UV-3700B」、「UV-6100B」)、又はビスフェノールA型エポキシ(メタ)アクリレート、などが挙げられる。これらの中では、ポリエステル系ウレタン(メタ)アクリレートが好ましい。 (A) As a polyfunctional (meth) acrylate, two or more (meth) acryloylated polyfunctional (meth) acrylate oligomer / polymer or two or more (meth) acryloyl groups at the oligomer / polymer terminal or side chain Polyfunctional (meth) acrylate monomers having can be used. For example, as the polyfunctional (meth) acrylate oligomer / polymer, 1,2-polybutadiene-terminated urethane (meth) acrylate (for example, “TE-2000”, “TEA-1000” manufactured by Nippon Soda Co., Ltd.), hydrogenated product thereof ( For example, “TEAI-1000” manufactured by Nippon Soda Co., Ltd.), 1,4-polybutadiene terminated urethane (meth) acrylate (eg “BAC-45” manufactured by Osaka Organic Chemical Co., Ltd.), polyisoprene terminated (meth) acrylate, polyester urethane (Meth) acrylate (for example, “UV-2000B”, “UV-3000B”, “UV-7000B” manufactured by Nippon Synthetic Chemical Co., Ltd. “KHP-11”, “KHP-17” manufactured by Negami Kogyo Co., Ltd.), polyether type Urethane (meth) acrylate (for example, “UV-3700B”, “UV- 6100B "), or bisphenol A type epoxy (meth) acrylate. Among these, polyester urethane (meth) acrylate is preferable.
 ここで、ウレタン(メタ)アクリレートとは、ポリオール化合物(以後、Xで表す)と有機ポリイソシアネート化合物(以後、Yで表す)とヒドロキシ(メタ)アクリレート(以後、Zで表す)とを反応(例えば、重付加反応)させることにより得られる、ウレタン(メタ)アクリレートをいう。 Here, the urethane (meth) acrylate is a reaction between a polyol compound (hereinafter represented by X), an organic polyisocyanate compound (hereinafter represented by Y), and a hydroxy (meth) acrylate (hereinafter represented by Z) (for example, , Urethane (meth) acrylate obtained by polyaddition reaction).
 ポリオール化合物(X)としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、1,4-ブタンジオール、ポリブチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、2,2-ブチルエチル-1,3-プロパンジオール、ネオペンチルグリコール、シクロヘキサンジメタノール、水素化ビスフェノールA、ポリカプロラクトン、トリメチロールエタン、トリメチロールプロパン、ポリトリメチロールプロパン、ペンタエリスリトール、ポリペンタエリスリトール、ソルビトール、マンニトール、グリセリン、ポリグリセリン、ポリテトラメチレングリコール等の多価アルコールや、ポリエチレンオキサイド、ポリプロピレンオキサイド、エチレンオキサイド/プロピレンオキサイドのブロック又はランダム共重合の少なくとも1種の構造を有するポリエーテルポリオール、該多価アルコール又はポリエーテルポリオールと無水マレイン酸、マレイン酸、フマル酸、無水イタコン酸、イタコン酸、アジピン酸、イソフタル酸等の多塩基酸との縮合物であるポリエステルポリオール、カプロラクトン変性ポリテトラメチレンポリオール等のカプロラクトン変性ポリオール、ポリオレフィン系ポリオール、ポリカーボネート系ポリオール、ポリブタジエンポリオール、ポリイソプレンポリオール、水素化ポリブタジエンポリオール、水素化ポリイソプレンポリオール等のポリジエン系ポリオール、ポリジメチルシロキサンポリオール等のシリコーンポリオール等が挙げられる。これらの中では、ポリエーテルポリオール及び/又はポリエステルポリオールがより好ましい。 Examples of the polyol compound (X) include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butylene glycol, 1,4-butanediol, polybutylene glycol, 1, 5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 2,2-butylethyl-1,3-propanediol, neopentyl glycol, cyclohexanedimethanol, hydrogenated bisphenol A, polycaprolactone, trimethylolethane, trimethylolpropane, poly At least a polyhydric alcohol such as trimethylolpropane, pentaerythritol, polypentaerythritol, sorbitol, mannitol, glycerin, polyglycerin, polytetramethylene glycol, or a block or random copolymer of polyethylene oxide, polypropylene oxide, ethylene oxide / propylene oxide Polyether polyol having one type of structure, a polycondensate of the polyhydric alcohol or polyether polyol and a polybasic acid such as maleic anhydride, maleic acid, fumaric acid, itaconic anhydride, itaconic acid, adipic acid, and isophthalic acid Polyester polyols, caprolactone-modified polyols such as caprolactone-modified polytetramethylene polyols, polyolefin-based polyols, polycarbonate-based polyols Ol, polybutadiene polyols, polyisoprene polyols, hydrogenated polybutadiene polyols, polydiene polyols such as hydrogenated polyisoprene polyol, silicone polyol, such as polydimethylsiloxane polyols and the like. In these, polyether polyol and / or polyester polyol are more preferable.
 有機ポリイソシアネート化合物(Y)としては、格別に限定される必要はないが、例えば芳香族系、脂肪族系、環式脂肪族系、脂環式系等のポリイソシアネートが使用でき、中でもトリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、水添化ジフェニルメタンジイソシアネート(H-MDI)、ポリフェニルメタンポリイソシアネート(クルードMDI)、変性ジフェニルメタンジイソシアネート(変性MDI)、水添化キシリレンジイソシアネート(H-XDI)、キシリレンジイソシアネート(XDI)、ヘキサメチレンジイソシアネート(HMDI)、トリメチルヘキサメチレンジイソシアネート(TMXDI)、テトラメチルキシリレンジイソシアネート(m-TMXDI)、イソホロンジイソシアネート(IPDI)、ノルボルネンジイソシアネート(NBDI)、1,3-ビス(イソシアナトメチル)シクロヘキサン(H6XDI)等のポリイソシアネート或いはこれらポリイソシアネートの三量体化合物、これらポリイソシアネートとポリオールの反応生成物等が好適に用いられる。これらの中では、水添化キシリレンジイソシアネート(H-XDI)及び/又はイソホロンジイソシアネート(IPDI)が好ましい。 The organic polyisocyanate compound (Y) is not particularly limited. For example, aromatic, aliphatic, cycloaliphatic, and alicyclic polyisocyanates can be used. Isocyanate (TDI), diphenylmethane diisocyanate (MDI), hydrogenated diphenylmethane diisocyanate (H-MDI), polyphenylmethane polyisocyanate (crude MDI), modified diphenylmethane diisocyanate (modified MDI), hydrogenated xylylene diisocyanate (H-XDI) ), Xylylene diisocyanate (XDI), hexamethylene diisocyanate (HMDI), trimethylhexamethylene diisocyanate (TMXDI), tetramethylxylylene diisocyanate (m-TMXDI), isophorone diiso Polyisocyanates such as anate (IPDI), norbornene diisocyanate (NBDI), 1,3-bis (isocyanatomethyl) cyclohexane (H6XDI), trimer compounds of these polyisocyanates, reaction products of these polyisocyanates and polyols, etc. Preferably used. Of these, hydrogenated xylylene diisocyanate (H-XDI) and / or isophorone diisocyanate (IPDI) are preferred.
 ヒドロキシ(メタ)アクリレート(Z)としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリロイルホスフェート、4-ブチルヒドロキシ(メタ)アクリレート、2-(メタ)アクリロイロキシエチル-2-ヒドロキシプロピルフタレート、グリセリンジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート等が挙げられる。これらの中では、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレートからなる群のうちの1種以上が好ましい。 Examples of the hydroxy (meth) acrylate (Z) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxyethyl (meth) acryloyl phosphate, 4-butylhydroxy (meth) acrylate, 2- (meth) acryloyloxyethyl-2-hydroxypropyl phthalate, glycerin di (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, Caprolactone-modified 2-hydroxyethyl (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, caprolactone-modified 2-hydroxyethyl (meth) acrylate Over doors and the like. Among these, one or more members selected from the group consisting of 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 2-hydroxybutyl (meth) acrylate are preferable.
 多官能(メタ)アクリレートオリゴマー/ポリマーの重量平均分子量は、7000~60000が好ましく、8000~40000がより好ましく、8500~30000が最も好ましい。実施例においては、重量平均分子量は、下記の条件にて、溶剤としてテトラヒドロフランを用い、GPCシステム(東ソ-社製SC-8010)を使用し、市販の標準ポリスチレンで検量線を作成して求めた。
 流速:1.0ml/min
 設定温度:40℃カラム構成:東ソー社製「TSK guardcolumn MP(×L)」6.0mmID×4.0cm1本、および東ソー社製「TSK-GELMULTIPOREHXL-M」7.8mmID×30.0cm(理論段数16,000段)2本、計3本(全体として理論段数32,000段)
 サンプル注入量:100μl(試料液濃度1mg/ml)
 送液圧力:39kg/cm2
 検出器:RI検出器
The weight average molecular weight of the polyfunctional (meth) acrylate oligomer / polymer is preferably 7000 to 60000, more preferably 8000 to 40000, and most preferably 8500 to 30000. In the examples, the weight average molecular weight is determined by preparing a calibration curve with commercially available standard polystyrene using GPC system (SC-8010 manufactured by Tosoh Corporation) using tetrahydrofuran as a solvent under the following conditions. It was.
Flow rate: 1.0 ml / min
Setting temperature: 40 ° C. Column configuration: “TSK guardcolumn MP (× L)” manufactured by Tosoh Corporation, 6.0 mm ID × 4.0 cm 1 and “TSK-GELMULTIPREHXL-M” manufactured by Tosoh Corporation, 7.8 mm ID × 30.0 cm (theoretical plate number) 16,000 stages) 2 in total, 3 total (32,000 theoretical stages as a whole)
Sample injection volume: 100 μl (sample solution concentration 1 mg / ml)
Liquid feeding pressure: 39 kg / cm 2
Detector: RI detector
 2官能(メタ)アクリレートモノマーとしては、トリプロピレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、2-エチル-2-ブチル-プロパンジオールジ(メタ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、ステアリン酸変性ペンタエリストールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシジエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシプロポキシフェニル)プロパン、又は2,2-ビス(4-(メタ)アクリロキシテトラエトキシフェニル)プロパン等が挙げられる。3官能(メタ)アクリレートモノマーとしては、トリメチロールプロパントリ(メタ)アクリレート、トリス[(メタ)アクリロイキシエチル]イソシアヌレート等が挙げられる。4官能以上の(メタ)アクリレートモノマーとしては、ジメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、又はジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。 Examples of the bifunctional (meth) acrylate monomer include tripropylene glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexanediol diester. (Meth) acrylate, 1,9-nonanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, 2-ethyl-2-butyl-propanediol di (meth) Acrylate, neopentyl glycol modified trimethylolpropane di (meth) acrylate, stearic acid modified pentaerythritol di (meth) acrylate, polypropylene glycol di (meth) acrylate, 2,2-bis (4- (meth) acryloxydiethoxy Fe Le) propane, 2,2-bis (4- (meth) acryloxy propoxyphenyl) propane or 2,2-bis (4- (meth) acryloxy-tetra-ethoxyphenyl) propane. Examples of the trifunctional (meth) acrylate monomer include trimethylolpropane tri (meth) acrylate and tris [(meth) acryloxyethyl] isocyanurate. Examples of tetrafunctional or higher functional (meth) acrylate monomers include dimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, or dipenta Examples include erythritol hexa (meth) acrylate.
 多官能(メタ)アクリレートの中では、効果が大きい点で、多官能(メタ)アクリレートオリゴマー/ポリマー及び/又は2官能(メタ)アクリレートモノマーを含有することが好ましく、多官能(メタ)アクリレートオリゴマー/ポリマーと2官能(メタ)アクリレートモノマーを併用することがより好ましい。多官能(メタ)アクリレートオリゴマー/ポリマーと2官能(メタ)アクリレートモノマーを併用する場合の含有割合は、多官能(メタ)アクリレートオリゴマー/ポリマーと2官能(メタ)アクリレートモノマーの合計100質量部中、質量比で、多官能(メタ)アクリレートオリゴマー/ポリマー:2官能(メタ)アクリレートモノマー=10~90:90~10が好ましく、25~75:75~25がより好ましく、40~65:60~35が最も好ましい。 Among the polyfunctional (meth) acrylates, it is preferable to contain a polyfunctional (meth) acrylate oligomer / polymer and / or a bifunctional (meth) acrylate monomer in terms of high effect. It is more preferable to use a polymer and a bifunctional (meth) acrylate monomer in combination. When the polyfunctional (meth) acrylate oligomer / polymer and the bifunctional (meth) acrylate monomer are used in combination, the content ratio is 100 parts by mass in total of the polyfunctional (meth) acrylate oligomer / polymer and the bifunctional (meth) acrylate monomer. Multifunctional (meth) acrylate oligomer / polymer: bifunctional (meth) acrylate monomer = 10 to 90:90 to 10, preferably 25 to 75:75 to 25, more preferably 40 to 65:60 to 35 Is most preferred.
 (A)多官能(メタ)アクリレートは、疎水性のものが好ましい。疎水性の多官能(メタ)アクリレートとは、水酸基を有さない(メタ)アクリレートをいう。水溶性の場合には、切削加工時に組成物の硬化体が膨潤することにより位置ずれを起こし、加工精度が劣る懼れがあるため好ましくない。親水性であっても、その組成物の硬化体が水により大きく膨潤又は一部溶解することがなければ、使用してもよい。 (A) The polyfunctional (meth) acrylate is preferably hydrophobic. Hydrophobic polyfunctional (meth) acrylate refers to (meth) acrylate having no hydroxyl group. In the case of water-solubility, the cured product of the composition swells at the time of cutting, so that the position shift occurs and the processing accuracy may be inferior. Even if it is hydrophilic, it may be used as long as the cured product of the composition is not greatly swollen or partially dissolved by water.
 (B)単官能(メタ)アクリレートモノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、フェニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニロキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メトキシ化シクロデカトリエン(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、グリシジル(メタ)アクリレート、カプロラクトン変性テトラヒドロフルフリル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、t-ブチルアミノエチル(メタ)アクリレート、エトキシカルボニルメチル(メタ)アクリレート、フェノールエチレンオキサイド変性(メタ)アクリレート、フェノール(エチレンオキサイド2モル変性)(メタ)アクリレート、フェノール(エチレンオキサイド4モル変性)(メタ)アクリレート、パラクミルフェノールエチレンオキサイド変性(メタ)アクリレート、ノニルフェノールエチレンオキサイド変性(メタ)アクリレート、ノニルフェノール(エチレンオキサイド4モル変性)(メタ)アクリレート、ノニルフェノール(エチレンオキサイド8モル変性)(メタ)アクリレート、ノニルフェノール(プロピレンオキサイド2.5モル変性)(メタ)アクリレート、2-エチルヘキシルカルビトール(メタ)アクリレート、エチレンオキシド変性フタル酸(メタ)アクリレート、エチレンオキシド変性コハク酸(メタ)アクリレート、トリフロロエチル(メタ)アクリレート、アクリル酸、メタクリル酸、マレイン酸、フマル酸、ω-カルボキシ-ポリカプロラクトンモノ(メタ)アクリレート、フタル酸モノヒドロキシエチル(メタ)アクリレート、(メタ)アクリル酸ダイマー、β-(メタ)アクロイルオキシエチルハイドロジェンサクシネート、n-(メタ)アクリロイルオキシアルキルヘキサヒドロフタルイミド、2-(1,2-シクロヘキサジカルボキシイミド)エチル(メタ)アクリレート、エトキシエチレングリコールジ(メタ)アクリレート、ベンジル(メタ)アクリレート等が挙げられる。 (B) Monofunctional (meth) acrylate monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate , Isodecyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, phenyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclo Pentenyloxyethyl (meth) acrylate, isobornyl (meth) acrylate, methoxylated cyclodecatriene (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydro Cypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, glycidyl (meth) acrylate , Caprolactone-modified tetrahydrofurfuryl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, t-butyl Aminoethyl (meth) acrylate, ethoxycarbonylmethyl (meth) acrylate, phenol ethylene oxide modified (meth) acrylate, phenol (ethylene oxide 2 mol modified) (meta Acrylate, phenol (ethylene oxide 4 mol modified) (meth) acrylate, paracumylphenol ethylene oxide modified (meth) acrylate, nonylphenol ethylene oxide modified (meth) acrylate, nonylphenol (ethylene oxide 4 mol modified) (meth) acrylate, nonylphenol ( Ethylene oxide 8 mol modified) (meth) acrylate, nonylphenol (propylene oxide 2.5 mol modified) (meth) acrylate, 2-ethylhexyl carbitol (meth) acrylate, ethylene oxide modified phthalic acid (meth) acrylate, ethylene oxide modified succinic acid ( (Meth) acrylate, trifluoroethyl (meth) acrylate, acrylic acid, methacrylic acid, maleic acid, fumaric acid, ω-carbo Si-polycaprolactone mono (meth) acrylate, monohydroxyethyl (meth) acrylate phthalate, (meth) acrylic acid dimer, β- (meth) acryloyloxyethyl hydrogen succinate, n- (meth) acryloyloxyalkylhexa Examples include hydrophthalimide, 2- (1,2-cyclohexadicarboximido) ethyl (meth) acrylate, ethoxyethylene glycol di (meth) acrylate, and benzyl (meth) acrylate.
 単官能(メタ)アクリレートの中では、効果が大きい点で、式(1)のフェノールアルキレンオキサイド変性(メタ)アクリレート、式(2)のイミド(メタ)アクリレートからなる群のうちの1種以上が好ましい。式(1)の中では、Rは水素が好ましい。Rは炭素数2~4のアルキレン基が好ましく、炭素数2~3のアルキレン基がより好ましい。
 アルキレン基の水素を水酸基に置換しても良い。mは1~3が好ましい。式(1)の中では、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、フェノールエチレンオキサイド2モル変性(メタ)アクリレートからなる群のうちの1種以上が好ましい。式(2)の中では、Rは水素が好ましい。Rは炭素数2~4のアルキレン基が好ましく、炭素数2~3のアルキレン基がより好ましい。nは1~3が好ましい。式(2)の中では、2-(1,2-シクロヘキサジカルボキシイミド)エチル(メタ)アクリレートが好ましい。
Figure JPOXMLDOC01-appb-C000001
 (Rは水素又はアルキル基である。Rはアルキレン基であり、アルキレン基中の水素は水酸基で置換しても良い。Rは水素又はメチル基である。mは1~6。)
Figure JPOXMLDOC01-appb-C000002
 (Rは水素又はアルキル基である。Rはアルキレン基であり、アルキレン基中の水素は水酸基で置換しても良い。Rは水素又はメチル基である。nは1~6。)
Among the monofunctional (meth) acrylates, one or more of the group consisting of the phenol alkylene oxide modified (meth) acrylate of the formula (1) and the imide (meth) acrylate of the formula (2) are effective. preferable. In formula (1), R 1 is preferably hydrogen. R 2 is preferably an alkylene group having 2 to 4 carbon atoms, more preferably an alkylene group having 2 to 3 carbon atoms.
The hydrogen of the alkylene group may be substituted with a hydroxyl group. m is preferably 1 to 3. In the formula (1), one or more members selected from the group consisting of 2-hydroxy-3-phenoxypropyl (meth) acrylate and phenol ethylene oxide 2 molar modified (meth) acrylate are preferable. In formula (2), R 4 is preferably hydrogen. R 5 is preferably an alkylene group having 2 to 4 carbon atoms, and more preferably an alkylene group having 2 to 3 carbon atoms. n is preferably 1 to 3. Among the formulas (2), 2- (1,2-cyclohexadicarboximido) ethyl (meth) acrylate is preferable.
Figure JPOXMLDOC01-appb-C000001
(R 1 is hydrogen or an alkyl group. R 2 is an alkylene group, and hydrogen in the alkylene group may be substituted with a hydroxyl group. R 3 is hydrogen or a methyl group. M is 1-6.)
Figure JPOXMLDOC01-appb-C000002
(R 4 is hydrogen or an alkyl group. R 5 is an alkylene group, and hydrogen in the alkylene group may be substituted with a hydroxyl group. R 6 is hydrogen or a methyl group. N is 1 to 6.)
 単官能(メタ)アクリレートの中では、効果が大きい点で、フェノールエチレンオキサイド2モル変性(メタ)アクリレート、2-(1,2-シクロヘキサジカルボキシイミド)エチル(メタ)アクリレート及び2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレートからなる群のうちの1種以上が好ましい。フェノールエチレンオキサイド2モル変性(メタ)アクリレートと、2-(1,2-シクロヘキサジカルボキシイミド)エチル(メタ)アクリレート及び/又は2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレートとを併用することがより好ましい。 Among monofunctional (meth) acrylates, phenolethylene oxide 2 mol-modified (meth) acrylate, 2- (1,2-cyclohexadicarboximido) ethyl (meth) acrylate and 2-hydroxy-3 are more effective. One or more of the group consisting of -phenoxypropyl (meth) acrylate is preferred. Phenolethylene oxide 2 mol modified (meth) acrylate and 2- (1,2-cyclohexadicarboximido) ethyl (meth) acrylate and / or 2-hydroxy-3-phenoxypropyl (meth) acrylate may be used in combination More preferred.
 フェノールエチレンオキサイド2モル変性(メタ)アクリレートと、2-(1,2-シクロヘキサジカルボキシイミド)エチル(メタ)アクリレート及び/又は2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレートとを併用する場合の含有割合は、フェノールエチレンオキサイド2モル変性(メタ)アクリレート、2-(1,2-シクロヘキサジカルボキシイミド)エチル(メタ)アクリレート及び2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレートの合計100質量部中、質量比で、フェノールエチレンオキサイド2モル変性(メタ)アクリレート:2-(1,2-シクロヘキサジカルボキシイミド)エチル(メタ)アクリレート及び/又は2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート=5~80:95~20が好ましく、15~60:85~40がより好ましく、20~40:80~60が最も好ましい。 In the case of using together 2 mol of phenol ethylene oxide modified (meth) acrylate and 2- (1,2-cyclohexadicarboximido) ethyl (meth) acrylate and / or 2-hydroxy-3-phenoxypropyl (meth) acrylate The content ratio is 100 parts by mass in total of phenol ethylene oxide 2 mol modified (meth) acrylate, 2- (1,2-cyclohexadicarboximido) ethyl (meth) acrylate and 2-hydroxy-3-phenoxypropyl (meth) acrylate. In a mass ratio, phenol ethylene oxide 2 mol modified (meth) acrylate: 2- (1,2-cyclohexadicarboximido) ethyl (meth) acrylate and / or 2-hydroxy-3-phenoxypropyl (meth) acrylate = 5-80: Is preferably 5 to 20, 15 to 60: and more preferably 85 to 40 and 20 to 40: 80 to 60 being most preferred.
 (B)単官能(メタ)アクリレートは、(A)同様に疎水性のものがより好ましい。疎水性の多官能(メタ)アクリレートとは、水酸基を有さない(メタ)アクリレートをいう。水溶性の場合には、切削加工時に組成物の硬化体が膨潤することにより位置ずれを起こし、加工精度が劣る懼れがあるため好ましくない。親水性であっても、その組成物の硬化体が水によって膨潤又は一部溶解することがなければ、使用してもよい。 (B) Monofunctional (meth) acrylate is more preferably hydrophobic as in (A). Hydrophobic polyfunctional (meth) acrylate refers to (meth) acrylate having no hydroxyl group. In the case of water-solubility, the cured product of the composition swells at the time of cutting, so that the position shift occurs and the processing accuracy may be inferior. Even if it is hydrophilic, it may be used as long as the cured product of the composition is not swollen or partially dissolved by water.
 (A)多官能(メタ)アクリレートの使用量は、(A)及び(B)の合計量100質量部中、15~95質量部が好ましく、20~50質量部が好ましい。15質量部以上であれば、組成物の硬化体を温水に浸漬した時に被着物より当該硬化体が剥離する性質(以下、単に「剥離性」という)が充分に助長されるし、組成物の硬化体がフィルム状に剥離できる。95質量部以下であれば、初期の接着性が低下する懼れもない。 The amount of (A) polyfunctional (meth) acrylate used is preferably 15 to 95 parts by mass, and preferably 20 to 50 parts by mass, out of 100 parts by mass of the total amount of (A) and (B). If it is 15 parts by mass or more, the property that the cured product is peeled off from the adherend when the cured product of the composition is immersed in warm water (hereinafter simply referred to as “peelability”) is sufficiently promoted. The cured product can be peeled into a film. If it is 95 mass parts or less, there is no possibility that initial adhesiveness will fall.
 (C)重合開始剤は、樹脂組成物の硬化を促進するために配合するものであり、公知の各種重合開始剤が使用可能である。重合開始剤としては、(C-1)光ラジカル重合開始剤(以下光重合開始剤ということもある)、(C-2)熱ラジカル重合開始剤(以下熱重合開始剤ということもある)等が挙げられる。 (C) The polymerization initiator is blended to accelerate the curing of the resin composition, and various known polymerization initiators can be used. Examples of the polymerization initiator include (C-1) photoradical polymerization initiator (hereinafter also referred to as photopolymerization initiator), (C-2) thermal radical polymerization initiator (hereinafter also referred to as thermal polymerization initiator), and the like. Is mentioned.
 (C-1)光重合開始剤は、光硬化性接着剤に使用するものであり、可視光線や紫外線の活性光線により増感させて樹脂組成物の光硬化を促進するために配合するものであり、公知の各種光重合開始剤が使用可能である。具体的にはベンゾフェノン又はその誘導体;ベンジル又はその誘導体;アントラキノン又はその誘導体;ベンゾイン;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル、ベンジルジメチルケタール等のベンゾイン誘導体;ジエトキシアセトフェノン、4-t-ブチルトリクロロアセトフェノン等のアセトフェノン誘導体;2-ジメチルアミノエチルベンゾエート;p-ジメチルアミノエチルベンゾエート;ジフェニルジスルフィド;チオキサントン又はその誘導体;カンファーキノン;7,7-ジメチル-2,3-ジオキソビシクロ[2.2.1]ヘプタン-1-カルボン酸、7,7-ジメチル-2,3-ジオキソビシクロ[2.2.1]ヘプタン-1-カルボキシ-2-ブロモエチルエステル、7,7-ジメチル-2,3-ジオキソビシクロ[2.2.1]ヘプタン-1-カルボキシ-2-メチルエステル、7,7-ジメチル-2,3-ジオキソビシクロ[2.2.1]ヘプタン-1-カルボン酸クロライド等のカンファーキノン誘導体;2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1等のα-アミノアルキルフェノン誘導体;ベンゾイルジフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ベンゾイルジエトキシポスフィンオキサイド、2,4,6-トリメチルベンゾイルジメトキシフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジエトキシフェニルホスフィンオキサイド等のアシルホスフィンオキサイド誘導体、オキシ-フェニル-アセチックアシッド2-[2-オキソ-2-フェニル-アセトキシ-エトキシ]-エチルエステル及び/又はオキシ-フェニル-アセチックアシッド2-[2-ヒドロキシ-エトキシ]-エチルエステル等が挙げられる。光重合開始剤は1種又は2種以上を組み合わせて用いることができる。これらの中では、効果が大きい点で、ベンジルジメチルケタール、オキシ-フェニル-アセチックアシッド2-[2-オキソ-2-フェニル-アセトキシ-エトキシ]-エチルエステル及びオキシ-フェニル-アセチックアシッド2-[2-ヒドロキシ-エトキシ]-エチルエステルからなる群のうちの1種又は2種以上が好ましい。 (C-1) The photopolymerization initiator is used for a photocurable adhesive, and is blended to accelerate photocuring of the resin composition by sensitizing with actinic light of visible light or ultraviolet light. Yes, various known photopolymerization initiators can be used. Specifically, benzophenone or a derivative thereof; benzyl or a derivative thereof; anthraquinone or a derivative thereof; benzoin; a benzoin derivative such as benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isobutyl ether, or benzyl dimethyl ketal; diethoxyacetophenone, 4 Acetophenone derivatives such as t-butyltrichloroacetophenone; 2-dimethylaminoethyl benzoate; p-dimethylaminoethyl benzoate; diphenyl disulfide; thioxanthone or derivatives thereof; camphorquinone; 7,7-dimethyl-2,3-dioxobicyclo [ 2.2.1] Heptane-1-carboxylic acid, 7,7-dimethyl-2,3-dioxobicyclo [2.2.1] heptane-1-carboxy-2 Bromoethyl ester, 7,7-dimethyl-2,3-dioxobicyclo [2.2.1] heptane-1-carboxy-2-methyl ester, 7,7-dimethyl-2,3-dioxobicyclo [2 2.1] Camphorquinone derivatives such as heptane-1-carboxylic acid chloride; 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethyl Α-aminoalkylphenone derivatives such as amino-1- (4-morpholinophenyl) -butanone-1; benzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, benzoyldiethoxyphosphine oxide, 2, 4,6-trimethylbenzoyldimethoxyphenylphosphine oxide, 2 Acylphosphine oxide derivatives such as 1,4,6-trimethylbenzoyldiethoxyphenylphosphine oxide, oxy-phenyl-acetic acid 2- [2-oxo-2-phenyl-acetoxy-ethoxy] -ethyl ester and / or oxy-phenyl -Acetic acid 2- [2-hydroxy-ethoxy] -ethyl ester and the like. A photoinitiator can be used 1 type or in combination of 2 or more types. Among these, benzyldimethyl ketal, oxy-phenyl-acetic acid 2- [2-oxo-2-phenyl-acetoxy-ethoxy] -ethyl ester and oxy-phenyl-acetic acid 2- One or more of the group consisting of [2-hydroxy-ethoxy] -ethyl ester are preferred.
 (C-1)光重合開始剤の含有量は、(A)及び(B)の合計100質量部に対して、0.1~30質量部が好ましく、0.5~25質量部がより好ましく、1~20質量部が最も好ましい。0.1質量部以上であれば、硬化促進の効果が確実に得られるし、20質量部以下で充分な硬化速度を得ることができる。(C-1)成分を1質量部以上添加することは、光照射量に依存なく硬化可能となり、さらに組成物の硬化体の架橋度が高くなり、切削加工時に位置ずれ等を起こさなくなる点や剥離性が向上する点で、さらに好ましい。 (C-1) The content of the photopolymerization initiator is preferably 0.1 to 30 parts by mass, more preferably 0.5 to 25 parts by mass with respect to 100 parts by mass in total of (A) and (B). Most preferred is 1 to 20 parts by mass. If it is 0.1 mass part or more, the effect of hardening acceleration | stimulation will be acquired reliably, and sufficient curing rate can be obtained in 20 mass parts or less. The addition of 1 part by mass or more of component (C-1) makes it possible to cure without depending on the amount of light irradiation, further increases the degree of crosslinking of the cured product of the composition, and does not cause misalignment during cutting, It is further preferable in terms of improving peelability.
 (C-2)熱重合開始剤は、熱硬化性接着剤に使用するものであり、熱により樹脂組成物の熱硬化を促進するために配合するものであり、公知の各種熱重合開始剤が使用可能である。(C-2)熱重合開始剤を使用すると、透光性を有しない硬質基板11の積層に使用した場合、硬化性が確実に得られる。 (C-2) The thermal polymerization initiator is used for a thermosetting adhesive, and is blended in order to promote thermal curing of the resin composition by heat. Various known thermal polymerization initiators are used. It can be used. When the (C-2) thermal polymerization initiator is used, curability can be reliably obtained when it is used for laminating the hard substrate 11 having no translucency.
 (C-2)熱重合開始剤の中では、有機過酸化物が好ましい。(C-2)有機過酸化物としては、ラウロイルパーオキサイド、ベンゾイルパーオキサイド等のジアシルパーオキサイド類、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、クミルパーオキシネオデカノエイト、ヘキシルパーオキシビバレート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシビバレート、t-ブチルパーオキシアセテート、t-ブチルパーオキシベンゾエート、ターシャリーブチルパーオキシ-2-エチルヘキサネート等のアルキルパーオキシエステル類、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジノルマルプロピルパーオキシジカーボネート、ビス(4-ターシャリーブチルシクロヘキシル)パーオキシジカーボネート、ジ-2-エトキシエチルパーオキシジカーボネート、ジメトキシイソプロピルパーオキシジカーボネート、ジ(3-メチル-3-メトキシブチル)パーオキシジカーボネート及びジアリルパーオキシジカーボネート等のパーオキシジカーボネート類、t-ブチルパーオキシイソプロピルカーボネート等のパーオキシカーボネート類、ジ-t-ブチルパーオキシシクロヘキサン、ジ-(t-ブチルパーオキシ)ブタン等のパーオキシケタール類、ジキュミルパーオキサイド、t-ブチルキュミルパーオキサイド、ジ-t-ブチルパーオキサイド等のジアルキルパーオキサイド類、クメンハイドロパーオキサイド、テトラメチルブチルハイドロパーオキサイド等のハイドロパーオキサイド類、シクロヘキサノンパーオキサイド等のケトンパーオキサイド類等が挙げられる。これらの中では、アルキルパーオキシエステル類及び/又はハイドロパーオキサイド類が好ましく、ハイドロパーオキサイド類がより好ましく、クメンハイドロパーオキサイドが最も好ましい。 (C-2) Among the thermal polymerization initiators, organic peroxides are preferable. (C-2) Organic peroxides include diacyl peroxides such as lauroyl peroxide and benzoyl peroxide, t-butylperoxy-3,5,5-trimethylhexanoate, cumylperoxyneodecanoate Hexyl peroxybivalate, t-butyl peroxyisobutyrate, t-butyl peroxybivalate, t-butyl peroxyacetate, t-butyl peroxybenzoate, tertiary butyl peroxy-2-ethylhexanate, etc. Alkyl peroxyesters, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, dinormalpropyl peroxydicarbonate, bis (4-tertiarybutylcyclohexyl) peroxydicarbonate, di-2- Peroxydicarbonates such as toxiethylperoxydicarbonate, dimethoxyisopropylperoxydicarbonate, di (3-methyl-3-methoxybutyl) peroxydicarbonate and diallylperoxydicarbonate, t-butylperoxyisopropylcarbonate Peroxycarbonates such as di-t-butylperoxycyclohexane and di- (t-butylperoxy) butane, dicumyl peroxide, t-butylcumyl peroxide, di-t Dialkyl peroxides such as butyl peroxide, hydroperoxides such as cumene hydroperoxide and tetramethylbutyl hydroperoxide, and ketone peroxides such as cyclohexanone peroxide And the like. Among these, alkyl peroxyesters and / or hydroperoxides are preferable, hydroperoxides are more preferable, and cumene hydroperoxide is most preferable.
 (C-2)熱重合開始剤の使用量は、(A)及び(B)の合計量100質量部に対して、0.01~10質量部が好ましく、0.05~5質量部がより好ましく、1~3質量部が最も好ましい。0.01質量部以上であれば、硬化性が確実に得られるし、10質量部以下であれば十分な貯蔵安定性が得られ、皮膚刺激性が低くなる。 (C-2) The amount of the thermal polymerization initiator used is preferably 0.01 to 10 parts by weight, more preferably 0.05 to 5 parts by weight, based on 100 parts by weight of the total amount of (A) and (B). Preferably, 1 to 3 parts by mass is most preferable. If it is 0.01 mass part or more, sclerosis | hardenability will be obtained reliably, and if it is 10 mass parts or less, sufficient storage stability will be obtained and skin irritation will become low.
 硬化性接着剤は、接着剤の成分(A)、(B)及び(C)に溶解しない粒状物質(D)を含有するのが好ましい。これにより、硬化後の組成物が一定の厚みを保持できるため、後述のように加工精度が向上する。 The curable adhesive preferably contains a particulate substance (D) that does not dissolve in the components (A), (B), and (C) of the adhesive. Thereby, since the composition after hardening can hold | maintain fixed thickness, a process precision improves as mentioned later.
  粒状物質(D)の材質としては、一般的に使用される有機粒子、又は無機粒子いずれでもかまわない。具体的には、有機粒子としては、ポリエチレン粒子、ポリプロピレン粒子、架橋ポリ(メタ)アクリル酸メチル粒子、架橋ポリスチレン粒子などが挙げられる。無機粒子としてはガラス、シリカ、アルミナ、チタンなどセラミック粒子が挙げられる。これらの中では、有機粒子が好ましく、架橋ポリスチレン粒子がより好ましい。 As the material of the particulate material (D), either generally used organic particles or inorganic particles may be used. Specifically, examples of the organic particles include polyethylene particles, polypropylene particles, crosslinked poly (meth) acrylate methyl particles, and crosslinked polystyrene particles. Inorganic particles include ceramic particles such as glass, silica, alumina, and titanium. Among these, organic particles are preferable, and crosslinked polystyrene particles are more preferable.
  粒状物質は、加工精度の向上、つまり接着剤層12の膜厚制御の観点から球状であることが好ましい。粒状物質のレーザー法による平均粒径は50~200μmの範囲にあることが好ましい。前記粒状物質の平均粒径が50μm未満であると切削用工具において強度に劣る切削部先端を使用するため切削用工具の寿命を低下させ、さらに、切削加工効率の低下を引き起こすことがあり、200μmを超えると接着剤の使用量が多くなりコスト高になるため生産性に劣ることがある。より好ましい平均粒径(D50)は70~150μmであり、更に好ましくは80~120μmである。粒径分布は、レーザー回折式粒度分布測定装置により測定される。 The granular material is preferably spherical from the viewpoint of improving processing accuracy, that is, controlling the thickness of the adhesive layer 12. The average particle diameter of the granular material by the laser method is preferably in the range of 50 to 200 μm. If the average particle size of the granular material is less than 50 μm, the cutting tool tip having poor strength is used in the cutting tool, so that the life of the cutting tool is reduced, and further, the cutting efficiency may be reduced. If it exceeds 1, the amount of adhesive used will increase and the cost will be high, which may result in poor productivity. A more preferable average particle diameter (D50) is 70 to 150 μm, and further preferably 80 to 120 μm. The particle size distribution is measured by a laser diffraction type particle size distribution measuring device.
 粒状物質(D)の使用量は、接着性、加工精度、剥離性の観点から、(A)及び(B)の合計量100質量部に対して、0.1~20質量部が好ましく、0.2~10質量部がより好ましく、0.2~6質量部が最も好ましい。 The amount of the granular material (D) used is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the total amount of (A) and (B), from the viewpoint of adhesiveness, processing accuracy, and peelability. 2 to 10 parts by mass is more preferable, and 0.2 to 6 parts by mass is most preferable.
 硬化性接着剤には、貯蔵安定性向上のため重合禁止剤(E)を添加することができる。重合禁止剤としては、メチルハイドロキノン、ハイドロキノン、2,2-メチレン-ビス(4-メチル-6-ターシャリーブチルフェノール)、カテコール、ハイドロキノンモノメチルエーテル、モノターシャリーブチルハイドロキノン、2,5-ジターシャリーブチルハイドロキノン、p-ベンゾキノン、2,5-ジフェニル-p-ベンゾキノン、2,5-ジターシャリーブチル-p-ベンゾキノン、ピクリン酸、クエン酸、フェノチアジン、ターシャリーブチルカテコール、2-ブチル-4-ヒドロキシアニソール及び2,6-ジターシャリーブチル-p-クレゾール等が挙げられる。 A polymerization inhibitor (E) can be added to the curable adhesive to improve storage stability. Polymerization inhibitors include methyl hydroquinone, hydroquinone, 2,2-methylene-bis (4-methyl-6-tertiary butylphenol), catechol, hydroquinone monomethyl ether, monotertiary butyl hydroquinone, 2,5-ditertiary butyl hydroquinone. P-benzoquinone, 2,5-diphenyl-p-benzoquinone, 2,5-ditertiarybutyl-p-benzoquinone, picric acid, citric acid, phenothiazine, tertiary butylcatechol, 2-butyl-4-hydroxyanisole and 2 , 6-ditertiary butyl-p-cresol and the like.
  重合禁止剤(E)の使用量は、(A)及び(B)の合計量100質量部に対して、0.001~3質量部が好ましく、0.01~2質量部がより好ましい。0.001質量部以上であれば、貯蔵安定性が確保されるし、3質量部以下であれば、良好な接着性が得られ、未硬化になることもない。 The amount of the soot polymerization inhibitor (E) used is preferably 0.001 to 3 parts by mass, more preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of the total amount of (A) and (B). If it is 0.001 mass part or more, storage stability will be ensured, and if it is 3 mass parts or less, favorable adhesiveness will be obtained and it will not become uncured.
 (C-2)熱重合開始剤を使用する場合、(F)分解促進剤を含有しても良い。これにより、常温でも硬化性が確実に得られる。
 (F)分解促進剤としては、有機過酸化物の分解を促進する分解促進剤が好ましい。(F)有機過酸化物の分解を促進する分解促進剤としては、以下が挙げられる。
(C-2) When a thermal polymerization initiator is used, (F) a decomposition accelerator may be contained. Thereby, sclerosis | hardenability is reliably acquired also at normal temperature.
(F) The decomposition accelerator is preferably a decomposition accelerator that accelerates the decomposition of the organic peroxide. (F) The following is mentioned as a decomposition accelerator which accelerates | stimulates decomposition | disassembly of an organic peroxide.
 有機過酸化物としてハイドロパーオキサイド類やケトンパーオキサイド類のものを使用する場合、分解促進剤としては、有機酸金属塩や有機金属キレート等が挙げられる。有機酸金属塩や有機金属キレートとしては、例えば、ナフテン酸コバルト、ナフテン酸銅、ナフテン酸マンガン、オクテン酸コバルト、オクテン酸銅、オクテン酸マンガン、オクチル酸コバルト、銅アセチルアセトネート、チタンアセチルアセトネート、マンガンアセチルアセトネート、クロムアセチルアセトネート、鉄アセチルアセトネート、バナジルアセチルアセトネート及びコバルトアセチルアセトネート等が挙げられる。これらの中では、オクチル酸コバルト及び/又はバナジルアセチルアセトネートが好ましく、オクチル酸コバルトが最も好ましい。その他の分解促進剤としては、チオ尿素誘導体類、メルカプトベンゾイミダゾール、アミン類等が挙げられる。これらの(F)分解促進剤は、1種又は2種以上を使用することができる。 When using organic peroxides such as hydroperoxides and ketone peroxides, examples of the decomposition accelerator include organic acid metal salts and organic metal chelates. Examples of organic acid metal salts and organic metal chelates include cobalt naphthenate, copper naphthenate, manganese naphthenate, cobalt octenoate, copper octenoate, manganese octenoate, cobalt octylate, copper acetylacetonate, and titanium acetylacetonate. Manganese acetylacetonate, chromium acetylacetonate, iron acetylacetonate, vanadyl acetylacetonate, cobalt acetylacetonate and the like. Among these, cobalt octylate and / or vanadyl acetylacetonate are preferable, and cobalt octylate is most preferable. Other decomposition accelerators include thiourea derivatives, mercaptobenzimidazoles, amines and the like. These (F) decomposition accelerators can use 1 type (s) or 2 or more types.
 (F)分解促進剤の使用量は、(A)及び(B)の合計100質量部に対して、0.01~10質量部が好ましく、0.05~5質量部がより好ましく、0.3~3質量部が最も好ましい。0.01質量部以上であれば、硬化性が確実に得られるし、10質量部以下であれば十分な貯蔵安定性が得られる。 The amount of the (F) decomposition accelerator used is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass in total of (A) and (B). Most preferred is 3 to 3 parts by weight. If it is 0.01 mass part or more, sclerosis | hardenability will be obtained reliably, and if it is 10 mass parts or less, sufficient storage stability will be obtained.
 (C-2)熱重合開始剤と(F)分解促進剤を含有する硬化性接着剤は典型的には、二剤型の組成物として提供される。二剤型については、硬化性接着剤の必須成分全てを貯蔵中は混合せず、硬化性接着剤を第一剤及び第二剤に分けて貯蔵することが好ましい。この場合、両剤を同時に又は別々に部材に塗布して接触、硬化することにより、二剤型の硬化性接着剤として使用できる。二剤型の硬化性接着剤として使用する場合、第一剤が少なくとも(C-2)熱重合開始剤を含有し、第二剤が少なくとも(F)分解促進剤を含有することが好ましい。本発明は、加熱しなくても、二剤の混合のみによっても組成物を硬化させることができる。 (C-2) A curable adhesive containing a thermal polymerization initiator and (F) a decomposition accelerator is typically provided as a two-component composition. For the two-component type, it is preferable that all the essential components of the curable adhesive are not mixed during storage, and the curable adhesive is stored separately in the first agent and the second agent. In this case, it can be used as a two-part curable adhesive by applying both agents simultaneously or separately to a member and contacting and curing. When used as a two-component curable adhesive, it is preferable that the first agent contains at least (C-2) a thermal polymerization initiator and the second agent contains at least (F) a decomposition accelerator. In the present invention, the composition can be cured only by mixing two components without heating.
 本発明は更に、(C-1)光重合開始剤と(C-2)熱重合開始剤と(F)分解促進剤を併用しても良い。これにより透光性硬質基板に光が透過しない印刷パターンが意匠性の点から施されていたとしても硬化性が確実に得られる。(C-1)光重合開始剤と(C-2)熱重合開始剤と(F)分解促進剤を併用した場合、(C-1)光重合開始剤は、第一剤及び第二剤のいずれか一方又は両方に含有して良い。 In the present invention, (C-1) a photopolymerization initiator, (C-2) a thermal polymerization initiator, and (F) a decomposition accelerator may be used in combination. Thereby, even if the printing pattern which does not permeate | transmit light is given to the translucent hard board | substrate from the point of the designability, sclerosis | hardenability is obtained reliably. When (C-1) a photopolymerization initiator, (C-2) a thermal polymerization initiator, and (F) a decomposition accelerator are used in combination, (C-1) the photopolymerization initiator includes the first agent and the second agent. It may be contained in either one or both.
 <3.板状製品の製造方法>
 本発明に係る硬質基板積層体から板状製品を製造することができる。本発明に係る板状製品の製造方法の一実施形態においては、硬質基板積層体を厚み方向に切断し、所望の数の分割された硬質基板積層体を得る工程5と、分割された硬質基板積層体を加工して製品形状の硬質基板積層体を得る工程6と、製品形状の硬質基板積層体を剥離し、複数の板状製品を得る工程7とを含む。
<3. Manufacturing method of plate products>
A plate-like product can be produced from the hard substrate laminate according to the present invention. In one embodiment of the plate-shaped product manufacturing method according to the present invention, the hard substrate laminate is cut in the thickness direction to obtain a desired number of divided hard substrate laminates, and the divided hard substrates. The process 6 includes a step 6 of obtaining a product-shaped hard substrate laminate by processing the laminate, and a step 7 of peeling the product-shaped hard substrate laminate to obtain a plurality of plate-like products.
 まず、工程5において、硬質基板積層体を厚み方向に分割し、所望の数の分割された硬質基板積層体を形成する。分割方法は特に制限はないが、円板カッター(ダイヤモンドディスク、超硬合金ディスク)、固定砥粒式又は遊離砥粒式ワイヤソー、レーザービーム、エッチング(例:フッ酸や硫酸等を用いた化学エッチングや電解エッチング)、ウオータージェット、及び電熱帯(ニクロム線)をそれぞれ単独で又は組み合わせて使用して、同サイズの直方体形状に分割する方法が挙げられる。エッチングは分割後の切断面の表面処理に用いることもできる。 First, in step 5, the hard substrate laminate is divided in the thickness direction to form a desired number of divided hard substrate laminates. The dividing method is not particularly limited, but a disk cutter (diamond disc, cemented carbide disc), fixed abrasive type or loose abrasive type wire saw, laser beam, etching (eg, chemical etching using hydrofluoric acid, sulfuric acid, etc.) And electrolytic etching), water jet, and electrotrophic (nichrome wire) may be used alone or in combination to divide into rectangular parallelepiped shapes of the same size. Etching can also be used for surface treatment of the cut surfaces after division.
 次に、工程6において、分割された硬質基板積層体それぞれに対して所望の形状加工を行う。この工程では、分割された硬質基板積層体毎に目的とする板状製品の形状に一体的に加工を行うことができるため、板状製品の生産速度を格段に高められるという利点がある。形状加工は公知の任意の手段によって行えばよいが、例えば回転砥石による研削、超音波振動ドリルによる孔開け、回転ブラシによる端面加工、エッチングによる孔開け、エッチングによる端面加工、エッチングによる外形加工、バーナーを用いた火炎加工等が挙げられる。ウオータージェットも使用できる。加工方法はそれぞれ単独で又は組み合わせて使用することができる。エッチングは形状加工後の表面処理に用いることもできる。 Next, in step 6, desired shape processing is performed on each of the divided hard substrate laminates. This process has an advantage that the production rate of the plate-like product can be significantly increased because the processing can be performed integrally with the shape of the target plate-like product for each of the divided hard substrate laminates. Shape processing may be performed by any known means. For example, grinding with a rotating grindstone, drilling with an ultrasonic vibration drill, end surface processing with a rotating brush, drilling with etching, end surface processing with etching, outer shape processing with etching, burner Flame processing using Water jets can also be used. The processing methods can be used alone or in combination. Etching can also be used for surface treatment after shape processing.
 形状加工によって除去される領域の硬質基板間に、接着剤の存在しない空隙があると、加工液の浸入による汚損損傷または、加工時に硬質基板積層体にかかる応力の変化によるチッピングやクラックの発生という弊害が生じる。そのため、形状加工によって除去される領域の硬質基板間には空隙が存在しないことが好ましい。 If there is a gap that does not have an adhesive between the hard substrates in the area to be removed by the shape processing, it means fouling damage due to the intrusion of the processing liquid, or chipping and cracking due to changes in the stress applied to the hard substrate laminate during processing. Bad effects occur. Therefore, it is preferable that no gap exists between the hard substrates in the region to be removed by the shape processing.
 更に、工程7では、形状加工後の硬質基板積層体を加熱することで貼り合わせられていた硬質基板同士を分離し、複数の板状製品を形成する。加熱方法としては特に制限はないが、固着剤がフィルム状に軟化して各板状製品に上手く分離するため、水に形状加工後の透光性硬質基板積層体を浸漬する方法が好ましい。好適な水の温度は採用する接着剤によって異なるが、40℃以上が好ましく、60~95℃がより好ましく、80~90℃が最も好ましい。 Furthermore, in step 7, the hard substrates laminated after the shape processing are heated to separate the hard substrates that have been bonded together to form a plurality of plate-like products. Although there is no restriction | limiting in particular as a heating method, Since the fixing agent softens to film shape and isolate | separates into each plate-shaped product well, the method of immersing the translucent hard board | substrate laminated body after shape processing in water is preferable. The suitable water temperature varies depending on the adhesive employed, but is preferably 40 ° C. or higher, more preferably 60 to 95 ° C., and most preferably 80 to 90 ° C.
 以上、本発明の実施形態について図面を参照しながら説明してきたが、本発明はこれらの実施形態に限られるものではなく、種々のバリエーションが可能である。 The embodiments of the present invention have been described above with reference to the drawings. However, the present invention is not limited to these embodiments, and various variations are possible.
 本発明及びその利点をより良く理解するために以下の実験例を提供する。 In order to better understand the present invention and its advantages, the following experimental examples are provided.
 (実験例1)
1.光硬化性接着剤1の作製
 以下の(A)~(E)の成分を混合して光硬化性接着剤1を作製した。
 (A)多官能(メタ)アクリレートとして、日本合成社製「UV-3000B」(ウレタンアクリレート、重量平均分子量18000、ポリオール化合物はポリエステルポリオール、有機ポリイソシアネート化合物はイソホロンジイソシアネート、ヒドロキシ(メタ)アクリレートは2-ヒドロキシエチルアクリレート)15質量部、ジシクロペンタニルジアクリレート(日本化薬社製「KAYARAD R-684」)15質量部、
 (B)単官能(メタ)アクリレートとして、2-(1,2-シクロヘキサジカルボキシイミド)エチルアクリレート(東亜合成社製「アロニックスM-140」)45質量部、フェノールエチレンオキサイド2モル変性アクリレート(東亜合成社製「アロニックスM-101A」)25質量部、
 (C-1)光重合開始剤としてベンジルジメチルケタール(BASF社製「IRGACURE651」)10質量部、
 (D)粒状物質として平均粒径(D50)が100μmの球状架橋ポリスチレン粒子(ガンツ化成社製「GS-100S」)1質量部、
 (E)重合禁止剤として2,2-メチレン-ビス(4-メチル-6-ターシャリーブチルフェノール)(住友化学社製「スミライザーMDP-S」)0.1質量部
(Experimental example 1)
1. Preparation of photocurable adhesive 1 Photocurable adhesive 1 was prepared by mixing the following components (A) to (E).
(A) As a polyfunctional (meth) acrylate, “UV-3000B” (urethane acrylate, weight average molecular weight 18000, manufactured by Nihon Gosei Co., Ltd., polyol compound is polyester polyol, organic polyisocyanate compound is isophorone diisocyanate, hydroxy (meth) acrylate is 2 -Hydroxyethyl acrylate) 15 parts by mass, dicyclopentanyl diacrylate (“KAYARAD R-684” manufactured by Nippon Kayaku Co., Ltd.), 15 parts by mass,
(B) As monofunctional (meth) acrylate, 45 parts by mass of 2- (1,2-cyclohexadicarboximido) ethyl acrylate (“Aronix M-140” manufactured by Toa Gosei Co., Ltd.), phenol ethylene oxide 2 mol modified acrylate (Toa 25 parts by mass of “Aronix M-101A” manufactured by Gosei Co., Ltd.
(C-1) 10 parts by mass of benzyldimethyl ketal (“IRGACURE651” manufactured by BASF) as a photopolymerization initiator,
(D) 1 part by weight of spherical crosslinked polystyrene particles having an average particle diameter (D50) of 100 μm (“GS-100S” manufactured by Ganz Kasei Co., Ltd.)
(E) 0.1 part by mass of 2,2-methylene-bis (4-methyl-6-tertiary butylphenol) (“Sumilyzer MDP-S” manufactured by Sumitomo Chemical Co., Ltd.) as a polymerization inhibitor
2.板ガラス積層体の作製
 透光性硬質基板として板ガラス(横530mm×縦420mm×厚み0.7mm)を12枚用意した。各板ガラス表面には、金属配線、ITO膜、有機樹脂膜、及びオルガノシリケート膜が形成されている。1枚目の板ガラス上に、切断加工線に沿って横方向及び縦方向に上記光硬化性接着剤を所定重量塗布した。ここでは、切断箇所を示すマークが板ガラスのマージン部分に設けてあり、これに基づいて切断加工線を特定した。
 塗布パターンは試験番号に応じて図4又は図5に示すパターンとした。図4においては、縦方向の直線状塗布ラインは切断加工線上に連続的に形成する一方、横方向の直線状塗布ラインは縦方向の塗布ラインと交差しない様、不連続的に塗布した。図5においては、縦方向及び横方向の塗布ライン共に切断加工線上に連続的に形成した。その結果、縦方向及び横方向の塗布ラインは交差点が生じた。また、試験片毎に塗布ラインの太さ(断面積)を変更することで、板ガラス間の空隙率を変化させた。塗布ラインの断面積は接着剤の塗布量、線長から平均値を算出した。
2. Production of Plate Glass Laminate Twelve plate glasses (horizontal 530 mm × vertical 420 mm × thickness 0.7 mm) were prepared as translucent hard substrates. Metal wiring, ITO film, organic resin film, and organosilicate film are formed on the surface of each plate glass. On the 1st sheet glass, the said photocurable adhesive agent was apply | coated predetermined weight in the horizontal direction and the vertical direction along the cutting process line. Here, the mark which shows a cutting location was provided in the margin part of plate glass, and the cutting process line was specified based on this.
The application pattern was the pattern shown in FIG. 4 or 5 depending on the test number. In FIG. 4, the vertical linear application lines are continuously formed on the cutting line, while the horizontal linear application lines are applied discontinuously so as not to intersect the vertical application lines. In FIG. 5, both the vertical and horizontal application lines were continuously formed on the cutting line. As a result, intersections occurred in the vertical and horizontal coating lines. Moreover, the porosity between plate glass was changed by changing the thickness (cross-sectional area) of an application line for every test piece. For the cross-sectional area of the coating line, an average value was calculated from the coating amount and line length of the adhesive.
 次いで、1枚目の板ガラスの長辺の一側縁上に2枚目の板ガラスの長辺の一側縁を重ねた後、これを軸にして2枚目の板ガラスを1枚目の板ガラスに向かって倒しながら、ロールプレス形式にて、余分な空気を押し出すように、対向する側縁に向かって順次貼り合わせた。その後、2枚目の板ガラスの表面側からUV照射し、上記光硬化性接着剤を硬化させた。光照射量500mJ/cm2(365nmの受光器による積算照度計による測定)とし、UV照射時間は10秒とした。各貼り合わせ工程後には、切断加工線によって囲まれた領域の総数に対して、空隙のある領域の数の割合を目視で確認し、積層体全体での平均割合を算出した。
 この手順を繰り返すことで、12枚の板ガラスからなる厚み8mm(この厚みは12枚の板ガラスを合計した積層体の厚みである)の種々の空隙率をもつ板ガラス積層体を作製した。
Next, after overlapping one side edge of the long side of the second sheet glass on one side edge of the long side of the first sheet glass, the second sheet glass is used as the first sheet glass with this as an axis. While tilting down, they were bonded together in the roll press format toward the opposite side edges so as to push out excess air. Then, UV irradiation was carried out from the surface side of the 2nd sheet glass, and the said photocurable adhesive agent was hardened. The light irradiation amount was 500 mJ / cm 2 (measured by an integrating illuminometer with a 365 nm light receiver), and the UV irradiation time was 10 seconds. After each bonding step, the ratio of the number of regions with voids was visually confirmed with respect to the total number of regions surrounded by the cutting line, and the average ratio of the entire laminate was calculated.
By repeating this procedure, plate glass laminates having various void ratios of 12 mm and having a thickness of 8 mm (this thickness is a thickness of a laminate obtained by adding 12 plate glasses) were produced.
3.板ガラス積層体の切断加工
 次に、板ガラスの積層体を受け台に固定した後、円板カッターによって所定の切断加工線に沿って厚み方向に切断し、分割された板ガラスの積層体を作製した。このとき、各板ガラスは、周縁部の端材を除き、縦100mm×横50mm×厚み0.7mm(この厚みは板ガラス1枚の厚みである)の大きさの板ガラスの積層体24個に分割された。
3. Next, after fixing the plate glass laminated body to the cradle, it cut | disconnected in the thickness direction along the predetermined cutting process line with the disc cutter, and produced the laminated body of the plate glass divided | segmented. At this time, each plate glass is divided into 24 plate glass laminates each having a size of 100 mm in length, 50 mm in width, and 0.7 mm in thickness (this thickness is the thickness of one sheet glass), except for the edge material at the periphery. It was.
4.板ガラス積層体の外形加工
 次に、分割された各積層体に対して切断された端面に正対するように回転砥石をあてがい端面研削する方法によって、平面視で図6に示すような形状に外形加工を施した。
4). Next, the outer shape is processed into a shape as shown in FIG. 6 in a plan view by a method of grinding the end face by applying a rotating grindstone so as to face the cut end faces of each of the divided laminates. Was given.
5.板ガラス積層体の端面加工
 次に、外形加工後の板ガラス積層体をエッチング槽内に浸漬してエッチングを行った。エッチング槽内のエッチング液は濃度15質量%のフッ酸であり、液温25℃に制御した状態で10分間のエッチングを行った。
5. End face processing of sheet glass laminated body Next, the sheet glass laminated body after the outer shape processing was immersed in an etching tank for etching. The etching solution in the etching tank was hydrofluoric acid having a concentration of 15% by mass, and etching was performed for 10 minutes while controlling the solution temperature at 25 ° C.
6.板ガラス積層体の評価
 板ガラス積層体について、以下の評価を行った。
(1)空隙率:塗布量を制御し、空隙が発生するように作成した硬質基板積層体において、切断後の分割された積層体の接着剤質量をW1とし、当該分割された積層体の空隙率が0%と仮定したときの接着剤質量をW0とすると、空隙率(%)=(1-W1/W0)×100で表される。W1は積層体の質量から板ガラスの質量を控除することで計算可能である。W0は各接着剤層の厚み、板ガラスの面積、及び接着剤の比重から計算可能である。
(2)剥離時間:切断加工後の積層体を90℃に加熱した温水中に浸漬し、積層接着された12枚の板ガラスがそれぞれ、個々の枚葉ガラスに分離するまでの平均時間を観察した。
(3)空隙形状:接着剤を塗布し、貼り合わせた大判の状態にて切断加工線の内側に空隙が形成されているか否か、またこの空隙部分は切断加工線上に存在するか目視にて評価した。また、板ガラス間に存在する硬化後の接着剤の切断加工線からの幅寸法の範囲を測定した。
(4)加工寸法精度:切断加工において、貼り合わせた接着剤の接着強度が維持できているか否かを、加工中に積層体から接着層と基板界面で剥離したかどうかで評価した。剥離したか否かは界面への加工液の浸入の有無により目視にて判断した。切断加工中に全く加工液が浸入しなかったものは○、切断加工中に一部液浸入があるものの、浸入度合いが極軽微であり、外観上、機能上不具合とならないものを基板上に構成される膜に欠損等の異常が認められないものを△、浸入が認められ、同膜を欠損させ、外観上、機能上不具合が認められる場合は×とした。
(5)加工液浸入:切断加工及び外形加工時に使用した切断液が、切断加工線内側の空隙に浸入しているか又は加工線上の空隙から加工液が硬質基板の主表面方向に浸入しているか、及び、浸入によって発生した基板面の汚損の有無を目視にて評価した。
(6)エッチング液浸入:端面加工後、接着剤と硬質基板の界面からエッチング液が切断加工線内側の空隙に浸入しているか又は加工線上の空隙からエッチング液が硬質基板の主表面方向に浸入しているかどうかを目視にて評価した。エッチング液の浸入が発生しなかったものを○、一部液浸入があるものの、エッチング液浸入度合いが極軽微であり、外観上、基板上に構成される膜に欠損等の異常が認められないものを△、浸入が認められ、同膜を欠損させた場合は×とした。また、加工線上の空隙を基点として、基板主表面の一部または全部がエッチングされているかどうか目視にて評価し、液浸入がないものを○、液浸入によりエッチングされているものを×とした。
 評価結果を表1に示す。
6). Evaluation of Plate Glass Laminate The following evaluation was performed on the plate glass laminate.
(1) Porosity: In the hard substrate laminate prepared so as to generate a void by controlling the coating amount, the adhesive mass of the divided laminate after cutting is set to W 1 , and the divided laminate When the mass of the adhesive when the porosity is assumed to be 0% is W 0 , the porosity (%) = (1−W 1 / W 0 ) × 100. W 1 can be calculated by subtracting the mass of the plate glass from the mass of the laminate. W 0 can be calculated from the thickness of each adhesive layer, the area of the plate glass, and the specific gravity of the adhesive.
(2) Peeling time: The laminate after cutting was immersed in warm water heated to 90 ° C., and the average time until each of the 12 laminated glass plates was separated into individual glass sheets was observed. .
(3) Gap shape: whether or not a gap is formed inside the cutting line in the large-sized state where an adhesive is applied and bonded, and whether or not this gap part exists on the cutting line. evaluated. Moreover, the range of the width dimension from the cutting process line of the adhesive after hardening existing between plate glasses was measured.
(4) Process dimensional accuracy: In the cutting process, whether or not the adhesive strength of the bonded adhesive could be maintained was evaluated by whether or not the adhesive layer and the substrate interface were peeled from the laminate during the process. Whether or not it was peeled off was judged by visual observation based on whether or not the working fluid entered the interface. ○ If the machining fluid did not enter at all during cutting, ○, although there is some liquid ingress during cutting, the degree of penetration is very slight, and it is configured on the board so that it does not cause functional problems in appearance. In the case where no abnormalities such as defects were observed in the film to be obtained, Δ, and invasion was observed, the film was damaged, and in the case where defects in appearance and functions were observed, it was marked as x.
(5) Intrusion of machining fluid: Is the cutting fluid used during cutting and outline machining invaded into the gap inside the machining line, or whether the machining liquid has penetrated from the gap on the machining line toward the main surface of the hard substrate? The presence or absence of contamination of the substrate surface caused by intrusion was visually evaluated.
(6) Etching solution intrusion: After end face processing, the etching solution enters the gap inside the cutting line from the interface between the adhesive and the hard substrate, or the etching solution penetrates from the gap on the processing line toward the main surface of the hard substrate It was visually evaluated whether or not. The case where the etchant did not enter was ○, and there was a part of the solution, but the etchant was infiltrated very little, and there were no defects such as defects in the film formed on the substrate. The case was Δ, and the case where penetration was observed and the film was lost was marked as x. In addition, it is visually evaluated whether a part or all of the main surface of the substrate is etched with the gap on the processing line as a base point, ○ if there is no liquid ingress, and x if it is etched by liquid ingress. .
The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(実験例2)
1.光硬化性接着剤2の作製
 以下の(A)~(E)の成分を混合して光硬化性接着剤2を作製した。
 (A)多官能(メタ)アクリレートとして、日本合成社製「UV-3000B」(ウレタンアクリレート、重量平均分子量18000、ポリオール化合物はポリエステルポリオール、有機ポリイソシアネート化合物はイソホロンジイソシアネート、ヒドロキシ(メタ)アクリレートは2-ヒドロキシエチルアクリレート)20質量部、ジシクロペンタニルジアクリレート(日本化薬社製「KAYARAD R-684」)25質量部、
 (B)単官能(メタ)アクリレートとして、2-ヒドロキシ-3-フェノキシプロピルアクリレート(東亜合成社製「アロニックスM-5700」)35質量部、フェノールエチレンオキサイド2モル変性アクリレート(東亜合成社製「アロニックスM-101A」)20質量部、
 (C-1)光重合開始剤としてベンジルジメチルケタール(BASF社製「IRGACURE651」)10質量部、
 (D)粒状物質として平均粒径100μmの球状架橋ポリスチレン粒子(ガンツ化成社製「GS-100S」)1質量部、
 (E)重合禁止剤として2,2-メチレン-ビス(4-メチル-6-ターシャリーブチルフェノール)(住友化学社製「スミライザーMDP-S」)0.1質量部
(Experimental example 2)
1. Preparation of Photocurable Adhesive 2 Photocurable adhesive 2 was prepared by mixing the following components (A) to (E).
(A) As a polyfunctional (meth) acrylate, “UV-3000B” (urethane acrylate, weight average molecular weight 18000, manufactured by Nihon Gosei Co., Ltd., polyol compound is polyester polyol, organic polyisocyanate compound is isophorone diisocyanate, hydroxy (meth) acrylate is 2 -Hydroxyethyl acrylate) 20 parts by mass, dicyclopentanyl diacrylate (Nippon Kayaku Co., Ltd. "KAYARAD R-684") 25 parts by mass,
(B) As monofunctional (meth) acrylate, 35 parts by mass of 2-hydroxy-3-phenoxypropyl acrylate (“Aronix M-5700” manufactured by Toa Gosei Co., Ltd.), 2 mol modified phenol ethylene oxide (“Aronix” manufactured by Toa Gosei Co., Ltd.) M-101A ") 20 parts by mass,
(C-1) 10 parts by mass of benzyldimethyl ketal (“IRGACURE651” manufactured by BASF) as a photopolymerization initiator,
(D) 1 part by weight of spherical crosslinked polystyrene particles having an average particle size of 100 μm (“GS-100S” manufactured by Ganz Kasei Co., Ltd.)
(E) 0.1 part by mass of 2,2-methylene-bis (4-methyl-6-tertiary butylphenol) (“Sumilyzer MDP-S” manufactured by Sumitomo Chemical Co., Ltd.) as a polymerization inhibitor
 硬化性接着剤2を使用して板ガラス積層体の作製、板ガラス積層体の切断加工、外形加工及び端面加工を実験例1と同様に行った。また、実験例1と同様の評価を行った。評価結果を表2に示す。 Using the curable adhesive 2, production of a plate glass laminate, cutting processing of the plate glass laminate, outer shape processing and end face processing were performed in the same manner as in Experimental Example 1. In addition, the same evaluation as in Experimental Example 1 was performed. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(実験例3)
1.光硬化性接着剤3の作製
 以下の(A)~(F)の成分を混合して光硬化性接着剤3を作製した。
 <第一剤>(A)多官能(メタ)アクリレートとして、日本合成社製「UV-3000B」(ウレタンアクリレート、重量平均分子量18000、ポリオール化合物はポリエステルポリオール、有機ポリイソシアネート化合物はイソホロンジイソシアネート、ヒドロキシ(メタ)アクリレートは2-ヒドロキシエチルアクリレート)15質量部、ジシクロペンタニルジアクリレート(日本化薬社製「KAYARAD R-684」、以下「R-684」と略す)15質量部、
 (B)単官能(メタ)アクリレートとして、2-(1,2-シクロヘキサジカルボキシイミド)エチルアクリレート(東亜合成社製「アロニックスM-140」)45質量部、フェノールエチレンオキサイド2モル変性アクリレート(東亜合成社製「アロニックスM-101A」)25質量部、
 (C-1)光重合開始剤としてベンジルジメチルケタール(BASF社製「IRGACURE651」)25質量部、
 (D)粒状物質として平均粒径100μmの球状架橋ポリスチレン粒子(ガンツ化成社製「GS-100S」)1質量部、
 (E)重合禁止剤として2,2-メチレン-ビス(4-メチル-6-ターシャリーブチルフェノール)(住友化学社製「スミライザーMDP-S」)0.1質量部、
 (C-2)有機過酸化物としてクメンハイドロパーオキサイド(日本油脂社製「パークミルH」)2質量部
 <第二剤>(A)多官能(メタ)アクリレートとして、日本合成社製「UV-3000B」(ウレタンアクリレート、重量平均分子量18000、ポリオール化合物はポリエステルポリオール、有機ポリイソシアネート化合物はイソホロンジイソシアネート、ヒドロキシ(メタ)アクリレートは2-ヒドロキシエチルアクリレート)15質量部、ジシクロペンタニルジアクリレート(日本化薬社製「KAYARAD R-684」)15質量部、
 (B)単官能(メタ)アクリレートとして、2-(1,2-シクロヘキサカルボキシイミド)エチルアクリレート(東亜合成社製「アロニックスM-140」)45質量部、フェノールエチレンオキサイド2モル変性アクリレート(東亜合成社製「アロニックスM-101A」)25質量部、
 (C-1)光重合開始剤としてベンジルジメチルケタール(BASF社製「IRGACURE651」)25質量部、
 (D)粒状物質として平均粒径100μmの球状架橋ポリスチレン粒子(ガンツ化成社製「GS-100S」)1質量部、
 (E)重合禁止剤として2,2-メチレン-ビス(4-メチル-6-ターシャリーブチルフェノール)(住友化学社製「スミライザーMDP-S」)0.1質量部、
 (F)分解促進剤としてオクチル酸コバルト(神東塗料株式会社製「オクチル酸コバルト」)2質量部
(Experimental example 3)
1. Preparation of Photocurable Adhesive 3 The following components (A) to (F) were mixed to prepare a photocurable adhesive 3.
<First Agent> (A) As a polyfunctional (meth) acrylate, “UV-3000B” manufactured by Nippon Gosei Co., Ltd. (urethane acrylate, weight average molecular weight 18000, polyol compound is polyester polyol, organic polyisocyanate compound is isophorone diisocyanate, hydroxy ( (Meth) acrylate is 2-hydroxyethyl acrylate) 15 parts by mass, dicyclopentanyl diacrylate (“KAYARAD R-684” manufactured by Nippon Kayaku Co., Ltd., hereinafter abbreviated as “R-684”),
(B) As monofunctional (meth) acrylate, 45 parts by mass of 2- (1,2-cyclohexadicarboximido) ethyl acrylate (“Aronix M-140” manufactured by Toa Gosei Co., Ltd.), phenol ethylene oxide 2 mol modified acrylate (Toa 25 parts by mass of “Aronix M-101A” manufactured by Gosei Co., Ltd.
(C-1) 25 parts by mass of benzyldimethyl ketal (“IRGACURE651” manufactured by BASF) as a photopolymerization initiator,
(D) 1 part by weight of spherical crosslinked polystyrene particles having an average particle size of 100 μm (“GS-100S” manufactured by Ganz Kasei Co., Ltd.)
(E) 0.1 part by mass of 2,2-methylene-bis (4-methyl-6-tertiary butylphenol) (“Sumilyzer MDP-S” manufactured by Sumitomo Chemical Co., Ltd.) as a polymerization inhibitor;
(C-2) 2 parts by weight of cumene hydroperoxide (Nippon Yushi Co., Ltd. “Park Mill H”) as an organic peroxide <Second Agent> (A) As a polyfunctional (meth) acrylate, “UV- 3000B "(urethane acrylate, weight average molecular weight 18000, polyol compound is polyester polyol, organic polyisocyanate compound is isophorone diisocyanate, hydroxy (meth) acrylate is 2-hydroxyethyl acrylate), 15 parts by mass, dicyclopentanyl diacrylate (Nipponization) 15 parts by mass of “KAYARAD R-684” manufactured by Yakuhin Co., Ltd.
(B) As monofunctional (meth) acrylate, 45 parts by mass of 2- (1,2-cyclohexacarboximide) ethyl acrylate (“Aronix M-140” manufactured by Toa Gosei Co., Ltd.), 2 mol of phenol ethylene oxide modified acrylate (Toa 25 parts by mass of “Aronix M-101A” manufactured by Gosei Co., Ltd.
(C-1) 25 parts by mass of benzyldimethyl ketal (“IRGACURE651” manufactured by BASF) as a photopolymerization initiator,
(D) 1 part by weight of spherical crosslinked polystyrene particles having an average particle size of 100 μm (“GS-100S” manufactured by Ganz Kasei Co., Ltd.)
(E) 0.1 part by mass of 2,2-methylene-bis (4-methyl-6-tertiary butylphenol) (“Sumilyzer MDP-S” manufactured by Sumitomo Chemical Co., Ltd.) as a polymerization inhibitor;
(F) 2 parts by mass of cobalt octylate (“Cobalt octylate” manufactured by Shinto Paint Co., Ltd.) as a decomposition accelerator
2.板ガラス積層体の作製
 光硬化性接着剤3を使用して実験例1と同様に板ガラス積層体の作製を行った。光硬化性接着剤3は、第一剤と第二剤を等量ずつ計量し混合したものを使用した。
2. Production of plate glass laminate A plate glass laminate was produced in the same manner as in Experimental Example 1 using the photocurable adhesive 3. As the photocurable adhesive 3, an equal amount of the first agent and the second agent were weighed and mixed.
 板ガラス積層体の切断加工、板ガラス積層体の外形加工及び端面加工については、実験例1と同様に行った。また、実験例1と同様の評価を行った。評価結果を表3に示す。 The cutting processing of the plate glass laminate, the outer shape processing and the end face processing of the plate glass laminate were performed in the same manner as in Experimental Example 1. In addition, the same evaluation as in Experimental Example 1 was performed. The evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
(実験例4)
1.熱硬化性接着剤4の作製
 以下の(A)~(F)の成分を混合して熱硬化性接着剤4を作製した。
 <第一剤>(A)多官能(メタ)アクリレートとして、日本合成社製「UV-3000B」(ウレタンアクリレート、重量平均分子量18000、ポリオール化合物はポリエステルポリオール、有機ポリイソシアネート化合物はイソホロンジイソシアネート、ヒドロキシ(メタ)アクリレートは2-ヒドロキシエチルアクリレート)20質量部、トリプロピレングリコールジアクリレート(新中村化学社製NKエステル APG-200、以下「APG-200」と略す)30質量部、
 (B)単官能(メタ)アクリレートとして、2-(1,2-シクロヘキサジカルボキシイミド)エチルアクリレート(東亜合成社製「アロニックスM-140」)40質量部、フェノールエチレンオキサイド2モル変性アクリレート(東亜合成社製「アロニックスM-101A」)10質量部、
 (C-2)有機過酸化物としてクメンハイドロパーオキサイド(日本油脂社製「パークミルH」)3質量部、
 (D)平均粒子径35μmの架橋ポリメタクリル酸メチル粒子(根上工業社製アートパールGR-200、球状、以下「GR-200」と略す)0.6質量部、
 <第二剤>(A)多官能(メタ)アクリレートとして、日本合成社製「UV-3000B」(ウレタンアクリレート、重量平均分子量18000、ポリオール化合物はポリエステルポリオール、有機ポリイソシアネート化合物はイソホロンジイソシアネート、ヒドロキシ(メタ)アクリレートは2-ヒドロキシエチルアクリレート)20質量部、トリプロピレングリコールジアクリレート(新中村化学社製NKエステル APG-200、以下「APG-200」と略す)30質量部、
 (B)単官能(メタ)アクリレートとして、2-(1,2-シクロヘキサカルボキシイミド)エチルアクリレート(東亜合成社製「アロニックスM-140」)40質量部、フェノールエチレンオキサイド2モル変性アクリレート(東亜合成社製「アロニックスM-101A」)10質量部、
 (D)平均粒子径35μmの架橋ポリメタクリル酸メチル粒子(根上工業社製アートパールGR-200、球状、以下「GR-200」と略す)0.6質量部、
 (E)重合禁止剤として2,2-メチレン-ビス(4-メチル-6-ターシャリーブチルフェノール)(住友化学社製「スミライザーMDP-S」)0.1質量部、
 (F)分解促進剤としてオクチル酸コバルト(神東塗料株式会社製「オクチル酸コバルト」)3質量部
(Experimental example 4)
1. Preparation of thermosetting adhesive 4 The following components (A) to (F) were mixed to prepare a thermosetting adhesive 4.
<First Agent> (A) As a polyfunctional (meth) acrylate, “UV-3000B” manufactured by Nippon Gosei Co., Ltd. (urethane acrylate, weight average molecular weight 18000, polyol compound is polyester polyol, organic polyisocyanate compound is isophorone diisocyanate, hydroxy ( (Meth) acrylate is 20 parts by mass of 2-hydroxyethyl acrylate), 30 parts by mass of tripropylene glycol diacrylate (NK ester APG-200, hereinafter referred to as “APG-200” manufactured by Shin-Nakamura Chemical Co., Ltd.),
(B) As monofunctional (meth) acrylate, 2- (1,2-cyclohexadicarboximide) ethyl acrylate (“Aronix M-140” manufactured by Toa Gosei Co., Ltd.), 40 parts by mass, phenol ethylene oxide 2 mol modified acrylate (Toa 10 parts by mass of “Aronix M-101A” manufactured by Gosei Co., Ltd.
(C-2) 3 parts by weight of cumene hydroperoxide (Nippon Yushi Co., Ltd. “Park Mill H”) as an organic peroxide,
(D) Cross-linked polymethyl methacrylate particles having an average particle size of 35 μm (Negami Kogyo Art Pearl GR-200, spherical, hereinafter abbreviated as “GR-200”) 0.6 parts by mass;
<Second Agent> (A) As a polyfunctional (meth) acrylate, “UV-3000B” manufactured by Nippon Gosei Co., Ltd. (urethane acrylate, weight average molecular weight 18000, polyol compound is polyester polyol, organic polyisocyanate compound is isophorone diisocyanate, hydroxy ( (Meth) acrylate is 20 parts by mass of 2-hydroxyethyl acrylate), 30 parts by mass of tripropylene glycol diacrylate (NK ester APG-200, hereinafter referred to as “APG-200” manufactured by Shin-Nakamura Chemical Co., Ltd.),
(B) As monofunctional (meth) acrylate, 2- (1,2-cyclohexacarboximide) ethyl acrylate (“Aronix M-140” manufactured by Toa Gosei Co., Ltd.), 40 parts by mass of phenol ethylene oxide 2 mol modified acrylate (Toa 10 parts by mass of “Aronix M-101A” manufactured by Gosei Co., Ltd.
(D) Cross-linked polymethyl methacrylate particles having an average particle size of 35 μm (Negami Kogyo Art Pearl GR-200, spherical, hereinafter abbreviated as “GR-200”) 0.6 parts by mass;
(E) 0.1 part by mass of 2,2-methylene-bis (4-methyl-6-tertiary butylphenol) (“Sumilyzer MDP-S” manufactured by Sumitomo Chemical Co., Ltd.) as a polymerization inhibitor;
(F) 3 parts by mass of cobalt octylate (“Cobalt octylate” manufactured by Shinto Paint Co., Ltd.) as a decomposition accelerator
2.板ガラス積層体の作製
 熱硬化性接着剤4を使用して実験例1と同様に板ガラス積層体の作製を行った。熱硬化性接着剤4は、第一剤と第二剤を等量ずつ計量し混合したものを使用した。
2. Production of Plate Glass Laminate A plate glass laminate was produced in the same manner as in Experimental Example 1 using the thermosetting adhesive 4. The thermosetting adhesive 4 was prepared by weighing and mixing the first agent and the second agent in equal amounts.
 但し、1枚目の板ガラスの長辺の一側縁上に2枚目の板ガラスの長辺の一側縁を重ねた後、これを軸にして2枚目の板ガラスを1枚目の板ガラスに向かって倒しながら、ロールプレス形式にて、余分な空気を押し出すように、対向する側縁に向かって順次貼り合わせた。この手順を繰り返することにより、12枚の板ガラスからなる厚み8mm(この厚みは12枚の板ガラスを合計した積層体の厚みである)の種々の空隙率をもつ板ガラス積層体を作製した。12枚積層した後、室温で30分放置することで接着剤の硬化を確実ならしめ、受け台に固定する上記板ガラス積層体を作製した。 However, after overlapping one side edge of the long side of the second sheet glass on one side edge of the long side of the first sheet glass, the second sheet glass is used as the first sheet glass with this as an axis. While tilting down, they were bonded together in the roll press format toward the opposite side edges so as to push out excess air. By repeating this procedure, plate glass laminates having various porosity ratios of 12 mm and a thickness of 8 mm (this thickness is a thickness of a laminate obtained by adding 12 plate glasses) were produced. After laminating 12 sheets, the plate glass laminate was produced by allowing it to stand at room temperature for 30 minutes to ensure the curing of the adhesive and to fix it to the cradle.
 板ガラス積層体の切断加工、板ガラス積層体の外形加工及び端面加工については、実験例1と同様に行った。また、実験例1と同様の評価を行った。評価結果を表4に示す。 The cutting processing of the plate glass laminate, the outer shape processing and the end face processing of the plate glass laminate were performed in the same manner as in Experimental Example 1. In addition, the same evaluation as in Experimental Example 1 was performed. The evaluation results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
(考察)
 実施例に係る板ガラス積層体については、接着剤塗布時に縦方向の塗布ラインを直線的且つ連続的に形成し、横方向の塗布ラインとは交差させなかった。貼り合わせ時においても、余分な空気を押し出すように、連続的な塗布ライン方向に沿って板ガラスの一側縁から対向する側縁に向かって貼り合わせた。そのため、接着剤層を形成しない空隙が存在し、該空隙を囲むように接着剤層が形成された。加工寸法精度は良好であり、加工液やエッチング液の浸入もなかった。剥離時間は空隙率が増加するに従い短縮された。空隙率は5%以上であるのが好ましく、10%以上であるのがより好ましい。空隙率は99.5%以下であるのが好ましく、95%以下であるのがより好ましく、85%以下であるのが最も好ましい。
 一方で、比較例に係る硬質基板積層体は接着剤の塗布パターンが直交する連続的な塗布ライン(つまり格子状)であったことから、塗布量や接着剤種類に依らず、貼り合わせ時に巻き込んだ空気によって、切断面等に充足される接着剤が押し出され、切断加工線上に空隙が発生した。また、塗布量が少なく空隙率が高い場合は、切断加工線を接着剤が覆う十分な面積を得られず、逆に多すぎる場合は、剥離時間が長い、コストダウンとならない、つまり、硬質基板積層体のほぼ面全体が、接着剤で覆われた状態となった。
(Discussion)
About the plate glass laminated body which concerns on an Example, the vertical application line was formed linearly and continuously at the time of adhesive agent application | coating, and it was not made to cross | intersect with the horizontal application line. Even at the time of bonding, the sheets were bonded from one side edge of the plate glass toward the opposite side edge along the continuous coating line direction so as to push out excess air. For this reason, there is a void that does not form an adhesive layer, and the adhesive layer is formed so as to surround the void. The machining dimensional accuracy was good, and there was no penetration of machining liquid or etching liquid. The stripping time was shortened as the porosity increased. The porosity is preferably 5% or more, and more preferably 10% or more. The porosity is preferably 99.5% or less, more preferably 95% or less, and most preferably 85% or less.
On the other hand, since the hard substrate laminate according to the comparative example was a continuous application line (that is, a lattice shape) in which the adhesive application pattern was orthogonal, it was involved at the time of bonding regardless of the application amount or the adhesive type. The air filled in the cut surface and the like was pushed out by the air, and voids were generated on the cut line. In addition, when the coating amount is small and the porosity is high, it is not possible to obtain a sufficient area to cover the cutting line with the adhesive. Almost the entire surface of the laminate was covered with the adhesive.
10 分割前の硬質基板積層体
11 硬質基板
12 接着剤
13 分割加工線
14 分割された硬質基板積層体
15 印刷パターン
16 空隙
17 縦方向の塗布ライン
18 横方向の塗布ライン
20 外形加工後の分割された硬質基板積層体
d  接着剤の切断加工線からの幅寸法
DESCRIPTION OF SYMBOLS 10 Hard board | substrate laminated body 11 before a division | segmentation Hard board | substrate 12 Adhesive 13 Dividing process line 14 Divided hard board | substrate laminated body 15 Print pattern 16 Space | gap 17 Vertical coating line 18 Horizontal coating line 20 Hard substrate laminate d Width dimension from cutting line of adhesive

Claims (27)

  1.  2枚以上の硬質基板同士が接着剤で貼り合わせられた硬質基板積層体であって、当該積層体は厚み方向に切断して所望の数の分割された硬質基板積層体を得ることが予定されており、各硬質基板間には接着剤が切断時の加工線のすべてを跨いで連続的に存在し、且つ、各硬質基板間には当該加工線によって囲まれた領域の少なくとも一つに接着剤の存在しない空隙が存在する積層体。 It is a hard substrate laminate in which two or more hard substrates are bonded together with an adhesive, and the laminate is scheduled to be cut in the thickness direction to obtain a desired number of divided hard substrate laminates. The adhesive is continuously present between the hard substrates across all the processing lines at the time of cutting, and the hard substrates are bonded to at least one of the regions surrounded by the processing lines. A laminate in which there are voids where no agent is present.
  2.  各硬質基板間において、前記加工線によって囲まれた領域のうち、40%以上の数の領域に接着剤の存在しない空隙が存在する請求項1に記載の積層体。 2. The laminate according to claim 1, wherein voids in which no adhesive is present exist in a region of 40% or more of the regions surrounded by the processing lines between the hard substrates.
  3.  各硬質基板間において、前記加工線によって囲まれた領域のうち、92%以上の数の領域に接着剤の存在しない空隙が存在する請求項1に記載の積層体。 2. The laminate according to claim 1, wherein voids in which no adhesive is present exist in 92% or more of the regions surrounded by the processing lines between the hard substrates.
  4.  請求項1~3の何れか一項に記載の積層体を加工線に沿って厚み方向に切断した後の分割された少なくとも一つの硬質基板積層体。 4. At least one hard substrate laminate that is divided after the laminate according to any one of claims 1 to 3 is cut in a thickness direction along a processing line.
  5.  空隙率が5~99.5%である請求項4に記載の積層体。 The laminate according to claim 4, wherein the porosity is 5 to 99.5%.
  6.  空隙率が40~95%である請求項4に記載の積層体。 The laminate according to claim 4, wherein the porosity is 40 to 95%.
  7.  分割された硬質基板積層体は更に形状加工されることが予定されており、形状加工によって除去される部位の硬質基板間には空隙が存在しない請求項4~6の何れか一項に記載の積層体。 The divided hard substrate laminate is scheduled to be further processed in shape, and no gap exists between the hard substrates in a portion to be removed by the shape processing. Laminated body.
  8.  前記加工線を跨ぐ接着剤の前記加工線からの幅寸法が0.1mm以上である請求項1~3の何れか一項に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein a width dimension of the adhesive straddling the processing line from the processing line is 0.1 mm or more.
  9.  接着剤が硬化性である請求項1~8の何れか一項に記載の積層体。 The laminate according to any one of claims 1 to 8, wherein the adhesive is curable.
  10.  接着剤が、(A)多官能(メタ)アクリレート、(B)単官能(メタ)アクリレート、及び(C)重合開始剤を含有する請求項9に記載の積層体。 The laminate according to claim 9, wherein the adhesive contains (A) polyfunctional (meth) acrylate, (B) monofunctional (meth) acrylate, and (C) a polymerization initiator.
  11.  接着剤が、(A)多官能(メタ)アクリレート、(B)単官能(メタ)アクリレート、(C-1)光重合開始剤を含有する請求項9に記載の積層体。 The laminate according to claim 9, wherein the adhesive contains (A) a polyfunctional (meth) acrylate, (B) a monofunctional (meth) acrylate, and (C-1) a photopolymerization initiator.
  12.  接着剤が、(A)多官能(メタ)アクリレート、(B)単官能(メタ)アクリレート、(C-2)熱重合開始剤を含有する請求項9に記載の積層体。 The laminate according to claim 9, wherein the adhesive contains (A) a polyfunctional (meth) acrylate, (B) a monofunctional (meth) acrylate, and (C-2) a thermal polymerization initiator.
  13.  接着剤が、(A)多官能(メタ)アクリレート、(B)単官能(メタ)アクリレート、(C-1)光重合開始剤、及び(C-2)熱重合開始剤を含有する請求項9に記載の積層体。 The adhesive contains (A) polyfunctional (meth) acrylate, (B) monofunctional (meth) acrylate, (C-1) photopolymerization initiator, and (C-2) thermal polymerization initiator. The laminated body as described in.
  14.  接着剤が、更に(F)分解促進剤を含有する請求項12又は13に記載の積層体。 The laminate according to claim 12 or 13, wherein the adhesive further contains (F) a decomposition accelerator.
  15.  請求項1~3、8~14の何れか一項に記載の積層体の製造方法であって、
     第一の硬質基板を準備する工程1と、
     第二の硬質基板を準備する工程2と、
     第一の硬質基板及び/又は第二の硬質基板の貼り合わせ面に接着剤を塗布する工程3と、
     第一の硬質基板と第二の硬質基板をそれぞれの一側縁で接触させた後、当該一側縁に対向する側縁に向かって順次、両硬質基板を貼り合わせる工程4と、
    を含み、
     工程3において、塗布される接着剤の量は工程4の後に硬質基板間に空隙が生じる程度の量であり、また、接着剤は切断時の加工線に沿って貼り合わせ方向に平行な第一塗布ラインと貼り合わせ方向に直角な第二塗布ラインを形成し、第一塗布ラインは連続的又は不連続的であり、第二塗布ラインは不連続的である、
    製造方法。
    A method for producing a laminate according to any one of claims 1 to 3 and 8 to 14,
    Step 1 of preparing a first hard substrate;
    Step 2 for preparing a second hard substrate;
    Step 3 of applying an adhesive to the bonding surface of the first hard substrate and / or the second hard substrate;
    After contacting the first hard substrate and the second hard substrate at the respective one side edges, the step 4 of sequentially bonding the two hard substrates toward the side edges facing the one side edges;
    Including
    In step 3, the amount of adhesive applied is such that a gap is generated between the hard substrates after step 4, and the adhesive is a first parallel to the bonding direction along the processing line at the time of cutting. Forming a second application line perpendicular to the laminating direction with the application line, the first application line is continuous or discontinuous, and the second application line is discontinuous;
    Production method.
  16.  第一塗布ラインが連続的である請求項15に記載の製造方法。 The manufacturing method according to claim 15, wherein the first coating line is continuous.
  17.  第二塗布ラインと第一塗布ラインは交差しないように形成される請求項15又は16に記載の製造方法。 The manufacturing method according to claim 15 or 16, wherein the second coating line and the first coating line are formed so as not to intersect.
  18.  前記硬質基板積層体を第一の硬質基板に見立てて、工程1~4を少なくとも1回繰り返し、少なくとも3枚の硬質基板が貼り合わせられた硬質基板積層体を形成する工程を行う請求項15~17の何れか一項に記載の製造方法。 The steps 1 to 4 are repeated at least once while the hard substrate laminate is regarded as a first hard substrate, and a step of forming a hard substrate laminate in which at least three hard substrates are bonded is performed. The manufacturing method according to any one of 17.
  19.  接着剤が硬化性である請求項15~18の何れか一項に記載の製造方法。 The production method according to any one of claims 15 to 18, wherein the adhesive is curable.
  20.  接着剤が、(A)多官能(メタ)アクリレート、(B)単官能(メタ)アクリレート、及び(C)重合開始剤を含有する請求項19に記載の製造方法。 The production method according to claim 19, wherein the adhesive contains (A) a polyfunctional (meth) acrylate, (B) a monofunctional (meth) acrylate, and (C) a polymerization initiator.
  21.  接着剤が、(A)多官能(メタ)アクリレート、(B)単官能(メタ)アクリレート、(C-1)光重合開始剤を含有し、工程4は貼り合わせられた両硬質基板間の接着剤を硬化するための光を照射することを含む請求項19に記載の製造方法。 The adhesive contains (A) a polyfunctional (meth) acrylate, (B) a monofunctional (meth) acrylate, and (C-1) a photopolymerization initiator, and step 4 is an adhesion between the two hard substrates bonded together. The manufacturing method of Claim 19 including irradiating the light for hardening an agent.
  22.  接着剤が、(A)多官能(メタ)アクリレート、(B)単官能(メタ)アクリレート、(C-2)熱重合開始剤を含有する請求項19に記載の製造方法。 The production method according to claim 19, wherein the adhesive contains (A) a polyfunctional (meth) acrylate, (B) a monofunctional (meth) acrylate, and (C-2) a thermal polymerization initiator.
  23.  接着剤が、(A)多官能(メタ)アクリレート、(B)単官能(メタ)アクリレート、(C-1)光重合開始剤、及び(C-2)熱重合開始剤を含有し、工程4は貼り合わせられた両硬質基板間の接着剤を硬化するための光を照射することを含む請求項19に記載の製造方法。 The adhesive contains (A) polyfunctional (meth) acrylate, (B) monofunctional (meth) acrylate, (C-1) photopolymerization initiator, and (C-2) thermal polymerization initiator, and Step 4 21. The manufacturing method according to claim 19, comprising irradiating light for curing the adhesive between the two hard substrates bonded together.
  24.  接着剤が、更に(F)分解促進剤を含有する請求項22又は23に記載の製造方法。 The manufacturing method according to claim 22 or 23, wherein the adhesive further contains (F) a decomposition accelerator.
  25.  工程4における貼り合わせがロールプレスにより実施される請求項15~24の何れか一項に記載の製造方法。 The manufacturing method according to any one of claims 15 to 24, wherein the bonding in the step 4 is performed by a roll press.
  26.  請求項1~3、8~14の何れか一項に記載の硬質基板積層体を厚み方向に切断し、所望の数の分割された硬質基板積層体を得る工程5と、
     分割された硬質基板積層体を加工して製品形状の硬質基板積層体を得る工程6と、
     製品形状の硬質基板積層体を剥離し、複数の板状製品を得る工程7と、
    を含む板状製品の製造方法。
    Cutting the hard substrate laminate according to any one of claims 1 to 3 and 8 to 14 in a thickness direction to obtain a desired number of divided hard substrate laminates;
    Step 6 of processing the divided hard substrate laminate to obtain a product-shaped hard substrate laminate,
    Step 7 of peeling the product-shaped hard substrate laminate to obtain a plurality of plate products,
    A method for producing a plate-like product including
  27.  分割された硬質基板積層体を加工して製品形状の硬質基板積層体を得る工程6には、形状加工が含まれる請求項26に記載の製造方法。 27. The manufacturing method according to claim 26, wherein the step 6 of obtaining the product-shaped hard substrate laminate by processing the divided hard substrate laminate includes shape processing.
PCT/JP2014/064508 2013-05-30 2014-05-30 Hard substrate laminate and hard substrate laminate manufacturing method WO2014192941A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015519976A JPWO2014192941A1 (en) 2013-05-30 2014-05-30 Rigid substrate laminate and method for producing rigid substrate laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013114441 2013-05-30
JP2013-114441 2013-05-30

Publications (1)

Publication Number Publication Date
WO2014192941A1 true WO2014192941A1 (en) 2014-12-04

Family

ID=51988959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064508 WO2014192941A1 (en) 2013-05-30 2014-05-30 Hard substrate laminate and hard substrate laminate manufacturing method

Country Status (3)

Country Link
JP (1) JPWO2014192941A1 (en)
TW (1) TW201504179A (en)
WO (1) WO2014192941A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190230A1 (en) * 2015-05-27 2016-12-01 シャープ株式会社 Display panel production method
US10384324B2 (en) 2015-02-02 2019-08-20 Corning Incorporated Methods for strengthening edges of laminated glass articles and laminated glass articles formed therefrom

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004620A1 (en) * 2005-07-04 2007-01-11 Denki Kagaku Kogyo Kabushiki Kaisha Curable composition and method for temporal fixation of structural member using the same
JP2010269389A (en) * 2009-05-20 2010-12-02 Shoda Techtron Corp End face machining method of plate glass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004620A1 (en) * 2005-07-04 2007-01-11 Denki Kagaku Kogyo Kabushiki Kaisha Curable composition and method for temporal fixation of structural member using the same
JP2010269389A (en) * 2009-05-20 2010-12-02 Shoda Techtron Corp End face machining method of plate glass

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10384324B2 (en) 2015-02-02 2019-08-20 Corning Incorporated Methods for strengthening edges of laminated glass articles and laminated glass articles formed therefrom
US11389919B2 (en) 2015-02-02 2022-07-19 Corning Incorporated Methods for strengthening edges of laminated glass articles and laminated glass articles formed therefrom
WO2016190230A1 (en) * 2015-05-27 2016-12-01 シャープ株式会社 Display panel production method
US10434617B2 (en) 2015-05-27 2019-10-08 Sharp Kabushiki Kaisha Method of producing display panels

Also Published As

Publication number Publication date
TW201504179A (en) 2015-02-01
JPWO2014192941A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6030560B2 (en) Composition and method for temporarily fixing member using the same
JP5813004B2 (en) Method for processing translucent hard substrate laminate and method for producing plate-like product
WO2013172353A1 (en) Processing apparatus and method for processing laminated article
WO2013011969A1 (en) Method for producing translucent rigid substrate laminate and device for pasting together translucent rigid substrates
WO2013011970A1 (en) Method for producing translucent rigid substrate laminate and device for pasting together translucent rigid substrates
JP6081363B2 (en) Processing method of glass substrate laminate
WO2012077645A1 (en) Method for processing hard substrate laminated body and method for manufacturing plate-shaped product
WO2014192941A1 (en) Hard substrate laminate and hard substrate laminate manufacturing method
WO2015046471A1 (en) Laminate and manufacturing method thereof
WO2013084953A1 (en) Method for manufacturing light-transmitting hard-substrate laminate
WO2014192942A1 (en) Laminate and manufacturing method therefor
JP5916620B2 (en) Method for peeling translucent hard substrate laminate and method for producing plate product using the same
JP6081364B2 (en) Processing method of glass substrate laminate
JP5831887B2 (en) Method for processing translucent hard substrate laminate and method for producing plate-like product using the same
WO2015083832A1 (en) Rigid substrate with protected end surfaces, and method for manufacturing same
JP2017206398A (en) Method for producing light transmissive hard substrate laminated body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804870

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015519976

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14804870

Country of ref document: EP

Kind code of ref document: A1