WO2012075715A1 - 可变形的红外线热扫描探头系统 - Google Patents

可变形的红外线热扫描探头系统 Download PDF

Info

Publication number
WO2012075715A1
WO2012075715A1 PCT/CN2011/070582 CN2011070582W WO2012075715A1 WO 2012075715 A1 WO2012075715 A1 WO 2012075715A1 CN 2011070582 W CN2011070582 W CN 2011070582W WO 2012075715 A1 WO2012075715 A1 WO 2012075715A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
thermal scanning
infrared thermal
probe
deformable
Prior art date
Application number
PCT/CN2011/070582
Other languages
English (en)
French (fr)
Inventor
乔铁
Original Assignee
广州宝胆医疗器械科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州宝胆医疗器械科技有限公司 filed Critical 广州宝胆医疗器械科技有限公司
Publication of WO2012075715A1 publication Critical patent/WO2012075715A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00082Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • A61B5/0086Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters using infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue

Definitions

  • the invention belongs to the field of medical instruments, and in particular relates to a medical deformable infrared thermal scanning probe system. current technology
  • infrared imaging has been derived from military technology. It has been used for more than 40 years. With the development of various technologies such as medical imaging, infrared imaging, and multimedia, the temperature resolution of infrared imaging has reached 0. 05 degrees, and the spatial resolution has reached 1. 5mrad, the image sharpness has been greatly improved, the result analysis is intuitive and convenient, and its clinical application range is expanding.
  • infrared imaging diagnosis shows certain advantages in the following aspects: 1. Determine the location, nature, and pain of tissue pain; 2. Determine the location, extent, and extent of acute and chronic inflammation; 3. Monitor the blood supply function of vascular lesions; , tumor warning instructions, full monitoring and efficacy evaluation. It can be seen that infrared imaging is an important supplement to other morphological diagnostic methods such as B-ultrasound, CT, and MR.
  • infrared imaging technology is applied to comparative macroscopic examination.
  • a suitable microscopic deformable infrared thermal scanning probe system has not been developed. Summary of the invention
  • a deformable infrared thermal scanning probe system comprises an infrared thermal scanning probe, an infrared thermal scanning system host and a monitor connected in sequence, and an operating keyboard or/and an operating keyboard is connected to the infrared thermal scanning system main body.
  • the infrared thermal scanning probe includes a soft probe working end, an operating handle and a data line, wherein the data line is connected to an infrared thermal scanning system host through a connector, the infrared system monitor and an infrared thermal scanning system Host connection.
  • the working end of the probe is 500 ⁇ 2000mm, the length of the probe tip end of the probe is less than 50mm, the outer diameter of the probe tip is less than or equal to 3. 0mm, and the probe tip is circular.
  • an infrared region is disposed in the tip end portion of the probe, and at least one infrared device is installed in the infrared region, and the infrared device includes an infrared light source emitter and an infrared receiving lens.
  • the infrared region The infrared devices are four groups, and the four groups of infrared devices are designed at 90 degrees to each other, and the four groups of infrared devices are hidden in the tip end portion of the probe, and the probe tip end portion is further provided with an ejection device for pushing the infrared device out at the tip end portion of the probe.
  • the operating handle is internally provided with a micro-driving motor for powering the infrared region, and the micro-driving motor functions to provide a composite scan of the infrared region of the probe tip portion with a rotary scan, a linear scan or a linear motion combined with a rotational motion. power.
  • the operating handle is ergonomically designed for the purpose of gripping the hand.
  • the handle surface is designed with a control switch, a mode selection switch, a fine adjustment switch, and the like.
  • the infrared device is pushed out of the tip end of the probe into an umbrella shape by the action of the pushing device inside the probe tip end, the outer diameter is less than or equal to 6 mm, and is rotated by the micro motor to scan, and the scanning coverage is at least 90 in front of the probe.
  • the ejection device can be controlled to recover the probe tip end, and the infrared device is returned to the inside of the probe tip end, and the outer diameter becomes 3. 0 mm, and the organ or tissue cavity is withdrawn.
  • the operation keyboard or the hand-held operation device is provided with a control button, a switch button, a mode selection button having a normal display mode and a night vision display mode, an infrared intensity fine adjustment function button, and a monitor menu button.
  • the mode selection can switch between different display modes, including the normal display mode and the night vision display mode
  • the normal display mode refers to the display mode of infrared scanning under the illumination of the endoscope cold light source and the infrared light source
  • the night vision display mode means no Under the illumination of the endoscope cold light source and the infrared light source, depending on the radiation intensity of the tissue itself, the doctor can compare the blood vessel distribution images in the two modes to obtain a better diagnostic effect from another angle.
  • the output port of the rear panel is externally connected with an operating keyboard or a handheld operating device, a monitor, etc., and the scanning of the monitor is consistent with the scanning of the deformable infrared thermal scanning probe to realize synchronous scanning.
  • the working principle of the deformable infrared thermal scanning probe system of the present invention is that the tissue in the organ or cavity of the human body is covered with abundant blood vessels, the temperature of the arterial blood is high, the temperature of the venous blood is low, and there is a certain A kind of heat exchange system, both of which radiate different wavelengths of infrared rays.
  • the temperature of the tissues in the organs or cavities is not only affected by blood flow in the blood vessels, but also by their own metabolism, so the tissues of organs or cavities The temperature will vary depending on whether the blood vessels are rich or not and the degree of metabolism is different.
  • the wavelength of infrared rays radiated from the outside is also different.
  • the temperature is significantly higher than normal.
  • blood components serum, plasma, hemoglobin, albumin, red blood cells, lymphocytes, platelets
  • the absorption effect of the infrared thermal scanning probe system of the deformable infrared thermal scanning probe system is less than or equal to 0.05 degrees, and the spatial resolution is at least 0.8 mrad.
  • the precise deformable infrared thermal scanning probe is closely located in the organs and tissues. Scan to get a fine and precise infrared image.
  • the deformable infrared thermal scanning probe system of the present invention works by entering an organ or a cavity
  • the infrared infrared receiving lens of the infrared scanning probe inside the tissue receives the infrared light radiated from the blood flow in the tissue or the blood vessel in the tissue, and the processing chip converts the optical signal into an electrical signal, which is subjected to preprocessing (such as amplification and filtering). Etc.;), after the preamplifier and main amplifier are amplified to a certain level, they enter the infrared thermal scanning system host.
  • the signal input to the host also has a synchronization signal, a reference black body signal, and the like.
  • the data obtained by the continuous motion scan is transmitted to the infrared thermal scanning system host for processing, and output to the monitor for display to obtain a stereoscopic blood vessel static image of infrared thermal scanning.
  • the doctor can find abnormal conditions such as abnormal blood vessels in the organs and tissues, sparse vascular abnormalities or vascular missing areas, and provide doctors with timely diagnosis basis.
  • the infrared resolution of current medical infrared imaging technology is highly accurate and has been widely used in many fields.
  • the current medical infrared imaging technology is mainly used for the examination and diagnosis of human body surface or human body parts, and there is no deformable infrared thermal scanning probe system applied to a specific organ or cavity.
  • the deformable infrared thermal scanning probe of the present invention enters a human organ or a cavity through an instrument channel of an endoscope, performs infrared thermal scanning of a fan-shaped area at a close distance, and performs a special organ for a human body through an infrared thermal scanning probe.
  • the tissue in the cavity is subjected to continuous stereo scanning, and the data obtained by the multi-plane continuous cross-cutting scan is transmitted to the host of the infrared thermal scanning system for image processing, and the stereoscopic blood vessel static image of the human organ or cavity is clearly displayed, and the organ or cavity is provided for the doctor.
  • the blood flow infrared map of the body provides the doctor with an immediate and accurate diagnosis.
  • the deformable soft probe working end can better help the doctor to observe when the endoscope is inconvenient to adjust the position in the human body.
  • An infrared thermal scan of the vascular image of tissue within at least 90 degrees of the front of the mirror provides the doctor with the largest possible field of view in a limited space.
  • FIG. 1 is a schematic view of a deformable infrared thermal scanning probe system of the present invention.
  • FIG. 2 is a schematic view showing the appearance of an infrared thermal scanning probe of the present invention.
  • Fig. 3a and Fig. 3b are schematic diagrams showing the structure of the working end of the probe in the present invention (in two different working states).
  • FIG. 4 is a schematic view showing the operation of the deformable infrared thermal scanning probe of the present invention. detailed description
  • the deformable infrared thermal scanning probe system of the present invention comprises an infrared thermal scanning probe 1 , an infrared thermal scanning system host 2 and a monitor 3 connected in sequence, and the infrared thermal scanning system host 2 Even
  • the operation keyboard 4, the hand-held operator 5, and the like are connected.
  • the infrared thermal scanning system host 2, its operation panel and operating keyboard or handheld operating device provide rich control buttons, switches, mode selection, infrared intensity fine adjustment, monitor menu and other buttons.
  • Mode selection can switch between different display modes, including normal display mode and night vision display mode.
  • Normal display mode refers to the display mode of infrared scanning under the illumination of endoscope cold light source and infrared light source.
  • Night vision display mode means no internal display. Under the illumination of the mirror cold light source and the infrared light source, depending on the different radiation intensity of the tissue, the doctor can compare the images in the two modes to obtain a better diagnostic effect from another angle.
  • the infrared thermal scanning probe 1 of the present invention comprises a soft probe working end portion 11, an operating handle 12 and a data line 13, and the data line 13 passes through a joint and an infrared ray.
  • the thermal scanning system host 2 is connected, and the monitor 3 is connected to the infrared thermal scanning system host 2.
  • the working end portion 11 of the probe has a length of 500 to 2000.
  • the length of the probe tip end portion 111 of the probe front end is less than 50 mm, the outer diameter of the probe tip end portion 111 is less than or equal to 3. 0 mm, and the probe tip end portion 111 is circular.
  • An infrared region is disposed in the probe tip portion 111, and four infrared devices 113 are installed in the infrared region, the infrared device 113 includes an infrared light source emitter and an infrared receiving lens, and the four groups of infrared devices 113 are designed to each other at 90 degrees;
  • the infrared device 113 is concealed inside the probe tip portion 111. When activated, the probe tip portion 111 is pushed out into the shape of an umbrella by the action of the ejection device 112 inside the probe tip portion 111.
  • the infrared thermal scanning probe 1 of the present invention is activated into a human body or a cavity, and the outer diameter of the front probe tip portion 111 is less than or equal to 6. 0 mm.
  • the probe tip end portion 111 is in the ejection device. Under the action of 112, it becomes an umbrella form, and the rotary motion is driven by the micro drive motor 122, and the scanned area I is at least 90 degrees ahead of the probe, as shown in FIG.
  • the data obtained by the infrared thermal scanning probe 1 continuously moving and scanning is transmitted to the infrared thermal scanning system host 2 for processing, and a stereoscopic infrared thermal scanning blood vessel static image is obtained.
  • the ejection device 112 can be controlled to recover the probe distal end portion 111.
  • the infrared device 113 is returned to the inside of the probe tip portion 111, and the outer diameter is changed to 3.0 mm, and the organ or tissue cavity is withdrawn.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Endoscopes (AREA)

Description

可变形的红外线热扫描探头系统 技术领域
本发明属于医用器械领域, 具体涉及一种医用的可变形的红外线热扫描探头系统。 现有技术
医用红外线成像来源于军工技术, 使用已有 40多年的历史, 随着医学、红外线成像、 及多媒体等多种技术的发展, 红外线成像的温度分辨率已经达到 0. 05度, 空间分辨能力 已经达到 1. 5mrad, 图像清晰度有了很大的提高, 结果分析直观方便, 其在临床上的应用 范围正在扩大。 目前红外线成像诊断在以下方面显示出一定优势: 1、 判断组织疼痛的部 位、 性质、 疼痛; 2、 判断急、 慢性炎症的部位、 范围、 程度; 3、 监测血管性病变的供血 功能状态; 4、 肿瘤预警指示、 全程监视及疗效评估。 由此可见, 红外线成像时对 B超、 CT、 MR等其他形态学诊断方法的重要补充。
目前红外线成像技术应用于比较宏观的检查,对于人体特殊器官或者腔体内的组织或 血管血流的红外线成像, 尚没有研制出合适的微小化的可变形的红外线热扫描探头系统。 发明内容
本发明的目的是公开一种与各种常规内窥镜配合使用的微型化且可变形的红外线热 扫描探头系统,该红外线热扫描系统通过内窥镜的器械通道进入人体器官或者腔体,探头 做出形状改变,近距离精密地进行扇形区域的红外线热扫描,为医生提供器官或腔体的血 流红外线图, 给医生提供即时且准确的诊断依据。
为了实现上述技术目的, 本发明是通过以下技术方案来实现的:
本发明所述的一种可变形的红外线热扫描探头系统,包括依次连接的红外线热扫描探 头、 红外线热扫描系统主机和监视器, 所述红外热扫描系统主机上还连接有操作键盘或 / 和手持操作器; 所述红外线热扫描探头包括软质探头工作端部、操作手把和数据线, 所述 数据线通过接头与红外线热扫描系统主机连接,所述红外线系统监视器与红外线热扫描系 统主机连接。 所述探头工作端部长 500〜2000mm, 所述探头前端的探头先端部长度小于 50mm, 所述探头先端部外径小于等于 3. 0mm, 且所述探头先端部为圆形。
作为上述技术的进一步改进,所述探头先端部里设有红外区,红外区里至少安装有一 组红外装置, 所述红外装置包括红外光源发射器和红外接收镜头。具体来说, 所述红外区 的红外装置为四组, 该四组红外装置互成 90度设计, 且该四组红外装置隐藏在探头先端 部内, 所述探头先端部还设有将红外装置推出于探头先端部的推出装置。
此外,所述操作手把内部设有给红外区提供动力的微型驱动电机,该微型驱动电机的 作用是为探头先端部的红外区提供旋转扫描、线性扫描或线性运动结合旋转运动的复合扫 描的动力。操作手把使用人体工程学设计, 以适合人手握持操作为目的, 操作手把表面设 计有控制开关, 模式选择开关, 微调开关等。启动时, 通过探头先端部内部的推出装置的 作用, 将红外装置推出探头先端部成为伞形状, 外径小于等于 6mm, 并受微型电机的驱动 做旋转扫描, 扫描覆盖的范围至少为探头前方 90度区域, 扫描完成后, 可以控制推出装 置回收探头先端部, 把红外装置重新返回探头先端部内部, 外径变为 3. 0mm, 退出器官或 者组织腔体。
在本发明中, 所述操作键盘或手持操作设备上设有控制按钮, 开关按钮、具有普通显 示模式和夜视显示模式的模式选择按钮、红外强度微调功能按钮和监视器菜单按钮。由于 模式选择可以切换不同的显示模式,包括普通显示模式和夜视显示模式,普通显示模式是 指红外扫描在内镜冷光源和红外光源的照射下进行的显示模式,夜视显示模式是指没有内 镜冷光源和红外光源的照射下,依靠组织物的自身不同辐射强度来成像, 医生对两种模式 下的血管分布图像对比分析, 可以得到另外一个角度的更好的诊断效果。
本发明所述的红外线热扫描系统主机,其后面板的输出端口外接操作键盘或手持操作 设备、监视器等,监视器的扫描与可变形的红外线热扫描探头扫描相一致,实现同步扫描。
本发明所述的可变形的红外线热扫描探头系统的工作原理是:根据人体器器官或腔体 内的组织布满了丰富的血管, 动脉血温度较高, 静脉血温度较低, 两者存在某种热交换机 制,两者都向外辐射不同波长的红外线,器官或腔体内的组织自身的温度不但受到血管内 血流的影响,也受自身的新陈代谢的影响,所以器官或腔体内的组织的温度会由于血管丰 富与否和新陈代谢的活跃程度的不同而表现出差异性,对外辐射的红外线的波长也各不相 同, 对于器官或腔体内的组织内的炎症肿瘤等病变, 由于其新陈代谢活跃, 其温度明显高 于正常。 同时研究表明, 血液中的成分 (血清、 血浆、 血红蛋白、 白蛋白、 红细胞、 淋巴 细胞、血小板)在光谱中对红外光的吸收最低, 意味着血液除了对外辐射红外线外, 还对 周围组织的红外线的吸收影响很小,可变形的红外线热扫描探头系统的系统主机的处理精 度小于等于 0.05度, 空间分辨能力至少达到 0.8mrad, 精密的可变形的红外线热扫描探头 在器官和组织内近距离进行扫描, 得到精细精确的红外图像。
本发明所述的可变形的红外线热扫描探头系统,其工作过程为:通过进入器官或腔体 内的组织内的红外扫描探头的精密红外探测器红外接收镜头接收器官或腔体内的组织血 管内血流辐射的红外线后, 处理芯片将光信号转换成电信号, 经过预处理 (如放大、 滤波 等;), 由前置放大器和主放大器放大到一定电平之后便进入红外线热扫描系统主机。 同时 输入主机的信号还有同步信号、参照黑体信号等。连续的运动扫描得到的数据传输至红外 线热扫描系统主机进行处理,输出到监视器进行显示,得到一个红外线热扫描的立体的血 管静态图像。医生通过对红外线热扫描的立体的血管静态图像进行分析,可以发现器官和 组织内血管异常丰富、血管异常稀疏或者存在血管缺失区域等异常情况,给医生及时提供 即时的诊断依据。
与现有技术相比, 本发明的有益效果是:
目前的医用红外成像技术的红外分辨率的精度很高,而且已经逐渐广泛应用在很多领 域。但是目前的医用红外线成像技术主要用于人体表面或者人体局部的检查诊断之用,没 有针对应用于特定器官或者腔体内的可变形的红外线热扫描探头系统。本发明所述的可变 形的红外线热扫描探头,其通过内窥镜的器械通道进入人体器官或者腔体,进行近距离精 密地进行扇形区域的红外线热扫描,通过红外线热扫描探头对人体特殊器官或者腔体内的 组织进行连续的立体扫描,多平面连续横切扫描得到的数据传输至红外线热扫描系统主机 进行图像处理,清晰显示人体器官或者腔体的立体血管静态图像,为医生提供器官或腔体 的血流红外线图, 给医生提供即时且准确的诊断依据。此外, 由于其使用的是软质的探头 工作端部,从而使得当内镜在人体内不便于调整位置的情况下时,可变形地软质探头工作 端部能更好地帮助医生观察到内镜正前方至少 90度区域内的组织物的红外线热扫描血管 图, 从而为医生在有限的空间内提供尽量大的视野。 附图说明
图 1是本发明所述可变形的红外线热扫描探头系统示意图。
图 2是本发明中红外线热扫描探头的外观结构示意图。
图 3a、 图 3b是本发明中探头工作端部结构示意图 (分两种不同工作状态)。
图 4是本发明的可变形的红外线热扫描探头的工作示意图。 具体实施方式
下面结合附图对本发明作进一步的详述:
如图 1所示,本发明所述的可变形的红外线热扫描探头系统,包括依次连接地红外线 热扫描探头 1、 红外线热扫描系统主机 2和监视器 3, 所述红外线热扫描系统主机 2上连 接有操作键盘 4和手持操作器 5等。所述红外线热扫描系统主机 2, 其操作面板和操作键 盘或手持操作设备提供丰富的控制按钮, 开关、模式选择、 红外强度微调、监视器菜单等 按钮。模式选择可以切换不同的显示模式, 包括普通显示模式和夜视显示模式, 普通显示 模式是指红外扫描在内镜冷光源和红外光源的照射下进行的显示模式,夜视显示模式是指 没有内镜冷光源和红外光源的照射下,依靠组织物的自身不同辐射强度来成像, 医生对两 种模式下的图像对比分析, 可以得到另外一个角度的更好的诊断效果。
如图 2、图 3a、图 3b所示,本发明所述的红外线热扫描探头 1包括软质的探头工作端 部 11、 操作手把 12和数据线 13, 所述数据线 13通过接头与红外线热扫描系统主机 2连 接,所述监视器 3与红外线热扫描系统主机 2连接。所述探头工作端部 11长 500〜2000讓, 所述探头前端的探头先端部 111长度小于 50mm,该探头先端部 111的外径小于等于 3. 0mm, 且探头先端部 111为圆形。所述探头先端部 111里设有红外区,红外区里安装有四组红外 装置 113, 所述红外装置 113包括红外光源发射器和红外接收镜头, 该四组红外装置 113 互成 90度设计; 所述红外装置 113均隐藏在探头先端部 111的内部, 启动时, 通过探头 先端部 111内部推出装置 112的作用, 推出探头先端部 111成为伞形状。
如图 4所示,本发明所述红外线热扫描探头 1进入人体器官或者腔体内启动,进入前 探头先端部 111的外径小于等于 6. 0mm, 进入腔体后, 探头先端部 111在推出装置 112的 作用下成为伞状形式,在微型驱动电机 122的驱动下做旋转运动,其扫描的区域 I至少为 探头前方 90度范围, 如图中 5所示。 红外线热扫描探头 1连续地运动扫描得到的数据传 输至红外线热扫描系统主机 2进行处理, 得到一个立体的红外线热扫描的血管静态图像, 扫描完成后, 可以控制推出装置 112回收探头先端部 111, 将红外装置 113重新返回探头 先端部 111内部, 外径变为 3. 0mm, 退出器官或者组织腔体。

Claims

权 利 要 求 书
1 . 一种可变形的红外线热扫描探头系统, 其特征在于: 包括依次连接的红外线热扫 描探头、红外线热扫描系统主机和监视器,所述红外热扫描系统主机上还连接有操作键盘 或 /和手持操作器; 所述红外线热扫描探头包括软质探头工作端部、 操作手把和数据线, 所述数据线通过接头与红外线热扫描系统主机连接,所述红外线系统监视器与红外线热扫 描系统主机连接。
2.根据权利要求 1所述可变形的红外热扫描探头系统,其特征在于:所述探头工作端 部的前端为探头先端部, 探头先端部里设有红外区, 红外区里至少安装有一组红外装置, 所述红外装置包括红外光源发射器和红外接收镜头。
3.根据权利要求 2所述可变形的红外热扫描探头系统,其特征在于:所述红外区的红 外装置为四组, 该四组红外装置互成 90度设计。
4.根据权利要求 2或 3所述的可变形的红外热扫描探头系统,其特征在于:所述探头 先端部安装有将红外装置推出的推出装置。
5.根据权利要求 4所述可变形的红外热扫描探头系统,其特征在于:所述操作手把内 部设有给红外区提供动力的微型驱动电机。
6.根据权利要求 5所述可变形的红外热扫描探头系统,其特征在于:所述操作手把的 表面设有控制开关、 模式选择开关和微调开关。
7.根据权利要求 1所述可变形的红外热扫描探头系统,其特征在于:所述操作键盘或 手持操作设备上设有控制按钮,开关按钮、具有普通显示模式和夜视显示模式的模式选择 按钮、 红外强度微调功能按钮和监视器菜单按钮。
8.根据权利要求 2所述可变形的红外热扫描探头系统,其特征在于:所述探头工作端 部长 500〜2000mm,所述探头先端部长度小于 50mm,所述探头先端部外径小于等于 3. 0mm。
9.根据权利要求 8所述可变形的红外热扫描探头系统,其特征在于:所述探头先端部 为圆形。
PCT/CN2011/070582 2010-12-10 2011-01-25 可变形的红外线热扫描探头系统 WO2012075715A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010581810.2 2010-12-10
CN2010105818102A CN102119851B (zh) 2010-12-10 2010-12-10 可变形的红外线热扫描探头系统

Publications (1)

Publication Number Publication Date
WO2012075715A1 true WO2012075715A1 (zh) 2012-06-14

Family

ID=44248589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070582 WO2012075715A1 (zh) 2010-12-10 2011-01-25 可变形的红外线热扫描探头系统

Country Status (2)

Country Link
CN (1) CN102119851B (zh)
WO (1) WO2012075715A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102100522A (zh) * 2010-12-10 2011-06-22 广州宝胆医疗器械科技有限公司 红外线热扫描探头系统
CN106137262B (zh) * 2016-08-26 2019-06-07 邵明霞 一种微型超声排卵监测设备
CN108685574B (zh) * 2017-04-06 2024-05-28 天津市人民医院 一种医用金属探测仪
CN111035355A (zh) * 2020-01-03 2020-04-21 华中科技大学同济医学院附属协和医院 一种医疗用内窥镜

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286436A (ja) * 2000-04-06 2001-10-16 Olympus Optical Co Ltd 内視鏡
CN2551172Y (zh) * 2002-06-14 2003-05-21 台群科技股份有限公司 具有红外线的内视镜
US20030187319A1 (en) * 2002-03-29 2003-10-02 Olympus Optical Co., Ltd. Sentinel lymph node detecting apparatus, and method thereof
CN1886087A (zh) * 2003-10-31 2006-12-27 复合诊断有限公司 具有柔性探头的内窥镜
CN1905831A (zh) * 2004-02-05 2007-01-31 复合诊断有限公司 具有柔性探头的内窥镜
JP2008212317A (ja) * 2007-03-02 2008-09-18 Seiko Epson Corp 光学装置及びモニタ装置
CN101716086A (zh) * 2009-12-11 2010-06-02 广州宝胆医疗器械科技有限公司 微型超声硬质多通道电子膀胱镜系统
CN201558098U (zh) * 2009-12-11 2010-08-25 广州宝胆医疗器械科技有限公司 微型超声硬质多通道电子膀胱镜系统
CN201905871U (zh) * 2010-12-10 2011-07-27 广州宝胆医疗器械科技有限公司 可变形的红外线热扫描探头系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010114920A1 (en) * 2009-03-31 2010-10-07 Ohio University Automatically adjustable endoscopes

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286436A (ja) * 2000-04-06 2001-10-16 Olympus Optical Co Ltd 内視鏡
US20030187319A1 (en) * 2002-03-29 2003-10-02 Olympus Optical Co., Ltd. Sentinel lymph node detecting apparatus, and method thereof
CN2551172Y (zh) * 2002-06-14 2003-05-21 台群科技股份有限公司 具有红外线的内视镜
CN1886087A (zh) * 2003-10-31 2006-12-27 复合诊断有限公司 具有柔性探头的内窥镜
CN1905831A (zh) * 2004-02-05 2007-01-31 复合诊断有限公司 具有柔性探头的内窥镜
JP2008212317A (ja) * 2007-03-02 2008-09-18 Seiko Epson Corp 光学装置及びモニタ装置
CN101716086A (zh) * 2009-12-11 2010-06-02 广州宝胆医疗器械科技有限公司 微型超声硬质多通道电子膀胱镜系统
CN201558098U (zh) * 2009-12-11 2010-08-25 广州宝胆医疗器械科技有限公司 微型超声硬质多通道电子膀胱镜系统
CN201905871U (zh) * 2010-12-10 2011-07-27 广州宝胆医疗器械科技有限公司 可变形的红外线热扫描探头系统

Also Published As

Publication number Publication date
CN102119851A (zh) 2011-07-13
CN102119851B (zh) 2013-03-13

Similar Documents

Publication Publication Date Title
WO2012075713A1 (zh) 具有红外线热扫描功能的电子食管镜系统
WO2012075715A1 (zh) 可变形的红外线热扫描探头系统
WO2012075704A1 (zh) 一体化红外线热扫描食管镜系统
WO2012075710A1 (zh) 一体化红外线热扫描膀胱镜系统
WO2012075700A1 (zh) 具有红外线热扫描功能的结肠镜系统
WO2012075706A1 (zh) 一体化红外线热扫描胆囊镜系统
WO2012075702A1 (zh) 具有红外线热扫描功能的电子胃镜系统
WO2012075705A1 (zh) 一体化红外线热扫描胃镜系统
WO2012075712A1 (zh) 一体化红外线热扫描宫腔镜系统
WO2012075703A1 (zh) 具有红外线热扫描功能的电子支气管镜系统
WO2012075707A1 (zh) 一体化红外线热扫描十二指肠镜系统
CN102100534A (zh) 一体化红外线热扫描经皮肾镜系统
WO2012075696A1 (zh) 具有红外线热扫描功能的胆囊镜系统
CN201939325U (zh) 具有红外线热扫描功能的关节镜系统
CN201996527U (zh) 具有红外线热扫描功能的电子腹腔镜系统
WO2012075708A1 (zh) 一体化红外线热扫描结肠镜系统
CN201948980U (zh) 一体化红外线热扫描经皮肾镜系统
WO2012075709A1 (zh) 一体化红外线热扫描肛肠镜系统
WO2012075711A1 (zh) 一体化红外线热扫描阴道镜系统
CN201905871U (zh) 可变形的红外线热扫描探头系统
CN201939315U (zh) 红外线热扫描探头系统
WO2012075714A1 (zh) 红外线热扫描探头系统
CN201920693U (zh) 一体化红外线热扫描阴道镜系统
CN201899485U (zh) 一体化红外线热扫描胆囊镜系统
CN201920697U (zh) 一体化红外线热扫描膀胱镜系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11847674

Country of ref document: EP

Kind code of ref document: A1