WO2012075602A1 - 超声微泡靶向定位控释药物/基因装置及靶向转移的方法 - Google Patents

超声微泡靶向定位控释药物/基因装置及靶向转移的方法 Download PDF

Info

Publication number
WO2012075602A1
WO2012075602A1 PCT/CN2010/001987 CN2010001987W WO2012075602A1 WO 2012075602 A1 WO2012075602 A1 WO 2012075602A1 CN 2010001987 W CN2010001987 W CN 2010001987W WO 2012075602 A1 WO2012075602 A1 WO 2012075602A1
Authority
WO
WIPO (PCT)
Prior art keywords
drug
gene
ultrasonic
microbubble
contrast agent
Prior art date
Application number
PCT/CN2010/001987
Other languages
English (en)
French (fr)
Inventor
王志刚
冉海涛
李攀
张群霞
凌智渝
郑元义
燕思源
Original Assignee
重庆融海超声医学工程研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆融海超声医学工程研究中心有限公司 filed Critical 重庆融海超声医学工程研究中心有限公司
Priority to PCT/CN2010/001987 priority Critical patent/WO2012075602A1/zh
Priority to AU2010365282A priority patent/AU2010365282B2/en
Publication of WO2012075602A1 publication Critical patent/WO2012075602A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/223Microbubbles, hollow microspheres, free gas bubbles, gas microspheres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0028Disruption, e.g. by heat or ultrasounds, sonophysical or sonochemical activation, e.g. thermosensitive or heat-sensitive liposomes, disruption of calculi with a medicinal preparation and ultrasounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0009Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/88Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy

Definitions

  • the invention belongs to the field of biomedical engineering technology, and particularly relates to an ultrasonic microbubble targeted localization controlled release drug/gene device and a method for realizing targeted transfer by using a microbubble contrast agent and a drug/gene combined with ultrasonic waves. Background technique
  • Drug/gene transfer is a key technology that leverages the biological effects of the drug/gene itself.
  • Current pharmaceutical/gene delivery vectors are commonly found in viruses and non-virals, such as direct injection of drugs/genes, cytoplasmic mediation, receptor-mediated, particle bombardment, electroporation, and the like.
  • microbubble contrast agent combines specific drugs/genes with microbubble contrast agents, and through peripheral vascular injection, ultrasonically destroys microbubbles carrying genes, making microbubbles in specific tissues. Positioning release, this new drug/gene transfer method has the advantages of non-invasive, efficient, easy to operate, good targeting, safe and reproducible, but it is still lacking for ultrasound. A dedicated device for targeted localization of controlled release drugs/genes, especially for devices that integrate positioning, monitoring, diagnosis and treatment. Summary of the invention
  • the technical problem to be solved by the present invention is to provide an ultrasonic microbubble targeted localization controlled release drug/gene device capable of improving drug/gene transmission efficiency and positioning and monitoring the same.
  • Another technical problem to be solved by the present invention is to provide a method for achieving targeted transfer using a microbubble contrast agent in combination with a drug/gene.
  • the technical solution adopted to solve the technical problem of the present invention is the ultrasonic microbubble targeted positioning controlled release drug/gene device, including an ultrasonic trigger/treatment unit, a driving unit, the device further comprising a monitoring unit, a motion system and a computer control unit, and the ultrasound
  • the triggering/treatment unit and the monitoring unit are connected to the motion system
  • the driving unit is connected to the ultrasound trigger/therapy unit
  • the computer control unit is respectively connected to the motion system, the driving unit and the monitoring unit.
  • the computer control unit includes an input system, a calculation center, and an output system
  • the input system includes input devices such as a keyboard, information of the monitoring unit, information of the motion system, information of the driving unit, and the like.
  • the computing center consists of hardware and software.
  • the hardware includes one or more information acquisition card/circuit interfaces, a central processing unit, one or more output circuit interfaces, and an information display device such as a sound/image.
  • the software includes system software, data/image processing software, and application software that is easy to operate/display, wherein the system software and the data/image processing software constitute an application.
  • the operating software sets parameters, and the information is transmitted to the motion system and the driving unit through the output circuit interface.
  • the driving unit drives the triggering/treatment unit to transmit ultrasonic energy, the monitoring unit monitors the treatment situation, and feeds the information back to the information acquisition card through data/image processing.
  • the application automatically performs the corresponding processing or prompts the operator to perform corresponding operations, identify the organizational features, and display them by numbers, colors, texts, and the like.
  • the ultrasonic monitoring unit is preferably a B-ultrasound.
  • the software further includes an application coupled to the central processor and the output circuit outlet, respectively.
  • the application includes data/image processing software and application software.
  • the application also includes data/image processing software and application software coupled to the display device for assessing drug/gene targeted transmission effects.
  • the application controls the ultrasound trigger/treatment unit to act on the tissue by calculating the power and the action time, and displays the image information (number, color, text, etc.) at the appropriate time before and after the action through the display device, and changes the situation according to the image information. Judging whether the satisfactory effect is achieved. If it is considered that the satisfactory effect is not achieved, the appropriate power and time are adjusted by the application software to continue to act on the target organization to guide the satisfactory results.
  • the device may also include a cooling unit coupled to the ultrasound trigger/therapy unit.
  • the ultrasonic monitoring unit and the ultrasonic trigger/treatment unit are fixed together, and there are various methods of fixing.
  • the middle portion of the ultrasonic trigger/treatment unit has a hole through which the monitoring probe of the monitoring unit passes. Attached to the ultrasound trigger/treatment head in the ultrasound trigger/treatment unit.
  • the monitoring unit and the ultrasonic trigger/treatment unit are fixed together, and in the monitoring image, the position of the action area of the ultrasonic trigger/treatment unit can be accurately indicated, and the image change of the active area can be accurately observed during use, and Timely evaluation of results.
  • the device of the invention can use ultrasonic to trigger the destruction of microbubble real drug/gene targeted transmission, and can evaluate the effect of drug/gene targeted transfer, integrate diagnosis, treatment and evaluation, and use healthy New Zealand white rabbit as experimental object. Prove that the device of the invention can significantly improve drug/gene transmission Efficiency
  • the ultrasonic trigger/therapy unit is driven by the driving unit to emit ultrasonic waves to destroy the microbubbles;
  • step (5) further comprises the following drug/gene transfer effect evaluation steps:
  • the computer control unit collects real-time image information (number, color, text, etc.) of the target tissue monitored by the ultrasonic monitoring unit through the image acquisition card;
  • the drive unit drives the ultrasonic trigger/treatment unit to emit ultrasonic waves to destroy the microbubbles
  • the corresponding parameters are set by the application software, and then the ultrasonic waves are emitted.
  • the range of ultrasonic waves emitted by the ultrasonic trigger/treatment unit is
  • the sound intensity range is 0. 25 ⁇ 3 W / cm 2 , preferably 0. 5W / cm 2
  • the action time is 0. 25 ⁇ 3 minutes, preferably 1 minute.
  • step (1) the microbubble contrast agent is combined with the drug/gene to form a drug/gene-containing microbubble contrast agent which adheres the drug/gene to the surface of the microbubble contrast agent, ie, the selected drug/gene and lipid
  • the microbubble contrast agent is mixed in a ratio of (3 to 10):10 by volume, and the drug/gene is adhered to the surface of the microbubble by electrostatic adsorption. That is, the drug/gene-loaded microbubble contrast agent is obtained by adhering a commercially available contrast agent or a self-contained contrast agent to a surface of a microbubble contrast agent, and the purchased microbubble contrast agent and drug/gene are obtained.
  • Combining the formation of drug/gene-containing microbubble contrast agent is to adhere the drug/gene to the microbubble contrast agent by volume (3 ⁇ 10): 10, and adhere the drug/gene to the microbubble by electrostatic adsorption. surface.
  • step (1) is carried out with a drug/gene microbubble contrast agent.
  • Another method of making a self-contained contrast agent is to use a self-made contrast agent to produce a drug/gene microbubble contrast agent by: drug/gene wrapping In the microbubbles, the fluorocarbon gas which is liquid at a low temperature is mixed with the drug/gene by volume (3 ⁇ 5): 1, and the fluorocarbon liquid and the drug/gene are encapsulated by the lipid material under ultrasonic vibration.
  • microspheres become microbubbles at a temperature rise of 37 °C to 45 °C, and the unencapsulated drug/gene is washed with a buffer (such as PBS buffer), and the resulting package is a package.
  • a buffer such as PBS buffer
  • the microbubble contrast agent and the drug/gene adhesion form a drug/ a microbubble contrast agent of a gene, which is attached to a corresponding antibody of a specific tissue antigen or a ligand for a specific receptor on a surface of a microbubble, and various antibodies are mixed into a liquid during an acoustic vibration process to form a targeted ultrasound.
  • Microbubble contrast agent is attached to a corresponding antibody of a specific tissue antigen or a ligand for a specific receptor on a surface of a microbubble, and various antibodies are mixed into a liquid during an acoustic vibration process to form a targeted ultrasound.
  • the above-mentioned drugs are tumor chemotherapy drugs, antibiotics or various protein and polypeptide drugs, and the genes are vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), fibroblast growth factor (FGF), etc. , marker genes such as: green fluorescent protein gene (GFP), ⁇ -galactosidase gene.
  • VEGF vascular endothelial growth factor
  • HGF hepatocyte growth factor
  • FGF fibroblast growth factor
  • marker genes such as: green fluorescent protein gene (GFP), ⁇ -galactosidase gene.
  • the method of the invention is non-invasive, simple and reusable.
  • FIG. 1 is a structural block diagram of an ultrasonic microbubble targeted localization controlled release drug/gene and effect evaluation device according to the present invention
  • FIG. 2 is a perspective view showing the structure of the ultrasonic monitoring unit 3 and the ultrasonic trigger/treatment unit 2 of the present invention (when the outer casing is horizontally placed)
  • Figure 3 is a perspective view showing the structure of the ultrasonic monitoring unit 3 and the ultrasonic trigger/treatment unit 2 of the present invention (when the outer casing is placed upright)
  • FIG. 4 is a structural block diagram of the computer control unit 4 of the present invention -
  • FIG. 5A is a digital subtraction angiography diagram of the control group of the ultrasound microbubble carrying gene for promoting regeneration of the present invention.
  • Figure 5 ⁇ is a digital subtraction angiography of the experimental group of the ultrasound microbubble carrying gene angiogenesis in the present invention.
  • the ultrasonic microbubble targeted positioning controlled release drug/gene apparatus of the present invention comprises an ultrasonic triggering/treatment unit 2, a monitoring unit 3, a driving unit 4 for driving the ultrasonic triggering/treatment unit 2 to emit ultrasonic waves, a motion system 5,
  • the computer control unit 6 and the cooling unit 7 are connected to the monitoring unit 3 and the driving unit 4 and the motion system 5, respectively, and the driving unit 4 and the cooling unit 7 are connected to the ultrasound trigger/treatment unit 2, respectively.
  • the ultrasound trigger/treatment unit 2 is used to trigger the destruction of the microbubbles to achieve drug/gene targeted transmission and to treat the target tissue 1, and the monitoring unit 3 is used to monitor the treatment of the target tissue 1.
  • the ultrasonic trigger/treatment unit 2 includes an ultrasonic trigger/treatment head 20, and the monitoring unit 30 includes a monitoring probe 30.
  • the monitoring unit 3 employs a B-ultrasound.
  • the computer control unit 6 includes an input system, a computing center, and an output system.
  • the information acquisition card/circuit interface 61 in the input system is coupled to the central processing unit 62 of the computing center, and the central processing unit 62 is coupled to the application program 63.
  • the application is connected to the display device 67 in the output system, and is connected to the motion system 6 and the drive unit 5, and the information acquisition card/circuit 61 is connected to the monitoring unit 3.
  • the application 63 further includes data/image processing software 65 and Application software 66, application 63 is connected to the motion system 5 and the drive unit 4 via an output circuit interface 68.
  • a certain technical parameter can be set in the application software 66, so that the ultrasonic trigger/treatment head 20 acts on the target tissue 1 with a certain power and action time, and the image information collected by the information acquisition card/circuit interface 61 before and after the action. (Digital, image, text, etc.) is presented by the display device, and it is judged whether the satisfactory effect is achieved according to the change of the image information. If it is considered that the satisfactory effect is not achieved, the application software 63 appropriately adjusts the power and time, and continues. The target tissue 1 is allowed to act until a satisfactory effect is achieved.
  • the singularity of the ultrasonic wave is a pulsed wave or a continuous wave
  • the frequency may be 20 KHz ⁇ 2 ⁇ 2
  • the intensity may be 0. 25- 3 W/cm
  • the monitoring probe 30 of the monitoring unit 3 i.e., the B-ultrasound probe
  • the ultrasonic trigger/treatment head 20 of the ultrasonic trigger/treatment unit 2 are integrated. As shown in Fig. 2 and Fig. 3, in the middle of the ultrasonic trigger/treatment head 20, there is a hole through which the monitoring probe 30 can pass, and the monitoring probe 30 is fixed in the hole.
  • the outer portion of the ultrasonic trigger/treatment unit 2 is surrounded by a housing 9, and the ultrasonic trigger/treatment head 20 and the housing 9 are fixed together by a screw through the hole 11 and the lower portion of the monitoring probe 30 has a connecting tube 8, a screw.
  • the outer casing 9 and the connecting tube 8 are fixed by the hole 12 so that the outer casing 9 integrally fixes the ultrasonic trigger/treatment head 20 and the monitoring probe 30.
  • An aperture 13 for the cable for connecting the ultrasonic trigger/treatment head 20 to the drive unit 4 and the computer control unit 6 is provided in the housing 9, and the aperture 13 is also a cooling passage that communicates with the cooling unit 7.
  • the ultrasonic trigger/treatment head 20 includes an ultrasonic transducer, and the ultrasonic transducer has a hole 10 for use as an inlet and drain passage of the ultrasonic transducer, and the ultrasonic trigger/treatment head 20
  • the sound permeable membrane 14 is fixed to the end by bonding or other means.
  • the monitoring probe 30 and the ultrasonic trigger/treatment head 20 move in the direction of the target tissue 1, and the ultrasonic trigger/treatment head 20 emits ultrasonic waves to trigger destruction of the microbubbles to achieve drug/gene targeted transmission and target tissue 1 treatment.
  • the device of the present invention When the device of the present invention is used to implement the ultrasonic destruction microbubbles to achieve the drug/gene targeted transfer effect, it is first necessary to combine the microbubble contrast agent with the drug/gene to form a drug/gene microbubble contrast agent, which is injected through the peripheral blood vessel. Carrying the drug/gene microbubble contrast agent, and then using the ultrasonic sonogram generated in the monitoring unit 3 to monitor the targeted transfer of the drug/gene microbubble contrast agent and the ultrasonic destruction of the drug/gene microbubble to make the microbubble
  • the specific method of positioning release in a specific organization is as follows:
  • Adhering the drug/gene to the surface of the microbubble contrast agent Mixing the selected drug/gene with the lipid microbubble contrast agent by volume in a ratio of (3 to: 10): 10 (ie: making the mixture The amount of the drug/gene is about 0.1 to 1 mg /ml), and the drug/gene is adhered to the surface of the microbubble by electrostatic adsorption to prepare a microbubble contrast agent for adhering the drug/gene to the surface;
  • the driving unit 4 drives the ultrasonic trigger/treatment head 20 of the ultrasonic trigger/treatment unit 2 to emit ultrasonic damage microbubbles, micro
  • the "cavitation effect” and “sound hole effect” after bubble destruction can cause microvascular rupture and cell membrane to produce sound holes, which can significantly increase the transfection rate of the gene in target tissue 1.
  • Steps of evaluating the effect after drug/gene transfer After the ultrasonic damages the microbubbles, the application software uses the image information collected by the information acquisition card/circuit interface 61 to arrive at the microbubble contrast agent carrying the gene displayed in the display device. The image information of the target tissue and its transfection and expression is compared. According to the change of the image information, the software 66 is appropriately adjusted to set the relevant parameters, and the target tissue 1 is continued to be operated until the purpose of directional transfer and positioning and controlled release is achieved.
  • the cooling water is supplied by the cooling unit 7 to cool the heat generated by the ultrasonic trigger/treatment unit 2 throughout the operation of the present invention.
  • Figures 5A and 5B show a comparatively significant angiogenic effect of the ultrasound microbubble drug/gene.
  • the specific experiments are as follows: Healthy New Zealand white rabbits as experimental subjects, weighing 2.5 ⁇ 3 kg, new muscle anesthesia (0.1 ⁇ 0.15 ml/kg), depilated with 8% Na 2 S, fixed on the console on the back.
  • the left lower extremity femoral artery and its branch ligation resulted in a model of lower extremity occlusive vascular disease.
  • the experimental group was the ultrasound microbubble treatment group (A), the control group included the blank control group (B), the pure ultrasound irradiation group (C:), and the simple microbubble treatment group ( D).
  • the microbubbles used in the experiment were albumin microbubble contrast agents with a contrast agent concentration of 8.3 X 108 cells/ml and a microbubble size of 2.7 ⁇ 0.8 m.
  • Group A was successfully injected with localized albumin microbubbles and The mixture pcDNA3.1 / VEGF165 plasmid containing pcDNA3.1 / VEGF165 plasmid 25 ⁇ ⁇ , and irradiation with ultrasonic waves, the parameters transmission frequency 1 MHz, the sound intensity of 2.0 W / cm 2, irradiating l min; group B No ultrasound and microbubble treatment were used, which was a blank control group.
  • group C ultrasound irradiation was used only under the premise of microbubbles, and the parameters were the same as those in group A.
  • Group D was treated with microbubbles alone. After successful modeling, the skeletal muscle was used to input pcDNA3.1/VEGF165 plasmid 25 ⁇ ⁇ , not used Ultrasonic irradiation. Intra-abdominal intubation was performed 4 weeks after surgery, and 2 mL of 76% diatrizoate contrast agent was injected within 1 s. The results of angiography were recorded by continuous film photography. The photographic speed was 25 ⁇ /s, and the circulation of new blood vessels and collaterals was observed.
  • the formation status showed that the number of skeletal muscle neovascularization in the control group was small (as shown in Fig. 5A), while the number of skeletal muscle neovascularization in the experimental group, that is, the ultrasonic microbubble treatment group was significantly increased (as shown in Fig. 5B). It indicated that ultrasound destruction of VEGF165 gene microbubbles can significantly promote angiogenesis of ischemic skeletal muscle.
  • the microbubble contrast agent can be a self-contained contrast agent, or a directly purchased microbubble contrast agent such as Sonovue produced in Italy, Optison, Albunex produced in the United States, Levovist produced in Germany, or a self-made acoustic contrast agent.
  • the commercially available microbubble contrast agent or self-contained contrast agent can be used to adhere to the drug/gene, and the corresponding antibody against a specific tissue antigen or a ligand for a specific receptor can be attached to the surface of the microbubble, and the microbubble can be greatly improved. Targeting role.
  • anti-CD34, anti-ICAM, anti-E-selectin, anti-P-selectin, etc. various antibodies are mixed into the liquid during the acoustic vibration process to form a targeted ultrasonic microbubble contrast agent.
  • the gene involved in the method of the present invention is an available existing gene, and various growth factors such as vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), fibroblast growth factor (FGF), etc.; : Green fluorescent protein gene (GFP), ⁇ -galactosidase gene, and the like.
  • VEGF vascular endothelial growth factor
  • HGF hepatocyte growth factor
  • FGF fibroblast growth factor
  • Drugs suitable for this embodiment include all biologically active substances such as tumor chemotherapy drugs, antibiotics, and various proteins, polypeptide drugs, and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Acoustics & Sound (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Surgical Instruments (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

超声微泡靶向定位控释药物 /基因装置及靶向转移的方法 技术领域
本发明属于生物医学工程技术领域, 具体涉及一种超声微泡靶向定位控 释药物 /基因装置及将微泡造影剂与药物 /基因结合用超声波实现靶向转移的 方法。 背景技术
药物 /基因传输是充分发挥药物 /基因本身生物学效应的关键性技术。 目前药 物 /基因传输载体常见的有病毒类和非病毒类, 如药物 /基因的直接注射法、 月旨质 体介导、 受体介导、 颗粒轰击技术、 电穿孔法等。
在基因传输技术中现有的病毒类载体, 虽然基因的传染率高, 但存在安全性 和机体对病毒产生免疫反应等问题; 质粒等非病毒载体, 虽然安全, 但传染率低。 蛋白质、 多肽以及化疗药物等和基因药物一样采用静脉注射的传输方式存在靶向 性差的缺点, 到达特定组织的药物 /基因量少, 效率低下; 药物 /基因局部注射导 入则存在适用范围有限及有创等问题。 目前药物 /基因传输技术领域中存在不少尚 未解决的问题, 特别是缺乏安全、 有效、 有组织特异性和靶向性的药物 /基因传输 系统。
而微泡造影剂作为一种新的药物 /基因运载工具, 将特定的药物 /基因与 微泡造影剂结合起来, 通过外周血管注射, 以超声破坏携基因的微泡, 使微 泡在特定组织进行定位释放, 这种新的药物 /基因传输方法, 具有无创、高效、 操作简便、 靶向性好、 安全且重复性好的优点, 但目前尚缺乏用于实现超声 靶向定位控释药物 /基因的专用装置, 尤其是缺乏具有定位、 监控、 诊断及治 疗一体化的装置。 发明内容
本发明所要解决的技术问题是针对现有技术的上述不足, 提供一种能提 高药物 /基因传输效率, 并可对其进行定位和监控的超声微泡靶向定位控释药 物 /基因装置。
本发明所要解决的另一个技术问题是要提供一种将微泡造影剂与药物 / 基因结合用超声波实现靶向转移的方法。
解决本发明技术问题所采用的技术方案是该超声微泡靶向定位控释药 物 /基因装置, 包括超声触发 /治疗单元、 驱动单元, 该装置还包括监控单 元、运动系统和计算机控制单元, 超声触发 /治疗单元和监控单元与运动 系统连接, 驱动单元与超声触发 /治疗单元连接, 计算机控制单元分别与 运动系统、 驱动单元、 监控单元连接。 所述计算机控制单元包括有输入系 统、 计算中心和输出系统, 输入系统包含键盘、 监控单元的信息、 运动系统 的信息、 驱动单元的信息等的输入装置。 计算中心由硬件和软件组成。 硬件 包括一种或多种信息采集卡 /电路接口、 中央处理器、 一种或多种输出电路接 口、 声音 /图像等信息显示设备。 所述软件包括系统软件、 数据 /图像处理软 件、 易于操作 /显示的应用软件, 其中系统软件和数据 /图像处理软件构成了 应用程序。 操作软件设置参数, 通过输出电路接口将信息传递给运动系统和 驱动单元, 驱动单元驱动触发 /治疗单元发射超声波能量, 监控单元监视治疗 情况, 并将信息反馈给信息采集卡, 通过数据 /图像处理系统, 将此信息传递 给应用程序, 应用程序自动进行相应处理或提示操作者进行相应操作, 对组 织特征进行识别, 并通过数字、 颜色、 文字等信息显示出来。 其中, 超声监 控单元优选 B超仪。
优选的是,所述软件还包括分别与中央处理器和输出电路出口相连的 应用程序。 所述应用程序包括数据 /图像处理软件和应用软件。 所述应用程 序还包括有与显示设备相连的用于评定药物 /基因靶向传输效果的数据 / 图像处理软件和应用软件。使用时,应用程序通过计算功率和作用时间控制 超声触发 /治疗单元对组织进行作用, 并通过作用前后适时的图像信息 (数 字、 颜色、 文字等) 通过显示设备显示出来, 根据图像信息改变情况来评判 是否达到满意效果, 如果认为没有达到满意的效果, 则通过应用软件调整适 当的功率和时间, 继续对目标组织进行作用, 指导达到满意的效果。
为了能及时将超声触发 /治疗单元产生的热量散发, 以延长其使用寿命, 该装置还可包括有与超声触发 /治疗单元连接的冷却单元。
本发明中, 超声监控单元和超声触发 /治疗单元固定在一起, 固定的方法 有多种, 优选的是, 超声触发 /治疗单元的中部开有孔路, 监控单元的监控探 头穿过该孔路与超声触发 /治疗单元中的超声触发 /治疗头固定在一起。 通过 所述监控单元和超声触发 /治疗单元固定在一起, 在监控图像中, 可以精确的 指示出超声触发 /治疗单元作用区域的位置, 使用时可以精确地观察到作用区 域的图像变化, 并可及时进行效果评判。
本发明装置可利用超声波触发破坏微泡现实药物 /基因靶向传输, 并可进 行药物 /基因靶向转移的效果评价, 使诊断、 治疗和评定一体化, 经使用健康 的新西兰大白兔为实验对象证明本发明装置可以明显提高药物 /基因的传输 效率 一种将微泡造影剂与药物 /基因结合用超声波实现靶向转移的方法, 包括 以下步骤:
(1) 将微泡造影剂与药物 /基因结合形成携药物 /基因的微泡造影 剂;
(2) 用以上所述的超声微泡靶向定位控释药物 /基因装置中的超声 监控单元产生的超声声像图监控携药物 /基因的微泡造影剂靶向转移和 定位控释, 即将携有药物 /基因的微泡造影剂进行静脉注射;
(3) 使用超声监控单元监控微泡造影剂;
(4)微泡造影剂到达靶组织显影后, 由驱动单元驱动超声触发 /治 疗单元发射超声波破坏微泡;
(5) 待微泡破坏后, 再将超声波直接作用于靶组织;
(6) 由计算机控制单元控制超声发射的功率和时间, 直至药物 /基 因达到定向转移和定位控释;
优选的是, 步骤 (5) 后还包括有下面的药物 /基因转移后的效果评定 步骤:
(5-1) 在超声破坏微泡后, 由计算机控制单元通过图像采集卡采集超 声监控单元所监控到的靶组织的实时图像信息 (数字、 颜色、 文字等);
(5-2) 将超声监控单元所监控到的靶组织的实时图像信息传送给显示 器进行显示;
(5-3) 通过显示器观察携药物 /基因的微泡造影剂到达靶组织及其转 染、 表达的情况;
(5-4) 同时, 由应用软件利用超声监控单元产生的超声图象信息: 数字, 颜色, 文字等传递给应用系统对比, 对作用效果进行评判;
(5-5)根据作用效果评判的结果调整应用软件中设置的超声相关参 数, 即根据图像信息改变情况来评判是否达到满意效果, 如果认为没有达到 满意的效果, 则通过调整应用软件设置超声波剂量和作用时间的参数, 继续 对靶组织进行作用, 直至达到定向转移和定位控释。
为了精确的控制超声波的剂量和作用时间, 在驱动单元驱动超声触发 /治 疗单元发射超声波破坏微泡前, 通过应用软件设置相应的参数, 然后再发射 超声波。 其中, 超声触发 /治疗单元所设置的发射的超声波频率范围为
20KHz〜2MHz, 优选 1 MHz , 声强范围为 0. 25〜3 W/cm 2, 优选 0. 5W/ cm 2 , 作用时间为 0. 25〜3分钟, 优选 1分钟。
优选的是步骤(1 )微泡造影剂与药物 /基因结合形成携药物 /基因的 微泡造影剂是将药物 /基因粘附于微泡造影剂的表面, 即将选定的药物 / 基因与脂质微泡造影剂按体积以 (3〜10 ): 10的比例混合, 利用静电吸 附作用将药物 /基因粘附于微泡表面。 即所涉及的携药物 /基因的微泡造 影剂是将购得的造影剂或自制造影剂与基因粘附于微泡造影剂的表面后 所获得的, 外购微泡造影剂与药物 /基因结合形成携药物 /基因的微泡造 影剂是将药物 /基因粘附于微泡造影剂按体积以 (3〜10 ): 10 的比例混 合, 利用静电吸附作用将药物 /基因粘附于微泡表面。
优选的是步骤 (1 ) 携药物 /基因的微泡造影剂另一种制作方法采用 自制造影剂, 其采用自制造影剂制作携药物 /基因的微泡造影剂的方法 是: 将药物 /基因包裹于微泡内, 即将低温下为液态的氟碳气体与药物 / 基因按体积以 (3〜5 ): 1混合后, 在超声振荡作用下形成由脂质材料包 裹氟碳液体和药物 /基因的微球, 在温度升高至 37 °C〜45 °C条件下微球 变为微泡, 用缓冲液 (比如: PBS缓冲液) 清洗掉未裹入的药物 /基因, 所得到的即为包裹入的携药物 /基因的微泡造影剂。
优选的是步骤 (1 ) 中是微泡造影剂与药物 /基因粘附形成携药物 / 基因的微泡造影剂, 在微泡表面连接上针对特定组织抗原的相应抗体或 针对特定受体的配体, 将各种抗体在声振过程中混合入液体中, 形成具 有靶向作用的超声微泡造影剂。
优选的是以上所述药物为肿瘤化疗药物、 抗生素或各种蛋白质、 多 肽药物, 所述基因为血管内皮生长因子(VEGF)、肝细胞生长因子(HGF)、 成纤维细胞生长因子(FGF )等, 标记基因如: 绿色荧光蛋白基因(GFP )、 β-半乳糖苷酶基因。
本发明方法无创, 简便、 可反复使用。
附图说明
图 1 为本发明超声微泡靶向定位控释药物 /基因及效果评价装置的 结构原理框图
图 2为本发明超声监控单元 3和超声触发 /治疗单元 2的结构关系立 体图 (外壳水平放置时)
图 3为本发明超声监控单元 3和超声触发 /治疗单元 2的结构关系立 体图 (外壳竖立放置时)
图 4为本发明计算机控制单元 4的结构原理框图 - 图 5Α 为本发明超声微泡携基因促新生的对照组的数字减影血管造 影图
图 5Β 为本发明超声微泡携基因促血管新生的实验组的数字减影血 管造影图
图中: 1一靶组织 2—超声触发 /治疗单元 20—超声触发 /治疗头 3—监控单元 30—监控探头 4一驱动单元 5-运动系统 6-计算机 控制单元 61—信息采集卡 /电路接口 62—中央处理器 63—应用程 序 64—系统软件 65—数据 /图像处理软件 66—应用软件 67—显 示设备 68—输出电路接口 7—冷却单元 8—连接管 9一外壳 10、 11、 12、 13—孔路 14一透声膜 具体实施方式
以下结合实施例和附图对本发明内容作进一步详细说明。
以下实施例为本发明的非限定性实施例。
如图 1所示, 本发明超声微泡靶向定位控释药物 /基因装置包括超声触发 / 治疗单元 2、 监控单元 3、 驱动超声触发 /治疗单元 2发射超声波的驱动单元 4、 运动系统 5、 计算机控制单元 6以及冷却单元 7, 其中, 计算机控制单元 6分别 与监控单元 3以及驱动单元 4和运动系统 5相连, 驱动单元 4和冷却单元 7分 别与超声触发 /治疗单元 2连接。 超声触发 /治疗单元 2用以触发破坏微泡实现 药物 /基因靶向传输以及对靶组织 1进行治疗, 监控单元 3用以对靶组织 1的治 疗情况进行监控。 超声触发 /治疗单元 2中包括有超声触发 /治疗头 20, 监控单 元 3中包括有监控探头 30。 本实施例中, 监控单元 3采用 B超仪。
如图 4所示, 计算机控制单元 6包括输入系统、 计算中心和输出系统, 输入系统中的信息采集卡 /电路接口 61与计算中心的中央处理器 62相连, 中 央处理器 62与应用程序 63相连,应用程序与输出系统中的显示设备 67相连, 并与运动系统 6和驱动单元 5相连, 信息采集卡 /电路接 61 口与监控单元 3 相连, 应用程序 63还包括数据 /图像处理软件 65和应用软件 66, 应用程序 63通过输出电路接口 68与运动系统 5和驱动单元 4相连。
在应用软件 66中可以设置一定的技术参数, 使得超声触发 /治疗头 20以 一定的功率和作用时间对靶组织 1进行作用, 并通过作用前后对信息采集卡 / 电路接口 61所采集的图像信息 (数字、 图像、 文字等) 通过显示设备呈现出 来, 根据图像信息改变情况来评判是否达到满意效果, 如果认为没有达到满 意的效果, 则由应用软件 63分别对功率和时间进行适当的调整, 继续对靶组 织 1进行作用, 直到达到满意的效果。
其中, 超声触发 /治疗单元 2所发射的超声波为聚焦 /不聚焦的治疗 / 诊断用超声波, 该超声波为脉冲波或连续波, 频率可为 20 KHz〜2 匪2、 强度可为 0. 25-3 W/cm
监控单元 3的监控探头 30 (即 B超探头) 和超声触发 /治疗单元 2 中的超声触发 /治疗头 20结合为一体。 如图 2、 3所示, 超声触发 /治疗 头 20中部有监控探头 30可以通过的孔路, 监控探头 30固定在该孔路 中。
如图 2、 3所示, 超声触发 /治疗单元 2的外部包围有外壳 9, 超声 触发 /治疗头 20和外壳 9由螺钉通过孔路 11固定在一起, 监控探头 30 下部有一连接管 8, 螺钉通过孔路 12将外壳 9和连接管 8固定, 这样, 外壳 9就将超声触发 /治疗头 20和监控探头 30固定成为一体。 外壳 9 中提供超声触发 /治疗头 20与驱动单元 4及计算机控制单元 6连接用电 缆的孔路 13, 孔路 13同时也是与冷却单元 7相通的冷却通道。 连接管 8中还安装有监控单元 3与计算机控制单元 6连接的电缆, 以及还装有 带动运动系统 5运动的马达。 如图 3所示, 超声触发 /治疗头 20中包括有超声换能器, 超声换能 器上开有孔路 10用作该超声换能器的进水和排除通道,超声触发 /治疗 头 20端部通过粘接或其它方式固定有透声膜 14。
使用本发明装置时, 监控探头 30和超声触发 /治疗头 20沿着靶组 织 1的方向运动, 超声触发 /治疗头 20发射超声波触发破坏微泡实现药 物 /基因靶向传输并对靶组织 1进行治疗。
在将本发明装置用于实施超声波破坏微泡实现药物 /基因靶向转移 效果时, 首先需要将微泡造影剂与药物 /基因结合, 形成携药物 /基因的 微泡造影剂, 通过外周血管注射携药物 /基因的微泡造影剂, 再利用监控 单元 3 中产生的超声声像图监控携药物 /基因的微泡造影剂靶向转移和以 超声破坏携药物 /基因的微泡, 使微泡在特定组织进行定位释放, 具体 的方法是按照以下步骤进行的:
( 1 ) 将药物 /基因粘附于微泡造影剂的表面: 将选定的药物 /基因与 脂质微泡造影剂按体积以 (3〜: 10 ) : 10的比例混合(即: 使混合物中药 物 /基因的量约为 0. 1〜1 mg /ml ), 利用静电吸附作用将药物 /基因粘 附于微泡表面,制成将药物 /基因粘附于表面的微泡造影剂;
或将药物 /基因包裹于微泡内: 将低温下为液态的氟碳气体与药物 / 基因按体积以(3〜5 ): 1混合后, 在超声振荡作用下形成由脂质材料包 裹氟碳液体和药物 /基因的微球, 在温度升高至 37 °C〜45°C条件下变为 微泡, 用 PBS缓冲液清洗掉未裹入的基因, 所得到的即为包裹入的携药 物 /基因的微泡造影剂;
(2) 再利用监控单元 3 中产生的超声声像图监控携药物 /基因的微泡 造影剂靶向转移和定位控释: 在软件 66中设置声强参数为 0.5 W/cm2、频率 为 1 MHz, 作用时间设置为 1分钟, 再将携药物 /基因的微泡造影剂进行静 脉注射, 用超声监控单元 3 (B超仪) 的声像图监控造影剂到达靶组织 1显 影后,驱动单元 4驱动超声触发 /治疗单元 2的超声触发 /治疗头 20发射超声 波破坏微泡, 微泡破坏后的 "空化效应" 、 "声孔效应" 可致微血管破裂、 细胞膜产生声孔, 可使基因在靶组织 1的转染率明显提高;
( 3 ) 药物 /基因转移后的效果评定的步骤: 超声破坏微泡后, 应用软件 利用信息采集卡 /电路接口 61所采集的图像信息在显示设备中所显示的携 基因的微泡造影剂到达靶组织及其转染、 表达的情况的图像信息对比, 根 据图像信息变化情况, 则适当调整软件 66设置相关参数, 继续对靶组织 1 进行作用, 直到达到定向转移和定位控释的目的。
在本发明工作的整个过程中, 由冷却单元 7提供冷却水冷却超声触发 / 治疗单元 2所产生的热量。
图 5A、 5B所示为超声微泡携药物 /基因具有显著的促血管新生效果对 比图。
具体实验如下: 以健康的新西兰大白兔为实验对象, 其体重为 2.5~3 kg, 速眠新肌肉麻醉 (0.1~0.15 ml/kg) , 用 8% Na2S脱毛, 仰卧固定于操 作台上, 行左下肢股动脉及其分支结扎术, 造成下肢闭塞性血管病模型。 造模成功后随机分为实验组和对照组, 实验组为超声微泡处理组 (A), 对照 包括空白对照组 (B), 单纯超声辐照组 (C:)、 单纯微泡处理组 (D)。 实验中所 用的微泡为白蛋白微泡造影剂, 造影剂浓度为 8.3 X 108 个 /ml, 微泡大小 为 2.7 ± 0.8 m。 A 组即造模成功后采用局部输入白蛋白微泡和 pcDNA3.1/VEGF165质粒的混合物,其中含有 pcDNA3.1/VEGF165质粒 25 μ§, 并用超声波辐照, 其参数为发射频率 1 MHz, 声强为 2.0 W/cm2, 辐 照 l min; B组不采用超声和微泡处理, 为空白对照组。 C组不用微泡的前 提下单纯采用超声辐照, 其参数同 A组; D组为单纯微泡处理组即造模成 功后采用骨骼肌局部输入 pcDNA3.1/VEGF165质粒 25 μ§, 不采用超声辐 照。术后 4周腹主动脉内插管,加压 1 s内注入 76%泛影葡胺造影剂 2 mL, 采用连续电影摄影记录造影结果, 摄影速度 25祯 /s, 观察新生血管和侧枝 循环的形成状况,结果显示对照组骨骼肌新生血管数较少(如图 5A所示), 而实验组即超声微泡处理组骨骼肌新生血管数明显增多 (如图 5B所示) 。 表明超声破坏携 VEGF165基因微泡能显著促进缺血骨胳肌的血管新生。
微泡造影剂可为自制造影剂, 也可为直接购买的微泡造影剂如意大利 生产的 Sonovue, 美国生产的 Optison、 Albunex, 德国生产的 Levovist等 产品或自制的声学造影剂。将购得的微泡造影剂或自制造影剂用于与药物 / 基因粘附, 并可在微泡表面连接上针对特定组织抗原的相应抗体或针对特 定受体的配体, 可大大提高微泡的靶向作用。 如抗 CD34、 抗 ICAM、 抗 E-选择素、 抗 P-选择素等, 将各种抗体在声振过程中混合入液体中, 形成 具有靶向作用的超声微泡造影剂。
本发明方法所涉及的基因为可获得的现有基因, 各种生长因子如: 血 管内皮生长因子 (VEGF) 、 肝细胞生长因子 (HGF) 、 成纤维细胞生长 因子 (FGF) 等; 标记基因如: 绿色荧光蛋白基因 (GFP) 、 β -半乳糖苷 酶基因等。适合本实施的药物包括一切有生物活性的物质如肿瘤化疗药物、 抗生素以及各种蛋白质、 多肽药物等。

Claims

权 利 要 求 书
1. 一种超声微泡靶向定位控释药物 /基因装置, 包括超声触发 /治 疗单元、 驱动单元, 其特征在于该装置还包括监控单元、 运动系统和计 算机控制单元, 超声触发 /治疗单元和监控单元与运动系统连接, 驱动 单元与超声触发 /治疗单元连接, 计算机控制单元分别与运动系统、 驱 动单元、 监控单元连接。
2. 根据权利要求 1所述的超声微泡靶向定位控释药物 /基因装置, 其特征在于所述计算机控制单元包括有输入系统、 计算中心和输出系 统, 输入系统包含键盘、 监控单元的信息、 运动系统的信息、 驱动单元的信 息等的输入装置, 计算中心由硬件和软件组成, 硬件包括一种或多种信息采 集卡 /电路接口、 中央处理器、 一种或多种输出电路接口、 声音 /图像等信息 显示设备, 所述软件包括系统软件、 数据 /图像处理软件、 易于操作 /显示的 应用软件。
3. 根据权利要求 2所述的超声微泡靶向定位控释药物 /基因装置, 其特征在于所述软件还包括分别与中央处理器和输出电路出口相连的 应用程序。
4. 根据权利要求 3所述的超声微泡靶向定位控释药物 /基因装置, 其特征在于所述应用程序还包括有与显示设备相连的用于评定药物 /基 因靶向传输效果的数据 /图像处理软件和应用软件。
5. 根据权利要求 1一 4之一所述的超声微泡靶向定位控释药物 /基 因装置, 其特征在于该装置还包括有与超声触发 /治疗单元连接的冷却 单元。
6. 根据权利要求 5所述的超声微泡靶向定位控释药物 /基因装置, 其特征在于所述超声监控单元采用 B超仪。
7. 根据权利要求 5所述的超声微泡靶向定位控释药物 /基因装置, 其特征在于超声监控单元和超声触发 /治疗单元固定在一起。
8. 根据权利要求 7所述的超声微泡靶向定位控释药物 /基因装置, 其特征在于超声触发 /治疗单元中部有孔路, 超声监控单元中的监控探 头穿过该孔路与超声触发 /治疗单元中的超声触发 /治疗头固定在一起。
9. 一种应用权利要求 1-8之一所述的超声微泡靶向定位控释药物 / 基因装置将微泡造影剂与药物 /基因结合用超声波实现靶向转移的方 法, 包括以下步骤:
(1) 将微泡造影剂与药物 /基因结合形成携药物 /基因的微泡造影 剂;
(2)用超声微泡靶向定位控释药物 /基因装置中的超声监控单元产 生的超声声像图监控携药物 /基因的微泡造影剂靶向转移和定位控释, 即将携有药物 /基因的微泡造影剂进行静脉注射;
(3) 使用超声监控单元监控微泡造影剂;
(4)微泡造影剂到达靶组织显影后, 由驱动单元驱动超声触发 /治 疗单元发射超声波破坏微泡;
(5) 待微泡破坏后, 再将超声波直接作用于靶组织;
(6) 由计算机控制单元控制超声发射的功率和时间, 直至药物 /基 因达到定向转移和定位控释。
10. 根据权利要求 9所述的将微泡造影剂与药物 /基因结合用超声 波实现靶向转移的方法, 其特征在于步骤 (5) 后还包括有下面的药物 / 基因转移后的效果评定步骤:
(5-1) 在超声破坏微泡后, 由计算机控制单元通过图像采集卡采集超 声监控单元所监控到的靶组织的实时图像信息;
(5-2) 将超声监控单元所监控到的靶组织的实时图像信息传送给显示 器进行显示;
(5-3) 通过显示器观察携药物 /基因的微泡造影剂到达靶组织及其转 染、 表达的情况;
( 5-4 ) 同时, 由应用软件利用超声监控单元产生的超声图象信息: 数字, 颜色, 文字等传递给应用系统对比, 对作用效果进行评判;
( 5-5 ) 根据作用效果评判的结果调整应用软件中设置的超声相关 参数, 继续对靶组织进行作用, 直至达到定向转移和定位控释。
11.根据权利要求 10所述的将微泡造影剂与药物 /基因结合用超声 波实现靶向转移的方法, 其特征在于超声触发 /治疗单元中所发射的超 声波频率范围为 20 KHz〜2 MHz, 声强范围为 0. 25〜3 W/cm2, 作用时间 为 0. 25〜3分钟。
12. 根据权利要求 9所述的将微泡造影剂与药物 /基因结合用超声 波实现靶向转移的方法, 其特征在于步骤 (1 ) 微泡造影剂与药物 /基因 结合形成携药物 /基因的微泡造影剂是将药物 /基因粘附于微泡造影剂 的表面, 即将选定的药物 /基因与脂质微泡造影剂按体积以 (3〜10 ): 10的比例混合, 利用静电吸附作用将药物 /基因粘附于微泡表面。
13. 根据权利要求 9所述的将微泡造影剂与药物 /基因结合用超声 波实现靶向转移的方法, 其特征在于步骤 (1 ) 微泡造影剂与药物 /基因 结合形成携药物 /基因的微泡造影剂是将药物 /基因包裹于微泡内, 即将 低温下为液态的氟碳气体与药物 /基因按体积以 (3〜5 ) : 1混合后, 在 超声振荡作用下形成由脂质材料包裹氟碳液体和药物 /基因的微球, 在 温度升高至 37 °C〜45 °C条件下微球变为微泡,用缓冲液清洗掉未裹入的 药物 /基因, 所得到的即为包裹入的携药物 /基因的微泡造影剂。
14. 根据权利要求 9所述的将微泡造影剂与药物 /基因结合用超声 波实现靶向转移的方法, 其特征在于步骤 (1 ) 中是微泡造影剂与药物 / 基因粘附形成携药物 /基因的微泡造影剂, 在微泡表面连接上针对特定 组织抗原的相应抗体或针对特定受体的配体, 将各种抗体在声振过程中 混合入液体中, 形成具有靶向作用的超声微泡造影剂。
15. 根据权利要求 9 所述的将微泡造影剂与药物 /基因结合用超声 波实现靶向转移的方法, 其特征在于所述药物为肿瘤化疗药物、 抗生素 或各种蛋白质、 多肽药物, 所述基因为血管内皮生长因子、 肝细胞生长 因子或成纤维细胞生长因子, 绿色荧光蛋白基因 (GFP ) 或 13-半乳糖苷 酶基因。
PCT/CN2010/001987 2010-12-08 2010-12-08 超声微泡靶向定位控释药物/基因装置及靶向转移的方法 WO2012075602A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2010/001987 WO2012075602A1 (zh) 2010-12-08 2010-12-08 超声微泡靶向定位控释药物/基因装置及靶向转移的方法
AU2010365282A AU2010365282B2 (en) 2010-12-08 2010-12-08 Ultrasonic microbubble target-locating controlled releasing drug/gene device and target transfer method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/001987 WO2012075602A1 (zh) 2010-12-08 2010-12-08 超声微泡靶向定位控释药物/基因装置及靶向转移的方法

Publications (1)

Publication Number Publication Date
WO2012075602A1 true WO2012075602A1 (zh) 2012-06-14

Family

ID=46206507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001987 WO2012075602A1 (zh) 2010-12-08 2010-12-08 超声微泡靶向定位控释药物/基因装置及靶向转移的方法

Country Status (2)

Country Link
AU (1) AU2010365282B2 (zh)
WO (1) WO2012075602A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101028524A (zh) * 2006-03-03 2007-09-05 重庆融海超声医学工程研究中心有限公司 超声微泡靶向定位控释药物/基因装置及靶向转移的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1909908B1 (en) * 2005-06-02 2011-03-30 Cancercure Technology AS Ultrasound treatment system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101028524A (zh) * 2006-03-03 2007-09-05 重庆融海超声医学工程研究中心有限公司 超声微泡靶向定位控释药物/基因装置及靶向转移的方法

Also Published As

Publication number Publication date
AU2010365282B2 (en) 2014-02-27
AU2010365282A1 (en) 2012-12-20

Similar Documents

Publication Publication Date Title
Deprez et al. Opening doors with ultrasound and microbubbles: Beating biological barriers to promote drug delivery
JP5689416B2 (ja) 超音波仲介による薬送達
Wang et al. Ultrasound and microbubble guided drug delivery: mechanistic understanding and clinical implications
Li et al. Gene transfer with echo-enhanced contrast agents: comparison between Albunex, Optison, and Levovist in mice—initial results
Hynynen Ultrasound for drug and gene delivery to the brain
Hauff et al. Evaluation of gas-filled microparticles and sonoporation as gene delivery system: feasibility study in rodent tumor models
Kinoshita et al. A novel method for the intracellular delivery of siRNA using microbubble-enhanced focused ultrasound
US8012092B2 (en) Method of using a combination imaging and therapy transducer to dissolve blood clots
CN101028524B (zh) 超声微泡靶向定位控释药物/基因装置及靶向转移的方法
JP4807778B2 (ja) 超音波薬剤装置及び医用画像診断装置
Udroiu Ultrasonic drug delivery in Oncology
CN102233159A (zh) 聚焦超声无创伤声动力肿瘤治疗系统
Deng et al. Improving the efficacy of therapeutic angiogenesis by UTMD-mediated Ang-1 gene delivery to the infarcted myocardium
US20120029397A1 (en) Tumor treatment using ultrasound cavitation
Ho et al. Ultrasonic technologies in imaging and drug delivery
Papadopoulos et al. In vitro evaluation of focused ultrasound-enhanced TNK-tissue plasminogen activator-mediated thrombolysis
Zolochevska et al. Advances in sonoporation strategies for cancer
Hu et al. Ultrasound microbubble contrast agents: application to therapy for peripheral vascular disease
CN101244028A (zh) 一种药物定位递送和定量控释系统
WO2012075602A1 (zh) 超声微泡靶向定位控释药物/基因装置及靶向转移的方法
Wawryka et al. Microbubble based sonoporation—from the basics into clinical implications
JPH07213622A (ja) 薬剤投与装置
JP2005500327A (ja) 肝臓へのdnaのトランスフェクションの増強
Harmon et al. Ultrasound-guided gas embolization using a single linear array transducer
Miao et al. Ultrasound-mediated gene delivery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860428

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010365282

Country of ref document: AU

Date of ref document: 20101208

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10860428

Country of ref document: EP

Kind code of ref document: A1