WO2012075780A1 - 基于终端服务等级的上行mu-mimo传输方法及基站 - Google Patents

基于终端服务等级的上行mu-mimo传输方法及基站 Download PDF

Info

Publication number
WO2012075780A1
WO2012075780A1 PCT/CN2011/074409 CN2011074409W WO2012075780A1 WO 2012075780 A1 WO2012075780 A1 WO 2012075780A1 CN 2011074409 W CN2011074409 W CN 2011074409W WO 2012075780 A1 WO2012075780 A1 WO 2012075780A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
data stream
service
transmitted
index
Prior art date
Application number
PCT/CN2011/074409
Other languages
English (en)
French (fr)
Inventor
陈宪明
关艳峰
鲁照华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012075780A1 publication Critical patent/WO2012075780A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an uplink MU-MIMO (Multiple User Multiple-Input Multiple-Output) transmission method based on a terminal service level and a base station.
  • MU-MIMO Multiple User Multiple-Input Multiple-Output
  • MIMO Multiple-Input Multiple-Output
  • SU-MIMO Single User-MIMO
  • MU-MIMO multi-user spatial multiplexing
  • the multi-user spatial multiplexing can be further divided into uplink and downlink.
  • the downlink MU-MIMO means that the base station sends multiple data streams occupying the same time-frequency resource to different terminals.
  • uplink MU-MIMO is a virtual MIMO system, that is, each terminal transmits one data stream, but two or more data streams occupy the same time-frequency resource; It can be seen that these data streams from different terminals can be regarded as data streams from different antennas on the same terminal, thus forming a MIMO system.
  • MU-MIMO can achieve multi-user diversity gain.
  • SIC Continuous Interference Cancellation
  • the data stream is continuously demodulated and decoded. Once the first data stream is demodulated, its effect on the received signal is estimated and removed, thereby improving the receiver's ability to demodulate subsequent data streams. If the data stream is correctly demodulated and decoded, and the channel estimate of the receiver is sufficiently accurate, the interference of the first data stream with other data streams can be effectively estimated.
  • the receiving opportunity then demodulates the second data stream from the revised received signal.
  • the above process will continue until each data stream is demodulated. Since the data stream is continuously demodulated and decoded, there is a considerable delay between the decoding of the first and last data streams. It is roughly estimated that when there are N data streams, the delay of decoding the last data stream is N times the delay of decoding the first data stream.
  • each terminal For uplink MU-MIMO, usually one terminal corresponds to one data stream, and the SIC receiver on the base station side needs to sequentially demodulate and decode the data stream corresponding to each terminal in a specific order.
  • the decoding delay of each terminal is different, the experience of each end user is different.
  • most communication systems have a division of the terminal service level, and generally require a terminal with a higher service level to enjoy a higher service priority, that is, the base station needs to prioritize the user experience of the high service level terminal.
  • each terminal may have multiple services to be transmitted at the same time, such as VoIP, web browsing, File Transfer Protocol (FTP) download, etc., and these services have different delay requirements. Therefore, in order to ensure the user experience of various services, it is necessary to comprehensively consider the service level of the terminal and the delay requirement of the terminal service, but there is no corresponding technical support at present. Summary of the invention
  • the main object of the present invention is to provide an uplink MU-MIMO transmission method and a base station based on a terminal service level, to adjust a delay of decoding a different data stream by a base station receiver, and improve user experience.
  • the technical solution of the present invention is achieved as follows:
  • An uplink MU-MIMO transmission method based on a terminal service level includes: determining, by a base station, a service level of the terminal and/or a delay requirement of the service to be transmitted by the terminal, and assigning a data flow index to the terminal according to the method;
  • the process of allocating a data flow index to a terminal includes:
  • the data flow index is allocated to each terminal according to the service level of the terminal; when the service levels of the terminals are the same, the data flow index is allocated to each terminal according to the delay requirement of the service to be transmitted by the terminal;
  • the allocated data stream index is carried in the control signaling and sent to the corresponding terminal.
  • the assigning a data flow index to each terminal according to the service level of the terminal includes:
  • the allocating the data flow index to each terminal according to the delay requirement of the service to be transmitted by the terminal includes: assigning a priority data stream index to the terminal having the strict delay requirement;
  • the data stream index of the secondary priority decoding is allocated to the terminal having the second strict delay requirement.
  • the control signaling further carries decoding delay information of the data stream
  • the service is a corresponding transmission service selected by the terminal from the to-be-transmitted service according to the mapping relationship between the preset data stream index and the decoding delay and the delay requirement of the service to be transmitted by the terminal.
  • the method also includes:
  • the terminal selects a to-be-transmitted service whose decoding delay requirement is not lower than the decoding delay from the to-be-transmitted service, and carries the service in the data stream and transmits the data to the base station.
  • the data stream index is selected from a sequence of data stream indexes; the data stream index sequence is arranged according to a sequence in which the base station receiver decodes the data stream;
  • the process of performing decoding includes:
  • the uplink of the terminal operates in a MU-MIMO transmission mode, and transmits uplink data on the same time-frequency resource.
  • An uplink MU-MIMO transmission base station based on a terminal service level comprising: a service level acquisition module, configured to determine a service level of the terminal and/or a delay requirement of the service to be transmitted by the terminal;
  • a data stream index allocation module configured to allocate a data stream index to the terminal according to a service level of the terminal and/or a delay requirement of the service to be transmitted by the terminal;
  • a data stream decoding module configured to perform decoding on the data stream that is sent by the terminal according to the data stream index and that carries the terminal service.
  • the data stream index allocation module includes:
  • a data stream index allocation unit configured to allocate a data stream index to each terminal according to a service level of the terminal when the service levels of the terminals are different; and when the service levels of the terminals are the same, the delay requirement of the service to be transmitted by the terminal is Each terminal allocates a data stream index;
  • the data stream index sending unit is configured to carry the allocated data stream index in the control signaling and send the data to the corresponding terminal.
  • the control signaling further carries decoding delay information of the data stream
  • the terminal is further configured to select a corresponding transmission service from the to-be-transmitted service according to a preset mapping relationship between the data stream index and the decoding delay and a delay requirement of the to-be-transmitted service.
  • the data stream index is selected from a sequence of data stream indexes; the data stream index sequence is arranged according to a sequence in which the base station receiver decodes the data stream;
  • the data stream decoding module includes:
  • a signal receiving unit configured to receive, by the terminal, according to the control signaling a composite signal of the data stream
  • a data stream decoding unit configured to sequentially decode the corresponding data stream according to the data stream index sequence.
  • the uplink MU-MIMO transmission method and the base station based on the terminal service level proposed by the present invention, according to the service level of the terminal and the delay requirement of the service to be transmitted by the terminal, according to the service level of the terminal and/or the delay of the service to be transmitted by the terminal Requires, allocates a corresponding data stream index to the terminal, decodes the data stream carrying the terminal service according to the data stream index sequence, and combines the joint scheduling of the base station and the terminal, and adjusts the delay of decoding the different data streams by the base station receiver, thereby improving User experience of various services with terminals of different service levels.
  • 1 is a structural diagram of a continuous interference cancellation receiver used in a MIMO system
  • FIG. 2 is a schematic flowchart of an embodiment of an uplink MU-MIMO transmission method based on a terminal service level according to the present invention
  • FIG. 3 is a data flow index selected by the terminal according to the service class of the terminal and/or the delay requirement of the service to be transmitted by the terminal according to the terminal service level-based uplink MU-MIMO transmission method according to the present invention.
  • FIG. 4 is a schematic flow chart of a data flow of a bearer terminal service sent by a decoding terminal according to an allocated data flow index according to an embodiment of the uplink MU-MIMO transmission method of the terminal service level according to the present invention
  • 4a is a schematic diagram of a transmission mode in an embodiment of an uplink MU-MIMO transmission method based on a terminal service level according to the present invention
  • 4b is a schematic diagram of another transmission mode in an embodiment of the uplink MU-MIMO transmission method based on the terminal service level of the present invention
  • 4c is a schematic diagram of another transmission mode in an embodiment of the uplink MU-MIMO transmission method based on the terminal service level of the present invention
  • FIG. 5 is an embodiment of an uplink MU-MIMO transmission base station based on a terminal service level according to the present invention. Schematic;
  • FIG. 6 is a schematic structural diagram of a data stream index allocation module in an embodiment of an uplink MU-MIMO transmission base station based on a terminal service level according to the present invention
  • FIG. 7 is a schematic structural diagram of a data stream decoding module in an embodiment of an uplink MU-MIMO transmission base station based on a terminal service level according to the present invention. detailed description
  • the embodiment of the present invention mainly allocates a corresponding data stream index to the terminal according to the service level of the terminal and the delay requirement of the service to be transmitted by the terminal, according to the service level of the terminal and/or the delay requirement of the service to be transmitted by the terminal, according to the data flow.
  • the index sequence decodes the data stream carrying the terminal service to adjust the delay of the base station receiver to decode different data streams, thereby improving user experience.
  • the uplink MU-MIMO mode is adopted as an uplink multi-antenna transmission mode and has been adopted by the standard organization for promotion. Cell-level throughput.
  • the receiver input signal is a composite signal received by each receiving antenna.
  • the receiver contains N processing units.
  • Each processing unit includes a data stream detecting means, a target signal regenerating means, and a summing means.
  • the composite signal corresponding to each receive branch will be processed by each processing unit, for example in the case of Orthogonal Frequency Division Multiplexing (OFDM), a plurality of subcarrier signals corresponding to each receive branch, by each processing unit Processing separately.
  • Each processing unit is configured to detect a target data stream from the input composite signal, and recover the contribution or influence of the target data stream on the synthesized signal by restoring the received signal corresponding to the target data stream, which is beneficial to the subsequent processing unit. Data flow detection.
  • each successfully detected data stream is considered by the receiver to interfere with the undetected data stream, and each processing unit gradually eliminates this interference by subtracting the recovered target signal from the received composite signal.
  • the first data stream is simultaneously sent to the regenerating device of the target signal, the output signal of which corresponds to the contribution of the first data stream to the original composite signal, i.e., the effect on the composite signal.
  • the regenerated or recovered signal is then subtracted from the input composite signal by the summing means such that interference corresponding to the first data stream is removed or cancelled from the original composite signal.
  • the process of removing the interference is repeated, that is, the second data stream is decoded by the data stream detecting means of the processing unit 2, and the interference signal corresponding to the data stream passes through the processing unit 2
  • the target signal regeneration device is restored, and then the recovered signal is removed from the cascaded input signal by the summing device of processing unit 2.
  • the above process of removing interference is repeated until all N data streams are decoded. Once the last data stream is decoded by the data stream detecting means of the processing unit N, the deletion of the interfering signal is no longer required, ie the regenerating means and the summing means of the target signal are no longer required.
  • the base station or the terminal may enable the preferentially decoded data stream to carry a service flow with higher delay sensitivity, such as real-time voice or video service, and enable subsequent decoded data.
  • the terminal can selectively receive a specific data stream to reduce the delay.
  • the base station receiver needs to decode all data streams, this results in data corresponding to different terminals.
  • the decoding delay of the stream is different.
  • a specific terminal may contain one or more services to be transmitted, and different services have different delay requirements.
  • the decoding of the first data stream can be accelerated. For example, when iterative decoding is used, the lower the code rate used, the fewer iterations are needed and the lower the decoding delay. If the time required to decode the first data stream is reduced, the delay in decoding subsequent data streams is correspondingly reduced.
  • an embodiment of the present invention provides an uplink MU-MIMO transmission method based on a terminal service level, including:
  • Step S101 The base station determines a service level of the terminal and/or a delay requirement of the service to be transmitted by the terminal.
  • the service level is divided according to the order in which the terminals are served by the base station, and each terminal corresponds to a terminal service level, wherein the terminal of the high service level enjoys a high service priority.
  • the base station in order to adjust the delay of decoding the terminal data stream in the composite signal by the base station receiver, the base station first determines the service level of each terminal that transmits the uplink data on the same time-frequency resource, and the terminal with the high service level
  • the data stream is subjected to priority decoding processing. If two or more terminal service levels are the same in each terminal, the delay requirement of the to-be-transmitted service of the terminal with the same service level needs to be determined, so that the service level is the same, but the delay requirement of the transmission service is strict.
  • the data stream of the terminal is subjected to priority decoding processing.
  • Step S102 The terminal allocates a data stream index selected from the data stream index sequence according to the service level of the terminal and/or the delay requirement of the service to be transmitted by the terminal.
  • the data stream index sequence is arranged in the order in which the base station receiver decodes the data stream.
  • the data flow index is allocated to the terminal according to the service level of the terminal, specifically, the priority data stream index is assigned to the terminal with high service level; the second priority is assigned to the terminal with low service level.
  • the decoded data stream index For a terminal with the same service level, the corresponding data stream index is allocated according to the delay requirement of the service to be transmitted by the terminal.
  • a priority-decoded data stream index is assigned to a terminal having a strict delay (such as low latency); a second-first-decoded data stream index is assigned to a terminal having a second strict delay requirement, and so on.
  • the base station sends the allocated data stream index information to the corresponding terminal in the uplink scheduling control information (that is, the control signaling in this embodiment), and the control signaling may further carry the decoding delay information of the base station receiver.
  • the terminal selects a corresponding to-be-transmitted service according to the decoding delay information in the control signaling, and carries the service in the data stream and transmits the data to the base station.
  • control signaling may not carry the decoding delay information of the base station receiver.
  • the terminal may select a corresponding to be transmitted according to the mapping relationship between the preset data stream index and the decoding delay.
  • the service is carried in the data stream and transmitted to the base station.
  • the terminal selects a to-be-transmitted service whose decoding delay requirement is not lower than the decoding delay of the data stream, according to the decoding delay of the data stream, and carries the service in the data stream for transmission.
  • the decoding delay requirement is not lower than the decoding delay of the data stream.
  • the decoding delay requirement of the to-be-transmitted service is greater than (higher than) or equal to the decoding delay of the data stream.
  • Step S103 Perform decoding on the data flow of the bearer terminal service sent by the terminal according to the allocated data flow index.
  • the base station After receiving the data stream sent by the terminal, the base station sequentially decodes the corresponding data stream according to the data stream index sequence.
  • step S102 includes:
  • Step S1021 determining whether the service level of each terminal is the same, if yes, proceeding to step S1022; otherwise, proceeding to step S1023;
  • Step S1022 Allocating a data stream index to each terminal according to a delay requirement of the service to be transmitted by the terminal; and proceeding to step S1024;
  • the delay requirement refers to the decoding delay requirement, and the strict delay requirement refers to the low decoding delay requirement.
  • Step S1023 assigning a data flow index to each terminal according to the service level of the terminal; proceeding to step S1024;
  • Step S1024 The allocated data stream index is carried in the control signaling and sent to the corresponding terminal.
  • step S103 includes:
  • Step S1031 Receive a composite signal including a data stream sent by the terminal according to the control signaling.
  • Step S1032 Decode the corresponding data stream according to the data stream index sequence.
  • the data stream index sequence is arranged in the order in which the base station receiver decodes the data stream.
  • Example 1 Uplink MU-MIMO transmission of two terminals with different service levels.
  • the terminal 1 and the terminal 2 are paired to implement uplink MU-MIMO transmission, that is, the terminal 1 and the terminal 2 transmit data on the same time-frequency resource, and the terminal 1 and the terminal 2 have different terminal service levels, and The terminal service level A of the terminal 1 is higher than the terminal service level B of the terminal 2.
  • the terminal 1 currently includes three to-be-transmitted services, namely, the to-be-transmitted service 1-1, the to-be-transmitted service 1-2, and the to-be-transmitted service 1-3, and the corresponding decoding delay requirements of the three to-be-transmitted services are respectively 1 Milliseconds (millisecond, ms), 2 milliseconds, and 3 milliseconds.
  • the terminal 2 currently includes three to-be-transmitted services, namely, the to-be-transmitted service 2-1, the to-be-transmitted service 2-2, and the to-be-transmitted service 2-3, respectively, and the corresponding decoding delay requirements of the three to-be-transmitted services are respectively It is 1 millisecond, 2 milliseconds, and 3 milliseconds.
  • the base station continuous interference cancellation receiver first decodes the first data stream, and the decoding delay is 1 millisecond, the second decoding is the second data stream, and the decoding delay is 2 milliseconds.
  • step 1 the base station determines that the service level of the terminal 1 is A, the service level of the terminal 2 is B, and the service level of the terminal 1 is higher than the service level of the terminal 2.
  • Step 2 The base station determines that the data stream index sequence is ⁇ 1, 2 ⁇ , that is, the base station first decodes the first one. The data stream is then decoded into the second data stream.
  • Step 3 The base station determines that the data flow index corresponding to the terminal 1 is 1, and the data flow index corresponding to the terminal 2 is 2, and notifies the terminal 1 and the terminal 2 respectively.
  • the service level of the terminal 1 is higher than the service level of the terminal 2. To ensure the service priority of the terminal 1, the first decoded data stream index is assigned to the terminal 1, and the index of the subsequently decoded data stream is assigned to the terminal 2. .
  • the base station applies the unicast uplink scheduling control information corresponding to the terminal 1 to carry the data stream index 1 information, and sends the data stream index 1 information to the terminal 1; and applies the unicast uplink scheduling control information corresponding to the terminal 2 to carry the data stream index 2 information, And sent to terminal 2.
  • Step 4 The terminal 1 and the terminal 2 respectively obtain the data stream index 1 information and the data stream index 2 information.
  • the terminal may directly or indirectly obtain the decoding delay information of the data stream.
  • the direct obtaining means that the control signaling carries the data stream decoding delay information;
  • the indirect obtaining means that the terminal obtains the decoding delay information according to the implicit mapping relationship between the preset data stream index and the decoding delay.
  • Step 5 The terminal 1 uses the data stream corresponding to the index 1 to transmit the to-be-transmitted service 1-1, and the terminal 2 uses the data stream corresponding to the index 2 to transmit the to-be-transmitted service 2-2.
  • the decoding delay of the data stream corresponding to index 1 is 1 millisecond
  • the decoding delay requirements of the three to-be-transmitted services 1-1, 1-2, and 1-3 of terminal 1 are 1 millisecond and 2 milliseconds, respectively.
  • the decoding delay requirement is all greater than or equal to the decoding delay of the data stream, that is, regardless of which service is transmitted by the terminal 1, the decoding delay requirement can be satisfied.
  • the to-be-transmitted service that is finally selected for the actual transmission is the to-be-transmitted service that is included in the set P and has the strictest (lowest) delay requirement, that is, the service to be transmitted 1-1.
  • the decoding delay of the data stream corresponding to index 2 is 2 milliseconds
  • the decoding delay requirements of the three to-be-transmitted services 2-1, 2-2, and 2-3 of terminal 2 are 1 millisecond and 2 milliseconds, respectively.
  • the to-be-transmitted service whose decoding delay requirement is greater than or equal to the data stream decoding delay is the service to be transmitted 2-2 and the to-be-transmitted service 2-3, that is, the terminal 2 only transmits the to-be-transmitted service 2-2 and the to-be-transmitted service. 2-3, can meet the corresponding decoding delay requirements.
  • the to-be-transmitted service is the to-be-transmitted service that is included in the set P and has the strictest (lowest) delay requirement, that is, the service to be transmitted 2-2.
  • Example 2 Uplink MU-MIMO transmission of two terminals with the same service level.
  • the terminal 1 and the terminal 2 are paired to implement uplink MU-MIMO transmission, that is, the terminal 1 and the terminal 2 transmit data on the same time-frequency resource, and the terminal 1 and the terminal 2 have the same terminal service level A.
  • the terminal 1 currently includes three to-be-transmitted services, namely, the to-be-transmitted service 1-1, the to-be-transmitted service 1-2, and the to-be-transmitted service 1-3, and the corresponding decoding delay requirements of the three to-be-transmitted services are respectively 1 Milliseconds, 2 milliseconds, and 3 milliseconds.
  • the terminal 2 currently includes three to-be-transmitted services, namely, the to-be-transmitted service 2-1, the to-be-transmitted service 2-2, and the to-be-transmitted service 2-3, respectively, and the corresponding decoding delay requirements of the three to-be-transmitted services are respectively It is 2 milliseconds, 3 milliseconds, and 4 milliseconds.
  • the base station continuous interference cancellation receiver first decodes the first data stream, and the decoding delay is 1 millisecond; the second decoding is the second data stream, and the decoding delay is 2 milliseconds.
  • the base station determines that the service level of the terminal 1 and the terminal 2 is A, and the terminal 1 and the terminal 2 have the same terminal service level, and the delay requirement of the terminal 1 to be transmitted is relatively strict.
  • Step 2 The base station determines that the data stream index sequence is ⁇ 1, 2 ⁇ , that is, the base station first decodes the first data stream, and then decodes the second data stream.
  • Step 3 The base station determines that the data flow index corresponding to the terminal 1 is 1, and the number corresponding to the terminal 2 The flow index is 2, and the terminal 1 and the terminal 2 are respectively notified.
  • the service level of the terminal 1 is equal to the service level of the terminal 2, but the delay requirement of the service to be transmitted by the terminal 1 is relatively strict.
  • the index of the first decoded data stream is allocated to the terminal 1.
  • the index of the subsequently decoded data stream is allocated to the terminal 2.
  • the base station applies the unicast uplink scheduling control information corresponding to the terminal 1 to carry the data stream index 1 information, and sends the data stream index 1 information to the terminal 1; and applies the unicast uplink scheduling control information corresponding to the terminal 2 to carry the data stream index 2 information, And sent to terminal 2.
  • Step 4 The terminal 1 and the terminal 2 respectively obtain the data stream index 1 information and the data stream index 2 information.
  • the terminal may directly or indirectly obtain the decoding delay information of the data stream.
  • the direct obtaining means that the control signaling carries the data stream decoding delay information;
  • the indirect obtaining means that the terminal obtains the decoding delay information according to the implicit mapping relationship between the preset data stream index and the decoding delay.
  • Step 5 The terminal 1 uses the data stream corresponding to the index 1 to transmit the to-be-transmitted service 1-1; the terminal 2 uses the data stream corresponding to the index 2 to transmit the to-be-transmitted service 2-1.
  • the decoding delay of the data stream corresponding to the index 1 is 1 millisecond, and the decoding delay requirements of the three to-be-transmitted services 1-1, 1-2, and 1-3 of the terminal 1 are 1 millisecond, 2 milliseconds, and 3 milliseconds, respectively.
  • the decoding delay requirement is all greater than or equal to the decoding delay of the data stream, that is, the terminal 1 can satisfy the decoding delay requirement regardless of which service is transmitted.
  • the to-be-transmitted service that is finally selected for the actual transmission is the to-be-transmitted service that is included in the set P and has the strictest (lowest) delay requirement, that is, the service to be transmitted 1-1.
  • the decoding delay of the data stream corresponding to the index 2 is 2 milliseconds, and the decoding delay requirements of the three to-be-transmitted services 2-1, 2-2, and 2-3 of the terminal 2 are 2 milliseconds, 3 milliseconds, and 4 milliseconds, respectively.
  • the decoding delay requirement is all greater than or equal to the decoding delay of the data stream, that is, regardless of which service is transmitted by the terminal 2, the decoding delay requirement can be satisfied.
  • the to-be-transmitted service that is finally selected for the actual transmission is the to-be-transmitted service that is included in the set P and has the most strict (lowest) delay requirement, that is, the service to be transmitted 2-1.
  • Embodiment 3 Uplink MU-MIMO transmission of three terminals with the same service level part.
  • the terminal 1, the terminal 2 and the terminal 3 are grouped into one group to implement uplink MU-MIMO transmission, that is, the terminal 1, the terminal 2 and the terminal 3 transmit data on the same time-frequency resource, and the terminal service of the terminal 1
  • the level is A
  • the terminal 2 and the terminal 3 have the same terminal service level B
  • the terminal service level A of the terminal 1 is higher than the terminal service level of the terminal 2 and the terminal 3.
  • the terminal 1 currently includes three to-be-transmitted services, respectively For the to-be-transmitted service 1-1, the to-be-transmitted service 1-2, and the to-be-transmitted service 1-3, the corresponding decoding delay requirements of the three to-be-transmitted services are 1 millisecond, 2 milliseconds, and 3 milliseconds, respectively.
  • the terminal 2 currently includes two to-be-transmitted services, namely, the to-be-transmitted service 2-1 and the to-be-transmitted service 2-2, and the corresponding decoding delay requirements of the two to-be-transmitted services are respectively 3 milliseconds and 4 milliseconds.
  • the terminal 3 currently includes three to-be-transmitted services, namely, the to-be-transmitted service 3-1, the to-be-transmitted service 3-2, and the to-be-transmitted service 3-3, respectively, and the corresponding decoding delay requirements of the three to-be-transmitted services are respectively 1 millisecond, 2 milliseconds, and 3 milliseconds.
  • the base station continuous interference cancellation receiver first decodes the first data stream, and the decoding delay is 1 millisecond; the second decoding is the second data stream, the decoding delay is 2 milliseconds; the final decoding is the third data. Stream, decoding delay is 3 milliseconds.
  • Step 1 The base station determines that the service level of the terminal 1 is A, the service level of the terminal 2 and the terminal 3 is B, the service level of the terminal 1 is higher than the terminal service level of the terminal 2 and the terminal 3, and the decoding delay of the terminal 3 to be transmitted. Demand is more stringent than terminal 2.
  • Step 2 The base station determines that the data stream index sequence is ⁇ 1, 2, 3 ⁇ , that is, the base station first decodes the first The data stream will then decode the second data stream and finally decode the third data stream.
  • Step 3 The base station determines that the data flow index corresponding to the terminal 1 is 1, the data flow index corresponding to the terminal 2 is 3, and the data flow index corresponding to the terminal 3 is 2, and the terminal 1, the terminal 2, and the terminal 3 are respectively notified.
  • the service level of the terminal 1 is higher than the service level of the terminal 2 and the terminal 3.
  • the index of the first decoded data stream is allocated to the terminal 1, and the data of the second and last decoding is decoded.
  • the index of the flow is allocated to the terminal 2 and the terminal 3; the service level of the terminal 2 is equal to the service level of the terminal 3, but the delay requirement of the service to be transmitted by the terminal 3 is relatively strict, and the delay requirement of the terminal 3 is
  • the index of the decoded data stream is assigned to the terminal 3, and the index of the last decoded data stream is assigned to the terminal 2.
  • the base station applies the unicast uplink scheduling control information corresponding to the terminal 1 to carry the data stream index 1 information, and sends the data stream index 1 information to the terminal 1; and applies the unicast uplink scheduling control information corresponding to the terminal 2 to carry the data stream index 2 information, And transmitting to the terminal 2; applying the unicast uplink scheduling control information corresponding to the terminal 3 to carry the data stream index 3 information, and transmitting the data stream index 3 information to the terminal 3.
  • Step 4 The terminal 1, the terminal 2, and the terminal 3 respectively obtain the data stream index. 1.
  • the data stream index 1.
  • the terminal may directly or indirectly obtain the decoding delay information of the data stream.
  • the direct obtaining means that the control signaling carries the data stream decoding delay information;
  • the indirect obtaining means that the terminal obtains the decoding delay information according to the implicit mapping relationship between the preset data stream index and the decoding delay.
  • Step 5 The terminal 1 uses the data stream corresponding to the index 1 to transmit the to-be-transmitted service 1-1, the terminal 2 uses the data stream corresponding to the index 3 to transmit the to-be-transmitted service 2-1, and the terminal 3 uses the data stream corresponding to the index 2 to transmit.
  • the decoding delay of the data stream corresponding to the index 1 is 1 millisecond, and the decoding delay requirements of the three to-be-transmitted services 1-1, 1-2, and 1-3 of the terminal 1 are 1 millisecond, 2 milliseconds, and 3 milliseconds, respectively.
  • the code delay requirements are all greater than or equal to the decoding delay of the data stream, that is, regardless of which service is transmitted, the decoding delay requirement can be satisfied.
  • the to-be-transmitted service that is finally selected for the actual transmission is the to-be-transmitted service that is included in the set P and has the strictest (lowest) delay requirement, that is, the service to be transmitted 1-1.
  • the decoding delay of the data stream corresponding to the index 2 is 2 milliseconds, and the decoding delay requirements of the three to-be-transmitted services 3-1, 3-2, and 3-3 of the terminal 3 are 1 millisecond, 2 milliseconds, and 3 milliseconds, respectively.
  • the to-be-transmitted service whose decoding delay requirement is greater than or equal to the decoding delay of the data stream is the to-be-transmitted service 3-2 and the to-be-transmitted service 3-3, that is, only the transmission to-be-transmitted service 3-2 and the to-be-transmitted service 3-3 can be transmitted. Meet the corresponding decoding delay requirements.
  • the to-be-transmitted service is the to-be-transmitted service that is included in the set P and has the strictest (lowest) delay requirement, that is, the service to be transmitted 3-2.
  • the decoding delay of the data stream corresponding to the index 3 is 3 milliseconds
  • the decoding delay requirements of the two to-be-transmitted services 2-1 and 2-2 of the terminal 2 are respectively 3 milliseconds and 4 milliseconds, and the decoding delay requirements are all greater than Or equal to the decoding delay of the data stream, that is, regardless of which service is transmitted, the decoding delay requirement can be satisfied.
  • the to-be-transmitted service is the to-be-transmitted service that is included in the set P and has the strictest (lowest) delay requirement, that is, the service to be transmitted 2-1.
  • the base station receives the composite signal including the data flow of the bearer terminal service, and according to the data stream index sequence. Decode the corresponding data stream. All terminal uplinks operate in the MU-MIMO transmission mode and transmit uplink data on the same time-frequency resource.
  • the service to be transmitted in this embodiment refers to an activated service that needs to send data.
  • the activated service refers to an uplink service flow that has been established but has not been deleted.
  • Base station receivers include, but are not limited to, SIC receivers.
  • the terminal uses a rate matching algorithm to implement rate control of the data stream.
  • the rate matching is part of the channel coding to implement the transmission of data packets of different sizes on the same time-frequency resource.
  • the present embodiment ensures the user experience of various to-be-transmitted services with different service level terminals by comprehensively considering the service level of the terminal and the delay requirement of the service to be transmitted by the terminal, and combining the joint scheduling of the base station and the terminal.
  • an embodiment of the present invention provides an uplink MU-MIMO transmission base station based on a terminal service level, including: a service level acquisition module 501, a data stream index allocation module 502, and a data stream decoding module 503, where:
  • a service level obtaining module 501 configured to determine a service level of the terminal and/or a delay requirement of the terminal to be transmitted;
  • the service level is divided according to the order in which the terminals are served by the base station.
  • Each terminal corresponds to a terminal service level, wherein a terminal with a high service level enjoys a high service priority.
  • the base station in order to adjust the delay of decoding the terminal data stream in the composite signal by the base station receiver, the base station first determines the service level of each terminal that transmits the uplink data on the same time-frequency resource, and the terminal with the high service level
  • the data stream is subjected to priority decoding processing. If two or more terminal service levels are the same in each terminal, it is necessary to determine the delay requirement of the to-be-transmitted service of the terminal with the same service level, and the terminal with the same service level but strict delay requirement for the transmission service.
  • the data stream is subjected to priority decoding processing.
  • a data stream index allocation module 502 configured to be transmitted according to a service level of the terminal and/or the terminal The delay requirement of the service allocates the data stream index selected from the data stream index sequence to the terminal; wherein the data stream index sequence is arranged in the order of the base station receiver decoding the data stream.
  • a data stream index is allocated to the terminal according to the service level of the terminal. Specifically, a priority-decoded data stream index is assigned to a terminal of a high service level; a second-priority decoded data stream index is assigned to a terminal of a low service level. For a terminal with the same service level, the corresponding data stream index is allocated according to the delay requirement of the service to be transmitted by the terminal. Specifically, a priority-decoded data stream index is allocated to a terminal having a strict delay (low latency) requirement; a secondary-first-decoded data stream index is allocated to a terminal having a second strict delay requirement, and so on.
  • the base station sends the allocated data stream index information to the corresponding terminal in the uplink scheduling control information (that is, the control signaling in this embodiment), and the control signaling may further carry the decoding delay information of the base station receiver.
  • the terminal selects a corresponding to-be-transmitted service according to the decoding delay information in the control signaling, and carries the service in the data stream and transmits the data to the base station.
  • control signaling may not carry the decoding delay information of the base station receiver.
  • the terminal may select a corresponding to be transmitted according to the mapping relationship between the preset data stream index and the decoding delay.
  • the service is carried in the data stream and transmitted to the base station.
  • the terminal selects the to-be-transmitted service whose decoding delay requirement is not lower than the decoding delay of the data stream, according to the decoding delay of the data stream, and carries the service in the data stream for transmission.
  • the decoding delay requirement is not lower than the decoding delay of the data stream.
  • the decoding delay requirement of the to-be-transmitted service is greater than (higher than) or equal to the decoding delay of the data stream.
  • the data stream decoding module 503 is configured to perform decoding on the data stream of the terminal service that is sent by the terminal according to the allocated data stream index.
  • the base station After receiving the data stream sent by the terminal, the base station sequentially decodes the corresponding data stream according to the data stream index sequence.
  • the data stream index assigning module 502 includes: a data stream index assigning unit 5021 and a data stream index sending unit 5022, where:
  • the data stream index allocating unit 5021 is configured to: when the service levels of the terminals are different, allocate a data flow index to each terminal according to the service level of the terminal; when the service levels of the terminals are the same, according to the delay requirement of the service to be transmitted by the terminal Allocating a data stream index to each terminal;
  • the data stream index sending unit 5022 is configured to carry the allocated data stream index in the control signaling and send the message to the corresponding terminal.
  • the data stream decoding module 503 includes:
  • the signal receiving unit 5033 is configured to receive a composite signal including a data stream sent by the terminal, and a data stream decoding unit 5034, configured to decode the corresponding data stream according to the data stream index sequence. It should be noted that, in this embodiment, all terminal uplinks work in the MU-MIMO transmission mode, and uplink data is transmitted on the same time-frequency resource.
  • the service to be transmitted in this embodiment refers to an activated service that needs to send data.
  • the activated service refers to an uplink service flow that has been established but has not been deleted.
  • Base station receivers include, but are not limited to, SIC receivers.
  • the terminal uses a rate matching algorithm to implement rate control of the data stream.
  • the rate matching is part of the channel coding to implement the transmission of data packets of different sizes on the same time-frequency resource.
  • each module or step in the above embodiments may be implemented by using a general-purpose computing device, and may be centralized on a single computing device or distributed on a network composed of multiple computing devices.
  • the program code executable by the computing device can also be implemented, so that it can be stored in the storage device by the computing device, and in some cases, can be executed in a different order from here.
  • the steps shown or described are either fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module. The invention is therefore not limited to any particular combination of hardware and software.
  • the embodiment of the present invention provides an uplink MU-MIMO transmission method and a base station based on a terminal service level, and comprehensively considers a service level of the terminal and a delay requirement of the service to be transmitted by the terminal, according to a service level of the terminal and/or a service to be transmitted by the terminal.
  • Delay demand assigning a corresponding data stream index to the terminal, decoding the data stream carrying the terminal service according to the data stream index, and combining the joint scheduling of the base station and the terminal, adjusting the delay of decoding the different data streams by the base station receiver, thereby Increased user experience for various services with terminals of different service levels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Description

基于终端服务等级的上行 MU-MIMO传输方法及基站 技术领域
本发明涉及通信技术领域, 尤其涉及一种基于终端服务等级的上行 MU-MIMO ( Multiple User Multiple-Input Multiple-Output, 多用户多输入多 输出 )传输方法及基站。 背景技术
多输入多输出 (Multiple-Input Multiple-Output, MIMO )技术是指利用 多根发射天线和多根接收天线进行无线传输的技术, 研究表明, MIMO 系 统可以极大地提高系统容量和频谱效率, 且不需以时频资源为代价。 为了 发挥 MIMO技术带来的好处, 空间复用 ( Space Multiplexing, SM )是目前 常用的 MIMO方式。 应用空间复用技术, 可以同时在不同天线上发送不同 的数据流, 且每个数据流不使用冗余传输, 在接收端利用丰富的散射性将 发送信号分离出来。 空间复用技术分为单用户的空间复用 ( Single User-MIMO , SU-MIMO ) 和多用户的空间复用 ( Multiple User-MIMO , MU-MIMO )。
多用户的空间复用又可以分为上行与下行, 其中, 下行 MU-MIMO是 指基站将占用相同时频资源的多个数据流发送给不同的终端。 与下行的 MU-MIMO不同,上行的 MU- MIMO是一个虚拟的 MIMO系统, 即每一个 终端均发送一个数据流, 但是两个或者更多的数据流占用相同的时频资源; 从接收机来看, 这些来自不同终端的数据流则可以被看作是来自同一个终 端上不同天线的数据流, 从而构成一个 MIMO系统。 与 SU-MIMO相比, MU-MIMO可以获得多用户分集增益。 即对于 SU-MIMO , 所有的 MIMO 信号都来自同一个终端上的天线; 而对于 MU-MIMO, MIMO信号则来自 于不同终端 , 因此比 SU-MIMO更容易获得信道之间的独立性。 为提升空间复用的性能, 并考虑到接收机的实现复杂度, 连续干扰消 除( Successive Interference Cancellation, SIC )技术通常被使用。 在 SIC接 收机中, 数据流被连续地解调和解码。 一旦第一个数据流被解调, 它对接 收信号的影响会被估计并去除, 由此可改善接收机解调后续数据流的能力。 如果数据流被正确地解调和解码, 且接收机的信道估计足够准确, 那么第 一个数据流对其它数据流的干扰将能够被有效地估计。 然后, 接收机会从 修订的接收信号中解调出第二个数据流。 上述过程会继续, 直到每一个数 据流都被解调。 由于数据流是被连续地解调和解码, 因此导致在第一个和 最后一个数据流的解码之间存在相当大的延时。 粗略估计, 当有 N个数据 流时, 解码最后一个数据流的延时是解码第一个数据流延时的 N倍。
对于上行 MU-MIMO,通常每一个终端对应一个数据流,基站侧的 SIC 接收机需要按照特定顺序依次解调和解码对应于每一个终端的数据流。 如 前所述, 由于每一个终端的解码时延不同, 从而导致每一个终端用户的体 验不同。 而目前大多数通信系统存在对终端服务等级的划分, 通常要求具 有较高服务等级的终端享有较高的服务优先权, 也就是说, 基站需要优先 保证高服务等级终端的用户体验。 另一方面, 每一个终端可能同时存在多 种待传输业务, 例如网络电话、 网页浏览、 文件传输协议(FTP ) 下载等, 而这些业务对时延的要求也不同。 因此, 为了保证各种业务的用户体验, 需要综合考虑终端的服务等级以及终端业务的时延需求, 但目前并没有相 应的技术支持。 发明内容
本发明的主要目的在于提供一种基于终端服务等级的上行 MU-MIMO 传输方法及基站, 以调整基站接收机解码不同数据流的时延, 提高用户体 验度。 为了达到上述目的, 本发明的技术方案是这样实现的:
一种基于终端服务等级的上行 MU-MIMO传输方法, 该方法包括: 基站确定终端的服务等级和 /或终端待传输业务的时延需求, 据此为终 端分配数据流索引;
针对所述终端根据所述数据流索引所发送的承载该终端业务的数据 流, 进行解码。
所述为终端分配数据流索引的过程包括:
当各终端的服务等级不相同时, 根据终端的服务等级为各终端分配数 据流索引; 当各终端的服务等级相同时, 根据终端待传输业务的时延需求 为各终端分配数据流索引;
将分配的所述数据流索引携带在控制信令中发送给对应的终端。
所述根据终端的服务等级为各终端分配数据流索引包括:
为高服务等级的终端分配优先解码的数据流索引;
为低服务等级的终端分配次优先解码的数据流索引;
所述根据终端待传输业务的时延需求为各终端分配数据流索引包括: 为具有严格时延需求的终端分配优先解码的数据流索引;
为具有次严格时延需求的终端分配次优先解码的数据流索引。
所述控制信令还携带有数据流的解码时延信息;
所述业务是终端根据预设的数据流索引与解码时延的映射关系以及终 端待传输业务的时延需求, 从待传输业务中选择的相应传输业务。
该方法还包括:
所述终端从待传输业务中选取解码时延需求不低于所述解码时延的待 传输业务, 将该业务承载于数据流中传输给所述基站。
所述数据流索引是从数据流索引序列中选择的; 所述数据流索引序列 按照基站接收机解码所述数据流的先后顺序排列; 所述进行解码的过程包括:
接收包含有所述终端根据所述控制信令发送的数据流的合成信号; 按照所述数据流索引序列依次解码相应数据流。
所述终端的上行链路工作于 MU-MIMO传输模式, 在相同的时频资源 上发送上行数据。
一种基于终端服务等级的上行 MU-MIMO传输基站, 包括: 服务等级获取模块, 用于确定终端的服务等级和 /或终端待传输业务的 时延需求;
数据流索引分配模块, 用于根据所述终端的服务等级和 /或终端待传输 业务的时延需求为终端分配数据流索引;
数据流解码模块, 用于针对所述终端根据所述数据流索引所发送的承 载该终端业务的数据流, 进行解码。
所述数据流索引分配模块包括:
数据流索引分配单元, 用于当各终端的服务等级不相同时, 根据终端 的服务等级为各终端分配数据流索引; 当各终端的服务等级相同时, 根据 终端待传输业务的时延需求为各终端分配数据流索引;
数据流索引发送单元, 用于将分配的所述数据流索引携带在控制信令 中发送给对应的终端。
所述控制信令还携带有数据流的解码时延信息;
所述终端, 还用于根据预设的数据流索引与解码时延的映射关系以及 待传输业务的时延需求, 从待传输业务中选择相应的传输业务。
所述数据流索引是从数据流索引序列中选择的; 所述数据流索引序列 按照基站接收机解码所述数据流的先后顺序排列;
所述数据流解码模块包括:
信号接收单元, 用于接收包含有所述终端根据所述控制信令所发送的 数据流的合成信号;
数据流解码单元, 用于按照所述数据流索引序列依次解码相应数据流。 本发明提出的基于终端服务等级的上行 MU-MIMO传输方法及基站, 通过综合考虑终端的服务等级以及终端待传输业务的时延需求, 根据终端 的服务等级和 /或终端待传输业务的时延需求, 为终端分配相应的数据流索 引, 根据数据流索引序列对承载终端业务的数据流进行解码, 并结合基站 与终端的联合调度, 调整了基站接收机解码不同数据流的时延, 从而提高 了具有不同服务等级终端的各种业务的用户体验度。 附图说明
图 1是 MIMO系统中使用的连续干扰消除接收机的结构图;
图 2是本发明基于终端服务等级的上行 MU-MIMO传输方法一实施例 流程示意图;
图 3是本发明基于终端服务等级的上行 MU-MIMO传输方法一实施例 中根据终端的服务等级和 /或终端待传输业务的时延需求为终端分配从数据 流索引序列中选择的数据流索引的流程示意图;
图 4是本发明基于终端服务等级的上行 MU-MIMO传输方法一实施例 中解码终端根据分配的数据流索引发送的承载终端业务的数据流的流程示 意图;
图 4a是本发明基于终端服务等级的上行 MU-MIMO传输方法一实施例 中一种传输方式示意图;
图 4b是本发明基于终端服务等级的上行 MU-MIMO传输方法一实施例 中另一种传输方式示意图;
图 4c是本发明基于终端服务等级的上行 MU-MIMO传输方法一实施例 中又一种传输方式示意图;
图 5是本发明基于终端服务等级的上行 MU-MIMO传输基站一实施例 结构示意图;
图 6是本发明基于终端服务等级的上行 MU-MIMO传输基站一实施例 中数据流索引分配模块的结构示意图;
图 7是本发明基于终端服务等级的上行 MU-MIMO传输基站一实施例 中数据流解码模块的结构示意图。 具体实施方式
本发明实施例主要通过综合考虑终端的服务等级以及终端待传输业务 的时延需求, 根据终端的服务等级和 /或终端待传输业务的时延需求为终端 分配相应的数据流索引, 根据数据流索引序列对承载终端业务的数据流进 行解码, 以调整基站接收机解码不同数据流的时延, 提高用户体验度。
在第四代(4G )移动通信标准(例如 IEEE 802.16m、 LTE-A等) 的制 定过程中, 上行 MU-MIMO方式作为一种上行多天线传输模式, 已被标准 组织釆纳, 用于提升小区级的吞吐量。
如图 1 所示, 接收机输入信号为每个接收天线接收的合成信号, 假设 发送数据流的数目为 N,则接收机包含 N个处理单元。每一个处理单元(除 了最后一个) 包括一个数据流检测装置、 一个目标信号重新生成装置以及 一个求和装置。 对应于每个接收分支的合成信号将被每一个处理单元所处 理, 例如在正交频分复用 (OFDM )的情况下, 对应于每个接收分支的多个 子载波信号, 由每一个处理单元分别处理。 每一个处理单元被配置为从输 入的合成信号中检测目标数据流, 并通过恢复与该目标数据流对应的接收 信号, 获取该目标数据流对合成信号的贡献或影响, 有益于后续处理单元 的数据流检测。
实际上, 每一个被成功检测的数据流被接收机看作对未被检测数据流 的干扰, 每一个处理单元通过从接收的合成信号中减去重新恢复的目标信 号来逐步消除这一干扰。 例如, 处理单元 1在完成第 1个数据流的检测后, 第 1 个数据流同时被送入目标信号的重新生成装置, 该装置的输出信号对 应于第 1个数据流对原始的合成信号的贡献, 即对合成信号的影响。 然后, 重新生成或恢复的信号通过求和装置被从所输入的合成信号中减去, 这样, 对应于第 1 个数据流的干扰则被从原始的合成信号中删除或取消。 通过使 用处理单元 1的求和装置的输出, 去除干扰的过程被重复, 即第 2个数据 流通过处理单元 2 的数据流检测装置被解码, 对应于该数据流的干扰信号 通过处理单元 2 的目标信号重新生成装置被恢复, 然后, 恢复的信号通过 处理单元 2 的求和装置被从级联的输入信号中删除。 上述去除干扰的过程 被重复, 直到 N个数据流全部被解码。 一旦最后一个数据流被处理单元 N 的数据流检测装置解码, 则不再需要进行干扰信号的删除, 即不再需要目 标信号的重新生成装置与求和装置。
虽然空间复用与 SIC接收机的结合在系统容量与数据速率方面提供了 非常好的性能, 并且接收机的复杂度也不高, 但是这种连续检测的方式在 最后一个数据流被解码之前, 可能导致严重的延时。 然而, 通过使以特定 接收机为目标的数据包括几个特定应用, 且具有不同的时延敏感度的数据 流,能够减轻由这些延时引起的问题。具体的,对于上行与下行的 SU-MIMO 传输模式, 基站或终端可以使优先被解码的数据流承载时延敏感度较高的 业务流, 例如实时语音或视频业务; 而使后续被解码的数据流承载时延敏 感度较低的业务流, 例如文件传输业务。 而对于下行的 MU-MIMO传输模 式, 终端可以选择性地接收特定数据流以减少时延。
具体的, 对于上行的 MU-MIMO传输模式, 由于以基站接收机为目标 的多个数据流通常是来自不同的终端, 并且基站接收机需要解码所有的数 据流, 这导致对应于不同终端的数据流的解码时延不同; 另外, 特定终端 可能包含一个或多个待传输业务, 不同业务具有不同的时延需求。 通过综 合的考虑终端的服务等级以及所述终端待传输业务的时延需求, 并结合基 站与终端的联合调度, 能够保证具有不同服务等级终端的各种业务的用户 体验度。
通过某种方式, 可以加快第 1 个数据流的解码。 例如, 当使用迭代解 码时, 使用的码率越低, 需要的迭代次数就越少, 解码时延就越低。 如果 解码第 1 个数据流所需要的时间被减少, 那么解码后续数据流的延时也会 相应的减少。
如图 2 所示, 本发明一实施例提出一种基于终端服务等级的上行 MU-MIMO传输方法, 包括:
步骤 S101 , 基站确定终端的服务等级和 /或终端待传输业务的时延需 求;
所述服务等级是根据终端被基站服务的先后顺序而划分的, 每个终端 对应于一个终端服务等级, 其中, 高服务等级的终端享有高的服务优先权。
在本实施例中, 为了调整基站接收机对合成信号中各终端数据流进行 解码的时延, 基站首先确定在相同时频资源上发送上行数据的各终端的服 务等级, 对服务等级高的终端的数据流进行优先解码处理。 若各终端中有 两个或两个以上的终端服务等级相同, 则需要确定服务等级相同的终端的 待传输业务的时延需求, 以便对服务等级相同、 但传输业务的时延需求较 为严格的终端的数据流进行优先解码处理。
步骤 S102, 根据终端的服务等级和 /或终端待传输业务的时延需求, 为 终端分配从数据流索引序列中选择的数据流索引;
其中, 数据流索引序列按照基站接收机解码数据流的先后顺序排列。 在本步骤中, 对于服务等级不同的终端, 根据终端的服务等级为终端 分配数据流索引, 具体地, 为高服务等级的终端分配优先解码的数据流索 引; 为低服务等级的终端分配次优先解码的数据流索引。 对于服务等级相 同的终端, 则根据终端待传输业务的时延需求分配相应的数据流索引。 具 体地, 为具有严格时延(如低时延) 需求的终端分配优先解码的数据流索 引; 为具有次严格时延需求的终端分配次优先解码的数据流索引, 以此类 推。
基站将分配的数据流索引信息承载于上行调度控制信息 (即本实施例 中的控制信令) 中发送给对应的终端, 该控制信令中还可携带基站接收机 的解码时延信息。 终端根据控制信令中的解码时延信息选择相应的待传输 业务, 并将该业务承载于数据流中传输给基站。
作为另一种实施方式, 控制信令中也可不携带基站接收机的解码时延 信息, 此种情形下, 终端可根据预设的数据流索引与解码时延的映射关系, 选择相应的待传输业务, 并将该业务承载于数据流中传输给基站。
在选取待传输业务时, 终端根据数据流的解码时延, 从待传输业务中 选取解码时延需求不低于数据流的解码时延的待传输业务, 并将该业务承 载于数据流中传输给基站。 其中, 解码时延需求不低于数据流的解码时延 是指: 待传输业务的解码时延需求大于(高于)或等于数据流的解码时延。
步骤 S103 , 针对终端根据所分配的数据流索引所发送的承载终端业务 的数据流, 进行解码。
当基站接收到终端发送的数据流后, 按照数据流索引序列依次解码相 应数据流。
如图 3所示, 步骤 S102包括:
步骤 S1021 ,判断各终端服务等级是否相同,若是,则进入步骤 S1022; 否则, 进入步骤 S 1023;
步骤 S1022 , 根据终端待传输业务的时延需求为各终端分配数据流索 引; 进入步骤 S1024;
所述时延需求是指解码时延需求, 严格的时延需求是指低的解码时延 需求。 步骤 S1023 ,根据终端的服务等级为各终端分配数据流索引; 进入步骤 S1024;
步骤 S1024, 将分配的数据流索引携带在控制信令中发送给对应的终 端。
如图 4所示, 步骤 S103包括:
步骤 S1031 , 接收包含终端根据控制信令所发送的数据流的合成信号; 步骤 S1032 , 按照数据流索引序列解码相应的数据流;
所述数据流索引序列是按照基站接收机解码数据流的先后顺序排列 的。
下面以具体实例对本发明技术方案进行详细阐述:
实例一, 服务等级不相同的两个终端的上行 MU-MIMO传输。
如图 4a所示, 终端 1与终端 2进行配对以实现上行 MU-MIMO传输, 即终端 1与终端 2在相同的时频资源上发送数据, 终端 1与终端 2具有不 同的终端服务等级, 并且终端 1的终端服务等级 A高于终端 2的终端服务 等级 B。 另外, 终端 1当前包含 3个待传输业务, 分别为待传输业务 1-1、 待传输业务 1-2以及待传输业务 1-3 , 这 3个待传输业务的相应解码延时需 求分别为 1毫秒(millisecond, ms )、 2毫秒以及 3毫秒。 类似的, 终端 2 当前也包含 3个待传输业务, 分别为待传输业务 2-1、 待传输业务 2-2以及 待传输业务 2-3 , 这 3个待传输业务的相应解码延时需求分别为 1毫秒、 2 毫秒以及 3毫秒。
假设基站连续干扰消除接收机首先解码的是第 1 个数据流, 且解码延 时为 1毫秒, 其次解码的是第 2个数据流, 且解码延时为 2毫秒。
步骤一,基站确定终端 1的服务等级为 A, 终端 2的服务等级为 B, 终 端 1的服务等级高于终端 2的服务等级。
步骤二, 基站确定数据流索引序列为 {1 , 2} , 即基站首先解码第 1 个 数据流, 然后解码第 2个数据流。
步骤三,基站确定与终端 1对应的数据流索引为 1 , 与终端 2对应的数 据流索引为 2 , 并分别通知终端 1与终端 2。
终端 1的服务等级高于终端 2的服务等级, 为了保证终端 1的服务优 先权, 将最先被解码的数据流索引分配给终端 1 , 而将后续被解码的数据流 的索引分配给终端 2。
优选地, 基站应用与终端 1 对应的单播的上行调度控制信息承载数据 流索引 1信息, 并发送给终端 1 ; 应用与终端 2对应的单播的上行调度控制 信息承载数据流索引 2信息, 并发送给终端 2。
步骤四, 终端 1与终端 2分别获取数据流索引 1信息与数据流索引 2 信息。
终端在获得数据流索引信息的同时, 还可以直接或间接地获得数据流 的解码时延信息。 其中, 直接获得是指控制信令携带有数据流解码时延信 息; 间接获得是指终端根据预设的数据流索引与解码时延的隐式映射关系 获得解码时延信息。
步骤五, 终端 1使用索引 1所对应的数据流传输待传输业务 1-1 , 终端 2使用索引 2所对应的数据流传输待传输业务 2-2。
对于终端 1 , 索引 1所对应的数据流的解码时延为 1毫秒, 终端 1的 3 个待传输业务 1-1、 1-2与 1-3的解码延时需求分别为 1毫秒、 2毫秒以及 3 毫秒, 并且解码延时需求全部大于或等于数据流的解码时延, 即无论终端 1 传输哪种业务, 都能满足解码延时需求。
假设解码延时需求大于或等于数据流的解码时延的所有待传输业务的 集合为 P, 即 P={待传输业务 1-1 , 待传输业务 1-2 , 待传输业务 1-3} , 最终 选择的用于实际传输的待传输业务为包含于集合 P、 且具有最严格(最低) 的延时需求的待传输业务, 即待传输业务 1-1。 对于终端 2, 索引 2所对应的数据流的解码时延为 2毫秒, 终端 2的 3 个待传输业务 2-1、 2-2与 2-3的解码延时需求分别为 1毫秒、 2毫秒以及 3 毫秒, 解码延时需求大于或等于数据流解码时延的待传输业务为待传输业 务 2-2与待传输业务 2-3 , 即终端 2只有传输待传输业务 2-2与待传输业务 2-3 , 才能够满足相应的解码延时需求。
假设解码延时需求大于或等于数据流的解码时延的所有待传输业务的 集合为 P, 即 P={待传输业务 2-2, 待传输业务 2-3} , 最终选择的用于实际 传输的待传输业务为包含于集合 P、 且具有最严格(最低)的延时需求的待 传输业务, 即待传输业务 2-2。
实例二, 服务等级相同的两个终端的上行 MU-MIMO传输。
如图 4b所示, 终端 1与终端 2进行配对以实现上行 MU-MIMO传输, 即终端 1与终端 2在相同的时频资源上发送数据, 终端 1与终端 2具有相 同的终端服务等级 A。 另外, 终端 1 当前包含 3个待传输业务, 分别为待 传输业务 1-1、 待传输业务 1-2以及待传输业务 1-3 , 这 3个待传输业务的 相应解码延时需求分别为 1毫秒、 2毫秒以及 3毫秒。 类似的, 终端 2当前 也包含 3个待传输业务, 分别为待传输业务 2-1、 待传输业务 2-2以及待传 输业务 2-3 , 这 3个待传输业务的相应解码延时需求分别为 2毫秒、 3毫秒 以及 4毫秒。
假设基站连续干扰消除接收机首先解码的是第 1 个数据流, 且解码延 时为 1毫秒; 其次解码的是第 2个数据流, 且解码延时为 2毫秒。
步骤一, 基站确定终端 1与终端 2的服务等级为 A, 终端 1与终端 2 具有相同的终端服务等级, 终端 1待传输业务的时延需求相对更加严格。
步骤二, 基站确定数据流索引序列为 {1 , 2} , 即基站首先解码第 1 个 数据流, 然后解码第 2个数据流。
步骤三,基站确定与终端 1对应的数据流索引为 1 , 与终端 2对应的数 据流索引为 2 , 并分别通知终端 1与终端 2。
终端 1的服务等级等于终端 2的服务等级, 但终端 1待传输业务的时 延需求相对更加严格, 为满足终端 1 的时延需求, 将最先被解码的数据流 的索引分配给终端 1 , 而将后续被解码的数据流的索引分配给终端 2。
优选地, 基站应用与终端 1 对应的单播的上行调度控制信息承载数据 流索引 1信息, 并发送给终端 1 ; 应用与终端 2对应的单播的上行调度控制 信息承载数据流索引 2信息, 并发送给终端 2。
步骤四, 终端 1与终端 2分别获取数据流索引 1信息与数据流索引 2 信息。
终端在获得数据流索引信息的同时, 还可以直接或间接的获得数据流 的解码时延信息。 其中, 直接获得是指控制信令携带有数据流解码时延信 息; 间接获得是指终端根据预设的数据流索引与解码时延的隐式映射关系 获得解码时延信息。
步骤五, 终端 1使用索引 1所对应的数据流传输待传输业务 1-1 ; 终端 2使用索引 2所对应的数据流传输待传输业务 2-1。
索引 1所对应的数据流的解码时延为 1毫秒, 终端 1的 3个待传输业 务 1-1、 1-2与 1-3的解码延时需求分别为 1毫秒、 2毫秒以及 3毫秒, 并且 解码延时需求全部大于或等于数据流的解码时延, 即终端 1 无论传输哪种 业务, 都能满足其解码延时需求。
假设解码延时需求大于或等于数据流的解码时延的所有待传输业务的 集合为 P, 即 P={待传输业务 1-1 , 待传输业务 1-2 , 待传输业务 1-3} , 最终 选择的用于实际传输的待传输业务为包含于集合 P、 且具有最严格(最低) 的延时需求的待传输业务, 即待传输业务 1-1。
索引 2所对应的数据流的解码时延为 2毫秒, 终端 2的 3个待传输业 务 2-1、 2-2与 2-3的解码延时需求分别为 2毫秒、 3毫秒以及 4毫秒, 并且 解码延时需求全部大于或等于数据流的解码时延, 即无论终端 2传输哪种 业务, 都能满足其解码延时需求。
假设解码延时需求大于或等于数据流的解码时延的所有待传输业务的 集合为 P, 即 P={待传输业务 2-1 , 待传输业务 2-2 , 待传输业务 2-3} , 最终 选择的用于实际传输的待传输业务为包含于集合 P、 且具有最严格(最低) 的延时需求的待传输业务, 即待传输业务 2-1。
实施例三, 服务等级部分相同的三个终端的上行 MU-MIMO传输。 如图 4c所示,终端 1、终端 2与终端 3被分为一组实现上行 MU-MIMO 传输, 即终端 1、 终端 2与终端 3在相同的时频资源上发送数据, 终端 1的 终端服务等级为 A,终端 2与终端 3具有相同的终端服务等级 B,并且终端 1的终端服务等级 A高于终端 2与终端 3的终端服务等级^ 另外, 终端 1 当前包含 3个待传输业务, 分别为待传输业务 1-1、 待传输业务 1-2以及待 传输业务 1-3 , 这 3个待传输业务的相应解码延时需求分别为 1毫秒、 2毫 秒以及 3毫秒。 类似的, 终端 2当前包含 2个待传输业务, 分别为待传输 业务 2-1与待传输业务 2-2, 这 2个待传输业务的相应解码延时需求分别为 3毫秒与 4毫秒。 类似的, 终端 3当前包含 3个待传输业务, 分别为待传输 业务 3-1、 待传输业务 3-2以及待传输业务 3-3 , 这 3个待传输业务的相应 解码延时需求分别为 1毫秒、 2毫秒以及 3毫秒。
假设基站连续干扰消除接收机首先解码的是第 1 个数据流, 且解码延 时为 1毫秒; 其次解码的是第 2个数据流, 解码延时为 2毫秒; 最后解码 的是第 3个数据流, 解码延时为 3毫秒。
步骤一, 基站确定终端 1的服务等级为 A, 终端 2与终端 3的服务等 级为 B, 终端 1 的服务等级高于终端 2与终端 3的终端服务等级, 终端 3 待传输业务的解码时延需求相对终端 2更加严格。
步骤二, 基站确定数据流索引序列为 {1 , 2, 3} , 即基站首先解码第 1 个数据流, 然后将解码第 2个数据流, 最后才解码第 3个数据流。
步骤三,基站确定与终端 1对应的数据流索引为 1 , 与终端 2对应的数 据流索引为 3 , 与终端 3对应的数据流索引为 2 , 并分别通知终端 1、 终端 2与终端 3。
终端 1的服务等级高于终端 2与终端 3的服务等级, 为保证终端 1的 服务优先权, 将最先被解码的数据流的索引分配给终端 1 , 而将次先和最后 被解码的数据流的索引分配给终端 2与终端 3;终端 2的服务等级等于终端 3的服务等级, 但终端 3待传输业务的时延需求相对更加严格, 为满足终端 3的时延需求, 将次先被解码的数据流的索引分配给终端 3 , 而将最后被解 码的数据流的索引分配给终端 2。
优选地, 基站应用与终端 1 对应的单播的上行调度控制信息承载数据 流索引 1信息, 并发送给终端 1 ; 应用与终端 2对应的单播的上行调度控制 信息承载数据流索引 2信息, 并发送给终端 2; 应用与终端 3对应的单播的 上行调度控制信息承载数据流索引 3信息, 并发送给终端 3。
步骤四, 终端 1、 终端 2与终端 3分别获取数据流索引 1、 数据流索引
3与数据流索引 2信息。
终端在获得数据流索引信息的同时, 还可以直接或间接的获得数据流 的解码时延信息。 其中, 直接获得是指控制信令携带有数据流解码时延信 息; 间接获得是指终端根据预设的数据流索引与解码时延的隐式映射关系 获得解码时延信息。
步骤五, 终端 1使用索引 1所对应的数据流传输待传输业务 1-1 , 终端 2使用索引 3所对应的数据流传输待传输业务 2-1 , 终端 3使用索引 2所对 应的数据流传输待传输业务 3-2。
索引 1所对应的数据流的解码时延为 1毫秒, 终端 1的 3个待传输业 务 1-1、 1-2与 1-3的解码延时需求分别为 1毫秒、 2毫秒与 3毫秒, 并且解 码延时需求全部大于或等于数据流的解码时延, 即无论传输哪种业务, 都 能满足其解码延时需求。
假设解码延时需求大于或等于数据流的解码时延的所有待传输业务的 集合为 P, 即 P={待传输业务 1-1 , 待传输业务 1-2 , 待传输业务 1-3} , 最终 选择的用于实际传输的待传输业务为包含于集合 P、 且具有最严格(最低) 的延时需求的待传输业务, 即待传输业务 1-1。
索引 2所对应的数据流的解码时延为 2毫秒, 终端 3的 3个待传输业 务 3-1、 3-2与 3-3的解码延时需求分别为 1毫秒、 2毫秒与 3毫秒, 解码延 时需求大于或等于数据流解码时延的待传输业务为待传输业务 3-2 与待传 输业务 3-3 , 即只有传输待传输业务 3-2与待传输业务 3-3 , 才能够满足相 应的解码延时需求。
假设解码延时需求大于或等于数据流的解码时延的所有待传输业务的 集合为 P, 即 P={待传输业务 3-2, 待传输业务 3-3} , 最终选择的用于实际 传输的待传输业务为包含于集合 P、 且具有最严格(最低)的延时需求的待 传输业务, 即待传输业务 3-2。
索引 3所对应的数据流的解码时延为 3毫秒, 终端 2的 2个待传输业 务 2-1与 2-2的解码延时需求分别为 3毫秒与 4毫秒,并且解码延时需求全 部大于或等于数据流的解码时延, 即无论传输哪种业务, 都能满足其解码 延时需求。
假设解码延时需求大于或等于数据流的解码时延的所有待传输业务的 集合为 P, 即 P={待传输业务 2-1 , 待传输业务 2-2} , 最终选择的用于实际 传输的待传输业务为包含于集合 P、 且具有最严格(最低)的延时需求的待 传输业务, 即待传输业务 2-1。
需要说明的是, 本实施例中, 当终端向基站发送待传输业务后, 基站 将接收包含承载终端业务的数据流的合成信号, 并按照数据流索引序列依 次解码相应数据流。 所有终端上行链路工作于 MU-MIMO传输模式, 在相 同的时频资源上发送上行数据。
本实施例中所指待传输业务是指需要发送数据的已激活业务, 其中, 已激活业务是指已经被建立、 但尚未被删除的上行业务流。 基站接收机包 括但不限于 SIC接收机。
本实施例中, 终端利用速率匹配算法实现数据流的速率控制; 其中, 速率匹配是属于信道编码的一部分, 以实现不同大小的数据包在相同时频 资源上的发送。
本实施例通过综合考虑终端的服务等级以及所述终端待传输业务的时 延需求, 并结合基站与终端的联合调度, 从而保证了具有不同服务等级终 端的各种待传输业务的用户体验。
如图 5 所示, 本发明一实施例提出一种基于终端服务等级的上行 MU-MIMO传输基站, 包括: 服务等级获取模块 501、 数据流索引分配模块 502以及数据流解码模块 503 , 其中:
服务等级获取模块 501 , 用于确定终端的服务等级和 /或终端待传输业 务的时延需求;
所述服务等级是根据终端被基站服务的先后顺序而划分的。 每个终端 对应于一个终端服务等级, 其中, 高服务等级的终端享有高的服务优先权。
在本实施例中, 为了调整基站接收机对合成信号中各终端数据流进行 解码的时延, 基站首先确定在相同时频资源上发送上行数据的各终端的服 务等级, 对服务等级高的终端的数据流进行优先解码处理。 若各终端中有 两个或两个以上的终端服务等级相同, 则需要确定服务等级相同的终端的 待传输业务的时延需求, 对服务等级相同、 但传输业务的时延需求较为严 格的终端的数据流进行优先解码处理。
数据流索引分配模块 502 , 用于根据终端的服务等级和 /或终端待传输 业务的时延需求为终端分配从数据流索引序列中选择的数据流索引; 其中, 数据流索引序列是按照基站接收机解码数据流的先后顺序排列 的。
在本实施例中, 对于服务等级不同的终端, 根据终端的服务等级为终 端分配数据流索引。 具体地, 为高服务等级的终端分配优先解码的数据流 索引; 为低服务等级的终端分配次优先解码的数据流索引。 对于服务等级 相同的终端, 则根据终端待传输业务的时延需求分配相应的数据流索引。 具体地, 为具有严格时延(低时延) 需求的终端分配优先解码的数据流索 引; 为具有次严格时延需求的终端分配次优先解码的数据流索引, 依次类 推。
基站将分配的数据流索引信息承载于上行调度控制信息 (即本实施例 中的控制信令) 中发送给对应的终端, 该控制信令中还可携带基站接收机 的解码时延信息。 终端根据控制信令中的解码时延信息选择相应的待传输 业务, 并将该业务承载于数据流中传输给基站。
作为另一种实施方式, 控制信令中也可不携带基站接收机的解码时延 信息, 此种情形下, 终端可根据预设的数据流索引与解码时延的映射关系, 选择相应的待传输业务, 并将该业务承载于数据流中传输给基站。
在选择待传输业务时, 终端根据数据流的解码时延, 从待传输业务中 选取解码时延需求不低于数据流的解码时延的待传输业务, 并将该业务承 载于数据流中传输给基站。 其中, 解码时延需求不低于数据流的解码时延 是指: 待传输业务的解码时延需求大于(高于)或等于数据流的解码时延。
数据流解码模块 503 ,用于针对终端根据分配的数据流索引所发送的承 载终端业务的数据流, 进行解码。
当基站接收到终端发送的数据流后, 按照数据流索引序列依次解码相 应数据流。 如图 6所示,数据流索引分配模块 502包括:数据流索引分配单元 5021 以及数据流索引发送单元 5022, 其中:
数据流索引分配单元 5021 , 用于当各终端的服务等级不相同时, 根据 终端的服务等级为各终端分配数据流索引; 当各终端的服务等级相同时, 根据终端待传输业务的时延需求为各终端分配数据流索引;
数据流索引发送单元 5022, 用于将分配的数据流索引携带在控制信令 中发送给对应的终端。
如图 7所示, 数据流解码模块 503包括:
信号接收单元 5033 , 用于接收包含终端所发送的数据流的合成信号; 数据流解码单元 5034, 用于按照数据流索引序列解码相应的数据流。 需要说明的是, 本实施例中, 所有终端上行链路工作于 MU-MIMO传 输模式, 在相同的时频资源上发送上行数据。
本实施例中所指待传输业务是指需要发送数据的已激活业务, 其中, 已激活业务是指已经被建立、 但尚未被删除的上行业务流。 基站接收机包 括但不限于 SIC接收机。
本实施例中, 终端利用速率匹配算法实现数据流的速率控制; 其中, 速率匹配是属于信道编码的一部分, 以实现不同大小的数据包在相同时频 资源上的发送。
进一步需要说明的是, 上述实施例中的各模块或各步骤可以釆用通用 的计算装置来实现, 可以集中在单个的计算装置上, 或者分布在多个计算 装置所组成的网络上。 可选地, 还可以釆用计算装置可执行的程序代码来 实现, 从而, 可以将其存储在存储装置中由计算装置来执行, 并且在某些 情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者将它们 分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作成单 个集成电路模块来实现。 因此本发明不限制于任何特定的硬件和软件结合。 本发明实施例提供了基于终端服务等级的上行 MU-MIMO传输方法及 基站, 通过综合考虑终端的服务等级以及终端待传输业务的时延需求, 根 据终端的服务等级和 /或终端待传输业务的时延需求, 为终端分配相应的数 据流索引, 根据数据流索引对承载终端业务的数据流进行解码, 并结合基 站与终端的联合调度, 调整了基站接收机解码不同数据流的时延, 从而提 高了具有不同服务等级终端的各种业务的用户体验度。
以上所述仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利用本发明说明书及附图内容所作的等效结构或流程变换, 或直接或 间接运用在其它相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权利要求书
1、一种基于终端服务等级的上行多用户多输入多输出 MU-MIMO传输 方法, 包括:
基站确定终端的服务等级和 /或终端待传输业务的时延需求, 据此为终 端分配数据流索引;
针对所述终端根据所述数据流索引所发送的承载该终端业务的数据 流, 进行解码。
2、 根据权利要求 1所述的方法, 其中, 所述为终端分配数据流索引的 过程包括:
当各终端的服务等级不相同时, 根据终端的服务等级为各终端分配数 据流索引; 当各终端的服务等级相同时, 根据终端待传输业务的时延需求 为各终端分配数据流索引;
将分配的所述数据流索引携带在控制信令中发送给对应的终端。
3、 根据权利要求 2所述的方法, 其中,
所述根据终端的服务等级为各终端分配数据流索引包括:
为高服务等级的终端分配优先解码的数据流索引;
为低服务等级的终端分配次优先解码的数据流索引;
所述根据终端待传输业务的时延需求为各终端分配数据流索引包括: 为具有严格时延需求的终端分配优先解码的数据流索引;
为具有次严格时延需求的终端分配次优先解码的数据流索引。
4、 根据权利要求 2所述的方法, 其中,
所述控制信令还携带有数据流的解码时延信息;
所述业务是终端根据预设的数据流索引与解码时延的映射关系以及终 端待传输业务的时延需求, 从待传输业务中选择的相应传输业务。
5、 根据权利要求 4所述的方法, 还包括: 所述终端从待传输业务中选取解码时延需求不低于所述解码时延的待 传输业务, 将该业务承载于数据流中传输给所述基站。
6、 根据权利要求 1所述的方法, 其中, 所述数据流索引是从数据流索 引序列中选择的; 所述数据流索引序列按照基站接收机解码所述数据流的 先后顺序排列;
所述进行解码的过程包括:
接收包含有所述终端根据所述控制信令发送的数据流的合成信号; 按照所述数据流索引序列依次解码相应数据流。
7、 根据权利要求 1至 6任一项所述的方法, 其中, 所述终端的上行链 路工作于 MU-MIMO传输模式, 在相同的时频资源上发送上行数据。
8、 一种基于终端服务等级的上行 MU-MIMO传输基站, 包括: 服务等级获取模块, 用于确定终端的服务等级和 /或终端待传输业务的 时延需求;
数据流索引分配模块, 用于根据所述终端的服务等级和 /或终端待传输 业务的时延需求为终端分配数据流索引;
数据流解码模块, 用于针对所述终端根据所述数据流索引所发送的承 载该终端业务的数据流, 进行解码。
9、根据权利要求 8所述的基站,其中, 所述数据流索引分配模块包括: 数据流索引分配单元, 用于当各终端的服务等级不相同时, 根据终端 的服务等级为各终端分配数据流索引; 当各终端的服务等级相同时, 根据 终端待传输业务的时延需求为各终端分配数据流索引;
数据流索引发送单元, 用于将分配的所述数据流索引携带在控制信令 中发送给对应的终端。
10、 根据权利要求 9所述的基站, 其中,
所述控制信令还携带有数据流的解码时延信息; 所述终端, 还用于根据预设的数据流索引与解码时延的映射关系以及 待传输业务的时延需求, 从待传输业务中选择相应的传输业务。
11、 根据权利要求 9或 10所述的基站, 其中, 所述数据流索引是从数 据流索引序列中选择的; 所述数据流索引序列按照基站接收机解码所述数 据流的先后顺序排列;
所述数据流解码模块包括:
信号接收单元, 用于接收包含有所述终端根据所述控制信令所发送的 数据流的合成信号;
数据流解码单元, 用于按照所述数据流索引序列依次解码相应数据流。
PCT/CN2011/074409 2010-12-09 2011-05-20 基于终端服务等级的上行mu-mimo传输方法及基站 WO2012075780A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010580587.X 2010-12-09
CN201010580587XA CN102036391A (zh) 2010-12-09 2010-12-09 基于终端服务等级的上行mu-mimo传输方法及基站

Publications (1)

Publication Number Publication Date
WO2012075780A1 true WO2012075780A1 (zh) 2012-06-14

Family

ID=43888510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074409 WO2012075780A1 (zh) 2010-12-09 2011-05-20 基于终端服务等级的上行mu-mimo传输方法及基站

Country Status (2)

Country Link
CN (1) CN102036391A (zh)
WO (1) WO2012075780A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036391A (zh) * 2010-12-09 2011-04-27 中兴通讯股份有限公司 基于终端服务等级的上行mu-mimo传输方法及基站
WO2012159302A1 (zh) 2011-06-28 2012-11-29 华为技术有限公司 控制上行应用层业务的方法、用户设备及基站
CN102316068A (zh) * 2011-09-21 2012-01-11 中兴通讯股份有限公司 一种控制信令的传输方法及系统
CN102316070B (zh) * 2011-09-21 2017-11-28 中兴通讯股份有限公司 数据传输方法及装置、数据处理方法及装置
CN105453681B (zh) * 2014-07-28 2019-03-08 华为技术有限公司 一种数据调度方法及装置
CN106302268A (zh) * 2015-05-26 2017-01-04 中兴通讯股份有限公司 一种上行多用户多输入多输出mu-mimo传输的方法及装置
CN106341898B (zh) * 2015-07-09 2020-07-07 中兴通讯股份有限公司 多站点的传输指示、触发、执行方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512929B1 (en) * 1998-05-29 2003-01-28 Koninklijke Philips Electronics N.V. Telecommunication assembly
CN1424835A (zh) * 2001-12-03 2003-06-18 株式会社Ntt都科摩 通讯控制系统、通讯控制方法、基站设备和移动终端设备
CN102036391A (zh) * 2010-12-09 2011-04-27 中兴通讯股份有限公司 基于终端服务等级的上行mu-mimo传输方法及基站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512929B1 (en) * 1998-05-29 2003-01-28 Koninklijke Philips Electronics N.V. Telecommunication assembly
CN1424835A (zh) * 2001-12-03 2003-06-18 株式会社Ntt都科摩 通讯控制系统、通讯控制方法、基站设备和移动终端设备
CN102036391A (zh) * 2010-12-09 2011-04-27 中兴通讯股份有限公司 基于终端服务等级的上行mu-mimo传输方法及基站

Also Published As

Publication number Publication date
CN102036391A (zh) 2011-04-27

Similar Documents

Publication Publication Date Title
JP6414216B2 (ja) 無線通信システム及び無線通信方法
US10555284B2 (en) System and method for resource block-specific control signaling
US9258041B2 (en) Methods and systems for combined cyclic delay diversity and precoding of radio signals
US10027391B2 (en) Transmit diversity on a control channel without additional reference signals
EP2499871B1 (en) Method and apparatus for spatial division multiple access
KR101355967B1 (ko) Wlan 시스템들에서의 다중사용자 스케줄링
WO2012075780A1 (zh) 基于终端服务等级的上行mu-mimo传输方法及基站
US8654753B2 (en) Multichannel TDMA mechanism
CN104113921B (zh) 一种mimo-edm无线通信系统及方法
US20080268785A1 (en) UE-autonomous CFI reporting
JP5146464B2 (ja) 送信装置、送信制御方法および通信装置
KR20120016623A (ko) 통신 장치 및 통신 방법, 컴퓨터 프로그램 및 통신 시스템
TW201110611A (en) Method and apparatus for acknowledging successful reception of a data transmission for multi-access compatibility in a wireless communication system
KR102306100B1 (ko) Mu­mimo 간섭 채널 네트워크 환경에서의 간섭정렬 송수신 신호처리 장치 및 방법
CN103023545B (zh) 一种无线数据传输方法及网络侧设备
CN111357348A (zh) 调度方法、装置和系统
WO2016062066A1 (zh) 数据接收方法、发送方法、接收装置及发送装置
Anwar et al. Non-orthogonal Multiple Access: Recent Developments and Future Trends

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11847495

Country of ref document: EP

Kind code of ref document: A1