WO2012075912A1 - 亚全能干细胞产品及其表观遗传修饰标签 - Google Patents

亚全能干细胞产品及其表观遗传修饰标签 Download PDF

Info

Publication number
WO2012075912A1
WO2012075912A1 PCT/CN2011/083380 CN2011083380W WO2012075912A1 WO 2012075912 A1 WO2012075912 A1 WO 2012075912A1 CN 2011083380 W CN2011083380 W CN 2011083380W WO 2012075912 A1 WO2012075912 A1 WO 2012075912A1
Authority
WO
WIPO (PCT)
Prior art keywords
differentiation
histone
gene
modification
stem cells
Prior art date
Application number
PCT/CN2011/083380
Other languages
English (en)
French (fr)
Other versions
WO2012075912A9 (zh
Inventor
赵春华
李晶
李红凌
陈建河
韩钦
李康华
王静
Original Assignee
中国医学科学院基础医学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国医学科学院基础医学研究所 filed Critical 中国医学科学院基础医学研究所
Priority to US13/992,619 priority Critical patent/US9523074B2/en
Priority to CN201180057318.8A priority patent/CN103459592B/zh
Priority to EP11847131.7A priority patent/EP2636732B1/en
Priority to AU2011341213A priority patent/AU2011341213B2/en
Priority to CA2820395A priority patent/CA2820395C/en
Priority to IN1005MUN2013 priority patent/IN2013MN01005A/en
Publication of WO2012075912A1 publication Critical patent/WO2012075912A1/zh
Publication of WO2012075912A9 publication Critical patent/WO2012075912A9/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0607Non-embryonic pluripotent stem cells, e.g. MASC
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6881Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for tissue or cell typing, e.g. human leukocyte antigen [HLA] probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56966Animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6875Nucleoproteins

Definitions

  • the present invention relates to a sub-total stem cell product, a method for inducing the production of a sub-total stem cell product, and an epigenetic modification tag for stem cell differentiation potential.
  • the present invention also relates to a method for predicting the differentiation potential of stem cells and a histone modification state of a sub-total gene and/or a differentiation-related gene as an epigenetic modification label for predicting the differentiation potential of stem cells. Background technique
  • Stem cells are the source of tissue regeneration. According to the order of occurrence in the development of the individual, stem cells can be divided into embryonic stem cells (ESCs) and adult stem cells (ASCs). Depending on the differentiation potential, It is divided into totipotent stem cell, pluripotent stem cell, multipotent stem cell and unipotent stem cell (unipotent stem cell). The stem cells can also be divided into hematopoietic stem cells and bone marrow according to tissue source. Mesenchymal stem cells, neural stem cells, muscle stem cells, etc. Some transcription factors are introduced into animal or human somatic cells by gene transfection technology, so that the somatic cells are induced to reconstitute into ES cell-like pluripotent stem cells, such pluripotent stem cells.
  • iPSCs induced pluripotent stem cells
  • Sex Embryonic stem cells have The omnipotence, but ethical issues, immune rejection and tumorigenicity seriously impede its clinical research and application.
  • iPS has similar differentiation ability to embryonic stem cells, but it still has tumorigenicity, and from adulthood The efficiency of cell-induced iPS production is extremely low, and the induced iPS carcinogenesis rate is high. These factors greatly increase the insecurity of clinical application.
  • Adult stem cells have a wide range of sources, no tumorigenicity, and no ethical issues.
  • Epigenetic modifications usually include DNA methylation, histone modification, and RA modification; while histone modifications include histone methylation, acetylation, phosphorylation, and ubiquitination; the modified sites are mostly located at the N-terminus of histones. Modification can affect the state of chromatin by affecting the affinity of histones and DNA, and can also affect the binding of transcription factors to DNA sequences. It has a DNA-like genetic code for gene expression regulation, so it is called "histone.”Password”. Histone methylation refers to methylation that occurs at the N-terminal arginine or lysine residues of the H3 and H4 histones and is mediated by histone methyltransferase.
  • Histone H3 4th lysine trimethylation (H3K4me3) is generally associated with promoter activation [11]
  • histone H3 27th lysine trimethylation (H3K27me3) is associated with promoter expression.
  • Silence related [12, 13].
  • the simultaneous presence of the two promoter histone modifications, H3K4me3 and H3K27me3, is called bivalent modification. This bivalent modification keeps the gene at a relatively low level of expression and maintains a "pre-transcriptional" state. The state allows the gene to respond rapidly to transcriptional activation or inhibition according to appropriate stimuli [14-17].
  • H3K4me3 modification is ubiquitous near the promoter, while H3K27me3 is only found in 10% of the gene promoter region, and that the region where H3K27me3 is modified is also modified by H3K4me3, which is subject to bivalent
  • the modified gene is preferentially activated during ESC differentiation, suggesting that the presence of bivalent modification may be to maintain development-related genes in an equilibrium state, ready for later activation [15]; and those without any modification are inhibiting The state is completely silent.
  • NPCs neural progenitor cells
  • MEFs murine embryonic fibroblasts
  • T cells primary human T cells
  • Stem cell transplantation can be used to treat Parkinson's disease, cardiomyopathy, liver disease, and osteogenic treatment of bone defects, large-area burns, and much-needed skin materials.
  • the adult stem cells are obtained from the autologous tissue, and the tissue induced by it does not have immunological rejection during transplantation, and has a wide range of tissue types for differentiation. It has broad application value and is expected to become the future end of stem cell transplantation for various organs. The main force of the terminal disease. However, there are still many safety problems in stem cell transplantation. If it is reported that the application of embryonic stem cells to the heart for coronary heart disease may lead to teratoma, the application of skeletal muscle stem cells may cause malignant arrhythmia.
  • stem cell transplantation therapy depends on two important factors: (1) acquisition, purification and amplification of seed stem cells in vitro; (2) stem cells are specifically and functionally differentiated in vivo according to therapeutic purposes. How to control proliferation, avoid tumors, and initiate the required pathways for differentiation at the appropriate time is essential for stem cell transplantation. However, obtaining a stem cell with appropriate differentiation ability, identifying it according to the purpose of treatment, and then transplanting it into the body to cause specific differentiation in a timely manner without occurrence of teratoma, etc., requires a set of stem cell differentiation. Potential identification, differentiation stages, and whether stem cells have an accurate identification and evaluation index for controllable specific differentiation in vivo.
  • pluripotent stem cells depends on their differentiation potential.
  • the existing methods for verifying the ability of a certain tissue-derived stem cell to differentiate are mainly through inducing differentiation and observing whether it can be differentiated into as many lineages as possible in the three germ layers. This method takes a long time and requires a lot of manpower and material resources.
  • Chromatin Immunoprecipitation is the most important method for detecting histone modifications.
  • Chromatin immunoprecipitation also known as binding site analysis, is a powerful tool for studying the interaction of proteins and DNA in vivo, and is commonly used in transcription factor binding sites or group-specific protein modification sites.
  • Chromatin immunoprecipitation analysis is a method developed based on in vivo analysis. Its basic principle is to immobilize a protein-DNA complex in a living cell state, and randomly cut it into small fragments of chromatin within a certain length, and then pass the immunization.
  • the method is to precipitate the complex, specifically enrich the DNA fragment bound by the target protein, and obtain information on the interaction between the protein and the DNA by purifying and detecting the target fragment.
  • the target fragment can be detected by tiling array or high-throughput sequencing, the former being called ChlP-on-chip and the latter being called ChIP-Seq.
  • the ChlP-Seq technology which combines ChIP with second-generation sequencing technology, efficiently detects DNA segments that interact with histones, transcription factors, etc., across the genome.
  • ChIP chromatin immunoprecipitation
  • ChlP-Seq Since the data of ChlP-Seq is the result of DNA sequencing, researchers can provide resources for further exploration of biological information. researchers can conduct research in the following aspects: (1) determining which histone modifications will occur at a particular position in the DNA strand;
  • a specific separation, induction and screening system can be used to obtain stem cells with appropriate differentiation ability and to use the "histone methylation code" in the role of predicting cell differentiation and the combination of ChIP detection and bioinformatics analysis ( ChlP-seq) studies the genome-wide histone methylation profile of various grades of stem cells, finds the relationship between histone methylation and stem cell differentiation, and establishes a unified phenotype, culture conditions and identification methods for adult stem cells. Furthermore, an accurate identification and evaluation index for stem cell differentiation potential, differentiation stage and controllable specific differentiation of stem cells in vivo will be established, which will provide the most basic materials and indicators for the wide application of stem cells in clinical practice.
  • Fig. 7 shows a schematic diagram of the technique of the present invention. Summary of the invention
  • the object of the present invention is to induce the obtaining of a sub-total stem cell which has an epithelial-like morphology, has a Flkl-positive phenotype, has the differentiation ability of the three-embryral multi-lineage, but does not have tumorigenicity.
  • the availability of such cells provides ideal seed cells for clinical regenerative repair therapy.
  • the object of the present invention is also to find a relationship between histone methylation modification and stem cell differentiation ability, thereby providing a powerful tool for rapidly and accurately determining the differentiation ability of stem cells.
  • a first aspect of the present invention provides a sub-total stem cell product characterized by having an epithelial-like morphology, a Flkl + phenotype, a non-angiogenicity, and the monoclonal derived cell has an induced differentiation into three germ layers in vitro.
  • the ability of the tissue cells to be derived, preferably, its pluripotency genes include Oct4, Nanog c-Myc, Sall4, Sox2, Klf4; early ectodermal differentiation-related genes include Hoxal, Gbx2, Sixl, and 01ig3; mesendoderm early differentiation-associated genes T , Pgdfr a, Eomes, Tbx6 and Mixll; Mesenchymal early differentiation-related genes Kdr, Handl Gata4 and Mesp2; Definitive endoderm early differentiation-related genes Onecutl Proxl, Foxal, Foxa2, Sox7, Soxl7, Pdxl and Gsc methylation
  • the modified state is mainly activated or a bivalent modification in which H3K4me3 and H3K27me3 coexist.
  • a second aspect of the invention relates to a method of producing a sub-total stem cell product as described above, having the following steps:
  • 1 induction medium contains l-100 ng/ml activin A+l-500 ng/ml Wnt3a+ 0.1-20% FBS+HG-DMEM, preferably 5-50 ng/ml activin A, more preferably 10-30 ng/ml activin A; preferably, 50-300 ng/ Ml Wnt3a, more preferably, 100-300 ng/ml Wnt3a ; preferably, 2-10% FBS, more preferably 5-8% FBS, said No.
  • 2 induction medium contains l-100 ng/ml activin ⁇ + 1-500 ⁇ RA+ 0.1-50% FBS+HG-DMEM, 5-50 ng/ml activin oxime, more preferably 10-30 ng/ml activin oxime; preferably, 20-400 ⁇ RA, more preferably 50 -200 ⁇ RA, the obtained sub-total epithelial stem cells were subjected to RT-PCR detection, immunofluorescence staining and Western Blot detection, wherein the immunofluorescence staining indicators included Foxa2, Soxl7, Kdr, Tbx6 , Eomes, Gsc, T, Soxl, Pax6, the indicators detected by the Western Blot include Foxa2, Soxl7, T, Gsc, Epcam, Vimatin, whether the stem cells detected have the important gene phenotypic markers of the three germ layer differentiation potential, ie, limited Endoderm: Foxa2, Soxl7; mesendoderm: Gsc, T
  • a third aspect of the invention relates to a method of detecting whether a stem cell product is a sub-total stem cell product, comprising the steps of:
  • immunofluorescence staining detection indicators include Foxa2, Soxl7, Kdr, Tbx6, Eomes Gsc, T, Soxl, Pax6, the Western Indicators for Blot detection include Foxa2, Soxl7, T, Gsc, Epcam, Vimatin;
  • neural-induced differentiation DMEM/F12 (DF12) 1 :1 basal medium was supplemented with N2/B27, 20 ng/ml EGF and 50 ng/ml IGF-1, Two weeks later, 30 ng/ml NT3 and 10 ng/ml bFGF were added. After two weeks, 30 ng/ml NT3 and 10 ng/ml BDNF were induced for 7 days.
  • Adipogenic differentiation DMEM basal medium was added 10%.
  • FCS 1 ⁇ dexamethasone, 0.5 mM IBMX, I mM ascorbic acid for 8 days
  • osteogenic differentiation DMEM basal medium supplemented with 10% FCS, 10 mM ⁇ -glycerophosphate, 10 ⁇ dexamethasone and 0.2 mM ascorbic acid Induction for 8 days
  • Hepatic epithelial-induced differentiation 20 ng/ml HGF, 10 ng/ml FGF-4, 20 ng/ml EGF and 2% FBS were added to the basal medium for 3 weeks
  • Hematopoietic cells were induced to differentiate: in basal medium After induction with 150 ng/mL SCF and 200 ng/mL G-CSF for 7 days, cells were harvested and seeded in serum-free methylcellulose semi-solid medium containing 1% BSA, 50 ng/mL BMP-4.
  • IL-6 50 ng/mL IL-6, 50 ng/mL SCF, 50 ng/mL Flt-3L, 10 ng/mL G-CSF, 10 ng/mL TPO; 10 g/mL EPO, 200 ⁇ glmL transferrin, 2 mM L-glutamyl Amine, Ol mM P-mercaptoethanol, 1% non-essential amino acids, induced for 9 days, collected cells, washed with methylcellulose, counted 5000 cells, re-inoculated in serum-containing methylcellulose semi-solid medium Induction for 14 days; 6) detecting the methylation status of subgenomic and tissue differentiation-related genomic proteins in the stem cells to predict their differentiation potential, as follows:
  • the target gene belongs to the 4th lysine trimethylation modification of histone H3 or the lysine trimethylation modification of histone H3 position 4 and the lysine trimethylation modification of histone H3 position 27 It then indicates that the target stem cells have the ability to differentiate to the particular cell type indicated by the gene of interest.
  • the gene of interest is selected from the group consisting of a sub-total gene, a three-embryonic early differentiation gene, a neural differentiation-related gene, a lipid-forming gene, an osteogenic gene, a hematopoietic-related gene, or a lineage-related gene of a liver epithelial differentiation, and a plurality of lineages.
  • differentiation-related transcription factors of other lineages including totipotent genes including Oct4, Nanog, c-Myc, Sall4, Sox2, and Klf4; early ectodermal differentiation-related genes including Hoxal, Gbx2, Sixl, and 01ig3; Genes T, Pgdfr a, Eomes, Tbx6 and Mixll; mesoderm early differentiation related genes Kdr, HandK Gata4 and B Mesp2; restricted endoderm early differentiation related genes Onecutl, Proxl, Foxal, Foxa2, Sox7, Soxl7, Pdxl and Gsc , neural differentiation related genes include Tubb3, Nkx2-2, Soxl, NeurogK Ascll Bm2, MytlK Zicl, Neurog2, Hesl, Dlxl, Pax6, Tlx2, Msil, Gfral Gfra3, Mapt, Nes, 01ig2, Neurodl Neurod2, Adipogenic genes including C /EBP a,
  • a fourth aspect of the invention relates to the use of a histone modification state of a sub-total gene and/or a differentiation-related gene as an epigenetic modification tag for predicting the differentiation potential of stem cells, wherein the sub-total gene and/or The histone methylation status of differentiation-related genes predicts the differentiation potential of stem cells.
  • the stage of differentiation in which the cell is located is identified by detecting the histone methylation modification status of a particular lineage differentiation stage transcription factor and marker gene.
  • analysis of histone modification status changes that initiate other non-target lineage differentiation-related genes identifies the specificity of cell differentiation to the target lineage.
  • the histone methylation modification is a histone H3 4th lysine trimethylation modification or a histone H3 4th lysine trimethylation modification and a histone H3 27th lysine
  • the acid trimethylation modification coexists.
  • the sub-total gene and/or the differentiation-related gene is selected from the group consisting of a totipotent gene and an early differentiation phase of the three germ layers A gene, a lineage-related gene, a hematopoietic-related gene, or a hematopoietic-related gene or a lineage-related gene, a lineage, a plurality of lineages, or all differentiation-related transcription factors including other lineages, wherein the totipotent gene includes Oct4 , Nanog, c-Myc, Sall4, Sox2, Klf4; Early differentiation related genes of ectoderm include Hoxal, Gbx2, Ski and 01ig3; Early differentiation related genes of endoderm T, Pgdfr ⁇ , Eomes, Tbx6 and Mixl; early mesoderm Differentiation-related genes Kdr, Handl, Gata4 and Mesp2; Definitive endoderm early differentiation related genes Onecutl, ProxK Foxal, Foxa2, Sox7
  • ChlP-seq or ChIP-PCR is used to detect the histone methylation modification status of the sub-total gene and/or differentiation-related gene.
  • the different histone methylation status of the sub-total genes and/or differentiation-related genes indicates different differentiation potential of stem cells
  • a lineage differentiation-related genomic protein methylation modification is histone H3 4th lysine Acid trimethylation modification and histone H3 4th lysine trimethylation modification and histone H3 27th lysine trimethylation modification coexist, indicating that this stem cell has differentiation to this lineage
  • the potential, compared to two or more stem cells, the gene associated with the lineage is generally modified by histone H3 lysine trimethylation and histone H3 lysine trimethylation Stem cells with a high proportion of genes coexisting with the lysine trimethylation modification of histone H3 at position 27 are more likely to differentiate into this lineage.
  • the present invention utilizes chromatin immunoprecipitation (ChIP) to obtain lysine trimethylation at the 4th position of the specific anti-histone H3 and lysine trimethylation at the 27th position of the anti-histone H3 in the target stem cells.
  • ChIP chromatin immunoprecipitation
  • the antibody binds to all the DNA, and then obtains the sequence information of the DNA by high-throughput sequencing technology. By comparing with the genomic information, a genome-wide histone modification spectrum of the target stem cell is obtained, or by designing a specific gene.
  • the primers use PCR technology to obtain the histone modification state of a specific gene.
  • the target gene belongs to histidine H3 lysine trimethylation modification (H3K4me3) or histone H3 lysine trimethylation modification (H3K4me3) and histone H3 27th lysine
  • H3K27me3 The coexistence of the trimethylation modification indicates that the target stem cells have the ability to differentiate to the specific cell type indicated by the gene of interest.
  • the methylation modification of a lineage-associated genomic protein is the lysine trimethylation of histidine H3 and the lysine trimethylation of histidine H3 and the 27th lysine of histone H3.
  • the coexistence of trimethylation modification indicates that this stem cell has the potential to differentiate into the lineage.
  • the lineage-related gene is generally affected by histone H3 lysine 4 Modification and histone H3 lysine trimethylation at position 4 with histone H3 27th lysine trimethyl Stem cells with a high proportion of genes coexisting with modification are more likely to differentiate into this lineage.
  • Any gene having the meaning of sub-total or lineage differentiation in stem cells or specific differentiation potential stem cells can be used in the methods of the present invention, including but not limited to pluripotency genes including Oct4, Nanog, c-Myc, Sall4, Sox2, Klf4.
  • the early differentiation-related genes of ectoderm include Hoxal, Gbx2, Ski and 01ig3; the early differentiation-related genes of mesendoderm T, Pgdfr a, Eomes, Tbx6 and Trim; the early differentiation-related genes of mesoderm Kdr, Handl, Gata4 and Mesp2; Restricted endoderm early differentiation related genes Onecutl, Proxl, Foxal, Foxa2, Sox7, Soxl7, Pdxl and B Gsc, neural differentiation related genes including Tubb3, Nkx2-2, Soxl, NeurogK Ascll Bm2, MytlK Zicl, Neurog2, Hesl, Dlxl , Pax6, Tlx2, Msil, Gfral, Gfra3, Mapt, Nes, 01ig2, Neurodl, Neurod2, lipid-forming genes including C/EBP ⁇ , PPAR ⁇ , ERK5, GSK3 ⁇ , GSK3 ⁇ , C/E
  • Lineage or all differentiation-related transcription factors including other lineages.
  • the terminally differentiated marker genes such as AP2, LPL, c-Kit, ALP, OPN, CK8, CK18, etc. should not be used as candidate genes for differentiation potential prediction
  • the present application extracts mesenchymal stem cells from various tissues such as fetal/adult fat, bone marrow and umbilical cord, obtains monoclonal cells by limiting dilution method, further amplifies the monoclonal cells, and then adds an appropriate amount at an appropriate time.
  • Factors such as activin A and Wnt3a induce an epithelioid-like, Flkl-positive MSC that does not form a teratoma in mice.
  • RT-PCF immunofluorescence staining and Western Blot assay showed that the Flkl-positive MSCs expressed the restricted endoderm marker genes Foxa2, Soxl7, mesendoderm marker genes Gsc, T, Eomes, mesodermal marker gene Kdr, Tbx6, ectoderm marker genes Soxl, Pax6, and the like.
  • Flkl + MSC revealed that it can further differentiate into three germ layer multi-lineage-derived tissues such as adipocytes, bone cells, liver epithelium, glial cells, and pancreatic stem/progenitor cells.
  • sub-totipotency the ability to differentiate into intact individuals is called sub-totipotency
  • sub-total-capable Flkl + MSCs are called sub-total stem cells.
  • the availability of such sub-total stem cells provides ideal seed cells for research and clinical applications in regeneration and translational medicine.
  • the modification status of the sub-genoplasmic H3K4 and H3K27 trimethylation of sub-total and related genes in stem cells is closely related to the differentiation ability of stem cells. It is used to predict the differentiation potential of stem cells; not only that, when stem cells differentiate into specific lineages, prior to the change in gene expression, the differentiation-related genomic protein modification state will be re-arranged, resulting in histone methylation modification status of the target lineage-related genes. It becomes more activated, and histone modifications that initiate genes related to other lineage differentiation become further suppressed or silenced.
  • methylation of genomic proteins related to differentiation of stem lines and other non-target lineages during differentiation of stem cells into a lineage can be used to identify the stage and specificity of stem cell stem cell differentiation.
  • Once to The expression of a gene related to a lineage differentiation has been activated. At this time, the cells are already partially differentiated. Therefore, if the expression level of the genes related to lineage differentiation is used to measure the differentiation potential of stem cells, many more primitive and differentiated cells will be missed.
  • a broader range of stem cell sources, and changes in histone modifications precede gene expression changes. K4 or K4 and K27 on histone H3 in stem cells are simultaneously trimethylated to maintain these genes at very low expression levels.
  • this histone modification state facilitates differentiation of stem cells into different lineages according to changes in microenvironment or external conditions, so differences in differentiation-related genomic modification states can be used as predictions.
  • a powerful indicator for evaluating the differentiation potential of stem cells from different sources That is, it is found in the present specification that "the methylation status of the sub-total and differentiation-related genomic proteins in stem cells is closely related to the differentiation ability of the stem cells, and the stem cells can be predicted by analysis of the methylation status of the sub-total and differentiation-related genomic proteins in stem cells.
  • the ability to differentiate that is, "specific sub-total and differentiation-associated genomic protein methylation-modified states can serve as a marker for predicting the ability of stem cells to differentiate from a certain source.”
  • This method of predicting stem cell differentiation ability only needs to detect the histone methylation status of sub-total and differentiation-related genes in stem cells by using ChlP-seq or ChlP-PCR technology, and does not require multi-lineage differentiation of stem cells. Save time, labor and reagent supplies. Therefore, the role of histone methylation modification status in predicting stem cell differentiation has important clinical application value.
  • the method of the present invention can also accurately determine the differentiation state and differentiation potential of a certain stem cell by analyzing the methylation status of the sub-total and differentiation-related genomic proteins, thereby providing a crucial guide for its correct clinical use. information.
  • Figure 1 shows the differentiation ability of Flkl + MSC.
  • A Ammonia-derived aMSCs were obtained by limiting dilution method,
  • B Flkl + MSC differentiated into adipogenic and osteogenic lineages,
  • C Flkl + MSC differentiated into hematopoietic cells and identified (OC: Osteocalcin,
  • BFU-E erythroid Explosive colony forming unit,
  • CFU-G macrophage colony forming unit,
  • CFU-MK megakaryocyte colony forming unit, HPP-CFC: high proliferative potential cell colony forming unit)
  • D Flkl + MSC induced to liver epithelium Differentiation and identification
  • E Flkl + MSC induced differentiation and identification in the direction of the nerve.
  • Figure 2 Differential proteomic methylation modification profiles of stem cell pluripotency genes, early germline differentiation-related genes, and neural differentiation-related genes at different levels.
  • A histone methylation modification of pluripotency-related genes
  • B histone methylation modification of genes associated with ectodermal differentiation
  • C histone methylation modification of genes associated with endoderm differentiation
  • D Methylation modification of mesoderm differentiation-related genes
  • E Definitive endoderm differentiation-associated genomic protein methylation modification
  • F histone methylation modification of neural differentiation-related genes.
  • Figure 3 shows the differential repair profile of methylation (A) and osteogenic (B) differentiation-related genes in different stem cells.
  • Figure 4 shows the differential expression of methylation differences in liver epithelial (A) and hematopoietic (B) differentiation genes in different stem cells.
  • Figure 5 Comparison of methylation modification of histone protein associated with adipogenic differentiation in aMSC and bMSC Comparison of differentiation ability.
  • A ChalP-PCR analysis of osteogenic genomic protein methylation status in aMSC and bMSC
  • B ChlP-PCR analysis of adipose genomic protein methylation status in aMSC and bMSC
  • C aMSC and bMSC Comparison of osteogenic lineage and adipogenic lineage differentiation ability.
  • Figure 6 shows dynamic changes in related genomic protein methylation modifications in neuronal, adipogenic and osteogenic differentiation.
  • A real-time PCR to determine the expression of related genes before and after neural differentiation
  • B ChlP-PCR to detect histone methylation status of related genes before and after neural differentiation
  • C real-time PCR and gene chip analysis of adipogenic differentiation Pre- and post-related gene expression and histone methylation status
  • D real-time PCR and gene chip analysis of related gene expression and histone methylation status before and after osteogenic differentiation
  • E real-time PCR and gene chip The expression of other lineage-related genes and histone methylation status in adipogenic differentiation or osteogenic differentiation were analyzed.
  • Figure 7 Schematic diagram of histone methylation status predicting stem cell differentiation potential.
  • Figure 8 Morphological changes of cells before and after induction: Left: Cells are spindle-shaped before induction; Right: Cells are densely cobblestone-like after induction.
  • Figure 9 Results of RT-PCR in cells before and after induction: From left to right: Upregulation of gene expression in definitive endoderm markers foxa2, Gsc, T, Eomes (P ⁇ 0.05) and ectoderm markers Soxl, Pax6 (P ⁇ 0.05) The expression of Kdr and Tbx6 genes in mesoderm markers was not significantly different (P>0.05).
  • FIG 10 Western Blot assay before and after induction: After induction, the endodermal markers Foxa2, soxl7, mesendoderm markers T, Gsc expression abundance increased significantly, and the epithelial cell marker Epcam expression abundance also increased. The abundance of the interstitial cell marker Vimantin expression was not obvious.
  • Figure 11 Immunofluorescence staining of cells before and after induction: Compared with uninduced cells, the cells with Foela2 and Soxl7 positive markers reached more than 90% after induction, and the cells with T-positive mesoderm markers reached more than 70%. The ectodermal marker is more than 70% positive for Soxl. detailed description
  • aMSCs adult adipose-derived mesenchymal stem cells
  • adipose tissue is taken from patients who have liposuction surgery (plastic surgery hospital of Chinese Academy of Medical Sciences), and signed with the donor. The consent form, the donors are healthy women aged 25 to 35 years old.
  • the method for isolating aMSCs from adipose tissue is described with reference to the method of Zuk et al. [20] with minor modifications. Briefly described as follows: Adipose tissue collected by liposuction was washed with D-Hanks to remove blood cells and anesthetics, 0.2% sputum collagenase for 1 hour, and then washed twice with D-Hanks to remove collagenase.
  • the cells were collected by centrifugation, and the cells were seeded at a density of 2 ⁇ 10 6 /ml in 58% DMEM/F12 + 40% MCDB-20K 5% fetal bovine serum (FCS), 10 ng/ml EGF, 10 ng/ml PDGF, lx insulin-transfer.
  • FCS fetal bovine serum
  • ITS Insulin-Transferrin-Selenium
  • LA-BSA lx linoleic acid-bovine serum albumin
  • 50 ⁇ ⁇ -mercaptoethanol 2 mM L-glutamine
  • 10 ⁇ g/ml penicillin and 100 U/ml streptomycin sulfate culture medium, incubate in 37 ° C, 5% CO 2 , 95% humidity incubator.
  • bMSCs bone marrow-derived mesenchymal stem cells
  • the above mononuclear cells were seeded at a density of 1 ⁇ 10 6 /cm 2 in a 25 cm 2 culture flask, and the cell culture system contained 58% DMEM/F12 + 40% MCDB-201, 2% fetal bovine serum.
  • FCS 10 ng/ml EGF, 10 ng/ml PDGF, l Insulin-Transferrin-Selenium (ITS), lx linoleic acid-bovine serum albumin , LA-BSA), 50 ⁇ ⁇ -mercaptoethanol, 2mM L-glutamine, 100 ⁇ ⁇ / ⁇ 1 penicillin and 100U/ml streptomycin sulfate, 37°C, 5% CO 2 , 95% humidity incubator to cultivate.
  • FCS 10 ng/ml EGF
  • PDGF 10 ng/ml PDGF
  • ITS Insulin-Transferrin-Selenium
  • LA-BSA 50 ⁇ ⁇ -mercaptoethanol
  • 2mM L-glutamine 100 ⁇ ⁇ / ⁇ 1 penicillin and 100U/ml streptomycin sulfate
  • 37°C 5% CO 2 , 95% humidity incubator to cultivate.
  • the suspension cells were removed, the medium was supplemented, and the cells were changed once every three days.
  • the cells were 70 to 80% confluent, they were digested with 0.05% trypsin-0.01% EDTA.
  • the 1-2 generation mesenchymal stem cells were stored in a liquid nitrogen tank for later use.
  • AMSCs and bMSCs were seeded in 96-well plates at a density of 1 cell/well by limiting dilution method. After 3 weeks, approximately 24.55% ⁇ 0.66% of the wells were observed to grow monoclonal. These monoclonals were further amplified and used as seed cells. After 4-6h cells were completely adhered, the induction medium (20ng/ml activin A + 200ng/ml wnt3a + 20% FBS + HG-DMEM) was added for 1 day. The induction medium No. 2 (20 ng/ml activin ⁇ + 100 ⁇ RA + 20% FBS + HG-DMEM) was replaced and induction culture was continued for 4 days to obtain Flkl + MSC.
  • the obtained FM + MSCs with epithelial morphology were detected by RT-PCR and immunofluorescence staining (Foxa2, Soxl7, Kdr, Tbx6, Eomes, Gsc, T, Soxl, Pax6) and Western Blot (Detection of Foxa2) , Soxl7, T, Gsc, Epcam, Vimatin), the results show that the obtained Flkl + MSC has There are three major germ layer differentiation potential important gene phenotype markers (restricted endoderm: Foxa2, Soxl7; mesendoderm: Gsc, T, Eomes; mesoderm: KDR, TBX6; ectoderm: Soxl, Pax6), and have a higher Induction efficiency (Foxa2, Soxl7 positive definitive endoderm cell efficiency reached more than 90%), the results are shown in Figure 8 to Figure 11.
  • the obtained Flkl + MSC was divided into 6 equal portions and induced to differentiate into hepatic epithelial, neural, hematopoietic, adipogenic and osteogenic lineages, and another cell was further expanded for control of differentiation of each lineage (Fig. 1A).
  • the cytoplasm of the adipogenic induction group was filled with fat droplets under light microscope, and the positive rate of oil red 0 staining was 80%.
  • Real-time quantitative PCR showed high expression of the adipogenic marker genes AP2 and LPL (Fig. 1B).
  • the positive rate of ALP and alizarin red staining in osteogenic induction group was 65%.
  • the cells were cultured, fixed with 1% formaldehyde, and the protein and DNA were cross-linked at room temperature for 10 minutes.
  • Positive control anti-R A Polymerase II a combination of all promoter regions that activate transcription.
  • Control primer promoter region of the GAPDH gene.
  • Each IP requires 900 ul Dilution Buffer plus 4.5 ul PI Cocktail.
  • the negative control IgG is recommended to be consistent with the species from which the protein of interest is derived.
  • the product can be placed in a large tube (EP tube capable of holding 1.1 ml of solution).
  • Each chromatin lOOul required product contained approximately 2 X 10 6 cells derived.
  • Protein G Agarose is a 50% slurry that is gently mixed before use.
  • This step is a "preclear" chromatin that removes the protein that is non-specifically bound to Protein G Agarose and adds the appropriate amount of Protein G Agarose when combined.
  • each sample takes 1% of chromatin as Input.
  • Positive control tube force B l .Oug anti-R A polymerase antibody.
  • Negative control tube plus l.Oug normal same species IgG.
  • test tube is supplemented with ⁇ -lOug antibody.
  • the amount of antibody added needs to be determined based on past experience.
  • IP Incubate overnight at 4 °C.
  • the incubation time of IP can be shortened, depending on factors such as antibody, target gene and cell type.
  • the amount of Bind Reagent A added is 5 times the volume of the sample.
  • step 2 Remove the spin filter, discard the liquid in the collection tube, and retain the collection tube. If precipitation is seen in step 2, this step collects sediment at the bottom of the tube, but does not affect the experiment.
  • control primers including IP for positive and negative control antibodies, and Input and DNA free tubes as control tubes with or without DNA contamination.
  • control primers are directed against the specific human GAPDH gene. For other substances, it is recommended that the user design specific primers based on experience.
  • Hot start Taq enzymes are recommended. If the hot start Taq enzyme is not used, it is recommended to add the Taq enzyme after the initial denaturation step.
  • a primer specific for the gene of interest was designed, and all of the DNA samples obtained by the above ChiP binding to the H3K4me3 and /H3K27me3 antibodies were used as substrates to carry out a PCR reaction, which is a ChlP-PCR technique.
  • the methylation status of the Flkl + MSC whole-genome histone K4 and K27 sites obtained after calibration according to the Human Genome Database (Hgl8).
  • stem cells with different differentiation potentials such as ESC (embryonic stem cells), Flkl + MSC, HSC (hematopoietic stem cells) and HPC (hematopoietic progenitor cells) as the research object [21, 22], and analyzed the sub-totalness in these stem cells.
  • Early ectodermal differentiation-related genes include Hoxal, Gbx2, Sixl, and 01ig3; mesendoderm early differentiation-related genes T, Pgdfr ⁇ , Eomes, Tbx6, and Trim, early mesoderm differentiation-related genes Kdr, Handl Gata4, and Mesop Mesp2, limited
  • the endodermal early differentiation-related genes Onecutl, Proxl, Foxal, Foxa2, Sox7, Soxl7, Pdxl and Gsc have very similar histone methylation modifications in ESC and Flkl + MSC, most of which are K4 activated or bivalent modified ( Figures 2B, 2C, 2D and 2E).
  • the genes related to neural differentiation in the literature mainly include 22 transcription factors such as Bm2, MytlL, Zicl, Neurog2, Hesl, Dlxl, Pax6, Tlx2, Msil, Gfral, Gfra3, Mapt, Nes and 01ig2 [23-25].
  • ChlP-seq data analysis showed that 17 genes in ESCs showed H3K4me3 modification or bivalent modification status; the results in Flkl + MSC were similar to those in ESC; and the analysis showed that three related to the initiation of neural differentiation
  • the genes Nes, Msil and Hesl, their histone modification status in ESC and Flkl + MSC are all H3K4me3 activation state; but in HSC and HPC, some of these genes show H3K27me3 inhibitory modification, and no other modification is detected.
  • Signal Figure 2F).
  • MxilK Gsc, Soxl7 ProxK Hnfl ⁇ , Hnf6, E-cadherin Foxal and Foxa2 were all activated or divalently modified in ESC; among them, Mxill, Gsc, Soxl7, Hnf6, Proxl and Foxal are also activated or bivalently modified in Flkl + MSC, and Foxa2, which is similar to Foxal, is H3K27me3 inhibitory modification, epithelial marker molecule E-cadherin
  • the regulation factor Snail is the activation signal; in addition to Mxill's weak activating modification signal in HSC, other hepatic epithelial differentiation-related genomic proteins are H3K27me3 inhibition signals or no modification; while in HPC, all hepatic genes are The signal was either H3K27me3 inhibited or unmodified (Fig. 4B).
  • H3K27me3 inhibitory or no modification signals Other lineage-related genes in HPCs are H3K27me3 inhibitory or no modification signals, and hematopoietic differentiation related genes are H3K4me3 activation modification, and their activation signals are stronger than HSC; Hematopoietic lineage differentiation differentiation related factors Gatal in ESCs, Flkl + MSCs and HSCs It is shown to be inhibited or unmodified, but is modified for H3K4me3 activation in hematopoietic progenitor cells. It is speculated that it is activated and modified in the stage of pluripotent stem cells to hematopoietic differentiation to hematopoietic progenitor cells, in order to facilitate further directed differentiation of the hematopoietic lineage.
  • the methylation status of histogenes related to hematopoietic differentiation is basically a process in which H3K27me3 inhibitory modification disappears and H3K4me3 activation modification signal gradually increases, while other non-hematopoietic correlations
  • the lineage is characterized by attenuation of the activating modification and an increase in the inhibitory modification signal (including H3K27me3 and no modification, both of which result in gene silencing).
  • HSC and HPC lineage-related genes The analysis of different histone modification status of HSC and HPC lineage-related genes and the different differentiation potential of these stem cells suggest that : As pluripotency levels decline, changes in histone methylation status change, stem cells gradually lose their differentiation pluripotency (ESC) into sub-totipotency (Flkl + MSCs) or only single germ layer (HSC) Even the ability of a single lineage to differentiate (progenitor cells) cells.
  • the differentiation-related genomic protein H3K4me3 and H3K27me3 modification status are closely related to the differentiation potential of stem cells, and can be used as an epigenetic modification label for predicting the differentiation potential of stem cells.
  • Example 3 Analysis of lineage differentiation-related genomic proteins H3K4me3 and H3K27me3 modification states can be used to predict stem cell differentiation potential
  • the differentiation of aMSC and bMSC into osteogenic and adipogenic directions showed that the differentiation ratio of aMSC and bMSC was 50% and 65%, respectively, on the 8th day of osteogenic induction, and the expression of ALP and OPN were statistically significant. Differences; on day 8 of adipogenic induction, the aMSC and bMSC differentiation ratios were 80% and 27%, respectively, and the expression of the marker genes LPL and AP2 were significantly different (Fig. 5C).
  • adipogenic and osteogenic related genes of MSCs from two different sources are H3K4me3 or bivalent modification
  • the proportion of adipogenic related gene H3K4me3 in aMSC is significantly higher than that of bMSC, which is more difficult than bMSC than aMSC.
  • the results of differentiation into the adipogenic lineage were consistent; the methylation-activated modification of osteogenesis-associated genomic protein in bMSC was not significantly different from that of aMSC, which was consistent with the observation that bMSC and aMSC differentiated into osteogenic lineages.
  • genomic protein modification analysis and differentiation ability of different sources of MSC differentiation further confirmed the feasibility of analysis of the genomic protein H3K4me3 and H3K27me3 modification status of lineage differentiation as an epigenetic modified label for predicting the differentiation potential of stem cells.
  • Example 4 Dynamic analysis of the genomic proteins associated with differentiation stages H3K4me3 and H3K27me3 can be used to predict the degree of cell differentiation.
  • histone methylation analysis can be used as an epigenetic modification marker to predict the differentiation potential of stem cells, and the dynamic changes of histone methylation modification of Flkl + MSCs before and after differentiation were analyzed by using ChlP-PCR. It is shown that during the differentiation of Flkl + MSCs into the neural lineage, the histone modification status of key transcription factors Pax6 and Neurog2 is changed from H3K27me3 inhibitory state to bivalent modification, Neurod2 changes from H3K27me3 inhibitory state to activated state, and Gfra2 changes from bivalent state to In the activated state, Tlx2 and Msil dominated from the bivalent K27 modification to the K4 dominant state, and Gfral changed from the unmodified state to the bivalent state; the expression of Neurog2, Pax6, Tlx2, Neurod2 and Msil was significantly up-regulated.
  • the peak then expresses the dynamic process of down-regulation, which ensures that the initiation of osteogenic differentiation has further maturation using osteoblast function; the key gene of osteogenesis RUNX2 maintains the activation state of H3K4me3, and the expression level continues to increase. It further promoted the expression of its downstream target gene OSX and osteogenic marker genes ALP and OPN.
  • Flkl + MSCs are involved in adipogenic differentiation, osteogenic differentiation-related transcription factors RUNX2, TAZ, MSX2, Smad5
  • the histone modification of BMPR2 changed from H3K4me3 activated state to bivalent modification, and MSX2 changed from bivalent modification to inhibitory state, and the expression of these genes was down-regulated.
  • the differentiation status of differentiation-related genomic proteins H3K4me3 and H3K27me3 is closely related to the differentiation ability and differentiation stage of stem cells, and can be used as an epigenetic label for predicting the differentiation potential and cell differentiation stage and maturity of different levels of stem cells from different sources.
  • This finding provides a new standard for clinically better screening and identification of seed cells required for the regenerative repair of various tissues and organs.
  • This histone methylation tag is relatively easy to obtain: First, use The ChlP-seq technique acquires the genome-wide histone methylation modification profile of unknown differentiation potential stem cells, and then analyzes the histone H3K4me3 and B H3K27me3 modification status of some or some lineage differentiation-related genes according to the purpose of stem cell application.
  • ChlP-seq results using the ChlP-PCR technique can predict whether the stem cells have the ability to differentiate into the lineage.
  • the stem cells are located on a stem cell grade pyramid with apical embryonic stem cells as the apex.
  • ChlP-seq technology can quickly and easily predict whether stem cells have the potential to differentiate into the lineage of interest under suitable external conditions or in vivo microenvironment after obtaining the genome-wide histone methylation modification profile.
  • ChlP-seq or ChlP-PCR was used to analyze the histone methylation status of stem cells in a lineage differentiation process and related transcription factors and real-time quantitation of these genes. PCR can be used to identify the specific differentiation stage of stem cells. (Note: Changes in histone methylation are first and gene expression changes, when the histone methylation status of a gene becomes more activated.
  • Xenopus embryos IL Control of the onset of transcription. Cell. 1982, 30: 687-696.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Developmental Biology & Embryology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Description

亚全能干细胞产品及其表观遗传修饰标签
技术领域
本发明涉及亚全能干细胞产品, 诱导生成亚全能干细胞产品的方法及干细胞 分化潜能的表观遗传修饰标签鉴定。 本发明还涉及预测干细胞分化潜能的方法及 亚全能性基因和 /或分化相关基因的组蛋白修饰状态作为预测干细胞分化潜能的表 观遗传修饰标签的用途。 背景技术
干细胞是组织再生的源泉, 根据个体发育过程中出现的先后次序, 干细胞可分 为胚胎干细胞(embryonic stem cells, ESCs)和成体干细胞(adult stem cells, ASCs); 根据分化潜能的不同, 又可将其分为全能干细胞 (totipotent stem cell )、 多潜能干 细胞 (pluripotent stem cell )、 多能干细胞 (multipotent stem cell ) 和单能干细胞 (unipotent stem cell 成体干细胞还可根据组织来源分为造血干细胞、 骨髓间充 质干细胞、 神经干细胞、 肌肉干细胞等。 通过基因转染技术将某些转录因子导入 动物或人的体细胞, 使体细胞被诱导重构成为 ES细胞样的多潜能干细胞, 这种多 潜能干细胞被称为诱导性多能干细胞 (induced pluripotent stem cells, iPSCs) [1, 2 因发育阶段、 取材及获得方式等不同, 胚胎干细胞、 成体干细胞及 iPS细胞在 临床应用上显示出不同的优势和局限性。 胚胎干细胞具有分化的全能性, 但伦理 问题、 免疫排异与成瘤性特点严重阻碍了其在临床上的研究与应用。 iPS具有与胚 胎干细胞类似的分化能力, 但其仍具有成瘤性, 而且从成体细胞诱导生成 iPS的效 率极低, 诱导生成的 iPS癌变率较高, 这些因素大大增加了临床应用的不安全性。 成体干细胞来源非常广泛, 无成瘤性, 亦不存在伦理问题。 传统的观点认为成体 干细胞属多能或单能干细胞。 近年来的一些实验证据显示, 成体干细胞具有 "可 塑性", 不仅能分化为特定谱系中的细胞类型, 还具有分化为在发育上无关的其他 谱系的能力, 提示成体干细胞具有比人们以前想象的更大的分化潜能 [3-5]。
由于来源较多, 目前成体干细胞没有统一的表型、 培养条件及鉴定方法。 各种 组织来源的成体干细胞显示出不同的分化能力。 这些因素使得成体干细胞的研究 变得复杂混乱, 很难建立比较均一的细胞系, 因此为进一步的临床应用带来了困 难。
表观遗传修饰通常包括 DNA甲基化、 组蛋白修饰及 R A修饰; 而组蛋白修饰 又包括组蛋白甲基化、 乙酰化、 磷酸化和泛素化; 修饰部位大多位于组蛋白 N端, 这些修饰可通过影响组蛋白与 DNA的亲和性, 从而改变染色质的状态, 也可以影 响转录因子与 DNA序列的结合, 对基因表达调控具有类似 DNA遗传密码的作用, 故被称作 "组蛋白密码" 。 组蛋白甲基化是指发生在 H3和 H4组蛋白 N端精氨酸或 者赖氨酸残基上的甲基化, 由组蛋白甲基转移酶介导。 组蛋白赖氨酸的甲基化已 成为转录的重要调控机制, 在异染色质的形成、 X染色体的失活、 基因组印迹、 DNA损伤修复及基因转录调控中担任重要角色 [6-10]。 组蛋白 H3第 4位赖氨酸三甲 基化 ( H3K4me3 ) —般与启动子活化有关 [11], 而组蛋白 H3第 27位赖氨酸三甲基 化 ( H3K27me3 ) 则与启动子的表达沉默相关 [12, 13]。 基因启动子区 H3K4me3 和 H3K27me3两种组蛋白修饰状态同时存在则被称为双价修饰,这种双价修饰使基 因保持在相对低的表达水平, 维持在一种 "预备转录" 的状态, 这种状态可以使 基因根据适当的刺激做出迅速的转录活化或抑制等反应 [14-17]。
最近越来越多的研究开始关注组蛋白赖氨酸甲基化在胚胎发育中的作用。 对 斑马鱼的研究发现, 受精后基因组失活, 直到母源性向合子转换(maten ai- zygotic transition) 完成才重新起始转录 [i8 2.0], 基因组组蛋白 H3赖氨酸三甲基化的修饰 分析结果显示,转换前组蛋白 H3 27me3抑制性修饰及 H3:K4me3活化性修饰均来检 测到; 转换完成, 基因组激活后, 80%的基因出现了 H3K4me3修饰, 其中未活化 的一些发育调控相关基因同时还存在 H3K27me3修饰。 上述结果提示, 这种在母源 性向合子转换过程中建立起来的染色质组蛋白 H3双价或单价修饰谱很可能与全能 性的建立有关 [21]。先前的研究发现,在小鼠胚胎干细胞中, H3K4me3和 H3K27me3 共定位存在与由约 2.5%基因组组成的高度保守的区域, 提示这种双价修饰状态在 干细胞保持这种 "预备"活化的状态中担任重要角色 [14]。 对人胚胎千细胞组蛋白 修饰的研究发现,在启动子附近, H3K4me3修饰普遍存在,而 H3K27me3仅见于 10% 的基因启动子区, 而且, H3K27me3修饰存在的区域同时受 H3K4me3修饰, 这些受 双价修饰的基因在 ESC分化时优先被激活,提示双价修饰的存在可能是维持发育相 关基因在一种平衡状态, 为以后的活化做准备 [15]; 而那些没有任何修饰的基因则 处在抑制状态, 完全被沉默。利用 ChlP-seq检测结果建立的数据库对多能性神经祖 细胞 (multipotent neural progenitor cells , NPCs) 、 鼠胚胎纤维母细胞 (murine embryonic fibroblasts , MEFs)及原代人 T细胞中 H3K4me3 和 H3K27me3修饰分析 发现, 在 NPCs或 MEFs中, 受双价修饰的基因数量下降 [10, 17]。 由此推测受双价 修饰的区域大部分是胚胎干细胞特异性的 [14]。但最近全基因组组蛋白甲基化修饰 谱的分析显示, 在分化的细胞 (如 T细胞和 MEFs) 中也发现有这种受双价修饰的 区域, 因此双价修饰并不是 ESC特有的 [10, 17, 22]。 尽管与 ESC相比, 人 T细胞 中受双价修饰基因的数量下降, 但之前一些没有任何修饰的基因的组蛋白却重新 被甲基化修饰, 推测组蛋白修饰的这种变化可能与 T细胞的特化及其它谱系的抑制 有关 [15]。
尽管研究提示, 组蛋白甲基化在异染色质的形成、 X染色体的失活、 基因组印 迹、 DNA损伤修复及基因转录调控中有重要作用, 而且发现组蛋白甲基化位点在 不同物种中是高度保守的, 在分化能力不同的细胞中存在不同的组蛋白甲基化修 饰谱。 但迄今为止, 组蛋白甲基化修饰在细胞分化中的作用及意义还知之甚少。 表观遗传调节是一个动态变化的过程, 这使得表观遗传的研究变得复杂。 近年来 随着测序技术的迅速发展及其成本的降低, 染色质免疫共沉淀与测序相结合的技 术 (ChlP-seq) 得到到了广泛应用 [23, 24]。
干细胞移植可以用于治疗帕金森症、 心肌病、 肝脏疾病、 以及诱导成骨治疗骨 缺损、 大面积烧伤治疗急需的皮肤材料等。 成体具有干细胞取自自体、 由它诱导 分化而来的组织在进行移植时不存在免疫排斥问题, 诱导分化的组织类型广泛等 优点, 具有广阔的应用价值, 有望成为未来干细胞移植治疗各种器官终末期疾病 的主力军。 但是, 目前干细胞移植还存在众多的安全性问题, 如有报道指出, 应 用胚胎干细胞植入心脏治疗冠心病时, 可能会导致畸胎瘤, 应用骨骼肌干细胞则 有产生恶性心律失常的危险, 还有骨髓细胞移植后出现严重心肌钙化的报告。 因 此, 上述干细胞移植治疗的成功取决于以下两大重要因素: (1 ) 种子干细胞在体 外的获取、 纯化和扩增; (2) 干细胞在体内按照治疗目的发生专一性有功能的分 化。 如何使既控制增殖, 避免发生肿瘤, 又能在适当的时候启动所需要的途径进 行分化, 对干细胞移植治疗至关重要。 但是, 获取具有适当分化能力的干细胞, 根据治疗目的对其进行鉴定, 并进而移植到体内使之适时的发生专一性分化而不 发生畸胎瘤等等一系列问题均需要有一套对干细胞分化潜能、 分化阶段及干细胞 是否在体内发生可控的专一性分化等准确鉴定和评价指标。 因此, 多能性干细胞 在临床上的应用前景依赖于它们的分化潜能。 现有的验证某种组织来源干细胞分 化能力的方法主要还是通过诱导分化, 观察其是否能向三胚层尽可能多的谱系分 化, 这种方法需要很长的时间, 要耗费大量人力物力。
染色质免疫沉淀分析 (Chromatin Immunoprecipitation, ChIP) 是检测组蛋白 修饰的最重要的方法。 染色质免疫共沉淀技术 (ChIP) 也称结合位点分析法, 是 研究体内蛋白质与 DNA相互作用的有力工具,通常用于转录因子结合位点或组蛋 白特异性修饰位点的研究。 染色质免疫沉淀分析是基于体内分析发展起来的方法, 它的基本原理是在活细胞状态下固定蛋白质一 DNA复合物, 并将其随机切断为一 定长度范围内的染色质小片段, 然后通过免疫学方法沉淀此复合体, 特异性地富 集目的蛋白结合的 DNA片段, 通过对目的片断的纯化与检测, 从而获得蛋白质与 DNA相互作用的信息。目的片断可以通过 tiling array或高通量测序的方法来检测, 前者称为 ChlP-on-chip而后者称为 ChIP-Seq。将 ChIP与第二代测序技术相结合的 ChlP-Seq技术, 能够高效地在全基因组范围内检测与组蛋白、 转录因子等相互作 用的 DNA区段。
ChlP-Seq 的原理是, 首先通过染色质免疫共沉淀技术 (ChIP) 特异性地富集 目的蛋白结合的 DNA片段,并对其进行纯化与文库构建;然后对富集得到的 DNA 片段进行高通量测序。 研究人员通过将获得的数百万条序列标签精确定位到基因 组上,从而获得全基因组范围内与组蛋白、转录因子等相互作用的 DNA区段信息。
由于 ChlP-Seq的数据是 DNA测序的结果, 为研究者提供了进一步深入挖掘 生物信息的资源, 研究者可以在以下几方面展开研究: ( 1 ) 判断 DNA链的某一特定位置会出现何种组蛋白修饰;
(2) 检测 R A polymerase II及其它反式因子在基因组上结合位点的精确定 位;
(3 ) 研究组蛋白共价修饰与基因表达的关系;
(4) CTCF转录因子研究。
因此, 如果能利用特定的分离、 诱导和筛选体系获得具有适当分化能力的干 细胞并利用 "组蛋白甲基化密码"在预示细胞分化中的作用以及 ChIP检测与生物 信息学分析相结合的方法(ChlP-seq)研究多种级别干细胞的全基因组组蛋白甲基 化修饰谱, 找到组蛋白甲基化修饰与干细胞分化能力间的关系, 为成体干细胞建 立统一的表型、 培养条件及鉴定方法, 并进而建立一套对干细胞分化潜能、 分化 阶段及干细胞是否在体内发生可控的专一性分化等准确鉴定和评价指标, 将为干 细胞在临床上广泛应用提供最基础的材料和指标。 图 7 显示了本发明的技术示意 图。 发明内容
因此, 本发明的目的在于诱导获得一种亚全能干细胞, 这种细胞呈上皮样形 态, 具有 Flkl阳性的表型, 具有三胚层多谱系的分化能力, 但不具有成瘤性。 这 种细胞的获得为临床上再生修复治疗提供理想的种子细胞。
本发明的目的还在于寻找组蛋白甲基化修饰和干细胞分化能力间的关系, 从 而为快速、 准确地确定干细胞的分化能力提供一种有力的工具。
因此, 本发明的第一方面提供了一种亚全能干细胞产品, 其特征在于其具有 上皮样形态、 Flkl+表型、 无成瘤性且单克隆来源的该细胞在体外具有诱导分化成 三胚层来源的组织细胞的能力, 优选地, 其全能基因包括 Oct4、 Nanog c-Myc、 Sall4、 Sox2、 Klf4; 外胚层早期分化相关基因包括 Hoxal、 Gbx2、 Sixl 和 01ig3; 中内胚层早期分化相关基因 T、 Pgdfr a、 Eomes、 Tbx6 和 Mixll ; 中胚层早期分 化相关基因 Kdr、 Handl Gata4 和 Mesp2 ; 限定性内胚层早期分化相关基因 Onecutl Proxl、 Foxal、 Foxa2、 Sox7、 Soxl7、 Pdxl 禾卩 Gsc 的甲基化修饰状 态以活化或 H3K4me3和 H3K27me3共存的双价修饰为主。
本发明的第二方面涉及一种产生如上所述的亚全能干细胞产品的方法, 具有 以下步骤:
A) 常规方法分离 aMSC或 bMSC或其他组织来源的间充质干细胞,
B) 以 1个细胞 /孔的密度将 aMSC或 bMSC或其他组织来源的间充质干细胞 接种于 96孔板中, 待长出单克隆后, 将这些单克隆进一步扩增,
C)将单克隆进一步扩增后的细胞作为种子细胞, 4-6h细胞完全贴壁后加入 1 号诱导培养基诱导 1天后, 更换 2号诱导培养基继续诱导培养 4天, 获得亚全能 干细胞, 即 Flkl 阳性的 MSC, 所述 1 号诱导培养基包含 l-100ng/ml 活化素 A+l-500ng/ml Wnt3a+ 0.1-20% FBS+HG-DMEM, 优选地, 5-50ng/ml活化素 A, 更优选地, 10-30ng/ml 活化素 A; 优选地, 50-300ng/ml Wnt3a, 更优选地, 100-300ng/ml Wnt3a; 优选地, 2-10% FBS, 更优选地, 5-8% FBS, 所述 2号诱导 培养基包含 l-100ng/ml 活化素 Α+1-500μΜ RA+ 0.1-50%FBS+HG-DMEM , 5-50ng/ml活化素 Α, 更优选地, 10-30ng/ml活化素 Α; 优选地, 20-400 μΜ RA, 更优选地, 50-200 μΜ RA,将获得的具有上皮样形态的亚全能干细胞进行 RT-PCR 检测、免疫细胞荧光染色检测和 Western Blot检测, 其中所述免疫细胞荧光染色检 测的指标包括 Foxa2、 Soxl7、 Kdr、 Tbx6、 Eomes、 Gsc、 T、 Soxl、 Pax6, 所述 Western Blot检测的指标包括 Foxa2、 Soxl7、 T、 Gsc、 Epcam、 Vimatin, 检测获 得的干细胞是否具有三胚层分化潜能重要基因表型标志, 即限定性的内胚层: Foxa2、 Soxl7; 中内胚层: Gsc、 T、 Eomes; 中胚层: Kdr、 Tbx6; 外胚层: Soxl、 Pax6, 并且具有较高的诱导效率, Foxa2、 Soxl7阳性的限定性内胚层细胞效率达 到 90%以上。
本发明的第三方面涉及一种检测干细胞产品是否为亚全能干细胞产品的方 法, 其包括下述步骤:
1 ) 获取目标干细胞, 检测其细胞形态是否为上皮样形态;
2) 检测其 Flkl是否呈阳性;
3 ) RT-PCR、 免疫细胞荧光染色和 Western Blot方法检测其分化能力, 其中所 述免疫细胞荧光染色检测的指标包括 Foxa2、 Soxl7、 Kdr、 Tbx6、 Eomes Gsc、 T、 Soxl、 Pax6, 所述 Western Blot检测的指标包括 Foxa2、 Soxl7、 T、 Gsc、 Epcam、 Vimatin;
4) 将其移植入 SCID小鼠检测是否导致畸胎瘤;
5 )对其进行向三胚层多谱系的诱导分化; 神经诱导分化: DMEM/F12 (DF12) 1 :1 基础培养基中加入 N2/B27、 20 ng/ml EGF和 50 ng/ml IGF-1, 诱导两周后加入 30 ng/ml NT3禾口 10 ng/ml bFGF, 两周后力口人 30 ng/ml NT3禾口 10 ng/ml BDNF 再 诱导 7天;成脂分化: DMEM基础培养基加入 10% FCS、1 μ Μ地塞米松、 0.5 mM IBMX、 I mM抗坏血酸诱导 8天; 成骨分化: DMEM基础培养基加入 10% FCS、 10 mM β -甘油磷酸钠、 10 ηΜ地塞米松和 0.2 mM抗坏血酸诱导 8天; 肝上皮诱 导分化: 基础培养基中加入 20 ng/ml HGF、 10 ng/ml FGF-4、 20 ng/ml EGF和 2% FBS诱导 3周; 造血细胞诱导分化: 基础培养基中加入 150 ng/ mL SCF和 200 ng/ mL G-CSF诱导 7天, 收集细胞, 接种在无血清甲基纤维素半固体培养基中, 该培 养基含 1% BSA, 50 ng/mL BMP-4, 50 ng/mL IL-6, 50 ng/mL SCF, 50 ng/mL Flt-3L, 10 ng/mL G-CSF, 10 ng/mL TPO; 10 g/mL EPO, 200 ^glmL 转铁蛋白, 2 mM L_谷 氨酰胺, O.l mM P-mercaptoethanol, 1%非必需氨基酸, 诱导 9天, 收集的细胞, 洗 去甲基纤维素, 计数 5000个细胞, 重新接种在含血清的甲基纤维素半固体培养基 中再诱导 14天; 6)检测所述干细胞中亚全能及组织分化相关基因组蛋白甲基化状态以预测其 分化潜能, 方法如下:
①使用特异性抗组蛋白 H3第 4位赖氨酸三甲基化和抗组蛋白 H3第 27位赖 氨酸三甲基化的抗体以 ChIP技术获得所述干细胞中所有与所述抗体结合的 DNA 样品;
②将 ChIP获得的 DNA样品进行高通量测序以获取目标干细胞的全基因组组 蛋白甲基化修饰谱和 /或设计特异于目的基因的引物, 以上述 DNA样品作为底物, 进行 PCR反应以获取目的基因的组蛋白甲基化修饰状态,
其中, 目标基因属于组蛋白 H3第 4位赖氨酸三甲基化修饰或组蛋白 H3第 4 位赖氨酸三甲基化修饰和组蛋白 H3第 27位赖氨酸三甲基化修饰共存则指示目标 干细胞具有分化到目的基因所指示的特定细胞类型的能力。
优选地, 所述目的基因选自亚全能基因、 三胚层早期分化基因、 神经分化相 关基因、 成脂性基因、 成骨性基因、 造血相关基因或肝上皮分化相关基因的一种 谱系、 多种谱系或包括其他谱系的全部分化相关转录因子, 其中全能基因包括 Oct4、 Nanog、 c-Myc、 Sall4、 Sox2、 Klf4; 外胚层早期分化相关基因包括 Hoxal、 Gbx2、 Sixl 和 01ig3; 中内胚层早期分化相关基因 T、 Pgdfr a、 Eomes、 Tbx6 和 Mixll; 中胚层早期分化相关基因 Kdr、 HandK Gata4 禾 B Mesp2; 限定性内胚层 早期分化相关基因 Onecutl、 Proxl、 Foxal、 Foxa2、 Sox7、 Soxl7、 Pdxl 禾卩 Gsc, 神经分化相关基因包括 Tubb3、 Nkx2-2、 Soxl、 NeurogK Ascll Bm2、 MytlK Zicl、 Neurog2、 Hesl、 Dlxl、 Pax6、 Tlx2、 Msil、 Gfral Gfra3、 Mapt、 Nes、 01ig2、 Neurodl Neurod2, 成脂性基因包括 C/EBP a、 PPAR y ERK5、 GSK3 a、 GSK3 β、 C/EBP δ、 C/EBP β, 成骨性基因包括 RUNX2、 BMP4、 Smad5、 TAZ、 MSX2、 DLX5、 BMPR2、 Wnt5a, 造血相关基因包括 c-Myb、 EGR1、 FOGl、 SCL、 E47、 Ikaros、 Gatal、 BCL-6, 肝上皮分化相关基因包括 Mxill、 Gsc、 Soxl7、 Proxl、 Hnfl β、 Hnf6、 E-cadherin Foxal Foxa2、 Snail、 Neurog2 Gfra2。
本发明的第四方面涉及一种亚全能性基因和 /或分化相关基因的组蛋白修饰状 态作为预测干细胞分化潜能的表观遗传修饰标签的用途, 其中通过检测所述亚全 能性基因和 /或分化相关基因的组蛋白甲基化修饰状态预测干细胞的分化潜能。
优选地, 通过检测特定谱系分化阶段性转录因子及标志基因的组蛋白甲基化 修饰状态鉴定该细胞所处的分化阶段。
优选地, 分析启动其它非目标谱系分化相关基因的组蛋白修饰状态变化鉴定 细胞向目标谱系分化的专一性。
优选地,所述组蛋白甲基化修饰为组蛋白 H3第 4位赖氨酸三甲基化修饰或组 蛋白 H3第 4位赖氨酸三甲基化修饰与组蛋白 H3第 27位赖氨酸三甲基化修饰并 存。
优选地, 亚全能性基因和 /或分化相关基因选自全能基因、 三胚层早期分化相 关基因、 神经分化相关基因、 成脂性基因、 成骨性基因、 造血相关基因或肝上皮 分化相关基因的一种谱系、 多种谱系或包括其他谱系的全部分化相关转录因子, 其中全能基因包括 Oct4、 Nanog、 c-Myc、 Sall4、 Sox2、 Klf4; 外胚层早期分化相 关基因包括 Hoxal、 Gbx2、 Ski 和 01ig3; 中内胚层早期分化相关基因 T、 Pgdfr α、 Eomes、 Tbx6 禾卩 Mixll; 中胚层早期分化相关基因 Kdr、 Handl、 Gata4 和 Mesp2; 限定性内胚层早期分化相关基因 Onecutl、 ProxK Foxal、 Foxa2、 Sox7、 Soxl7、 Pdxl 禾卩 Gsc, 神经分化相关基因包括 Tubb3、 Nkx2-2、 Soxl、 NeurogK Ascll、 Bm2、 MytlK Zicl、 Neurog2、 Hesl、 Dlxl、 Pax6、 Tlx2、 Msil、 Gfral、 Gfra3、 Mapt、 Nes、 01ig2、 Neurodl、 Neurod2, 成脂性基因包括 C/EBP a、 PPAR Y、 ERK5、 GSK3 a、 GSK3 β、 C/EBP δ、 C/EBP β, 成骨性基因包括 RUNX2、 BMP4、 Smad5、 TAZ、 MSX2、 DLX5、 BMPR2、 Wnt5a,造血相关基因包括 c-Myb、 EGR1、 FOGl、 SCL、 E47、 Ikaros、 Gatal、 BCL-6,肝上皮分化相关基因包括 Mxill、 Gsc、 Soxl7、 Proxl Hnfl β、 Hnf6、 E-cadherin Foxal Foxa2、 Snail、 Neurog2 Gfra2。
优选地, 检测所述亚全能性基因和 /或分化相关基因的组蛋白甲基化修饰状态 时使用 ChlP-seq或 ChIP-PCR。
优选地, 所述亚全能性基因和 /或分化相关基因的不同组蛋白甲基化状态指示 了干细胞的不同分化潜能,某谱系分化相关基因组蛋白甲基化修饰是组蛋白 H3第 4位赖氨酸三甲基化修饰和组蛋白 H3第 4位赖氨酸三甲基化修饰与组蛋白 H3第 27位赖氨酸三甲基化修饰并存为主,则指示这种干细胞具有向该谱系分化的潜能, 两种或多种干细胞进行比较,则该谱系相关基因总体上受组蛋白 H3第 4位赖氨酸 三甲基化修饰和组蛋白 H3第 4位赖氨酸三甲基化修饰与组蛋白 H3第 27位赖氨 酸三甲基化修饰并存的基因所占比例高的干细胞更易于向该谱系分化。
换言之, 本发明利用染色质免疫沉淀技术 (ChIP) 获得了目标干细胞中与特 异性抗组蛋白 H3第 4位赖氨酸三甲基化和抗组蛋白 H3第 27位赖氨酸三甲基化 的抗体结合的所有 DNA, 然后通过高通量测序技术获得了所述 DNA的序列信息, 通过与基因组信息相比对, 获得了目标干细胞的全基因组的组蛋白修饰谱, 或者 通过设计针对特定基因的引物利用 PCR技术获得特定基因的组蛋白修饰状态。 其 中, 目标基因属于组蛋白 H3第 4位赖氨酸三甲基化修饰 (H3K4me3 ) 或组蛋白 H3第 4位赖氨酸三甲基化修饰(H3K4me3 )和组蛋白 H3第 27位赖氨酸三甲基化 修饰(H3K27me3 )共存则指示目标干细胞具有分化到目的基因所指示的特定细胞 类型的能力。某谱系分化相关基因组蛋白甲基化修饰是组蛋白 H3第 4位赖氨酸三 甲基化修饰和组蛋白 H3第 4位赖氨酸三甲基化修饰与组蛋白 H3第 27位赖氨酸 三甲基化修饰并存为主, 则指示这种干细胞具有向该谱系分化的潜能, 两种或多 种干细胞进行比较,则该谱系相关基因总体上受组蛋白 H3第 4位赖氨酸三甲基化 修饰和组蛋白 H3第 4位赖氨酸三甲基化修饰与组蛋白 H3第 27位赖氨酸三甲基 化修饰并存的基因所占比例高的干细胞更易于向该谱系分化。 任何在干细胞或特 定分化潜能干细胞内具有亚全能性或谱系分化标识意义的基因均可用于本发明所 述的方法, 包括但不限于全能基因包括 Oct4、 Nanog、 c-Myc、 Sall4、 Sox2、 Klf4; 外胚层早期分化相关基因包括 Hoxal、 Gbx2、 Ski 和 01ig3 ; 中内胚层早期分 化相关基因 T、 Pgdfr a、 Eomes、 Tbx6 禾卩 Mixll ; 中胚层早期分化相关基因 Kdr、 Handl、Gata4 禾卩 Mesp2;限定性内胚层早期分化相关基因 Onecutl、 Proxl、Foxal、 Foxa2、 Sox7、 Soxl7、 Pdxl 禾 B Gsc, 神经分化相关基因包括 Tubb3、 Nkx2-2、 Soxl、 NeurogK Ascll Bm2、 MytlK Zicl、 Neurog2、 Hesl、 Dlxl、 Pax6、 Tlx2、 Msil、 Gfral、 Gfra3、 Mapt、 Nes、 01ig2、 Neurodl、 Neurod2 , 成脂性基因包括 C/EBP α、 PPAR γ、 ERK5、 GSK3 α、 GSK3 β、 C/EBP δ、 C/EBP β, 成骨性基 因包括 Runx2、 BMP4、 Smad5、 TAZ、 MSX2、 DLX5、 BMPR2、 Wnt5a, 造血相 关基因包括 c-Myb、 EGR1、 FOGl、 SCL、 E47、 Ikaros、 Gatal、 BCL-6 , 肝上皮 分化相关基因包括 Mxill、 Gsc、 Soxl7、 Proxl、 Hnfl β、 Hnf6、 E-cadherin Foxal、 Foxa2、 Snail、 Neurog2、 Gfra2等的一种谱系、 多种谱系或包括其他谱系的全部分 化相关转录因子。 (注: 终末分化的标志基因如 AP2、 LPL、 c-Kit、 ALP、 OPN、 CK8、 CK18等不宜作为分化潜能预测的候选基因)
也即, 本申请从胎儿 /成体脂肪、 骨髓及脐带等多种组织提取间充质干细胞, 通过极限稀释法获得单克隆细胞, 将单克隆细胞进一步扩增后, 通过在恰当的时 间加入适量的活化素 A和 Wnt3a等因子, 诱导出一种具有上皮样形态、 Flkl阳性 的 MSC, 它在小鼠体内不能形成畸胎瘤。 RT-PCF 免疫细胞荧光染色和 Western Blot方法检测显示,这种 Flkl阳性的 MSC中表达限定性的内胚层标志基因 Foxa2、 Soxl7, 中内胚层标志基因 Gsc、 T、 Eomes, 中胚层标志基因 Kdr、 Tbx6, 外胚层 标志基因 Soxl、 Pax6等。 对 Flkl+MSC进行体外诱导, 发现其能进一步分化成脂 肪细胞、 骨细胞、 肝上皮、 神经胶质细胞、 胰腺干 /祖细胞等三胚层多谱系来源的 组织。 我们将这种具有分化为三胚层多谱系来源组织细胞的能力, 但不具发育为 完整的个体的分化能力称为亚全能性,将具有亚全能性的 Flkl+MSC称为亚全能干 细胞。 这种亚全能干细胞的获得为再生及转化医学的研究及临床应用提供理想的 种子细胞。
通过对具有不同分化能力的干细胞的组蛋白修饰状态的分析之后发现: 干细 胞中亚全能及各系分化相关基因不同组蛋白 H3K4及 H3K27三甲基化的修饰状态 与干细胞的分化能力密切相关, 可以用来预测干细胞的分化潜能; 不仅如此, 干 细胞向特定谱系分化启动时, 先于基因表达的改变, 分化相关基因组蛋白修饰状 态将发生重新布局, 使得目标谱系相关基因的组蛋白甲基化修饰状态变得更加活 化, 而启动其它谱系分化相关基因的组蛋白修饰则变得进一步抑制或沉默, 因此, 对干细胞向某一谱系分化过程中该谱系及其它非目标谱系分化相关基因组蛋白甲 基化修饰状态的动态变化可用来鉴定干细胞干细胞分化的阶段及专一性。 一旦向 某一谱系分化相关基因的表达已经被激活, 这时的细胞已经是发生部分分化了的 细胞, 因此, 如果用谱系分化相关基因的表达量来衡量干细胞的分化潜能会漏掉 很多更原始、 分化潜能更广泛的干细胞来源, 而组蛋白修饰的变化先于基因表达 的改变, 干细胞中组蛋白 H3上的 K4或 K4和 K27同时被三甲基化后能够维持这 些基因在非常低的表达水平, 处在一种 "预备"活化或失活的状态, 这种组蛋白 修饰状态有利于干细胞根据微环境或外界条件的改变向不同谱系方向分化, 因此 分化相关基因组蛋白修饰状态的差异可作为预测和评价不同来源干细胞分化潜能 的有力指标。 即, 本说明书中发现 "干细胞中亚全能及分化相关基因组蛋白甲基 化修饰状态与该干细胞分化能力密切相关, 通过干细胞中亚全能及分化相关基因 组蛋白甲基化修饰状态的分析可预测该干细胞的分化能力" , 也即 "特定的亚全 能及分化相关基因组蛋白甲基化修饰状态可作为预测某种来源干细胞分化能力的 标签" 。 这种预测干细胞分化能力的方法只需利用 ChlP-seq或 ChlP-PCR技术对 干细胞中亚全能及分化相关基因的组蛋白甲基化状态进行检测, 不需要对干细胞 进行多谱系的诱导分化, 大大节省了时间、 人力和试剂耗材。 因此组蛋白甲基化 修饰状态在预测干细胞分化能力中的作用有着及其重要的临床应用价值。
利用本发明的方法还可通过对亚全能及分化相关基因组蛋白甲基化状态分 析, 准确地确定某种干细胞的分化状态及分化潜能, 从而为其正确的用于临床提 供了至关重要的指导信息。 附图说明
图 1 :显示 Flkl+MSC的分化能力。 (A)极限稀释法获得单克隆来源的 aMSCs, ( B ) Flkl+MSC向成脂和成骨谱系分化, (C ) Flkl+MSC向造血分化及鉴定(OC: Osteocalcin, BFU-E: 红系爆式集落形成单位, CFU-G: 巨嗜细胞集落形成单位, CFU-MK: 巨核细胞集落形成单位, HPP-CFC: 高增殖潜能细胞集落形成单位), ( D ) Flkl+MSC 向肝上皮诱导分化及鉴定, (E ) Flkl+MSC 向神经方向诱导分化 及鉴定。
图 2: 显示不同级别干细胞全能基因、三胚层早期分化相关基因及神经分化相 关基因的组蛋白甲基化修饰差异谱。 (A) 全能性相关基因的组蛋白甲基化修饰, ( B )外胚层分化相关基因的组蛋白甲基化修饰, (C )中内胚层分化相关基因的组 蛋白甲基化修饰, (D ) 中胚层分化相关基因的甲基化修饰, (E ) 限定性内胚层分 化相关基因组蛋白甲基化修饰 (F ) 神经分化相关基因的组蛋白甲基化修饰。
图 3 : 显示不同干细胞中成脂 (A) 及成骨 (B ) 分化相关基因甲基化差异修 饰谱。
图 4: 显示不同干细胞中肝上皮 (A) 及造血 (B ) 分化相关基因甲基化差异 修饰谱。
图 5 :显示 aMSC和 bMSC中成脂成骨分化相关基因组蛋白甲基化修饰比较及 分化能力比较。 (A)ChlP-PCR分析 aMSC和 bMSC中成骨性基因组蛋白甲基化修 饰状态, (B)ChlP-PCR分析 aMSC和 bMSC中成脂性基因组蛋白甲基化修饰状态, (C) aMSC和 bMSC向成骨谱系和成脂谱系分化能力的比较。
图 6:显示神经、成脂和成骨分化中的相关基因组蛋白甲基化修饰的动态变化。 (A) real-time PCR测定神经分化前后相关基因的表达, (B) ChlP-PCR检测神经 分化前后相关基因的组蛋白甲基化状态, (C) real-time PCR及基因芯片分析成脂 分化前后相关基因的表达及组蛋白甲基化状态, (D) real-time PCR及基因芯片分 析成骨分化前后相关基因的表达及组蛋白甲基化状态, (E) real-time PCR及基因 芯片分析成脂分化或成骨分化中其它谱系相关基因的表达及组蛋白甲基化状态。
图 7: 组蛋白甲基化修饰状态预测干细胞分化潜能示意图。
图 8: 诱导前后细胞形态学变化: 左: 诱导前细胞呈梭形排列; 右: 诱导后细 胞呈鹅卵石样密集排列。
图 9: 诱导前后细胞 RT-PCR检测结果: 从左到右: 限定性内胚层标志 foxa2、 Gsc、 T、 Eomes (P<0.05 ) 以及外胚层标志 Soxl、 Pax6 (P<0.05 ) 的基因表达上 调, 中胚层标志 Kdr、 Tbx6基因表达变化不明显 (P>0.05 )。
图 10: 诱导前后细胞行 Western Blot检测: 经过诱导后细内胚层标志 Foxa2、 soxl7, 中内胚层标志 T、 Gsc的表达丰度均有明显的增加, 上皮细胞标志 Epcam 的表达丰度也有增加, 间质细胞标志 Vimantin表达丰度变化不明显。
图 11 : 诱导前后细胞行免疫细胞荧光染色检测: 与未诱导的细胞相比, 诱导 后内胚层标志 Foxa2、 Soxl7阳性的细胞达到 90%以上, 中内胚层标志 T阳性的细 胞达到 70%以上, 外胚层标志 Soxl阳性的细胞达到 70%以上。 具体实施方式
下面将通过下述非限制性实施例进一步说明本发明, 本领域技术人员公知, 在不背离本发明精神的情况下, 可以对本发明做出许多修改, 这样的修改也落入 本发明的范围。
下述实验方法如无特别说明, 均为常规方法, 所使用的实验材料如无特别说 明, 均可容易地从商业公司获取。 实施例
实施例 1 Flkl+MSC获得及分化能力的验证
为了评估 Flkl+MSC的临床应用价值, 我们首先其分化能力进行了验证。
成人脂肪样品取自医科院整形医院, 成人骨髓样品取自解放军 307 医院。 所 有样品均签订知情同意书。
成人脂肪源间充质干细胞 (aMSCs) 的分离:
成人脂肪组织取自吸脂手术患者 (中国医学科学院整形医院), 与供者签订知 情同意书, 供者均为 25〜35 岁的健康女性。 从脂肪组织中分离 aMSCs的方法参照 Zuk等 [20]方法,并稍加改动。简述如下:采用吸脂术采集出来的脂肪组织用 D-Hanks 洗去血细胞和麻醉药, 0.2%Π 型胶原酶消化 1小时, 之后用 D-Hanks洗涤 2 次以除 去胶原酶。离心收集细胞,细胞以 2x l06/ml 的密度接种于含 58% DMEM/F12 + 40% MCDB-20K 5%胎牛血清 (FCS)、 10ng/ml EGF、 10ng/ml PDGF, l x胰岛素 -转铁 蛋白-亚硒酸(Insulin-Transferrin- Selenium, ITS)、 l x亚油酸-牛血清白蛋白(linoleic acid-bovine serum albumin, LA-BSA) , 50μΜ β巯基乙醇, 2mM L-谷氨酰胺, 10(^g/ml 青霉素和 100U/ml硫酸链霉素的培养液, 37°C、 5%C02、 95%湿度的培 养箱培养。 2天后换液, 弃去未贴壁的细胞, 以后每 3天半量换液。 当细胞达 70%〜80%汇合时, 0.25%胰酶(Gibco 公司)常规消化, 细胞按照 1 : 3 进行传代。
成人骨髓源间充质干细胞 (bMSCs) 的分离:
( 1 ) 无菌采集健康志愿者的骨髓 5-10 ml 于无菌的肝素管中。
(2)取一无菌的离心管, 用 D-Hanks 液适当稀释骨髓后计数, 并调整骨髓细 胞浓度至 l X 107/ml。
( 3 )取一新的离心管, 分别加入恢复至室温的淋巴细胞分离液和上述骨髓细 胞悬液, 加入时仔细操作勿破坏界面, 二者的比例为 1 : 1。
(4)将上述离心管配平后放入常温台式离心机中, 20°C以 1800 转 /分钟的速 度离心 20分钟。 取出离心管后, 无菌操作仔细吸取白膜层即获得了单个核细胞, 将单个核细胞用 D-Hanks 液洗涤两次并计数。
( 5 )将上述单个核细胞以 l X 106/cm2 的密度接种于 25cm2 的培养瓶中, 细胞 培养体系均为含 58% DMEM/F12 + 40% MCDB-201、 2%胎牛血清(FCS)、 10ng/ml EGF、 10ng/ml PDGF, l 胰岛素 -转铁蛋白-亚硒酸 (Insulin-Transferrin-Selenium, ITS)、 l x亚油酸-牛血清白蛋白(linoleic acid-bovine serum albumin, LA-BSA), 50μΜ β巯基乙醇, 2mM L-谷氨酰胺, 100μ§/ηι1青霉素和 100U/ml硫酸链霉素的培养液, 37°C、 5%C02、 95%湿度的培养箱培养。
( 6) 24小时后, 去除悬浮细胞, 补充培养基, 细胞每隔三天换液一次, 待细 胞长至 70-80%汇合时, 用 0.05%胰蛋白酶 -0.01%EDTA消化传代。 1-2代的间充质 干细胞冻存于液氮罐备用。
通过极限稀释法, 以 1个细胞 /孔的密度将 aMSC和 bMSC接种于 96孔板中, 三 周后观察约有 24.55%±0.66%的孔长出了单克隆。 将这些单克隆进一步扩增后作为 种子细胞, 4-6h细胞完全贴壁后加入 1号诱导培养基(20ng/ml 活化素 A+200ng/ml wnt3a+ 20% FBS+HG-DMEM) 诱导 1天后, 更换 2号诱导培养基 (20ng/ml 活化素 Α+100μΜ RA+ 20%FBS+HG-DMEM) 继续诱导培养 4天, 获得 Flkl+MSC。 将获得 的具有上皮样形态的 FM+MSC进行 RT-PCR检测、 免疫细胞荧光染色检测 (检测 Foxa2、 Soxl7、 Kdr、 Tbx6、 Eomes、 Gsc、 T、 Soxl、 Pax6 ) 禾口 Western Blot检测 (检测 Foxa2、 Soxl7、 T、 Gsc、 Epcam、 Vimatin) , 结果表明获得的 Flkl+MSC具 有三胚层分化潜能重要基因表型标志 (限定性的内胚层: Foxa2、 Soxl7; 中内胚 层: Gsc、 T、 Eomes; 中胚层: KDR、 TBX6; 外胚层: Soxl、 Pax6 ) , 并且具 有较高的诱导效率 (Foxa2、 Soxl7阳性的限定性内胚层细胞效率达到 90%以上) , 结果如图 8至图 11所示。
将获得的 Flkl+MSC分成 6等份, 分别向肝上皮、 神经、 造血、 成脂肪及成骨谱 系诱导分化, 另一份细胞继续扩增后用于各谱系分化的对照 (图 1A) 。 诱导 14天 后, 光镜下可见成脂诱导组细胞胞浆内充满了脂肪滴, 油红 0染色阳性率达 80%, 实时定量 PCR检测显示成脂标志基因 AP2及 LPL高表达 (图 1B) ; 成骨诱导组 ALP 及茜素红染色阳性率达 65%, 实时定量 PCR检测显示, 成骨标志基因 ALP和 OPN表 达较诱导前明显上调 (图 IB) 。 Flkl+MSC向造血方向诱导第 3天, 造血相关的标 志分子 Osteocalcin (OC) 、 c-Kit和 CD34染色阳性, 诱导 14天时可见 BFU-E (红系 爆式集落形成单位) 、 CFU-G (巨嗜细胞集落形成单位) 、 CFU-MK (巨核细胞集 落形成单位) 和 HPP-CFC (高增殖潜能细胞集落形成单位) 等各系造血集落的形 成 (图 1C) 。 诱导第 21天, 肝上皮诱导组细胞 CK8、 CK18和 CK19免疫组化检测 阳性 (图 1D)。 诱导第 12天, 神经诱导组细胞 Nestin和 Musashi免疫组化检测阳性 (图 1E)。上述结果表明, Flkl+MSC在一定的诱导条件下能够向肝上皮、神经、造 血及成脂和成骨等不同胚层来源的多谱系方向分化。 实施例 2分化相关基因组蛋白 H3K4me3和 H3K27me3的不同修饰状态与干 细胞的分化潜能密切相关
验证了 Flkl+MSC具有向肝上皮、 神经、 造血、 成脂及成骨等多胚层谱系分化 能力后,我们进一步利用 ChIP检测技术与生物信息学分析相结合的方法(ChlP-seq) 获得了 Flkl+MSC全基因组组蛋白甲基化修饰谱。
H3K4me3 (Abeam 8580) 禾卩 H3K27me3 (Upstate 07-449) 的 ChIP实验按照 EZ ChIP™ kit (Millipore) 的标准操作方法进行
基本过程如下:
1. 染色质样本准备和免疫选择
( 1 ) 培养细胞, 1%甲醛固定, 使蛋白和 DNA交联, 室温 10分钟,
(2)裂解和超声(Branson 250D 超声仪)处理细胞,染色质片段在 200-1000bp, (3 )免疫选择;用特异抗体, H3K4me3 (Abeam 8580)和 H3K27me3 (Upstate
07-449)。
2. DNA纯化和检测
(4) 分离纯化 DNA, 去除蛋白质, 65°C孵育去除蛋白 -DNA交联,
(5 )针对目的基因设计特异性引物, 利用 PCR或 real-time PCR对 DNA序列 进行鉴定。
阳性对照; anti-R A Polymerase II, 所有活化转录的基因启动子区都有结合。
阴性对照;
抗同一种属来源的正常 IgG。
对照引物; GAPDH基因的启动子区。
3. 免疫沉淀 (IP) 交联物
开始前准备: 将蛋白酶抑制剂 Cocktail II放置室温溶解, 该试剂含 DMSO, 在 18.4 °C以下时仍处于冰冻状态。
( 6 ) 制备含蛋白酶抑制剂的 Dilution buffer, 放置在冰上。
每个 IP 需要 900 ul Dilution Buffer加 4.5ul PI Cocktail。
样品包括阳性对照(抗 R A polymerase Π)、阴性对照(正常的相同物种 IgG) 和目的蛋白。 阴性对照 IgG 建议与目的蛋白抗体来源的物种一致。
( 7) 将制备的含 lOOul产物的 EP管放冰上, 进行染色质免疫沉淀 (IP)。 冻 存的样品需提前冰上溶解。
如果同一份染色质产物要进行多个 IP, 可将产物放在一个大管内 (能容纳 1.1ml溶液的 EP管)。
每 lOOul产物需含有大约 2 X 106细胞来源的染色质。
( 8 ) 每 lOOul染色质产物中加入 900ul含 PI cocktail的 Dilution Buffer。
如果有多分 IP, 加入相应数量的 Dilution Buffer。
( 9) 每个 IP加入 60ul Protein G Agarose。
Protein G Agarose是 50%浆液, 使用前颠倒轻轻混匀。
这一步是 "preclear"染色质, 去除非特异结合 Protein G Agarose的蛋白和 多分合并处理时加相应数量的 Protein G Agarose。
( 10) 4°C旋转孵育 1小时。
( 11 ) 3000-5000g离心 1分钟, 沉淀 agarose。
不要高速离心 Protein G Agarose。 离心力太大, 可能造成 beads粉碎或变形。
( 12) 取 lOul ( 1%) 上清作为 Input, 保存在 4°C, 待第 5步进行处理。
多个样本同时处理时, 各取 1%的染色质样本做 Input.
( 13 ) 收集上清液 lml转移至新的 EP管。
( 14) 在上清液中加入免疫沉淀的抗体。
阳性对照管, 力 B l .Oug抗 -R A polymerase抗体。
阴性对照管, 加 l .Oug正常的相同物种 IgG。
检测管加 Ι-lOug抗体。 加抗体的量需要根据以往经验确定。
( 15 ) 4°C旋转孵育过夜。 IP的孵育时间可以縮短, 主要取决于抗体、 靶基因 和细胞类型等多个因素。
( 16) 加 60ul Protein G Agarose, 4°C旋转孵育 1小时。 (17) 3000-5000g离心 1分钟, 沉淀 agarose, 去上清。
( 18) 用以下溶液每个 1ml依次洗 Protein G Agarose/染色质复合物, 重悬后, 旋转孵育 3-5分钟, 低速离心 3000-5000g离心 1分钟, 小心去除上清。
a. Low salt immune Complex Wash Buffer, 一次;
b. High Salt Immune Complex Wash Buffer, —次;
c. LiCl Immune Complex Wash Buffer, 一次;
d. TE Buffer, 二次。
4. 蛋白 /DNA复合物洗脱
开始前准备:
将 IM NaHC03 放置至室温。 可能会有少量沉淀, 等恢复到室温后, 沉淀可 溶解。 1 M NaHC03可漩涡混匀。
准备 65°C水浴。
(1) 为所有 IP管准备 Elution buffer, 包括 Input管 (见节 3, 步骤 7)。 每管 需 200ul Elution buffer,配制方法: lOul 20%SDS, 20ul IM NaHC03,加 170ul dH20。
(2) 或者可以在大管中一起配制, 如有 10个 IP 管, 可将 105ul 20%SDS, 210ul IM NaHC03, 力 B 1.785ul dH20混合.
( 3 ) Input管加入 200 ul Elution buffer后, 放置室温第 5步继续处理。
( 4 ) 每管抗体 /agarose复合物中加 100ul Elution buffer, 轻弹混匀。
(5) 室温孵育 15分钟。
(6) 3000-5000g离心 1分钟以沉淀 agarose, 将上清液收集到新的 EP管中。
(7) 重复步骤 (4) 到 (6), 将洗脱液合并, 总体积 200ul。
5. 蛋白 /DNA去交联, 获得游离 DNA
(1) 所有管 (包括 IPs和 Inputs)加入 8ul 5MNaCl, 65°C孵育 4到 5小时或 过夜, 以去除 DNA-蛋白交联。 完成后样本可储存在 -20°C, 隔天继续进行后续实
(2) 所有管中加 lulR aseA, 37°C孵育 30分钟。
(3) 力 B 4ul 0.5M EDTA, 8ul IM Tris-HCl和 lul 蛋白酶 K, 45°C孵育 1-2小
6. 用 Spin Columns纯化 DNA
( 1 )每个样品准备一个收集管和一个分离管。将 Spin Column放入收集管中。
(2) 每 200 ul DNA样品加 1ml Bind Reagent A, 混匀。
所加 Bind Reagent A的量为样品体积的 5倍。
可见到沉淀, 但不会影响本步骤。
( 3 ) 将 600ul样品 / Bind Reagent A混合物加到收集管的 Spin滤器上。
(4) >10,000g离心 30秒。
(5) 移开 Spin滤器, 弃去收集管中的液体, 保留收集管。 如果步骤 2中见沉淀, 本步骤收集管底可见沉淀, 但不会影响实验。
(6) 将 Spin滤器重新放入收集管。
(7)将步骤 2中的样品 / Bind Reagent A混合物 600ul加入 Spin滤器, 重复步 骤 (4) 到 (6)。
( 8) 在收集管的 Spin滤器中加入 500ul Wash Reagent B。
(9) >10,000g离心 30秒。
( 10) 从收集管中移出 Spin滤器, 弃去收集管中的液体, 保留收集管。
( 11 ) 将 Spin滤器重新放入原收集管。
( 12) >10,000g离心 30秒。
( 13 ) 弃去收集管和液体。
( 14) 将 Spin滤器放入收集管中。
( 15 ) 直接在白色 Spin滤膜的中央, 加入 50ul Elution Buffer C。
( 16) >10,000g离心 30秒。
( 17) 弃去 Spin滤器。 洗出液为纯化的 DNA。 可立即分析或 -20°C冻存。 7. 对照 PCR
注意: 本部分所有枪和枪尖要尽可能避免污染。
( 1 ) 在 0.2ml PCR管上做好标记, 放冰上。
使用本试剂盒, 至少有 4个 DNA样品要用对照引物进行 PCR分析, 包括阳 性和阴性对照抗体的 IP物, Input和无 DNA得空管作为有无 DNA污染的对照管。
对照引物是针对特异性人 GAPDH基因。 针对其它物质, 建议使用者根据经 验设计特异的引物。
(2) 每管加 2ul样品, 放回冰上。
(3 ) 每个反应管中加入合适数量的试剂, 根据表格 1, 依次加入水, Taq酶 等。
推荐使用热启动 Taq酶。 如果没有使用热启动 Taq酶, 建议起始变性步骤后 再加入 Taq酶。
8. 将上述 ChiP获得的所有与 H3K4me3和 /H3K27me3抗体结合的 DNA样 品进行高通量测序即为 ChlP-Seq技术。
9. 设计针对目的基因特异的引物, 以上述 ChiP获得的所有与 H3K4me3和 /H3K27me3抗体结合的 DNA样品作为底物, 进行 PCR反应, 此为 ChlP-PCR技 术。
根据人类基因组数据库 (Hgl8)进行校正后得到的 Flkl+MSC全基因组组蛋白 K4和 K27位点的甲基化修饰状态。我们选取了 ESC (胚胎干细胞)、 Flkl+MSC、 HSC (造血干细胞) 和 HPC (造血祖细胞) 等具有不同分化潜能的干细胞作为研究对 象 [21, 22], 分析比较了这些干细胞中亚全能性基因和肝上皮、 神经、 造血、 成脂 及成骨等谱系分化相关基因的组蛋白甲基化修饰状态。 对亚全能性基因组蛋白甲基化修饰的分析发现, ESC中 Oct4、 Nanog、 c-Myc、 Sall4和 Sox2均为 H3K4me3活化修饰, Klf4为 H3K4me3 禾卩 H3K27me3共存的双价 修饰; Flkl+MSC中 c-Myc和 Klf4为 H3K4me3活化修饰, Sall4和 Sox2为双价修饰, Oct4和 Nanog基本无修饰信号; HSC和 HPC中除了被认为与细胞周期关系密切的 c-Myc为活化修饰外,其它亚全能基因均为 H3K27me3抑制修饰或无修饰(图 2A) 。 外胚层早期分化相关基因包括 Hoxal、 Gbx2、 Sixl 和 01ig3; 中内胚层早期分化相 关基因 T、 Pgdfr α、 Eomes、 Tbx6 禾卩 Mixll ,中胚层早期分化相关基因 Kdr、 Handl Gata4 禾卩 Mesp2, 限定性内胚层早期分化相关基因 Onecutl、 Proxl、 Foxal、 Foxa2、 Sox7、 Soxl7、 Pdxl 和 Gsc等在 ESC及 Flkl+MSC中组蛋白甲基化修饰非常相似, 大部分均为 K4活化或双价修饰状态 (图 2B, 2C, 2D 和 2E) 。 目前文献报道与神 经分化相关的基因主要有 Bm2、 MytlL、 Zicl、 Neurog2、 Hesl、 Dlxl、 Pax6、 Tlx2、 Msil、 Gfral、 Gfra3、 Mapt、 Nes和 01ig2等 22个转录因子 [23-25]。 ChlP-seq数据分 析显示, 在 ESCs中有 17个基因表现为 H3K4me3修饰或双价修饰状态; 在 Flkl+MSC 中的分析结果与 ESC中相似; 而且分析结果显示, 与神经分化启动相关的三个基因 Nes、 Msil和 Hesl, 它们在 ESC及 Flkl+MSC中的组蛋白修饰状态均为 H3K4me3活 化状态; 但在 HSC和 HPC中, 这些基因一部分表现为 H3K27me3抑制性修饰, 其它 的均未检测到修饰信号 (图 2F) 。
接下来, 我们又比较了上述干细胞中中胚层相关谱系成脂、 成骨及造血分化 相关基因的组蛋白修饰状态。 结果显示, 成脂性关键转录因子 C/ΕΒΡα和 ΡΡΑΙ γ在 Flkl+MSC中是 H3K4me3活化修饰, 而在 ESC中是双价修饰; 它们上游的调节因子 ERK5、 BMP2、 GSK3a GSK3p C/ΕΒΡδ 禾口 C/ΕΒΡβ在 ESC及 Flkl+MSC中的组蛋 白修饰相似; 同样, 在 HSC和 HPC中这些基因的组蛋白修饰亦为 H3K27me3抑制状 态或无修饰 (图 3A) 。 对成骨相关基因的组蛋白甲基化分析得到了类似的结果, 即成骨关键转录因子 RUNX2在 Flkl+MSC中为 H3K4me3活化修饰,而在 ESC中为双 价修饰; Runx2上游的调控因子 BMP2、BMP4、Smad5、TAZ、MSX2、DLX5和 Wnt5a 等在两种细胞中的组蛋白甲基化修饰相似 (图 3B) 。 造血分化相关基因 c-Myb、 EGR1、 FOG1 (ZFPM1 ) 、 SCL (TALI ) 、 E47 (TCF3 ) 、 Ikaros (IKZF1 ) 、 Gatal 和 BCL-6等组蛋白甲基化修饰分析显示, c-Myb、 EGR1、 E47和 BCL-6在四种干 / 祖细胞中均为 H3K4me3活化修饰状态; FOGl、 SCL和 Ikaros在 ESC禾 BFlkl+MSC中 为双价修饰, 而在 HSC和 HPC中为 H3K4me3活化性修饰; Gatal在 ESC禾 BFlkl+MSC 中显示为抑制性修饰或无修饰, 在 HSC和 HPC中则为 H3K4me3活化性修饰 (图 4A) 。
进一步对内胚层肝上皮谱系相关基因的分析显示, MxilK Gsc、 Soxl7 ProxK Hnfl β、 Hnf6、 E-cadherin Foxal和 Foxa2等在 ESC中均为活化或双价修饰; 其中 Mxill、 Gsc、 Soxl7、 Hnf6、 Proxl 和 Foxal在 Flkl+MSC中亦为活化或双价修饰, 与 Foxal作用相似的 Foxa2为 H3K27me3抑制修饰, 上皮性标志分子 E-cadherin 的上 游调控因子 Snail则为活化信号; 在 HSC中除 Mxill有较弱的活化性修饰信号外, 其 它肝上皮分化相关基因组蛋白均为 H3K27me3抑制信号或无修饰; 而在 HPC中, 所 有肝性基因均为 H3K27me3抑制信号或无修饰 (图 4B) 。
全基因组组蛋白修饰的分析比较显示, ESCs中六个基因有五个是活化修饰, 一个为双价修饰, 向各胚层分化的关键转录因子的组蛋白甲基化状态总体上以 H3K4me3活化或双价修饰为主; Flkl+MSCs中六个基因有两个是活化修饰, 四个是 双价修饰。 HSCs中几乎所有造血分化相关基因均以活化修饰为主外, 其它谱系方 向相关基因则以 H3K27me3或无修饰信号为主。 HPCs中其它谱系相关基因均为 H3K27me3抑制修饰或无修饰信号, 而造血分化相关基因均为 H3K4me3活化修饰, 而且其活化信号较 HSC强; 造血谱系定向分化相关因子 Gatal在 ESCs、 Flkl+MSCs 和 HSCs中显示为抑制或无修饰, 但在造血祖细胞中为 H3K4me3活化修饰。 推测它 是在多能干细胞向造血分化到造血祖细胞阶段被活化修饰, 以利于造血谱系进一 步的定向分化。 整体上看, 从 ESC、 Flkl+MSC、 HSC到 HPC, 造血分化相关基因 组蛋白甲基化修饰状态基本是一个 H3K27me3抑制性修饰逐渐消失、 H3K4me3活化 性修饰信号逐渐增强的过程, 而其它非造血相关谱系则表现为活化性修饰减弱而 抑制性修饰信号 (包括 H3K27me3及无修饰, 这两种情况都导致基因沉默) 增强。 先前已有大量的研究证明, ESCs具有向所有胚层所有谱系分化的全能性, 而本发 明的实验证明, Flkl+MSCs 具有向肝上皮、 神经、 造血、 血管内皮、 成脂和成骨 等多胚层多谱系分化的亚全能性。 HSCs 只有向造血相关谱系分化的能力, HPCs 是较 HSCs更进一步定向与造血谱系分化的细胞, HSC和 HPC中各谱系分化相关 基因不同组蛋白修饰状态的分析结果及这些干细胞不同的分化潜能提示我们: 随 着多能性等级的下降, 组蛋白甲基化修饰状态的改变, 干细胞逐渐丢失其分化的 全能性 (ESC) 转变成具有亚全能性 (Flkl+MSCs) 或仅具有单一胚层 (HSC) 甚 至单一谱系分化的能力 (祖细胞) 的细胞。 分化相关基因组蛋白 H3K4me3 和 H3K27me3修饰状态与干细胞的分化潜能密切相关,可作为预测干细胞分化潜能的 表观遗传修饰标签。 实施例 3谱系分化相关基因组蛋白 H3K4me3和 H3K27me3修饰状态的分 析可用来预测干细胞分化潜能
为了进一步验证分化相关基因组蛋白 H3K4me3 和 H3K27me3修饰状态与干 细胞的分化潜能的相关性, 我们利用 ChlP-PCR进一步对脂肪来源 MSC (aMSC) 和骨髓来源 MSC (bMSC) 的成脂和成骨谱系分化相关基因的组蛋白修饰进行了 分析, 并与它们向上述两种谱系分化的能力进行了比较。 组蛋白甲基化分析的结 果显示, aMSC中成骨性基因 RUNX2、 BMP2、 Smad5、 TAZ、 Wnt5a禾 B BMPR2 为活化修饰, MSX2和 BMP4为双价修饰; bMSC中除了 MSX2为 H3K4me3占优 势的双价修饰外, 其它均为活化修饰(图 5A)。 aMSC中成脂性基因除 C/ΕΒΡ α为 双价修饰外, ERK5、 GSK3c GSK3p C/EBPS、 PPARy禾 B C/ΕΒΡβ均为活化性 修饰;而 bMSC中则以双价修饰为主(图 5B)。同样诱导条件下,对 aMSC和 bMSC 向成骨和成脂方向分化的比较显示,成骨诱导第 8天, aMSC和 bMSC分化比率分 别为 50%和 65%, 标志基因 ALP和 OPN表达有统计学差异; 成脂诱导第 8天, aMSC和 bMSC分化比率分别为 80%和 27%,标志基因 LPL和 AP2表达有显著差 异 (图 5C)。
由此可见, 尽管两种不同来源的 MSC中成脂和成骨相关基因均为 H3K4me3 或双价修饰, 但 aMSC中成脂相关基因 H3K4me3修饰所占比率明显高于 bMSC, 这与 bMSC比 aMSC难于向成脂谱系分化的结果相吻合; bMSC中成骨相关基因 组蛋白甲基化活化修饰与 aMSC差别不大, 这与观察到 bMSC和 aMSC向成骨谱 系分化能力相似的结果一致。对不同来源 MSC分化相关基因组蛋白修饰分析及分 化能力的比较结果进一步验证了谱系分化相关基因组蛋白 H3K4me3 和 H3K27me3 修饰状态的分析作为预测干细胞分化潜能的表观遗传修饰标签的可行 性。 实施例 4分化阶段相关基因组蛋白 H3K4me3和 H3K27me3修饰状态的动 态分析可用来预测细胞的分化程度
验证了组蛋白甲基化分析可作为预测干细胞分化潜能的表观遗传修饰标签之 后, 又利用 ChlP-PCR对 Flkl+MSCs分化前后相关转录因子组蛋白甲基化修饰的 动态变化进行了分析, 结果显示, Flkl+MSCs 向神经谱系分化过程中, 关键转录 因子 Pax6和 Neurog2 的组蛋白修饰状态从 H3K27me3抑制态转变为双价修饰, Neurod2从 H3K27me3抑制态变为活化态, Gfra2从双价态变为活化态, Tlx2 和 Msil则从双价的 K27修饰占优势变为 K4占优势状态, Gfral则从无修饰状态变为 双价态; Neurog2、 Pax6、 Tlx2、 Neurod2 禾卩 Msil的表达明显上调。 Flkl+MSCs 向成脂谱系分化过程中, 伴随早期成脂性转录因子 C/ΕΒΡβ和 C/ΕΒΡδ表达短暂上 调, 它们的组蛋白修饰状态从 H3K4me3活化态变成双价态, 调节因子 GSK3P表 达量升高后维持在较高水平, 其组蛋白修饰亦维持 H3K4me3持续活化态; 这些基 因的下游效应分子 PPARY保持持续活化态, 而 C/EBPct则从双价态变为激活态, 随着 PPARY和 C/ΕΒΡα表达持续升高, 成脂分化顺利进行, 标志基因 LPL和 AP2 表达明显增加。 Flkl+MSCs 向成骨谱系分化过程中, 伴随早期调控基因组蛋白修 饰从 H3K4me3到双价修饰的变化, BMP2、 TAZ、 MSX2、 Smad5禾卩 BMPR2 亦 经历了从表达上调到诱导 4到 6天表达达峰值, 然后表达下调的动态过程, 这种 动态表达变化即确保了成骨分化的启动又有利用成骨细胞功能的进一步成熟; 成 骨关键性基因 RUNX2维持 H3K4me3活化态, 表达量持续升高 , 进一步促进了 其下游靶基因 OSX及成骨标志基因 ALP 和 OPN的表达。 有趣的是, 我们发现 Flkl+MSCs走向成脂分化时,成骨分化相关转录因子 RUNX2、 TAZ、 MSX2、 Smad5 和 BMPR2的组蛋白修饰从 H3K4me3活化态变为双价修饰, MSX2则从双价修饰 变为抑制态, 这些基因的表达均下调。 而当 Flkl+MSCs走向成骨分化时, 成脂分 化的关键转录因子 C/ΕΒΡβ、 C/ΕΒΡδ、 GSK3 β和 ΡΡ ΑΓΙγ等的组蛋白修饰从 H3K4me3 活化态变成双价态, C/ΕΒΡα则从双价态变为 H3K27me3抑制态, 这些基因的表达 亦降低。 而在 Flkl+MSCs 向成指或成骨谱系分化时, 神经分化相关的转录因子 MSI1、 TLX2 和 NES等的组蛋白修饰则进一步走向抑制。终末分化的成脂或成骨 细胞中该谱系分化相关的转录因子及标志基因的组蛋白修饰以 H3K4me3为主,而 其它谱系则表现为 H3K27me3。这些结果提示, Flkl+MSCs向特定谱系分化开始前, 某些未知机制使相关基因的组蛋白修饰状态发生改变, 以利于该谱系分化所需基 因的活化表达, 同时抑制或关闭其他谱系相关因子的表达, 从而使特定谱系分化 得以顺利进行。
由上述组蛋白修饰的动态分析可见, Flkl+MSCs 向神经、 成脂及成骨谱系分 化后, 该谱系相关转录因子组蛋白修饰表现为进一步活化 (即从抑制或无修饰到 双价、 从 K27 占优势的双价态到 K4 占优势的双价态、 从双价到活化态或保持持 续活化等方式), 各种方式的进一步活化的组蛋白修饰变化为特定谱系分化相关基 因的活化或表达上调提供了可能性。 不仅如此, 当 Flkl+MSCs向特定谱系分化启 动时, 该谱系分化相关基因组蛋白修饰进一步转向活化的同时, 其它谱系分化相 关转录因子的组蛋白则进一步转向抑制性修饰为主, 这样就很好的确保了干细胞 向特定谱系分化的专一性及分化效率。 总之, 在细胞向特定谱系分化过程中, 组 蛋白甲基化修饰亦发生着动态变化, 以满足开启不同分化阶段性事件相关基因活 化的需要。 对未知分化程度的细胞进行分化阶段相关基因的组蛋白甲基化修饰状 态进行分析就可评估此细胞所处的分化阶段。 因此, 组蛋白甲基化修饰状态的分 析可作为鉴定细胞分化阶段或成熟度的辅助指标。 讨论:
上述的研究结果表明, 不同级别干 /祖细胞细胞中各谱系分化关键基因的不同 组蛋白修饰状态与这些细胞所具有的分化潜能密切相关。 对未知分化潜能的干 /祖 细胞中组蛋白甲基化的分析可作为预测此类细胞分化潜能。 而且, 在特定谱系分 化启动前, 在某些未知机制的调控下, 组蛋白修饰状态会发生重新布局, 以利用 特定谱系分化相关基因的活化及保持其它谱系分化相关基因不被激活, 从而实现 了定向分化的特异性。 因此, 对分化阶段性相关基因的组蛋白甲基化修饰的分析 还可以用来鉴定细胞所处的分化阶段及成熟度。 因此我们提出, 分化相关基因组 蛋白 H3K4me3 和 H3K27me3修饰状态与干细胞的分化能力及分化阶段密切相关, 可以作为预测不同来源不同级别干细胞分化潜能及细胞分化阶段和成熟度的表观 遗传学标签。 这一发现为临床上更好的筛选和鉴定各种组织器官再生修复治疗所 需种子细胞提供了新的标准。 这种组蛋白甲基化标签比较容易得到: 首先, 利用 ChlP-seq 技术获得未知分化潜能干细胞的全基因组组蛋白甲基化修饰谱, 再根据 此干细胞应用的目的有针对性的选择分析某一 /些谱系分化相关基因的组蛋白 H3K4me3 禾 B H3K27me3修饰状态,进一步应用 ChlP-PCR技术对 ChlP-seq结果进 行验证, 即可对此干细胞是否具有向该谱系分化的能力作出预测。 另外还可通过 目前已经获得人类胚胎干细胞、 脂肪来源间充质干细胞、 造血干细胞、 造血祖细 胞及成熟 T细胞等不断丰富的网络数据库资源进行比对分析, 按照分化能力的差 别, 将未知分化能力的干细胞在以具有分化全能性的胚胎干细胞为塔尖的干细胞 等级金字塔上进行定位。 ChlP-seq技术获得全基因组组蛋白甲基化修饰谱后就可 简单快捷的预测此干细胞在适合的外界条件下或体内微环境下是否具有向目的谱 系分化的潜能。 同样, 利用 ChlP-seq或 ChlP-PCR技术对干细胞在某一谱系分化 过程中相关转录因子及阶段性分化标志基因的组蛋白甲基化修饰状态进行分析, 结合这些转录因子及标志基因的实时定量 PCR, 就可很好的对干细胞所处的具体 分化阶段进行鉴定 (注: 因组蛋白甲基化修饰的变化先与基因表达改变, 当某一 基因的组蛋白甲基化状态变为更加活化,包括双价修饰变成 H3K4me3活化修饰或 H3K27me3抑制修饰变成双价修饰,预示着这个基因将有进一步被活化的可能,而 该基因最终表达是否上调或上调程度受控于其上游的活化因子、 细胞因子或 miRNA等的调控)。 同时, 当干细胞向目的谱系分化时, 对其它谱系相关基因的组 蛋白修饰状态的变化分析还可鉴定干细胞是否专一性的向目的基因分化。
因此, 利用全基因组 ChlP-seq技术和 ChlP-PCR对相关基因组蛋白 H3K4me3 和 H3K27me3修饰状态进行分析, 联合相应的基因芯片结果, 针对不同谱系关键 转录因子制定组合性表观遗传学检测标签, 结合基因及非编码 R A等标志物的联 合应用, 有望成为临床上各种组织器官再生修复治疗所需种子细胞的筛选及分化 阶段和分化专一性鉴定的金标准。 参考文献
[l]Takahashi K. Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663-676.
[2] Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defned factors. Cell, 2007, 131(5): 861-872.
[3] Brazelton TR, Rossi FM, Keshet GI, Blau HM. From marrow to brain: expression of neuronal phenotypes in adult mice. Science, 2000, 290(5497): 1775-1779
[4] Jiang Y, jahagirdar BN, Reinardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 200, 418 (6893): 41-49.
[5] Jiang Y. Henderson D. Blackstad M. et al. Neuroectodermal differentiation from mosuse multipotent adult progenitor cells. Proc Natl Acad Sci U S A, 2003, 100 (supp 1): 11854-11860.
[6] Boggs, B.A., Cheung, P., Heard, E., Spector, D.L., Chinault, A.C., and Allis, CD. Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nat. Genet. 2002, 30: 73-76.
[7] Peters, A.H., Mermoud, J.E., O' Carroll, D., Pagani, M., Schweizer, D., Brockdorff, N., and Jenuwein, T. Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nat. Genet. 2002, 30: 77-80.
[8] Plath, K., Fang, J., Mlynarczyk-Evans, S.K., Cao, R., Worringer, K.A., Wang,
H., de la Cruz, C.C., Otte, A.P., Panning, B., and Zhang, Y. Role of histone H3 lysine 27 methylation in X inactivation. Science. 2003, 300: 131-135.
[9] Silva, J., Mak, W., Zvetkova, I., Appanah, R., Nesterova, T.B., Webster, Z., Peters, A.H., Jenuwein, T., Otte, A.P., and Brockdorff, N. Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enxl polycomb group complexes. Dev. Cell. 2003, 4:481-495.
[10] Barski, A., et al., High-resolution profiling of histone methylations in the human genome. Cell, 2007. 129(4): 823-37
[11] Martin, C., and Zhang, Y. . The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol. 2005, 6: 838-849.
[12] Schneider, R., Bannister, A.J., Myers, F.A., Thome, A.W., Crane-Robinson, C., and Kouzarides, T. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat. Cell Biol.2003, 6: 73-77.
[13] Schubeler, D., MacAlpine, D.M., Scalzo, D., Wirbelauer, C., Kooperberg, C., van Leeuwen, F., Gottschling, D.E., O'Neill, L.P., Turner, B.M., Delrow, J., et al. (2004). The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. 2004, Genes Dev. 18: 1263-1271.
[ 14] Bernstein, B.E., et al. , A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 2006. 125(2): 315-26.
[15] Xiao Dong Zhao, Xu Han, Joon Lin Chew, Jun Liu, Kuo Ping Chiu, Andre
Choo, Yuriy L. Orlov, Wing-Kin Sung, Atif Shahab, Vladimir A. Kuznetsov, Guillaume Bourque, Steve Oh, Yijun Ruan, Huck-Hui Ng, and Chia-Lin Wei. Whole-Genome Mapping of Histone H3Lys4and27 Trimethylations RevealsDistinctGenomic Compartments in Human Embryonic Stem Cells. Cell stem cell. 2007, 1 : 286-298.
[16] Pan, G., et al., Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell, 2007. 1(3): 299-312.
[17] Mikkelsen, T.S., et al., Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 2007. 448(7153): 553-560.
[18] "Newport, J. & Kirschner, M. A major developmental transition in early
Xenopus embryos: IL Control of the onset of transcription. Cell. 1982, 30: 687-696.
[19] Schier, A. F The mateni al-zygoti c trail si tion: death and birth of RNAs, Science, 2007; 316: 406-407.
[20] Tadros, W". & Lipshitz, H, £λ The matermd- to- zygotic transition; a play in two acts. Development, 2009, 136: 3033 -3042.
[21] Nadine L Vastenhomv, Yong Zhang, Ian G, Woods, Farhad lmam; Aviv Regev, X, Shirley Liu, John Rinn& Alexander F. Scliier. Chromatin signature of embryonic pkiripotency is established during genome activation, 2010, 464: 922—925.
[22] Roh, T.Y" Cuddapah, S" Cui? K" and Zhao, The genomic landscape of liistoiie modifications in human T cells. Proc, Nail Acad Sci. USA. 2006, 103, 15782 15787,
[23] Barski. A, and K. Zhao, Genomic location analysis by CMP- Seq. J Cell Biochem, 2009. 107(1): 11 8.
[24] Park, P. J., ChIP~seq: advantages and challenges of a maturing ieclmok)gy Nat Rev Genet., 2009 10(10): 669-680'

Claims

权利要求书
1、 一种亚全能干细胞产品, 其特征在于其具有上皮样形态、 Flkl+表型、 无成 瘤性且单克隆来源的该细胞在体外具有诱导分化成三胚层来源的组织细胞的能 力, 优选地, 该细胞中全能基因包括 Oct4、 Nanog、 c-Myc、 Sall4、 Sox2、 Klf4; 外胚层早期分化相关基因包括 Hoxal、 Gbx2、 Ski 和 01ig3 ; 中内胚层早期分 化相关基因 T、 Pgdfr a、 Eomes、 Tbx6 禾卩 Mixll ; 中胚层早期分化相关基因 Kdr、 Handl、Gata4 禾卩 Mesp2;限定性内胚层早期分化相关基因 Onecutl、 Proxl、Foxal、 Foxa2、 Sox7、 Soxl7、 Pdxl 和 Gsc 的甲基化修饰状态以活化及 H3K4me3 和 H3K27me3双价修饰为主。
2、一种产生根据权利要求 1所述的亚全能干细胞产品的方法,具有以下步骤:
A) 常规方法分离 aMSC或 bMSC或其他组织来源的间充质干细胞,
B) 以 1个细胞 /孔的密度将 aMSC或 bMSC或其他组织来源的间充质干细胞 接种于 96孔板中, 待长出单克隆后, 将这些单克隆进一步扩增,
C)将单克隆进一步扩增后的细胞作为种子细胞, 4-6h细胞完全贴壁后加入 1 号诱导培养基诱导 1天后, 更换 2号诱导培养基继续诱导培养 4天, 获得亚全能 干细胞, 即 Flkl阳性的 MSC, 所述 1号诱导培养基包含 1-lOOng/ml 活化素 A+l-500ng/ml Wnt3a+ 0. 1-20% FBS+HG- DMEM, 优选地, 5-50ng/ml活化素 A, 更 优选地, 10_30ng/ml活化素 A; 优选地, 50_300ng/ml Wnt3a, 更优选地,
100-300ng/ml Wnt3a; 优选地, 2-10% FBS, 更优选地, 5-8% FBS, 所述 2号诱导 培养基包含 l-100ng/ml活化素 Α+1_500 μ Μ RA+0. 1_50%FBS+HG_DMEM, 5_50ng/ml 活化素 A, 更优选地, 10_30ng/ml活化素 A; 优选地, 20-400 μ M RA, 更优选地, 50-200 μ Μ RA, 将获得的具有上皮样形态的亚全能干细胞进行 RT-PCR检测、 免 疫细胞荧光染色检测和 Western Blot检测, 其中所述免疫细胞荧光染色检测的指 标包括 Foxa2、 Soxl7、 Kdr、 Tbx6、 Eomes、 Gsc、 T、 Soxl、 Pax6,所述 Western Blot 检测的指标包括 Foxa2、 Soxl7、 T、 Gsc、 Epcam, Vimatin, 检测获得的干细胞是 否具有三胚层分化潜能重要基因表型标志, 即限定性的内胚层: Foxa2、 Soxl7; 中内胚层: Gsc、 T、 Eomes ; 中胚层: Kdr、 Tbx6; 外胚层: Soxl、 Pax6, 并且具 有较高的诱导效率, Foxa2、 Soxl7阳性的限定性内胚层细胞效率达到 90%以上。
3、 一种检测干细胞产品是否为亚全能干细胞产品的方法, 其包括下述步骤:
1 ) 获取目标干细胞, 检测其细胞形态是否为上皮样形态;
2) 检测其 Flkl是否呈阳性;
3 ) RT-PCR、 免疫细胞荧光染色和 Western Blot方法检测其分化能力, 其中所 述免疫细胞荧光染色检测的指标包括 Foxa2、 Soxl7、 Kdr、 Tbx6、 Eomes Gsc、 T、 Soxl、 Pax6, 所述 Western Blot检测的指标包括 Foxa2、 Soxl7、 T、 Gsc、 Epcam、 Vimatin;
4) 将其移植入 SCID小鼠检测是否导致畸胎瘤;
5 )对其进行向三胚层多谱系的诱导分化; 神经诱导分化: DMEM/F12 (DF12) 1 :1 基础培养基中加入 N2/B27、 20 ng/ml EGF和 50 ng/ml IGF-1, 诱导两周后加入
30 ng/ml NT3禾口 10 ng/ml bFGF, 两周后力口人 30 ng/ml NT3禾口 10 ng/ml BDNF 再 诱导 7天;成脂分化: DMEM基础培养基加入 10% FCS、1 μ Μ地塞米松、 0.5 mM IBMX、 I mM抗坏血酸诱导 8天; 成骨分化: DMEM基础培养基加入 10% FCS、 10 mM β -甘油磷酸钠、 10 ηΜ地塞米松和 0.2 mM抗坏血酸诱导 8天; 肝上皮诱 导分化: 基础培养基中加入 20 ng/ml HGF、 10 ng/ml FGF-4、 20 ng/ml EGF和 2% FBS诱导 3周; 造血细胞诱导分化: 基础培养基中加入 150 ng/ mL SCF和 200 ng/ mL G-CSF诱导 7天, 收集细胞, 接种在无血清甲基纤维素半固体培养基中, 该培 养基含 1% BSA, 50 ng/mL BMP-4, 50 ng/mL IL-6, 50 ng/mL SCF, 50 ng/mL Flt-3L, 10 ng/mL G-CSF, 10 ng/mL TPO; 10 g/mL EPO, 200 ^glmL 转铁蛋白, 2 mM L_谷 氨酰胺, O.l mM P-mercaptoethanol, 1%非必需氨基酸, 诱导 9天, 收集的细胞, 洗 去甲基纤维素, 计数 5000个细胞, 重新接种在含血清的甲基纤维素半固体培养基 中再诱导 14天;
6)检测所述干细胞中亚全能及组织分化相关基因组蛋白甲基化状态以预测其 分化潜能, 方法如下:
①使用特异性抗组蛋白 H3第 4位赖氨酸三甲基化和抗组蛋白 H3第 27位赖 氨酸三甲基化的抗体以 ChIP技术获得所述干细胞中所有与所述抗体结合的 DNA 样品;
②将 ChIP获得的 DNA样品进行高通量测序以获取目标干细胞的全基因组组 蛋白甲基化修饰谱和 /或设计特异于目的基因的引物, 以上述 DNA样品作为底物, 进行 PCR反应以获取目的基因的组蛋白甲基化修饰状态,
其中, 目标基因属于组蛋白 H3第 4位赖氨酸三甲基化修饰或组蛋白 H3第 4 位赖氨酸三甲基化修饰和组蛋白 H3第 27位赖氨酸三甲基化修饰共存则指示目标 干细胞具有分化到目的基因所指示的特定细胞类型的能力。 4、 根据权利要求 3所述的检测干细胞产品是否为亚全能干细胞产品的方法, 其特征在于所述目的基因选自亚全能基因、 三胚层早期分化基因、 神经分化相关 基因、 成脂性基因、 成骨性基因、 造血相关基因或肝上皮分化相关基因的一种谱 系、 多种谱系或包括其他谱系的全部分化相关转录因子, 其中全能基因包括 Oct4、 Nanog、 c-Myc、 Sall4、 Sox2、 Klf4; 外胚层早期分化相关基因包括 Hoxal、 Gbx2、 Sixl 和 01ig3; 中内胚层早期分化相关基因 T、 Pgdfr a、 Eomes、 Tbx6 禾卩 Mixll ; 中胚层早期分化相关基因 Kdr、 HandK Gata4 和 Mesp2; 限定性内胚层早期分化 相关基因 Onecutl、 Proxl、 Foxal、 Foxa2、 Sox7、 Soxl7、 Pdxl 禾卩 Gsc, 神经 分化相关基因包括 Tubb3、 Nkx2-2、 Soxl、 NeurogK Ascll、 Bm2、 MytlK Zicl、 Neurog2、 Hesl、 Dlxl、 Pax6、 Tlx2、 Msil、 Gfral、 Gfra3、 Mapt、 Nes、 01ig2、 Neurodl、 Neurod2, 成脂性基因包括 C/EBP a、 PPAR y ERK5、 GSK3 a、 GSK3 β、 C/EBP δ、 C/EBP β, 成骨性基因包括 RUNX2、 BMP4、 Smad5、 TAZ、 MSX2、 DLX5、 BMPR2、 Wnt5a, 造血相关基因包括 c-Myb、 EGR1、 FOGl、 SCL、 E47、 Ikaros、 Gatal、 BCL-6 , 肝上皮分化相关基因包括 Mxill、 Gsc、 Soxl7、 Proxl、 Hnfl β、 Hnf6、 E-cadherin Foxal Foxa2、 Snail、 Neurog2 Gfra2。 5、一种亚全能性基因和 /或分化相关基因的组蛋白修饰状态作为预测干细胞分 化潜能的表观遗传修饰标签的用途, 其中通过检测所述亚全能性基因和 /或分化相 关基因的组蛋白甲基化修饰状态预测干细胞的分化潜能。
6、根据权利要求 5所述的亚全能性基因和 /或分化相关基因的组蛋白修饰状态 作为预测干细胞分化潜能的表观遗传修饰标签的用途, 其特征在于通过检测特定 谱系分化阶段性转录因子及标志基因的组蛋白甲基化修饰状态鉴定该细胞所处的 分化阶段。
7、根据权利要求 5所述的亚全能性基因和 /或分化相关基因的组蛋白修饰状态 作为预测干细胞分化潜能的表观遗传修饰标签的用途, 其特征在于分析启动其它 非目标谱系分化相关基因的组蛋白修饰状态变化鉴定细胞向目标谱系分化的专一 性。
8、根据权利要求 5至 7任一项所述的亚全能性基因和 /或分化相关基因的组蛋 白修饰状态作为预测干细胞分化潜能的表观遗传修饰标签的用途, 其特征在于所 述组蛋白甲基化修饰为组蛋白 H3第 4位赖氨酸三甲基化修饰或组蛋白 H3第 4位 赖氨酸三甲基化修饰与组蛋白 H3第 27位赖氨酸三甲基化修饰并存。
9、根据权利要求 5至 8任一项所述的亚全能性基因和 /或分化相关基因的组蛋 白修饰状态作为预测干细胞分化潜能的表观遗传修饰标签的用途, 其特征在于亚 全能性基因和 /或分化相关基因选自全能基因、 三胚层早期分化相关基因、 神经分 化相关基因、 成脂性基因、 成骨性基因、 造血相关基因或肝上皮分化相关基因的 一种谱系、 多种谱系或包括其他谱系的全部分化相关转录因子, 其中基因包括 Oct4、 Nanog、 c-Myc、 Sall4、 Sox2、 Klf4; 外胚层早期分化相关基因包括 Hoxal、 Gbx2、 Sixl 和 01ig3 ; 中内胚层早期分化相关基因 T、 Pgdfr a、 Eomes、 Tbx6 和 Mixll; 中胚层早期分化相关基因 Kdr、 HandK Gata4 禾 B Mesp2; 限定性内胚层 早期分化相关基因 Onecutl、 Proxl、 Foxal、 Foxa2、 Sox7、 Soxl7、 Pdxl 禾卩 Gsc, 神经分化相关基因包括 Tubb3、 Nkx2-2、 Soxl、 NeurogK Ascll Bm2、 MytlK Zicl、 Neurog2、 Hesl、 Dlxl、 Pax6、 Tlx2、 Msil、 Gfral、 Gfra3、 Mapt、 Nes、 01ig2、 Neurodl、 Neurod2, 成脂性基因包括 C/EBP a、 PPAR y ERK5、 GSK3 a、 GSK3 β、 C/EBP δ、 C/EBP β, 成骨性基因包括 RUNX2、 BMP4、 Smad5、 TAZ、 MSX2、 DLX5、 BMPR2、 Wnt5a, 造血相关基因包括 c-Myb、 EGR1、 FOGl、 SCL、 E47、 Ikaros、 Gatal、 BCL-6, 肝上皮分化相关基因包括 Mxill、 Gsc、 Soxl7、 Proxl、 Hnfl β、 Hnf6、 E-cadherin Foxal Foxa2、 Snail、 Neurog2 Gfra2。
10、 根据权利要求 5至 9任一项所述的亚全能性基因和 /或分化相关基因的组 蛋白修饰状态作为预测干细胞分化潜能的表观遗传修饰标签的用途, 其特征在于 检测所述亚全能性基因和 /或分化相关基因的组蛋白甲基化修饰状态时使用
ChlP-seq或 ChIP-PCR。
11、根据权利要求 5至 10任一项所述的亚全能性基因和 /或分化相关基因的组 蛋白修饰状态作为预测干细胞分化潜能的表观遗传修饰标签的用途, 其特征在于 所述亚全能性基因和 /或分化相关基因的不同组蛋白甲基化状态指示了干细胞的不 同分化潜能,某谱系分化相关基因组蛋白甲基化修饰是组蛋白 H3第 4位赖氨酸三 甲基化修饰和组蛋白 H3第 4位赖氨酸三甲基化修饰与组蛋白 H3第 27位赖氨酸 三甲基化修饰并存为主, 则指示这种干细胞具有向该谱系分化的潜能, 两种或多 种干细胞进行比较,则该谱系相关基因总体上受组蛋白 H3第 4位赖氨酸三甲基化 修饰和组蛋白 H3第 4位赖氨酸三甲基化修饰与组蛋白 H3第 27位赖氨酸三甲基 化修饰并存的基因所占比例高的干细胞更易于向该谱系分化。
PCT/CN2011/083380 2010-12-09 2011-12-02 亚全能干细胞产品及其表观遗传修饰标签 WO2012075912A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/992,619 US9523074B2 (en) 2010-12-09 2011-12-02 Sub-totipotent stem cell product and apparent hereditary modifying label thereof
CN201180057318.8A CN103459592B (zh) 2010-12-09 2011-12-02 亚全能干细胞产品及其表观遗传修饰标签
EP11847131.7A EP2636732B1 (en) 2010-12-09 2011-12-02 Sub-totipotent stem cell product and apparent hereditary modifying label thereof
AU2011341213A AU2011341213B2 (en) 2010-12-09 2011-12-02 Sub-totipotent stem cell product and apparent hereditary modifying label thereof
CA2820395A CA2820395C (en) 2010-12-09 2011-12-02 Sub-totipotent stem cell product and epigenetic modification label thereof
IN1005MUN2013 IN2013MN01005A (zh) 2010-12-09 2011-12-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2010/079608 2010-12-09
PCT/CN2010/079608 WO2012075636A1 (zh) 2010-12-09 2010-12-09 预测干细胞分化潜能的表观遗传修饰标签

Publications (2)

Publication Number Publication Date
WO2012075912A1 true WO2012075912A1 (zh) 2012-06-14
WO2012075912A9 WO2012075912A9 (zh) 2013-09-06

Family

ID=46206539

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2010/079608 WO2012075636A1 (zh) 2010-12-09 2010-12-09 预测干细胞分化潜能的表观遗传修饰标签
PCT/CN2011/083380 WO2012075912A1 (zh) 2010-12-09 2011-12-02 亚全能干细胞产品及其表观遗传修饰标签

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079608 WO2012075636A1 (zh) 2010-12-09 2010-12-09 预测干细胞分化潜能的表观遗传修饰标签

Country Status (6)

Country Link
US (1) US9523074B2 (zh)
EP (1) EP2636732B1 (zh)
AU (1) AU2011341213B2 (zh)
CA (1) CA2820395C (zh)
IN (1) IN2013MN01005A (zh)
WO (2) WO2012075636A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103865873A (zh) * 2012-12-12 2014-06-18 中国医学科学院基础医学研究所 亚全能干细胞分泌的外来体及其应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103667190A (zh) * 2012-09-07 2014-03-26 上海吉凯基因化学技术有限公司 一种诱导形成神经元的方法和组合物
CN110499285A (zh) * 2018-05-17 2019-11-26 西安组织工程与再生医学研究所 Alpl基因在制备预防和/或治疗低碱性磷酸酶症的产品中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1703508A (zh) * 2001-09-21 2005-11-30 中辻宪夫 定制多能干细胞及其应用
CN1778905A (zh) * 2004-11-22 2006-05-31 赵春华 一种脂肪间充质干细胞的分离培养方法及其应用
US7056738B2 (en) * 2001-03-23 2006-06-06 Tulane University Early stage multipotential stem cells in colonies of bone marrow stromal cells
CN101821383A (zh) * 2007-09-05 2010-09-01 中国医学科学院基础医学研究所 一种用于人成体原始间充质干细胞体外规模化培养的培养基、方法及获得的原始间充质干细胞及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0601538D0 (en) * 2006-01-26 2006-03-08 Univ Birmingham Epigenetic analysis
US8524498B2 (en) * 2009-05-29 2013-09-03 The General Hospital Corporation Methods and compositions for homologous recombination in human cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7056738B2 (en) * 2001-03-23 2006-06-06 Tulane University Early stage multipotential stem cells in colonies of bone marrow stromal cells
CN1703508A (zh) * 2001-09-21 2005-11-30 中辻宪夫 定制多能干细胞及其应用
CN1778905A (zh) * 2004-11-22 2006-05-31 赵春华 一种脂肪间充质干细胞的分离培养方法及其应用
CN101821383A (zh) * 2007-09-05 2010-09-01 中国医学科学院基础医学研究所 一种用于人成体原始间充质干细胞体外规模化培养的培养基、方法及获得的原始间充质干细胞及其应用

Non-Patent Citations (26)

* Cited by examiner, † Cited by third party
Title
BARSKI, A. ET AL.: "High-resolution profiling of histone methylations in the human genome", CELL, vol. 129, no. 4, 2007, pages 823 - 37, XP002517421, DOI: doi:10.1016/j.cell.2007.05.009
BARSKI, A.; K. ZHAO: "Genomic location analysis by ChIP-Seq", J CELL BIOCHEM, vol. 107, no. 1, 2009, pages 11 - 8
BERNSTEIN, B.E. ET AL.: "A bivalent chromatin structure marks key developmental genes in embryonic stem cells", CELL, vol. 125, no. 2, 2006, pages 315 - 26
BOGGS, B.A.; CHEUNG, P.; HEARD, E.; SPECTOR, D.L.; CHINAULT, A.C.; ALLIS, C.D.: "Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes", NAT. GENET., vol. 30, 2002, pages 73 - 76
BRAZELTON TR; ROSSI FM; KESHET GI; BLAU HM: "From marrow to brain: expression of neuronal phenotypes in adult mice", SCIENCE, vol. 290, no. 5497, 2000, pages 1775 - 1779, XP002996795, DOI: doi:10.1126/science.290.5497.1775
FANG, BAIJUN ET AL.: "Identification and isolation of postembryonic sub-totipotent stem cells from various human adult tissues.", JOURNAL OF ZHENGZHOU UNIVERSITY (MEDICAL SCIENCES), vol. 42, no. 5, 20 September 2007 (2007-09-20), pages 846 - 850, XP008168328 *
JIANG Y.; HENDERSON D.; BLACKSTAD M. ET AL.: "Neuroectodermal differentiation from mosuse multipotent adult progenitor cells", PROC NATL ACAD SCI U S A, vol. 100, no. 1, 2003, pages 11854 - 11860, XP002497565, DOI: doi:10.1073/pnas.1834196100
JIANG Y; JAHAGIRDAR BN; REINARDT RL ET AL.: "Pluripotency of mesenchymal stem cells derived from adult marrow", NATURE, vol. 418, no. 6893, pages 41 - 49, XP002559664, DOI: doi:10.1038/nature00870
MARTIN, C.; ZHANG, Y.: "The diverse functions of histone lysine methylation", NAT. REV. MOL. CELL BIOL., vol. 6, 2005, pages 838 - 849
MIKKELSEN, T.S. ET AL.: "Genome-wide maps of chromatin state in pluripotent and lineage-committed cells", NATURE, vol. 448, no. 7153, 2007, pages 553 - 560, XP008156077, DOI: doi:10.1038/nature06008
NADINE L. VASTENHOUW; YONG ZHANG; IAN G. WOODS; FARHAD IMAM; AVIV REGEV, X.; SHIRLEY LIU; JOHN RINN; ALEXANDER F. SCHIER, CHROMATIN SIGNATURE OF EMBRYONIC PLURIPOTENCY IS ESTABLISHED DURING GENOME ACTIVATION, vol. 464, 2010, pages 922 - 925
NEWPORT, J.; KIRSCHNER, M.: "A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription", CELL, vol. 30, 1982, pages 687 - 696, XP023911280, DOI: doi:10.1016/0092-8674(82)90273-2
PAN, G. ET AL.: "Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells", CELL STEM CELL, vol. 1, no. 3, 2007, pages 299 - 312, XP008167254, DOI: doi:http://dx.doi.org/10.1016/j.stem.2007.08.003
PARK, P.J.: "ChIP-seq: advantages and challenges of a maturing technology", NAT REV GENET, vol. 10, no. 10, 2009, pages 669 - 680, XP002604157, DOI: doi:10.1038/NRG2641
PETERS, A.H.; MERMOUD, J.E.; O'CARROLL, D.; PAGANI, M.; SCHWEIZER, D.; BROCKDORFF, N.; JENUWEIN, T.: "Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin", NAT. GENET., vol. 30, 2002, pages 77 - 80, XP002444286, DOI: doi:10.1038/ng789
PLATH, K.; FANG, J.; MLYNARCZYK-EVANS, S.K.; CAO, R.; WORRINGER, K.A.; WANG, H.; DE LA CRUZ, C.C.; OTTE, A.P.; PANNING, B.; ZHANG,: "Role of histone H3 lysine 27 methylation in X inactivation", SCIENCE, vol. 300, 2003, pages 131 - 135
ROH, T.Y.; CUDDAPAH, S.; CUI, K.; ZHAO, K.: "The genomic landscape of histone modifications in human T cells", PROC. NATL. ACAD. SCI. USA., vol. 103, 2006, pages 15782 - 15787
SCHIER, A. F.: "The matemal-zygotic transition: death and birth of RNAs", SCIENCE, vol. 316, 2007, pages 406 - 407
SCHNEIDER, R.; BANNISTER, A.J.; MYERS, F.A; THOME, A.W.; CRANE-ROBINSON, C.; KOUZARIDES, T.: "Histone H3 lysine 4 methylation patterns in higher eukaryotic genes", NAT. CELL BIOL., vol. 6, 2003, pages 73 - 77
SCHUBELER, D.; MACALPINE, D.M.; SCALZO, D.; WIRBELAUER, C.; KOOPERBERG, C.; VAN LEEUWEN, F.; GOTTSCHLING, D.E.; O'NEILL, L.P.; TUR: "The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote", GENES DEV., vol. 18, pages 1263 - 1271
SILVA, J.; MAK, W.; ZVETKOVA, I.; APPANAH, R.; NESTEROVA, T.B.; WEBSTER, Z.; PETERS, A.H.; JENUWEIN, T.; OTTE, A.P.; BROCKDORFF, N: "Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enxl polycomb group complexes", DEV. CELL, vol. 4, 2003, pages 481 - 495
TADROS, W.; LIPSHITZ, H. D.: "The maternal-to-zygotic transition: a play in two acts", DEVELOPMENT, vol. 13, no. 6, 2009, pages 3033 - 3042
TAKAHASHI K.; YAMANAKA S.: "Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors", CELL, vol. 126, no. 4, 2006, pages 663 - 676
TAKAHASHI K; TANABE K; OHNUKI M ET AL.: "Induction of pluripotent stem cells from adult human fibroblasts by defned factors", CELL, vol. 131, no. 5, 2007, pages 861 - 872
XIAO DONG ZHAO; XU HAN; JOON LIN CHEW; JUN LIU; KUO PING CHIU; ANDRE CHOO; YURIY L. ORLOV; WING-KIN SUNG; ATIF SHAHAB; VLADIMIR A: "Whole-Genome Mapping of Histone H3Lys4and27 Trimethylations RevealsDistinctGenomic Compartments in Human Embryonic Stem Cells", CELL STEM CELL, vol. 1, 2007, pages 286 - 298
ZHAO, XIAODONG ET AL.: "Tackling the epigenome in the pluripotent stem cells.", JOURNAL OF GENETICS AND GENOMICS, vol. 35, no. 7, 15 July 2008 (2008-07-15), pages 403 - 412, XP022939226 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103865873A (zh) * 2012-12-12 2014-06-18 中国医学科学院基础医学研究所 亚全能干细胞分泌的外来体及其应用
CN103865873B (zh) * 2012-12-12 2017-04-05 中国医学科学院基础医学研究所 亚全能干细胞分泌的外来体及其应用

Also Published As

Publication number Publication date
WO2012075912A9 (zh) 2013-09-06
AU2011341213B2 (en) 2016-08-18
WO2012075636A1 (zh) 2012-06-14
CA2820395C (en) 2017-03-07
US20140287930A1 (en) 2014-09-25
US9523074B2 (en) 2016-12-20
EP2636732A4 (en) 2014-05-07
EP2636732B1 (en) 2018-05-30
IN2013MN01005A (zh) 2015-09-25
EP2636732A1 (en) 2013-09-11
AU2011341213A1 (en) 2013-07-11
CA2820395A1 (en) 2012-06-14

Similar Documents

Publication Publication Date Title
Okae et al. Derivation of human trophoblast stem cells
Shin et al. Molecular signature of adult bone marrow-purified very small embryonic-like stem cells supports their developmental epiblast/germ line origin
JP6494515B2 (ja) 幹細胞を1又は2以上の細胞系列に分化させる方法
De Kock et al. Mesoderm-derived stem cells: the link between the transcriptome and their differentiation potential
Marofi et al. Gene expression of TWIST1 and ZBTB16 is regulated by methylation modifications during the osteoblastic differentiation of mesenchymal stem cells
Pisal et al. Directed reprogramming of comprehensively characterized dental pulp stem cells extracted from natal tooth
US20230159887A1 (en) Methods for Generating Thymic Cells in Vitro
Gao et al. Comparative transcriptomic analysis of endothelial progenitor cells derived from umbilical cord blood and adult peripheral blood: Implications for the generation of induced pluripotent stem cells
Scalise et al. In vitro CSC-derived cardiomyocytes exhibit the typical microRNA-mRNA blueprint of endogenous cardiomyocytes
CN103459592B (zh) 亚全能干细胞产品及其表观遗传修饰标签
WO2012075912A1 (zh) 亚全能干细胞产品及其表观遗传修饰标签
Han et al. Global transcriptome profiling of genes that are differentially regulated during differentiation of mouse embryonic neural stem cells into astrocytes
US20130309209A1 (en) Formation of hematopoietic progenitor cells from mesenchymal stem cells
Denis et al. Global transcriptional profiling of neural and mesenchymal progenitors derived from human embryonic stem cells reveals alternative developmental signaling pathways
Liedtke et al. Neonatal mesenchymal-like cells adapt to surrounding cells
Xiao et al. Tuning FOXD3 expression dose-dependently balances human embryonic stem cells between pluripotency and meso-endoderm fates
WO2018037091A1 (en) Methods for the identification and isolation of hematopoietic stem and progenitor cells
Liu et al. Nodal mutant e X traembryonic EN doderm (XEN) stem cells upregulate markers for the anterior visceral endoderm and impact the timing of cardiac differentiation in mouse embryoid bodies
Zhao et al. Porcine skin-derived progenitor (SKP) spheres and neurospheres: distinct “stemness” identified by microarray analysis
Kiyokawa et al. Airway tissue stem cells reutilize the embryonic proliferation regulator, Tgfß-Id2 axis, for tissue regeneration
Li et al. Astrocyte‐like cells differentiated from a novel population of CD45‐positive cells in adult human peripheral blood
EP1961810A1 (en) Method for obtaining intestinal stem-precursor cell
Lee et al. The Transcription Factor CP2-like 1 Is Expressed in Very Small Embryonic-like Stem Cells and Other Adult Stem Cells: Implications for Cancer Stem Cells
Magro-Lopez et al. Optimizing Nodal, Wnt and BMP signaling pathways for robust and efficient differentiation of human induced pluripotent stem cells to intermediate mesoderm cells
Vincent Specification and Potency of Human Neural Stem Cells for Clinical Transplantation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847131

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2820395

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011847131

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011341213

Country of ref document: AU

Date of ref document: 20111202

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13992619

Country of ref document: US