WO2012076253A1 - Pièce coulée céramique présentant des facteurs de retrait différents et procédé de coulée - Google Patents
Pièce coulée céramique présentant des facteurs de retrait différents et procédé de coulée Download PDFInfo
- Publication number
- WO2012076253A1 WO2012076253A1 PCT/EP2011/069085 EP2011069085W WO2012076253A1 WO 2012076253 A1 WO2012076253 A1 WO 2012076253A1 EP 2011069085 W EP2011069085 W EP 2011069085W WO 2012076253 A1 WO2012076253 A1 WO 2012076253A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- casting
- ceramic
- turbine
- region
- blade
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/02—Sand moulds or like moulds for shaped castings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/02—Sand moulds or like moulds for shaped castings
- B22C9/04—Use of lost patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/10—Cores; Manufacture or installation of cores
- B22C9/103—Multipart cores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/10—Cores; Manufacture or installation of cores
- B22C9/106—Vented or reinforced cores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/22—Moulds for peculiarly-shaped castings
- B22C9/24—Moulds for peculiarly-shaped castings for hollow articles
Definitions
- the invention relates to ceramic moldings having regions with different shrinkage behavior and a casting process.
- Ceramic castings are used in the manufacture of metallic cast components, which in particular can also be hollow, as is the case, for example, with cooled ones
- Turbine blades The hollow areas of these components are represented by ceramic bodies (technical term casting cores), which are incorporated in a ceramic casting shell.
- the object is achieved by a ceramic casting according to claim 1 and by a method according to claim 7.
- Figure 1 - 3 schematically a representation of the invention
- FIG. 1 shows a ceramic casting part 4.
- the ceramic mold part 4 is used preferably for the manufacture ⁇ development of components for a gas turbine 100 (Fig. 5). These are, in particular, turbine blades 120, 130 (FIG. 4), which are hollow-cast in particular and are cooled in particular by cooling air during operation via the exit edge 412 (FIG. 4) of the blade 406 (FIG. 4) and, in particular, a material made of nickel - or cobalt-based
- the ceramic casting shell 23 as an example of a ceramic j ⁇ ULTRASONIC mold part 4 has a cavity 22 in which, if necessary, a ceramic casting core 19 is used (Fig. 3). Between casting shell 23 and casting core 19, a melt is introduced.
- the ceramic cast shell 23 is here preferably divided into two areas 7, 10, the number of these areas is not subject to any restriction and does not refer to multi-layer molds (see EP 1266706 AI or generally: inside: low-reaction, mechanically stable outside material) or the Areas 7, 10 then correspond to a layer of such a shape.
- the low-shrinkage region 10, 10 ' has a different material than the region 7.
- the material of the low-shrinkage region 10 therefore has a lower shrinkage received.
- the cross sections of the cooling holes of the trailing edge 412 of a turbine blade 120, 130 are determined. These must be made very accurately in order to achieve the desired flow. Therefore, in particular, the part of the casting core 19 is the
- the ceramic casting 4 has a longitudinal direction 13, 13 ', preferably the solidification direction of a
- the matrix material of the low shrinkage region 10 can be completely different or have the same matrix material as for the other region 7, but include secondary material such as fibers 16, 16 ', 16 "as secondary material.
- the fibers 16, 16 ', 16' ' influence the shrinkage behavior positively, d. H. they lead to a lower shrinkage behavior.
- fiber mats can be used.
- FIG. 4 shows a perspective view of a rotor blade 120 or guide vane show ⁇ 130 of a turbomachine, which extends along a longitudinal axis of the 121st
- the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
- the blade 120, 130 has along the longitudinal axis 121 to each other, a securing region 400, an adjoining blade or vane platform 403 and a blade 406 and a blade tip 415.
- the vane 130 having at its blade tip 415 have a further platform (not Darge ⁇ asserted).
- a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
- the blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
- the blade 120, 130 has for a medium which flows past the scene ⁇ felblatt 406 on a leading edge 409 and a trailing edge 412th
- the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
- Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.
- Such monocrystalline workpieces takes place e.g. by directed solidification from the melt.
- These are casting processes in which the liquid metallic alloy is transformed into a monocrystalline structure, i. to the single-crystal workpiece, or directionally solidified.
- dendritic crystals are aligned along the heat flow and form either a columnar grain structure (columnar, ie grains that run the entire length of the workpiece and here, in common parlance, referred to as directionally solidified) or a monocrystalline structure, ie the whole workpiece be ⁇ is made of a single crystal.
- a columnar grain structure columnar, ie grains that run the entire length of the workpiece and here, in common parlance, referred to as directionally solidified
- a monocrystalline structure ie the whole workpiece be ⁇ is made of a single crystal.
- directionally solidified microstructures which means both single crystals that have no grain boundaries or at most small angle grain boundaries, and stem crystal structures that have probably longitudinal grain boundaries but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures.
- the blades 120, 130 may have coatings against corrosion or oxidation, e.g. B. (MCrAlX, M is at least one element of the group iron (Fe), cobalt (Co),
- Nickel (Ni) is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf)).
- Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1.
- the density is preferably 95% of the theoretical
- the layer composition comprises Co-30Ni-28Cr-8A1-0, 6Y-0, 7Si or Co-28Ni-24Cr-10Al-0, 6Y.
- nickel-based protective layers such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-IIAl-O, 4Y-2Re or Ni-25Co-17Cr-10A1-0, 4Y-1 are also preferably used , 5Re.
- thermal barrier coating which is preferably the outermost layer, and consists for example of ZrC> 2, Y2Ü3-Zr02, i. it is not, partially or fully stabilized by yttria
- the thermal barrier coating covers the entire MCrAlX layer.
- Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
- the heat insulation layer may have ⁇ porous, micro- or macro-cracked compatible grains for better thermal shock resistance.
- the thermal barrier coating is therefore preferably more porous than the
- MCrAlX layer Refurbishment means that components 120, 130 may have to be freed of protective layers after use (eg by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. If necessary, will also
- the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and also has, if necessary, film cooling holes 418 (indicated by dashed lines) on.
- FIG. 5 shows by way of example a gas turbine 100 in a longitudinal partial section.
- the gas turbine 100 has a rotatably mounted about a rotational axis 102 ⁇ rotor 103 having a shaft 101, which is also referred to as the turbine rotor.
- an intake housing 104 a compressor 105, for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
- a compressor 105 for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
- the annular combustion chamber 110 communicates with an annular annular hot gas channel 111, for example.
- annular annular hot gas channel 111 for example.
- turbine stages 112 connected in series form the turbine 108.
- Each turbine stage 112 is formed, for example, from two blade rings .
- the hot gas channel 111 of a row of vanes 115 is followed by a series 125 formed of rotor blades 120.
- the vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the rotor blades 120 of a row 125 are mounted on the rotor 103 by means of a turbine disk 133, for example are attached.
- Coupled to the rotor 103 is a generator or work machine (not shown).
- the working medium 113 expands in a pulse-transmitting manner, so that the blades 120 drive the rotor 103 and drive the machine coupled to it.
- the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
- the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the flow direction of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield elements lining the annular combustion chamber 110.
- substrates of the components may have a directional structure, i. they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
- Iron, nickel or cobalt-based superalloys are used as material for the components, in particular for the turbine blades 120, 130 and components of the combustion chamber 110.
- Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949.
- blades 120, 130 may be anti-corrosion coatings (MCrAlX; M is at least one member of the group Iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon, scandium (Sc) and / or at least one element of rare earth or hafnium).
- M is at least one member of the group Iron (Fe), cobalt (Co), nickel (Ni)
- X is an active element and stands for yttrium (Y) and / or silicon, scandium (Sc) and / or at least one element of rare earth or hafnium).
- Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1.
- a thermal barrier coating may still be present, consisting for example of ZrC> 2, Y2Ü3-Zr02, i. it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
- Suitable coating processes such as electron beam evaporation (EB-PVD), produce stalk-shaped grains in the thermal barrier coating.
- the guide vane 130 has an inner housing 138 of the turbine 108 facing guide vane root (not Darge here provides ⁇ ) and a side opposite the guide-blade root vane root.
- the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
L'utilisation d'un matériau ayant différents comportements de retrait, notamment de fibres (16), permet de régler de façon contrôlée le retrait d'une pièce coulée céramique (4).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10194151.6 | 2010-12-08 | ||
EP10194151A EP2463043A1 (fr) | 2010-12-08 | 2010-12-08 | Pièce de formage coulée en céramique dotée de différents facteurs de rétrécissement et procédé de coulée |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012076253A1 true WO2012076253A1 (fr) | 2012-06-14 |
Family
ID=43902925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2011/069085 WO2012076253A1 (fr) | 2010-12-08 | 2011-10-31 | Pièce coulée céramique présentant des facteurs de retrait différents et procédé de coulée |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2463043A1 (fr) |
WO (1) | WO2012076253A1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3246108B1 (fr) * | 2016-05-16 | 2021-03-03 | Rolls-Royce Corporation | Procédés de fabrication de composants coulés avec des canaux de refroidissement |
US20190060982A1 (en) | 2017-08-29 | 2019-02-28 | General Electric Company | Carbon fibers in ceramic cores for investment casting |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3166808A (en) * | 1958-08-18 | 1965-01-26 | Pittsburgh Plate Glass Co | Core reinforcement means |
US4989664A (en) * | 1988-07-07 | 1991-02-05 | United Technologies Corporation | Core molding composition |
EP0486489B1 (fr) | 1989-08-10 | 1994-11-02 | Siemens Aktiengesellschaft | Revetement anticorrosion resistant aux temperatures elevees, notamment pour elements de turbines a gaz |
EP0715913A1 (fr) * | 1992-02-05 | 1996-06-12 | Howmet Corporation | Noyaux en plusieurs parties pour la coulée à la cire perdue |
EP0412397B1 (fr) | 1989-08-10 | 1998-03-25 | Siemens Aktiengesellschaft | Revêtement protecteur contenant du rhénium possédant une résistance plus grande à la corrosion et l'oxydation |
EP0892090A1 (fr) | 1997-02-24 | 1999-01-20 | Sulzer Innotec Ag | Procédé de fabrication de structure smonocristallines |
EP0899039A2 (fr) * | 1997-08-29 | 1999-03-03 | Howmet Research Corporation | Noyau de quartz renforcé pour solidification directionnelle |
EP0786017B1 (fr) | 1994-10-14 | 1999-03-24 | Siemens Aktiengesellschaft | Couche de protection de pieces contre la corrosion, l'oxydation et les contraintes thermiques excessives, et son procede de production |
WO1999067435A1 (fr) | 1998-06-23 | 1999-12-29 | Siemens Aktiengesellschaft | Alliage a solidification directionnelle a resistance transversale a la rupture amelioree |
US6024792A (en) | 1997-02-24 | 2000-02-15 | Sulzer Innotec Ag | Method for producing monocrystalline structures |
WO2000044949A1 (fr) | 1999-01-28 | 2000-08-03 | Siemens Aktiengesellschaft | Superalliage a base de nickel presentant une bonne usinabilite |
EP1266706A1 (fr) | 2001-06-13 | 2002-12-18 | Siemens Aktiengesellschaft | Dispositif de coulage, procédé de fabrication d'un dispositif de coulage et son usage |
EP1306454A1 (fr) | 2001-10-24 | 2003-05-02 | Siemens Aktiengesellschaft | Revêtement protecteur contenant du rhénium pour la protection d'un élément contre l'oxydation et la corrosion aux températures élevées |
EP1319729A1 (fr) | 2001-12-13 | 2003-06-18 | Siemens Aktiengesellschaft | Pièce résistante à des températures élevées réalisé en superalliage polycristallin ou monocristallin à base de nickel |
EP1204776B1 (fr) | 1999-07-29 | 2004-06-02 | Siemens Aktiengesellschaft | Piece resistant a des temperatures elevees et son procede de production |
US20050199366A1 (en) * | 2000-11-10 | 2005-09-15 | John Vandermeer | Investment casting mold and method of manufacture |
-
2010
- 2010-12-08 EP EP10194151A patent/EP2463043A1/fr not_active Withdrawn
-
2011
- 2011-10-31 WO PCT/EP2011/069085 patent/WO2012076253A1/fr active Application Filing
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3166808A (en) * | 1958-08-18 | 1965-01-26 | Pittsburgh Plate Glass Co | Core reinforcement means |
US4989664A (en) * | 1988-07-07 | 1991-02-05 | United Technologies Corporation | Core molding composition |
EP0486489B1 (fr) | 1989-08-10 | 1994-11-02 | Siemens Aktiengesellschaft | Revetement anticorrosion resistant aux temperatures elevees, notamment pour elements de turbines a gaz |
EP0412397B1 (fr) | 1989-08-10 | 1998-03-25 | Siemens Aktiengesellschaft | Revêtement protecteur contenant du rhénium possédant une résistance plus grande à la corrosion et l'oxydation |
EP0715913A1 (fr) * | 1992-02-05 | 1996-06-12 | Howmet Corporation | Noyaux en plusieurs parties pour la coulée à la cire perdue |
EP0786017B1 (fr) | 1994-10-14 | 1999-03-24 | Siemens Aktiengesellschaft | Couche de protection de pieces contre la corrosion, l'oxydation et les contraintes thermiques excessives, et son procede de production |
US6024792A (en) | 1997-02-24 | 2000-02-15 | Sulzer Innotec Ag | Method for producing monocrystalline structures |
EP0892090A1 (fr) | 1997-02-24 | 1999-01-20 | Sulzer Innotec Ag | Procédé de fabrication de structure smonocristallines |
EP0899039A2 (fr) * | 1997-08-29 | 1999-03-03 | Howmet Research Corporation | Noyau de quartz renforcé pour solidification directionnelle |
WO1999067435A1 (fr) | 1998-06-23 | 1999-12-29 | Siemens Aktiengesellschaft | Alliage a solidification directionnelle a resistance transversale a la rupture amelioree |
WO2000044949A1 (fr) | 1999-01-28 | 2000-08-03 | Siemens Aktiengesellschaft | Superalliage a base de nickel presentant une bonne usinabilite |
EP1204776B1 (fr) | 1999-07-29 | 2004-06-02 | Siemens Aktiengesellschaft | Piece resistant a des temperatures elevees et son procede de production |
US20050199366A1 (en) * | 2000-11-10 | 2005-09-15 | John Vandermeer | Investment casting mold and method of manufacture |
EP1266706A1 (fr) | 2001-06-13 | 2002-12-18 | Siemens Aktiengesellschaft | Dispositif de coulage, procédé de fabrication d'un dispositif de coulage et son usage |
EP1306454A1 (fr) | 2001-10-24 | 2003-05-02 | Siemens Aktiengesellschaft | Revêtement protecteur contenant du rhénium pour la protection d'un élément contre l'oxydation et la corrosion aux températures élevées |
EP1319729A1 (fr) | 2001-12-13 | 2003-06-18 | Siemens Aktiengesellschaft | Pièce résistante à des températures élevées réalisé en superalliage polycristallin ou monocristallin à base de nickel |
Also Published As
Publication number | Publication date |
---|---|
EP2463043A1 (fr) | 2012-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012007320A1 (fr) | Système stratifié céramique poreux | |
EP3060759B1 (fr) | Revêtement d'isolation thermique d'une aube de turbine | |
EP2373824B1 (fr) | Procédé de revêtement d'un composant à trous de refroidissement par film et composant | |
EP4382635A2 (fr) | Procédé de fabrication de turbines à gaz, turbine à gaz et procédé de fonctionnement d'installations de turbines à gaz | |
EP2882939B1 (fr) | Procédé de reconditionnement d'une aube de turbine à gaz ainsi que l'usage d'une turbine à gaz pourvue d'une telle aube | |
WO2010084036A1 (fr) | Composant à structure différenciée et procédé de fabrication | |
EP2241397A1 (fr) | Soudage de trous, procédé de revêtement de tiges de soudage | |
WO2011045343A1 (fr) | Détermination de référence pour la détermination de la position de trous fermés, dispositif et dispositif d'usinage | |
EP2716386A1 (fr) | Composants de turbine à gaz, leur procédé de fabrication et moule destiné à utiliser ce procédé | |
WO2012076253A1 (fr) | Pièce coulée céramique présentant des facteurs de retrait différents et procédé de coulée | |
EP2116319B1 (fr) | Composant oblong obtenu par solidification directionelle ayant différentes tailles transversales de grains longitudinaux | |
WO2012107130A1 (fr) | Matériau ayant une structure pyrochlore contenant du tantale, utilisation du matériau, système de couches et procédé de fabrication d'un système de couches | |
EP2539476B1 (fr) | Procédé pour le réglage de la consommation d'un liquide de refroidissement dans un élément refroidi | |
EP2581355A1 (fr) | Céramique dotée d'un renforcement par des nanostructures | |
EP2463044A1 (fr) | Noyau de fonderie en céramique modulaire et procédé de coulée | |
WO2012065851A1 (fr) | Procédé raccourci pour le forage d'un trou | |
EP2441537A1 (fr) | Outil à noyau doté de crayons variables et procédé de fabrication d'un noyau | |
EP2441542A1 (fr) | Procédé de fabrication d'un composant coulé doté d'une structure interne et composant | |
WO2012059307A1 (fr) | Optimisation d'un outil de coulée de noyaux, procédé de fabrication d'un tel outil et outil de coulée de noyaux | |
WO2010118960A1 (fr) | Procédé de fabrication d'un moule négatif pour la coulée d'une aube de turbine et moule pour la fabrication d'un modèle à la cire d'aube de turbine | |
EP2177643A1 (fr) | Procédé de réparation d'un superalliage à l'aide de la même poudre de superalliage et de céramique | |
EP2450123A1 (fr) | Procédé de fabrication d'un outil pour la fabrication de noyaux | |
EP1932935A1 (fr) | Procédé de fabrication d'une aube de turbine avec une couche d'oxide, une aube de turbine et son utilisation, et procédé de fonctionnement d'une turbine | |
EP2511393A1 (fr) | Matrice dotée de nanotubes | |
WO2010034606A1 (fr) | Pièce moulée à module séparé pour entretoise, procédé de production d'un moule de coulée, moule de coulée céramique et pièce moulée |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11778855 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11778855 Country of ref document: EP Kind code of ref document: A1 |