WO2012075710A1 - 一体化红外线热扫描膀胱镜系统 - Google Patents

一体化红外线热扫描膀胱镜系统 Download PDF

Info

Publication number
WO2012075710A1
WO2012075710A1 PCT/CN2011/070563 CN2011070563W WO2012075710A1 WO 2012075710 A1 WO2012075710 A1 WO 2012075710A1 CN 2011070563 W CN2011070563 W CN 2011070563W WO 2012075710 A1 WO2012075710 A1 WO 2012075710A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
infrared thermal
thermal scanning
cystoscope
scan
Prior art date
Application number
PCT/CN2011/070563
Other languages
English (en)
French (fr)
Inventor
乔铁
Original Assignee
广州宝胆医疗器械科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州宝胆医疗器械科技有限公司 filed Critical 广州宝胆医疗器械科技有限公司
Priority to DE212011100184U priority Critical patent/DE212011100184U1/de
Publication of WO2012075710A1 publication Critical patent/WO2012075710A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/307Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the urinary organs, e.g. urethroscopes, cystoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00131Accessories for endoscopes
    • A61B1/00137End pieces at either end of the endoscope, e.g. caps, seals or forceps plugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/046Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for infrared imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths

Definitions

  • the invention belongs to the field of medical instruments, and particularly relates to an integrated infrared thermal scanning capsule mirror system with infrared thermal scanning function. current technology
  • infrared imaging comes from military technology. It has been used for more than 40 years. With the development of various technologies such as medicine, infrared imaging and multimedia, the temperature resolution of infrared imaging has reached 0.05 degrees, and the spatial resolution has reached 1.5mrad. The image sharpness has been greatly improved, and the analysis of the results is intuitive and convenient, so its clinical application range is gradually expanding.
  • infrared imaging diagnosis shows certain advantages in the following aspects: 1) judging the location and nature of tissue pain; 2) judging the location, extent and extent of acute and chronic inflammation; 3) monitoring the blood supply function of vascular lesions; 4) Tumor warning instructions, full-course monitoring and efficacy evaluation. It can be seen that infrared imaging is an important supplement to other morphological diagnostic methods such as B-ultrasound, CT, and MR.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide an integrated infrared thermal scanning cystoscope system, which integrates an infrared thermal scanning probe into a cystoscope system through an infrared thermal scanning probe.
  • Stereoscopic scanning of the bladder wall tissue the obtained data is transmitted to the infrared thermal scanning processing system host for image processing, and provides different display mode selections, so that the doctor can analyze the stereoscopic blood vessel static image of the bladder according to different display images obtained. It has an unexpected diagnostic effect on understanding the function and pathology of the bladder.
  • the integrated infrared thermal scanning cystoscope system of the present invention comprises an infrared thermal scanning cystoscope and a cold light source host, a camera host, an endoscope monitor and an infrared thermal scanning system connected thereto, wherein the infrared thermal scanning system comprises Infrared thermal scanning processing system host and infrared thermal scanning system monitor.
  • the infrared thermal scanning cystoscope is divided into the following two according to the optical system used therein. Forms:
  • the infrared thermal scanning cystoscope is a cystoscope adopting an electronic CCD optical system, and the structure thereof comprises a sheath portion and a mirror body portion; the sheath portion has a diameter of 10.0 mm, and a water inlet channel is arranged thereon, The water outlet channel or the auxiliary device channel, in order to avoid damage to the human tissue, the tip end portion is designed to be blunt; the mirror body portion is provided with a working end portion, a cold light source connector, a data connector and a linear instrument channel; the cold light source connector and the cold light source The main body is connected, the data connector is connected with the camera host and the infrared thermal scanning processing system host; the electronic CCD optical system is disposed at the front end of the working end portion, and adopts an optical lens with a diameter of 1.5 mm to 3.0 mm, and the CCD chip adopts 1 /4 ⁇ , CCD with at least 480,000 effective pixels, the lens field of view is above 100 °; and the linear instrument channel has a
  • the second form is: the infrared thermal scanning cystoscope is a cystoscope using a prism optical system, and the structure includes a sheath portion and a mirror body portion; the sheath portion has a diameter of 10.0 mm, and is provided with a water inlet passage and a water outlet.
  • the tip end portion in order to avoid damage to the human tissue, is designed to be blunt;
  • the mirror body portion is provided with a working end portion, a cold light source connector, a data connector and an eyepiece input end;
  • the cold light source connector is connected with the cold light source host
  • the data connector is connected to a host of an infrared thermal scanning processing system, and the eyepiece input end is connected to the camera host;
  • the prism optical system uses an optical lens having a diameter of 1.5 mm to 3.0 mm.
  • the mirror body portion may further be provided with a water inlet passage and a water outlet passage.
  • the infrared thermal scanning cystoscope is integrated with an infrared thermal scanning probe, an endoscope lens, and a light guiding optical fiber at a tip end portion of the working end portion of the mirror body portion.
  • the infrared thermal scanning probe has a diameter of 3.0 mm, an infrared region is disposed therein, and a protective sleeve is disposed outside the infrared region, and at least one infrared device is installed in the infrared region, and the infrared device includes an infrared light source emitter and an infrared receiving lens.
  • the micro-motor can also be disposed in the body portion of the infrared thermal scanning cystoscope, and the infrared thermal scanning probe can extend from the front end portion of the mirror body portion by 10 mm to 50 mm under the driving of the micro-motor.
  • the infrared thermal scanning probe can be rotated by the micro motor to perform a circular scanning of the scanned object.
  • the infrared thermal scanning system further includes an operation panel, an operation keyboard or a handheld operation device connected to the host of the infrared thermal scanning processing system, and the operation panel and the handheld operation device are provided with control buttons. , including switch button, mode selection button, infrared intensity fine-tuning function button and monitor menu button.
  • the mode selection button is used to switch between different display modes, including the normal display mode and the night vision display mode.
  • the normal display mode refers to the display mode of infrared scanning under the illumination of the endoscope cold light source and the infrared light source
  • the night vision display mode refers to Without the endoscope cold light source and the infrared light source, depending on the different radiation intensity of the tissue, the doctor can compare the images in the two modes to obtain a better diagnostic effect from another angle.
  • the infrared thermal scanning processing system main The rear panel of the machine is provided with an output port, and the infrared thermal scanning system monitor, the operating keyboard or the handheld operating device is connected to the output port, and the scanning of the infrared thermal scanning system monitor is consistent with the scanning of the infrared thermal scanning probe. Synchronous scanning.
  • the integrated infrared thermal scanning cystoscope system of the present invention has the following working principle: the bladder wall is filled with abundant blood vessels, the arterial blood temperature is high, and the venous blood temperature is low, and there is some heat exchange mechanism between the two. Both of them radiate different wavelengths of infrared rays.
  • the temperature of the bladder wall tissue is not only affected by blood flow in the blood vessels, but also by its own metabolism. Therefore, the temperature of the bladder wall tissue may be due to the richness of blood vessels and the metabolic activity. Different from each other, the wavelength of infrared rays radiated from the outside is also different.
  • the temperature of the inflammatory lesions between the bladder walls is significantly higher than normal due to its active metabolism.
  • blood components serum, plasma, hemoglobin, albumin, red blood cells, lymphocytes, platelets
  • infrared rays to the surrounding tissue.
  • the absorption effect is very small, the infrared system has an accuracy of less than or equal to 0.05 degrees, and the spatial resolution is at least 0.8 mrad.
  • the infrared thermal scanning probe scans at a close distance in the bladder cavity to obtain a fine and accurate infrared image.
  • the integrated infrared thermal scanning cystoscope system of the invention has the following working process: the blood flow in the blood vessel and the infrared radiation radiated from the bladder wall tissue, and the infrared infrared scanning probe of the infrared thermal scanning probe entering the bladder cavity-infrared receiving lens
  • the processing chip converts the optical signal into an electrical signal, and after preprocessing (such as amplification, filtering, etc.), the preamplifier and the main amplifier are amplified to a certain level and then enter the infrared thermal scanning processing system host.
  • the signal input to the host also has a synchronization signal, a reference black body signal, and the like.
  • the micro-motor After the infrared thermal scanning probe is started, the micro-motor is driven to extend a certain distance from the tip end of the cystoscope, and is rotated by the micro-motor to perform circular scanning on the tissue of the bladder wall, and the data obtained by multi-plane continuous cross-cutting scanning is transmitted to
  • the infrared thermal scanning processing system host performs image processing and outputs it to the infrared thermal scanning system monitor to clearly display the stereoscopic blood vessel static image of the bladder wall tissue.
  • the doctor can find that the blood vessel in the bladder wall is abnormally rich, the blood vessel is abnormally sparse or Abnormal conditions such as vascular missing areas provide immediate diagnosis to doctors.
  • the integrated infrared thermal scanning cystoscope system of the present invention has the following clinical surgical methods: After the patient performs the disinfection and drape, the doctor inserts the sheath portion of the infrared thermal scanning cystoscope with the mirror core through the appropriate urethra into the bladder through the patient's urethra. Cavity, remove the mirror core, insert the mirror part of the infrared thermal scanning cystoscope, and pass the physiological saline solution through the water inlet channel, so that the observed visual field is clearer, the condition in the bladder cavity is explored, and various medical treatments are introduced through the instrument channel.
  • the device can treat various diseases such as stones and polyps in the bladder cavity.
  • an infrared thermal scanning probe located at the tip end of the infrared thermal scanning cystoscope can be activated, and the infrared thermal scanning probe extends a certain distance from the anterior end of the cystoscope to perform an infrared thermal scan for the bladder.
  • Infrared thermal scanning image output to infrared hot sweep A system monitor that provides a basis for doctors to diagnose bladder conditions.
  • the infrared resolution of the current medical infrared imaging technology is very high, and has been widely used in many fields, especially in the medical field.
  • the infrared thermal scanning probe is integrated on the cystoscope, and the infrared thermal scanning probe is rotated by the micro motor to extend the tip end of the cystoscope, and the infrared radiation formed by the temperature difference of the blood flow of the bladder wall is scanned and monitored.
  • the data obtained by the plane continuous cross-cut scan is transmitted to the host of the infrared thermal scanning processing system for image processing, and the stereoscopic blood vessel static image of the bladder wall tissue is clearly displayed, which provides a reliable objective basis for the doctor to judge the lesion and functional state of the bladder wall tissue, enriching The diagnosis of bladder disease effectively improves the accuracy of diagnosis.
  • FIG. 1 is a schematic view showing the structure of an integrated infrared thermal scanning cystoscope system according to the present invention.
  • Fig. 2A is a schematic view showing the structure of an infrared thermal scanning cystoscope using an electronic CCD optical system.
  • 2B is a schematic view showing the structure of an infrared thermal scanning cystoscope using a prism optical system.
  • Fig. 3A is a schematic view showing the end structure of the infrared thermal scanning cystoscope shown in Fig. 2A.
  • Fig. 3B is a schematic view showing the end structure of the infrared thermal scanning cystoscope shown in Fig. 2B.
  • FIG. 4 is a schematic view showing the structure of an infrared thermal scanning probe according to the present invention.
  • Fig. 5 is a schematic view showing the surgical method of the integrated infrared thermal scanning cystoscope system according to the present invention. detailed description
  • the integrated infrared thermal scanning cystoscope system of the present invention comprises an infrared thermal scanning cystoscope 1, a cold light source host 2, a camera host 3, an infrared thermal scanning processing system host 4, an operating keyboard or a handheld operation.
  • the infrared thermal scanning processing system host 4 is also connected with an operation panel, and the handheld operation device 5 and the operation panel are provided with control buttons such as a switch button, a mode selection button, an infrared intensity fine adjustment function button, and a monitor menu button.
  • FIGS. 2A and 2B are schematic views showing the structure of two different forms of the infrared thermal scanning cystoscope 1, respectively, wherein:
  • FIG. 2A is a schematic view showing the structure of an infrared thermal scanning cystoscope using an electronic CCD optical system including a sheath portion 11 and a mirror portion 12.
  • the sheath portion 11 has a diameter of 10.0 mm and is provided with a water inlet passage, a water outlet passage or an auxiliary instrument passage 111. In order to avoid damage to human tissue, the tip end portion is designed to be blunt.
  • the mirror body portion 12 is provided with a working end portion 121, a cold light source connector 122, a data connector 123, and a linear instrument channel 124.
  • the cold light source connector 122 is connected to the cold light source host 2
  • the data connector 123 is connected to the camera host 3 and the infrared thermal scanning processing system host 4.
  • the electronic CCD optical system is disposed at the front end of the working end portion 121, and adopts an optical lens with a diameter of 1.5 mm to 3.0 mm.
  • the CCD chip adopts a 1/4 inch, at least 480,000 effective pixel CCD, and the lens field angle is 100 °. the above.
  • the linear instrument channel 124 has a diameter of 3.0 mm.
  • Fig. 2B is a schematic view showing the structure of an infrared thermal scanning cystoscope using a prism optical system including a sheath portion 11 and a mirror portion 12.
  • the sheath portion 11 has a diameter of 10.0 mm and is provided with a water inlet passage, a water outlet passage or an auxiliary device passage 111.
  • the tip end portion is designed to be blunt.
  • the mirror body portion 12 is provided with a working end portion 121, a cold light source connector 122, a data connector 123, an eyepiece input end 125, a water inlet passage 126, and a water outlet passage 127.
  • the cold light source connector 122 is connected to the cold light source host 2, the data connector 123 is connected to the infrared thermal scanning processing system host 4, and the eyepiece input terminal 125 is connected to the camera host 3.
  • the prism optical system uses an optical lens having a diameter of 1.5 mm to 3.0 mm.
  • FIGS. 2A and 2B are schematic views showing the end structures of the infrared thermal scanning cystoscope shown in Figs. 2A and 2B, respectively, in which:
  • FIG. 3A is a schematic view showing the end structure of the infrared thermal scanning cystoscope shown in FIG. 2A.
  • the infrared thermal scanning cystoscope is integrated with an endoscopic lens 1231, an infrared thermal scanning probe 1232 and a guide at a tip end portion of the working portion 121 of the mirror portion.
  • the optical fiber 1221 is also provided with an instrument channel outlet 1241.
  • the endoscope lens 1231 is an optical lens of 1.5 mm to 3.0 mm
  • the infrared thermal scanning probe 1232 has a diameter of 3.0 mm.
  • FIG. 3B is a schematic view showing the end structure of the infrared thermal scanning cystoscope shown in FIG. 2B.
  • the infrared thermal scanning cystoscope is integrated with an endoscopic lens 1251, an infrared thermal scanning probe 1232 and a guide at the tip end portion of the working portion 121 of the mirror portion.
  • the optical fiber 1221 is further provided with a water inlet channel outlet 1261 and a water outlet channel outlet 1271.
  • the endoscope lens 1251 is an optical lens of 1.5 mm to 3.0 mm
  • the infrared thermal scanning probe 1232 has a diameter of 3.0 mm.
  • FIG. 4 is a schematic structural view of an infrared thermal scanning probe 1232 according to the present invention.
  • An infrared region 1233 is disposed in the infrared thermal scanning probe 1232, a protective cover 1234 is disposed outside the infrared region 1233, and an infrared device 1235 is disposed in the infrared region 1233.
  • the infrared device 1235 includes an infrared light source emitter and an infrared receiving lens. Three sets of the same infrared device 1235 are installed in the infrared region 1233, and the three groups of infrared devices 1235 are designed to be 60 degrees each other.
  • the infrared thermal scanning probe 1232 can be extended by the micro-motor to extend the front end of the infrared thermal scanning cystoscope by 10 mm to 50 mm, and rotate in the direction of the N-N' to perform circular scanning on the scanned body.
  • Fig. 5 is a schematic view showing the surgical method of the integrated infrared thermal scanning cystoscope system according to the present invention.
  • the doctor inserts the sheath portion 11 of the infrared thermography cystoscope 1 into the bladder cavity 8 through the appropriate urethra 81 through the patient's urethra 81, removes the lens core, and inserts the mirror body of the infrared thermal scanning cystoscope 1.
  • Part 12 through the water inlet
  • the channel is filled with physiological saline, so that the field of view is more clear, the condition in the bladder cavity 8 is probed, and various medical instruments are introduced through the instrument channel, and various diseases such as stones and polyps in the bladder cavity 8 can be treated.
  • the infrared thermal scanning probe 1232 located at the tip end of the infrared thermal scanning cystoscope 1 can be activated, and the infrared thermal scanning probe 1232 extends a certain distance from the anterior end of the cystoscope to rotate the bladder.
  • the thermal scan, infrared thermal scan image is output to the infrared thermal scanning system monitor 6, which provides a basis for the doctor to diagnose the bladder disease.

Description

一体化红外线热扫描膀胱镜系统 技术领域
本发明属于医用器械领域,具体涉及具有红外线热扫描功能的一体化红外线热扫描膀 胱镜系统。 现有技术
医用红外线成像来源于军工技术, 已有 40多年的使用历史, 随着医学、 红外线成像 及多媒体等多种技术的发展, 红外线成像的温度分辨率已经达到 0.05度, 空间分辨能力 已经达到 1.5mrad, 图像清晰度有了很大的提高, 结果分析直观方便, 因而其在临床上的 应用范围正逐渐扩大。 目前, 红外线成像诊断在以下方面显示出一定优势: 1 ) 判断组织 疼痛的部位和性质; 2)判断急、 慢性炎症的部位、 范围和程度; 3 )监测血管性病变的供 血功能状态; 4)肿瘤预警指示、全程监视及疗效评估。 由此可见, 红外线成像是对 B超、 CT、 MR等其它形态学诊断方法的重要补充。
将红外线热扫描探头集成于膀胱镜之中,治疗的同时进行先进的红外线热扫描诊断的 新技术, 提供不同的显示模式, 为膀胱病的诊断提供新的视角和新的手段。 目前尚没有出 现两者结合的一体化内窥镜系统。 发明内容
本发明的目的在于克服现有技术的不足, 提供一种一体化红外线热扫描膀胱镜系统, 该一体化红外线热扫描膀胱镜系统将红外线热扫描探头集成在膀胱镜系统中,通过红外线 热扫描探头对膀胱壁组织进行立体扫描,得到的数据传输至红外线热扫描处理系统主机进 行图像处理, 并提供不同的显示模式选择, 使得医生能根据获得的不同的显示图像, 通过 分析膀胱的立体血管静态图像,对于了解膀胱的功能和病变情况,具有意想不到的诊断效 果。
本发明的目的是通过以下技术方案来实现的:
本发明所述的一体化红外线热扫描膀胱镜系统,包括红外线热扫描膀胱镜以及与之连 接的冷光源主机、摄像主机、 内镜监视器和红外线热扫描系统, 所述的红外线热扫描系统 包括红外线热扫描处理系统主机和红外线热扫描系统监视器。
在本发明中,所述的红外线热扫描膀胱镜按其所采用的光学系统的不同,分为以下两 种形式:
第一种形式是: 所述红外线热扫描膀胱镜为采用电子 CCD光学系统的膀胱镜, 其结 构包括鞘管部分和镜体部分; 鞘管部分的直径 10.0mm, 其上设有进水通道、 出水通道 或辅助器械通道, 为了避免损伤人体组织, 其先端部设计成钝型; 镜体部分上设有工作端 部、冷光源接头、数据接头和直线型器械通道; 该冷光源接头与冷光源主机相连接, 该数 据接头与摄像主机和红外线热扫描处理系统主机相连接; 该电子 CCD光学系统设置在工 作端部的前端, 采用直径为 1.5mm〜3.0mm的光学镜头, 其 CCD芯片采用 1/4〃 、至少 48万有效像素的 CCD, 镜头视场角在 100 ° 以上; 而该直线型器械通道的直径 3.0mm。
第二种形式是:所述红外线热扫描膀胱镜为采用棱镜光学系统的膀胱镜,其结构包括 鞘管部分和镜体部分; 鞘管部分的直径 10.0mm, 其上设有进水通道、 出水通道或辅助 器械通道, 为了避免损伤人体组织, 其先端部设计成钝型; 镜体部分上设有工作端部、冷 光源接头、数据接头和目镜输入端; 该冷光源接头与冷光源主机相连接, 该数据接头与红 外线热扫描处理系统主机相连接,该目镜输入端与摄像主机相连接;该棱镜光学系统采用 直径为 1.5mm〜3.0mm 的光学镜头。 优选地, 镜体部分上还可以设有进水通道和出水通 道。
在本发明中,所述红外线热扫描膀胱镜在其镜体部分工作端部的先端部集成有红外线 热扫描探头、 内镜镜头和导光光纤。 所述红外线热扫描探头的直径 3.0mm, 其内设有红 外区, 红外区的外部设有保护套, 红外区内至少安装有一组红外装置, 所述红外装置包括 红外光源发射器和红外接收镜头。所述红外线热扫描膀胱镜的镜体部分内还可以设有微型 电机, 所述红外线热扫描探头在微型电机的驱动下, 可以伸出镜体部分先端部平面 10mm〜50mm。 优选地, 红外区内安装有三组相同的红外装置, 该三组红外装置互成 60 度设计。所述红外线热扫描探头可以在微型电机的驱动下旋转,从而对被扫描体做环形扫 描。
在本发明中,所述红外线热扫描系统还包括有与所述红外线热扫描处理系统主机相连 接的操作面板、操作键盘或手持操作设备,所述的操作面板和手持操作设备上设有控制按 钮, 包括开关按钮、模式选择按钮、 红外强度微调功能按钮和监视器菜单按钮。模式选择 按钮用于切换不同的显示模式,包括普通显示模式和夜视显示模式,普通显示模式是指红 外扫描在内镜冷光源和红外光源的照射下进行的显示模式,夜视显示模式是指没有内镜冷 光源和红外光源的照射下,依靠组织物的自身不同辐射强度来成像, 医生对两种模式下的 图像对比分析,可以得到另外一个角度的更好的诊断效果。所述红外线热扫描处理系统主 机的后面板设有输出端口,所述的红外线热扫描系统监视器、操作键盘或手持操作设备连 接于该输出端口,红外线热扫描系统监视器的扫描与红外线热扫描探头的扫描相一致,实 现同步扫描。
本发明所述的一体化红外线热扫描膀胱镜系统,其工作原理如下:膀胱壁间布满了丰 富的血管, 动脉血温度较高, 静脉血温度较低, 两者存在某种热交换机制, 两者都向外辐 射不同波长的红外线,膀胱壁组织自身的温度不但受到血管内血流的影响,也受自身新陈 代谢的影响,所以膀胱壁组织的温度会由于血管丰富与否和新陈代谢活跃程度的不同而表 现出差异性,对外辐射的红外线的波长也各不相同,对于膀胱壁间的炎症病变等由于其新 陈代谢活跃, 其温度明显高于正常。 研究表明, 血液中的成分 (血清、 血浆、 血红蛋白、 白蛋白、 红细胞、 淋巴细胞、 血小板)在光谱中对红外光的吸收最低, 意味着血液除了对 外辐射红外线外, 还对周围组织的红外线的吸收影响很小, 红外线系统的精度小于等于 0.05度,空间分辨能力至少达到 0.8mrad,红外线热扫描探头在膀胱腔内近距离进行扫描, 得到精细精确的红外图像。
本发明所述的一体化红外线热扫描膀胱镜系统,其工作过程如下:血管中血流及膀胱 壁组织辐射的红外线,经进入膀胱腔内的红外线热扫描探头的精密红外探测器 -红外接收 镜头接收后, 处理芯片将光信号转换成电信号, 经过预处理 (如放大、 滤波等), 由前置 放大器和主放大器放大到一定电平之后便进入红外线热扫描处理系统主机。同时输入主机 的信号还有同步信号、参照黑体信号等。红外线热扫描探头启动后, 在微型电机的驱动下 伸出膀胱镜先端部若干距离, 并在微型电机的驱动下旋转, 对膀胱壁组织做环形扫描, 多 平面连续横切扫描得到的数据传输至红外线热扫描处理系统主机进行图像处理,并输出到 红外线热扫描系统监视器,清晰地显示膀胱壁组织的立体血管静态图像, 医生通过图像分 析, 可以发现膀胱壁内血管异常丰富、 血管异常稀疏或者存在血管缺失区域等异常情况, 给医生及时提供即时的诊断依据。
本发明所述的一体化红外线热扫描膀胱镜系统,其临床手术方法如下: 患者进行消毒 铺巾后,医生将红外线热扫描膀胱镜的鞘管部分配合镜芯通过适当手法经患者尿道插入至 膀胱腔, 取出镜芯, 插入红外线热扫描膀胱镜的镜体部分, 经进水通道通入生理盐水, 使 得观察的视野更加清晰, 对膀胱腔内的状况进行探查, 通过器械通道通入各种医疗器械, 可以处理膀胱腔内的结石、息肉等各种病症。对膀胱壁及周围组织的状况进行诊断时, 可 以启动位于红外线热扫描膀胱镜先端部的红外线热扫描探头,红外线热扫描探头伸出膀胱 镜先端部若干距离,为膀胱做旋转的红外线热扫描,红外线热扫描图像输出至红外线热扫 描系统监视器, 为医生对膀胱病症的诊断提供依据。
与现有技术相比,本发明的有益效果是: 目前的医用红外成像技术的红外分辨率的精 度很高, 而且已经逐渐广泛应用在很多领域, 特别是医疗领域。将红外线热扫描探头集成 在膀胱镜上, 利用红外线热扫描探头在微型电机驱动下旋转, 伸出膀胱镜先端部, 对膀胱 壁血管血液运动产生的温度差异而形成的红外线辐射进行扫描监测,多平面连续横切扫描 得到的数据传输至红外线热扫描处理系统主机进行图像处理,清晰地显示膀胱壁组织的立 体血管静态图像,为医生判断膀胱壁组织的病变及功能状态提供可靠的客观依据,丰富膀 胱疾病的诊断手段, 有效地提高诊断的准确性。 附图说明
图 1是本发明所述的一体化红外线热扫描膀胱镜系统的结构示意图。
图 2A是采用电子 CCD光学系统的红外线热扫描膀胱镜的结构示意图。
图 2B是采用棱镜光学系统的红外线热扫描膀胱镜的结构示意图。
图 3A是图 2A所示红外线热扫描膀胱镜的端部结构示意图。
图 3B是图 2B所示红外线热扫描膀胱镜的端部结构示意图。
图 4是本发明所述的红外线热扫描探头的结构示意图。
图 5是本发明所述的一体化红外线热扫描膀胱镜系统的手术方法示意图。 具体实施方式
下面结合附图对本发明作进一步的详述:
如图 1所示,本发明所述的一体化红外线热扫描膀胱镜系统包括有红外线热扫描膀胱 镜 1、冷光源主机 2、摄像主机 3、 红外线热扫描处理系统主机 4、操作键盘或手持操作设 备 5、 红外线热扫描系统监视器 6和内镜监视器 7。 其中, 红外线热扫描处理系统主机 4 还连接有操作面板, 手持操作设备 5和操作面板上设有开关按钮、模式选择按钮、红外强 度微调功能按钮和监视器菜单按钮等控制按钮。
图 2A和图 2B分别显示了红外线热扫描膀胱镜 1的两种不同形式的结构示意图, 其 中:
图 2A为采用电子 CCD光学系统的红外线热扫描膀胱镜的结构示意图, 该红外线热 扫描膀胱镜包括有鞘管部分 11和镜体部分 12。 鞘管部分 11的直径 10.0mm, 其上设有 进水通道、出水通道或辅助器械通道 111, 为了避免损伤人体组织,其先端部设计成钝型。 镜体部分 12上设有工作端部 121、冷光源接头 122、数据接头 123和直线型器械通道 124。 冷光源接头 122与冷光源主机 2相连接,数据接头 123与摄像主机 3和红外线热扫描处理 系统主机 4 相连接。 该电子 CCD 光学系统设置在工作端部 121 的前端, 采用直径为 1.5mm〜3.0mm的光学镜头, 其 CCD芯片采用 1/4〃 、 至少 48万有效像素的 CCD, 镜 头视场角在 100 ° 以上。 直线型器械通道 124的直径 3.0mm。
图 2B为采用棱镜光学系统的红外线热扫描膀胱镜的结构示意图, 该红外线热扫描膀 胱镜包括有鞘管部分 11和镜体部分 12。 鞘管部分 11的直径 10.0mm, 其上设有进水通 道、 出水通道或辅助器械通道 111, 为了避免损伤人体组织, 其先端部设计成钝型。 镜体 部分 12上设有工作端部 121、 冷光源接头 122、 数据接头 123、 目镜输入端 125、 进水通 道 126和出水通道 127。冷光源接头 122与冷光源主机 2相连接, 数据接头 123与红外线 热扫描处理系统主机 4相连接, 目镜输入端 125与摄像主机 3相连接。该棱镜光学系统采 用直径为 1.5mm〜3.0mm的光学镜头。
图 3A和图 3B分别显示了图 2A和图 2B所示的红外线热扫描膀胱镜的端部结构示意 图, 其中:
图 3A是图 2A所示红外线热扫描膀胱镜的端部结构示意图, 该红外线热扫描膀胱镜 在其镜体部分工作端部 121的先端部集成有内镜镜头 1231、红外线热扫描探头 1232和导 光光纤 1221, 并且还设有器械通道出口 1241。 其中, 内镜镜头 1231 为 1.5mm〜3.0mm 的光学镜头, 红外线热扫描探头 1232的直径 3.0mm。
图 3B是图 2B所示红外线热扫描膀胱镜的端部结构示意图, 该红外线热扫描膀胱镜 在其镜体部分工作端部 121的先端部集成有内镜镜头 1251、红外线热扫描探头 1232和导 光光纤 1221,并且还设有进水通道出口 1261和出水通道出口 1271。其中, 内镜镜头 1251 为 1.5mm〜3.0mm的光学镜头, 红外线热扫描探头 1232的直径 3.0mm。
图 4是本发明所述的红外线热扫描探头 1232的结构示意图,红外线热扫描探头 1232 内设有红外区 1233, 红外区 1233的外部设有保护套 1234, 红外区 1233内安装有红外装 置 1235, 该红外装置 1235包括有红外光源发射器和红外接收镜头。 红外区 1233内安装 有三组相同的红外装置 1235,三组红外装置 1235互成 60度设计。红外线热扫描探头 1232 可以在微型电机的驱动下, 伸出所述红外线热扫描膀胱镜先端部 10mm〜50mm, 并且绕 着 N-N'的方向旋转, 从而对被扫描体做环形的扫描。
图 5是本发明所述的一体化红外线热扫描膀胱镜系统的手术方法示意图。患者进行消 毒铺巾后, 医生将红外线热扫描膀胱镜 1的鞘管部分 11配合镜芯通过适当手法经患者尿 道 81插入至膀胱腔 8, 取出镜芯, 插入红外线热扫描膀胱镜 1的镜体部分 12, 经进水通 道通入生理盐水, 使得观察的视野更加清晰, 对膀胱腔 8内的状况进行探查, 通过器械通 道通入各种医疗器械, 可以处理膀胱腔 8内的结石、息肉等各种病症。对膀胱壁及周围组 织的状况进行诊断时, 可以启动位于红外线热扫描膀胱镜 1 先端部的红外线热扫描探头 1232, 红外线热扫描探头 1232伸出膀胱镜先端部若干距离, 为膀胱做旋转的红外线热扫 描, 红外线热扫描图像输出至红外线热扫描系统监视器 6, 为医生对膀胱病症的诊断提供 依据。

Claims

权 利 要 求 书
1、 一体化红外线热扫描膀胱镜系统, 其特征在于: 包括红外线热扫描膀胱镜以及与 之连接的冷光源主机、摄像主机、 内镜监视器和红外线热扫描系统, 所述的红外线热扫描 系统包括红外线热扫描处理系统主机和红外线热扫描系统监视器。
2、 根据权利要求 1所述的一体化红外线热扫描膀胱镜系统, 其特征在于: 所述的红 外线热扫描膀胱镜设有鞘管部分和镜体部分,所述的镜体部分上还设有工作端部、冷光源 接头和数据接头。
3、 根据权利要求 2所述的一体化红外线热扫描膀胱镜系统, 其特征在于: 所述的红 外线热扫描膀胱镜在其工作端部的先端部集成有红外线热扫描探头、 内镜镜头和导光光 纤。
4、 根据权利要求 3所述的一体化红外线热扫描膀胱镜系统, 其特征在于: 所述的红 外线热扫描探头内设有红外区,所述红外区的外部设有保护套,所述的红外区内至少安装 有一组红外装置, 所述的红外装置包括红外光源发射器和红外接收镜头。
5、 根据权利要求 4所述的一体化红外线热扫描膀胱镜系统, 其特征在于: 所述的红 外区内安装有三组红外装置, 该三组红外装置互成 60度设计。
6、 根据权利要求 3所述的一体化红外线热扫描膀胱镜系统, 其特征在于: 所述的红 外线热扫描膀胱镜内设有用于驱动所述红外线热扫描探头伸缩和旋转的电机。
7、 根据权利要求 1所述的一体化红外线热扫描膀胱镜系统, 其特征在于: 所述的红 外线热扫描膀胱镜为采用电子 CCD光学系统的膀胱镜。
8、 根据权利要求 1所述的一体化红外线热扫描膀胱镜系统, 其特征在于: 所述的红 外线热扫描膀胱镜为采用棱镜光学系统的膀胱镜, 其上还设有目镜输入端。
9、 根据权利要求 2所述的一体化红外线热扫描膀胱镜系统, 其特征在于: 所述的鞘 管部分上设有进水通道、 出水通道或器械通道, 所述的镜体部分上还设有器械通道。
10、根据权利要求 1所述的一体化红外线热扫描膀胱镜系统, 其特征在于: 所述的红 外线热扫描系统还包括与所述红外线热扫描处理系统主机相连接的操作面板、操作键盘或 手持操作设备,所述的操作面板和手持操作设备上设有控制按钮,所述的控制按钮包括开 关按钮、设有普通显示模式和夜视显示模式的模式选择按钮、红外强度微调功能按钮和监 视器菜单按钮。
PCT/CN2011/070563 2010-12-10 2011-01-25 一体化红外线热扫描膀胱镜系统 WO2012075710A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE212011100184U DE212011100184U1 (de) 2010-12-10 2011-01-25 Zystoskopvorrichtung mit integrierter Infrarotabtastung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010105818704A CN102100533A (zh) 2010-12-10 2010-12-10 一体化红外线热扫描膀胱镜系统
CN201010581870.4 2010-12-10

Publications (1)

Publication Number Publication Date
WO2012075710A1 true WO2012075710A1 (zh) 2012-06-14

Family

ID=44153761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070563 WO2012075710A1 (zh) 2010-12-10 2011-01-25 一体化红外线热扫描膀胱镜系统

Country Status (3)

Country Link
CN (1) CN102100533A (zh)
DE (1) DE212011100184U1 (zh)
WO (1) WO2012075710A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102100535A (zh) * 2010-12-10 2011-06-22 广州宝胆医疗器械科技有限公司 具有红外线热扫描功能的膀胱镜系统
CN102100530B (zh) * 2010-12-10 2013-04-24 广州宝胆医疗器械科技有限公司 一体化红外线热扫描十二指肠镜系统
CN102512136A (zh) * 2011-12-30 2012-06-27 广州宝胆医疗器械科技有限公司 具有夜视功能的膀胱镜系统
CN102697461A (zh) * 2012-01-18 2012-10-03 广州宝胆医疗器械科技有限公司 Oct硬质膀胱镜系统
CN113057571A (zh) * 2021-03-19 2021-07-02 侯宁宁 一次性多功能电子膀胱镜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5445157A (en) * 1992-02-20 1995-08-29 Asahi Kogaku Kogyo Kabushiki Kaisha Thermographic endoscope
US20030187319A1 (en) * 2002-03-29 2003-10-02 Olympus Optical Co., Ltd. Sentinel lymph node detecting apparatus, and method thereof
US20070282190A1 (en) * 2006-06-01 2007-12-06 D.P. Electronic Systems Ltd. Method Of Infrared Thermography For Earlier Diagnosis Of Gastric Colorectal And Cervical Cancer
WO2010114920A1 (en) * 2009-03-31 2010-10-07 Ohio University Automatically adjustable endoscopes
CN201920697U (zh) * 2010-12-10 2011-08-10 广州宝胆医疗器械科技有限公司 一体化红外线热扫描膀胱镜系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2551172Y (zh) * 2002-06-14 2003-05-21 台群科技股份有限公司 具有红外线的内视镜
CN101803904A (zh) * 2010-03-16 2010-08-18 广州市番禺区胆囊病研究所 一体化硬质超声膀胱镜系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5445157A (en) * 1992-02-20 1995-08-29 Asahi Kogaku Kogyo Kabushiki Kaisha Thermographic endoscope
US20030187319A1 (en) * 2002-03-29 2003-10-02 Olympus Optical Co., Ltd. Sentinel lymph node detecting apparatus, and method thereof
US20070282190A1 (en) * 2006-06-01 2007-12-06 D.P. Electronic Systems Ltd. Method Of Infrared Thermography For Earlier Diagnosis Of Gastric Colorectal And Cervical Cancer
WO2010114920A1 (en) * 2009-03-31 2010-10-07 Ohio University Automatically adjustable endoscopes
CN201920697U (zh) * 2010-12-10 2011-08-10 广州宝胆医疗器械科技有限公司 一体化红外线热扫描膀胱镜系统

Also Published As

Publication number Publication date
CN102100533A (zh) 2011-06-22
DE212011100184U1 (de) 2013-07-18

Similar Documents

Publication Publication Date Title
WO2012075710A1 (zh) 一体化红外线热扫描膀胱镜系统
WO2012075713A1 (zh) 具有红外线热扫描功能的电子食管镜系统
WO2012075704A1 (zh) 一体化红外线热扫描食管镜系统
WO2012075708A1 (zh) 一体化红外线热扫描结肠镜系统
WO2012075706A1 (zh) 一体化红外线热扫描胆囊镜系统
WO2012075705A1 (zh) 一体化红外线热扫描胃镜系统
WO2012075707A1 (zh) 一体化红外线热扫描十二指肠镜系统
WO2012075712A1 (zh) 一体化红外线热扫描宫腔镜系统
CN202015155U (zh) 具有红外线热扫描功能的宫腔镜系统
WO2012075702A1 (zh) 具有红外线热扫描功能的电子胃镜系统
WO2012075711A1 (zh) 一体化红外线热扫描阴道镜系统
CN102100534A (zh) 一体化红外线热扫描经皮肾镜系统
WO2012075709A1 (zh) 一体化红外线热扫描肛肠镜系统
WO2012075715A1 (zh) 可变形的红外线热扫描探头系统
WO2012075696A1 (zh) 具有红外线热扫描功能的胆囊镜系统
WO2012075700A1 (zh) 具有红外线热扫描功能的结肠镜系统
CN201920697U (zh) 一体化红外线热扫描膀胱镜系统
WO2012075703A1 (zh) 具有红外线热扫描功能的电子支气管镜系统
CN201920693U (zh) 一体化红外线热扫描阴道镜系统
CN201899485U (zh) 一体化红外线热扫描胆囊镜系统
CN201899472U (zh) 一体化红外线热扫描宫腔镜系统
CN201894634U (zh) 具有红外线热扫描功能的膀胱镜系统
CN201939320U (zh) 一体化红外线热扫描喉镜系统
CN201899483U (zh) 一体化红外线热扫描肛肠镜系统
CN201948980U (zh) 一体化红外线热扫描经皮肾镜系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847844

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2120111001841

Country of ref document: DE

Ref document number: 212011100184

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11847844

Country of ref document: EP

Kind code of ref document: A1