EP2441542A1 - Procédé de fabrication d'un composant coulé doté d'une structure interne et composant - Google Patents

Procédé de fabrication d'un composant coulé doté d'une structure interne et composant Download PDF

Info

Publication number
EP2441542A1
EP2441542A1 EP10187248A EP10187248A EP2441542A1 EP 2441542 A1 EP2441542 A1 EP 2441542A1 EP 10187248 A EP10187248 A EP 10187248A EP 10187248 A EP10187248 A EP 10187248A EP 2441542 A1 EP2441542 A1 EP 2441542A1
Authority
EP
European Patent Office
Prior art keywords
component
framework
cast
component according
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10187248A
Other languages
German (de)
English (en)
Inventor
Marcus Fischer
Björn Buchholz
Thomas Hille
Anna Kapustina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP10187248A priority Critical patent/EP2441542A1/fr
Publication of EP2441542A1 publication Critical patent/EP2441542A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/02Casting in, on, or around objects which form part of the product for making reinforced articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/04Casting in, on, or around objects which form part of the product for joining parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form

Definitions

  • the invention relates to a method for producing a component with an inner framework, which is encapsulated, and a component.
  • the choice of material is based on the material's ability to withstand stress in all areas so that certain areas of the product are oversized.
  • One possibility is to construct the component in a modular manner and to connect these individual modules together by joining methods.
  • the object is achieved by a method according to claim 1 and a component according to claim 4.
  • FIG. 1 1 schematically shows a component 1, in particular a turbine blade 120, 130 (FIG. Fig. 10 ) of a turbine as an exemplary component, in particular a gas turbine 100 (FIG. Fig. 9 ).
  • the component 1 is flowed around by a hot gas 4 and has in particular around the leading edge 409 in the radial direction 19 and on both sides in the axial direction 22 around it, a region 7 which is exposed to higher mechanical loads than other areas.
  • a framework 10 is prefabricated ( Fig. 2 ) to meet the mechanical requirements of the loads of the component 1 in this area.
  • the component 1, 120, 130 may have a plurality of such regions 7 and thus a plurality of frameworks 10.
  • the framework 10 preferably extends from the blade platform 403 to the blade tip 415.
  • the framework 10 is produced in particular by a laser sintering process.
  • the framework 10 is of porous construction and the casting material 13 is cast into the framework 10.
  • the framework 10 is preferably constructed in the form of a grid or grid ( Fig. 4 ).
  • this framework 10 is encapsulated by a melt of a casting material 13 and possibly poured into the pores, so that the finished component 120, 130 the Scaffold 10 encloses as it is in FIG. 3 is shown schematically.
  • the material for the melt is in particular metallic (in particular according to FIG. 12 ).
  • FIG. 4 shows a porous frame 10, which is formed by interconnected beams 16 ', 16 ", ..., here in the plane of the drawing (lines) and perpendicular to the plane (open circles).
  • any other open-pore structure for the framework 10 can be used, such as in FIG. 5 ,
  • a partial melting of the preferably metallic framework 10 takes place, so that a fusion-metallurgical bond is produced between these two materials.
  • the material for the melt 13 and the material of the framework 10 are different from each other.
  • the material of the framework 10 has a higher melting point (in particular at least 10K) than the material for the melt 13, and may preferably also be ceramic.
  • the framework 10 remains permanently in the component 1, 120, 130.
  • the frame 10 preferably extends over the entire width of the region 7 and preferably over the entire height of the region 7 and has been filled by a melt if it is porous, but this need not necessarily be complete.
  • the method can be used in particular for hollow components 120, 130.
  • the framework 10 can be completely encapsulated ( Fig. 3 ), but can also form an inner outer surface of the component 120, 130 ( Fig. 6 ) or inner and outer surface ( Fig. 7 ) or only an outer surface ( Fig. 8 ).
  • melt of the casting material 13 in the region of the contact surface is cast onto the framework 10 or, if the framework 10 is porous, cast into the framework 10.
  • FIG. 9 shows by way of example a gas turbine 100 in a longitudinal partial section.
  • the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103 with a shaft, which is also referred to as a turbine runner.
  • an intake housing 104 a compressor 105, for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • a compressor 105 for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 110 communicates with an annular annular hot gas channel 111, for example.
  • annular annular hot gas channel 111 for example.
  • turbine stages 112 connected in series form the turbine 108.
  • Each turbine stage 112 is formed, for example, from two blade rings. As seen in the direction of flow of a working medium 113, in the hot gas channel 111 of a row of guide vanes 115, a series 125 formed of rotor blades 120 follows.
  • the vanes 130 are attached to an inner housing 138 of a stator 143, whereas the blades 120 a row 125 are attached to the rotor 103, for example by means of a turbine disk 133.
  • air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
  • the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
  • the working medium 113 expands in a pulse-transmitting manner so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the flow direction of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield elements lining the annular combustion chamber 110.
  • substrates of the components may have a directional structure, i. they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • iron-, nickel- or cobalt-based superalloys are used as the material for the components, in particular for the turbine blade 120, 130 and components of the combustion chamber 110.
  • Such superalloys are for example from EP 1 204 776 B1 .
  • EP 1 306 454 .
  • the vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane head opposite the vane foot.
  • the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.
  • FIG. 10 shows a perspective view of a blade 120 or guide vane 130 of a turbomachine, which extends along a longitudinal axis 121.
  • the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjacent thereto and an airfoil 406 and a blade tip 415.
  • the blade 130 may have at its blade tip 415 another platform (not shown).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the airfoil 406.
  • Such superalloys are for example from EP 1 204 776 B1 .
  • EP 1 306 454 .
  • the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
  • Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.
  • Such monocrystalline workpieces takes place e.g. by directed solidification from the melt.
  • These are casting processes in which the liquid metallic alloy is transformed into a monocrystalline structure, i. to the single-crystal workpiece, or directionally solidified.
  • dendritic crystals are aligned along the heat flow and form either a columnar grain structure (columnar, i.e., grains that run the full length of the workpiece and here, in common usage, are referred to as directionally solidified) or a monocrystalline structure, i. the whole workpiece consists of a single crystal.
  • a columnar grain structure columnar, i.e., grains that run the full length of the workpiece and here, in common usage, are referred to as directionally solidified
  • a monocrystalline structure i. the whole workpiece consists of a single crystal.
  • directionally solidified microstructures which means both single crystals that have no grain boundaries or at most small angle grain boundaries, and stem crystal structures that have probably longitudinal grain boundaries but no transverse grain boundaries. These second-mentioned crystalline structures are also known as directionally solidified structures.
  • the blades 120, 130 may have coatings against corrosion or oxidation, e.g. M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • Such alloys are known from the EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1 are known from the EP 0 486 489 B1 .
  • the density is preferably 95% of the theoretical density.
  • the layer composition comprises Co-30Ni-28Cr-8A1-0.6Y-0.7Si or Co-28Ni-24Cr-10A1-0.6Y.
  • nickel-based protective layers such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-11A1-0,4Y-2Re or Ni-25Co-17Cr-10A1-0,4Y-1 are also preferably used , 5RE.
  • thermal barrier coating which is preferably the outermost layer, and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • the thermal barrier coating covers the entire MCrAIX layer.
  • suitable coating methods e.g. Electron beam evaporation (EB-PVD) produces stalk-shaped grains in the thermal barrier coating.
  • EB-PVD Electron beam evaporation
  • the thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
  • the Thermal insulation layer is therefore preferably more porous than the MCrAIX layer.
  • the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and may still film cooling holes 418 (indicated by dashed lines) on.
  • the FIG. 11 shows a combustion chamber 110 of the gas turbine 100.
  • the combustion chamber 110 is configured for example as a so-called annular combustion chamber in which a plurality of circumferentially arranged around a rotation axis 102 around burners 107 open into a common combustion chamber space 154, the flames 156 produce.
  • the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the axis of rotation 102 around.
  • the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C to 1600 ° C.
  • the combustion chamber wall 153 is provided on its side facing the working medium M side with an inner lining formed from heat shield elements 155.
  • the heat shield elements 155 are then, for example, hollow and possibly still have cooling holes (not shown) which open into the combustion chamber space 154.
  • Each heat shield element 155 made of an alloy is working medium side with a particularly heat-resistant protective layer (MCrAIX layer and / or ceramic coating) equipped or is made of high temperature resistant material (solid ceramic stones).
  • MCrAIX layer and / or ceramic coating particularly heat-resistant protective layer equipped or is made of high temperature resistant material (solid ceramic stones).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
  • MCrAIX means: M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf).
  • Such alloys are known from the EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1 are known from the EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1 is known from the EP 0 486 489 B1 .
  • a ceramic thermal barrier coating may be present and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , ie it is not, partially or completely stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
  • Refurbishment means that turbine blades 120, 130, heat shield elements 155 may need to be deprotected (e.g., by sandblasting) after use. This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, cracks in the turbine blade 120, 130 or the heat shield element 155 are also repaired. This is followed by a re-coating of the turbine blades 120, 130, heat shield elements 155 and a renewed use of the turbine blades 120, 130 or the heat shield elements 155.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
EP10187248A 2010-10-12 2010-10-12 Procédé de fabrication d'un composant coulé doté d'une structure interne et composant Withdrawn EP2441542A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10187248A EP2441542A1 (fr) 2010-10-12 2010-10-12 Procédé de fabrication d'un composant coulé doté d'une structure interne et composant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10187248A EP2441542A1 (fr) 2010-10-12 2010-10-12 Procédé de fabrication d'un composant coulé doté d'une structure interne et composant

Publications (1)

Publication Number Publication Date
EP2441542A1 true EP2441542A1 (fr) 2012-04-18

Family

ID=43558448

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10187248A Withdrawn EP2441542A1 (fr) 2010-10-12 2010-10-12 Procédé de fabrication d'un composant coulé doté d'une structure interne et composant

Country Status (1)

Country Link
EP (1) EP2441542A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2792434A1 (fr) * 2013-04-19 2014-10-22 Alstom Technology Ltd Procédé de fabrication d'un composant ayant une structure d'amortissement

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0486489B1 (fr) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft Revetement anticorrosion resistant aux temperatures elevees, notamment pour elements de turbines a gaz
US5588477A (en) * 1994-09-29 1996-12-31 General Motors Corporation Method of making metal matrix composite
EP0412397B1 (fr) 1989-08-10 1998-03-25 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium possédant une résistance plus grande à la corrosion et l'oxydation
EP0892090A1 (fr) 1997-02-24 1999-01-20 Sulzer Innotec Ag Procédé de fabrication de structure smonocristallines
EP0786017B1 (fr) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Couche de protection de pieces contre la corrosion, l'oxydation et les contraintes thermiques excessives, et son procede de production
WO1999067435A1 (fr) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Alliage a solidification directionnelle a resistance transversale a la rupture amelioree
US6024792A (en) 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
WO2000044949A1 (fr) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Superalliage a base de nickel presentant une bonne usinabilite
EP1306454A1 (fr) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium pour la protection d'un élément contre l'oxydation et la corrosion aux températures élevées
EP1319729A1 (fr) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft Pièce résistante à des températures élevées réalisé en superalliage polycristallin ou monocristallin à base de nickel
EP1204776B1 (fr) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Piece resistant a des temperatures elevees et son procede de production
EP1543901A1 (fr) * 2003-12-19 2005-06-22 DaimlerChrysler AG Carrosserie de véhicule ou pièce de carrosserie de véhicule
WO2007033378A1 (fr) * 2005-09-14 2007-03-22 Benmaxx, Llc Pieces coulees renforcees de faible poids et procede de fabrication de ces pieces
EP1835044A1 (fr) * 2006-03-14 2007-09-19 Institut für Umformtechnik Universität Stuttgart Composant sur la base d'une matière première hybride

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0412397B1 (fr) 1989-08-10 1998-03-25 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium possédant une résistance plus grande à la corrosion et l'oxydation
EP0486489B1 (fr) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft Revetement anticorrosion resistant aux temperatures elevees, notamment pour elements de turbines a gaz
US5588477A (en) * 1994-09-29 1996-12-31 General Motors Corporation Method of making metal matrix composite
EP0786017B1 (fr) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Couche de protection de pieces contre la corrosion, l'oxydation et les contraintes thermiques excessives, et son procede de production
US6024792A (en) 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
EP0892090A1 (fr) 1997-02-24 1999-01-20 Sulzer Innotec Ag Procédé de fabrication de structure smonocristallines
WO1999067435A1 (fr) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Alliage a solidification directionnelle a resistance transversale a la rupture amelioree
WO2000044949A1 (fr) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Superalliage a base de nickel presentant une bonne usinabilite
EP1204776B1 (fr) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Piece resistant a des temperatures elevees et son procede de production
EP1306454A1 (fr) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium pour la protection d'un élément contre l'oxydation et la corrosion aux températures élevées
EP1319729A1 (fr) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft Pièce résistante à des températures élevées réalisé en superalliage polycristallin ou monocristallin à base de nickel
EP1543901A1 (fr) * 2003-12-19 2005-06-22 DaimlerChrysler AG Carrosserie de véhicule ou pièce de carrosserie de véhicule
WO2007033378A1 (fr) * 2005-09-14 2007-03-22 Benmaxx, Llc Pieces coulees renforcees de faible poids et procede de fabrication de ces pieces
EP1835044A1 (fr) * 2006-03-14 2007-09-19 Institut für Umformtechnik Universität Stuttgart Composant sur la base d'une matière première hybride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2792434A1 (fr) * 2013-04-19 2014-10-22 Alstom Technology Ltd Procédé de fabrication d'un composant ayant une structure d'amortissement

Similar Documents

Publication Publication Date Title
EP2593582B1 (fr) Système stratifié céramique poreux
EP2450465A1 (fr) Système de couche poreux doté d'une couche intérieure poreuse
WO2014075947A1 (fr) Surface modifiée autour d'un trou
EP1942250A1 (fr) Composant doté d'évidements s'étendant obliquement sur la surface et procédé de fonctionnement d'une turbine
EP2373824B1 (fr) Procédé de revêtement d'un composant à trous de refroidissement par film et composant
EP3068921A1 (fr) Aube de compresseur pourvue d'un revêtement dur résistant à l'érosion
EP2450471A1 (fr) Procédé d'application de matériaux et de réparation d'un composant un composant
EP2391744B1 (fr) Revêtement par des procédés de revêtement thermiques et non thermiques
DE102008016170A1 (de) Bauteil mit sich überlappenden Schweißnähten und ein Verfahren zur Herstellung
EP2226149A1 (fr) Procédé de soudure en deux étapes
EP2241397A1 (fr) Soudage de trous, procédé de revêtement de tiges de soudage
WO2009065753A1 (fr) Procédé de brasage de fissures larges
EP2088224A1 (fr) Procédé de fabrication d'une couche rugueuse et système de couche
EP2584067A1 (fr) Composant avec graphène et procédé de fabrication de composants avec graphène
WO2011107167A1 (fr) Système de couche d'isolation thermique céramique à couche de liaison modifiée
EP2460608A1 (fr) Fabrication d'un fil d'acier à l'aide du procédé de prototypage rapide, fil d'acier et procédé de soudage
WO2018114766A1 (fr) Procédé d'assemblage de segments de composants à gaz chaud par brasage et composant à gaz chaud correspondant
EP2733236A1 (fr) Système de couche céramique double couche avec couche extérieure poreuse et évidements à l'intérieur
EP2441542A1 (fr) Procédé de fabrication d'un composant coulé doté d'une structure interne et composant
EP2196555A1 (fr) Mélange de poudre de céramique et de verre, composant doté d'un masque et procédé d'application
EP2771546A1 (fr) Surface pourvue de dépressions spécialement formées et élément
WO2012076253A1 (fr) Pièce coulée céramique présentant des facteurs de retrait différents et procédé de coulée
EP2583781B1 (fr) Procédé de soudage-brasage pour joindre deux pièces
EP2581355A1 (fr) Céramique dotée d'un renforcement par des nanostructures
EP2463044A1 (fr) Noyau de fonderie en céramique modulaire et procédé de coulée

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BUCHHOLZ, BJOERN

Inventor name: HILLE, THOMAS

Inventor name: FISCHER, MARCUS

Inventor name: KAPUSTINA, ANNA

18D Application deemed to be withdrawn

Effective date: 20121019