WO2012076253A1 - Pièce coulée céramique présentant des facteurs de retrait différents et procédé de coulée - Google Patents

Pièce coulée céramique présentant des facteurs de retrait différents et procédé de coulée Download PDF

Info

Publication number
WO2012076253A1
WO2012076253A1 PCT/EP2011/069085 EP2011069085W WO2012076253A1 WO 2012076253 A1 WO2012076253 A1 WO 2012076253A1 EP 2011069085 W EP2011069085 W EP 2011069085W WO 2012076253 A1 WO2012076253 A1 WO 2012076253A1
Authority
WO
WIPO (PCT)
Prior art keywords
casting
ceramic
turbine
region
blade
Prior art date
Application number
PCT/EP2011/069085
Other languages
German (de)
English (en)
Inventor
Fathi Ahmad
Winfried Esser
Giuseppe Gaio
Waldemar Heckel
Rudolf Küperkoch
Oliver Lüsebrink
Thorsten Mattheis
Mirko Milazar
Artur Mol
Uwe Paul
Oliver Ricken
Oliver Schneider
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2012076253A1 publication Critical patent/WO2012076253A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • B22C9/103Multipart cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • B22C9/106Vented or reinforced cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • B22C9/24Moulds for peculiarly-shaped castings for hollow articles

Definitions

  • the invention relates to ceramic moldings having regions with different shrinkage behavior and a casting process.
  • Ceramic castings are used in the manufacture of metallic cast components, which in particular can also be hollow, as is the case, for example, with cooled ones
  • Turbine blades The hollow areas of these components are represented by ceramic bodies (technical term casting cores), which are incorporated in a ceramic casting shell.
  • the object is achieved by a ceramic casting according to claim 1 and by a method according to claim 7.
  • Figure 1 - 3 schematically a representation of the invention
  • FIG. 1 shows a ceramic casting part 4.
  • the ceramic mold part 4 is used preferably for the manufacture ⁇ development of components for a gas turbine 100 (Fig. 5). These are, in particular, turbine blades 120, 130 (FIG. 4), which are hollow-cast in particular and are cooled in particular by cooling air during operation via the exit edge 412 (FIG. 4) of the blade 406 (FIG. 4) and, in particular, a material made of nickel - or cobalt-based
  • the ceramic casting shell 23 as an example of a ceramic j ⁇ ULTRASONIC mold part 4 has a cavity 22 in which, if necessary, a ceramic casting core 19 is used (Fig. 3). Between casting shell 23 and casting core 19, a melt is introduced.
  • the ceramic cast shell 23 is here preferably divided into two areas 7, 10, the number of these areas is not subject to any restriction and does not refer to multi-layer molds (see EP 1266706 AI or generally: inside: low-reaction, mechanically stable outside material) or the Areas 7, 10 then correspond to a layer of such a shape.
  • the low-shrinkage region 10, 10 ' has a different material than the region 7.
  • the material of the low-shrinkage region 10 therefore has a lower shrinkage received.
  • the cross sections of the cooling holes of the trailing edge 412 of a turbine blade 120, 130 are determined. These must be made very accurately in order to achieve the desired flow. Therefore, in particular, the part of the casting core 19 is the
  • the ceramic casting 4 has a longitudinal direction 13, 13 ', preferably the solidification direction of a
  • the matrix material of the low shrinkage region 10 can be completely different or have the same matrix material as for the other region 7, but include secondary material such as fibers 16, 16 ', 16 "as secondary material.
  • the fibers 16, 16 ', 16' ' influence the shrinkage behavior positively, d. H. they lead to a lower shrinkage behavior.
  • fiber mats can be used.
  • FIG. 4 shows a perspective view of a rotor blade 120 or guide vane show ⁇ 130 of a turbomachine, which extends along a longitudinal axis of the 121st
  • the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 to each other, a securing region 400, an adjoining blade or vane platform 403 and a blade 406 and a blade tip 415.
  • the vane 130 having at its blade tip 415 have a further platform (not Darge ⁇ asserted).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has for a medium which flows past the scene ⁇ felblatt 406 on a leading edge 409 and a trailing edge 412th
  • the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
  • Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.
  • Such monocrystalline workpieces takes place e.g. by directed solidification from the melt.
  • These are casting processes in which the liquid metallic alloy is transformed into a monocrystalline structure, i. to the single-crystal workpiece, or directionally solidified.
  • dendritic crystals are aligned along the heat flow and form either a columnar grain structure (columnar, ie grains that run the entire length of the workpiece and here, in common parlance, referred to as directionally solidified) or a monocrystalline structure, ie the whole workpiece be ⁇ is made of a single crystal.
  • a columnar grain structure columnar, ie grains that run the entire length of the workpiece and here, in common parlance, referred to as directionally solidified
  • a monocrystalline structure ie the whole workpiece be ⁇ is made of a single crystal.
  • directionally solidified microstructures which means both single crystals that have no grain boundaries or at most small angle grain boundaries, and stem crystal structures that have probably longitudinal grain boundaries but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures.
  • the blades 120, 130 may have coatings against corrosion or oxidation, e.g. B. (MCrAlX, M is at least one element of the group iron (Fe), cobalt (Co),
  • Nickel (Ni) is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf)).
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1.
  • the density is preferably 95% of the theoretical
  • the layer composition comprises Co-30Ni-28Cr-8A1-0, 6Y-0, 7Si or Co-28Ni-24Cr-10Al-0, 6Y.
  • nickel-based protective layers such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-IIAl-O, 4Y-2Re or Ni-25Co-17Cr-10A1-0, 4Y-1 are also preferably used , 5Re.
  • thermal barrier coating which is preferably the outermost layer, and consists for example of ZrC> 2, Y2Ü3-Zr02, i. it is not, partially or fully stabilized by yttria
  • the thermal barrier coating covers the entire MCrAlX layer.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • the heat insulation layer may have ⁇ porous, micro- or macro-cracked compatible grains for better thermal shock resistance.
  • the thermal barrier coating is therefore preferably more porous than the
  • MCrAlX layer Refurbishment means that components 120, 130 may have to be freed of protective layers after use (eg by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. If necessary, will also
  • the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and also has, if necessary, film cooling holes 418 (indicated by dashed lines) on.
  • FIG. 5 shows by way of example a gas turbine 100 in a longitudinal partial section.
  • the gas turbine 100 has a rotatably mounted about a rotational axis 102 ⁇ rotor 103 having a shaft 101, which is also referred to as the turbine rotor.
  • an intake housing 104 a compressor 105, for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • a compressor 105 for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 110 communicates with an annular annular hot gas channel 111, for example.
  • annular annular hot gas channel 111 for example.
  • turbine stages 112 connected in series form the turbine 108.
  • Each turbine stage 112 is formed, for example, from two blade rings .
  • the hot gas channel 111 of a row of vanes 115 is followed by a series 125 formed of rotor blades 120.
  • the vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the rotor blades 120 of a row 125 are mounted on the rotor 103 by means of a turbine disk 133, for example are attached.
  • Coupled to the rotor 103 is a generator or work machine (not shown).
  • the working medium 113 expands in a pulse-transmitting manner, so that the blades 120 drive the rotor 103 and drive the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the flow direction of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield elements lining the annular combustion chamber 110.
  • substrates of the components may have a directional structure, i. they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • Iron, nickel or cobalt-based superalloys are used as material for the components, in particular for the turbine blades 120, 130 and components of the combustion chamber 110.
  • Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949.
  • blades 120, 130 may be anti-corrosion coatings (MCrAlX; M is at least one member of the group Iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon, scandium (Sc) and / or at least one element of rare earth or hafnium).
  • M is at least one member of the group Iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and stands for yttrium (Y) and / or silicon, scandium (Sc) and / or at least one element of rare earth or hafnium).
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1.
  • a thermal barrier coating may still be present, consisting for example of ZrC> 2, Y2Ü3-Zr02, i. it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • Suitable coating processes such as electron beam evaporation (EB-PVD), produce stalk-shaped grains in the thermal barrier coating.
  • the guide vane 130 has an inner housing 138 of the turbine 108 facing guide vane root (not Darge here provides ⁇ ) and a side opposite the guide-blade root vane root.
  • the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

L'utilisation d'un matériau ayant différents comportements de retrait, notamment de fibres (16), permet de régler de façon contrôlée le retrait d'une pièce coulée céramique (4).
PCT/EP2011/069085 2010-12-08 2011-10-31 Pièce coulée céramique présentant des facteurs de retrait différents et procédé de coulée WO2012076253A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP10194151.6 2010-12-08
EP10194151A EP2463043A1 (fr) 2010-12-08 2010-12-08 Pièce de formage coulée en céramique dotée de différents facteurs de rétrécissement et procédé de coulée

Publications (1)

Publication Number Publication Date
WO2012076253A1 true WO2012076253A1 (fr) 2012-06-14

Family

ID=43902925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/069085 WO2012076253A1 (fr) 2010-12-08 2011-10-31 Pièce coulée céramique présentant des facteurs de retrait différents et procédé de coulée

Country Status (2)

Country Link
EP (1) EP2463043A1 (fr)
WO (1) WO2012076253A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3246108B1 (fr) * 2016-05-16 2021-03-03 Rolls-Royce Corporation Procédés de fabrication de composants coulés avec des canaux de refroidissement
US20190060982A1 (en) 2017-08-29 2019-02-28 General Electric Company Carbon fibers in ceramic cores for investment casting

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3166808A (en) * 1958-08-18 1965-01-26 Pittsburgh Plate Glass Co Core reinforcement means
US4989664A (en) * 1988-07-07 1991-02-05 United Technologies Corporation Core molding composition
EP0486489B1 (fr) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft Revetement anticorrosion resistant aux temperatures elevees, notamment pour elements de turbines a gaz
EP0715913A1 (fr) * 1992-02-05 1996-06-12 Howmet Corporation Noyaux en plusieurs parties pour la coulée à la cire perdue
EP0412397B1 (fr) 1989-08-10 1998-03-25 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium possédant une résistance plus grande à la corrosion et l'oxydation
EP0892090A1 (fr) 1997-02-24 1999-01-20 Sulzer Innotec Ag Procédé de fabrication de structure smonocristallines
EP0899039A2 (fr) * 1997-08-29 1999-03-03 Howmet Research Corporation Noyau de quartz renforcé pour solidification directionnelle
EP0786017B1 (fr) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Couche de protection de pieces contre la corrosion, l'oxydation et les contraintes thermiques excessives, et son procede de production
WO1999067435A1 (fr) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Alliage a solidification directionnelle a resistance transversale a la rupture amelioree
US6024792A (en) 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
WO2000044949A1 (fr) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Superalliage a base de nickel presentant une bonne usinabilite
EP1266706A1 (fr) 2001-06-13 2002-12-18 Siemens Aktiengesellschaft Dispositif de coulage, procédé de fabrication d'un dispositif de coulage et son usage
EP1306454A1 (fr) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium pour la protection d'un élément contre l'oxydation et la corrosion aux températures élevées
EP1319729A1 (fr) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft Pièce résistante à des températures élevées réalisé en superalliage polycristallin ou monocristallin à base de nickel
EP1204776B1 (fr) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Piece resistant a des temperatures elevees et son procede de production
US20050199366A1 (en) * 2000-11-10 2005-09-15 John Vandermeer Investment casting mold and method of manufacture

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3166808A (en) * 1958-08-18 1965-01-26 Pittsburgh Plate Glass Co Core reinforcement means
US4989664A (en) * 1988-07-07 1991-02-05 United Technologies Corporation Core molding composition
EP0486489B1 (fr) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft Revetement anticorrosion resistant aux temperatures elevees, notamment pour elements de turbines a gaz
EP0412397B1 (fr) 1989-08-10 1998-03-25 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium possédant une résistance plus grande à la corrosion et l'oxydation
EP0715913A1 (fr) * 1992-02-05 1996-06-12 Howmet Corporation Noyaux en plusieurs parties pour la coulée à la cire perdue
EP0786017B1 (fr) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Couche de protection de pieces contre la corrosion, l'oxydation et les contraintes thermiques excessives, et son procede de production
US6024792A (en) 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
EP0892090A1 (fr) 1997-02-24 1999-01-20 Sulzer Innotec Ag Procédé de fabrication de structure smonocristallines
EP0899039A2 (fr) * 1997-08-29 1999-03-03 Howmet Research Corporation Noyau de quartz renforcé pour solidification directionnelle
WO1999067435A1 (fr) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Alliage a solidification directionnelle a resistance transversale a la rupture amelioree
WO2000044949A1 (fr) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Superalliage a base de nickel presentant une bonne usinabilite
EP1204776B1 (fr) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Piece resistant a des temperatures elevees et son procede de production
US20050199366A1 (en) * 2000-11-10 2005-09-15 John Vandermeer Investment casting mold and method of manufacture
EP1266706A1 (fr) 2001-06-13 2002-12-18 Siemens Aktiengesellschaft Dispositif de coulage, procédé de fabrication d'un dispositif de coulage et son usage
EP1306454A1 (fr) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium pour la protection d'un élément contre l'oxydation et la corrosion aux températures élevées
EP1319729A1 (fr) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft Pièce résistante à des températures élevées réalisé en superalliage polycristallin ou monocristallin à base de nickel

Also Published As

Publication number Publication date
EP2463043A1 (fr) 2012-06-13

Similar Documents

Publication Publication Date Title
WO2012007320A1 (fr) Système stratifié céramique poreux
EP3060759B1 (fr) Revêtement d'isolation thermique d'une aube de turbine
EP2373824B1 (fr) Procédé de revêtement d'un composant à trous de refroidissement par film et composant
EP4382635A2 (fr) Procédé de fabrication de turbines à gaz, turbine à gaz et procédé de fonctionnement d'installations de turbines à gaz
EP2882939B1 (fr) Procédé de reconditionnement d'une aube de turbine à gaz ainsi que l'usage d'une turbine à gaz pourvue d'une telle aube
WO2010084036A1 (fr) Composant à structure différenciée et procédé de fabrication
EP2241397A1 (fr) Soudage de trous, procédé de revêtement de tiges de soudage
WO2011045343A1 (fr) Détermination de référence pour la détermination de la position de trous fermés, dispositif et dispositif d'usinage
EP2716386A1 (fr) Composants de turbine à gaz, leur procédé de fabrication et moule destiné à utiliser ce procédé
WO2012076253A1 (fr) Pièce coulée céramique présentant des facteurs de retrait différents et procédé de coulée
EP2116319B1 (fr) Composant oblong obtenu par solidification directionelle ayant différentes tailles transversales de grains longitudinaux
WO2012107130A1 (fr) Matériau ayant une structure pyrochlore contenant du tantale, utilisation du matériau, système de couches et procédé de fabrication d'un système de couches
EP2539476B1 (fr) Procédé pour le réglage de la consommation d'un liquide de refroidissement dans un élément refroidi
EP2581355A1 (fr) Céramique dotée d'un renforcement par des nanostructures
EP2463044A1 (fr) Noyau de fonderie en céramique modulaire et procédé de coulée
WO2012065851A1 (fr) Procédé raccourci pour le forage d'un trou
EP2441537A1 (fr) Outil à noyau doté de crayons variables et procédé de fabrication d'un noyau
EP2441542A1 (fr) Procédé de fabrication d'un composant coulé doté d'une structure interne et composant
WO2012059307A1 (fr) Optimisation d'un outil de coulée de noyaux, procédé de fabrication d'un tel outil et outil de coulée de noyaux
WO2010118960A1 (fr) Procédé de fabrication d'un moule négatif pour la coulée d'une aube de turbine et moule pour la fabrication d'un modèle à la cire d'aube de turbine
EP2177643A1 (fr) Procédé de réparation d'un superalliage à l'aide de la même poudre de superalliage et de céramique
EP2450123A1 (fr) Procédé de fabrication d'un outil pour la fabrication de noyaux
EP1932935A1 (fr) Procédé de fabrication d'une aube de turbine avec une couche d'oxide, une aube de turbine et son utilisation, et procédé de fonctionnement d'une turbine
EP2511393A1 (fr) Matrice dotée de nanotubes
WO2010034606A1 (fr) Pièce moulée à module séparé pour entretoise, procédé de production d'un moule de coulée, moule de coulée céramique et pièce moulée

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11778855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11778855

Country of ref document: EP

Kind code of ref document: A1