WO2012075805A1 - 利用路测数据进行自动小区规划优化的方法及装置 - Google Patents

利用路测数据进行自动小区规划优化的方法及装置 Download PDF

Info

Publication number
WO2012075805A1
WO2012075805A1 PCT/CN2011/076384 CN2011076384W WO2012075805A1 WO 2012075805 A1 WO2012075805 A1 WO 2012075805A1 CN 2011076384 W CN2011076384 W CN 2011076384W WO 2012075805 A1 WO2012075805 A1 WO 2012075805A1
Authority
WO
WIPO (PCT)
Prior art keywords
path loss
loss value
grid point
current grid
simulated
Prior art date
Application number
PCT/CN2011/076384
Other languages
English (en)
French (fr)
Inventor
唐亚玲
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012075805A1 publication Critical patent/WO2012075805A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and apparatus for performing automatic cell planning optimization using road test data. Background technique
  • ACP Automatic Cell Planning
  • ACP mainly evaluates various aspects of network performance (including coverage and interference, etc.) through different data sources, such as DT (Drive Test) data, traffic statistics, base station data, and electronic map data. And the problem area, and automatically search for the best network performance improvement plan through genetic algorithm, and output the optimal network problem solution.
  • DT Drive Test
  • ACP software is generally based on wireless network simulation, that is, the basis of ACP software calculation relies on wireless network simulation modeling, which is still based on the propagation model to calculate the path of each grid point on the coverage surface.
  • Loss may be uncertain due to the factors affecting the calculation of path loss.
  • the propagation model cannot truly reflect the wireless propagation environment of each point.
  • the accuracy of the electronic map, the difference between the actual transmit power and the theoretical value also affect the calculation. Accuracy, therefore, existing wireless network planning optimization based on ACP software There is inaccuracy. Summary of the invention
  • the main object of the present invention is to provide a method and apparatus for optimizing automatic area planning using road test data, aiming at improving the accuracy of automatic cell planning optimization.
  • the present invention provides a method for optimizing automatic cell planning using road test data, including:
  • the current gate is calculated by the DT path loss value and the simulated path loss value of the grid point around the current grid point, and the simulated path loss value of the current grid point, combined with the influence function algorithm.
  • the automatic channel planning optimization is performed according to the corrected path loss value and by an iterative algorithm.
  • the method calculates the influence path loss of the current grid point by using the DT path loss value and the simulated path loss value of the grid point around the current grid point, and the simulated path loss value of the current grid point, and the influence function algorithm.
  • the steps for the value include:
  • the method further includes: retaining the simulated path loss value of the current grid point.
  • the method further includes: when the current grid point has a DT path loss value, calculating a correction of the current grid point according to the DT path loss value of the current grid point, the simulated path loss value, and the preset weight Road loss value.
  • the formula for calculating the corrected path loss value is:
  • Corrected path loss value w%* affects path loss value or DT path loss value +(100-w)%* simulated path loss value; where w is the preset weight.
  • the invention also provides a device for optimizing automatic cell planning by using road test data, comprising: a road test path loss value calculation module, which is used for reading DT data and simulation data, and calculating grid points according to the DT data and simulation data. DT path loss value and simulated path loss value;
  • the influence path loss calculation module is used to calculate the DT path loss value and the simulated path loss value of the grid point around the current grid point and the simulated path loss of the current grid point when the current grid point has no DT path loss value. Value, combined with the influence function algorithm to calculate the influence path loss value of the current grid point;
  • the corrected path loss value calculation module is configured to calculate a corrected path loss value of the current grid point according to the influence path loss value, the simulated path loss value, and the preset weight of the current grid point;
  • a planning optimization module is configured to perform automatic cell planning optimization according to the corrected path loss value and through an iterative algorithm.
  • the impact path loss value calculation module includes:
  • a search unit configured to search whether eight grid points around the current grid point have a DT path loss value
  • a feature attribute comparison unit configured to have a DT path when one or more of the eight grid points At the time of the loss, comparing the feature of the current grid point with the feature of the grid point having the DT path loss value
  • Simulated path loss value retention unit for current grid point feature and the DT path loss value
  • the influence function calculation unit is used for the current grid point feature and at least one of the gates having the DT path loss value
  • the value of the influence function is calculated according to the DT path loss value of the surrounding grid point and the simulated path loss value of the current grid point feature and the simulated path loss value of the current grid point.
  • the influence path loss value calculation unit is configured to add the value of the influence function to the simulated path loss value of the current grid point to obtain the influence path loss value of the current grid point.
  • the simulated path loss value retaining unit is further configured to retain the simulated path loss value of the current grid point when the eight grid points around the current grid point have no DT path loss value.
  • the corrected path loss value calculation module is further configured to calculate the current DT path loss value, the simulated path loss value, and the preset weight according to the current grid point when the current grid point has the DT path loss value. Corrected path loss value for grid points.
  • the formula for calculating the corrected path loss value is:
  • Corrected path loss value w%* affects path loss value or DT path loss value +(100-w)%* simulated path loss value; where W is the preset weight.
  • the invention provides a method and a device for automatically optimizing cell planning using road test data.
  • the DT data is processed by the "impact function algorithm", and the path loss value of the simulation prediction is corrected by the actual DT data, so that the ACP tool is used.
  • Can comprehensively consider the simulation data and DT data can not only consider the influence of the feature of the electronic map on the path loss, but also make full use of the DT data to correct the simulation data, improve the calculation accuracy of the path loss, and thus the data foundation of ACP. More accurate, the calculation result of ACP is more practicable, and finally improves the accuracy and usability of the automatic cell planning optimization output scheme.
  • FIG. 1 is a schematic flow chart of a method for performing automatic cell planning optimization by using road test data according to the present invention
  • FIG. 2 is a schematic diagram of the method for optimizing automatic cell planning by using the road test data according to the DT path loss value and the simulated path loss value of the grid points around the current grid point, and the simulated path loss of the current grid point. Value, combined with the influence function algorithm to calculate the flow diagram of the current grid point affecting the path loss value;
  • FIG. 3 is a schematic diagram of a raster corresponding level value in an embodiment of the method for optimizing automatic cell planning using the drive test data according to the present invention
  • FIG. 4 is a schematic structural diagram of an apparatus for performing automatic cell planning optimization using road test data according to the present invention.
  • FIG. 5 is a schematic structural diagram of an apparatus for influencing a path loss value in an embodiment of an apparatus for optimizing automatic cell planning using road test data according to the present invention. detailed description
  • the solution of the embodiment of the present invention mainly uses the actual DT data to correct the predicted path loss value, so as to improve the accuracy and usability of the automatic cell planning optimization output scheme.
  • an embodiment of the present invention provides a method for performing automatic cell planning optimization by using road test data, including:
  • the DT data refers to the DT level value
  • the simulation data refers to the simulation modeling data including the electronic map data, the base station data, and the propagation model data.
  • the DT path loss value Pulth Loss, PL
  • the DT path loss value is hereinafter referred to as the DT path loss value.
  • the simulated path loss value of each grid point is calculated.
  • DT path loss value EIRP-DT level value
  • EIRP Efficient Isotropic Radiated Power
  • each grid point will have an emulated path loss value, and the DT path loss value will only exist on the grid point with DT data.
  • Corrected path loss value w% *DT path loss value +( 100-w)% *simulation path loss value
  • the current grid is discarded.
  • the grid point retains the original simulated path loss value; if the feature attributes of the two are the same, the DT path loss value of the surrounding grid point is considered to have a reference value, and the surrounding grid points with the same feature are retained. Filter out.
  • the automatic cell planning optimization is performed by using DT data, and the core algorithm is to use the "impact function" to realize the correction of the simulated path loss value by the DT path loss value.
  • the correction of the simulated path loss value by the DT path loss value is realized by the influence function S.
  • the calculation formula for the influence function S is as follows: S - PL E
  • the simulated road loss value on the current grid point (usually the grid is also called the bin point); the DT path loss value on the grid point with the DT data around the current grid point; The simulated path loss value on the grid point with DT data around the point; "The number of grid points with DT data around the grid point; f is the influence factor, which can be customized by the user, and the setting range is (0 , 1];
  • A is the average of the calculation: (the simulated path loss value on the grid point with DT data around the current grid point / the simulated path loss value of the current grid point), A reflects the grid point counted in the simulation The relationship between the simulated path loss values;
  • B is the average of the calculation: (the difference between the DT path loss value on the grid point with DT data around the current grid point and the simulated path loss value), and B reflects the DT path loss value for the simulated path loss value.
  • f is the impact factor, which reflects the user's influence on the DT data.
  • influence path loss value simulated path loss value + influence function S value.
  • S106 Perform automatic cell planning optimization according to the corrected path loss value and through an iterative algorithm.
  • the ACP software automatically synthesizes the calculation results of the above steps to obtain a corrected path loss data matrix. Based on the corrected path loss data matrix, ACP software can more accurately perform iterative calculation of cell parameter adjustment, thereby obtaining an automatic cell planning optimization scheme with higher accuracy.
  • the S104 calculates the current grid point by using the DT path loss value and the simulated path loss value of the grid point around the current grid point, and the simulated path loss value of the current grid point, and the influence function algorithm.
  • the steps affecting the path loss value include:
  • Corrected path loss value w%* affects path loss value +(100-w)%* simulated path loss value; where w is the preset weight.
  • the black dot is the center point of each grid
  • the dotted line is the DT line
  • the grid points of the two points b and c on the dotted line have DT level values (-69, -68) and simulation levels.
  • the value (-83, -81), the remaining points have simulation level values
  • the dot a is the grid point where the corrected path loss value needs to be calculated.
  • the true level value is -78.
  • the value of EIRP at these points is 60, so that the simulated path loss value of each grid point and the DT path loss value of the b and c grid points passing through the dotted line can be calculated.
  • the corrected path loss value of the grid point corrected by the DT data can be calculated, thereby obtaining the corrected path loss matrix, and the iterative calculation of the cell parameter adjustment can be performed according to the corrected path loss matrix data, thereby obtaining An automatic cell planning optimization scheme with higher accuracy.
  • the algorithm that affects the function S is used to calculate the corrected path loss matrix.
  • the main advantages are:
  • the core content of the embodiment of the present invention is to propose an algorithm for processing DT data in the ACP tool by using the "impact function algorithm", so that the ACP can comprehensively consider the "simulation data + DT data".
  • This algorithm can not only consider the influence of the feature of the electronic map on the path loss, but also make full use of the DT data to correct the simulation data.
  • the data foundation of the ACP will be more Accurate, so the calculation results of ACP are more practical.
  • an embodiment of the present invention provides an apparatus for performing automatic cell planning optimization by using road test data, including: a road test path loss value calculation module 301, an influence path loss value calculation module 302, and a corrected path loss value calculation.
  • Module 303 and planning optimization module 304 wherein:
  • the road test path loss value calculation module 301 is configured to read the DT data and the simulation data, and calculate the DT path loss value and the simulated path loss value of the grid point according to the DT data and the simulation data;
  • the DT data refers to the DT level value
  • the simulation data refers to the simulation modeling data including the electronic map data, the base station data, and the propagation model data.
  • EIRP is a parameter in a wireless network, the product of the power supplied to the antenna by the radio transmitter and the absolute gain of the antenna in a given direction, in dBm.
  • each grid point will have an emulated path loss value, and the DT path loss value will only exist on the grid point with DT data.
  • the influence path loss value calculation module 302 is configured to: when the current grid point has no DT path loss value, pass the DT path loss value and the simulated path loss value of the grid point around the current grid point, and the simulation path of the current grid point.
  • the damage value combined with the influence function algorithm, calculates the influence path loss value of the current grid point;
  • the affected path loss value calculation module 302 needs to be the current gate.
  • the grid point calculation affects the path loss value.
  • the DT data is used for automatic cell planning optimization, and the core algorithm is to use the "impact function" to realize the correction of the simulated path loss value by the DT path loss value.
  • the correction of the DT path loss value to the simulated path loss value is realized by the influence function S.
  • the simulated road loss value on the current grid point (usually the grid is also called the bin point); the DT path loss value on the grid point with the DT data around the current grid point; The simulated path loss value on the grid point with DT data around the point; "The number of grid points with DT data around the grid point; f is the influence factor, which can be customized by the user, and the setting range is (0 , 1];
  • A is the average of the calculation: (the simulated path loss value on the grid point with DT data around the current grid point / the simulated path loss value of the current grid point), A reflects the grid point counted in the simulation The relationship between the simulated path loss values;
  • B is the average of the calculation: (the difference between the DT path loss value on the grid point with DT data around the current grid point and the simulated path loss value), and B reflects the DT path loss value for the simulated path loss value.
  • f is the impact factor, which reflects the user's influence on the DT data.
  • the corrected path loss value calculation module 303 is configured to calculate a corrected path loss value of the current grid point according to the influence of the current grid point, the simulated path loss value, and the preset weight;
  • the corrected path loss value calculation module 303 calculates the corrected path loss value at the current grid point according to the weight w set by the user:
  • Corrected path loss value w%* affects path loss value +(100-w)%* simulated path loss value
  • the planning optimization module 304 is configured to perform automatic cell planning optimization according to the corrected path loss value and through an iterative algorithm.
  • the planning optimization module 304 automatically synthesizes the above calculation results to obtain a corrected path loss data matrix. Based on the corrected path loss data matrix, the ACP software can more accurately perform iterative calculation of the cell parameter adjustment, thereby obtaining an automatic cell planning optimization scheme with higher accuracy.
  • the influence path loss value calculation module 302 includes: a search unit 3021, a feature attribute comparison unit 3022, a simulated path loss value retention unit 3023, an influence function calculation unit 3024, and an influence path loss value calculation unit 3025, where:
  • the searching unit 3021 is configured to search whether eight grid points around the current grid point have a DT path loss value
  • the feature attribute comparison unit 3022 is configured to compare the current grid point with the feature attribute of the grid point having the DT path loss value when one or more of the eight grid points have a DT path loss value;
  • the simulated path loss value retaining unit 3023 is configured to retain the simulated path loss value of the current grid point when the current grid point feature is different from the feature of the grid point having the DT path loss value;
  • the influence function calculation unit 3024 is configured to: when the current grid point feature has the same feature as the at least one grid point having the DT path loss value, according to the same surrounding grid point as the current grid point feature DT path loss value and simulated path loss value, and the simulated path loss value of the current grid point to calculate the value of the influence function;
  • the influence path loss value calculation unit 3025 is configured to add the value of the influence function to the simulated path loss value of the current grid point to obtain the influence path loss value of the current grid point. Further, the simulated path loss value retaining unit 3023 is further configured to retain the simulated path loss value of the current grid point when the eight grid points around the current grid point have no DT path loss value.
  • the corrected path loss value calculation module 303 is further configured to calculate the current grid point according to the DT path loss value of the current grid point, the simulated path loss value, and the preset weight when the current grid point has the DT path loss value. Corrected path loss value.
  • the corrected path loss value is calculated as:
  • Corrected path loss value w% * DT path loss value + (100-w) % * simulated path loss value; where w is the preset weight.
  • a method and a device for automatically optimizing cell planning using road test data are used.
  • the DT data is processed by the "impact function algorithm", and the path loss value of the simulation prediction is corrected by using the actual DT data, so that the ACP tool can be integrated.
  • the simulation data and DT data it can not only consider the influence of the feature of the object in the electronic map on the path loss, but also make full use of the DT data to correct the simulation data, improve the calculation accuracy of the path loss, and thus make the data foundation of ACP more Accurate, ACP calculation results are more practical, and ultimately improve the accuracy and usability of the automatic cell planning optimization output scheme.
  • the DT data and the simulation data are read, and the DT path loss value and the simulated path loss value of the grid point are calculated according to the DT data and the simulation data; when the current grid point has no DT path loss value, according to the current grid
  • the path loss value, the simulated path loss value, and the preset weight are used to calculate the corrected path loss value of the current grid point; according to the corrected path loss value and the automatic cell planning by the iterative algorithm Chemical.
  • the DT data is processed by the "Impact Function Algorithm", and the path loss value of the simulation prediction is corrected by the actual DT data, so that the ACP tool can comprehensively consider the simulation data and the DT data, and can consider the electronic map.
  • the influence of the feature of the feature on the path loss can make full use of the DT data to correct the simulation data, improve the calculation accuracy of the path loss, and make the data foundation of ACP more accurate.
  • the calculation result of ACP is more practicable, and finally Improve the accuracy and usability of the automatic cell planning optimization output scheme.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

利用路测数据进行自动小区规划优化的方法及装置 技术领域
本发明涉及通信领域, 尤其涉及一种利用路测数据进行自动小区规划 优化的方法及装置。 背景技术
在无线网络的规划优化过程中, 需要进行工程参数的规划优化, 包括 天线挂高、 方向角以及下倾角等参数调整, 其优化内容繁杂, 往往需要反 复调整和测试验证, 而具备工程参数优化功能的自动小区规划工具一 ACP ( Automatic Cell Planning, 自动小区规划 )软件, 站在全网的角度进行优 化, 能大大减轻网规网优的工作量, 提高工作效率。
ACP主要通过不同的数据源, 比如 DT ( Drive Test, 路测)数据、 话 务统计数据、 基站数据和电子地图数据等, 对网络各方面性能 (包括覆盖 和干扰等)进行评估, 定位问题小区及问题区域, 并通过遗传算法自动搜 索最佳的网络性能提升方案, 输出最优的网络问题解决方案。 络的站点选择和自动小区规划、 网络开通前最优天馈参数的自动规划、 网 络开通后的无线网络快速优化、 成熟网络的覆盖提升和精准优化等。
但是目前业界的 ACP软件均存在以下缺陷: ACP软件一般基于无线网 络仿真, 即 ACP软件计算的基础依靠无线网络仿真建模, 其根本仍是根据 传播模型计算出覆盖面上每个栅格点的路径损耗, 但是, 由于其计算路径 损耗的影响因素可能具备不确定性, 比如传播模型不能真实反映每个点的 无线传播环境, 电子地图的精度、 实际发射功率与理论值的差别等因素也 影响计算的精确度, 因此, 现有的基于 ACP软件进行无线网络规划优化具 有不准确性。 发明内容
有鉴于此, 本发明的主要目的在于提供一种利用路测数据进行自动小 区规划优化的方法及装置, 旨在提高自动小区规划优化的准确性。
为了达到上述目的, 本发明提出一种利用路测数据进行自动小区规划 优化的方法, 包括:
读取 DT数据以及仿真数据,根据所述 DT数据以及仿真数据计算栅格 点的 DT路损值和仿真路损值;
当前栅格点无 DT路损值时,通过依据当前栅格点周围栅格点的 DT路 损值和仿真路损值, 以及当前栅格点的仿真路损值, 结合影响函数算法计 算当前栅格点的影响路损值;
根据所述当前栅格点的影响路损值、 仿真路损值以及预设的权重计算 当前栅格点的校正路损值;
根据所述校正路损值并通过迭代算法进行自动小区规划优化。
优选地,所述通过依据当前栅格点周围栅格点的 DT路损值和仿真路损 值, 以及当前栅格点的仿真路损值, 结合影响函数算法计算当前栅格点的 影响路损值的步骤包括:
搜寻当前栅格点周围八个栅格点是否具有 DT路损值;
当所述八个栅格点中一个或一个以上栅格点具有 DT路损值时,比较当 前栅格点与所述具有 DT路损值的栅格点的地物属性;
如果当前栅格点地物属性与所述具有 DT路损值的栅格点的地物属性 均不相同, 则保留当前栅格点的仿真路损值; 否则
根据与当前栅格点地物属性相同的周围栅格点的 DT路损值和仿真路 损值, 以及当前栅格点的仿真路损值计算影响函数的值;
将所述影响函数的值加上当前栅格点的仿真路损值, 得到当前栅格点 的影响路损值。
优选地, 当前栅格点周围八个栅格点均没有 DT路损值时,该方法还包 括: 保留当前栅格点的仿真路损值。
优选地, 所述方法还包括: 当前栅格点已有 DT路损值时, 根据当前栅 格点的 DT路损值、仿真路损值以及所述预设的权重计算当前栅格点的校正 路损值。
优选地, 所述校正路损值计算公式为:
校正路损值 =w%*影响路损值或 DT路损值 +(100-w)%*仿真路损值; 其 中, w为预设的权重。
本发明还提出一种利用路测数据进行自动小区规划优化的装置, 包括: 路测路损值计算模块, 用于读取 DT数据以及仿真数据, 根据所述 DT 数据以及仿真数据计算栅格点的 DT路损值和仿真路损值;
影响路损值计算模块,用于当前栅格点无 DT路损值时,通过依据当前 栅格点周围栅格点的 DT路损值和仿真路损值,以及当前栅格点的仿真路损 值, 结合影响函数算法计算当前栅格点的影响路损值;
校正路损值计算模块, 用于根据所述当前栅格点的影响路损值、 仿真 路损值以及预设的权重计算当前栅格点的校正路损值;
规划优化模块, 用于根据所述校正路损值并通过迭代算法进行自动小 区规划优化。
优选地, 所述影响路损值计算模块包括:
搜寻单元, 用于搜寻当前栅格点周围八个栅格点是否具有 DT路损值; 地物属性比较单元, 用于当所述八个栅格点中一个或一个以上栅格点 具有 DT路损值时, 比较当前栅格点与所述具有 DT路损值的栅格点的地物 属性;
仿真路损值保留单元,用于当前栅格点地物属性与所述具有 DT路损值 的栅格点的地物属性均不相同时, 保留当前栅格点的仿真路损值; 影响函数计算单元, 用于当前栅格点地物属性与至少一个所述具有 DT 路损值的栅格点的地物属性相同时, 根据与当前栅格点地物属性相同的周 围栅格点的 DT路损值和仿真路损值,以及当前栅格点的仿真路损值计算影 响函数的值;
影响路损值计算单元, 用于将所述影响函数的值加上当前栅格点的仿 真路损值, 得到当前栅格点的影响路损值。
优选地, 所述仿真路损值保留单元还用于当前栅格点周围八个栅格点 均没有 DT路损值时, 保留当前栅格点的仿真路损值。
优选地, 所述校正路损值计算模块还用于当前栅格点已有 DT路损值 时,根据当前栅格点的 DT路损值、仿真路损值以及所述预设的权重计算当 前栅格点的校正路损值。
优选地, 所述校正路损值计算公式为:
校正路损值 =w%*影响路损值或 DT路损值 +(100-w)%*仿真路损值; 其 中, W为预设的权重。
本发明提出的一种利用路测数据进行自动小区规划优化的方法及装 置, 在 ACP工具中, 用 "影响函数算法" 处理 DT数据, 利用实际 DT数 据校正仿真预测的路径损耗值, 使 ACP工具能综合考虑仿真数据与 DT数 据,既能考虑电子地图中地物属性对路损的影响, 又能充分利用 DT数据对 仿真数据进行校正, 提高了路损的计算精度, 从而使 ACP的数据基础更为 准确, ACP 的计算结果更具有可实用性, 最终提高了自动小区规划优化输 出方案的准确性和可用性。 附图说明
图 1 是本发明利用路测数据进行自动小区规划优化的方法一实施例流 程示意图; 图 2是本发明利用路测数据进行自动小区规划优化的方法一实施例中 通过依据当前栅格点周围栅格点的 DT路损值和仿真路损值,以及当前栅格 点的仿真路损值, 结合影响函数算法计算当前栅格点的影响路损值的流程 示意图;
图 3是本发明利用路测数据进行自动小区规划优化的方法一实施例中 栅格对应电平值的示意图;
图 4是本发明利用路测数据进行自动小区规划优化的装置一实施例结 构示意图;
图 5是本发明利用路测数据进行自动小区规划优化的装置一实施例中 影响路损值计算模块的结构示意图。 具体实施方式
本发明实施例解决方案主要是利用实际 DT数据校正仿真预测的路径 损耗值, 以提高自动小区规划优化输出方案的准确性和可用性。 为了使本 发明的技术方案更加清楚、 明了, 下面将结合附图作进一步详述。
如图 1 所示, 本发明一实施例提出一种利用路测数据进行自动小区规 划优化的方法, 包括:
S101 , 读取 DT数据以及仿真数据, 根据 DT数据以及仿真数据计算栅 格点的 DT路损值和仿真路损值;
在本实施例中, DT数据是指 DT电平值, 仿真数据是指包括电子地图 数据、基站数据和传播模型数据在内的仿真建模数据。在读取到 DT数据时, 根据电子地图和基站数据,计算出每个栅格点的 DT路径损耗值( Path Loss, PL ), DT路径损耗值在下文简称为 DT路损值。 同时, 根据基站数据和电 子地图数据, 结合传播模型数据, 计算出每个栅格点的仿真路损值。 DT路 损值 =EIRP-DT电平值;
上式中, EIRP ( Effective Isotropic Radiated Power, 有效全向辐射功率 ) 上天线绝对增益的乘积, 单位为 dBm。
经过计算, 每个栅格点都会有仿真路损值, DT路损值只存在有 DT数 据的栅格点上。
S102, 判断当前栅格点是否有 DT路损值, 若是, 则进入 S103; 否则, 进入 S104;
5103 ,根据当前栅格点的 DT路损值、仿真路损值以及预设的权重计算 当前栅格点的校正路损值, 进入 S 106;
在对每个栅格点逐个判断该栅格点是否有 DT路损值时 ,如果当前栅格 点有 DT路损值, 则根据用户自定义的计算权重 w,按照下列公式计算当前 栅格点的校正路损值:
校正路损值 =w% *DT路损值+( 100-w)% *仿真路损值
5104,通过依据当前栅格点周围栅格点的 DT路损值和仿真路损值, 以 及当前栅格点的仿真路损值, 结合影响函数算法计算当前栅格点的影响路 损值;
在本步骤中, 当对每个栅格点逐个判断该栅格点是否有 DT路损值时, 如果当前栅格点没有 DT路损值,则需要为当前栅格点计算新的路损值即本 实施例中所称影响路损值。 其具体处理过程为:
首先,搜寻该当前栅格点周围 8个栅格点是否有 DT路损值, 当该栅格 点周围 8个栅格点均没有 DT路损值时, 保留该栅格点原来的仿真路损值; 如果该栅格点周围 8个栅格点有大于或等于 1个栅格点具有 DT路损值,则 从电子地图中读取该当前栅格点和周围具有 DT路损值的栅格点的地物 ( Clutter )属性, 并逐个进行核对, 若两者属性不相同, 则认为该周围栅格 点的 DT路损值不具备参考价值, 丟弃, 如果周围有 DT路损值的栅格点全 部核对后, 全部地物属性与该当前栅格点不同, 则均丟弃, 此时该当前栅 格点保留原仿真路损值; 如果两者的地物属性相同, 则认为该周围栅格点 的 DT路损值具有参考价值,进行保留, 并将所有的地物属性相同的周围栅 格点筛选出来。
在本实施例中,利用 DT数据进行自动小区规划优化,其核心算法是利 用 "影响函数" 实现 DT路损值对仿真路损值的校正。 在计算过程中, DT 路损值对仿真路损值的校正, 通过影响函数 S来实现。 影响函数 S的计算 公式如下: S - PLE
Figure imgf000009_0001
其中, 表示该当前栅格点 (通常栅格也称为 bin点)上的仿真路 损值; 表示该当前栅格点周围有 DT数据的栅格点上的 DT路损值; 表示该栅格点周围有 DT数据的栅格点上的仿真路损值; "为该栅格点 周围有 DT数据的栅格点的个数; f为影响因子, 可以由用户自定义, 设置 范围为 (0, 1];
关于影响函数 S的计算解释如下:
A是计算: (当前栅格点周围有 DT数据的栅格点上的仿真路损值 /当前 栅格点的仿真路损值) 的平均值, A反映的是计入仿真中栅格点之间的仿 真路损值的关系;
B是计算: (当前栅格点周围有 DT数据的栅格点上的 DT路损值与仿 真路损值的差值)的平均值, B反映的是 DT路损值对仿真路损值的初步校 正;
f是影响因子, 反映的是用户对 DT数据影响力大小的设置。
当计算出影响函数 S 的值后, 则可以计算出该当前栅格点上的影响路 损值, 计算公式如下: 影响路损值 =仿真路损值 +影响函数 S的值。
S105 , 根据当前栅格点的影响路损值、 仿真路损值以及预设的权重计 算当前栅格点的校正路损值; 根据设置的权重 W , 计算出该当前栅格点上校正后的校正路损值: 校正路损值 =w%*影响路损值 +(100-w)%*仿真路损值
S106, 根据校正路损值并通过迭代算法进行自动小区规划优化。
最后, ACP软件自动综合上述各步骤的计算结果, 得到校正后的路损 数据矩阵。 基于此校正后的路损数据矩阵, ACP软件能更准确地进行小区 参数调整的迭代计算, 从而得出准确性更高的自动小区规划优化方案。
如图 2所示, S104中通过依据当前栅格点周围栅格点的 DT路损值和 仿真路损值, 以及当前栅格点的仿真路损值, 结合影响函数算法计算当前 栅格点的影响路损值的步骤包括:
S1021 ,搜寻当前栅格点周围八个栅格点是否均没有 DT路损值; 若是, 则进入 S1023; 否则, 进入 S1022;
51022, 比较当前栅格点与具有 DT路损值的栅格点的地物属性是否均 不相同, 若是, 则进入 S1023; 否则, 进入 S1024;
51023 , 保留当前栅格点的仿真路损值;
S1024, 根据与当前栅格点地物属性相同的周围栅格点的 DT路损值和 仿真路损值, 以及当前栅格点的仿真路损值计算影响函数的值;
S1025 , 将影响函数的值加上当前栅格点的仿真路损值, 得到当前栅格 点的影响路损值。
校正路损值计算公式为:
校正路损值 =w%*影响路损值 +(100-w)%*仿真路损值; 其中, w为预设 的权重。
下面以具体实例对本发明技术方案进行详细阐述:
如图 3所示, 黑色圓点为每个栅格的中心点, 虚线为 DT线路, 虚线上 b、 c两点的栅格点具有 DT电平值(-69、 -68 )和仿真电平值(-83、 -81 ), 其余各点具有仿真电平值, 圓点 a是需要计算校正路损值的栅格点, 其仿 真电平值为 -78。 为计算简便 4艮设 EIRP在这几个点的值均为 60, 由此可以 计算出每个栅格点的仿真路损值以及虚线经过的 b、 c栅格点的 DT路损值。
圓点 a周围 8个栅格点中, 一共有 2个栅格点 b、 c具有 DT路损值, 假设 b、 c两点 Clutter属性相同, 则需要计算影响函数 S。 假设影响因子 f 设置为 0.99, 其中:
Figure imgf000011_0001
5 = χ-ν( ΖΰΓ - Ζ£ί,ίη ) = 0.99χ-χΓ(ΐ28 -138) + (ΐ29 -138)Ί = 0.99χ-χ(-10 -9) = -9.405 n 2 2
因此, S=A*B=1.02899*(-9.405)=-9.68
该当前栅格点上, 影响路损值为(138+(-9.68))=128.32;
假设用户设置的权重 w为 50%, 最终, 计算出该栅格点的校正路损值 为: 138*50%+128·32*50%=133· 16;
由此方法,可以计算出栅格点被 DT数据校正后的校正路损值,从而得 到校正后的路损矩阵, 根据此校正后的路损矩阵数据可进行小区参数调整 的迭代计算, 从而得出准确性更高的自动小区规划优化方案。
利用影响函数 S的算法来计算校正后的路损矩阵, 主要优点在于:
( 1 )考虑了地物属性对路损的影响, 克服了目前业界釆用的算法对所 有栅格 bin点一概而论的缺点;
( 2 )计算中每个栅格周围 8个栅格均会考虑,对数据的考虑较为全面;
( 3 )计算中考虑了栅格之间的仿真值存在的关联, 其实质是考虑了无 线传播空间的特性, 也体现了每个栅格点电平值内在的空间延续性。
本发明实施例核心内容是提出一种在 ACP工具中,用 "影响函数算法" 处理 DT数据, 从而使 ACP能综合考虑 "仿真数据 +DT数据" 的算法。 此 算法既能考虑电子地图中地物属性对路损的影响,又能充分利用 DT数据对 仿真数据进行校正, 利用此 "影响函数算法" 后, ACP 的数据基础将更为 准确, 从而 ACP的计算结果更具有可实用性。
如图 4所示, 本发明一实施例提出一种利用路测数据进行自动小区规 划优化的装置, 包括: 路测路损值计算模块 301、影响路损值计算模块 302、 校正路损值计算模块 303以及规划优化模块 304, 其中:
路测路损值计算模块 301 , 用于读取 DT数据以及仿真数据, 根据 DT 数据以及仿真数据计算栅格点的 DT路损值和仿真路损值;
在本实施例中, DT数据是指 DT电平值, 仿真数据是指包括电子地图 数据、基站数据和传播模型数据在内的仿真建模数据。在读取到 DT数据时, 根据电子地图和基站数据, 计算出每个栅格点的 DT路损值。 同时, 根据基 站数据和电子地图数据, 结合传播模型数据, 计算出每个栅格点的仿真路 损值。 DT路损值=£11^-0丁电平值;
上式中, EIRP是无线网络中的一个参数, 为无线电发射机供给天线的 功率与在给定方向上天线绝对增益的乘积, 单位为 dBm。
经过计算, 每个栅格点都会有仿真路损值, DT路损值只存在有 DT数 据的栅格点上。
影响路损值计算模块 302, 用于当前栅格点无 DT路损值时, 通过依据 当前栅格点周围栅格点的 DT路损值和仿真路损值,以及当前栅格点的仿真 路损值, 结合影响函数算法计算当前栅格点的影响路损值;
在本步骤中, 当对每个栅格点逐个判断该栅格点是否有 DT路损值时, 如果当前栅格点没有 DT路损值,则需由影响路损值计算模块 302为当前栅 格点计算影响路损值。 其具体处理过程为:
首先,搜寻该当前栅格点周围 8个栅格点是否有 DT路损值, 当该栅格 点周围 8个栅格点均没有 DT路损值时, 保留该栅格点原来的仿真路损值; 如果该栅格点周围 8个栅格点有大于或等于 1个栅格点具有 DT路损值,则 从电子地图中读取该当前栅格点和周围具有 DT路损值的栅格点的地物属 性, 并逐个进行核对, 若两者属性不相同, 则认为该周围栅格点的 DT路损 值不具备参考价值, 丟弃, 如果周围有 DT路损值的栅格点全部核对后, 全 部地物属性与该当前栅格点不同, 则均丟弃, 此时该当前栅格点保留原仿 真路损值; 如果两者的地物属性相同, 则认为该周围栅格点的 DT路损值具 有参考价值, 进行保留, 并将所有的地物属性相同的周围栅格点筛选出来。
在本实施例中,利用 DT数据进行自动小区规划优化,其核心算法是利 用 "影响函数" 实现 DT路损值对仿真路损值的校正。 在计算过程中, DT 路损值对仿真路损值的校正, 通过影响函数 S来实现。 影响函数 S的计算 公式如下: S = AxB , 其中, A =
Figure imgf000013_0001
其中, 表示该当前栅格点 (通常栅格也称为 bin点)上的仿真路 损值; 表示该当前栅格点周围有 DT数据的栅格点上的 DT路损值; 表示该栅格点周围有 DT数据的栅格点上的仿真路损值; "为该栅格点 周围有 DT数据的栅格点的个数; f为影响因子, 可以由用户自定义, 设置 范围为 (0, 1];
关于影响函数 S的计算解释如下:
A是计算: (当前栅格点周围有 DT数据的栅格点上的仿真路损值 /当前 栅格点的仿真路损值) 的平均值, A反映的是计入仿真中栅格点之间的仿 真路损值的关系;
B是计算: (当前栅格点周围有 DT数据的栅格点上的 DT路损值与仿 真路损值的差值)的平均值, B反映的是 DT路损值对仿真路损值的初步校 正;
f是影响因子, 反映的是用户对 DT数据影响力大小的设置。
当计算出影响函数 S 的值后, 则可以计算出该当前栅格点上的影响路 损值, 计算公式如下: 影响路损值 =仿真路损值 +影响函数 S的值。 校正路损值计算模块 303 , 用于根据当前栅格点的影响路损值、仿真路 损值以及预设的权重计算当前栅格点的校正路损值;
校正路损值计算模块 303根据用户设置的权重 w, 计算出该当前栅格 点上校正后的路损值:
校正路损值 =w%*影响路损值 +(100-w)%*仿真路损值
规划优化模块 304,用于根据校正路损值并通过迭代算法进行自动小区 规划优化。
最后, 规划优化模块 304 自动综合上述计算结果, 得到校正后的路损 数据矩阵。 基于此校正后的路损数据矩阵, 使得 ACP软件能更准确地进行 小区参数调整的迭代计算, 从而得出准确性更高的自动小区规划优化方案。
如图 5所示, 影响路损值计算模块 302包括: 搜寻单元 3021、 地物属 性比较单元 3022、 仿真路损值保留单元 3023、 影响函数计算单元 3024以 及影响路损值计算单元 3025 , 其中:
搜寻单元 3021 , 用于搜寻当前栅格点周围八个栅格点是否具有 DT路 损值;
地物属性比较单元 3022 , 用于当八个栅格点中一个或一个以上栅格点 具有 DT路损值时,比较当前栅格点与具有 DT路损值的栅格点的地物属性; 仿真路损值保留单元 3023 , 用于当前栅格点地物属性与具有 DT路损 值的栅格点的地物属性均不相同时, 保留当前栅格点的仿真路损值;
影响函数计算单元 3024,用于当前栅格点地物属性与至少一个具有 DT 路损值的栅格点的地物属性相同时, 根据与当前栅格点地物属性相同的周 围栅格点的 DT路损值和仿真路损值,以及当前栅格点的仿真路损值计算影 响函数的值;
影响路损值计算单元 3025 , 用于将影响函数的值加上当前栅格点的仿 真路损值, 得到当前栅格点的影响路损值。 进一步的, 仿真路损值保留单元 3023还用于当前栅格点周围八个栅格 点均没有 DT路损值时, 保留当前栅格点的仿真路损值。
进一步的,校正路损值计算模块 303还用于当前栅格点已有 DT路损值 时,根据当前栅格点的 DT路损值、仿真路损值以及预设的权重计算当前栅 格点的校正路损值。
此种情况下, 校正路损值计算公式为:
校正路损值 =w%*DT路损值 +(100-w)%*仿真路损值; 其中, w为预设 的权重。
本发明实施例利用路测数据进行自动小区规划优化的方法及装置, 在 ACP工具中, 用 "影响函数算法"处理 DT数据, 利用实际 DT数据校正仿 真预测的路径损耗值, 使 ACP工具能综合考虑仿真数据与 DT数据, 既能 考虑电子地图中地物属性对路损的影响,又能充分利用 DT数据对仿真数据 进行校正,提高了路损的计算精度,从而使 ACP的数据基础更为准确, ACP 的计算结果更具有可实用性, 最终提高了自动小区规划优化输出方案的准 确性和可用性。
以上所述仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利用本发明说明书及附图内容所作的等效结构或流程变换, 或直接或 间接运用在其它相关的技术领域, 均同理包括在本发明的专利保护范围内。 工业实用性
本发明中, 读取 DT数据以及仿真数据, 根据所述 DT数据以及仿真数 据计算栅格点的 DT路损值和仿真路损值; 当前栅格点无 DT路损值时, 通 过依据当前栅格点周围栅格点的 DT路损值和仿真路损值,以及当前栅格点 的仿真路损值, 结合影响函数算法计算当前栅格点的影响路损值; 根据所 述当前栅格点的影响路损值、 仿真路损值以及预设的权重计算当前栅格点 的校正路损值; 根据所述校正路损值并通过迭代算法进行自动小区规划优 化。
根据本发明方案, 在 ACP工具中, 用 "影响函数算法"处理 DT数据, 利用实际 DT数据校正仿真预测的路径损耗值, 使 ACP工具能综合考虑仿 真数据与 DT数据, 既能考虑电子地图中地物属性对路损的影响, 又能充分 利用 DT数据对仿真数据进行校正, 提高了路损的计算精度, 从而使 ACP 的数据基础更为准确, ACP 的计算结果更具有可实用性, 最终提高了自动 小区规划优化输出方案的准确性和可用性。

Claims

权利要求书
1、 一种利用路测数据进行自动小区规划优化的方法, 其特征在于, 包 括:
读取路测 DT数据以及仿真数据,根据所述 DT数据以及仿真数据计算 栅格点的 DT路损值和仿真路损值;
当前栅格点无 DT路损值时,通过依据当前栅格点周围栅格点的 DT路 损值和仿真路损值, 以及当前栅格点的仿真路损值, 结合影响函数算法计 算当前栅格点的影响路损值;
根据所述当前栅格点的影响路损值、 仿真路损值以及预设的权重计算 当前栅格点的校正路损值;
根据所述校正路损值并通过迭代算法进行自动小区规划优化。
2、 根据权利要求 1所述的方法, 其特征在于, 所述通过依据当前栅格 点周围栅格点的 DT路损值和仿真路损值, 以及当前栅格点的仿真路损值, 结合影响函数算法计算当前栅格点的影响路损值的步骤包括:
搜寻当前栅格点周围八个栅格点是否具有 DT路损值;
当所述八个栅格点中一个或一个以上栅格点具有 DT路损值时,比较当 前栅格点与所述具有 DT路损值的栅格点的地物属性;
如果当前栅格点地物属性与所述具有 DT路损值的栅格点的地物属性 均不相同, 则保留当前栅格点的仿真路损值; 否则
根据与当前栅格点地物属性相同的周围栅格点的 DT路损值和仿真路 损值, 以及当前栅格点的仿真路损值计算影响函数的值;
将所述影响函数的值加上当前栅格点的仿真路损值, 得到当前栅格点 的影响路损值。
3、 根据权利要求 2所述的方法, 其特征在于, 当前栅格点周围八个栅 格点均没有 DT路损值时, 该方法还包括: 保留当前栅格点的仿真路损值。
4、 根据权利要求 1所述的方法, 其特征在于, 还包括:
当前栅格点已有 DT路损值时, 根据当前栅格点的 DT路损值、仿真路 损值以及所述预设的权重计算当前栅格点的校正路损值。
5、 根据权利要求 1至 4中任一项所述的方法, 其特征在于, 所述校正 路损值计算公式为:
校正路损值 =w%*影响路损值或 DT路损值 +(100-w)%*仿真路损值; 其 中, w为预设的权重。
6、 一种利用路测数据进行自动小区规划优化的装置, 其特征在于, 包 括:
路测路损值计算模块, 用于读取 DT数据以及仿真数据, 根据所述 DT 数据以及仿真数据计算栅格点的 DT路损值和仿真路损值;
影响路损值计算模块,用于当前栅格点无 DT路损值时,通过依据当前 栅格点周围栅格点的 DT路损值和仿真路损值,以及当前栅格点的仿真路损 值, 结合影响函数算法计算当前栅格点的影响路损值;
校正路损值计算模块, 用于根据所述当前栅格点的影响路损值、 仿真 路损值以及预设的权重计算当前栅格点的校正路损值;
规划优化模块, 用于根据所述校正路损值并通过迭代算法进行自动小 区规划优化。
7、 根据权利要求 6所述的装置, 其特征在于, 所述影响路损值计算模 块包括:
搜寻单元, 用于搜寻当前栅格点周围八个栅格点是否具有 DT路损值; 地物属性比较单元, 用于当所述八个栅格点中一个或一个以上栅格点 具有 DT路损值时, 比较当前栅格点与所述具有 DT路损值的栅格点的地物 属性;
仿真路损值保留单元,用于当前栅格点地物属性与所述具有 DT路损值 的栅格点的地物属性均不相同时, 保留当前栅格点的仿真路损值; 影响函数计算单元, 用于当前栅格点地物属性与至少一个所述具有 DT 路损值的栅格点的地物属性相同时, 根据与当前栅格点地物属性相同的周 围栅格点的 DT路损值和仿真路损值,以及当前栅格点的仿真路损值计算影 响函数的值;
影响路损值计算单元, 用于将所述影响函数的值加上当前栅格点的仿 真路损值, 得到当前栅格点的影响路损值。
8、 根据权利要求 7所述的装置, 其特征在于, 所述仿真路损值保留单 元还用于当前栅格点周围八个栅格点均没有 DT路损值时,保留当前栅格点 的仿真路损值。
9、 根据权利要求 6所述的装置, 其特征在于, 所述校正路损值计算模 块还用于当前栅格点已有 DT路损值时, 根据当前栅格点的 DT路损值、 仿 真路损值以及所述预设的权重计算当前栅格点的校正路损值。
10、 根据权利要求 6至 9中任一项所述的装置, 其特征在于, 所述校 正路损值计算公式为:
校正路损值 =w%*影响路损值或 DT路损值 +(100-w)%*仿真路损值; 其 中, w为预设的权重。
PCT/CN2011/076384 2010-12-06 2011-06-27 利用路测数据进行自动小区规划优化的方法及装置 WO2012075805A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010574542.1A CN102487516B (zh) 2010-12-06 2010-12-06 利用路测数据进行自动小区规划优化的方法及装置
CN201010574542.1 2010-12-06

Publications (1)

Publication Number Publication Date
WO2012075805A1 true WO2012075805A1 (zh) 2012-06-14

Family

ID=46152960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076384 WO2012075805A1 (zh) 2010-12-06 2011-06-27 利用路测数据进行自动小区规划优化的方法及装置

Country Status (2)

Country Link
CN (1) CN102487516B (zh)
WO (1) WO2012075805A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019109780A1 (zh) * 2017-12-05 2019-06-13 华为技术有限公司 一种预测路损的方法及装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105376089B (zh) * 2015-10-23 2018-11-16 上海华为技术有限公司 一种网络规划方法及装置
CN106998559B (zh) * 2016-01-22 2020-08-25 中国移动通信集团贵州有限公司 小区检测方法及装置
CN107995630B (zh) * 2016-10-26 2021-06-11 中国移动通信集团广东有限公司 一种无线网络覆盖的信号数据计算方法及装置
CN108207005B (zh) * 2016-12-20 2020-12-01 中国移动通信集团设计院有限公司 一种lte无线网络的评估方法及服务器
CN109996251B (zh) * 2017-12-29 2022-08-16 中兴通讯股份有限公司 一种进行信号覆盖预测的方法
EP4055863B1 (en) 2020-01-17 2023-07-19 British Telecommunications public limited company Wireless telecommunications network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1191804A2 (en) * 2000-09-26 2002-03-27 ScoreBoard, Inc. Path loss data normalization for growth management of a cellular system
CN101267643A (zh) * 2007-03-12 2008-09-17 中兴通讯股份有限公司 提高网络规划仿真精度的方法
CN101420701A (zh) * 2007-10-23 2009-04-29 中兴通讯股份有限公司 一种基于规划阶段测试数据评估网络性能的方法及其装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1191804A2 (en) * 2000-09-26 2002-03-27 ScoreBoard, Inc. Path loss data normalization for growth management of a cellular system
CN101267643A (zh) * 2007-03-12 2008-09-17 中兴通讯股份有限公司 提高网络规划仿真精度的方法
CN101420701A (zh) * 2007-10-23 2009-04-29 中兴通讯股份有限公司 一种基于规划阶段测试数据评估网络性能的方法及其装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019109780A1 (zh) * 2017-12-05 2019-06-13 华为技术有限公司 一种预测路损的方法及装置

Also Published As

Publication number Publication date
CN102487516B (zh) 2014-04-09
CN102487516A (zh) 2012-06-06

Similar Documents

Publication Publication Date Title
WO2012075805A1 (zh) 利用路测数据进行自动小区规划优化的方法及装置
CN102404756B (zh) 一种基于手机测量报告的天线参数优化系统
EP2938115B1 (en) Network coverage planning method and device of evolution communication system
CN102014412B (zh) 一种基于天线参数调整的无线网络话务均衡优化方法
CN111327377B (zh) 场强预测方法、装置、设备及存储介质
CN107846688B (zh) 一种基于多运营商的无线网络站址规划方法和装置
CN106376007B (zh) 一种基站覆盖性能定位方法及系统
WO2008141551A1 (fr) Procédé et équipement pour la planification du réseau d'un système de communication
CN102640528A (zh) 得出路径损耗估计值的方法和设备
CN106412973A (zh) 一种网络覆盖质量检测方法及装置
Benmus et al. Neural network approach to model the propagation path loss for great Tripoli area at 900, 1800, and 2100 MHz bands
CN103686758B (zh) 一种确定天线下倾角的方法和系统
CN106332271B (zh) 一种干扰源定位方法及装置
CN104754590A (zh) 一种评估长期演进lte网络站址的方法及装置
CN114095856B (zh) 用于基站节能的处理方法和处理装置
CN103533565B (zh) 一种无线网络优化方法及优化器
WO2019112708A1 (en) Methods and systems for determining morphology data
CN107872805B (zh) 参数获取方法及装置、网络侧设备
CN102957572B (zh) 一种系统性能评估方法及装置
CN106714189A (zh) 一种小区过覆盖的分析方法及装置
US8428520B2 (en) Margin design apparatus, margin design system, margin design method, and program
US8188995B2 (en) Methods and appratus for estimating cell radius in a mobile telecommunications network
WO2018107826A1 (zh) 一种rf参数调整的方法及装置
CN111447677B (zh) 一种高负荷地理栅格识别定位方法、系统及存储介质
JP3862021B2 (ja) 電波伝搬シミュレータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11847752

Country of ref document: EP

Kind code of ref document: A1