EP2441537A1 - Outil à noyau doté de crayons variables et procédé de fabrication d'un noyau - Google Patents

Outil à noyau doté de crayons variables et procédé de fabrication d'un noyau Download PDF

Info

Publication number
EP2441537A1
EP2441537A1 EP10187894A EP10187894A EP2441537A1 EP 2441537 A1 EP2441537 A1 EP 2441537A1 EP 10187894 A EP10187894 A EP 10187894A EP 10187894 A EP10187894 A EP 10187894A EP 2441537 A1 EP2441537 A1 EP 2441537A1
Authority
EP
European Patent Office
Prior art keywords
core
pins
core tool
producing
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10187894A
Other languages
German (de)
English (en)
Inventor
Fathi Ahmad
Winfried Esser
Giuseppe Gaio
Waldemar Heckel
Rudolf Küperkoch
Oliver Lüsebrink
Thorsten Mattheis
Mirko Milazar
Artur Mol
Uwe Paul
Oliver Ricken
Oliver Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP10187894A priority Critical patent/EP2441537A1/fr
Priority to US13/275,460 priority patent/US20120118524A1/en
Priority to CN2011103196354A priority patent/CN102451884A/zh
Publication of EP2441537A1 publication Critical patent/EP2441537A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/06Core boxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49716Converting

Definitions

  • the invention relates to a core tool with exchangeable pins and method for producing a core.
  • core tools are used to make a ceramic core which deposits the core on certain internal structures, e.g. continuous connection of exterior walls or two interior walls, emboss.
  • These internal struts also provide flow resistance and, for hollow components made by such a core, also affect the flow of cooling air and heat transfer into the cooling air.
  • the object is achieved by a core tool according to claim 1 and a method according to claim 7.
  • FIG. 1 schematically shows a core tool.
  • the core tool 1 has at least two halves, here an upper half 3 and a lower half 4, between which a cavity 2 is formed.
  • pins 5 are present, which are preferably formed in two parts as pin parts 8, 11 here.
  • the core tool halves 3, 4 have projections 13, 13 ', on which the upper pin part 8 and the lower pin part 11 or the pin 9 (FIG. Fig. 2 ) are preferably attached. This can be done by mechanical clamping, soldering or welding.
  • the pin parts 8, 11 are arranged directly opposite in pairs and preferably touch.
  • These pins 8 ( Fig. 1 9, Fig. 2 ) thereby also determine the flow of a cooling medium (cooling air mass flow) through a hollow-cast turbine component, in particular through a turbine blade 120, 130 (FIG. Figure 4 ) as an example of a cast component, which is preferably made of nickel- or cobalt-based superalloys, most preferably of an alloy according to FIG. 5 ,
  • a ceramic material in the form of a viscous mass or other material is introduced into the cavity 2 around the pins 5 (FIG. Fig. 1 9, Fig. 2 ) and the core thus provided is later fired for sintering the ceramic particles and at Casting the hollow cast turbine component 120, 130 used to represent cooling channels.
  • the pins 5, 8 (FIG. Fig. 1 9, Fig. 2 ) replaced by other pins with different shape and / or size.
  • the pins 5, 9 can be changed if other specifications are not met.
  • the core tool halves 3, 4 can be reused, whereby the production of the exchangeable pin parts 8, 11 (FIG. Fig. 1 ) and 9 ( Fig. 2 ) is fast, easy and inexpensive.
  • the advantage is that the necessary process development iterations for adapting the required cooling air mass flow can be carried out by means of the replaceable pins 5, 8, 11, 9 by means of very small and easily executed changes to the core tool.
  • a core tool suitable for mass production is cast and cast to cast components meeting the desired specifications. Furthermore, in the case of wear by a ceramic mass, the pins can be exchanged quickly, easily and inexpensively.
  • FIG. 3 shows by way of example a gas turbine 100 in a longitudinal partial section.
  • the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103 with a shaft 101, which is also referred to as a turbine runner.
  • an intake housing 104 a compressor 105, for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • a compressor 105 for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 110 communicates with an annular annular hot gas channel 111, for example.
  • annular annular hot gas channel 111 for example.
  • turbine stages 112 connected in series form the turbine 108.
  • Each turbine stage 112 is formed, for example, from two blade rings. As seen in the direction of flow of a working medium 113, in the hot gas channel 111 of a row of guide vanes 115, a series 125 formed of rotor blades 120 follows.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example.
  • air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
  • the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium flows 113 along the hot gas channel 111 past the guide vanes 130 and the blades 120.
  • the working medium 113 expands in a pulse-transmitting manner, so that the blades 120 drive the rotor 103 and this drives the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the flow direction of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield elements lining the annular combustion chamber 110.
  • substrates of the components may have a directional structure, i. they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • iron-, nickel- or cobalt-based superalloys are used as the material for the components, in particular for the turbine blade 120, 130 and components of the combustion chamber 110.
  • Such superalloys are for example from EP 1 204 776 B1 .
  • EP 1 306 454 .
  • the blades 120, 130 may have anticorrosive coatings (MCrAIX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and represents yttrium (Y) and / or silicon , Scandium (Sc) and / or at least one element of the rare earth or hafnium).
  • MCrAIX anticorrosive coatings
  • Such alloys are known from the EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1 are known from the EP 0 486 489 B1 .
  • EP 0 786 017 B1 EP 0 412 397 B1 or EP 1 306 454 A1 .
  • MCrA1X may still be present a thermal barrier coating, and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , that is, it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • the vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane head opposite the vane foot.
  • the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.
  • FIG. 4 shows a perspective view of a blade 120 or guide vane 130 of a turbomachine, which extends along a longitudinal axis 121.
  • the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjacent thereto and an airfoil 406 and a blade tip 415.
  • the blade 130 may have at its blade tip 415 another platform (not shown).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has a leading edge 409 and a trailing edge 412 for a medium flowing past the airfoil 406.
  • Such superalloys are for example from EP 1 204 776 B1 .
  • EP 1 306 454 .
  • the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
  • Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.
  • Such monocrystalline workpieces takes place e.g. by directed solidification from the melt.
  • These are casting processes in which the liquid metallic alloy is transformed into a monocrystalline structure, i. to the single-crystal workpiece, or directionally solidified.
  • dendritic crystals are aligned along the heat flow and form either a columnar grain structure (columnar, i.e., grains that run the full length of the workpiece and here, in common usage, are referred to as directionally solidified) or a monocrystalline structure, i. the whole workpiece consists of a single crystal.
  • a columnar grain structure columnar, i.e., grains that run the full length of the workpiece and here, in common usage, are referred to as directionally solidified
  • a monocrystalline structure i. the whole workpiece consists of a single crystal.
  • directionally solidified microstructures which means both single crystals that have no grain boundaries or at most small angle grain boundaries, as well as stem crystal structures, which are probably longitudinal grain boundaries, but no transverse grain boundaries exhibit. These second-mentioned crystalline structures are also known as directionally solidified structures.
  • the blades 120, 130 may have coatings against corrosion or oxidation, e.g. M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni)
  • X is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare ones Earth, or hafnium (Hf)).
  • Such alloys are known from the EP 0 486 489 B1 .
  • EP 0 412 397 B1 or EP 1 306 454 A1 are known from the EP 0 486 489 B1 .
  • the density is preferably 95% of the theoretical density.
  • the layer composition comprises Co-30Ni-28Cr-8A1-0.6Y-0.7Si or Co-28Ni-24Cr-10A1-0.6Y.
  • nickel-based protective layers such as Ni-10Cr-12A1-0,6Y-3Re or Ni-12Co-21Cr-11Al-0,4Y-2Re or Ni-25Co-17Cr-10A1-0,4Y-1 are also preferably used , 5RE.
  • thermal barrier coating which is preferably the outermost layer, and consists for example of ZrO 2 , Y 2 O 3 -ZrO 2 , ie it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • the thermal barrier coating covers the entire MCrA1X layer.
  • suitable coating methods e.g. Electron beam evaporation (EB-PVD) produces stalk-shaped grains in the thermal barrier coating.
  • the thermal barrier coating may have porous, micro- or macro-cracked grains for better thermal shock resistance.
  • the thermal barrier coating is therefore preferably more porous than the MCrAIX layer.
  • Refurbishment means that components 120, 130 may need to be deprotected after use (e.g., by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. This is followed by a re-coating of the component 120, 130 and a renewed use of the component 120, 130.
  • the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and may still film cooling holes 418 (indicated by dashed lines) on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
EP10187894A 2010-10-18 2010-10-18 Outil à noyau doté de crayons variables et procédé de fabrication d'un noyau Withdrawn EP2441537A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10187894A EP2441537A1 (fr) 2010-10-18 2010-10-18 Outil à noyau doté de crayons variables et procédé de fabrication d'un noyau
US13/275,460 US20120118524A1 (en) 2010-10-18 2011-10-18 Core die with variable pins and process for producing a core
CN2011103196354A CN102451884A (zh) 2010-10-18 2011-10-18 具有可变销的芯模和生产芯体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10187894A EP2441537A1 (fr) 2010-10-18 2010-10-18 Outil à noyau doté de crayons variables et procédé de fabrication d'un noyau

Publications (1)

Publication Number Publication Date
EP2441537A1 true EP2441537A1 (fr) 2012-04-18

Family

ID=43920864

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10187894A Withdrawn EP2441537A1 (fr) 2010-10-18 2010-10-18 Outil à noyau doté de crayons variables et procédé de fabrication d'un noyau

Country Status (3)

Country Link
US (1) US20120118524A1 (fr)
EP (1) EP2441537A1 (fr)
CN (1) CN102451884A (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3037829B1 (fr) * 2015-06-29 2017-07-21 Snecma Noyau pour le moulage d'une aube ayant des cavites superposees et comprenant un trou de depoussierage traversant une cavite de part en part

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0486489B1 (fr) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft Revetement anticorrosion resistant aux temperatures elevees, notamment pour elements de turbines a gaz
EP0412397B1 (fr) 1989-08-10 1998-03-25 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium possédant une résistance plus grande à la corrosion et l'oxydation
EP0892090A1 (fr) 1997-02-24 1999-01-20 Sulzer Innotec Ag Procédé de fabrication de structure smonocristallines
EP0786017B1 (fr) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Couche de protection de pieces contre la corrosion, l'oxydation et les contraintes thermiques excessives, et son procede de production
WO1999067435A1 (fr) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Alliage a solidification directionnelle a resistance transversale a la rupture amelioree
US6024792A (en) 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
WO2000044949A1 (fr) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Superalliage a base de nickel presentant une bonne usinabilite
DE10129975A1 (de) * 2000-12-27 2002-07-04 Alstom Switzerland Ltd Giessform für den Kern einer Gasturbinenschaufel oder dergleichen
EP1306454A1 (fr) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium pour la protection d'un élément contre l'oxydation et la corrosion aux températures élevées
EP1319729A1 (fr) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft Pièce résistante à des températures élevées réalisé en superalliage polycristallin ou monocristallin à base de nickel
EP1204776B1 (fr) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Piece resistant a des temperatures elevees et son procede de production
WO2009150019A1 (fr) * 2008-06-12 2009-12-17 Alstom Technology Ltd. Aube pour une turbine à gaz et procédé de fabrication par technique de coulée d’une telle aube

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3820753A (en) * 1972-12-04 1974-06-28 Tempcraft Tool & Mold Apparatus for molding ceramic cores and wax or plastic patterns
IT1096996B (it) * 1977-07-22 1985-08-26 Rolls Royce Metodo per la fabbricazione di una pala o lama per motori a turbina a gas
JP3274069B2 (ja) * 1996-02-09 2002-04-15 リョービ株式会社 クローズドデッキタイプシリンダブロック鋳造装置と該装置に用いられる砂中子との組合せ
US6929054B2 (en) * 2003-12-19 2005-08-16 United Technologies Corporation Investment casting cores
WO2008068947A1 (fr) * 2006-12-01 2008-06-12 Sintokogio, Ltd. Procédé de coulage, ensemble de moule supérieur, et procédé pour fixer un noyau au moule supérieur
US20110094698A1 (en) * 2009-10-28 2011-04-28 Howmet Corporation Fugitive core tooling and method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0486489B1 (fr) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft Revetement anticorrosion resistant aux temperatures elevees, notamment pour elements de turbines a gaz
EP0412397B1 (fr) 1989-08-10 1998-03-25 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium possédant une résistance plus grande à la corrosion et l'oxydation
EP0786017B1 (fr) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Couche de protection de pieces contre la corrosion, l'oxydation et les contraintes thermiques excessives, et son procede de production
EP0892090A1 (fr) 1997-02-24 1999-01-20 Sulzer Innotec Ag Procédé de fabrication de structure smonocristallines
US6024792A (en) 1997-02-24 2000-02-15 Sulzer Innotec Ag Method for producing monocrystalline structures
WO1999067435A1 (fr) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Alliage a solidification directionnelle a resistance transversale a la rupture amelioree
WO2000044949A1 (fr) 1999-01-28 2000-08-03 Siemens Aktiengesellschaft Superalliage a base de nickel presentant une bonne usinabilite
EP1204776B1 (fr) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Piece resistant a des temperatures elevees et son procede de production
DE10129975A1 (de) * 2000-12-27 2002-07-04 Alstom Switzerland Ltd Giessform für den Kern einer Gasturbinenschaufel oder dergleichen
EP1306454A1 (fr) 2001-10-24 2003-05-02 Siemens Aktiengesellschaft Revêtement protecteur contenant du rhénium pour la protection d'un élément contre l'oxydation et la corrosion aux températures élevées
EP1319729A1 (fr) 2001-12-13 2003-06-18 Siemens Aktiengesellschaft Pièce résistante à des températures élevées réalisé en superalliage polycristallin ou monocristallin à base de nickel
WO2009150019A1 (fr) * 2008-06-12 2009-12-17 Alstom Technology Ltd. Aube pour une turbine à gaz et procédé de fabrication par technique de coulée d’une telle aube

Also Published As

Publication number Publication date
US20120118524A1 (en) 2012-05-17
CN102451884A (zh) 2012-05-16

Similar Documents

Publication Publication Date Title
EP2436798B1 (fr) Matériel de masquage, couche de masquage et procédé de masquage d'un substrat
EP2101938B1 (fr) Procédé de fabrication d'un modèle pour la reproduction par la technique de la coulée fine d'un composant qui présente au moins un espace creux
EP1952931A1 (fr) Mechtrode ayant une alimentation en poudre et procédé d'utilisation de cette mechtrode
EP3060759B1 (fr) Revêtement d'isolation thermique d'une aube de turbine
EP2733310A1 (fr) Surface modifiée autour d'un trou
EP2373824B1 (fr) Procédé de revêtement d'un composant à trous de refroidissement par film et composant
EP2369131A1 (fr) Réparation de bords d'un composant à l'aide de bandes PSP et composant
EP2379252A1 (fr) Composant à structure différenciée et procédé de fabrication
EP2241397A1 (fr) Soudage de trous, procédé de revêtement de tiges de soudage
EP2476776B1 (fr) Procédé de réglage de la consommation en produit de refroidissement dans des composants refroidis activement
EP2224039A1 (fr) Revêtement doté d'un procédé de revêtement thermique et non thermique
EP2584067A1 (fr) Composant avec graphène et procédé de fabrication de composants avec graphène
EP2239079A1 (fr) Procédé de soudage à profil de température à plusieurs niveaux
EP2460608A1 (fr) Fabrication d'un fil d'acier à l'aide du procédé de prototypage rapide, fil d'acier et procédé de soudage
WO2018114766A1 (fr) Procédé d'assemblage de segments de composants à gaz chaud par brasage et composant à gaz chaud correspondant
EP2597259A1 (fr) Surface modifiée autour d'un trou
EP2441537A1 (fr) Outil à noyau doté de crayons variables et procédé de fabrication d'un noyau
EP2463043A1 (fr) Pièce de formage coulée en céramique dotée de différents facteurs de rétrécissement et procédé de coulée
EP2539476B1 (fr) Procédé pour le réglage de la consommation d'un liquide de refroidissement dans un élément refroidi
EP2463044A1 (fr) Noyau de fonderie en céramique modulaire et procédé de coulée
EP2452775A1 (fr) Procédé de forage raccourci d'un trou
EP2450123A1 (fr) Procédé de fabrication d'un outil pour la fabrication de noyaux
WO2012059307A1 (fr) Optimisation d'un outil de coulée de noyaux, procédé de fabrication d'un tel outil et outil de coulée de noyaux
EP2177643A1 (fr) Procédé de réparation d'un superalliage à l'aide de la même poudre de superalliage et de céramique
EP2241391A1 (fr) Procédé de fabrication d'un moule négatif destiné à couler une aube de turbine et moule de fabrication d'un modèle en cire d'une aube de turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20120411

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20130902

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140507

INTG Intention to grant announced

Effective date: 20140603

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141014