WO2012077485A1 - 球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法 - Google Patents

球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法 Download PDF

Info

Publication number
WO2012077485A1
WO2012077485A1 PCT/JP2011/076708 JP2011076708W WO2012077485A1 WO 2012077485 A1 WO2012077485 A1 WO 2012077485A1 JP 2011076708 W JP2011076708 W JP 2011076708W WO 2012077485 A1 WO2012077485 A1 WO 2012077485A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
wavelength
spherical phosphor
wavelength conversion
light
Prior art date
Application number
PCT/JP2011/076708
Other languages
English (en)
French (fr)
Inventor
香 岡庭
山下 剛
琢 澤木
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to US13/991,869 priority Critical patent/US20130255778A1/en
Priority to CN201180058560.7A priority patent/CN103237865B/zh
Priority to JP2012547763A priority patent/JP5857974B2/ja
Priority to KR1020137014537A priority patent/KR20140007067A/ko
Priority to EP11847410.5A priority patent/EP2650342A4/en
Publication of WO2012077485A1 publication Critical patent/WO2012077485A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02322Optical elements or arrangements associated with the device comprising luminescent members, e.g. fluorescent sheets upon the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/182Metal complexes of the rare earth metals, i.e. Sc, Y or lanthanide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a spherical phosphor, a wavelength conversion type solar cell sealing material, a solar cell module, and a method for producing them.
  • a conventional crystalline silicon solar cell module has the following configuration.
  • the protective glass on the surface also referred to as cover glass
  • tempered glass in consideration of impact resistance, and is used as a sealing material (usually also referred to as a resin or filler mainly composed of ethylene vinyl acetate copolymer).
  • a sealing material usually also referred to as a resin or filler mainly composed of ethylene vinyl acetate copolymer.
  • one surface is provided with an uneven pattern by embossing.
  • corrugated pattern is formed inside, and the surface of a solar cell module is smooth.
  • a sealing material and a back film for protecting and sealing the solar cell element and the tab wire are provided below the protective glass.
  • spectral mismatch In general, light in a short wavelength region of 360 nm or less and a long wavelength region of 1200 nm or more in the sunlight spectrum does not contribute to power generation in the crystalline silicon solar cell. This is called spectral mismatch or spectral mismatch.
  • Japanese Patent Application Laid-Open No. 2003-218379 uses a fluorescent substance (also referred to as a light emitting material), and converts the wavelength of ultraviolet or infrared light that does not contribute to power generation in the solar spectrum.
  • a method has been proposed in which a layer that emits light in a wavelength region that can contribute to power generation is provided on the light-receiving surface side of the solar cell.
  • Japanese Patent Application Laid-Open No. 2006-303033 proposes a method of incorporating a rare earth complex, which is a fluorescent material, into a sealing material. Furthermore, as disclosed in Japanese Patent Application Laid-Open No. 2003-051605 and the like, an ethylene-vinyl acetate copolymer imparted with thermosetting properties has been widely used as a transparent sealing material for solar cells.
  • the invention described in Japanese Patent Application Laid-Open No. 2003-218379 is a proposal for wavelength conversion of light that does not contribute to power generation into light in a wavelength region that can contribute to power generation, and the wavelength conversion layer contains a fluorescent material.
  • this fluorescent substance generally has a large shape, and when the incident sunlight passes through the wavelength conversion film, the ratio of not reaching the solar cell element and contributing to power generation may increase. As a result, there is a problem that even if ultraviolet light in the wavelength conversion layer is converted to visible light, the ratio of the generated power to the incident sunlight (power generation efficiency) may not be so high. Furthermore, due to absorption and scattering loss by the fluorescent material, the power generation efficiency may be lower than when the fluorescent material is not introduced.
  • the rare earth complex used as the fluorescent material is easily hydrolyzed together with ethylene vinyl acetate (EVA) that is widely used as a sealing material, and therefore deteriorates over time. May end up. Moreover, it is difficult to introduce the wavelength-converted light into the solar cell element because of its configuration. Furthermore, when the rare earth complex, which is a fluorescent substance, is dispersed in EVA, acid is generated by the hydrolysis of EVA, the hydrolysis of the rare earth metal complex is induced, and fluorescence is not exhibited, and the desired wavelength conversion effect is obtained. There was a case that disappeared. Furthermore, since the rare earth metal complex molecules are easily aggregated and the aggregate scatters the excitation wavelength, there is a problem that the utilization efficiency of the rare earth metal as the phosphor may be further reduced.
  • EVA ethylene vinyl acetate
  • a europium complex that absorbs ultraviolet rays and emits red fluorescence is one of the most effective fluorescent substances.
  • the typical complex, Eu (TTA) 3 Phen has an excitation wavelength of 420 nm when the complex alone is used as shown in FIG.
  • the excitation wavelength may differ depending on the state of the complex, particularly the sealing method.
  • the resin sealing body has an excitation band in a wavelength region shorter than 400 nm. When there is an excitation band in such a wavelength band, excitation is performed by the wavelength of the weaker portion of the sunlight spectrum, and the fluorescence intensity is reduced accordingly.
  • EVA which is a typical sealing material
  • EVA is deteriorated by ultraviolet irradiation as shown in FIG. 3, and the scattering loss increases particularly from 400 nm toward a short wavelength region.
  • an ultraviolet absorber is blended in EVA. As shown in FIG. 3, the absorption of the ultraviolet absorber overlaps with the excitation wavelength of a normal europium complex such as Eu (TTA) 3 Phen. Therefore, excitation of the europium complex may be hindered.
  • the blending amount of the ultraviolet absorber must be reduced.
  • the photodegradation of EVA and the blending of the ultraviolet absorber as a countermeasure thereof have a trade-off relationship as long as a normal europium complex such as Eu (TTA) 3 Phen is used.
  • the present invention is intended to improve the above-described problems, and improves the light utilization efficiency in the solar cell module, and enables stable improvement of the power generation efficiency. It is an object of the present invention to provide a stopping material, a solar cell module, and a manufacturing method thereof.
  • the present inventors have used a spherical phosphor containing a fluorescent substance having an excitation band at a specific wavelength, so that light that does not contribute to solar power generation among incident sunlight. Has been found to be able to be converted into a wavelength that contributes to power generation. Further, the spherical phosphor is excellent in light resistance, moisture resistance and heat resistance, has good dispersibility, and can be efficiently introduced into the solar cell element without scattering the incident sunlight, and the present invention is completed. It came to. Furthermore, when a rare earth metal organic complex is used as the fluorescent material in the spherical phosphor, particularly the humidity resistance of the fluorescent material can be further improved.
  • a method for obtaining a spherical phosphor having high transparency and high luminous efficiency by sealing a fluorescent substance having an excitation band at a specific wavelength as a spherical phosphor is completed, and the present invention is completed. It came to.
  • the present invention is as follows. ⁇ 1> A fluorescent substance having a maximum excitation wavelength of 400 nm or more and a transparent material containing the fluorescent substance, and an excitation spectrum intensity in a wavelength region of 340 nm to 380 nm in the excitation spectrum is an excitation spectrum intensity at the maximum excitation wavelength.
  • ⁇ 2> The spherical phosphor according to ⁇ 1>, wherein the fluorescent substance is a rare earth metal complex.
  • ⁇ 3> The spherical phosphor according to ⁇ 1> or ⁇ 2>, wherein the fluorescent substance is a europium complex.
  • ⁇ 4> The spherical phosphor according to any one of ⁇ 1> to ⁇ 3>, wherein the transparent material is a transparent resin.
  • ⁇ 5> The spherical phosphor according to any one of ⁇ 1> to ⁇ 4>, wherein the transparent material is a transparent vinyl resin.
  • ⁇ 6> The spherical phosphor according to any one of ⁇ 1> to ⁇ 5>, wherein the transparent material is a (meth) acrylic resin.
  • ⁇ 7> The spherical phosphor according to any one of ⁇ 1> to ⁇ 6>, wherein a refractive index of the transparent material is 1.4 or more and lower than a refractive index of the fluorescent substance.
  • the spherical phosphor according to any one of ⁇ 5> to ⁇ 7> which is an emulsion polymer or a suspension polymer of a vinyl monomer composition containing the fluorescent substance and a vinyl monomer.
  • spherical phosphor according to any one of ⁇ 5> to ⁇ 8>, which is a suspension polymer of a vinyl monomer composition containing the fluorescent substance and a vinyl monomer.
  • a wavelength conversion type solar cell encapsulant comprising a light-transmitting resin composition layer containing the spherical phosphor according to any one of ⁇ 1> to ⁇ 9> and an encapsulating resin.
  • n ⁇ 13> m layers composed of the resin composition layer and a light transmissive layer other than the resin composition layer, and the refractive indexes of the m layers are set to n in order from the light incident side. 1 , n 2 ,..., N (m ⁇ 1) , n m , wherein n 1 ⁇ n 2 ⁇ ... ⁇ n (m ⁇ 1) ⁇ nm , Wavelength conversion type solar cell encapsulant.
  • a solar cell comprising: a solar cell element; and the wavelength conversion solar cell sealing material according to any one of ⁇ 10> to ⁇ 13> disposed on a light receiving surface of the solar cell element. module.
  • ⁇ 15> A step of preparing the spherical phosphor according to any one of ⁇ 1> to ⁇ 9>, a step of preparing a resin composition in which the spherical phosphor is mixed or dispersed in a sealing resin, And the step of forming the resin composition into a sheet to prepare a light-transmitting resin composition layer, wherein the wavelength-converting solar cell is encapsulated in any one of the items ⁇ 10> to ⁇ 13> A method of manufacturing a stop material.
  • ⁇ 16> The step of preparing the wavelength conversion solar cell sealing material according to any one of ⁇ 10> to ⁇ 13>, and the wavelength conversion solar cell sealing material on the light receiving surface side of the solar cell element And a method of manufacturing a solar cell module.
  • the spherical fluorescent substance which improves the light utilization efficiency in a solar cell module, and enables it to improve electric power generation efficiency stably, the wavelength conversion type solar cell sealing material containing this, a solar cell module, and Their manufacturing method can be provided.
  • FIG. 1 shows an example of a solar spectrum and the spectral sensitivity spectrum of a crystalline silicon solar cell. It is a figure which shows an example of the excitation spectrum of the fluorescent substance concerning a present Example, and the spherical fluorescent substance containing this. It is a figure which shows an example of the spectrum regarding the photodegradation of EVA, the excitation spectrum of the fluorescent substance concerning a present Example, and the absorption spectrum of a ultraviolet absorber. Examples of solar spectrum, spectral sensitivity spectrum of crystalline silicon solar cell, scattering spectrum before and after photo-degradation of EVA, absorption spectrum of ultraviolet absorber, excitation spectrum of conventional fluorescent material, and excitation spectrum of fluorescent material according to this embodiment FIG.
  • the spherical phosphor of the present invention comprises a fluorescent material having a maximum excitation wavelength of 400 nm or more and a transparent material containing the fluorescent material, and in its excitation spectrum, excitation in a wavelength region of 340 nm or more and 380 nm or less.
  • the spectral intensity is 50% or more of the excitation spectral intensity at the maximum excitation wavelength of the spherical phosphor.
  • the spherical phosphor having an excitation band at the specific wavelength is used, for example, by being contained in a wavelength-convertible resin composition layer constituting a wavelength-converting solar cell sealing material.
  • a wavelength-convertible resin composition layer constituting a wavelength-converting solar cell sealing material.
  • the present invention uses a specific shape phosphor that has excellent light resistance, moisture resistance, heat resistance, good dispersibility, and suppressed concentration quenching, thereby efficiently and stably using sunlight. By doing so, the spectrum mismatch is overcome. Furthermore, the utilization efficiency of the rare earth metal complex as a fluorescent substance is maximized, and the effective luminous efficiency is improved. Therefore, an expensive rare earth complex can be suppressed to a very small amount and contribute to power generation.
  • the spherical phosphor having an excitation band at a specific wavelength of the present invention is a fluorescent material having excellent light resistance, moisture resistance and heat resistance, good dispersibility, and suppressed concentration quenching.
  • a fluorescent material can maximize the utilization efficiency of the rare earth metal complex which is an expensive fluorescent material.
  • the effective luminous efficiency can be improved and the power generation efficiency of the solar cell module can be improved.
  • the spherical phosphor using a fluorescent material having an excitation band at a specific wavelength of the present invention, and the wavelength conversion type solar cell encapsulant using the same are light that does not contribute to solar power generation among incident sunlight. Is converted into a wavelength that contributes to power generation, and at the same time, scattering of the light can be suppressed, and the light can be efficiently introduced into the solar cell element.
  • the spherical phosphor has a maximum excitation wavelength of 400 nm or more of the phosphor contained therein, and the excitation spectrum intensity in the entire wavelength region of 340 nm to 380 nm in the excitation spectrum of the spherical phosphor is The intensity is 50% or more of the excitation spectrum intensity at the maximum excitation wavelength of the spherical phosphor. Further, the excitation spectrum intensity in the entire wavelength range of 340 nm to 390 nm is preferably 50% or more of the excitation spectrum intensity at the maximum excitation wavelength of the spherical phosphor, and excitation in the entire wavelength range of 340 nm to 400 nm is preferable.
  • the spectrum intensity is 50% or more of the excitation spectrum intensity at the maximum excitation wavelength of the spherical phosphor.
  • the maximum excitation wavelength of the fluorescent substance is measured at room temperature (25 degrees) with the fluorescent substance in a solution state.
  • the maximum excitation wavelength of the fluorescent substance is measured using a fluorescence spectrum measuring apparatus (for example, a fluorescence spectrophotometer F-4500 manufactured by Hitachi High-Tech) using dimethylformamide as a solvent.
  • the excitation spectrum of the spherical phosphor is measured using a fluorescence spectrum measuring device at room temperature (25 degrees) with the spherical phosphor sandwiched between two glass plates.
  • the spherical phosphor shows an excitation spectrum different from the excitation spectrum in the solution state of the phosphor contained therein. Specifically, as shown in FIG. 2, a broad excitation wavelength band is shown on the shorter wavelength side than the maximum excitation wavelength indicated by the fluorescent substance in the solution state. This can be considered to be because, for example, the fluorescent substance is included in the transparent material.
  • the excitation spectrum of the spherical phosphor has an excitation wavelength band in the wavelength range of 340 nm to 380 nm, and the excitation spectrum intensity in the entire excitation wavelength band is the excitation at the maximum excitation wavelength of the spherical phosphor itself.
  • the excitation spectrum intensity in the entire excitation wavelength band is the excitation at the maximum excitation wavelength of the spherical phosphor itself.
  • FIG. 1 shows a solar spectrum and a spectral sensitivity spectrum of a crystalline silicon solar cell.
  • FIG. 4 shows a scattering spectrum before and after light degradation of EVA as an example of a sealing resin to be described later, a general ultraviolet absorber.
  • 1 shows an example of an absorption spectrum of the phosphor, an excitation spectrum in a solution state of the fluorescent substance according to Example 1 and Comparative Example 1 described later, and an excitation spectrum of the spherical phosphor according to Example 1 and Comparative Example 1.
  • the intensity starts to appear from 300 nm, the intensity is highest around 450 nm, and the intensity gradually decreases toward longer wavelengths. Further, the spectral sensitivity of the crystalline silicon solar cell gradually increases from 350 nm toward a long wavelength, and becomes maximum near 500 nm.
  • the excitation wavelength of the spherical phosphor is longer than 500 nm, light in a wavelength region where the crystalline silicon solar cell can generate power with sufficient sensitivity is absorbed. Therefore, in this case, if the fluorescence quantum efficiency is not “1” or more as in the case of two-photon emission, the wavelength conversion effect cannot be substantially obtained, so that the fluorescent materials usable for the spherical phosphor are limited. Become. Furthermore, in reality, no substance having a light emission quantum efficiency of 1 or more in this wavelength region has been found.
  • a substance having a one-photon process is used for both excitation and fluorescence.
  • organic phosphors such as rhodamine 6G, rhodamine B, and coumarin have a small difference between the excitation wavelength and the fluorescence wavelength, that is, Stokes shift. Therefore, in order to obtain a fluorescent wavelength that is meaningful as wavelength conversion, a crystalline silicon solar cell absorbs light in a wavelength range that can be generated with sufficient sensitivity, so that a sufficient wavelength conversion effect cannot be expected. There is a case.
  • ordinary organic phosphors have a low fluorescence quantum efficiency, and there are cases where a sufficient wavelength conversion effect cannot be expected.
  • the organic ligand absorbs light, this energy is transferred to the central metal, and the fluorescence from the rare earth metal that is the central metal is used. Therefore, in the rare earth metal complex, the excitation wavelength depends on the organic ligand, and the fluorescence wavelength approximately depends on the metal used. Therefore, the Stokes shift can be increased and the fluorescence quantum efficiency can be increased. In this way, in the rare earth metal complex, the fluorescence wavelength is substantially fixed while having the degree of freedom of selection of the excitation wavelength by the molecular design of the organic ligand.
  • the central metal of the rare earth metal complex europium, samarium and the like are preferably mentioned in terms of fluorescence wavelength, and europium is particularly convenient as a wavelength converting fluorescent material for crystalline silicon solar cells.
  • FIG. 4 shows an excitation spectrum of the phosphor used in Example 1 alone in a dimethylformamide solution, an excitation spectrum of a spherical phosphor in which the phosphor is dispersed in a transparent material, and crystalline silicon.
  • the spectral sensitivity curve of a solar cell element is shown. It can be seen that when the fluorescent material is encapsulated in the spherical fluorescent material, the maximum excitation wavelength in the solution of the fluorescent material is shifted to the short wavelength side and broadened.
  • the excitation spectrum of the spherical phosphor intersects with the spectral sensitivity curve of the crystalline silicon solar cell element at around 410 nm.
  • the fluorescence spectrum intensity around 410 nm is about 70% of the fluorescence spectrum intensity at the maximum excitation wavelength of the fluorescent substance in the solution.
  • the excitation spectrum of the spherical phosphor in which the phosphor according to Comparative Example 1 is dispersed and encapsulated in a transparent material is also shifted to the short wavelength side as in Example 1, and the spectral sensitivity curve of the crystalline silicon solar cell element is obtained. And about 380 nm with an intensity of about 30%.
  • FIG. 4 also shows an absorption spectrum of a typical ultraviolet absorber.
  • the ultraviolet absorber exhibits absorption in the ultraviolet region, and the absorption intensity rapidly decreases from 380 nm to 400 nm. However, it overlaps with the excitation wavelength band of the spherical phosphor of Comparative Example 1, and a portion overlapping the excitation spectrum of the fluorescent substance alone is generated.
  • the intensity of the excitation spectrum is high even in the region outside the absorption region of the ultraviolet absorber. Therefore, even when the ultraviolet absorber is used in combination with the wavelength conversion type solar cell encapsulant, the photovoltaic efficiency is further improved by using the spherical phosphor as in Example 1.
  • EVA which is a typical sealing resin
  • EVA tends to increase scattering toward the shorter wavelength side due to light degradation.
  • a spherical phosphor having an excitation wavelength band on the relatively long wavelength side as in Example 1 it is possible to reduce the influence on the photovoltaic power generation efficiency due to the light degradation of EVA.
  • Eu (TTA) 3 Phen ((1,10-phenanthroline) tris “4,4,4-trifluoro-1- (2-thienyl) -1,3-butanedionato], a well-known europium complex Europium (III)) has a peak at an excitation wavelength of 390 nm and a broadening from 380 nm to 420 nm, whereas the europium complex contained in the spherical phosphor according to this embodiment has an organic ligand. It is preferable that the excitation wavelength is longer by design, especially the original crystalline silicon solar cell absorbs almost no light in the wavelength range that can generate power with sufficient sensitivity, and has sufficient intensity to sunlight. It is preferably a fluorescent material characterized by having an excitation wavelength in a wavelength region, specifically, shorter than 450 nm and longer than 400 nm. .
  • Examples of a method for realizing the excitation wavelength include the methods described in Japanese Patent Application Nos. 2010-085483 and 2010-260326, but the present invention is not limited to this method. .
  • a substance has a specific refractive index, which has a dependency on the wavelength, and the refractive index increases from a long wavelength toward a short wavelength even in a transparent material.
  • the refractive index increases near that wavelength.
  • transition from a ground state to an excited state occurs at an absorption wavelength (excitation wavelength), and energy is released as fluorescence (also referred to as light emission) when returning to the ground state. That is, by mixing a certain fluorescent substance with a transparent material, the refractive index can be increased, particularly in the excitation wavelength region, as compared with the transparent material (for example, transparent resin) which is a base material. This state is conceptually shown in FIG.
  • the solid line represents the refractive index distribution of the transparent material as the matrix
  • the broken line represents the refractive index distribution when the fluorescent material is contained therein.
  • the refractive index by appropriately selecting a transparent material, a fluorescent material, and a medium (sealing resin) that are the sphere matrix, the refractive index inside the sphere is medium (sealing resin) in the excitation wavelength region as shown in FIG. It is possible to obtain a correlation that is larger than that of the medium (sealing resin) in the emission wavelength region.
  • the particles containing the fluorescent material By configuring the particles containing the fluorescent material into a spherical shape as described above, a sufficient amount of wavelength-converted light emission can be obtained even when an expensive fluorescent material is used in a small amount.
  • the fluorescent material absorbs the excitation wavelength, the refractive index in the excitation wavelength region is high and light scattering is likely to occur. Further, when the fluorescent material is aggregated, light scattering is further increased, and the effect of improving the power generation efficiency by the intended wavelength conversion may not be sufficiently obtained.
  • the fluorescent material is encapsulated in a transparent material (preferably a transparent material having a lower refractive index than the fluorescent material), light scattering caused by the difference in refractive index between the fluorescent material and the sealing resin is effectively suppressed. can do.
  • the moisture resistance can be further improved by confining the substance in a sphere of a transparent material (preferably a moisture-resistant transparent material).
  • a transparent material preferably a moisture-resistant transparent material.
  • the spherical phosphor of the present invention can be suitably used for a solar cell module.
  • wavelength-converted agricultural materials, various optical devices for light emitting diode excitation, display devices, various optical devices for laser excitation, The spherical phosphor of the present invention can be applied to display devices and the like, and does not limit the application.
  • the spherical phosphor of the present invention includes at least one fluorescent substance described later and at least one transparent material, and has a spherical shape.
  • the term “spherical” refers to, for example, a particle size / shape automatic image analysis / measurement device manufactured by Malvern Instruments Limited, Sysmex FPIA-3000, and 100 particles to be measured are included in the attached analysis software. It means that the arithmetic average value of the circularity defined is 0.90 or more. However, in the present invention, the degree of sphere is not defined by the range of circularity.
  • the fluorescent substance used in the present invention is not particularly limited as long as the maximum excitation wavelength is 400 nm or more, and can be appropriately selected according to the purpose.
  • it is preferably a fluorescent material having an excitation wavelength of 500 nm or less (more preferably 450 nm or less) and an emission wavelength longer than that, and in a wavelength region where the utilization efficiency in a normal solar cell is insufficient.
  • the compound be a compound that can convert light into a wavelength range with high utilization efficiency in a solar cell.
  • Specific examples of the fluorescent substance include organic phosphors, inorganic phosphors, and rare earth metal complexes. Among these, from the viewpoint of wavelength conversion efficiency, at least one of an organic phosphor and a rare earth metal complex is preferable, and a rare earth metal complex is more preferable.
  • the inorganic phosphor examples include, for example, fluorescent particles of Y 2 O 2 S: Eu, Mg, Ti, oxyfluoride crystallized glass containing Er 3+ ions, a compound composed of strontium oxide and aluminum oxide and rare earth elements.
  • fluorescent particles such as SrAl 2 O 4 : Eu, Dy, Sr 4 Al1 4 O 25 : Eu, Dy, CaAl 2 O 4 : Eu, Dy, ZnS: Cu, etc. to which europium (Eu) and dysprosium (Dy) are added Mention may be made of fluorescent materials.
  • organic phosphor- examples of the organic phosphor include organic dyes such as cyanine dyes, pyridine dyes, rhodamine dyes, Lumogen F Violet 570, Yellow083, Orange 240, Red240, and Red300 manufactured by BASF, manufactured by Taoka Chemical Co., Ltd.
  • organic phosphors such as basic dye Rhodamine B, Sumiplast Yellow FL7G manufactured by Sumika Finechem Co., Ltd., MACROLEX Fluorescent Red G manufactured by Bayer, and Yellow 10GN may be used.
  • the metal constituting the rare earth metal complex is preferably at least one of europium and samarium, more preferably europium, from the viewpoints of light emission efficiency and light emission wavelength.
  • the ligand constituting the rare earth metal complex is not particularly limited as long as it can coordinate to the rare earth metal, and can be appropriately selected according to the metal to be used. Among these, from the viewpoint of luminous efficiency, an organic ligand is preferable, and an organic ligand capable of forming a complex with at least one of europium and samarium is preferable.
  • the neutral ligand is selected from carboxylic acid, nitrogen-containing organic compound, nitrogen-containing aromatic heterocyclic compound, ⁇ -diketone, and phosphine oxide. It is preferable that it is at least one kind.
  • R 1 represents an aryl group, an alkyl group, a cycloalkyl group, a cycloalkylalkyl group, an aralkyl group, or a substituent thereof
  • R 2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, a cycloalkylalkyl group, an aralkyl group or an aryl group
  • R 3 represents an aryl group, an alkyl group, a cycloalkyl group, a cycloalkylalkyl group, an aralkyl group or a substituent thereof.
  • ⁇ -diketones represented by the formula (1) may be contained.
  • ⁇ -diketones include acetylacetone, perfluoroacetylacetone, benzoyl-2-furanoylmethane, 1,3-di (3-pyridyl) -1,3-propanedione, benzoyltrifluoroacetone, benzoylacetone 5-chlorosulfonyl-2-thenoyltrifluoroacetone, bis (4-bromobenzoyl) methane, dibenzoylmethane, d, d-dicamphorylmethane, 1,3-dicyano-1,3-propanedione, p- Bis (4,4,5,5,6,6,6-heptafluoro-1,3-hexanedinoyl) benzene, 4,4'-dimethoxydibenzoylmethane, 2,6-dimethyl-3,5-heptane Dione, dinaphthoylmethane, dipivaloylme
  • Nitrogen-containing organic compounds, nitrogen-containing aromatic heterocyclic compounds, and phosphine oxides of neutral ligands of rare earth complexes include, for example, 1,10-phenanthroline, 2-2'-bipyridyl, 2-2'-6, 2 "-terpyridyl, 4,7-diphenyl-1,10-phenanthroline, 2- (2-pyridyl) benzimidazole, triphenylphosphine oxide, tri-n-butylphosphine oxide, tri-n-octylphosphine oxide, tri- Examples include n-butyl phosphate.
  • the rare earth complex having the above-described ligand from the viewpoint of wavelength conversion efficiency, for example, Eu (TTA) 3 phen ((1,10-phenanthroline) tris [4,4,4-trifluoro-1- (2-thienyl) -1,3-butanedionate] europium (III)), Eu (BMPP) 3 phen ((1,10-phenanthroline) tris [1- (pt-butylphenyl) -3- ( N-methyl-3-pyrrole) -1,3-propanedionate] europium (III))), Eu (BMDBM) 3 phen ((1,10-phenanthroline) tris [1- (pt-butylphenyl) -3-(p-methoxyphenyl) -1,3-propanediol inert] europium (III))), Eu ( FTP) 3 Phen ((1,10- Fena Tororin) tris [1- (4-fluorophenyl)
  • a solar cell module having high power generation efficiency can be configured by using, in particular, a europium complex as the fluorescent material.
  • the europium complex converts light in the ultraviolet region into light in the red wavelength region with high wavelength conversion efficiency, and the converted light contributes to power generation in the solar cell element.
  • the fluorescent substance is contained in a transparent material.
  • transparent means that the transmittance of light having a wavelength of 400 nm to 800 nm at an optical path length of 1 cm is 90% or more.
  • the transparent material is not particularly limited as long as it is transparent, and examples thereof include resins such as acrylic resin, methacrylic resin, urethane resin, epoxy resin, polyester, polyethylene, and polyvinyl chloride. Among these, acrylic resins and methacrylic resins are preferable from the viewpoint of suppressing light scattering. Although there is no restriction
  • a composition is prepared by dissolving or dispersing the fluorescent material in a monomer compound, and this is polymerized (emulsion polymerization or (Suspension polymerization).
  • a mixture containing a fluorescent substance and a vinyl compound is prepared, and this is emulsified or dispersed in a medium (for example, an aqueous medium) to obtain an emulsion or suspension.
  • a spherical phosphor is obtained as a spherical resin particle containing a fluorescent substance.
  • a radical polymerization initiator to polymerize a vinyl compound contained in an emulsion or suspension (emulsion polymerization or suspension polymerization)
  • a spherical phosphor is obtained as a spherical resin particle containing a fluorescent substance.
  • a mixture containing a fluorescent substance and a vinyl compound is prepared, and this is dispersed in a medium (for example, an aqueous medium) to obtain a suspension.
  • a spherical phosphor as spherical resin particles containing a fluorescent substance by polymerizing (suspension polymerization) a vinyl compound contained in the suspension using an initiator.
  • the vinyl compound is not particularly limited as long as it is a compound having at least one ethylenically unsaturated bond, and an acrylic monomer, a methacrylic monomer, which can be converted into a vinyl resin, particularly an acrylic resin or a methacrylic resin when polymerized.
  • An acrylic oligomer, a methacryl oligomer, etc. can be used without a restriction
  • an acrylic monomer, a methacryl monomer, and the like are preferable.
  • acrylic monomer and the methacrylic monomer examples include acrylic acid, methacrylic acid, and alkyl esters thereof, and other vinyl compounds that can be copolymerized with these may be used in combination. A combination of the above can also be used.
  • alkyl acrylate ester and the alkyl methacrylate ester include, for example, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate.
  • vinyl compounds that can be copolymerized with acrylic acid, methacrylic acid, alkyl acrylate ester or alkyl methacrylate ester include acrylamide, acrylonitrile, diacetone acrylamide, styrene, vinyl toluene and the like. These vinyl monomers can be used alone or in combination of two or more.
  • the vinyl compound in the present invention can be appropriately selected so that the refractive index of the resin particles to be formed has a desired value, and at least one selected from an alkyl acrylate ester and an alkyl methacrylate ester is used.
  • at least one selected from an acrylic acid unsubstituted alkyl ester and a methacrylic acid unsubstituted alkyl ester is more preferably used, and at least one selected from an acrylic acid unsubstituted alkyl ester and a methacrylic acid unsubstituted alkyl ester is polyvalent. It is more preferable to use a compound obtained by reacting an alcohol with an ⁇ , ⁇ -unsaturated carboxylic acid.
  • vinyl compound in the present invention at least one selected from an acrylic acid unsubstituted alkyl ester and a methacrylic acid unsubstituted alkyl ester (hereinafter also referred to as “vinyl compound A”) and a polyhydric alcohol are ⁇ , ⁇ -unsaturated carboxylic acids.
  • the compound (hereinafter also referred to as “vinyl compound B”) obtained by reacting is used as the ratio of vinyl compound B to vinyl compound A (vinyl compound B / vinyl compound A), for example, From the viewpoint, 0.001 to 0.1 is preferable, and 0.005 to 0.05 is more preferable.
  • radical polymerization initiator In the present invention, it is preferable to use a radical polymerization initiator in order to polymerize the vinyl compound.
  • a radical polymerization initiator a commonly used radical polymerization initiator can be used without particular limitation.
  • a peroxide etc. are mentioned preferably.
  • organic peroxides or azo radical initiators that generate free radicals by heat are preferred.
  • organic oxide examples include isobutyl peroxide, ⁇ , ⁇ '-bis (neodecanoylperoxy) diisopropylbenzene, cumylperoxyneodecanoate, di-n-propylperoxydicarbonate, bis-s- Butyl peroxydicarbonate, 1,1,3,3-tetramethylbutyl neodecanoate, bis (4-tert-butylcyclohexyl) peroxydicarbonate, 1-cyclohexyl-1-methylethyl peroxyneodecanoate Bis-2-ethoxyethyl peroxydicarbonate, bis (ethylhexyl) peroxydicarbonate, t-hexyl neodecanoate, bismethoxybutyl peroxydicarbonate, bis (3-methyl-3-methoxybutyl) peroxy Dicarbonate, t-butyl pero Cineodecanoate, t-but
  • azobisisobutyronitrile AIBN, trade name V-60, manufactured by Wako Pure Chemical Industries
  • 2,2′-azobis (2-methylisobutyronitrile) trade name V-59, manufactured by Wako Pure Chemical Industries, Ltd.
  • 2,2′-azobis (2,4-dimethylvaleronitrile) trade name V-65, manufactured by Wako Pure Chemical Industries, Ltd.
  • dimethyl-2,2′-azobis (isobutyrate) ) (Trade name V-601, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) (trade name V-70, manufactured by Wako Pure Chemical Industries, Ltd.), and the like. It is done.
  • the amount of the radical polymerization initiator used can be appropriately selected according to the type of the vinyl compound, the refractive index of the resin particles to be formed, and the like, and is used in a commonly used amount. Specifically, for example, it can be used in an amount of 0.01% to 2% by weight, preferably 0.1% to 1% by weight, based on the vinyl compound.
  • the refractive index of the transparent material in the present invention is not particularly limited, but is preferably lower than the refractive index of the fluorescent material, lower than the refractive index of the fluorescent material, and sealed later, from the viewpoint of suppressing light scattering. More preferably, the ratio of the refractive index of the stop resin is close to 1. In general, since the refractive index of the fluorescent material is larger than 1.5 and the refractive index of the sealing resin is about 1.4 to 1.5, the refractive index of the transparent material is 1.4 to 1.5. Preferably there is.
  • the spherical phosphor preferably has a higher refractive index than the encapsulating resin serving as a dispersion medium at the excitation wavelength of the fluorescent material and a lower refractive index than the encapsulating resin at the emission wavelength.
  • a method for producing a spherical phosphor by incorporating the fluorescent material and, if necessary, a radical scavenger or the like into the transparent material and making the shape spherical include, for example, the fluorescent material and the radical scavenger as the monomer compound. It can be prepared by dissolving or dispersing in a composition to prepare a composition and polymerizing (emulsion polymerization or suspension polymerization).
  • a mixture containing a fluorescent substance, a radical scavenger and a vinyl compound is prepared, and this is emulsified or dispersed in a medium (for example, an aqueous medium) to obtain an emulsion or suspension.
  • a medium for example, an aqueous medium
  • a radical polymerization initiator to polymerize a vinyl compound contained in an emulsion or suspension (emulsion polymerization or suspension polymerization)
  • a spherical phosphor is obtained as a spherical resin particle containing a fluorescent substance.
  • a mixture containing a fluorescent substance and a vinyl compound is prepared, and this is dispersed in a medium (for example, an aqueous medium) to obtain a suspension. It is preferable to form a spherical phosphor as spherical resin particles containing a fluorescent substance by polymerizing (suspension polymerization) a vinyl compound contained in the suspension using an initiator.
  • the average particle diameter of the spherical phosphor of the present invention is preferably 1 ⁇ m to 600 ⁇ m, more preferably 5 ⁇ m to 300 ⁇ m, and further preferably 10 ⁇ m to 250 ⁇ m from the viewpoint of improving light utilization efficiency.
  • the average particle diameter of the spherical phosphor is measured using a laser diffraction method, and corresponds to the particle diameter at which the weight accumulation becomes 50% when the weight accumulation particle size distribution curve is drawn from the small particle diameter side.
  • the particle size distribution measurement using the laser diffraction method can be performed using a laser diffraction / scattering particle size distribution measuring apparatus (for example, LS13320 manufactured by Beckman Coulter, Inc.).
  • the wavelength conversion type solar cell encapsulant of the present invention is used as one of the light transmissive layers of a solar cell module, and includes at least one light transmissive resin composition layer having wavelength conversion ability.
  • the resin composition layer includes at least one of the spherical phosphors and at least one of a sealing resin (preferably a transparent sealing resin), and the spherical phosphor is dispersed in the sealing resin. Yes.
  • the wavelength conversion type solar cell encapsulant includes the resin composition layer containing the spherical phosphor, when used as one of the light transmissive layers in the solar cell module, the light utilization efficiency is improved, The power generation efficiency can be improved stably.
  • the scattering of light correlates with the ratio between the refractive index of the spherical phosphor and the refractive index of the sealing resin. Specifically, the light scattering is less affected by the particle size of the spherical phosphor if the ratio of the refractive index of the spherical phosphor to the refractive index of the transparent sealing resin is close to “1”. Light scattering is also small. In particular, when the present invention is applied to a wavelength conversion type light transmission layer of a solar cell module, it is preferable that the ratio of the refractive index in a wavelength region sensitive to the solar cell element, that is, 400 nm to 1200 nm is close to “1”.
  • the refractive index of the spherical phosphor is higher than that of the sealing resin that is a medium in the excitation wavelength region. It is preferable to become.
  • Eu (FTP) 3 phen ((1,10-phenanthroline) tris [1- (4-fluorophenyl) -3- (2- (Thienyl) -1,3-propanedionato] europium (III)), obtained by suspension polymerization of 95% by weight of methyl methacrylate and 5% by weight of ethylene glycol dimethacrylate as a transparent material (spherical base material).
  • EVA ethylene-vinyl acetate copolymer
  • a particularly good refractive index correlation is given from the viewpoint of excitation wavelength and emission wavelength, and also from the viewpoint of solar cell sensitivity. sell.
  • FIG. 1 ethylene-vinyl acetate copolymer
  • the shape of the excitation spectrum does not match between the fluorescent substance and the spherical phosphor using the fluorescent substance.
  • This is a kind of so-called solvent effect, which reflects the difference in environmental influence (interaction) at the molecular level.
  • solvent effect which reflects the difference in environmental influence (interaction) at the molecular level.
  • this is due to the transition between the levels in which the excited states exist, and is related to the absorption wavelength present in the absorption spectrum shown in FIG. 8.
  • the fluorescence in the solution state is the lowest excitation level of absorption. Fluorescence from the position increases.
  • the mutual relationship between the fluorescence excitation wavelength of the fluorescent substance and the spherical phosphor using the fluorescent substance, and the refractive index of each of the fluorescent substance, the transparent material, and the sealing resin satisfies the above conditions. It is preferable to select each of them appropriately, and the present invention is not limited to the above combination.
  • a preferable blending amount of the spherical phosphor in the wavelength-converting resin composition layer provided in the wavelength-converting solar cell encapsulating material of the present invention is 0.0001% by mass to 10% by mass concentration with respect to the total nonvolatile content. % Is preferred. Luminous efficiency improves by setting it as 0.0001 mass% or more. Moreover, by setting it as 10 mass% or less, scattering of incident light is suppressed more effectively, and a power generation effect improves more.
  • the wavelength-convertible resin composition layer in the present invention contains a sealing resin (transparent sealing resin).
  • a sealing resin transparent sealing resin
  • a photocurable resin, a thermosetting resin, a thermoplastic resin, or the like is preferably used.
  • thermosetting ethylene-vinyl acetate copolymer (EVA) has been widely used.
  • the present invention is not limited to this. It is not something.
  • the resin configuration and photocuring method of the photocurable resin are not particularly limited.
  • the wavelength-converting solar cell encapsulant resin composition contains (A) a photocurable resin, (B) a crosslinkable monomer, and (C) in addition to the spherical resin particles. ) A dispersion medium resin containing a photoinitiator that generates free radicals by light.
  • the photocurable resin (A) a copolymer obtained by copolymerizing acrylic acid or methacrylic acid and their alkyl ester and another vinyl monomer copolymerizable therewith as a constituent monomer is used. These copolymers can be used alone or in combination of two or more.
  • the alkyl acrylate ester or the alkyl methacrylate ester include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, and the like.
  • Acrylic acid unsubstituted alkyl ester or methacrylic acid unsubstituted alkyl ester acrylic acid substituted alkyl ester or methacrylic acid substituted alkyl ester in which a hydroxyl group, an epoxy group, a halogen group or the like is substituted on these alkyl groups.
  • examples of other vinyl monomers that can be copolymerized with acrylic acid, methacrylic acid, alkyl acrylate ester or alkyl methacrylate ester include acrylamide, acrylonitrile, diacetone acrylamide, styrene, vinyl toluene, and the like. These vinyl monomers can be used alone or in combination of two or more.
  • the weight average molecular weight of the photocurable resin (dispersion medium resin) as the component (A) is preferably 10,000 to 300,000 from the viewpoint of coating properties and coating strength.
  • crosslinkable monomer for example, a compound obtained by reacting a polyhydric alcohol with an ⁇ , ⁇ -unsaturated carboxylic acid (for example, polyethylene glycol di (meth) acrylate (the number of ethylene groups is 2 to 14).
  • a polyhydric alcohol for example, polyethylene glycol di (meth) acrylate (the number of ethylene groups is 2 to 14).
  • crosslinkable monomers are trimethylolpropane tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate in the sense that the crosslinking density and reactivity can be easily controlled.
  • Bisphenol A polyoxyethylene dimethacrylate is used individually or in combination of 2 or more types.
  • the functional monomer contains bromine and sulfur atoms.
  • bromine-containing monomers include New Frontier BR-31, New Frontier BR-30, and New Frontier BR-42M manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • sulfur-containing monomer composition include IU-L2000, IU-L3000, and IU-MS1010 manufactured by Mitsubishi Gas Chemical Company, Inc.
  • bromine and sulfur atom-containing monomers (polymers containing them) used in the present invention are not limited to those listed here.
  • the photoinitiator is preferably a photoinitiator that generates free radicals by ultraviolet light or visible light.
  • benzoin ethers such as benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isobutyl ether, and benzoin phenyl ether
  • Benzophenones such as benzophenone, N, N′-tetramethyl-4,4′-diaminobenzophenone (Michler ketone), N, N′-tetraethyl-4,4′-diaminobenzophenone, benzyldimethyl ketal (BASF Japan Ltd.) IRGACURE (Irgacure) 651), benzyl ketals such as benzyl diethyl ketal, 2,2-dimethoxy-2-phenylacetophenone, p-tert-butyldichloroacetopheno , Acetophenones
  • Examples of (C) photoinitiators that can be used as photoinitiators include 2,4,5-triallylimidazole dimer, 2-mercaptobenzoxazole, leucocrystal violet, tris (4-diethylamino-2 Combinations with -methylphenyl) methane and the like are also mentioned.
  • an additive that can be used as a sensitizer system with a better photoinitiation performance as a whole when used in combination with the above substances such as triethanolamine for benzophenone, etc. Secondary amines can be used.
  • the thermal initiator is preferably an organic peroxide that generates free radicals by heat.
  • the thermal initiator is preferably an organic peroxide that generates free radicals by heat.
  • the acrylic photocurable resin and the thermosetting resin are also included in the wavelength conversion type solar cell encapsulant of the present invention. It can be used as a dispersion medium resin.
  • epoxy curing is ionic, the spherical resin particles (coated phosphor) or the rare earth metal complex that is a fluorescent substance may be affected, and may cause deterioration. preferable.
  • thermoplastic resin that flows by heating or pressurization is used as the dispersion medium resin of the resin composition for wavelength conversion type solar cell encapsulant, for example, natural rubber, polyethylene, polypropylene, polyvinyl acetate, polyisoprene, poly- (Di) enes such as 1,2-butadiene, polyisobutene, polybutene, poly-2-heptyl-1,3-butadiene, poly-2-t-butyl-1,3-butadiene, poly-1,3-butadiene, etc.
  • natural rubber polyethylene, polypropylene, polyvinyl acetate, polyisoprene, poly- (Di) enes such as 1,2-butadiene, polyisobutene, polybutene, poly-2-heptyl-1,3-butadiene, poly-2-t-butyl-1,3-butadiene, poly-1,3-butadiene, etc.
  • Polyethers such as polyoxyethylene, polyoxypropylene, polyvinyl ethyl ether, polyvinyl hexyl ether and polyvinyl butyl ether, polyesters such as polyvinyl acetate and polyvinyl propionate, polyurethane, ethyl cellulose, polyvinyl chloride, polyacrylonitrile, polymethacrylate Ronitrile, Resulfone, phenoxy resin, polyethyl acrylate, polybutyl acrylate, poly-2-ethylhexyl acrylate, poly-t-butyl acrylate, poly-3-ethoxypropyl acrylate, polyoxycarbonyl tetramethacrylate, polymethyl acrylate, polyisopropyl methacrylate, poly Dodecyl methacrylate, polytetradecyl methacrylate, poly-n-propyl methacrylate, poly-3,3,5-trimethylcyclohexyl methacrylate
  • thermoplastic resins may be copolymerized in two or more if necessary, or may be used by blending two or more.
  • epoxy acrylate, urethane acrylate, polyether acrylate, polyester acrylate, or the like can be used as a copolymer resin with the above resin.
  • urethane acrylate, epoxy acrylate, and polyether acrylate are excellent from the viewpoint of adhesiveness.
  • Epoxy acrylates include 1,6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, allyl alcohol diglycidyl ether, resorcinol diglycidyl ether, adipic acid diglycidyl ester, phthalic acid diglycidyl ester, polyethylene glycol diglycidyl ether And (meth) acrylic acid adducts such as trimethylolpropane triglycidyl ether, glycerin triglycidyl ether, pentaerythritol tetraglycidyl ether, and sorbitol tetraglycidyl ether.
  • Polymers having a hydroxyl group in the molecule are effective in improving adhesion.
  • These copolymer resins can be used in combination of two or more as required.
  • the softening temperature of these resins is preferably 200 ° C. or less, and more preferably 150 ° C. or less from the viewpoint of handleability. Considering that the use environment temperature of the solar cell unit is usually 80 ° C. or lower and workability, the softening temperature of the resin is particularly preferably 80 ° C. to 120 ° C.
  • the composition of the other resin composition when the thermoplastic resin is used as the dispersion medium resin (sealing resin) is not particularly limited as long as the above-described coated phosphor is contained, but usually used components such as plastic It is possible to contain an agent, a flame retardant, a stabilizer and the like.
  • the dispersion medium resin of the wavelength conversion type solar cell encapsulant of the present invention as described above, photocurability, thermosetting, thermoplasticity, and the resin is not particularly limited, but as a particularly preferable resin, The composition which mix
  • the wavelength conversion type solar cell encapsulant of the present invention may be composed only of a wavelength convertible resin composition layer containing a spherical phosphor and an encapsulating resin, but in addition to this, the resin composition layer It is preferable to further have a light transmission layer other than the above.
  • the light-transmitting layer other than the resin composition layer include a light-transmitting layer obtained by removing the spherical phosphor from the wavelength-converting resin composition layer.
  • the wavelength conversion type solar cell encapsulating material of the present invention is composed of a plurality of light transmissive layers, it is preferable that the wavelength conversion type solar cell encapsulating material has at least the same or higher refraction than the layer on the incident side.
  • m light-transmitting layers are layer 1, layer 2,..., Layer (m ⁇ 1), layer m in order from the light incident side, and the refractive indices of the respective layers are sequentially n 1. , n 2, ⁇ , n ( m-1), when the n m, it is preferable that n 1 ⁇ n 2 ⁇ ⁇ ⁇ n (m-1) ⁇ n m holds.
  • the refractive index of the wavelength conversion type solar cell encapsulant of the present invention is not particularly limited, but is preferably 1.5 to 2.1, more preferably 1.5 to 1.9.
  • the wavelength conversion type solar cell sealing material of this invention consists of a some light transmissive layer, it is preferable that the whole refractive index of the wavelength conversion type solar cell sealing material is in the said range.
  • the wavelength conversion type solar cell sealing material of the present invention is preferably disposed on the light receiving surface of the solar cell element. By doing so, it is possible to follow the uneven structure including the texture structure of the light-receiving surface of the solar cell element, the cell electrode, the tab line and the like without a gap.
  • the method for producing a wavelength conversion type solar cell encapsulant of the present invention comprises (1) a fluorescent substance synthesis step, (2) suspension polymerization of a vinyl monomer composition in which a fluorescent substance is dissolved or dispersed, and a spherical phosphor. And (3) a sheet forming step of forming a resin composition obtained by mixing or dispersing the spherical phosphor in a sealing resin (transparent sealing resin) into a sheet shape.
  • a method such as extrusion molding or calendar molding which is usually used as a method for forming the resin composition into a sheet shape, can be used without any particular limitation.
  • the wavelength conversion type solar cell encapsulant of the present invention is preferably formed in a sheet shape from the viewpoint of ease of use.
  • the wavelength conversion type solar cell encapsulating material 100 includes a resin layer that does not include the spherical phosphor 50 on the glass side (referred to as the support layer 30) and a resin that includes the spherical phosphor 50 on the cell side. It is more preferable to have a two-layer structure of layers (referred to as light emitting layer 40).
  • the wavelength conversion type solar cell encapsulant 100 is provided with a protective glass (cover glass, not shown) so as to be in contact with the glass side surface 10 and a solar cell element (not shown) so as to be in contact with the cell side surface 20.
  • a protective glass cover glass, not shown
  • a solar cell element so as to be in contact with the cell side surface 20.
  • a manufacturing method including the sheet
  • This invention also makes the solar cell module provided with the said wavelength conversion type solar cell sealing material into the range.
  • the solar cell module of this invention is equipped with the said wavelength conversion type solar cell sealing material arrange
  • the wavelength conversion type solar cell sealing material of the present invention is used, for example, as one of the light transmissive layers of a solar cell module having a plurality of light transmissive layers and solar cell elements.
  • the solar cell module is composed of necessary members such as an antireflection film, a protective glass, a wavelength conversion type solar cell sealing material, a solar cell element, a back film, a cell electrode, and a tab wire.
  • the light-transmitting layer having light transmittance includes an antireflection film, a protective glass, the wavelength conversion type solar cell sealing material of the present invention, a SiNx: H layer and a Si layer of the solar cell, and the like. Can be mentioned.
  • the order of lamination of the light-transmitting layers mentioned above is usually an antireflection film, protective glass, and the wavelength conversion type solar cell sealing of the present invention, which are formed in order from the light receiving surface of the solar cell module.
  • the material is a SiNx: H layer or Si layer of the solar cell element.
  • the external light entering from any angle has less reflection loss and is efficiently introduced into the solar cell element.
  • the light transmissive layer disposed on the light incident side of the wavelength conversion type solar cell encapsulant, that is, the refractive index of the antireflection film, protective glass, etc., and the light of the wavelength conversion type solar cell encapsulant The refractive index of the light transmissive layer disposed on the side opposite to the incident side, that is, the SiNx: H layer (also referred to as “cell antireflection film”) and the Si layer of the solar cell element is preferably lower.
  • the light transmitting layer disposed on the light incident side of the wavelength conversion type solar cell encapsulant that is, the refractive index of the antireflection film is 1.25 to 1.45
  • the refractive index of the protective glass is Usually, about 1.45 to 1.55 is used.
  • the refractive index of the light transmissive layer disposed on the opposite side of the light incident side of the wavelength conversion type solar cell encapsulant, that is, the SiNx: H layer (cell antireflection film) of the solar cell element is usually 1.9.
  • the refractive index of about 2.1 to 2.1 and the refractive index of the Si layer or the like is usually about 3.3 to 3.4. From the above, the refractive index of the wavelength conversion type solar cell encapsulant of the present invention is preferably 1.5 to 2.1, more preferably 1.5 to 1.9.
  • a solar cell module having high power generation efficiency can be realized by using a europium complex as a fluorescent material having an excitation band at a specific wavelength used for the wavelength conversion type solar cell encapsulant of the present invention.
  • the europium complex converts light in the ultraviolet region into light in the red wavelength region with high wavelength conversion efficiency, and the converted light contributes to power generation in the solar cell element.
  • a wavelength conversion type solar cell sealing material is formed on a solar cell element using a sheet-like resin composition which is a wavelength conversion type solar cell sealing material of the present invention, and a solar cell module is manufactured. Specifically, it is the same as the manufacturing method of a normal crystalline silicon solar cell module, and instead of the normal sealing material sheet, the wavelength conversion type solar cell sealing material (particularly preferably in the form of a sheet) of the present invention is used. . In particular, in the case of the two-layer structure of the support layer and the light emitting layer (wavelength conversion type solar cell sealing material), it is necessary to pay attention to the arrangement so that the support layer is in contact with the glass side and the light emitting layer is in contact with the solar cell element side. .
  • a crystalline silicon solar cell module is first made into a thermosetting type with a sheet-like sealing material (mostly an ethylene-vinyl acetate copolymer using a thermal radical initiator on a cover glass as a light receiving surface. Stuff).
  • a sheet-like sealing material mostly an ethylene-vinyl acetate copolymer using a thermal radical initiator on a cover glass as a light receiving surface. Stuff.
  • the wavelength conversion type solar cell sealing material of this invention is used for the sealing material used here.
  • the solar cell elements connected by tab wires are placed, and a sheet-shaped sealing material (in the present invention, the wavelength conversion type solar cell sealing material may be used only on the light receiving surface side.
  • a conventional sheet may be used, and a back sheet may be further mounted to form a module using a vacuum pressure laminator dedicated to the solar cell module.
  • the hot plate temperature of the laminator is a temperature necessary for the sealing material to soften and melt, enclose the solar cell element, and further cure, and is usually 120 ° C. to 180 ° C. It is designed so that these physical and chemical changes occur at a temperature of from 160 ° C to 160 ° C.
  • the wavelength conversion type solar cell encapsulant of the present invention is in a state before being made into a solar cell module, specifically, a semi-cured state when a curable resin is used.
  • the refractive index of the wavelength conversion type solar cell sealing material in a semi-cured state and the wavelength conversion type solar cell sealing material after being cured (after being formed into a solar cell module) is not greatly changed.
  • it is preferable that it is a sheet form from the ease of manufacture of a solar cell module.
  • Example 1 ⁇ Synthesis of FTP [1- (4-fluorophenyl) -3- (2-thienyl) -1,3-propanedione]> 0.96 g (0.04 mol) of sodium hydride was weighed, and 22.5 ml of dehydrated tetrahydrofuran was added under a nitrogen atmosphere. While vigorously stirring, a solution of 2.52 g (0.02 mol) of 2-acetylthiophene and 3.70 g (0.024 mol) of methyl 4-fluorobenzoate in 12.5 ml of dehydrated tetrahydrofuran was added dropwise over 1 hour. . Thereafter, the mixture was refluxed for 8 hours under a nitrogen stream.
  • FTP fluorescent substance Eu
  • the mixed liquid of methyl methacrylate and ethylene glycol dimethacrylate prepared previously was added thereto, and this was heated to 50 ° C. while stirring at 350 rpm, and reacted for 4 hours.
  • the particle diameter of this suspension was measured using a Beckman Coulter LS13320 (high resolution laser diffraction scattering particle size distribution analyzer) manufactured by Beckman Coulter, and the volume average diameter was 104 ⁇ m.
  • the precipitate was separated by filtration, washed with ion exchange water, and dried at 60 ° C. to obtain a spherical phosphor A by suspension polymerization.
  • the obtained spherical phosphor A is defined in the analysis software for 100 particles to be measured using a particle diameter / shape automatic image analysis measurement device, Sysmex FPIA-3000, manufactured by Malvern Instruments Limited. It was confirmed that the circularity was 0.90 or more.
  • the resin composition for encapsulant prepared in the same manner except that it does not contain the spherical phosphor A is used in the same manner, 0 A 45 mm thick stainless steel spacer was used, and a hot plate was adjusted to 80 ° C. to form a sheet. This was used as a support layer. The light-emitting layer and the support layer were combined and further made into a sheet using a press adjusted to 80 ° C. to obtain a wavelength conversion type solar cell encapsulant sheet.
  • the wavelength conversion type solar cell encapsulant sheet is placed with the support layer facing down and the light emitting layer facing up, A solar cell element on which the electromotive force can be taken out is placed on the top so that the light-receiving surface faces down, and a back surface solar cell sealing material sheet and a PET film (trade name, manufactured by Toyobo Co., Ltd.) : A-4300) and laminating using a vacuum laminator to prepare a wavelength conversion type solar cell module.
  • a cell antireflection film having a refractive index of 1.9 is formed on the solar cell element used.
  • the produced precipitate was filtered by suction, washed with ethanol, and dried to obtain Eu (TTA) 3 Phen as a fluorescent substance.
  • TTA Eu
  • the excitation spectrum at a fluorescence wavelength of 621 nm was measured with a fluorescence spectrophotometer (F-4500, manufactured by Hitachi High-Tech) using dimethylformamide as a solvent. The wavelength was 392 nm.
  • spherical phosphor B was obtained in the same manner except that Eu (TTA) 3 Phen was used as the phosphor and 100 g of methyl methacrylate was used.
  • Eu (TTA) 3 Phen was used as the phosphor and 100 g of methyl methacrylate was used.
  • ⁇ observation with scanning electron microscope>, ⁇ measurement of fluorescence excitation spectrum>, ⁇ preparation of resin composition for wavelength conversion type solar cell encapsulant>, ⁇ wavelength conversion type solar cell encapsulant sheet Production>, ⁇ Production of solar cell encapsulant sheet for back surface>, ⁇ Production of wavelength conversion type solar cell module>, ⁇ Evaluation of solar cell characteristics>, ⁇ Light resistance test> were performed.
  • the volume average diameter of the spherical phosphor B was 104 ⁇ m, and the circularity was 0.90 or more.
  • the excitation spectrum of the spherical phosphor B is shown in FIGS. 2 and 4, the excitation spectrum intensity of the spherical phosphor B in the wavelength range of 340 nm to 380 nm is 38% or more of the excitation spectrum intensity of the spherical phosphor B at the maximum excitation wavelength, and includes a wavelength range of less than 50%. You can see that ⁇ Jsc was 0.46 mA / cm 2 .
  • the results of the light resistance test are shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Luminescent Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 球状蛍光体は、最大励起波長が400nm以上の蛍光物質及びこれを含む透明材料を含有し、その励起スペクトルにおいて、340nm以上380nm以下の波長域における励起スペクトル強度が、前記球状蛍光体の最大励起波長における励起スペクトル強度の50%以上である。また波長変換型太陽電池封止材は、球状蛍光体及び封止樹脂を含む光透過性の樹脂組成物層を備える。

Description

球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法
 本発明は、球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法に関する。
 従来の結晶シリコン太陽電池モジュールは以下のような構成である。表面の保護ガラス(カバーガラスともいう)は、耐衝撃性を重んじて強化ガラスが用いられており、封止材(通常、エチレンビニルアセテートコポリマーを主成分とする樹脂、充填材ともいう)との密着性をよくするために、片面はエンボス加工による凹凸模様が施されている。
 また、その凹凸模様は内側に形成されており、太陽電池モジュールの表面は平滑である。また保護ガラスの下側には太陽電池素子及びタブ線を保護封止するための封止材及びバックフィルムが設けられている。
 一般に太陽光スペクトルのうち、360nm以下の短波長域及び1200nm以上の長波長域の光は、結晶シリコン太陽電池における発電には寄与しない。このようなことは、スペクトル不整合、または、スペクトルミスマッチと呼ばれている。
 これに関連して、例えば特開2003-218379号公報には、蛍光物質(発光材料ともいう)を用い、太陽光スペクトルのうち、発電に寄与しない紫外域または赤外域の光を波長変換することにより、発電に寄与しうる波長域の光を発光する層を太陽電池受光面側に設ける手法が提案されている。
 また特開2006-303033号公報には、蛍光物質である希土類錯体を、封止材中に含有させる方法の提案がされている。
 さらにまた特開2003-051605号公報等に開示されているように、従来から太陽電池用透明封止材として熱硬化性を付与したエチレン-酢酸ビニル共重合体が広く用いられている。
 特開2003-218379号公報に記載の発明は、発電に寄与しない光を発電に寄与しうる波長域の光に波長変換する提案であり、波長変換層には蛍光物質が含有されている。しかしながらこの蛍光物質は一般的に形状が大きく、入射した太陽光が波長変換フィルムを通過する際に、太陽電池素子に十分届かず、発電に寄与しない割合が増加する場合がある。その結果、波長変換層で紫外域の光を可視域の光に変換しても、入射した太陽光に対する発電される電力の割合(発電効率)があまり高くならない場合があるという課題がある。さらにまた、蛍光物質による吸収や散乱損失のため、蛍光物質を導入しない場合よりも、発電効率が下がってしまう場合もある。
 また、特開2003-051605号公報に記載の方法では、蛍光物質として用いられる希土類錯体は、封止材として広く用いられているエチレンビニルアセテート(EVA)と共に加水分解しやすいため、経時的に劣化してしまう場合がある。またその構成から、波長変換された光を太陽電池素子へ導入することは困難である。さらに、蛍光物質である希土類錯体をEVAに分散させた場合、EVAの加水分解によって酸が発生し、希土類金属錯体の加水分解が誘発されて、蛍光を呈さなくなり、目的の波長変換効果は得られなくなる場合があった。さらにまた希土類金属錯体分子同士は凝集しやすく、凝集体が、励起波長を散乱させるため、蛍光体としての希土類金属の利用効率が更に低下する場合があるという課題がある。
 また、目的の波長変換効果を得るためには、紫外線を吸収し、赤色の蛍光を発するユーロピウム錯体がもっとも有効な蛍光物質のひとつである。例えばその代表的な錯体、Eu(TTA)Phenは、その励起波長が、図2に示すように錯体単独では420nmに励起端がみられる。しかし、その錯体の状態、特に封止方法の違いにより励起波長が異なる場合がある。例えば、樹脂封止体では400nmよりも短波長域に励起帯がある。このような波長帯に励起帯がある場合、太陽光スペクトルのうち、強度が弱い部分の波長により励起させることになり、蛍光強度はその分小さくなる。
 さらに、代表的な封止材であるEVAは、紫外線照射により、図3に示すように劣化が起こり、特に400nmから短波長域へ向けて散乱損失が大きくなる。これによる結晶シリコン太陽電池素子の感度が犠牲になる部分は少ないものの、本発明の目的である波長変換効果では、影響が大きい。
 このようなEVAの光劣化を軽減するために一般には、紫外線吸収剤がEVA中に配合されている。図3に示すように紫外線吸収剤の吸収は、Eu(TTA)Phenのような通常のユーロピウム錯体の励起波長と重なっている。そのためユーロピウム錯体の励起が妨げられる場合がある。また十分な波長変換効果を得るためには、紫外線吸収剤の配合量を少なくしなければならない。
 このようにEVAの光劣化と、その対策である紫外線吸収剤の配合は、Eu(TTA)Phenのような通常のユーロピウム錯体を用いる以上、トレードオフの関係になってしまうという課題がある。
 本発明は上記のような問題を改善しようとするもので、太陽電池モジュールにおける光利用効率を向上させ、発電効率を安定的に向上させることを可能にする球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法を提供することを課題とする。
 本発明者等は上記課題を解決すべく鋭意検討した結果、特定の波長に励起帯をもつ蛍光物質を含有した球状蛍光体を用いることにより、入射した太陽光のうち太陽光発電に寄与しない光を発電に寄与する波長へ変換することができることを見出した。さらに球状蛍光体は耐光性、耐湿性及び耐熱性に優れ、分散性が良く且つ入射した太陽光を蛍光物質が散乱させることなく、太陽電池素子へ効率よく導入できることを見出し、本発明を完成するに至った。さらに、球状蛍光体において蛍光物質として希土類金属の有機錯体を用いる場合、特に蛍光物質の湿度に対する耐性を、より向上することができる。
 特に本発明では、さらに特定の波長に励起帯をもつ蛍光物質を球状蛍光体として封止することにより、透明性が高く、発光効率の高い球状蛍光体を得る手法を見出し、本発明を完成させるに至った。
 すなわち、本発明は以下の通りである。
<1> 最大励起波長が400nm以上である蛍光物質と、前記蛍光物質を含む透明材料とを有し、励起スペクトルにおいて340nm以上380nm以下の波長域における励起スペクトル強度が、最大励起波長における励起スペクトル強度の50%以上である球状蛍光体。
<2> 前記蛍光物質が、希土類金属錯体である前記<1>に記載の球状蛍光体。
<3> 前記蛍光物質が、ユーロピウム錯体である前記<1>又は<2>に記載の球状蛍光体。
<4> 前記透明材料が、透明樹脂である前記<1>~<3>のいずれか1項に記載の球状蛍光体。
<5> 前記透明材料が、透明ビニル樹脂である前記<1>~<4>のいずれか1項に記載の球状蛍光体。
<6> 前記透明材料が、(メタ)アクリル樹脂である前記<1>~<5>のいずれか1項に記載の球状蛍光体。
<7> 前記透明材料の屈折率が、1.4以上であり且つ前記蛍光物質の屈折率よりも低い前記<1>~<6>のいずれか1項に記載の球状蛍光体。
 前記蛍光物質及びビニルモノマーを含むビニルモノマー組成物の乳化重合物又は懸濁重合物である前記<5>~<7>のいずれか1項に記載の球状蛍光体。
<9> 前記蛍光物質及びビニルモノマーを含むビニルモノマー組成物の懸濁重合物である<5>~<8>のいずれか1項に記載の球状蛍光体。
<10> 前記<1>~<9>のいずれか1項に記載の球状蛍光体と、封止樹脂とを含む光透過性の樹脂組成物層を備える波長変換型太陽電池封止材。
<11> 前記球状蛍光体の前記樹脂組成物層における含有率が、0.0001質量パーセント~10質量パーセントである前記<10>に記載の波長変換型太陽電池封止材。
<12> 前記樹脂組成物層以外の光透過性層をさらに備える前記<10>又は<11>に記載の波長変換型太陽電池封止材。
<13> 前記樹脂組成物層及びおよび前記樹脂組成物層以外の光透過性層からなるm個の層を備え、且つ、前記m個の層のそれぞれの屈折率を、光入射側から順にn、n、・・・、n(m-1)、nとした場合に、n≦n≦・・・≦n(m-1)≦nである前記<12>に記載の波長変換型太陽電池封止材。
<14> 太陽電池素子と、前記太陽電池素子の受光面上に配置された前記<10>~<13>のいずれか1項に記載の波長変換型太陽電池封止材と、を備える太陽電池モジュール。
<15> 前記<1>~<9>のいずれか1項に記載の球状蛍光体を準備する工程と、前記球状蛍光体を封止樹脂に混合又は分散させた樹脂組成物を調製する工程と、前記樹脂組成物をシート状に形成して光透過性の樹脂組成物層を調製する工程と、を有する前記<10>~<13>のいずれか1項に記載の波長変換型太陽電池封止材の製造方法。
<16> 前記<10>~<13>のいずれか1項に記載の波長変換型太陽電池封止材を準備する工程と、前記波長変換型太陽電池封止材を太陽電池素子の受光面側に配置する工程と、を有する太陽電池モジュールの製造方法。
 本発明によれば、太陽電池モジュールにおける光利用効率を向上させ、発電効率を安定的に向上させることを可能にする球状蛍光体、これを含む波長変換型太陽電池封止材、太陽電池モジュール及びそれらの製造方法を提供することができる。
太陽光スペクトルと、結晶シリコン太陽電池の分光感度スペクトルの一例を示す図である。 本実施例にかかる蛍光物質及びこれを含む球状蛍光体の励起スペクトルの一例を示す図である。 EVAの光劣化に関するスペクトル、本実施例にかかる蛍光物質の励起スペクトルおよび紫外線吸収剤の吸収スペクトルの一例を示す図である。 太陽光スペクトル、結晶シリコン太陽電池の分光感度スペクトル、EVAの光劣化前後の散乱スペクトル、紫外線吸収剤の吸収スペクトル、従来の蛍光物質の励起スペクトル、及び本実施例にかかる蛍光物質の励起スペクトルの一例を示す図である。 屈折率の異なる界面における光の屈折の一例を示す概念図である。 屈折率の波長依存性の一例を示す概念図である。 本実施例にかかる球状蛍光体と入射光の関係の一例を示す概念図である。 本実施例にかかる蛍光物質の溶液状態での励起スペクトル及び吸収スペクトルの一例を示す図である。 二層構造の波長変換型太陽電池封止材の構造を概念的に示す断面図である。 実施例及び比較例にかかる太陽電池モジュールの耐光性の一例を示す図である。
<球状蛍光体>
 本発明の球状蛍光体は、最大励起波長が400nm以上である蛍光物質と、前記蛍光物質を含む透明材料と、を有して構成され、その励起スペクトルにおいて、340nm以上380nm以下の波長域における励起スペクトル強度が、球状蛍光体の最大励起波長における励起スペクトル強度の50%以上である。
 かかる特定の波長に励起帯を有する球状蛍光体を含む波長変換型太陽電池封止材を用いて太陽電池モジュールを構成することで、光利用効率を向上させ、発電効率を安定的に向上させることが可能になる。
 前記特定の波長に励起帯を有する球状蛍光体は、例えば、波長変換型太陽電池封止材を構成する波長変換性の樹脂組成物層に含有させて用いられる。例えば、結晶シリコン太陽電池では、太陽光のうち400nmよりも短波長、1200nmよりも長波長の光が有効に利用されない。そのため太陽光エネルギーのうち約56%がこのスペクトルミスマッチにより発電に寄与しない。本発明は、耐光性、耐湿性、耐熱性に優れ、分散性が良く、濃度消光を抑制した特定の形状の蛍光体を用いることで、波長変換によって、効率よく且つ安定的に太陽光を利用することにより、スペクトルミスマッチを克服するものである。さらに蛍光物質としての希土類金属錯体の利用効率を最大限に高め、実効的な発光効率を向上させるものである。従って高価な希土類錯体を極僅かな量に抑え、発電に寄与することができる。
 即ち、本発明の特定の波長に励起帯を有する球状蛍光体は、耐光性、耐湿性及び耐熱性に優れ、分散性が良く、且つ、濃度消光が抑制された蛍光材料である。かかる蛍光材料によって高価な蛍光物質である希土類金属錯体の利用効率を最大限に高めることができる。さらに実効的な発光効率を向上させて、太陽電池モジュールの発電効率を向上させることができる。また、本発明の特定の波長に励起帯をもつ蛍光物質を用いた球状蛍光体、およびこれを用いた波長変換型太陽電池封止材は、入射した太陽光のうち太陽光発電に寄与しない光を発電に寄与する波長へ変換するのと同時に、その光の散乱を抑制して、太陽電池素子へ効率よく導入することができる。
 前記球状蛍光体は、光発電効率の観点から、内包する蛍光物質の最大励起波長が400nm以上であり、球状蛍光体の励起スペクトルにおいて、340nm以上380nm以下の波長域全体における励起スペクトル強度が、前記球状蛍光体の最大励起波長における励起スペクトル強度の50%以上の強度である。さらに、340nm以上390nm以下の波長域全体における励起スペクトル強度が、前記球状蛍光体の最大励起波長における励起スペクトル強度の50%以上の強度であることが好ましく、340nm以上400nm以下の波長域全体における励起スペクトル強度が、前記球状蛍光体の最大励起波長における励起スペクトル強度の50%以上の強度であることがより好ましい。
 ここで蛍光物質の最大励起波長は、蛍光物質を溶液状態にして、常温(25度)で測定される。蛍光物質の最大励起波長は、蛍光スペクトル測定装置(例えば、日立ハイテク社製、蛍光分光光度計F-4500)を用い、溶媒としてジメチルホルムアミドを用いて測定される。また球状蛍光体の励起スペクトルは、球状蛍光体を2枚のガラス板に挟んだ状態にして、常温(25度)で蛍光スペクトル測定装置を用いて測定される。
 球状蛍光体においては、これが内包する蛍光物質の溶液状態における励起スペクトルとは異なる励起スペクトルを示す。具体的には、図2に示すように、溶液状態の蛍光物質が示す最大励起波長よりも短波長側に幅広な励起波長帯を示す。これは例えば、蛍光物質が透明材料に内包されているためであると考えることができる。
 本発明においては球状蛍光体の励起スペクトルが、340nm以上380nm以下の波長域に励起波長帯を有し、その励起波長帯の全域における励起スペクトル強度が、前記球状蛍光体自身の最大励起波長における励起スペクトル強度の50%以上であることで、太陽光をより効率的に光発電に利用することができるようになる。
 このことを、図面を参照しながら説明する。図1には、太陽光スペクトル及び結晶シリコン太陽電池の分光感度スペクトルを、図4には、さらに後述する封止樹脂の例としてEVAについてその光劣化する前後の散乱スペクトル、一般的な紫外線吸収剤の吸収スペクトル、後述する実施例1及び比較例1にかかる蛍光物質の溶液状態における励起スペクトル、実施例1及び比較例1にかかる球状蛍光体の励起スペクトルの一例を示す。
 図1に示すように、太陽光スペクトルでは、300nmから強度が出始め、450nm付近が最も強度が大きく、長波長へ向かって次第に強度が小さくなっていく。また、結晶シリコン太陽電池の分光感度は、350nm付近から長波長へ向けて次第に感度が高くなり、500nm付近で最大となる。
 波長変換技術としては、太陽光に強度があり、結晶シリコン太陽電池の感度の小さい波長領域で励起され、結晶シリコン太陽電池の十分に感度の大きい500~800nmに蛍光強度を持つ球状蛍光体を用いることが望ましい。球状蛍光体の励起波長が500nmよりも長波長であると、本来結晶シリコン太陽電池が十分な感度で発電しうる波長域の光を吸収することになる。従ってこの場合、蛍光量子効率が2光子発光等のように「1」以上でなければ、波長変換効果は実質的に得られなくなるため、球状蛍光体に使用可能な蛍光物質が限定されることになる。さらに実際的にはこの波長域で発光量子効率が1以上になる物質は見出されていないのが現状である。
 現実的には、励起、蛍光ともに1光子過程の物質を用いることとなるが、ローダミン6G、ローダミンB、クマリン等の有機蛍光体では、励起波長と蛍光波長の差、すなわちストークスシフトが小さい。従って、波長変換として意義のある蛍光波長を得るためには、少なからず結晶シリコン太陽電池が十分な感度で発電しうる波長域の光を吸収することになるので、十分な波長変換効果を期待できない場合がある。さらには、通常の有機蛍光体では、蛍光量子効率が小さく、十分な波長変換効果は期待できない場合がある。
 一方、希土類金属錯体においては、有機配位子が光を吸収し、このエネルギーが中心
金属へ移行し、中心金属である希土類金属からの蛍光を利用することになる。従って希土類金属錯体においては、励起波長は、有機配位子に依存し、蛍光波長はおよそ使用する金属に依存することになる。そのため、ストークスシフトを大きくすることができ、さらに蛍光量子効率も大きくすることができる。
 またこのように希土類金属錯体では、有機配位子の分子設計により励起波長の選択の自由度を有しながら、蛍光波長はほぼ固定される。希土類金属錯体の中心金属としては、蛍光波長の点で、ユーロピウム、サマリウム等が好ましく挙げられ、結晶シリコン太陽電池用の波長変換用蛍光物質としては、ユーロピウムが特に好都合である。
 図4には、実施例1で用いた蛍光物質の単独でのジメチルホルムアミド溶液中における励起スペクトルと、この蛍光物質を透明材料中に分散して内包させた球状蛍光体の励起スペクトル、さら結晶シリコン太陽電池素子の分光感度曲線を示す。蛍光物質を球状蛍光体に内包させた場合、蛍光物質の溶液中における最大励起波長が短波長側にシフトし、ブロード(幅広)化されることが分かる。また球状蛍光体の励起スペクトルは、410nm付近で結晶シリコン太陽電池素子の分光感度曲線と交差している。また410nm付近での蛍光スペクトル強度は、溶液中の蛍光物質の最大励起波長における蛍光スペクトル強度の約70%であることが分かる。
 一方、比較例1にかかる蛍光物質を透明材料中に分散して内包させた球状蛍光体の励起スペクトルも、実施例1と同様に短波長側にシフトし、結晶シリコン太陽電池素子の分光感度曲線と380nm付近で約30%の強度で交差している。
 さらに図4には、代表的な紫外線吸収剤の吸収スペクトルを併せて示す。
 紫外線吸収剤は、紫外線域に吸収を示し、380nmから400nmにかけて急激に吸収強度が減少する。しかし、比較例1の球状蛍光体の励起波長帯と重複しており、さらに蛍光物質単独での励起スペクトルと重なる部分を生じている。
 一方、実施例1の球状蛍光体では、紫外線吸収剤の吸収領域を外れた領域でも励起スペクトルの強度が高くなっている。従って、波長変換型太陽電池封止材に紫外線吸収剤を併用した場合であっても、実施例1のような球状蛍光体を用いることで光発電効率がより向上することになる。
 また図4に示されるように、代表的な封止樹脂であるEVAは光劣化によって短波長側ほど散乱が上昇する傾向にある。しかしながら実施例1のような比較的長波長側に励起波長帯を有する球状蛍光体を用いることによって、EVAの光劣化による光発電効率に対する影響を低減することができる。
 従来から良く知られているユーロピウム錯体であるEu(TTA)Phen((1,10-フェナントロリン)トリス「4,4,4-トリフルオロ-1-(2-チエニル)-1,3-ブタンジオナト]ユウロピウム(III))は、その励起波長が390nmにピークをもち、380nmから420nmに広がりを持っている。これに対して本実施形態にかかる球状蛍光体が含むユーロピウム錯体は、有機配位子の設計により励起波長を長波長化したものであることが好ましい。特に本来の結晶シリコン太陽電池が十分な感度で発電しうる波長域の光をほとんど吸収せず、かつ太陽光に十分な強度を持つ波長領域、具体的には、450nmよりも短波長であって400nmよりも長波長に励起波長を有することを特徴とする蛍光物質であることが好ましい。
 その励起波長を実現するための方法としては、特願2010-085483号公報及び特願2010-260326号公報などに記載の方法が挙げられるが、本発明は、この方法に限定されるものではない。
 さらに本発明においては、蛍光物質が球体に閉じ込められていることにより、蛍光物質の能力を最大限に発揮させうるものである。このことを、図面を参照しながら説明する。図5に示すように、光が高屈折媒質から低屈折媒質へ進むとき、この界面では、その相対的な屈折率に応じて、全反射が起こる。この現象を積極的に応用したものの代表的な例として、光ファイバー、光導波路、半導体レーザーなど各種光学機器がある。全反射が起こる条件は、下式で表される臨界角θcよりも入射角が大きいときに起こる。
  θ = sin-1(n/n
 一方、物質は固有の屈折率をもつが、これは波長に対する依存性をもち、透明材料であっても長波長から短波長へ向かって屈折率が大きくなる。特に物質がある特定波長で吸収をもつとき、その波長近傍で屈折率が大きくなる。
 さらに蛍光物質においては、吸収波長(励起波長)において基底状態から励起状態への遷移が起こり、基底状態に戻るときに蛍光(発光ともいう)として、エネルギーを放出する。すなわち、ある蛍光物質を透明材料に混合することにより、屈折率を、母体である透明材料(例えば、透明樹脂)よりも、特にその励起波長域において高めることができる。
 この様子を概念的に図6に示す。図中、実線は母体である透明材料の屈折率分布、破線は、これに蛍光物質を含有させたときの屈折率分布を表す。特に屈折率に関して、球体母体である透明材料、蛍光物質、さらに媒質(封止樹脂)を適宜選択することにより、図6のように球体内の屈折率を励起波長域では媒質(封止樹脂)よりも大きく、発光波長域では媒質(封止樹脂)よりも小さくしうる相互関係を得ることができる。
 このような状況では、励起波長域において光は、高屈折率である球体内に進入しやすくなる。また球体内においては、球体外の封止樹脂の屈折率が低いため、球体内全反射により球体外へ出にくくなり、球体内部で全反射を繰り返す。このため球体内に含有される蛍光物質は、励起光の利用効率が高くなると考えることができる。一方、発光波長域では、球体の屈折率と球体外である媒質(例えば、封止樹脂)との屈折率の差が大きくないため、光が球体外へ容易に放出されることになる。この様子を概念的に図7に示す。
 このように蛍光物質を含有する粒子を球状に構成することにより、結果として、高価な蛍光物質を僅かな量で用いた場合でも、十分な量の波長変換された発光が得られることになる。
 またそればかりでなく、特に蛍光物質は励起波長を吸収するため、励起波長域での屈折率も高くなり光散乱が起こりやすくなる。さらに蛍光物質が凝集した場合には、光散乱がさらに大きくなり、目的とする波長変換による発電効率の向上効果が充分に得られなくなってしまう場合がある。しかし、蛍光物質が透明材料(好ましくは、蛍光物質よりも低屈折率の透明材料)に内包させることにより、蛍光物質と封止樹脂との屈折率の差に起因する光散乱を効果的に抑制することができる。
 さらに、蛍光物質として希土類錯体など、耐湿性の低い物質を用いる場合、これを透明材料(好ましくは、耐湿性の透明材料)の球体内に閉じ込めることにより、耐湿性をより向上することもできる。
 本発明の球状蛍光体は、太陽電池モジュールに好適に使用できることは勿論のこと、その他にも、波長変換型農業用資材、発光ダイオード励起の各種光学機器、表示機器、レーザー励起の各種光学機器、表示機器などに応用可能で、本発明の球状蛍光体は、用途を制限するものではない。
 本発明の球状蛍光体は、後述する蛍光物質の少なくとも1種と、透明材料の少なくとも1種と、を含み、球状をなしている。ここで球状をなしているとは、例えばマルバーン・インスツルメンツ・リミテッド社製の粒子径・形状自動画像解析測定装置、シスメックスFPIA-3000を用い、被測定粒子数100個について、付属の解析ソフト内で定義される円形度の算術平均値が0.90以上であることを意味する。しかしながら、本発明では、円形度の範囲により球状の度合いを定義するものではない。
(蛍光物質)
 本発明に用いられる蛍光物質は、最大励起波長が400nm以上であれば特に制限されず、目的に応じて適宜選択することができる。例えば、励起波長が500nm以下(より
好ましくは450nm以下)であって発光波長がそれよりも長い波長である蛍光物質であることが好ましく、通常の太陽電池での利用効率が不十分な波長域の光を、太陽電池で利用効率が高い波長域に変換可能な化合物であることがより好ましい。
 蛍光物質として具体的には例えば、有機蛍光体、無機蛍光体、および希土類金属錯体を好ましく挙げることができる。中でも波長変換効率の観点から、有機蛍光体および希土類金属錯体の少なくとも1種であることが好ましく、希土類金属錯体であることがより好ましい。
-無機蛍光体-
 前記無機蛍光体としては、例えば、YS:Eu,Mg,Tiの蛍光粒子、Er3+イオンを含有した酸化フッ化物系結晶化ガラス、酸化ストロンチウムと酸化アルミニウムからなる化合物に希土類元素のユウロピウム(Eu)とジスプロシウム(Dy)を添加したSrAl:Eu,Dyや、SrAl125:Eu,Dyや、CaAl:Eu,Dyや、ZnS:Cu等の無機蛍光材料を挙げることができる。
-有機蛍光体-
 前記有機蛍光体としては、例えば、シアニン系色素、ピリジン系色素、ローダミン系色素等の有機色素、BASF社製のLumogen F Violet570、同Yellow083、同Orange240、同Red300、田岡化学工業(株)製の塩基性染料Rhodamine B、住化ファインケム(株)製のSumiplast Yellow FL7G、Bayer社製のMACROLEX Fluorescent Red G、同Yellow10GN等の有機蛍光体を挙げることができる。
-希土類金属錯体-
 前記希土類金属錯体を構成する金属としては、発光効率及び発光波長の観点から、ユーロピウムおよびサマリウムの少なくとも一方であることが好ましく、ユーロピウムであることがより好ましい。
 また前記希土類金属錯体を構成する配位子としては、希土類金属に配位可能であれば特に制限はなく、用いる金属に応じて適宜選択することができる。中でも発光効率の観点から、有機配位子であることが好ましく、ユーロピウムおよびサマリウムの少なくとも一方と錯体を形成可能な有機配位子であることが好ましい。
 本発明では、配位子を限定するものではないが、中性配位子である、カルボン酸、含窒素有機化合物、含窒素芳香族複素環式化合物、β-ジケトン類、およびホスフィンオキサイドから選ばれる少なくとも1種であることが好ましい。
 また希土類錯体の配位子として、一般式 RCOCHRCOR(式中、Rはアリール基、アルキル基、シクロアルキル基、シクロアルキルアルキル基、アラルキル基またはそれらの置換体を、Rは水素原子、アルキル基、シクロアルキル基、シクロアルキルアルキル基、アラルキル基またはアリール基を、Rはアリール基、アルキル基、シクロアルキル基、シクロアルキルアルキル基、アラルキル基またはそれらの置換体をそれぞれ示す)で表わされるβ-ジケトン類を含有してもよい。
 β-ジケトン類としては、具体的にはアセチルアセトン、パーフルオロアセチルアセトン、ベンゾイル-2-フラノイルメタン、1,3-ジ(3-ピリジル)-1,3-プロパンジオン、ベンゾイルトリフルオロアセトン、ベンゾイルアセトン、5-クロロスルホニル-2-テノイルトリフルオロアセトン、ビス(4-ブロモベンゾイル)メタン、ジベンゾイルメタン、d,d-ジカンフォリルメタン、1,3-ジシアノ-1,3-プロパンジオン、p-ビス(4,4,5,5,6,6,6-ヘプタフルオロ-1,3-ヘキサンジノイル)ベンゼン、4,4’-ジメトキシジベンゾイルメタン、2,6-ジメチル-3,5-ヘプタンジオン、ジナフトイルメタン、ジピバロイルメタン、ビス(パーフルオロ-2-プロポキシプロピオニル)メタン、1,3-ジ(2-チエニル)-1,3-プロパンジオン、3-(トリフルオロアセチル)-d-カンファー、6,6,6-トリフルオロ-2,2-ジメチル-3,5-ヘキサンジオン、1,1,1,2,2,6,6,7,7,7-デカフルオロ-3,5-ヘプタンジオン、6,6,7,7,8,8,8-ヘプタフルオロ-2,2-ジメチル-3,5-オクタンジオン、2-フリルトリフルオロアセトン、ヘキサフルオロアセチルアセトン、3-(ヘプタフルオロブチリル)-d-カンファー、4,4,5,5,6,6,6-ヘプタフルオロ-1-(2-チエニル)-1,3-ヘキサンジオン、4-メトキシジベンゾイルメタン、4-メトキシベンゾイル-2-フラノイルメタン、6-メチル-2,4-ヘプタンジオン、2-ナフトイルトリフルオロアセトン、2-(2-ピリジル)ベンズイミダゾール、5,6-ジヒドロキシ-1,10-フェナントロリン、1-フェニル-3-メチル-4-ベンゾイル-5-ピラゾール、1-フェニル-3-メチル-4-(4-ブチルベンゾイル)-5-ピラゾール、1-フェニル-3-メチル-4-イソブチリル-5-ピラゾール、1-フェニル-3-メチル-4-トリフルオロアセチル-5-ピラゾール、3-(5-フェニル-1,3,4-オキサジアゾール-2-イル)-2,4-ペンタンジオン、3-フェニル-2,4-ペンタンジオン、3-[3’,5’-ビス(フェニルメトキシ)フェニル]-1-(9-フェナンチル)-1-プロパン-1,3-ジオン、5,5-ジメチル-1,1,1-トリフルオロ-2,4-ヘキサンジオン、1-フェニル-3-(2-チエニル)-1,3-プロパンジオン、3-(t-ブチルヒドロキシメチレン)-d-カンファー、1,1,1-トリフルオロ-2,4-ペンタンジオン、1,1,1,2,2,3,3,7,7,8,8,9,9,9-テトラデカフルオロ-4,6-ノナンジオン、2,2,6,6-テトラメチル-3,5-ヘプタンジオン、4,4,4-トリフルオロ-1-(2-ナフチル)-1,3-ブタンジオン、1,1,1-トリフルオロ-5,5-ジメチル-2,4-ヘキサンジオン、2,2,6,6-テトラメチル-3,5-ヘプタンジオン、2,2,6,6-テトラメチル-3,5-オクタンジオン、2,2,6-トリメチル-3,5-ヘプタンジオン、2,2,7-トリメチル-3,5-オクタンジオン、4,4,4-トリフルオロ-1-(チエニル)-1,3-ブタンジオン(TTA)、1-(p-t-ブチルフェニル)-3-(N-メチル-3-ピロール)-1,3-プロパンジオン(BMPP)、1-(p-t-ブチルフェニル)-3-(p-メトキシフェニル)-1,3-プロパンジオン(BMDBM)、1-(4-フルオロフェニル)-3-(2-チエニル)-1,3-プロパンジオン(FTP)、1,3-ジフェニル-1,3-プロパンジオン、べンゾイルアセトン、ジべンゾイルアセトン、ジイソブチロイルメタン、ジビパロイルメタン、3-メチルペンタン-2,4-ジオン、2,2-ジメチルペンタン-3,5-ジオン、2-メチル-1,3-ブタンジオン、1,3-ブタンジオン、3-フェニル-2,4-ペンタンジオン、1,1,1-トリフロロ-2,4-ペンタンジオン、1,1,1-トリフロロ-5,5-ジメチル-2,4-ヘキサンジオン、2,2,6,6-テトラメチル-3,5-ヘプタンジオン、3-メチル-2,4-ペンタンジオン、2-アセチルシクロペンタノン、2-アセチルシクロヘキサノン、1-ヘプタフロロプロピル-3-t-ブチル-1,3-プロパンジオン、1,3-ジフェニル-2-メチル-1,3-プロパンジオン、または1-エトキシ-1,3-ブタンジオン等が挙げられる。
 希土類錯体の中性配位子の含窒素有機化合物、含窒素芳香族複素環式化合物、ホスフィンオキサイドとしては、たとえば、1,10-フェナントロリン、2-2’-ビピリジル、2-2’-6,2”-ターピリジル、4,7-ジフェニル-1,10-フェナントロリン、2-(2-ピリジル)ベンズイミダゾール、トリフェニルホスフィンオキサイド、トリ-n-ブチルホスフィンオキサイド、トリ-n-オクチルホスフィンオキサイド、トリ-n-ブチルホスフェート等が挙げられる。
 上記のような配位子を有する希土類錯体として、中でも波長変換効率の観点から、例えば、Eu(TTA)phen((1,10-フェナントロリン)トリス[4,4,4-トリフルオロ-1-(2-チエニル)-1,3-ブタンジオナート]ユウロピウム(III))、Eu(BMPP)phen((1,10-フェナントロリン)トリス[1-(p-t-ブチルフェニル)-3-(N-メチル-3-ピロール)-1,3-プロパンジオナート]ユウロピウム(III)))、Eu(BMDBM)phen((1,10-フェナントロリン)トリス[1-(p-t-ブチルフェニル)-3-(p-メトキシフェニル)-1,3-プロパンジオナート]ユウロピウム(III)))、Eu(FTP)Phen((1,10-フェナントロリン)トリス[1-(4-フルオロフェニル)-3-(2-チエニル)-1,3-プロパンジオナート]ユウロピウム(III)))等を好ましく利用できる。
 Eu(TTA)Phen等の製造方法は、例えば、Masaya Mitsuishi, Shinji Kikuchi, Tokuji Miyashita, Yutaka Amano, J.Mater.Chem.2003,13,285-2879に開示されている方法を参照できる。
 本発明においては、蛍光物質として、特にユーロピウム錯体を用いることで、高い発電効率を有する太陽電池モジュールを構成することができる。ユーロピウム錯体は、紫外線域の光を高い波長変換効率で赤色の波長域の光に変換し、この変換された光が太陽電池素子における発電に寄与する。
 本発明の球状蛍光体における蛍光物質の含有量としては特に制限はなく、その目的や蛍光物質の種類に応じて適宜選択できるが、発電効率の観点から、球状蛍光体の全質量に対して0.001~1質量%であることが好ましく、0.01~0.5質量%であることがより好ましい。
(透明材料)
 本発明において前記蛍光物質は、透明材料に含有されている。本発明においては透明とは、光路長1cmにおける波長400nm~800nmの光の透過率が90%以上であることをいう。
 前記透明材料としては、透明であれば特に制限はなく、例えば、アクリル樹脂、メタクリル樹脂、ウレタン樹脂、エポキシ樹脂、ポリエステル、ポリエチレン、ポリ塩化ビニル等の樹脂類を挙げることができる。中でも光散乱抑制の観点から、アクリル樹脂、メタクリル樹脂であることが好ましい。前記樹脂を構成するモノマー化合物としては特に制限はないが、光散乱抑制の観点から、ビニル化合物であることが好ましい。
 また前記蛍光物質を前記透明材料に含有させ、形状を球状にする方法としては、例えば、前記蛍光物質をモノマー化合物に溶解、あるいは分散処理して組成物を調製し、これを重合(乳化重合または懸濁重合)することにより調製することができる。具体的には、例えば、蛍光物質およびビニル化合物を含む混合物を調製し、これを媒体(例えば、水系媒体)中に乳化または分散して、乳化物または懸濁物を得る。これを例えば、ラジカル重合開始剤を用いて乳化物または懸濁物に含まれるビニル化合物を重合(乳化重合または懸濁重合)することで、蛍光物質が含有された球状樹脂粒子として球状蛍光体を構成することができる。
 本発明においては、発電効率の観点から、蛍光物質およびビニル化合物を含む混合物を調製し、これを媒体(例えば、水系媒体)中に分散して懸濁物を得て、これを例えば、ラジカル重合開始剤を用いて懸濁物に含まれるビニル化合物を重合(懸濁重合)することで、蛍光物質が含有された球状樹脂粒子として球状蛍光体を構成することが好ましい。
(ビニル化合物)
 本発明においてビニル化合物とは、エチレン性不飽和結合を少なくとも1つ有する化合物であれば特に制限はなく、重合反応した際にビニル樹脂、特にアクリル樹脂またはメタクリル樹脂になり得るアクリルモノマー、メタクリルモノマー、アクリルオリゴマー、メタクリルオリゴマー等を特に制限なく用いることができる。本発明において好ましくは、アクリルモノマー、およびメタクリルモノマー等が挙げられる。
 アクリルモノマー、およびメタクリルモノマーとしては、例えば、アクリル酸、メタクリル酸、これらのアルキルエステルが挙げられ、またこれらと共重合し得るその他のビニル化合物を併用しても良く、1種単独でも、2種類以上を組み合わせて用いることもできる。
 アクリル酸アルキルエステル、およびメタクリル酸アルキルエステルとしては、例えば、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸2-エチルヘキシル等のアクリル酸無置換アルキルエステルおよびメタクリル酸無置換アルキルエステル;ジシクロペンテニル(メタ)アクリレート;テトラヒドロフルフリル(メタ)アクリレート;ベンジル(メタ)アクリレート;多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物(例えば、ポリエチレングリコールジ(メタ)アクリレート(エチレン基の数が2~14のもの)、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエトキシトリ(メタ)アクリレート、トリメチロールプロパンプロポキシトリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート(プロピレン基の数が2~14のもの)、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ビスフェノールAポリオキシエチレンジ(メタ)アクリレート、ビスフェノールAジオキシエチレンジ(メタ)アクリレート、ビスフェノールAトリオキシエチレンジ(メタ)アクリレート、ビスフェノールAデカオキシエチレンジ(メタ)アクリレート等);グリシジル基含有化合物にα,β-不飽和カルボン酸を付加して得られる化合物(例えば、トリメチロールプロパントリグリシジルエーテルトリアクリレート、ビスフェノールAジグリシジルエーテルジアクリレート等);多価カルボン酸(例えば、無水フタル酸)と水酸基及びエチレン性不飽和基を有する物質(例えば、β-ヒドロキシエチル(メタ)アクリレート)とのエステル化物;ウレタン(メタ)アクリレート(例えば、トリレンジイソシアネートと2-ヒドロキシエチル(メタ)アクリル酸エステルとの反応物、トリメチルヘキサメチレンジイソシアネートとシクロヘキサンジメタノールと2-ヒドロキシエチル(メタ)アクリル酸エステルとの反応物等);これらのアルキル基に水酸基、エポキシ基、ハロゲン基等が置換したアクリル酸置換アルキルエステルまたはメタクリル酸置換アルキルエステル;等が挙げられる。
 また、アクリル酸、メタクリル酸、アクリル酸アルキルエステルまたはメタクリル酸アルキルエステルと共重合し得るその他のビニル化合物としては、アクリルアミド、アクリロニトリル、ジアセトンアクリルアミド、スチレン、ビニルトルエン等が挙げられる。これらのビニルモノマーは、1種単独でも、2種類以上を組み合わせて用いることができる。
 本発明におけるビニル化合物としては、形成される樹脂粒子の屈折率が所望の値になるように適宜選択することができ、アクリル酸アルキルエステルおよびメタクリル酸アルキルエステルから選ばれる少なくとも1種を用いることが好ましく、アクリル酸無置換アルキルエステルおよびメタクリル酸無置換アルキルエステルから選ばれる少なくとも1種を用いることがより好ましく、アクリル酸無置換アルキルエステルおよびメタクリル酸無置換アルキルエステルから選ばれる少なくとも1種と多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物とを用いることがさらに好ましい。
 本発明におけるビニル化合物として、アクリル酸無置換アルキルエステルおよびメタクリル酸無置換アルキルエステルから選ばれる少なくとも1種(以下、「ビニル化合物A」ともいう)と多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物(以下、「ビニル化合物B」ともいう)とを用いる場合、ビニル化合物Aに対するとビニル化合物Bの使用比率(ビニル化合物B/ビニル化合物A)としては、例えば発電効率の観点から、0.001~0.1とすることが好ましく、0.005~0.05であることがより好ましい。
(ラジカル重合開始剤)
 本発明においてはビニル化合物を重合させるためにラジカル重合開始剤を用いることが好ましい。ラジカル重合開始剤としては、特に制限なく通常用いられるラジカル重合開始剤を用いることができる。例えば、過酸化物等が好ましく挙げられる。具体的には、熱により遊離ラジカルを発生させる有機過酸化物やアゾ系ラジカル開始剤が好ましい。
 有機化酸化物としては例えば、イソブチルパーオキサイド、α,α’-ビス(ネオデカノイルパーオキシ)ジイソプロピルベンゼン、クミルパーオキシネオデカノエート、ジ-n-プロピルパーオキシジカーボネート、ビス-s-ブチルパーオキシジカーボネート、1,1,3,3-テトラメチルブチルネオデカノエート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、ビス-2-エトキシエチルパーオキシジカーボネート、ビス(エチルヘキシル)パーオキシジカーボネート、t-ヘキシルネオデカノエート、ビスメトキシブチルパーオキシジカーボネート、ビス(3-メチル-3-メトキシブチル)パーオキシジカーボネート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、サクニックパーオキサイド、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイル)ヘキサン、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、4-メチルベンゾイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、m-トルオノイルベンゾイルパーオキサイド、ベンゾイルパーオキサイド、t-ブチルパーオキシイソブチレート、1,1-ビス(t-ブチルパーオキシ)2-メチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサノン、2,2-ビス(4,4-ジブチルパーオキシシクロヘキシル)プロパン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ビス(m-トルオイルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、2,2-ビス(t-ブチルパーオキシ)ブタン、t-ブチルパーオキシベンゾエート、n-ブチル-4,4-ビス(t-ブチルパーオキシ)バレレート、ジ-t-ブチルパーオキシイソフタレート、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキシ、p-メンタンハイドロパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン、ジイソプロピルベンゼンハイドロパーオキサイド、t-ブチルトリメチルシリルパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ヘキシルハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、2,3-ジメチル-2,3-ジフェニルブタン等を使用することができる。
 アゾ系ラジカル開始剤としては、たとえば、アゾビスイソブチロニトリル(AIBN、商品名V-60、和光純薬社製)、2,2’-アゾビス(2-メチルイソブチロニトリル)(商品名V-59、和光純薬社製)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(商品名V-65、和光純薬社製)、ジメチル-2,2’-アゾビス(イソブチレート)(商品名V-601、和光純薬社製)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(商品名V-70、和光純薬社製)などが挙げられる。
 ラジカル重合開始剤の使用量は、前記ビニル化合物の種類や形成される樹脂粒子の屈折率等に応じて適宜選択することができ、通常用いられる使用量で使用される。具体的には例えば、ビニル化合物に対して0.01質量%~2質量%で使用することができ、0.1質量%~1質量%で使用することが好ましい。
 本発明における透明材料の屈折率について特に制限はないが、光散乱抑制の観点から、前記蛍光物質の屈折率よりも低いことが好ましく、前記蛍光物質の屈折率よりも低く、且、後述する封止樹脂の屈折率との比が1に近いことがより好ましい。一般に、蛍光物質の屈折率は1.5よりも大きく、封止樹脂の屈折率は1.4~1.5程度であることから、前記透明材料の屈折率は1.4~1.5であることが好ましい。
 また前記球状蛍光体は、蛍光物質の励起波長では分散媒となる封止樹脂よりも屈折率が高く、発光波長では封止樹脂よりも屈折率が低いことが好ましい。かかる態様であることにより、励起波長域における光の利用効率がさらに向上する。
<球状蛍光体の製造方法>
 前記蛍光物質、さらに必要に応じてラジカル捕捉剤等を前記透明材料に含有させつつ形状を球状にして、球状蛍光体を製造する方法としては、例えば、前記蛍光物質およびラジカル捕捉剤を前記モノマー化合物に溶解、あるいは分散処理して組成物を調製し、これを重合(乳化重合または懸濁重合)することにより調製することができる。具体的には、例えば、蛍光物質、ラジカル捕捉剤およびビニル化合物を含む混合物を調製し、これを媒体(例えば、水系媒体)中に乳化または分散して、乳化物または懸濁物を得る。これを例えば、ラジカル重合開始剤を用いて乳化物または懸濁物に含まれるビニル化合物を重合(乳化重合または懸濁重合)することで、蛍光物質が含有された球状樹脂粒子として球状蛍光体を構成することができる。
 本発明においては、発電効率の観点から、蛍光物質およびビニル化合物を含む混合物を調製し、これを媒体(例えば、水系媒体)中に分散して懸濁物を得て、これを例えば、ラジカル重合開始剤を用いて懸濁物に含まれるビニル化合物を重合(懸濁重合)することで、蛍光物質が含有された球状樹脂粒子として球状蛍光体を構成することが好ましい。
 本発明の球状蛍光体の平均粒子径は、光利用効率向上の観点から1μm~600μmであることが好ましく、5μm~300μmであることがより好ましく、10μm~250μmであることがさらに好ましい。
 球状蛍光体の平均粒子径は、レーザー回折法を用いて測定され、重量累積粒度分布曲線を小粒径側から描いた場合に、重量累積が50%となる粒子径に対応する。レーザー回折法を用いた粒度分布測定は、レーザー回折散乱粒度分布測定装置(例えば、ベックマン・コールター社製、LS13320)を用いて行なうことができる。
<波長変換型太陽電池封止材>
 本発明の波長変換型太陽電池封止材は、太陽電池モジュールの光透過性層の一つとして用いられ、波長変換能を有する光透過性の樹脂組成物層の少なくとも1層を備える。前記樹脂組成物層は、前記球状蛍光体の少なくとも1種と、封止樹脂(好ましくは、透明封止樹脂)の少なくとも1種とを含み、前記球状蛍光体が封止樹脂中に分散されている。
 波長変換型太陽電池封止材が、前記球状蛍光体を含む樹脂組成物層を備えることで、太陽電池モジュールにおける光透過性層の一つとして用いられる場合に、その光利用効率を向上させ、発電効率を安定的に向上させることができる。
 光の散乱は、球状蛍光体の屈折率と、封止樹脂の屈折率との比に相関する。具体的には、光の散乱は、球状蛍光体の屈折率と透明封止樹脂との屈折率との比が「1」に近ければ、球状蛍光体の粒子径の影響が小さくなり、また、光の散乱も小さいものとなる。特に本発明を太陽電池モジュールの波長変換型の光透過層に適用する場合、太陽電池素子に感度のある波長領域、すなわち400nm~1200nmにおける屈折率の比が「1」に近いことが好ましい。一方、球状蛍光体内において、励起波長域の光の全反射を効率的に起こすためには、球球状蛍光体の屈折率は、励起波長域において媒質である封止樹脂との屈折率よりも高くなることが好ましい。
 以上のような要請から、例えば、蛍光物質として特願2010-260326号記載のEu(FTP)phen((1,10-フェナントロリン)トリス[1-(4-フルオロフェニル)-3-(2-チエニル)-1,3-プロパンジオナト]ユウロピウム(III))、透明材料(球体母材料)としてメタクリル酸メチルを95質量%とエチレングリコールジメタクリレートを5質量%とを懸濁重合して得た球体、封止樹脂として、エチレン-酢酸ビニル共重合体(EVA)を用いることで、励起波長、発光波長の観点、さらには太陽電池の感度の観点から、特に良好な屈折率の相互関係を与えうる。ただし、図2からわかるように、蛍光物質とそれを用いた球状蛍光体では、励起スペクトルの形状が一致しないのが一般的である。これはいわゆる溶媒効果の一種で、分子レベルでの環境の影響(相互作用)の違いが反映される。しかしながら、励起状態の存在する準位間の遷移に起因しており、図8に示される吸収スペクトルにおいて存在する吸収波長と関連しており、一般には、溶液状態の蛍光は、吸収の最低励起準位からの蛍光が大きくなる。
 しかし、本発明においては、蛍光物質およびそれを用いた球状蛍光体の蛍光励起波長と、蛍光物質、透明材料、および封止樹脂のそれぞれの屈折率における相互の関係が上記条件を満たすように、それぞれを適宜選択することが好ましいのであって、上記組み合わせのみに限定されるものではない。
 本発明の波長変換型太陽電池封止材が備える波長変換性の樹脂組成物層中の上記球状蛍光体の好ましい配合量は、不揮発分総量に対し、質量濃度で0.0001質量%~10質量%が好ましい。0.0001質量%以上とすることで発光効率が向上する。また、10質量%以下とすることで入射光の散乱がより効果的に抑制され、発電効果がより向上する。
(封止樹脂)
 本発明における波長変換性の樹脂組成物層は、封止樹脂(透明封止樹脂)を含む。透明封止樹脂としては、光硬化性樹脂、熱硬化性樹脂、および熱可塑性樹脂等が好ましく用いられる。
 従来から、太陽電池用透明封止材として用いられている樹脂は、熱硬化性を付与したエチレン-酢酸ビニル共重合体(EVA)が広く用いられているが、本発明においてはこれに限定されるものではない。
 波長変換型太陽電池封止材用樹脂組成物の分散媒樹脂(透明封止樹脂)に光硬化性樹脂を用いる場合、光硬化性樹脂の樹脂構成や光硬化方法は特に制限はない。例えば、光ラジカル開始剤による光硬化方法では、波長変換型太陽電池封止材用樹脂組成物は、上記球状樹脂粒子の他、(A)光硬化性樹脂、(B)架橋性モノマー及び(C)光により遊離ラジカルを生成する光開始剤等を含む分散媒樹脂からなる。
 ここで(A)光硬化性樹脂としては、アクリル酸またはメタクリル酸及びこれらのアルキルエステルと、これらと共重合し得るその他のビニルモノマーを構成モノマーとして共重合してなる共重合体が用いられる。これらの共重合体は、単独でも2種類以上を組み合わせて用いることもできる。アクリル酸アルキルエステルまたはメタクリル酸アルキルエステルとしては、例えば、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸2-エチルヘキシル等のアクリル酸無置換アルキルエステルまたはメタクリル酸無置換アルキルエステルや、これらのアルキル基に水酸基、エポキシ基、ハロゲン基等が置換したアクリル酸置換アルキルエステル及びメタクリル酸置換アルキルエステル等が挙げられる。
 また、アクリル酸またはメタクリル酸やアクリル酸アルキルエステルまたはメタクリル酸アルキルエステルと共重合しうるその他のビニルモノマーとしては、アクリルアミド、アクリロニトリル、ジアセトンアクリルアミド、スチレン、ビニルトルエン等が挙げられる。これらのビニルモノマーは、単独でまたは2種類以上を組み合わせて用いることができる。また、(A)成分の光硬化性樹脂(分散媒樹脂)の重量平均分子量は、塗膜性及び塗膜強度の点から10,000~300,000であることが好ましい。
 (B)架橋性モノマーとしては、例えば、多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物(例えば、ポリエチレングリコールジ(メタ)アクリレート(エチレン基の数が2~14のもの)、エチレングリコールジメタクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエトキシトリ(メタ)アクリレート、トリメチロールプロパンプロポキシトリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート(プロピレン基の数が2~14のもの)、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ビスフェノールAポリオキシエチレンジ(メタ)アクリレート、ビスフェノールAジオキシエチレンジ(メタ)アクリレート、ビスフェノールAトリオキシエチレンジ(メタ)アクリレート、ビスフェノールAデカオキシエチレンジ(メタ)アクリレート等);グリシジル基含有化合物にα,β-不飽和カルボン酸を付加して得られる化合物(例えば、トリメチロールプロパントリグリシジルエーテルトリアクリレート、ビスフェノールAジグリシジルエーテルジアクリレート等);多価カルボン酸(例えば、無水フタル酸)と水酸基及びエチレン性不飽和基を有する物質(例えば、β-ヒドロキシエチル(メタ)アクリレート)とのエステル化物;ウレタン(メタ)アクリレート(例えば、トリレンジイソシアネートと2-ヒドロキシエチル(メタ)アクリル酸エステルとの反応物、トリメチルヘキサメチレンジイソシアネートとシクロヘキサンジメタノールと2-ヒドロキシエチル(メタ)アクリル酸エステルとの反応物等)等を挙げることができる。
 特に好ましい(B)架橋性モノマーとしては、架橋密度や反応性を制御しやすいという意味において、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ビスフェノールAポリオキシエチレンジメタクリレートが挙げられる。なお、上記化合物は単独でまたは2種以上を組み合わせて用いられる。
 後述するように、特に波長変換型太陽電池封止材あるいは、その下層(太陽電池素子に接する側)の屈折率を高くする場合には、(A)光硬化性樹脂及び/または(B)架橋性モノマーに、臭素、イオウ原子を含んでいることが有利である。臭素含有モノマーの例としては、第一工業製薬株式会社製、ニューフロンティアBR-31、ニューフロンティアBR-30、ニューフロンティアBR-42M等が挙げられる。イオウ含有モノマー組成物としては、三菱瓦斯化学株式会社製、IU-L2000、IU-L3000、IU-MS1010が挙げられる。ただし、本発明で使用される臭素、イオウ原子含有モノマー(それを含む重合物)は、ここに挙げたものに限定されるものではない。
 (C)光開始剤としては、紫外線または可視光線により遊離ラジカルを生成する光開始剤が好ましく、例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル類、ベンゾフェノン、N,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(ミヒラーケトン)、N,N’-テトラエチル-4,4’-ジアミノベンゾフェノン等のベンゾフェノン類、ベンジルジメチルケタール(BASFジャパン株式会社製、IRGACURE(イルガキュア)651)、ベンジルジエチルケタール等のベンジルケタール類、2,2-ジメトキシ-2-フェニルアセトフェノン、p-tert-ブチルジクロロアセトフェノン、p-ジメチルアミノアセトフェノン等のアセトフェノン類、2,4-ジメチルチオキサントン、2,4-ジイソプロピルチオキサントン等のキサントン類、あるいはヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製、IRGACURE(イルガキュア)184)、1-(4-イソプロピルフェニル)-2-ビトロキシ-2-メチルプロパン-1-オン(BASFジャパン株式会社製、ダロキュア1116)、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン(BASFジャパン株式会社製、ダロキュア1173)等が挙げられ、これらは単独でまたは2種以上を組み合わせて用いられる。
 また、(C)光開始剤として使用しうる光開始剤としては、例えば、2,4,5-トリアリルイミダゾール二量体と2-メルカプトベンゾオキサゾール、ロイコクリスタルバイオレット、トリス(4-ジエチルアミノ-2-メチルフェニル)メタン等との組み合わせも挙げられる。また、それ自体では光開始性はないが、前記物質と組み合わせて用いることにより全体として光開始性能のより良好な増感剤系となるような添加剤、例えば、ベンゾフェノンに対するトリエタノールアミン等の三級アミンを用いることができる。
 また、封止樹脂を熱硬化性とするためには、上記(C)光開始剤を熱開始剤に変更すればよい。
 (C)熱開始剤としては、熱により遊離ラジカルを発生させる有機過酸化物が好ましく、たとえば、イソブチルパーオキサイド、α,α’-ビス(ネオデカノイルパーオキシ)ジイソプロピルベンゼン、クミルパーオキシネオデカノエート、ジ-n-プロピルパーオキシジカーボネート、ジ-s-ブチルパーオキシジカーボネート、1,1,3,3-テトラメチルブチルネオデカノエート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、ビス-2-エトキシエチルパーオキシジカーボネート、ビス(エチルヘキシルパーオキシ)ジカーボネート、t-ヘキシルネオデカノエート、ビスメトキシブチルパーオキシジカーボネート、ビス(3-メチル-3-メトキシブチルパーオキシ)ジカーボネート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、サクニックパーオキサイド、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイル)ヘキサン、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、4-メチルベンゾイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、m-トルオノイルベンゾイルパーオキサイド、ベンゾイルパーオキサイド、t-ブチルパーオキシイソブチレート、1,1-ビス(t-ブチルパーオキシ)2-メチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサノン、2,2-ビス(4,4-ジブチルパーオキシシクロヘキシル)プロパン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ビス(m-トルオイルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、2,2-ビス(t-ブチルパーオキシ)ブタン、t-ブチルパーオキシベンゾエート、n-ブチル-4,4-ビス(t-ブチルパーオキシ)バレレート、ジ-t-ブチルパーオキシイソフタレート、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、p-メンタンハイドロパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン、ジイソプロピルベンゼンハイドロパーオキサイド、t-ブチルトリメチルシリルパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ヘキシルハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、2,3-ジメチル-2,3-ジフェニルブタン等を使用することができる。
 上記はアクリル系の光硬化性樹脂及び熱硬化性樹脂についての例示であるが、通常用いられるエポキシ系の光硬化性樹脂、熱硬化性樹脂も、本発明の波長変換型太陽電池封止材の分散媒樹脂として用いることができる。ただし、エポキシの硬化はイオン性であるため、上記球状樹脂粒子(被覆蛍光体)あるいは蛍光物質である希土類金属錯体は影響を受ける場合があり、劣化等を引き起こしうるため、アクリル系の方がより好ましい。
 波長変換型太陽電池封止材用樹脂組成物の分散媒樹脂に、加熱または加圧により流動する熱可塑性樹脂を用いる場合、例えば、天然ゴム、ポリエチレン、ポリプロピレン、ポリ酢酸ビニル、ポリイソプレン、ポリ-1,2-ブタジエン、ポリイソブテン、ポリブテン、ポリ-2-ヘプチル-1,3-ブタジエン、ポリ-2-t-ブチル-1,3-ブタジエン、ポリ-1,3-ブタジエン等の(ジ)エン類、ポリオキシエチレン、ポリオキシプロピレン、ポリビニルエチルエーテル、ポリビニルヘキシルエーテル、ポリビニルブチルエーテル等のポリエーテル類、ポリビニルアセテート、ポリビニルプロピオネート等のポリエステル類、ポリウレタン、エチルセルロース、ポリ塩化ビニル、ポリアクリロニトリル、ポリメタクリロニトリル、ポリスルホン、フェノキシ樹脂、ポリエチルアクリレート、ポリブチルアクリレート、ポリ-2-エチルヘキシルアクリレート、ポリ-t-ブチルアクリレート、ポリ-3-エトキシプロピルアクリレート、ポリオキシカルボニルテトラメタクリレート、ポリメチルアクリレート、ポリイソプロピルメタクリレート、ポリドデシルメタクリレート、ポリテトラデシルメタクリレート、ポリ-n-プロピルメタクリレート、ポリ-3,3,5-トリメチルシクロヘキシルメタクリレート、ポリエチルメタクリレート、ポリ-2-ニトロ-2-メチルプロピルメタクリレート、ポリ-1,1-ジエチルプロピルメタクリレート、ポリメチルメタクリレート等のポリ(メタ)アクリル酸エステルが分散媒樹脂として使用可能である。
 これらの熱可塑性樹脂は、必要に応じて2種以上共重合してもよいし、2種類以上をブレンドして使用することも可能である。
 さら上記樹脂との共重合樹脂として、エポキシアクリレート、ウレタンアクリレート、ポリエーテルアクリレート、ポリエステルアクリレート等を使うこともできる。特に接着性の点から、ウレタンアクリレート、エポキシアクリレート、ポリエーテルアクリレートが優れている。
 エポキシアクリレートとしては、1,6-ヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、アリルアルコールジグリシジルエーテル、レゾルシノールジグリシジルエーテル、アジピン酸ジグリシジルエステル、フタル酸ジグリシジルエステル、ポリエチレングリコールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、ソルビトールテトラグリシジルエーテル等の(メタ)アクリル酸付加物が挙げられる。
 エポキシアクリレート等のように分子内に水酸基を有するポリマは接着性向上に有効である。これらの共重合樹脂は、必要に応じて、2種以上併用することができる。これら樹脂の軟化温度は、取扱い性から200℃以下が好ましく、150℃以下がさらに好ましい。太陽電池ユニットの使用環境温度が通常は80℃以下であることと加工性を考慮すると、上記樹脂の軟化温度は特に好ましくは80℃~120℃である。
 熱可塑性樹脂を分散媒樹脂(封止樹脂)として用いた場合の、その他の樹脂組成物の構成は、上記被覆蛍光体を含有させれば特に制限はないが、通常用いられる成分、例えば、可塑剤、難燃剤、安定剤等を含有させることが可能である。
 本発明の波長変換型太陽電池封止材の分散媒樹脂としては、上記のように、光硬化性、熱硬化性、熱可塑性と、特に樹脂を制限するものではないが、特に好ましい樹脂として、従来の太陽電池用封止材として広く利用されているエチレン-酢酸ビニル共重合体に熱ラジカル開始剤を配合した組成が挙げられる。
 本発明の波長変換型太陽電池封止材は、球状蛍光体と封止樹脂とを含む波長変換性の樹脂組成物層のみから構成されていてもよいが、これに加えて前記樹脂組成物層以外の光透過層をさらに有することが好ましい。
 前記樹脂組成物層以外の光透過層としては、例えば、前記波長変換性の樹脂組成物層から球状蛍光体を除いた光透過性層を挙げることができる。
 本発明の波長変換型太陽電池封止材が複数の光透過性層から構成される場合、少なくともその入射側の層よりも同程度かあるいは高屈折であることが好ましい。
 詳細には、m個の光透過性層を、光入射側から順に層1、層2、・・・、層(m-1)、層mとし、またそれぞれの層の屈折率を順にn、n、・・・、n(m-1)、nとした場合に、n≦n≦・・・≦n(m-1)≦nが成り立つことが好ましい。
 本発明の波長変換型太陽電池封止材の屈折率としては特に制限はないが、好ましくは1.5~2.1とし、より好ましくは1.5~1.9とする。また本発明の波長変換型太陽電池封止材が複数の光透過層からなる場合、波長変換型太陽電池封止材の全体の屈折率が前記範囲内であることが好ましい。
 本発明の波長変換型太陽電池封止材は、太陽電池素子の受光面上に配置されることが好ましい。そうすることで、太陽電池素子受光表面のテクスチャー構造、セル電極、タブ線等を含めた凹凸形状に隙間なく追従できる。
<波長変換型太陽電池封止材の製造方法>
 本発明の波長変換型太陽電池封止材の製造方法は、(1)蛍光物質の合成工程、(2)蛍光物質が溶解または分散されたビニルモノマー組成物を、懸濁重合して球状蛍光体を得る工程と、(3)前記球状蛍光体を、封止樹脂(透明封止樹脂)に混合または分散させて得られる樹脂組成物をシート状に形成するシート形成工程と、を含む。
 球状蛍光体を得る工程の詳細については既述の通りである。また、シート形成工程は、樹脂組成物をシート状に形成する方法として通常用いられる、押し出し成型、カレンダー成型など、方法を特に制限なく用いることができる。
 本発明の波長変換型太陽電池封止材は、シート状に形成するのが、使用の容易さの点から好ましい。図9に示すように、特に波長変換型太陽電池封止材100は、ガラス側に球状蛍光体50を含まない樹脂層(支持層30と呼ぶ)と、セル側に球状蛍光体50を含む樹脂層(発光層40と呼ぶ)の2層構造となっていることがより好ましい。かかる特に波長変換型太陽電池封止材100は、例えばガラス側面10に接するように保護ガラス(カバーガラス、図示せず)を配置し、セル側面20に接するように太陽電池素子(図示せず)を配置して太陽電池モジュールとして用いることができる。
 本発明においては、(1)特定の波長に励起帯をもつ蛍光物質(好ましくは、ユーロピウム錯体)が溶解または分散されたビニルモノマー組成物を、懸濁重合して球状蛍光体を得る工程と、(2)前記球状蛍光体を、封止樹脂(透明封止樹脂)に分散させて得られる樹脂組成物をシート状に形成するシート形成工程と、を含む製造方法であることが好ましい。
<太陽電池モジュール>
 本発明は上記波長変換型太陽電池封止材を備える太陽電池モジュールもその範囲とする。本発明の太陽電池モジュールは、太陽電池素子と、前記太陽電池素子の受光面上に配置された前記波長変換型太陽電池封止材を備える。これにより発電効率が向上する。
 本発明の波長変換型太陽電池封止材は、例えば、複数の光透過性層と太陽電池素子とを有する太陽電池モジュールの、光透過性層の一つとして用いられる。
 本発明において、太陽電池モジュールは、例えば、反射防止膜、保護ガラス、波長変換型太陽電池封止材、太陽電池素子、バックフィルム、セル電極、タブ線等の必要部材から構成される。これらの部材の中で、光透過性を有する光透過性層としては、反射防止膜、保護ガラス、本発明の波長変換型太陽電池封止材、太陽電池のSiNx:H層及びSi層等が挙げられる。
 本発明において、上記で挙げられる光透過性層の積層順は、通常、太陽電池モジュールの受光面から順に、必要により形成される反射防止膜、保護ガラス、本発明の波長変換型太陽電池封止材、太陽電池素子のSiNx:H層、Si層となる。
 即ち、本発明の波長変換型太陽電池封止材において、あらゆる角度から入り込む外部光が反射損失少なく、効率よく太陽電池素子内に導入するために、波長変換型太陽電池封止材の屈折率が、該波長変換型太陽電池封止材より光入射側に配置される光透過性層、すなわち、反射防止膜、保護ガラス等の屈折率より高く、且つ該波長変換型太陽電池封止材の光入射側の反対側に配置される光透過性層、すなわち、太陽電池素子のSiNx:H層(「セル反射防止膜」ともいう)及びSi層等の屈折率よりも低くすることが好ましい。
 具体的には、波長変換型太陽電池封止材より光入射側に配置される光透過性層、すなわち、反射防止膜の屈折率は、1.25~1.45、保護ガラスの屈折率は、通常1.45~1.55程度のものが用いられる。該波長変換型太陽電池封止材の光入射側の反対側に配置される光透過性層、すなわち、太陽電池素子のSiNx:H層(セル反射防止膜)の屈折率は、通常1.9~2.1程度及びSi層等の屈折率は、通常3.3~3.4程度のものが用いられる。以上のことより、本発明の波長変換型太陽電池封止材の屈折率を好ましくは1.5~2.1とし、より好ましくは1.5~1.9とする。
 本発明の波長変換型太陽電池封止材に用いる特定の波長に励起帯をもつ蛍光物質にユーロピウム錯体を用いることで、高い発電効率を有する太陽電池モジュールを実現出来る。ユーロピウム錯体は紫外域の光を高い波長変換効率で赤色の波長域の光に変換し、この変換された光が太陽電池素子で発電に寄与する。
<太陽電池モジュールの製造方法>
 本発明の波長変換型太陽電池封止材となる、シート状の樹脂組成物を用いて、太陽電池素子上に波長変換型太陽電池封止材を形成し、太陽電池モジュールを製造する。
 具体的には、通常の結晶シリコン太陽電池モジュールの製造方法と同様であり、通常の封止材シートに代えて、本発明の波長変換型太陽電池封止材(特に好ましくはシート状)を用いる。特に前記、支持層と発光層(波長変換型太陽電池封止材)の二層構造の場合は、支持層がガラス側、発光層が太陽電池素子側に接するよう、配置を注意する必要がある。
 一般的に結晶シリコン太陽電池モジュールは、まず、受光面であるカバーガラスの上にシート状の封止材(多くは、エチレン-酢酸ビニル共重合体を熱ラジカル開始剤で、熱硬化型にしたもの)を載せる。本発明では、ここで用いられる封止材を、本発明の波長変換型太陽電池封止材を用いる。次に、タブ線で接続された太陽電池素子を載せ、さらにシート状の封止材(ただし本発明では、受光面側のみで波長変換型太陽電池封止材を用いればよく、この裏面に関しては、従来のものでも構わない)を載せ、さらにバックシートを載せて、太陽電池モジュール専用の真空加圧ラミネータを用いてモジュールとする。
 このとき、ラミネータの熱板温度は、封止材が軟化、溶融し、太陽電池素子を包み込み、さらに硬化するのに必要な温度となっており、通常、120℃~180℃、多くは、140℃~160℃でこれらの物理変化、化学変化が起こるように設計されている。
 本発明の波長変換型太陽電池封止材は、太陽電池モジュールとする前の状態のもの、具体的には硬化性樹脂を用いた場合は、半硬化状態をいう。なお、半硬化状態の波長変換型太陽電池封止材と、硬化した後(太陽電池モジュール化した後)の波長変換型太陽電池封止材との屈折率は大きくは変わらない。
 本発明の波長変換型太陽電池封止材の形態は、特に制限はないが、太陽電池モジュールの製造の容易性からシート状であることが好ましい。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。尚、特に断りのない限り、「部」及び「%」は質量基準である。
(実施例1)
<FTP〔1-(4-フルオロフェニル)-3-(2-チエニル)-1,3-プロパンジオン〕の合成>
 水素化ナトリウム0.96g(0.04mol)を秤取し、窒素雰囲気下、脱水テトラヒドロフラン22.5mlを加えた。激しく攪拌しながら、2-アセチルチオフェン2.52g(0.02mol)及び4-フルオロ安息香酸メチル3.70g(0.024mol)を脱水テトラヒドロフラン12.5mlに溶解させた溶液を1時間かけて滴下した。その後、窒素気流下8時間還流させた。これを室温(25℃)に戻し、純水10.0gを加え、更に3N塩酸5.0mlを加えた。有機層を分離し、減圧下で濃縮した。濃縮物を再結晶し、FTPを2.83g(収率57%)得た。
<Eu(FTP)Phenの合成>
 上記のように合成したFTP556.1mg(2.24mmol)、1,10-フェナントロリン(Phen)151.4mg(0.84mmol)をメタノール25.0gに分散させた。この分散液に、水酸化ナトリウム112.0mg(2.80mmol)をメタノール10.0gに溶解させた溶液を加え、1時間攪拌した。
 次いで、256.5mg(0.7mmol)の塩化ユーロピウム(III)6水和物をメタノール5.0gに溶解した溶液を滴下した。室温で2時間攪拌した後、生成した沈殿物を吸引濾過し、メタノールにて洗浄した。乾燥することで蛍光物質としてEu(FTP)Phenを得た。
 得られた蛍光物質について、溶媒としてジメチルホルムアミドを用いて、蛍光分光光度計(日立ハイテク社製、F-4500)により、蛍光波長621nmにおける励起スペクトルを測定した。結果を図2、3、4、8に示す。図2、3、4、8から得られた蛍光物質の最大励起波長は425nmであることが分かる。
<球状蛍光体の作製>
 上記で得られた蛍光物質Eu(FTP)Phenを0.05g、メタクリル酸メチルを95g、エチレングリコールジメタクリレートを5g、熱ラジカル開始剤である2,2’-アゾビス(2,4-ジメチルバレロニトリル)を0.5g、それぞれ量り取って200mlスクリュー管に入れ、超音波洗浄器とミックスローターを用いて、攪拌混合した。冷却管をつけたセパラブルフラスコにイオン交換水500g、界面活性剤としてポリビニルアルコール1.69%溶液59.1gを加え、攪拌した。これに先に調整したメタクリル酸メチルとエチレングリコールジメタクリレートの混合液を加え、これを350rpmで攪拌しながら、50℃に加熱し、4時間反応させた。この懸濁液をベックマン・コールター社製Beckman Coulter LS13320(高分解能型レーザー回折散乱法 粒度分布測定装置)を用い、粒径を測定したところ、体積平均径が104μmであった。沈殿物を濾別し、イオン交換水で洗浄し、60℃で乾燥させ、懸濁重合による球状蛍光体Aを得た。
<粒子径、形状自動画像解析測定装置による測定>
 得られた球状蛍光体Aについて、マルバーン・インスツルメンツ・リミテッド社製の粒子径・形状自動画像解析測定装置、シスメックスFPIA-3000を用い、被測定粒子数100個において、その解析ソフト内で定義される円形度が、0.90以上であることを確認した。
<蛍光励起スペクトルの測定>
 またこの球状蛍光体Aについて、蛍光分光光度計(日立ハイテク社製、F-4500)により、蛍光波長621nmにおける励起スペクトルを測定した。この励起スペクトルを後述の比較例とともに図2、4に示す。
 図2、4から、球状蛍光体Aの340nm~400nmの波長域における励起スペクトル強度は、球状蛍光体Aの最大励起波長における励起スペクトル強度の70%以上であることが分かる。
<波長変換型太陽電池封止材用樹脂組成物の調製>
 透明封止樹脂(分散媒樹脂)として東ソー株式会社製のエチレン-酢酸ビニル樹脂、ウルトラセン634を100g、アルケマ吉富株式会社製の熱ラジカル開始剤、ルペロックス101(2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン)を1.5g、東レ・ダウコーニング株式会社製のシランカップリング剤、SZ6030(3-メタクリロキシプロピルトリメトキシシラン)を0.5g、および、前記球状蛍光体A 1.0gからなる混合物を100℃に調整したロールミキサで混練し、波長変換型太陽電池封止材用樹脂組成物を得た。
<波長変換型太陽電池封止材シートの作製>
 上記で得られた波長変換型太陽電池封止材用樹脂組成物の約30gを、離型シートに挟み、0.15mm厚ステンレス製スペーサーを用い、熱板を80℃に調整したプレスを用い、シート状にした。これを発光層(波長変換型太陽電池封止材)とした。得られたシート状の波長変換型太陽電池封止材の屈折率は1.5であった。
 上記波長変換型太陽電池封止材用樹脂組成物の調製において、前記球状蛍光体Aを含まないこと以外は同様にして調製した封止材用樹脂組成物を用いて、同様の方法で、0.45mm厚ステンレス製スペーサーを用い、熱板を80℃に調整したプレスを用い、シート状にした。これを支持層とした。発光層および支持層を合わせ、さらに80℃に調整したプレスを用い、シート状にし、波長変換型太陽電池封止材シートを得た。
<裏面用太陽電池封止材シートの作製>
 上記、波長変換型太陽電池封止材シートの作製において、波長変換型太陽電池封止材用樹脂組成物の代わりに、球状蛍光体を含まない他は上記と同様にして調製した封止材用樹脂組成物を用いて、上記と同様の方法で裏面用太陽電池封止材シートを作製した。
<波長変換型太陽電池モジュールの作製>
 保護ガラスとしての強化硝子(旭硝子株式会社製、屈折率1.5)の上に、上記波長変換型太陽電池封止材シートを、支持層を下側、発光層を上に向けて載せ、その上に、起電力を外部に取り出せるようにした太陽電池素子を受光面が下になるように載せ、さらに裏面用太陽電池封止材シート、バックフィルムとしてPETフィルム(東洋紡績株式会社製、商品名:A-4300)を載せ、真空ラミネータを用いて、ラミネートして、波長変換型太陽電池モジュールを作製した。
 尚、用いた太陽電池素子には屈折率1.9のセル反射防止膜が形成されている。
<太陽電池特性の評価>
 擬似太陽光線として、ソーラーシミュレータ(株式会社ワコム電創製、WXS-155S-10、AM1.5G)を用い、電流電圧特性をI-Vカーブトレーサー(英弘精機株式会社製、MP-160)を用いて、JIS-C8914に準拠して、モジュール封止前の太陽電池素子の状態の短絡電流密度Jscと、モジュール封止後の短絡電流密度Jscとを、それぞれ測定し、その差(ΔJsc)をとって評価した。その結果、ΔJscは0.66mA/cmであった。
<耐光性試験>
 耐光性試験機として、7.5kWスーパーキセノンウェザーメーター(スガ試験機株式会社製、SX75)を用い、放射照度60W/m(300~400nm)にて、上記、太陽電池特性評価後の波長変換型太陽電池モジュールを光曝露した。210時間後と500時間後の上記短絡電流密度Jscを初期値で規格化し、劣化の様子を記録した。この結果を、比較例1とともに図10に示した。
(比較例1)
<Eu(TTA)Phenの合成>
 水酸化ナトリウム水溶液(1M)11gに、テノイルトリフルオロアセトン(TTA)2.00g(9.00mmol)をエタノール75.0gに溶解した溶液を加えた。次いで、1,10-フェナントロリン0.62g(3.44mmol)をエタノール75.0gに溶解した溶液を加え、1時間攪拌を続けた。
 次いで、塩化ユーロピウム(III)6水和物1.03g(2.81mmol)をエタノール20.0gに溶解した溶液を滴下し、さらに1時間攪拌を続けた。生成した沈殿物を吸引濾過し、エタノールにて洗浄し、乾燥することで蛍光物質としてEu(TTA)Phenを得た。
 得られた蛍光物質について、溶媒としてジメチルホルムアミドを用いて、蛍光分光光度計(日立ハイテク社製、F-4500)により、蛍光波長621nmにおける励起スペクトルを測定したところ、得られた蛍光物質の最大励起波長は392nmであった。
 実施例1の<球状蛍光体の作製>において、蛍光物質としてEu(TTA)Phenを用いたこと及びメタクリル酸メチルを100gこと以外は、すべて同様の方法で球状蛍光体Bを得た。
 以下同様の方法で、<走査電子顕微鏡による観察>、<蛍光励起スペクトルの測定>、<波長変換型太陽電池封止材用樹脂組成物の調製>、<波長変換型太陽電池封止材シートの作製>、<裏面用太陽電池封止材シートの作製>、<波長変換型太陽電池モジュールの作製>、<太陽電池特性の評価>、<耐光性試験>を行った。
 球状蛍光体Bの体積平均径は、104μmであり、円形度は0.90以上であった。
 球状蛍光体Bの励起スペクトルを、実施例1とともに図2、4に示した。
 図2、4から、球状蛍光体Bの340nm~380nmの波長域における励起スペクトル強度は、球状蛍光体Bの最大励起波長における励起スペクトル強度の38%以上であり、50%未満の波長域が含まれていることが分かる。
 またΔJscは0.46mA/cmであった。
 耐光性試験の結果を実施例1とともに図10に示した。
 本発明の球状蛍光体を含む波長変換型太陽電池封止材を用いて太陽電池モジュールを構成することで、太陽電池モジュールにおける光利用効率を向上させ、発電効率を安定的に向上させることが可能となった。さらに耐光性試験において従来蛍光体を用いたときよりも、劣化が少なくすることが可能となった。
 日本国特許出願2010-271386号の開示はその全体を本明細書に援用する。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。
 

Claims (16)

  1.  最大励起波長が400nm以上の蛍光物質と、
     前記蛍光物質を含む透明材料とを有し、
     励起スペクトルにおいて340nm以上380nm以下の波長域における励起スペクトル強度が、最大励起波長における励起スペクトル強度の50%以上である球状蛍光体。
  2.  前記蛍光物質が、希土類金属錯体である請求項1に記載の球状蛍光体。
  3.  前記蛍光物質が、ユーロピウム錯体である請求項1又は請求項2に記載の球状蛍光体。
  4.  前記透明材料が、透明樹脂である請求項1~請求項3のいずれか1項に記載の球状蛍光体。
  5.  前記透明材料が、透明ビニル樹脂である請求項1~請求項4のいずれか1項に記載の球状蛍光体。
  6.  前記透明材料が、(メタ)アクリル樹脂である請求項1~請求項5のいずれか1項に記載の球状蛍光体。
  7.  前記透明材料の屈折率が、1.4以上であり且つ前記蛍光物質の屈折率よりも低い請求項1~請求項6のいずれか1項に記載の球状蛍光体。
  8.  前記蛍光物質及びビニルモノマーを含むビニルモノマー組成物の乳化重合物又は懸濁重合物である請求項5~請求項7のいずれか1項に記載の球状蛍光体。
  9.  前記蛍光物質及びビニルモノマーを含むビニルモノマー組成物の懸濁重合物である請求項5~請求項8のいずれか1項に記載の球状蛍光体。
  10.  請求項1~請求項9のいずれか1項に記載の球状蛍光体と、封止樹脂とを含む光透過性の樹脂組成物層を備える波長変換型太陽電池封止材。
  11.  前記球状蛍光体の前記樹脂組成物層における含有率が、0.0001質量パーセント~10質量パーセントである請求項10に記載の波長変換型太陽電池封止材。
  12.  前記樹脂組成物層以外の光透過性層をさらに備える請求項10又は請求項11に記載の波長変換型太陽電池封止材。
  13.  前記樹脂組成物層及びおよび前記樹脂組成物層以外の光透過性層からなるm個の層を備え、且つ、前記m個の層のそれぞれの屈折率を、光入射側から順にn、n、・・・、n(m-1)、nとした場合に、n≦n≦・・・≦n(m-1)≦nである請求項12に記載の波長変換型太陽電池封止材。
  14.  太陽電池素子と、前記太陽電池素子の受光面上に配置された請求項10~請求項13のいずれか1項に記載の波長変換型太陽電池封止材と、を備える太陽電池モジュール。
  15.  請求項1~請求項9のいずれか1項に記載の球状蛍光体を準備する工程と、
     前記球状蛍光体を封止樹脂に混合又は分散させた樹脂組成物を調製する工程と、
     前記樹脂組成物をシート状に形成して光透過性の樹脂組成物層を調製する工程と、
    を有する請求項10~請求項13のいずれか1項に記載の波長変換型太陽電池封止材の製造方法。
  16. 請求項10~請求項13のいずれか1項に記載の波長変換型太陽電池封止材を準備する工程と、
     前記波長変換型太陽電池封止材を太陽電池素子の受光面側に配置する工程と、
    を有する太陽電池モジュールの製造方法。
PCT/JP2011/076708 2010-12-06 2011-11-18 球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法 WO2012077485A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/991,869 US20130255778A1 (en) 2010-12-06 2011-11-18 Spherical phosphor, wavelength conversion-type photovoltaic cell sealing material, photovoltaic cell module, and production methods thereof
CN201180058560.7A CN103237865B (zh) 2010-12-06 2011-11-18 球状荧光体、波长转换型太阳能电池封固材料、太阳能电池组件以及它们的制造方法
JP2012547763A JP5857974B2 (ja) 2010-12-06 2011-11-18 球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法
KR1020137014537A KR20140007067A (ko) 2010-12-06 2011-11-18 구형 형광체, 파장 변환형 태양 전지 봉지재, 태양 전지 모듈 및 이들의 제조 방법
EP11847410.5A EP2650342A4 (en) 2010-12-06 2011-11-18 BALLASTIC PHOSPHORUS, SEALING MATERIAL FOR WAVELENGTH CELLULAR SOLAR CELL BATTERIES, SOLAR BATTERY MODULE AND METHOD FOR THE PRODUCTION THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010271386 2010-12-06
JP2010-271386 2010-12-06

Publications (1)

Publication Number Publication Date
WO2012077485A1 true WO2012077485A1 (ja) 2012-06-14

Family

ID=46206981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076708 WO2012077485A1 (ja) 2010-12-06 2011-11-18 球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法

Country Status (7)

Country Link
US (1) US20130255778A1 (ja)
EP (1) EP2650342A4 (ja)
JP (1) JP5857974B2 (ja)
KR (1) KR20140007067A (ja)
CN (2) CN104485371A (ja)
TW (1) TWI438259B (ja)
WO (1) WO2012077485A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103579463A (zh) * 2012-07-24 2014-02-12 三星显示有限公司 发光二极管封装件及具有该发光二极管封装件的显示装置
WO2014065190A1 (ja) * 2012-10-24 2014-05-01 株式会社クレハ 希土類錯体および該錯体の用途
WO2014065189A1 (ja) * 2012-10-24 2014-05-01 株式会社クレハ 希土類錯体および該錯体の用途
WO2015194594A1 (ja) * 2014-06-17 2015-12-23 株式会社ブリヂストン 波長変換材料及びこれを含む太陽電池用封止膜
JP2016003277A (ja) * 2014-06-17 2016-01-12 株式会社ブリヂストン 波長変換材料
JP2018127514A (ja) * 2017-02-06 2018-08-16 日立化成株式会社 色相調整用粒子及びその製造方法、色相調整用樹脂組成物並びに色相調整用シート

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140031178A (ko) * 2011-02-23 2014-03-12 히타치가세이가부시끼가이샤 파장 변환형 태양 전지 봉지재, 및 이것을 사용한 태양 전지 모듈
JP2012230968A (ja) * 2011-04-25 2012-11-22 Hitachi Chem Co Ltd 封止材シート及び太陽電池モジュール
US9295855B2 (en) 2013-03-15 2016-03-29 Gary W. Jones Ambient spectrum light conversion device
CA2907416A1 (en) * 2013-03-15 2014-09-18 Gary W. Jones Multispectral light source
US9551468B2 (en) 2013-12-10 2017-01-24 Gary W. Jones Inverse visible spectrum light and broad spectrum light source for enhanced vision
US10288233B2 (en) 2013-12-10 2019-05-14 Gary W. Jones Inverse visible spectrum light and broad spectrum light source for enhanced vision
US9761771B2 (en) * 2014-08-14 2017-09-12 Lg Chem, Ltd. Light-emitting film
US10359175B2 (en) * 2014-08-14 2019-07-23 Lg Chem, Ltd. Light-emitting film
TWI575766B (zh) * 2015-05-05 2017-03-21 飛立威光能股份有限公司 光伏系統及其製造方法
KR101963343B1 (ko) * 2017-08-31 2019-07-31 주식회사 인코어드 테크놀로지스 태양광 발전량 예측 장치 및 그 방법
US11930683B2 (en) 2020-08-10 2024-03-12 Tcl China Star Optoelectronics Technology Co., Ltd. Color filter layer and display device
CN111995914A (zh) * 2020-08-10 2020-11-27 Tcl华星光电技术有限公司 彩膜层以及显示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005082647A (ja) * 2003-09-05 2005-03-31 Teijin Chem Ltd ポリカーボネート樹脂組成物
JP2007308548A (ja) * 2006-05-17 2007-11-29 Yamaguchi Univ 樹脂粒子およびその製造方法
JP2009013186A (ja) * 2007-06-29 2009-01-22 Mitsubishi Chemicals Corp 被覆蛍光体粒子、被覆蛍光体粒子の製造方法、蛍光体含有組成物、発光装置、画像表示装置、および照明装置
JP2009046577A (ja) * 2007-08-20 2009-03-05 Toshiba Corp 希土類金属を含む蛍光体とそれを含む発光性組成物、およびその製造法、ならびに蛍光体を含む発光素子
WO2010001703A1 (ja) * 2008-06-30 2010-01-07 日立化成工業株式会社 波長変換フィルム、これを用いた太陽電池モジュール及びこれらの製造方法
JP2010155915A (ja) * 2008-12-26 2010-07-15 Japan Polyethylene Corp 太陽電池封止材
JP2010258439A (ja) * 2009-03-31 2010-11-11 Japan Polyethylene Corp 太陽電池封止材用樹脂組成物
WO2011040391A1 (ja) * 2009-09-29 2011-04-07 日立化成工業株式会社 波長変換用蛍光材料、これを含む波長変換用樹脂組成物、これらを用いた太陽電池モジュール、波長変換用樹脂組成物の製造方法及び太陽電池モジュールの製造方法
WO2011126118A1 (ja) * 2010-04-09 2011-10-13 日立化成工業株式会社 球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62253683A (ja) * 1987-01-24 1987-11-05 Nichia Chem Ind Ltd 顔料付蛍光体の製造方法
JPH0853666A (ja) * 1994-08-10 1996-02-27 Mitsubishi Chem Corp 重合体により被覆された蛍光体粒子の製造方法
JPH08134441A (ja) * 1994-11-08 1996-05-28 Japan Synthetic Rubber Co Ltd 蛍光体粒子
JP3515981B2 (ja) * 1998-12-28 2004-04-05 株式会社リード 蓄光材含有樹脂ビーズ及びその製造方法
EP1627177A1 (en) * 2003-05-09 2006-02-22 Philips Intellectual Property & Standards GmbH Uv light source coated with nano-particles of phosphor
SG144706A1 (en) * 2004-02-04 2008-08-28 Agency Science Tech & Res Red emission organic phosphor with broad excitation band
WO2006027956A1 (ja) * 2004-09-08 2006-03-16 Kaneka Corporation 光学材料用樹脂組成物
JP4602814B2 (ja) * 2005-03-24 2010-12-22 積水化成品工業株式会社 水溶性蛍光染料を内包したビニル系重合体粒子とその製造方法。
JP2007146149A (ja) * 2005-11-02 2007-06-14 Fujifilm Corp 蛍光性重合体微粒子、蛍光性重合体微粒子の製造方法、蛍光検出キット及び蛍光検出方法
US8222335B2 (en) * 2006-10-18 2012-07-17 Sanvic Inc. Fluorescent resin composition and solar battery module using the same
CN1966534A (zh) * 2006-10-25 2007-05-23 东华大学 无机-有机核壳式稀土高分子材料及其制备方法
KR101134962B1 (ko) * 2007-02-19 2012-04-09 산요가세이고교 가부시키가이샤 다층 구조 입자
CN100444946C (zh) * 2007-04-06 2008-12-24 山东大学 含高光效稀土配合物微胶囊的制备
JP2008280524A (ja) * 2007-04-13 2008-11-20 Hitachi Chem Co Ltd 有機エレクトロニクス用材料、有機エレクトロニクス素子および有機エレクトロルミネセンス素子
US20090151780A1 (en) * 2007-12-18 2009-06-18 Kohnen Ii Michael P Litroenergy power cell
CN101701151B (zh) * 2008-05-21 2013-03-20 北京大学 荧光纳米粒子及其制备方法和应用
US9496442B2 (en) * 2009-01-22 2016-11-15 Omnipv Solar modules including spectral concentrators and related manufacturing methods
CN101735216B (zh) * 2009-11-26 2012-01-04 上海大学 铕配合物二氧化硅荧光纳米粒子及其制备方法
US20100139769A1 (en) * 2009-11-30 2010-06-10 Covalent Solar, Inc. Solar concentrators with light redirection
AU2011289620C1 (en) * 2010-08-07 2014-08-21 Tpk Holding Co., Ltd. Device components with surface-embedded additives and related manufacturing methods
CN102153576A (zh) * 2011-01-28 2011-08-17 阜阳师范学院 二氧化硅包覆的稀土配合物及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005082647A (ja) * 2003-09-05 2005-03-31 Teijin Chem Ltd ポリカーボネート樹脂組成物
JP2007308548A (ja) * 2006-05-17 2007-11-29 Yamaguchi Univ 樹脂粒子およびその製造方法
JP2009013186A (ja) * 2007-06-29 2009-01-22 Mitsubishi Chemicals Corp 被覆蛍光体粒子、被覆蛍光体粒子の製造方法、蛍光体含有組成物、発光装置、画像表示装置、および照明装置
JP2009046577A (ja) * 2007-08-20 2009-03-05 Toshiba Corp 希土類金属を含む蛍光体とそれを含む発光性組成物、およびその製造法、ならびに蛍光体を含む発光素子
WO2010001703A1 (ja) * 2008-06-30 2010-01-07 日立化成工業株式会社 波長変換フィルム、これを用いた太陽電池モジュール及びこれらの製造方法
JP2010155915A (ja) * 2008-12-26 2010-07-15 Japan Polyethylene Corp 太陽電池封止材
JP2010258439A (ja) * 2009-03-31 2010-11-11 Japan Polyethylene Corp 太陽電池封止材用樹脂組成物
WO2011040391A1 (ja) * 2009-09-29 2011-04-07 日立化成工業株式会社 波長変換用蛍光材料、これを含む波長変換用樹脂組成物、これらを用いた太陽電池モジュール、波長変換用樹脂組成物の製造方法及び太陽電池モジュールの製造方法
WO2011126118A1 (ja) * 2010-04-09 2011-10-13 日立化成工業株式会社 球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2650342A4 *
YOUYI SUN ET AL.: "High luminescence quantum yields and long luminescence lifetime from Eu(III) complex containing two crystal water based on a new p-diketonate ligand", SPECTROCHIMICA ACTA, PART A, vol. 64A, no. 4, 2006, pages 977 - 980, XP028036469 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103579463A (zh) * 2012-07-24 2014-02-12 三星显示有限公司 发光二极管封装件及具有该发光二极管封装件的显示装置
WO2014065190A1 (ja) * 2012-10-24 2014-05-01 株式会社クレハ 希土類錯体および該錯体の用途
WO2014065189A1 (ja) * 2012-10-24 2014-05-01 株式会社クレハ 希土類錯体および該錯体の用途
JPWO2014065190A1 (ja) * 2012-10-24 2016-09-08 株式会社クレハ 希土類錯体および該錯体の用途
WO2015194594A1 (ja) * 2014-06-17 2015-12-23 株式会社ブリヂストン 波長変換材料及びこれを含む太陽電池用封止膜
JP2016003277A (ja) * 2014-06-17 2016-01-12 株式会社ブリヂストン 波長変換材料
JP2018127514A (ja) * 2017-02-06 2018-08-16 日立化成株式会社 色相調整用粒子及びその製造方法、色相調整用樹脂組成物並びに色相調整用シート

Also Published As

Publication number Publication date
TWI438259B (zh) 2014-05-21
CN103237865B (zh) 2016-08-24
CN103237865A (zh) 2013-08-07
KR20140007067A (ko) 2014-01-16
JPWO2012077485A1 (ja) 2014-05-19
EP2650342A1 (en) 2013-10-16
US20130255778A1 (en) 2013-10-03
CN104485371A (zh) 2015-04-01
TW201229193A (en) 2012-07-16
JP5857974B2 (ja) 2016-02-10
EP2650342A4 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
JP5857974B2 (ja) 球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法
WO2011126118A1 (ja) 球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法
JP5716319B2 (ja) 波長変換型太陽電池用球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法
US8860165B2 (en) Wavelength conversion-type photovoltaic cell sealing material and photovoltaic cell module using the same
JP2013087243A (ja) 球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法
JP5752362B2 (ja) 太陽電池用波長変換性樹脂組成物および太陽電池モジュール
JP5676986B2 (ja) 波長変換型太陽電池モジュール
JPWO2011040391A1 (ja) 波長変換用蛍光材料、これを含む波長変換用樹脂組成物、これらを用いた太陽電池モジュール、波長変換用樹脂組成物の製造方法及び太陽電池モジュールの製造方法
JP5712550B2 (ja) 球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法
JP5799487B2 (ja) 波長変換型太陽電池封止材用球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法
JP2013087241A (ja) 被覆蛍光材料、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法
JP2013087242A (ja) 球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法
JP5935869B2 (ja) 球状蛍光体の製造方法、波長変換型太陽電池封止材の製造方法、及び太陽電池モジュールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847410

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012547763

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137014537

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13991869

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011847410

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011847410

Country of ref document: EP