WO2012073478A1 - Plasma display device and method for driving plasma display device - Google Patents

Plasma display device and method for driving plasma display device Download PDF

Info

Publication number
WO2012073478A1
WO2012073478A1 PCT/JP2011/006626 JP2011006626W WO2012073478A1 WO 2012073478 A1 WO2012073478 A1 WO 2012073478A1 JP 2011006626 W JP2011006626 W JP 2011006626W WO 2012073478 A1 WO2012073478 A1 WO 2012073478A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
data
electrode
recovery
data electrode
Prior art date
Application number
PCT/JP2011/006626
Other languages
French (fr)
Japanese (ja)
Inventor
岩見 隆
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012073478A1 publication Critical patent/WO2012073478A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/294Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for lighting or sustain discharge
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/296Driving circuits for producing the waveforms applied to the driving electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/296Driving circuits for producing the waveforms applied to the driving electrodes
    • G09G3/2965Driving circuits for producing the waveforms applied to the driving electrodes using inductors for energy recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/066Waveforms comprising a gently increasing or decreasing portion, e.g. ramp

Definitions

  • the present invention relates to a plasma display device which is an image display device using an AC surface discharge type plasma display panel and a driving method of the plasma display device.
  • a typical AC surface discharge type panel as a plasma display panel (hereinafter abbreviated as “panel”) has a large number of discharge cells formed between a front substrate and a rear substrate that are arranged to face each other.
  • a plurality of pairs of display electrodes composed of a pair of scan electrodes and sustain electrodes are formed on the front glass substrate in parallel with each other.
  • a dielectric layer and a protective layer are formed so as to cover the display electrode pairs.
  • the back substrate has a plurality of parallel data electrodes formed on the glass substrate on the back side, a dielectric layer is formed so as to cover the data electrodes, and a plurality of barrier ribs are formed thereon in parallel with the data electrodes. ing. And the fluorescent substance layer is formed in the surface of a dielectric material layer, and the side surface of a partition.
  • the front substrate and the rear substrate are arranged opposite to each other and sealed so that the display electrode pair and the data electrode are three-dimensionally crossed.
  • a discharge gas containing xenon at a partial pressure ratio of 5% is sealed, and a discharge cell is formed in a portion where the display electrode pair and the data electrode face each other.
  • ultraviolet rays are generated by gas discharge in each discharge cell, and the phosphors of each color of red (R), green (G) and blue (B) are excited and emitted by the ultraviolet rays. Display an image.
  • the subfield method is generally used as a method for driving the panel.
  • one field is divided into a plurality of subfields, and gradation display is performed by causing each discharge cell to emit light or not emit light in each subfield.
  • Each subfield has an initialization period, an address period, and a sustain period.
  • an initialization waveform is applied to each scan electrode, and an initialization operation is performed to generate an initialization discharge in each discharge cell.
  • wall charges necessary for the subsequent address operation are formed, and priming particles (excited particles for generating the discharge) for generating the address discharge stably are generated.
  • the scan pulse is sequentially applied to the scan electrodes, and the address pulse is selectively applied to the data electrodes based on the image signal to be displayed.
  • an address discharge is generated between the scan electrode and the data electrode of the discharge cell to emit light, and a wall charge is formed in the discharge cell (hereinafter, these operations are also collectively referred to as “address”). ).
  • the number of sustain pulses based on the luminance weight determined for each subfield is alternately applied to the display electrode pairs composed of the scan electrodes and the sustain electrodes.
  • a sustain discharge is generated in the discharge cell that has generated the address discharge, and the phosphor layer of the discharge cell emits light (hereinafter referred to as “lighting” that the discharge cell emits light by the sustain discharge, and “non-emitting”). Also written as “lit”.)
  • each discharge cell is made to emit light with the luminance according to the luminance weight.
  • each discharge cell of the panel is caused to emit light with a luminance corresponding to the gradation value of the image signal, and an image is displayed in the image display area of the panel.
  • the plasma display device has a scan electrode drive circuit, a sustain electrode drive circuit, and a data electrode drive circuit in order to generate a drive voltage waveform necessary for image display.
  • the drive voltage waveform generated in the scan electrode drive circuit is applied to the scan electrode
  • the drive voltage waveform generated in the sustain electrode drive circuit is applied to the sustain electrode
  • the drive voltage waveform generated in the data electrode drive circuit is applied to the data electrode.
  • the data electrode When viewed from the data electrode drive circuit, the data electrode is a capacitive load (load capacity).
  • a plasma display device is disclosed in which a power recovery unit is added to a power source that supplies power to a data electrode driving circuit (see, for example, Patent Document 1).
  • this power supply reduces power consumption by resonating the load capacitance and the recovery coil and supplying power to the data electrode driving circuit.
  • the image data is data generated based on an image signal in order to display an image on the panel.
  • Patent Document 2 A plasma display device that improves this point is also disclosed (see, for example, Patent Document 2).
  • the output amplitude of the power recovery unit added to the power supply is controlled according to the image data.
  • the power consumption in the plasma display device can be reduced by adding the power recovery unit to the power source that supplies power to the data electrode driving circuit.
  • the power recovery unit if a power recovery unit is added to the power supply, the voltage supplied to the data electrode drive circuit tends to be unstable, and the address discharge may become unstable. When the address discharge becomes unstable, the image display quality in the plasma display device is degraded.
  • the present invention is a plasma display device including a panel having a plurality of display electrode pairs and a plurality of data electrodes, and a data electrode driving circuit for applying a write pulse to the data electrodes.
  • the data electrode driving circuit applies the high voltage side voltage of the write pulse or the low voltage side voltage of the write pulse to the data electrode for each write cycle in the write period.
  • the data electrode drive circuit includes a recovery capacitor and a recovery coil connected in series with the recovery capacitor, and is connected to a high voltage side switch that outputs a high voltage side voltage, a low voltage side switch that outputs a low voltage side voltage, and the recovery capacitor.
  • An output buffer having a recovery switch for each of the data electrodes.
  • the output switch transitions the voltage of the write pulse from the low-voltage side voltage to the high-voltage side voltage
  • the output switch is turned on in the first transition period provided in the write cycle to recover the load capacity and the recovery of the data electrode.
  • the output voltage is raised by resonating with the coil, and then the recovery switch is turned off and the high-voltage side switch is turned on to clamp the output voltage to the high-voltage side voltage.
  • the output buffer turns on the recovery switch during the second transition period provided in the write cycle and recovers the load capacity and recovery of the data electrode.
  • the output voltage is lowered by resonating with the coil, and then the recovery switch is turned off and the low-voltage side switch is turned on to clamp the output voltage to the low-voltage side voltage. Then, the second transition period and the first transition period immediately after the second transition period are separated in time.
  • the data electrode driving circuit is configured by using a plurality of integrated circuits in which a plurality of output buffers are integrated, and the total sum of substantial load capacities of the plurality of data electrodes driven by the integrated circuit is calculated. calculate.
  • the data electrode driving circuit is configured to output the output buffer unit based on the calculated sum so that when the calculated sum is large, the time length of the first transition period or the second transition period is longer than when the calculated sum is small. Controls the high-pressure side switch, low-pressure side switch, and recovery switch.
  • the present invention provides a recovery capacitor for a data electrode of a panel having a plurality of display electrode pairs and a plurality of data electrodes in a writing period in which one field is composed of a plurality of subfields having an address period and a sustain period. And a recovery coil are resonated with each other to drive a plurality of data electrodes, and a write pulse is applied from a data driver that drives a plurality of data electrodes.
  • the sum of substantial load capacities of a plurality of data electrodes driven by the data driver is calculated.
  • the calculated load capacity is obtained by calculating the time length of the first transition period in which the voltage of the write pulse is changed from the low voltage to the high voltage and the second transition period in which the voltage of the write pulse is changed from the high voltage to the low voltage. Control based on the sum of When the calculated sum of the load capacities is large, the time length of the first transition period or the second transition period is made longer than when the sum is small.
  • FIG. 1 is an exploded perspective view showing a structure of a panel used in a plasma display device according to an embodiment of the present invention.
  • FIG. 2 is an electrode array diagram of a panel used in the plasma display device according to one embodiment of the present invention.
  • FIG. 3 is a diagram schematically showing the interelectrode capacitance of the panel used in the plasma display device according to one embodiment of the present invention.
  • FIG. 4 schematically shows drive voltage waveforms applied to the respective electrodes of the panel used in the plasma display device in accordance with the exemplary embodiment of the present invention.
  • FIG. 5 is a diagram schematically showing an example of a circuit block constituting the plasma display device in one embodiment of the present invention.
  • FIG. 1 is an exploded perspective view showing a structure of a panel used in a plasma display device according to an embodiment of the present invention.
  • FIG. 2 is an electrode array diagram of a panel used in the plasma display device according to one embodiment of the present invention.
  • FIG. 3 is a diagram schematically showing the intere
  • FIG. 6 is a circuit diagram schematically showing a configuration of a data electrode driving circuit of the plasma display device in accordance with the exemplary embodiment of the present invention.
  • FIG. 7 is a circuit diagram schematically showing a configuration of an output buffer unit included in the data electrode driving circuit of the plasma display device in accordance with the exemplary embodiment of the present invention.
  • FIG. 8 is a diagram schematically showing an example of an address pulse generated in the plasma display device according to one embodiment of the present invention.
  • FIG. 9 is a circuit diagram schematically showing the configuration of the load calculation unit of the plasma display device in one embodiment of the present invention.
  • FIG. 10 is a timing chart showing an example of the operation of the write timing generation unit of the plasma display device in one embodiment of the present invention.
  • FIG. 11 is a circuit diagram schematically showing another configuration example of the output buffer unit of the plasma display device in accordance with the exemplary embodiment of the present invention.
  • FIG. 1 is an exploded perspective view showing the structure of panel 10 used in the plasma display device according to one embodiment of the present invention.
  • a plurality of display electrode pairs 14 each including a scanning electrode 12 and a sustaining electrode 13 are formed on a glass front substrate 11.
  • a dielectric layer 15 is formed so as to cover the scan electrode 12 and the sustain electrode 13, and a protective layer 16 is formed on the dielectric layer 15.
  • This protective layer 16 has been used as a panel material in order to lower the discharge start voltage in the discharge cell, and has a large secondary electron emission coefficient and durability when neon (Ne) and xenon (Xe) gas is sealed. It is made of a material mainly composed of magnesium oxide (MgO).
  • a plurality of data electrodes 22 are formed on the rear substrate 21, a dielectric layer 23 is formed so as to cover the data electrodes 22, and a grid-like partition wall 24 is further formed thereon.
  • a phosphor layer 25R that emits red (R)
  • a phosphor layer 25G that emits green (G)
  • a phosphor layer 25B that emits blue (B).
  • the phosphor layer 25R, the phosphor layer 25G, and the phosphor layer 25B are collectively referred to as a phosphor layer 25.
  • the front substrate 11 and the rear substrate 21 are arranged to face each other so that the display electrode pair 14 and the data electrode 22 intersect each other with a minute space therebetween, and a discharge space is provided in the gap between the front substrate 11 and the rear substrate 21.
  • the outer peripheral part is sealed with sealing materials, such as glass frit. Then, for example, a mixed gas of neon and xenon is sealed in the discharge space inside as a discharge gas.
  • the discharge space is divided into a plurality of sections by the partition walls 24, and discharge cells are formed at the intersections between the display electrode pairs 14 and the data electrodes 22.
  • one pixel is composed of three consecutive discharge cells arranged in the direction in which the display electrode pair 14 extends.
  • the three discharge cells are a discharge cell having a phosphor layer 25R and emitting red (R) (red discharge cell), and a discharge cell having a phosphor layer 25G and emitting green (G) (green). And a discharge cell having a phosphor layer 25B and emitting blue (B) light (blue discharge cell).
  • the structure of the panel 10 is not limited to the above-described structure, and may be, for example, provided with a stripe-shaped partition wall.
  • FIG. 2 is an electrode array diagram of panel 10 used in the plasma display device according to one embodiment of the present invention.
  • the panel 10 includes n scan electrodes SC (1) to scan electrodes SC (n) (scan electrodes 12 in FIG. 1) and n sustain electrodes SU (1) to (horizontal direction (row direction)).
  • Sustain electrodes SU (n) (sustain electrodes 13 in FIG. 1) are arranged and m data electrodes D (1) to D (m) (data electrodes in FIG. 1) extended in the vertical direction (column direction). 22) are arranged.
  • a cell is formed.
  • m discharge cells are formed on one pair of display electrodes 14 and m / 3 pixels are formed.
  • the interelectrode capacitance exists between the electrodes of the electrodes arranged in this way.
  • FIG. 3 is a diagram schematically showing the interelectrode capacitance of panel 10 used in the plasma display device according to one embodiment of the present invention.
  • FIG. 3 as an example, five scan electrodes SC (i ⁇ 2) to scan electrode SC (i + 2), five sustain electrodes SU (i ⁇ 2) to sustain electrode SU (i + 2), Data electrodes D (j ⁇ 2) to data electrode D (j + 3) are shown, and the interelectrode capacitance related to the data electrode 22 is shown.
  • a display electrode pair composed of scan electrode SC (i) and sustain electrode SU (i) is indicated by one thick horizontal line.
  • capacitor Cs exists in each of the regions where the display electrode pair 14 and the data electrode 22 intersect. Further, “capacitance Cc” exists between the data electrodes 22 adjacent to each other.
  • One data electrode D (j) intersects n scan electrodes SC (1) to scan electrode SC (n) and n sustain electrodes SU (1) to sustain electrode SU (n). That is, one data electrode D (j) intersects n display electrode pairs 14. Therefore, in the panel 10, a capacitance (n ⁇ Cs) exists between one data electrode D (j) and the display electrode pair 14.
  • the capacity (n ⁇ Cs) is expressed as “capacity Cg”.
  • one data electrode D (j) has a capacitance Cc between the data electrode D (j + 1) adjacent to the right side and a capacitance between the data electrode D (j ⁇ 1) adjacent to the left side. Cc exists.
  • the capacitance Cg, the capacitance Cc, and the capacitance Cc exist in one data electrode D (j)
  • the total load capacitance in one data electrode D (j) is the capacitance (Cg + 2Cc). . Therefore, in the panel 10, a capacitance (Cg + 2Cc) exists in each of the data electrodes 22.
  • the plasma display device in the present embodiment drives the panel 10 by the subfield method.
  • the subfield method one field of an image signal is divided into a plurality of subfields on the time axis, and a luminance weight is set for each subfield. Therefore, each field has a plurality of subfields having different luminance weights.
  • Each subfield has an initialization period, an address period, and a sustain period. Based on the image signal, light emission / non-light emission of each discharge cell is controlled for each subfield. That is, a plurality of gradations based on the image signal are displayed on the panel 10 by combining the light-emitting subfield and the non-light-emitting subfield based on the image signal.
  • an initializing operation is performed in which initializing discharge is generated in the discharge cells and wall charges necessary for the address discharge in the subsequent address period are formed on each electrode.
  • a scan pulse is applied to the scan electrode 12 and an address pulse is selectively applied to the data electrode 22 to selectively generate an address discharge in the discharge cells to emit light. Then, an address operation is performed to form wall charges in the discharge cells for generating a sustain discharge in the subsequent sustain period.
  • the sustain pulses of the number obtained by multiplying the luminance weight set in each subfield by a predetermined proportional constant are alternately applied to the scan electrode 12 and the sustain electrode 13 to generate the address discharge in the immediately preceding address period.
  • a sustain discharge is generated in the discharge cell, and a sustain operation for emitting light from the discharge cell is performed.
  • This proportionality constant is a luminance multiple. For example, when the luminance multiple is twice, the sustain pulse is applied four times to each of the scan electrode 12 and the sustain electrode 13 in the sustain period of the subfield having the luminance weight “2”. Therefore, the number of sustain pulses generated in the sustain period is 8.
  • the luminance weight represents a ratio of the luminance magnitudes displayed in each subfield, and the number of sustain pulses corresponding to the luminance weight is generated in the sustain period in each subfield. Therefore, for example, the subfield with the luminance weight “8” emits light with a luminance about eight times that of the subfield with the luminance weight “1”, and emits light with about four times the luminance of the subfield with the luminance weight “2”.
  • one field is composed of eight subfields (subfield SF1, subfield SF2, subfield SF3, subfield SF4, subfield SF5, subfield SF6, subfield SF7, subfield SF8). If luminance weights of (1, 2, 4, 8, 16, 32, 64, 128) are set in each subfield of SF1 to subfield SF8, each discharge cell has a gradation value of “0”. The 256 gradation values up to the value “255” can be displayed.
  • each subfield is selectively emitted to emit each discharge cell with various gradation values, An image can be displayed on the panel 10.
  • the number of subfields constituting one field, the luminance weight of each subfield, and the like are not limited to the above-described numerical values.
  • the initializing operation includes all-cell initializing operation that generates initializing discharge in the discharge cells regardless of the operation of the immediately preceding subfield, and the address discharge is generated in the immediately preceding subfield addressing period and is maintained in the sustaining period.
  • an ascending rising waveform voltage and a descending falling waveform voltage are applied to the scan electrode 12 to generate an initializing discharge in all the discharge cells in the image display region. Then, among all the subfields, the all-cell initialization operation is performed in the initialization period of one subfield, and the selective initialization operation is performed in the initialization period of the other subfield.
  • the initialization period for performing the all-cell initialization operation is referred to as “all-cell initialization period”, and the subfield having the all-cell initialization period is referred to as “all-cell initialization subfield”.
  • An initialization period for performing the selective initialization operation is referred to as “selective initialization period”, and a subfield having the selective initialization period is referred to as “selective initialization subfield”.
  • the first subfield (subfield SF1) of each field is an all-cell initializing subfield, and the other subfields are selective initializing subfields.
  • the initializing discharge is generated in all the discharge cells at least once in one field, the addressing operation after the initializing operation for all the cells can be stabilized. Further, light emission not related to image display is only light emission due to discharge in the all-cell initializing operation in the subfield SF1. Therefore, the black luminance that is the luminance of the black display region where no sustain discharge occurs is only weak light emission in the all-cell initialization operation, and an image with high contrast can be displayed on the panel 10.
  • the number of subfields constituting one field and the luminance weight of each subfield are not limited to the above-described numerical values.
  • the structure which switches a subfield structure based on an image signal etc. may be sufficient.
  • FIG. 4 is a diagram schematically showing driving voltage waveforms applied to the respective electrodes of panel 10 used in the plasma display device according to one embodiment of the present invention.
  • FIG. 4 shows scan electrode SC (1) that performs the address operation first in the address period, scan electrode SC (n) that performs the address operation last in the address period (for example, scan electrode SC (1080)), and sustain electrode SU.
  • scan electrode SC (1) that performs the address operation first in the address period
  • scan electrode SC (n) that performs the address operation last in the address period
  • sustain electrode SU for example, scan electrode SC (1080)
  • sustain electrode SU for example, scan electrode SC (1080)
  • sustain electrode SU drive voltage waveforms applied to sustain electrode SU (n) and data electrode D (1) to data electrode D (m) are shown.
  • scan electrode SC (i), sustain electrode SU (i), and data electrode D (k) in the following are selected from each electrode based on image data (data indicating light emission / non-light emission for each subfield). Represents an electrode.
  • FIG. 4 shows driving voltage waveforms of two subfields, subfield SF1 and subfield SF2.
  • the subfield SF1 is a subfield for performing an all-cell initialization operation
  • the subfield SF2 is a subfield for performing a selective initialization operation. Therefore, the waveform shape of the drive voltage applied to the scan electrode 12 in the initialization period differs between the subfield SF1 and the subfield SF2.
  • the drive voltage waveform in the other subfield is substantially the same as the drive voltage waveform in subfield SF2 except that the number of sustain pulses generated in the sustain period is different.
  • the number of subfields constituting one field and the luminance weight of each subfield are not limited to the above values.
  • subfield SF1 which is an all-cell initialization subfield
  • the data electrode D (1) to the data electrode D (m) and the sustain electrode SU (1) to the sustain electrode SU (n) A voltage of 0 (V) is applied.
  • a voltage Vi1 is applied to scan electrode SC (1) to scan electrode SC (n) after voltage 0 (V) is applied, and an upward ramp waveform voltage (ramp voltage) gradually rising from voltage Vi1 to voltage Vi2. ) Is applied.
  • Voltage Vi1 is set to a voltage lower than the discharge start voltage with respect to sustain electrode SU (1) to sustain electrode SU (n), and voltage Vi2 is set to a voltage exceeding the discharge start voltage.
  • positive voltage Ve is applied to sustain electrode SU (1) to sustain electrode SU (n), and data electrode D (1) to data electrode D (m) are applied to data electrode D (1) to data electrode D (m).
  • a voltage of 0 (V) is applied.
  • Scan electrode SC (1) to scan electrode SC (n) are applied with a downward ramp waveform voltage (ramp voltage) that gently falls from voltage Vi3 toward negative voltage Vi4.
  • Voltage Vi3 is set to a voltage lower than the discharge start voltage with respect to sustain electrode SU (1) to sustain electrode SU (n), and voltage Vi4 is set to a voltage exceeding the discharge start voltage.
  • While this ramp voltage is applied to scan electrode SC (1) -scan electrode SC (n), scan electrode SC (1) -scan electrode SC (n) and sustain electrode SU (1) -sustain electrode of each discharge cell.
  • a weak initializing discharge occurs between SU (n) and between scan electrode SC (1) -scan electrode SC (n) and data electrode D (1) -data electrode D (m). .
  • negative wall voltage on scan electrode SC (1) to scan electrode SC (n) positive wall voltage on sustain electrode SU (1) to sustain electrode SU (n), and data electrode D (1)
  • the positive wall voltage on the data electrode D (m) is adjusted to a value suitable for the write operation.
  • a device for reducing power consumption is applied to the waveform shape of the address pulse applied to the data electrode D (1) to the data electrode D (m) in the subsequent address period. Details of this will be described later. Hereinafter, an outline of the write operation in the write period will be described.
  • a negative scan pulse with a negative voltage Va is applied to the scan electrode SC (1) of the first line (first row).
  • a positive address pulse having a positive voltage Vd is applied to the data electrode D (k) of the discharge cell that should emit light in the first line among the data electrodes D (1) to D (m).
  • a scan pulse of voltage Va is applied to the scan electrode SC (2) of the second line (second row), and the data electrode corresponding to the discharge cell that should emit light on the second line.
  • An address pulse of voltage Vd is applied to D (k).
  • address discharge occurs in the discharge cells of the second line to which the scan pulse and address pulse are simultaneously applied.
  • an address operation is performed in the discharge cell of the second line.
  • a scan pulse of voltage Va is applied to the scan electrode SC (i) of the i-th line in the i-th write cycle, and the data electrode D (k) corresponding to the discharge cell to emit light on the i-th line is applied.
  • An address pulse of voltage Vd is applied.
  • the same address operation is sequentially performed until the discharge cell on the n-th line, and the address period of the subfield SF1 ends.
  • voltage Ve applied to sustain electrode SU (1) to sustain electrode SU (n) in the latter half of the initialization period and voltage Ve applied to sustain electrode SU (1) to sustain electrode SU (n) in the address period may be used.
  • V voltage 0
  • Vs sustain pulse of positive voltage
  • the voltage difference between the scan electrode SC (i) and the sustain electrode SU (i) exceeds the discharge start voltage, and the sustain discharge is generated. And the fluorescent substance layer 25 light-emits with the ultraviolet-ray which generate
  • scan electrodes SC (1) to scan electrode SC (n) and sustain electrodes SU (1) to sustain electrode SU (n) are alternately supplied with the number of sustain pulses obtained by multiplying the brightness weight by a predetermined brightness multiple. Apply to.
  • the discharge cells that have generated the address discharge in the address period emit light with a luminance corresponding to the luminance weight.
  • subfield SF2 which is a selective initialization subfield
  • voltage Ve is applied to sustain electrode SU (1) to sustain electrode SU (n), and voltage 0 (V) is applied to data electrode D (1) to data electrode D (m).
  • Scan electrode SC (1) to scan electrode SC (n) have a ramp waveform voltage (ramp voltage) that gently falls from a voltage (for example, voltage 0 (V)) that is less than the discharge start voltage toward negative voltage Vi4.
  • Voltage Vi4 is set to a voltage exceeding the discharge start voltage with respect to sustain electrode SU (1) to sustain electrode SU (n).
  • the initializing operation in the subfield SF2 is a selective initializing operation in which the initializing discharge is selectively generated in the discharge cells that have performed the addressing operation in the address period of the immediately preceding subfield.
  • a drive voltage waveform similar to that in the address period of the subfield SF1 is applied to each electrode, and an address operation for accumulating wall voltage on each electrode of the discharge cell to emit light is performed.
  • the number of sustain pulses corresponding to the luminance weight is applied to scan electrode SC (1) to scan electrode SC (n) and sustain electrode SU (1) to sustain electrode SU ( n) alternately, and sustain discharge is generated in the discharge cells that have generated address discharge in the address period.
  • each subfield after subfield SF3 In the initialization period and address period of each subfield after subfield SF3, the same drive voltage waveform as that in the initialization period and address period of subfield SF2 is applied to each electrode. In the sustain period of each subfield after subfield SF3, the drive voltage waveform similar to that of subfield SF2 is applied to each electrode except for the number of sustain pulses generated in the sustain period.
  • FIG. 5 is a diagram schematically showing an example of a circuit block constituting the plasma display device 30 according to the first embodiment of the present invention.
  • the plasma display device 30 shown in the present embodiment includes a panel 10 and a drive circuit that drives the panel 10.
  • the drive circuit includes an image signal processing circuit 31, a data electrode drive circuit 32, a scan electrode drive circuit 33, a sustain electrode drive circuit 34, a timing generation circuit 35, and a power supply circuit (not shown) that supplies necessary power to each circuit block. It has.
  • the image signals input to the image signal processing circuit 31 are a red image signal, a green image signal, and a blue image signal.
  • the image signal processing circuit 31 sets each gradation value of red, green, and blue in each discharge cell based on the red image signal, the green image signal, and the blue image signal.
  • the input image signal includes a luminance signal (Y signal) and a saturation signal (C signal, or RY signal and BY signal, or u signal and v signal, etc.).
  • a red image signal, a green image signal, and a blue image signal are calculated based on the luminance signal and the saturation signal, and then each of the red, green, and blue tone values (represented by one field) is stored in each discharge cell. Tone value).
  • the red, green, and blue gradation values set in each discharge cell are associated with image data indicating lighting / non-lighting for each subfield (light emission / non-light emission corresponds to digital signals “1” and “0”). Data). That is, the image signal processing circuit 31 converts the red image signal, the green image signal, and the blue image signal into red image data, green image data, and blue image data and outputs the converted image data.
  • the timing generation circuit 35 generates various timing signals for controlling the operation of each circuit block based on the horizontal synchronization signal and the vertical synchronization signal.
  • the generated timing signal is supplied to each circuit block (data electrode drive circuit 32, scan electrode drive circuit 33, sustain electrode drive circuit 34, image signal processing circuit 31, etc.).
  • the data electrode drive circuit 32 corresponds to each data electrode D (1) to data electrode D (m) based on the image data of each color output from the image signal processing circuit 31 and the timing signal supplied from the timing generation circuit 35. A write pulse is generated. Then, the data electrode drive circuit 32 applies the address pulse to the data electrodes D (1) to D (m) during the address period.
  • the data electrode drive circuit 32 has a plurality of integrated circuits. Each integrated circuit generates an address pulse that is applied to a predetermined number of data electrodes 22. This integrated circuit is hereinafter referred to as a “data driver”.
  • the data driver 40 is configured as a monolithic IC, for example. Each data driver 40 generates an address pulse to be applied to, for example, 384 data electrodes 22.
  • Scan electrode drive circuit 33 includes an initialization waveform generation circuit, a sustain pulse generation circuit, and a scan pulse generation circuit (not shown in FIG. 5), and generates a drive voltage waveform based on a timing signal supplied from timing generation circuit 35. It is prepared and applied to each of scan electrode SC (1) to scan electrode SC (n).
  • the initialization waveform generation circuit generates an initialization waveform to be applied to scan electrode SC (1) to scan electrode SC (n) during the initialization period based on the timing signal.
  • the sustain pulse generation circuit generates a sustain pulse to be applied to scan electrode SC (1) to scan electrode SC (n) during the sustain period based on the timing signal.
  • the scan pulse generation circuit includes a plurality of scan electrode drive ICs (scan ICs), and generates scan pulses to be applied to scan electrode SC (1) to scan electrode SC (n) during an address period based on a timing signal.
  • Sustain electrode drive circuit 34 includes a sustain pulse generation circuit and a circuit (not shown in FIG. 5) for generating voltage Ve, creates a drive voltage waveform based on the timing signal supplied from timing generation circuit 35, The voltage is applied to each of sustain electrode SU (1) to sustain electrode SU (n). In the sustain period, a sustain pulse is generated based on the timing signal and applied to sustain electrode SU (1) to sustain electrode SU (n).
  • FIG. 6 is a circuit diagram schematically showing the configuration of the data electrode drive circuit 32 of the plasma display device 30 in one embodiment of the present invention. In FIG. 6, only a part of the circuit blocks constituting the data electrode drive circuit 32 is shown, and other circuit blocks having the same configuration are omitted.
  • the data electrode drive circuit 32 includes fifteen data drivers 40 (data driver 40 (1) to data driver 40 (15)), a load calculation unit 52 provided corresponding to each of the data drivers 40, a data driver 40, a write timing generator 54 provided corresponding to each of the data drivers 40, a recovery capacitor C40 provided corresponding to each of the data drivers 40, and a recovery coil L40 provided corresponding to each of the data drivers 40.
  • the data driver 40 (1) to the data driver 40 (15) are collectively referred to as “data driver 40 (p)”, and the load calculation unit 52 corresponding to the data driver 40 (p) is referred to as the load calculation unit 52 (p ),
  • the write timing generator 54 corresponding to the data driver 40 (p) is referred to as a write timing generator 54 (p)
  • the recovery capacitor C40 corresponding to the data driver 40 (p) is referred to as a recovery capacitor C40 (p).
  • the recovery coil L40 corresponding to the data driver 40 (p) is referred to as a recovery coil L40 (p).
  • p is a numerical value from 1 to 15.
  • the load calculation unit 52 (p) calculates a substantial load capacity in each of the plurality of data electrodes 22 driven by the data driver 40 (p), and calculates a total of the calculated load capacity. That is, the load calculation unit 52 (p) calculates the sum of the load capacities of the plurality of data electrodes 22 driven by the data driver 40 (p). Details of the method of calculating the substantial load capacity of the data electrode 22 will be described later.
  • the write timing generation unit 54 (p) generates a write timing signal LLP (p) based on the total load capacity calculated by the load calculation unit 52 (p), and outputs the generated write timing signal LLP (p). .
  • Each of the data driver 40 (1) to the data driver 40 includes a shift register unit 41, a data latch unit 43, and an output buffer unit 45.
  • the shift register unit 41 is a shift register.
  • Each latch 42 is connected in series, and forwards (shifts) the input signal to the subsequent latch 42 in synchronization with the clock signal (clock Dck). Then, serial data transmitted from a data converter (not shown) is converted into parallel data.
  • Serial data is data expressed in the form of a plurality of bit signals that are temporally continuous so that a plurality of bit signals constituting one data can be transmitted by one signal line. For example, if the data is composed of 8 bits, it becomes 8 bit signals continuous in time.
  • Parallel data refers to data expressed in a format that can be transmitted through the same number of signal lines as bit signals so that a plurality of bit signals constituting one data can be transmitted at the same timing in synchronization with one clock signal. It is. For example, if the data is composed of 8 bits, it becomes 8 parallel bit signals that change at the same timing according to the change of the data, and can be transmitted in parallel by 8 signal lines.
  • the data converter is provided between the image signal processing circuit 31 and the data driver 40, and image data (image data assigned to each discharge) transmitted from the image signal processing circuit 31 is provided. Is converted into data for each subfield. This conversion will be described.
  • the image data is 8-bit data.
  • Each bit data of the image data represents light emission / non-light emission in each subfield of subfield SF1 to subfield SF8. Since the panel 10 is driven by the subfield method, each discharge cell of the panel 10 needs to be controlled to emit or not emit light for each subfield. Therefore, if the image data is used as it is, the light emission / non-light emission of each discharge cell cannot be controlled for each subfield.
  • the data conversion unit extracts only the bit data corresponding to the subfield from the image data assigned to each discharge cell and performs conversion into one data.
  • the data is transmitted as serial data to the shift register unit 41.
  • the shift register unit 41 converts a plurality of bits of serial data corresponding to the subfield transmitted from the data conversion unit into parallel data.
  • the bit image data corresponding to the subfield SFQ is referred to as “image data Q”. That is, the shift register unit 41 receives N-bit serial image data Q corresponding to each of the N data electrodes 22 transmitted from the data conversion unit, and N-bit parallel image data corresponding to each of the N data electrodes 22. Is converted into image data Q and output.
  • FIG. 7 is a circuit diagram schematically showing the configuration of the output buffer unit 45 included in the data electrode drive circuit 32 of the plasma display device 30 in one embodiment of the present invention.
  • FIG. 7 shows only a part of the circuit blocks constituting the output buffer unit 45, and other circuit blocks having the same configuration are omitted.
  • the output buffer unit 45 has N high-voltage switches QH, N low-voltage switches QL, and N recovery switches QC.
  • the high voltage side switch QH outputs the high voltage side voltage Vd of the write pulse
  • the low voltage side switch QL outputs the low voltage side voltage 0 (V) of the write pulse.
  • N 384
  • the output buffer unit 45 collects the high-voltage side switch QH (1) to the high-voltage side switch QH (384), the low-voltage side switch QL (1) to the low-voltage side switch QL (384), A switch QC (1) to a recovery switch QC (384).
  • each recovery switch QC is composed of one P-channel MOSFET.
  • each output buffer 46 has a circuit in which one high-voltage side switch QH, one low-voltage side switch QL, and one recovery switch QC are combined.
  • the circuit is controlled by a signal output from the latch 44 and a write timing signal LLP.
  • This circuit operates in synchronization with the timing of the write timing signal LLP, and outputs a high voltage Vd or a low voltage 0 (V) based on the signal output from the latch 44. In this way, the output buffer 46 generates a write pulse and applies it to the data electrode 22.
  • the recovery capacitor C40 has a sufficiently large capacity compared to the interelectrode capacity, and is an intermediate voltage (Vd / 2) lower than the high-voltage side voltage Vd of the write pulse and higher than the low-voltage side voltage 0 (V) of the write pulse. ) Is charged.
  • the recovery coil L40 has one terminal connected to the recovery capacitor C40 and the other terminal connected to each of the N recovery switches QC (1) to QC (N) of the data driver 40. Then, the substantial load capacity of the data electrode 22 driven by the data driver 40 and the recovery coil L40 resonate, and the voltages of the N data electrodes 22 transition.
  • the data electrode driving circuit 32 includes a recovery capacitor C40 charged to an intermediate voltage (Vd / 2) lower than the high voltage Vd of the write pulse and higher than the low voltage 0 (V) of the write pulse,
  • the number of recovery coils L40 connected in series to the recovery capacitor C40 is the same as the number of data drivers 40 (for example, 15 each), and the high voltage side switch QH that outputs the high voltage side voltage Vd and the low voltage side voltage 0 (V) are provided.
  • the data electrode drive circuit 32 is configured by using a plurality (for example, 15) of integrated circuits (data drivers 40) in which a plurality of (for example, 384) output buffers 46 are integrated on one chip. .
  • the data electrode driving circuit 32 applies the high voltage side voltage Vd of the write pulse or the low voltage side voltage 0 (V) of the write pulse to the data electrode D (1) to the data electrode D (m) for each write cycle of the write period to be described later. ).
  • a first transition period Ta is provided at the beginning of each write cycle, and a second transition period Tb is provided at the end of each write cycle.
  • This write cycle is a period from the start to the end of one write operation, for example, a cycle from the start of generation of one scan pulse to the end of generation.
  • the voltage applied to the data electrode 22 is changed from the low voltage side voltage 0 (V) to the high voltage side voltage Vd during the first transition period Ta. It is during the second transition period Tb that the voltage applied to is shifted from the high voltage Vd to the low voltage 0 (V).
  • FIG. 8 is a diagram schematically showing an example of the write pulse generated in the plasma display device 30 according to the embodiment of the present invention.
  • first transition period Ta and the second transition period Tb will be described later, and the outline when performing the write operation will be described below.
  • FIG. 8 shows three address periods (address period T (i ⁇ 1), address period T (i), address period T (i + 1)) in the address period as an example, and scan electrode SC (i ⁇ 1) ) To scanning electrode SC (i + 1) and data electrode D (j ⁇ 2) to driving electrode waveform applied to data electrode D (j + 3) by way of example.
  • the data electrode D (j-2) to the data electrode D (j + 3) will be described as being driven by the data driver 40 (1).
  • data electrode D (j-2), data electrode D (j-1), data electrode D (j), and data electrode D (j + 2) are written in address cycle T (i-1).
  • a pulse is applied, no address pulse is applied to the data electrode D (j + 1) and the data electrode D (j + 3), and an address is written to the data electrode D (j + 1) and the data electrode D (j + 3) in the address period T (i).
  • a pulse is applied, an address pulse is not applied to the data electrode D (j-2), the data electrode D (j-1), the data electrode D (j), and the data electrode D (j + 2), and the address period T (i + 1 ), An address pulse is applied to data electrode D (j ⁇ 1), data electrode D (j) and data electrode D (j + 3), and data electrode D (j ⁇ 2), data electrode D (j + 1) and data electrode are applied.
  • D (j + 2) An example applying no pulse.
  • a negative polarity scan pulse of voltage Va is applied to the scan electrode SC (i-1) of the (i-1) th line.
  • J-1 the recovery switch QC (j) and the recovery switch QC (j + 2) are turned on.
  • each recovery switch QC (recovery switch QC (j-2), recovery switch QC (j-1), recovery switch QC (j), recovery switch QC (j + 2)) through the data electrode D (j-2 ), Current begins to flow through the data electrode D (j ⁇ 1), the data electrode D (j), and the data electrode D (j + 2), and the voltage of these data electrodes 22 begins to rise.
  • the voltage of these data electrodes 22 rises to near the voltage Vd.
  • the time from the time t11 to the time t12 is 1 ⁇ 2 of the total sum of the substantial load capacities of the plurality of data electrodes 22 driven by the data driver 40 (1) and the resonance period of the recovery coil L40 (1). Approximately equal to time.
  • the recovery switch QC (j-2), the recovery switch QC (j-1), the recovery switch QC (j) and the recovery switch QC (j + 2) are turned off, and the high voltage side switch QH (j-2)
  • the high voltage side switch QH (j-1), the high voltage side switch QH (j) and the high voltage side switch QH (j + 2) are turned on, and the data electrodes 22 (data electrode D (j-2), data electrode D ( j-1), the voltage of the data electrode D (j) and the data electrode D (j + 2)) is clamped to the high voltage Vd.
  • the first transition period Ta in the write cycle T (i ⁇ 1) ends.
  • the high voltage side switch QH (j-2), the high voltage side switch QH (j-1), the high voltage side switch QH (j) and the high voltage side switch QH (j + 2) Turn off.
  • the recovery switch QC (j-2), the recovery switch QC (j-1) of the output buffer unit 45 (1), The recovery switch QC (j) and the recovery switch QC (j + 2) are turned on.
  • the sum of the substantial load capacities of the plurality of data electrodes 22 driven by the data driver 40 (1) and the recovery coil L40 (1) resonate, and the data electrode D (j-2) and the data electrode D ( j-1), the data electrode D (j), and the data electrode D (j + 2), respectively, the recovery switches QC (recovery switch QC (j-2), recovery switch QC (j-1), recovery switch QC (j) , The recovery switch QC (j + 2)) and the recovery coil L40 (1), current begins to flow to the recovery capacitor C40 (1), and the voltage of these data electrodes 22 starts to decrease.
  • time t22 the voltage of these data electrodes 22 decreases to near voltage 0 (V).
  • the time from time t21 to time t22 is 1 ⁇ 2 of the total load capacity of the plurality of data electrodes 22 driven by the data driver 40 (1) and the resonance period of the recovery coil L40 (1). Approximately equal to time.
  • the recovery switch QC (j-2), the recovery switch QC (j-1), the recovery switch QC (j), and the recovery switch QC (j + 2) are turned off, and the low-pressure side switch QL (j-2)
  • the low voltage side switch QL (j ⁇ 1), the low voltage side switch QL (j) and the low voltage side switch QL (j + 2) are turned on, and the data electrodes 22 (data electrode D (j ⁇ 2), data electrode D ( j-1), the voltage of the data electrode D (j) and the data electrode D (j + 2)) is clamped to the low voltage 0 (V).
  • the second transition period Tb in the write cycle T (i ⁇ 1) ends.
  • a negative scan pulse of voltage Va is applied to the scan electrode SC (i) on the (i) line.
  • the recovery switch QC (j + 1) and the recovery switch QC (j + 3) of the output buffer unit 45 (1) are turned on.
  • the sum of the substantial load capacities of the plurality of data electrodes 22 driven by the data driver 40 (1) resonates with the recovery coil L40 (1), and the data electrode D (j + 1) is recovered from the recovery capacitor C40 (1).
  • current starts to flow through the data electrodes D (j + 3), and the voltages of these data electrodes 22 start to rise.
  • the recovery switch QC (j + 1) and the recovery switch QC (j + 3) are turned off, and the high voltage side switch QH (j + 1) and the high voltage side switch QH ( j + 3) is turned on, and the voltages of the data electrodes 22 (data electrode D (j + 1) and data electrode Dj + 3) are clamped to the high voltage Vd.
  • the first transition period Ta in the write cycle T (i) ends.
  • the high-voltage side switch QH (j + 1) is turned off between the occurrence of the address discharge and the time t41. Note that, in the subsequent address period T (i + 1), the address pulse is applied to the data electrode D (j + 3), so that the high voltage side switch QH (j + 3) is kept on.
  • the sum of the substantial load capacities of the plurality of data electrodes 22 driven by the data driver 40 (1) resonates with the recovery coil L40 (1), and the recovery capacitor C40 (1) is recovered from the data electrode D (j + 1). Current starts to flow, and the voltage of the data electrode D (j + 1) begins to drop.
  • the recovery switch QC (j + 1) is turned off, the low-voltage side switch QL (j + 1) is turned on, and the data electrode D ( The voltage of j + 1) is clamped to the low voltage 0 (V).
  • the second transition period Tb in the write cycle T (i) ends.
  • the recovery switch QC (j ⁇ 1) and the recovery switch QC (j) of the output buffer unit 45 (1) are turned on.
  • the sum of the substantial load capacities of the plurality of data electrodes 22 driven by the data driver 40 (1) and the recovery coil L40 (1) resonate, and the recovery electrode C40 (1) and the data electrode D (j ⁇ 1) and the data electrode D (j) start to flow, and the voltage of these data electrodes 22 begins to rise.
  • the recovery switch QC (j-1) and the recovery switch QC (j) are turned off, and the high voltage side switch QH (j-1) and the high voltage switch
  • the side switch QH (j) is turned on, and the voltages of the data electrodes 22 (data electrode D (j-1) and data electrode D (j)) are clamped to the high voltage side voltage Vd.
  • the first transition period Ta in the write cycle T (i + 1) ends.
  • the data electrode D is output during the first transition period Ta of the write cycle T (i + 1).
  • the voltage (j + 3) remains the high voltage Vd.
  • the high-voltage side switch QH (j ⁇ 1) and the high-voltage side switch QH (j + 3) are turned off after the address discharge occurs until time t61. Note that, in the subsequent address period T (i + 2), the address pulse is applied to the data electrode D (j), so that the high-voltage side switch QH (j) remains on.
  • the sum of the substantial load capacities of the plurality of data electrodes 22 driven by the data driver 40 (1) and the recovery coil L40 (1) resonate, and the data electrode D (j-1) and the data electrode D ( The current starts to flow from j + 3) to the recovery capacitor C40 (1), and the voltage of the data electrode D (j ⁇ 1) and the data electrode D (j + 3) starts to drop.
  • the recovery switch QC (j ⁇ 1) and the recovery switch QC (j + 3) are turned off at time t62 when the voltage of the data electrode D (j ⁇ 1) and the data electrode D (j + 3) decreases to near the voltage 0 (V).
  • the low voltage side switch QL (j-1) and the low voltage side switch QL (j + 3) are turned on, and the voltage of the data electrode D (j-1) and the data electrode D (j + 3) is set to the low voltage side voltage 0 (V). Clamp.
  • the second transition period Tb in the write cycle T (i + 1) ends.
  • the output buffer 46 in the present embodiment operates as follows when the output voltage is changed from the low voltage 0 (V) to the high voltage Vd. That is, in the first transition period Ta provided in each write cycle, the recovery switch QC is turned on, and the sum of substantial load capacities of the plurality of data electrodes 22 driven by the data driver 40 and the recovery coil L40 are Resonate and increase the output voltage. When the output voltage approaches the voltage Vd, the recovery switch QC is turned off, the high-voltage side switch QH is turned on, and the output voltage is clamped to the high-voltage side voltage Vd.
  • the output buffer 46 operates as follows when the output voltage is changed from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V). That is, in the second transition period Tb that is provided in each of the write cycles and does not overlap with the first transition period Ta in time (separated in time), the recovery switch QC is turned on to drive the data driver 40. The total sum of the load capacities of the data electrodes 22 and the recovery coil L40 are resonated to lower the output voltage. When the output voltage approaches the low voltage 0 (V), the recovery switch QC is turned off, the low voltage switch QL is turned on, and the output voltage is clamped to the low voltage 0 (V).
  • the load capacitance of the data electrode 22 and the recovery coil L40 are resonated.
  • the voltage of the data electrode 22 is raised to the vicinity of the voltage Vd by causing a current to flow from the recovery capacitor C40 to the data electrode 22.
  • the load capacitance of the data electrode 22 and the recovery coil L40 are resonated, and a current is supplied from the data electrode 22 to the recovery capacitor C40. By flowing, the voltage of the data electrode 22 is lowered to near the low voltage 0 (V).
  • the power source is the recovery capacitor C40, and power supply from the power source of the voltage Vd to the data electrode 22 does not occur.
  • the power is supplied from the power source of the voltage Vd to the data electrode 22 when the voltage of the data electrode 22 is increased to the vicinity of the voltage Vd after the voltage of the data electrode 22 is clamped to the high voltage Vd and to the discharge cell. This is limited to supplying a discharge current generated when an address discharge occurs.
  • the power used for charging and discharging the load capacity of the data electrode 22 can be greatly reduced.
  • the load capacitance of one data electrode D (j) includes the capacitance Cg generated between the display electrode pair 14 and the capacitance Cc generated between the data electrode D (j + 1) adjacent to the right side.
  • the voltage applied to the data electrode D (j ⁇ 1) is changed from the low voltage side voltage 0 (V) to the high voltage side voltage Vd. Transition.
  • the voltage applied to each of the data electrode D (j-2) and the data electrode D (j) adjacent to the data electrode D (j-1) is also changed from the low voltage side voltage 0 (V) to the high voltage side voltage Vd. Transition to.
  • the capacitance Cc between the data electrode D (j ⁇ 2) whose voltage changes in the same direction and The capacitance Cc between the data electrode D (j) can be ignored. Therefore, the substantial load capacitance of the data electrode D (j ⁇ 1) in the first transition period Ta of the write cycle T (i ⁇ 1) is the capacitance Cg.
  • the voltage applied to the data electrode D (j) transitions from the low voltage side voltage 0 (V) to the high voltage side voltage Vd.
  • the voltage applied to the data electrode D (j ⁇ 1) adjacent to the data electrode D (j) similarly changes from the low voltage side voltage 0 (V) to the high voltage side voltage Vd.
  • the voltage applied to the data electrode D (j + 1) adjacent to the data electrode D (j) remains unchanged at the low voltage 0 (V).
  • the capacitance Cc between the data electrode D (j ⁇ 1) whose voltage transitions in the same direction is ignored. be able to.
  • the capacitance Cc between the data electrode D (j + 1) cannot be ignored. Therefore, the substantial load capacitance of the data electrode D (j) in the first transition period Ta of the write cycle T (i ⁇ 1) is the capacitance (Cg + Cc).
  • the voltage applied to the data electrode D (j + 2) transitions from the low voltage side voltage 0 (V) to the high voltage side voltage Vd.
  • the voltage applied to the data electrode D (j + 1) and the data electrode D (j + 3) adjacent to the data electrode D (j + 2) remains the low voltage 0 (V).
  • the load capacity is the capacity Cg.
  • the voltage applied to the data electrode D (j) transitions from the high voltage side voltage Vd to the low voltage side voltage 0 (V), it is applied to the data electrode D (j ⁇ 1) adjacent to the data electrode D (j).
  • the voltage transits from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V), but the voltage applied to the data electrode D (j + 1) adjacent to the data electrode D (j) remains the low-voltage side voltage 0 (V). If it does not change (or remains at the high-voltage side voltage Vd), the substantial load capacity in the second transition period Tb of the data electrode D (j) is the capacity (Cg + Cc).
  • the substantial load capacitance of the data electrode D (j + 2) in the second transition period Tb is the capacitance (Cg + 2Cc).
  • the substantial load capacity that affects the transition of the voltage applied to the data electrode 22 varies according to the image data. That is, when the voltage applied to the data electrode 22 of interest and the voltage applied to the two data electrodes 22 adjacent to the data electrode 22 of interest transition in the same way, the substantial load capacitance at the data electrode 22 of interest is The capacity is Cg. In addition, when only the voltage applied to the data electrode 22 of interest and the voltage applied to one data electrode 22 adjacent to the data electrode 22 of interest change in the same manner, the substantial load capacitance at the data electrode 22 of interest is Capacity (Cg + Cc).
  • the substantial load capacitance at the data electrode 22 of interest is Capacity (Cg + 2Cc).
  • the load calculation unit 52 (p) calculates a substantial load capacity in each of the plurality of data electrodes 22 driven by the data driver 40 (p), and calculates the total of the calculated load capacity. That is, the load calculation unit 52 (p) determines the substantial load capacitance of the data electrode 22 depending on whether or not the voltage applied to the data electrode 22 during the writing period changes in phase between the adjacent data electrodes 22. calculate. Then, the sum of the load capacities of the plurality of data electrodes 22 driven by the data driver 40 (p) is calculated.
  • FIG. 9 is a circuit diagram schematically showing the configuration of the load calculation unit 52 of the plasma display device 30 in one embodiment of the present invention. In FIG. 9, only a part of the circuit blocks configuring the load calculation unit 52 is illustrated, and other circuit blocks having the same configuration are omitted.
  • the load calculation unit 52 includes a shift register unit 61, a load calculation unit 63, a first load summation unit 65, and a second load summation unit 66.
  • the shift register unit 61 is a shift register.
  • Each latch 62 is connected in series, and forwards (shifts) the input signal to the subsequent latch 62 in synchronization with the clock signal (clock Dck).
  • clock Dck clock signal
  • the shift register unit 61 converts N pieces of serial image data Q corresponding to each of the N data electrodes 22 transmitted from the data conversion unit for each subfield into N pieces. Are converted into N-bit parallel image data Q corresponding to each of the data electrodes 22 and output.
  • Each of the electrode load calculation units 64 includes a one-line delay 71, a logic gate 72, a logic gate 74, a logic gate 75, a logic gate 76, a logic gate 77, a logic gate 78, a logic gate 82, a logic gate 84, and a logic gate 85. , Logic gate 86, logic gate 87, and logic gate 88.
  • the logic gate 72 and the logic gate 82 are 2-input and 1-output AND gates (logic circuits that perform a logical product operation).
  • the logic gate 74, the logic gate 75, the logic gate 76, the logic gate 78, the logic gate 84, the logic gate 85, the logic gate 86, and the logic gate 88 are three-input one-output AND gates.
  • the logic gate 77 and the logic gate 87 are two-input one-output OR gates (logic circuits that perform a logical sum operation).
  • the small circles at the input terminals of the logic gates are inverters (logic circuits that perform logic inversion).
  • the operation of the electrode load calculation unit 64 will be described by taking as an example the case of calculating the substantial load capacity in the data electrode D (j). Therefore, the operation of the electrode load calculation unit 64 described below is the operation of the electrode load calculation unit 64 (j), but the other electrode load calculation units 64 have the same configuration and operation as the electrode load calculation unit 64 (j). It is.
  • the 1-line delay 71 (j) delays the image data Q (j) corresponding to the data electrode D (j) by 1 line and outputs the image data DQ (j).
  • the logic gate 72 (j) and the logic gate 82 (j) detect a change in voltage applied to the data electrode D (j) based on the image data DQ (j) and the image data Q (j).
  • the output of the logic gate 72 (j) is “H”. Therefore, if the output of the logic gate 72 (j) is “H”, the image data Q (j) changes from “L” to “H”, and the voltage applied to the data electrode D (j) is the low voltage side voltage. It can be determined that the voltage changes from 0 (V) to the high-voltage side voltage Vd (from “L” to “H”).
  • the output of the logic gate 82 (j) is “H”. Therefore, if the output of the logic gate 82 (j) is “H”, the image data Q (j) changes from “H” to “L”, and the voltage applied to the data electrode D (j) is the high voltage side voltage. It can be determined that the voltage changes from Vd to the low voltage 0 (V) (from “H” to “L”).
  • the output of the logic gate 72 (j) and the output of the logic gate 82 (j) are “L”.
  • the image data Q (j) maintains the “L” state or the “H” state, and the voltage applied to the data electrode D (j) is also the low-voltage side voltage 0 (V) (“L”). Or the high voltage side voltage Vd (“H”).
  • the logic gate 74 (j), logic gate 75 (j), logic gate 76 (j), logic gate 77 (j), logic gate 78 (j), logic gate 84 (j), logic gate 85 ( j), a logic gate 86 (j), a logic gate 87 (j), and a logic gate 88 (j) are composed of a data electrode D (j) and a data electrode adjacent to the data electrode D (j). This is a circuit for detecting a change in image data corresponding to D (j ⁇ 1) and data electrode D (j + 1). In the present embodiment, the substantial load capacitance of the data electrode D (j) is calculated based on the detection result.
  • the image data Q (j) of the data electrode D (j) changes from “L” to “H”, and the image data Q (j ⁇ 1) and the data electrode D (j + 1) of the data electrode D (j ⁇ 1)
  • the output of the logic gate 74 (j) is “H”.
  • the substantial load capacity of the data electrode D (j) is the capacity (Cg + 2Cc) as described above.
  • the image data Q (j) of the data electrode D (j) changes from “L” to “H” during the first transition period Ta. Therefore, if the output of the logic gate 74 (j) is “H”, it can be determined that the substantial load capacitance of the data electrode D (j) in the first transition period Ta is the capacitance (Cg + 2Cc).
  • the image data Q (j) of the data electrode D (j) changes from “L” to “H”, and the image data Q (j ⁇ 1) and the data electrode D (j + 1) of the data electrode D (j ⁇ 1)
  • the output of the logic gate 77 (j) becomes “H”.
  • the substantial load capacity of the data electrode D (j) is the capacity (Cg + Cc) as described above. Therefore, if the output of the logic gate 77 (j) is “H”, it can be determined that the substantial load capacitance of the data electrode D (j) in the first transition period Ta is the capacitance (Cg + Cc).
  • the image data Q (j) of the data electrode D (j) changes from “L” to “H”, and the image data Q (j ⁇ 1) and the data electrode D (j + 1) of the data electrode D (j ⁇ 1)
  • the output of the logic gate 78 (j) becomes “H”.
  • the substantial load capacity of the data electrode D (j) is the capacity Cg as described above. Therefore, if the output of the logic gate 78 (j) is “H”, it can be determined that the substantial load capacitance of the data electrode D (j) in the first transition period Ta is the capacitance Cg.
  • the image data Q (j) of the data electrode D (j) changes from “H” to “L”, and the image data Q (j ⁇ 1) and the data electrode D (j + 1) of the data electrode D (j ⁇ 1)
  • the output of the logic gate 84 (j) is “H”.
  • the substantial load capacity of the data electrode D (j) is the capacity (Cg + 2Cc) as described above.
  • the image data Q (j) of the data electrode D (j) changes from “H” to “L” during the second transition period Tb. Therefore, if the output of the logic gate 84 (j) is “H”, it can be determined that the substantial load capacitance of the data electrode D (j) in the second transition period Tb is the capacitance (Cg + 2Cc).
  • the image data Q (j) of the data electrode D (j) changes from “H” to “L”, and the image data Q (j ⁇ 1) and the data electrode D (j + 1) of the data electrode D (j ⁇ 1)
  • the output of the logic gate 87 (j) becomes “H”.
  • the substantial load capacity of the data electrode D (j) is the capacity (Cg + Cc) as described above. Therefore, if the output of the logic gate 87 (j) is “H”, it can be determined that the substantial load capacitance of the data electrode D (j) in the second transition period Tb is the capacitance (Cg + Cc).
  • the image data Q (j) of the data electrode D (j) changes from “H” to “L”, and the image data Q (j ⁇ 1) and the data electrode D (j + 1) of the data electrode D (j ⁇ 1)
  • the output of the logic gate 88 (j) becomes “H”.
  • the substantial load capacity of the data electrode D (j) is the capacity Cg as described above. Therefore, if the output of the logic gate 88 (j) is “H”, it can be determined that the substantial load capacitance of the data electrode D (j) in the second transition period Tb is the capacitance Cg.
  • the output of the logic gate 84 (j), the logic The outputs of the gate 87 (j) and the logic gate 88 (j) are all “L”.
  • the substantial load capacitance of the data electrode D (j) may be regarded as “0”. Therefore, when the outputs of the logic gate 84 (j), the logic gate 87 (j), and the logic gate 88 (j) are all “L”, the substantial load capacitance of the data electrode D (j) in the second transition period Tb. Is “0”.
  • the above is the operation of the electrode load calculation unit 64 (j) that calculates the substantial load capacity in the data electrode D (j).
  • the load calculation unit 52 includes a plurality of electrode load calculation units 64 that operate in the same manner as the electrode load calculation unit 64 (j).
  • the number of the load calculation units 52 is the same as that of the data electrodes 22 driven by one data driver 40. It is the same number as the number (for example, 384).
  • the output of all the logic gates 74, logic gates 77, and logic gates 78 provided in the load calculation unit 52 is input to the first load summation unit 65.
  • the first load summing unit 65 determines which of the output signals of the logic gate 74, the logic gate 77, and the logic gate 78 is “L” and which is “H”.
  • 77 the substantial load capacity in each data electrode 22 is calculated from the relationship between the outputs of 77 and logic gate 78 and the substantial load capacity, and the sum of them is calculated. Therefore, this calculation result is the sum of substantial load capacities of the data electrode 22 in the first transition period Ta.
  • the first load summation unit 65 sums the substantial load capacitance in the first transition period Ta of all the data electrodes 22 (for example, 384 data electrodes 22) driven by one data driver 40. Is calculated.
  • the outputs of all the logic gates 84, logic gates 87, and logic gates 88 provided in the load calculation unit 52 are input to the second load summation unit 66.
  • the second load summing unit 66 determines which of the output signals of the logic gate 84, the logic gate 87, and the logic gate 88 is “L” and which is “H”, and the logic gate 84, logic gate, and the like described above. Based on the relationship between each output of 87 and logic gate 88 and the substantial load capacity, the substantial load capacity in each data electrode 22 is calculated, and the sum of them is calculated. Therefore, this calculation result is the sum of substantial load capacities of the data electrode 22 in the second transition period Tb.
  • the second load summation unit 66 sums the substantial load capacitance in the second transition period Tb of all the data electrodes 22 (for example, 384 data electrodes 22) driven by one data driver 40. Is calculated.
  • the load calculating unit 52 substantially includes the first transition period Ta and the second transition period Tb of all the data electrodes 22 (for example, 384 data electrodes 22) driven by one data driver 40. Total load capacity is calculated.
  • FIG. 10 is a timing chart showing an example of the operation of the write timing generation unit 54 of the plasma display device 30 in one embodiment of the present invention.
  • the write timing signal LLP (p-1) output from the write timing generation unit 54 (p-1), the write timing signal LLP (p) output from the write timing generation unit 54 (p), Write timing signal LLP (p + 1) output from the timing generator 54 (p + 1), and write output from each data driver 40 of the data driver 40 (p ⁇ 1), the data driver 40 (p), and the data driver 40 (p + 1) And pulse.
  • the write timing generation unit 54 (p) generates a write timing signal LLP (p) based on the substantial sum of the load capacities calculated by the load calculation unit 52 (p), and the generated write timing signal LLP (p) Is output. Accordingly, the write timing generation unit 54 (p ⁇ 1) generates and outputs the write timing signal LLP (p ⁇ 1) based on the substantial sum of the load capacities calculated by the load calculation unit 52 (p ⁇ 1). . Further, the write timing generation unit 54 (p + 1) generates and outputs a write timing signal LLP (p + 1) based on the substantial sum of the load capacities calculated by the load calculation unit 52 (p + 1).
  • the output buffer 45 turns off the recovery switch QC and turns on the high-voltage side switch QH or the low-voltage side switch QL, and the data electrode 22 Is clamped to the high voltage Vd or the low voltage 0 (V).
  • the output buffer unit 45 turns on the recovery switch QC, turns off the high-voltage side switch QH and the low-voltage side switch QL, and sets the load capacity of the data electrode 22 and the recovery coil. It is assumed that power is supplied from the recovery capacitor C40 to the data electrode 22 by LC resonance with L40, or power is recovered from the data electrode 22 to the recovery capacitor C40.
  • the time when the write timing signal LLP falls represents the start time of the first transition period Ta or the second transition period Tb.
  • the time when the write timing signal LLP rises (hereinafter referred to as “rise timing”) represents the end time of the first transition period Ta or the second transition period Tb.
  • the write timing signal is set so that the time length of the first transition period Ta and the second transition period Tb becomes longer as the total sum of the substantial load capacities calculated by the load calculation unit 52 becomes larger.
  • Generate LLP Generate LLP.
  • the start time of the first transition period Ta is set independently of the calculation result in the load calculation unit 52.
  • the start time of the first transition period Ta of the write cycle T (i-1) is time t11
  • the start time of the first transition period Ta of the write cycle T (i) is time t31
  • the start time of the first transition period Ta of the write cycle T (i + 1) is time t51, but these times are predetermined times and do not change depending on the calculation result in the load calculation unit 52.
  • the end time of the first transition period Ta changes according to the calculation result in the load calculation unit 52.
  • each resonance period is as follows.
  • the resonance period between the sum of the substantial load capacities of the N data electrodes 22 driven by the data driver 40 (p) and the recovery coil L40 (p) is determined by N data drivers 40 (p + 1). It becomes longer than the total sum of the substantial load capacities of the data electrodes 22 and the resonance period of the recovery coil L40 (p + 1).
  • the sum of the substantial load capacities of the N data electrodes 22 driven by the data driver 40 (p ⁇ 1) and the resonance period of the recovery coil L40 (p ⁇ 1) A time length of 1 ⁇ 2 is time Ta (p ⁇ 1). Further, the time length of the sum of the substantial load capacities of the N data electrodes 22 driven by the data driver 40 (p) and the half of the resonance period of the recovery coil L40 (p) is defined as time Ta (p). To do. In addition, a time length that is half of the total load capacity of the N data electrodes 22 driven by the data driver 40 (p + 1) and a resonance period of the recovery coil L40 (p + 1) is a time Ta (p + 1). To do.
  • the calculation result in the load calculation unit 52 (p + 1) is larger than the calculation result in the load calculation unit 52 (p ⁇ 1), and the load calculation unit If the calculation result at 52 (p) is larger than the calculation result at the load calculation unit 52 (p + 1), the time Ta (p + 1) is longer than the time Ta (p ⁇ 1), and the time Ta (p) is equal to the time Ta. It becomes longer than (p + 1).
  • the first transition is performed at the time when half the resonance period has elapsed from the start of the first transition period Ta. It is desirable to end the period Ta.
  • the write timing signal LLP The rising timing of (p ⁇ 1) may be the time t12 (p ⁇ 1) when the time Ta (p ⁇ 1) has elapsed from the time t11 in the writing cycle T (i ⁇ 1).
  • the time Ta (p-1) from the time t31 may be set to the time t32 (p-1).
  • the time Ta (p-1) is set from the time t51.
  • the elapsed time t52 (p-1) may be set.
  • the write timing signal LLP (p ) Rise timing may be the time t12 (p) when the time Ta (p) has elapsed from the time t11 in the write cycle T (i-1), and from the time t31 in the write cycle T (i).
  • the time t32 (p) at which the time Ta (p) has elapsed may be set, and in the writing cycle T (i + 1), the time t52 (p) at which the time Ta (p) has elapsed from the time t51 may be set.
  • the write timing signal LLP (p + 1 ) May be set at time t12 (p + 1) when the time Ta (p + 1) has elapsed from time t11 in the write cycle T (i-1), and from time t31 in the write cycle T (i).
  • the time t32 (p + 1) at which the time Ta (p + 1) has elapsed may be set, and the time t52 (p + 1) at which the time Ta (p + 1) has elapsed from the time t51 may be set in the writing cycle T (i + 1).
  • the calculation result in the load calculation unit 52 (p + 1) is larger than the calculation result in the load calculation unit 52 (p ⁇ 1), and the load calculation unit If the calculation result at 52 (p) is larger than the calculation result at the load calculation unit 52 (p + 1), as shown in FIG. 10, the time t12 (p + 1) is later than the time t12 (p ⁇ 1), and the time t12 (p) is further later than time t12 (p + 1).
  • the calculation result in the load calculation unit 52 (p) is larger than the calculation result in the load calculation unit 52 (p ⁇ 1), and the load calculation unit 52 ( If the calculation result at (p + 1) is larger than the calculation result at the load calculation unit 52 (p), as shown in FIG. 10, the time t32 (p) is later than the time t32 (p ⁇ 1) and the time t32 (p ⁇ 1) p + 1) is later than time t32 (p).
  • the calculation result in the load calculation unit 52 (p) is larger than the calculation result in the load calculation unit 52 (p + 1), and the load calculation unit 52 (p ⁇ If the calculation result in 1) is larger than the calculation result in the load calculation unit 52 (p), the time t52 (p) is later than the time t52 (p + 1) and the time t52 (p ⁇ ) as shown in FIG. 1) is later than time t52 (p).
  • the end time of the second transition period Tb is set independently of the calculation result in the load calculation unit 52.
  • the end time of the second transition period Tb of the write cycle T (i ⁇ 1) is time t22
  • the end time of the second transition period Tb of the write cycle T (i) is time t42
  • the end time of the second transition period Tb of the write cycle T (i + 1) is time t62, but these times are predetermined times and do not change depending on the calculation result in the load calculation unit 52.
  • the start time of the second transition period Tb changes according to the calculation result in the load calculation unit 52.
  • each resonance period is as follows.
  • the resonance period between the sum of the substantial load capacities of the N data electrodes 22 driven by the data driver 40 (p) and the recovery coil L40 (p) is determined by N data drivers 40 (p + 1). It becomes longer than the total sum of the substantial load capacities of the data electrodes 22 and the resonance period of the recovery coil L40 (p + 1).
  • the sum of the substantial load capacities of the N data electrodes 22 driven by the data driver 40 (p ⁇ 1) and the resonance period of the recovery coil L40 (p ⁇ 1) The time length of 1 ⁇ 2 is time Tb (p ⁇ 1). Further, the total length of the substantial load capacities of the N data electrodes 22 driven by the data driver 40 (p) and the time length 1 ⁇ 2 of the resonance period of the recovery coil L40 (p) are defined as time Tb (p). To do. In addition, a time length 1 ⁇ 2 of a resonance period of the total load capacity of the N data electrodes 22 driven by the data driver 40 (p + 1) and the recovery coil L40 (p + 1) is defined as a time Tb (p + 1). To do.
  • the calculation result in the load calculation unit 52 (p + 1) is larger than the calculation result in the load calculation unit 52 (p ⁇ 1), and the load calculation unit 52 ( If the calculation result in p) is larger than the calculation result in the load calculation unit 52 (p + 1), the time Tb (p + 1) is longer than the time Tb (p ⁇ 1), and the time Tb (p) is the time Tb (p + 1). ) Is even longer.
  • the write timing signal LLP may be the time t21 (p-1) before the time Tb (p-1) from the time t22 in the write cycle T (i-1).
  • time t41 (p-1) before time Tb (p-1) from time t42 may be set.
  • Time t61 (p-1) may be set.
  • the write timing signal LLP (p ) May be set to the time t21 (p) before the time Tb (p) from the time t22 in the write cycle T (i-1), and from the time t42 in the write cycle T (i).
  • the time t41 (p) before the time Tb (p) may be set, and the time t61 (p) before the time Tb (p) from the time t62 may be set in the writing cycle T (i + 1).
  • the write timing signal LLP (p + 1 ) In the write cycle T (i ⁇ 1) may be the time t21 (p + 1) before the time Tb (p + 1) from the time t22, and from the time t42 in the write cycle T (i).
  • Time t41 (p + 1) before time Tb (p + 1) may be set, and time t61 (p + 1) before time Tb (p + 1) from time t62 may be set in the write cycle T (i + 1).
  • the calculation result in the load calculation unit 52 (p) is larger than the calculation result in the load calculation unit 52 (p + 1), and the load calculation unit 52 ( If the calculation result at p-1) is larger than the calculation result at the load calculation unit 52 (p), as shown in FIG. 10, time t21 (p) is earlier than time t21 (p + 1), and time t21 (p + 1) p-1) is earlier than time t21 (p).
  • the calculation result in the load calculation unit 52 (p + 1) is larger than the calculation result in the load calculation unit 52 (p), and the load calculation unit 52 (p ⁇ If the calculation result in 1) is larger than the calculation result in the load calculation unit 52 (p + 1), as shown in FIG. 10, the time t41 (p + 1) is earlier than the time t41 (p), and the time t41 (p ⁇ 1) is earlier than time t41 (p + 1).
  • the calculation result in the load calculation unit 52 (p + 1) is larger than the calculation result in the load calculation unit 52 (p ⁇ 1), and the load calculation unit 52 ( If the calculation result at p) is larger than the calculation result at the load calculation unit 52 (p + 1), as shown in FIG. 10, the time t61 (p + 1) is earlier than the time t61 (p-1), and the time t61 (p-1) p) is earlier than time t61 (p + 1).
  • a resonance period between the calculation result and the recovery coil L40 is calculated. Based on the result, each switch of the output buffer unit 45 is controlled, and the length of time for supplying power from the recovery capacitor C40 to the data electrode 22 (first transition period Ta), or the power from
  • the total load capacity is slower than that of the data driver 40, which is relatively small.
  • the data driver 40 having a relatively large sum of substantial load capacities has a second transition period compared to the data driver 40 having a relatively small sum of substantial load capacities.
  • Increase the time length of For example, if the end time of the second transition period is the same timing for each data driver 40, the start time of the second transition period is substantially the same for the data driver 40 having a relatively large sum of substantial load capacities.
  • the total sum of the load capacities is faster than that of the data driver 40, which is relatively small.
  • the power consumption of the data electrode driving circuit 32 can be reduced by the configuration and operation described above even if each recovery switch QC is configured by one MOSFET in the output buffer unit 45. Is possible. Further, the time for applying the voltage Vd of the write pulse can be extended, and the write operation using the drive time can be performed effectively.
  • FIG. 11 is a circuit diagram schematically showing another configuration example of the output buffer unit of the plasma display device in accordance with the exemplary embodiment of the present invention.
  • the recovery switch QC can be configured using an N-channel MOSFET.
  • N 384
  • the data electrode drive circuit 32 detects the resonance period between the load capacitance and the recovery coil based on the change in the voltage applied to the data electrode 22, and controls each switch of the output buffer unit 45 based on the detection result. Even in the configuration, the same effect as described above can be obtained.
  • the drive voltage waveforms shown in FIGS. 4, 8, and 10 are merely examples in the embodiment of the present invention, and the present invention is not limited to these drive voltage waveforms.
  • circuit configurations shown in FIGS. 5, 6, 7, and 9 are merely examples in the embodiment of the present invention, and the present invention is not limited to these circuit configurations. .
  • each circuit block shown in the embodiment of the present invention may be configured as an electric circuit that performs each operation shown in the embodiment, or a microcomputer that is programmed to perform the same operation. May be used.
  • the number of subfields constituting one field is not limited to the above number.
  • the number of gradations that can be displayed on the panel 10 can be further increased.
  • one pixel is constituted by discharge cells of three colors of red, green, and blue.
  • a panel in which one pixel is constituted by discharge cells of four colors or more has been described.
  • the specific numerical values shown in the embodiment of the present invention are set based on the characteristics of the panel 10 having a screen size of 50 inches and the number of display electrode pairs 14 of 1024. It is just an example.
  • the present invention is not limited to these numerical values, and each numerical value is desirably set optimally in accordance with panel specifications, panel characteristics, plasma display device specifications, and the like. Each of these numerical values is allowed to vary within a range where the above-described effect can be obtained.
  • the number of subfields constituting one field, the luminance weight of each subfield, etc. are not limited to the values shown in the embodiment of the present invention, and the subfield configuration is based on the image signal or the like. It may be configured to switch.
  • the present invention can stably supply power to a data electrode driving circuit to perform a stable address operation and reduce power consumption of the data electrode driving circuit. Therefore, the present invention provides a plasma display device and a plasma display device driving method. Useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of Gas Discharge Display Tubes (AREA)

Abstract

The present invention reduces the power consumption of a data-electrode drive circuit in a plasma display device. In order to do so, when the voltage of a write pulse is to be transitioned from a low-side voltage to a high-side voltage, the data-electrode drive circuit, during a first transition period: turns a recovery switch on and thereby makes the load capacitance of a data electrode resonate with a recovery coil and raises the output voltage; and then turns the recovery switch off and a high-voltage-side switch on and thereby clamps the output voltage to the high-side voltage. When the voltage of the write pulse is to be transitioned from the high-side voltage to the low-side voltage, the data-electrode drive circuit, during a second transition period: turns the recovery switch on and thereby makes the load capacitance of the data electrode resonate with the recovery coil and lowers the output voltage; and then turns the recovery switch off and a low-voltage-side switch on and thereby clamps the output voltage to the low-side voltage. The second transition period and the first transition period immediately after the second transition period are separated temporally.

Description

プラズマディスプレイ装置およびプラズマディスプレイ装置の駆動方法Plasma display apparatus and driving method of plasma display apparatus
 本発明は、交流面放電型のプラズマディスプレイパネルを用いた画像表示装置であるプラズマディスプレイ装置およびプラズマディスプレイ装置の駆動方法に関する。 The present invention relates to a plasma display device which is an image display device using an AC surface discharge type plasma display panel and a driving method of the plasma display device.
 プラズマディスプレイパネル(以下、「パネル」と略記する)として代表的な交流面放電型パネルは、対向配置された前面基板と背面基板との間に多数の放電セルが形成されている。前面基板は、1対の走査電極と維持電極とからなる表示電極対が前面側のガラス基板上に互いに平行に複数対形成されている。そして、それら表示電極対を覆うように誘電体層および保護層が形成されている。 2. Description of the Related Art A typical AC surface discharge type panel as a plasma display panel (hereinafter abbreviated as “panel”) has a large number of discharge cells formed between a front substrate and a rear substrate that are arranged to face each other. In the front substrate, a plurality of pairs of display electrodes composed of a pair of scan electrodes and sustain electrodes are formed on the front glass substrate in parallel with each other. A dielectric layer and a protective layer are formed so as to cover the display electrode pairs.
 背面基板は、背面側のガラス基板上に複数の平行なデータ電極が形成され、それらデータ電極を覆うように誘電体層が形成され、さらにその上にデータ電極と平行に複数の隔壁が形成されている。そして、誘電体層の表面と隔壁の側面とに蛍光体層が形成されている。 The back substrate has a plurality of parallel data electrodes formed on the glass substrate on the back side, a dielectric layer is formed so as to cover the data electrodes, and a plurality of barrier ribs are formed thereon in parallel with the data electrodes. ing. And the fluorescent substance layer is formed in the surface of a dielectric material layer, and the side surface of a partition.
 そして、表示電極対とデータ電極とが立体交差するように、前面基板と背面基板とを対向配置して密封する。密封された内部の放電空間には、例えば分圧比で5%のキセノンを含む放電ガスを封入し、表示電極対とデータ電極とが対向する部分に放電セルを形成する。このような構成のパネルにおいて、各放電セル内でガス放電により紫外線を発生し、この紫外線で赤色(R)、緑色(G)および青色(B)の各色の蛍光体を励起発光してカラーの画像表示を行う。 Then, the front substrate and the rear substrate are arranged opposite to each other and sealed so that the display electrode pair and the data electrode are three-dimensionally crossed. In the sealed internal discharge space, for example, a discharge gas containing xenon at a partial pressure ratio of 5% is sealed, and a discharge cell is formed in a portion where the display electrode pair and the data electrode face each other. In the panel having such a configuration, ultraviolet rays are generated by gas discharge in each discharge cell, and the phosphors of each color of red (R), green (G) and blue (B) are excited and emitted by the ultraviolet rays. Display an image.
 パネルを駆動する方法としては一般にサブフィールド法が用いられている。サブフィールド法では、1フィールドを複数のサブフィールドに分割し、それぞれのサブフィールドで各放電セルを発光または非発光にすることにより階調表示を行う。各サブフィールドは、初期化期間、書込み期間および維持期間を有する。 The subfield method is generally used as a method for driving the panel. In the subfield method, one field is divided into a plurality of subfields, and gradation display is performed by causing each discharge cell to emit light or not emit light in each subfield. Each subfield has an initialization period, an address period, and a sustain period.
 初期化期間では、各走査電極に初期化波形を印加し、各放電セルで初期化放電を発生する初期化動作を行う。これにより、各放電セルにおいて、続く書込み動作のために必要な壁電荷を形成するとともに、書込み放電を安定して発生するためのプライミング粒子(放電を発生させるための励起粒子)を発生する。 In the initialization period, an initialization waveform is applied to each scan electrode, and an initialization operation is performed to generate an initialization discharge in each discharge cell. Thereby, in each discharge cell, wall charges necessary for the subsequent address operation are formed, and priming particles (excited particles for generating the discharge) for generating the address discharge stably are generated.
 書込み期間では、走査電極に走査パルスを順次印加するとともに、データ電極には表示すべき画像信号にもとづき選択的に書込みパルスを印加する。これにより、発光を行うべき放電セルの走査電極とデータ電極との間に書込み放電を発生し、その放電セル内に壁電荷を形成する(以下、これらの動作を総称して「書込み」とも記す)。 In the address period, the scan pulse is sequentially applied to the scan electrodes, and the address pulse is selectively applied to the data electrodes based on the image signal to be displayed. As a result, an address discharge is generated between the scan electrode and the data electrode of the discharge cell to emit light, and a wall charge is formed in the discharge cell (hereinafter, these operations are also collectively referred to as “address”). ).
 維持期間では、サブフィールド毎に定められた輝度重みにもとづく数の維持パルスを走査電極と維持電極とからなる表示電極対に交互に印加する。これにより、書込み放電を発生した放電セルで維持放電を発生し、その放電セルの蛍光体層を発光させる(以下、放電セルを維持放電により発光させることを「点灯」、発光させないことを「非点灯」とも記す)。これにより、各放電セルを、輝度重みに応じた輝度で発光させる。このようにして、パネルの各放電セルを画像信号の階調値に応じた輝度で発光させて、パネルの画像表示領域に画像を表示する。 In the sustain period, the number of sustain pulses based on the luminance weight determined for each subfield is alternately applied to the display electrode pairs composed of the scan electrodes and the sustain electrodes. As a result, a sustain discharge is generated in the discharge cell that has generated the address discharge, and the phosphor layer of the discharge cell emits light (hereinafter referred to as “lighting” that the discharge cell emits light by the sustain discharge, and “non-emitting”). Also written as “lit”.) Thereby, each discharge cell is made to emit light with the luminance according to the luminance weight. In this way, each discharge cell of the panel is caused to emit light with a luminance corresponding to the gradation value of the image signal, and an image is displayed in the image display area of the panel.
 プラズマディスプレイ装置は、画像の表示に必要な駆動電圧波形を発生するために、走査電極駆動回路、維持電極駆動回路、データ電極駆動回路を有する。そして、走査電極駆動回路で発生した駆動電圧波形を走査電極に印加し、維持電極駆動回路で発生した駆動電圧波形を維持電極に印加し、データ電極駆動回路で発生した駆動電圧波形をデータ電極に印加する。 The plasma display device has a scan electrode drive circuit, a sustain electrode drive circuit, and a data electrode drive circuit in order to generate a drive voltage waveform necessary for image display. The drive voltage waveform generated in the scan electrode drive circuit is applied to the scan electrode, the drive voltage waveform generated in the sustain electrode drive circuit is applied to the sustain electrode, and the drive voltage waveform generated in the data electrode drive circuit is applied to the data electrode. Apply.
 近年、パネルの大画面化、高精細度化にともない、書込み動作で消費される電力が増大している。そして、データ電極駆動回路における消費電力がプラズマディスプレイ装置の消費電力を増大させている。 In recent years, with the increase in screen size and resolution, the power consumed in write operations has increased. And the power consumption in the data electrode driving circuit increases the power consumption of the plasma display device.
 そこで、データ電極駆動回路の消費電力を削減する様々な方法が提案されている。 Therefore, various methods for reducing the power consumption of the data electrode driving circuit have been proposed.
 データ電極駆動回路から見ると、データ電極は容量性の負荷(負荷容量)である。そのことに注目し、データ電極駆動回路に電力を供給する電源に電力回収部を付加したプラズマディスプレイ装置が開示されている(例えば、特許文献1参照)。特許文献1に記載された技術では、この電源は、負荷容量と回収コイルとを共振させてデータ電極駆動回路に電力を供給することで消費電力を削減する。 When viewed from the data electrode drive circuit, the data electrode is a capacitive load (load capacity). In view of this, a plasma display device is disclosed in which a power recovery unit is added to a power source that supplies power to a data electrode driving circuit (see, for example, Patent Document 1). In the technique described in Patent Document 1, this power supply reduces power consumption by resonating the load capacitance and the recovery coil and supplying power to the data electrode driving circuit.
 しかし、データ電極の負荷容量は、画像データに依存して大きく変化する。そのため、特許文献1に記載された技術では、画像の図柄によっては消費電力が増大することもある。なお、画像データとは、パネルに画像を表示するために、画像信号にもとづき発生するデータのことである。 However, the load capacity of the data electrode varies greatly depending on the image data. Therefore, in the technique described in Patent Document 1, the power consumption may increase depending on the design of the image. The image data is data generated based on an image signal in order to display an image on the panel.
 この点を改良するプラズマディスプレイ装置も開示されている(例えば、特許文献2参照)。特許文献2に記載された技術では、電源に付加した電力回収部の出力振幅を、画像データに応じて制御する。 A plasma display device that improves this point is also disclosed (see, for example, Patent Document 2). In the technique described in Patent Document 2, the output amplitude of the power recovery unit added to the power supply is controlled according to the image data.
 このように、データ電極駆動回路に電力を供給する電源に電力回収部を付加することで、プラズマディスプレイ装置における消費電力を削減することができる。しかし、電源に電力回収部を付加すると、データ電極駆動回路に供給する電圧が不安定になりやすく、書込み放電が不安定になることがある。そして、書込み放電が不安定になると、プラズマディスプレイ装置における画像表示品質が低下する。 Thus, the power consumption in the plasma display device can be reduced by adding the power recovery unit to the power source that supplies power to the data electrode driving circuit. However, if a power recovery unit is added to the power supply, the voltage supplied to the data electrode drive circuit tends to be unstable, and the address discharge may become unstable. When the address discharge becomes unstable, the image display quality in the plasma display device is degraded.
 これらのことから、データ電極駆動回路に安定に電力を供給して安定した書込み動作を行うとともに、データ電極駆動回路の消費電力を削減することができるプラズマディスプレイ装置が望まれている。 For these reasons, there is a demand for a plasma display device capable of stably supplying power to the data electrode driving circuit to perform a stable addressing operation and reducing power consumption of the data electrode driving circuit.
特開2002-278509号公報JP 2002-278509 A 特開2004-212699号公報JP 2004-212699 A
 本発明は、複数の表示電極対と複数のデータ電極とを有するパネルと、データ電極に書込みパルスを印加するデータ電極駆動回路とを備えたプラズマディスプレイ装置である。データ電極駆動回路は、書込み期間における書込み周期毎に書込みパルスの高圧側電圧または書込みパルスの低圧側電圧をデータ電極に印加する。また、データ電極駆動回路は、回収コンデンサと回収コンデンサに直列に接続された回収コイルとを備えるとともに、高圧側電圧を出力する高圧側スイッチと低圧側電圧を出力する低圧側スイッチと回収コンデンサに接続する回収スイッチとを有する出力バッファをデータ電極のそれぞれに対して備える。そして、出力バッファは、書込みパルスの電圧を低圧側電圧から高圧側電圧に遷移する際には、書込み周期に設けられた第1遷移期間において、回収スイッチをオンにしてデータ電極の負荷容量と回収コイルとを共振させて出力電圧を上昇し、その後、回収スイッチをオフにし高圧側スイッチをオンにして出力電圧を高圧側電圧にクランプする。また、出力バッファは、書込みパルスの電圧を高圧側電圧から低圧側電圧に遷移する際には、書込み周期に設けられた第2遷移期間において、回収スイッチをオンにしてデータ電極の負荷容量と回収コイルとを共振させて出力電圧を降下し、その後、回収スイッチをオフにし低圧側スイッチをオンにして出力電圧を低圧側電圧にクランプする。そして、第2遷移期間と、第2遷移期間の直後の第1遷移期間とを時間的に分離する。 The present invention is a plasma display device including a panel having a plurality of display electrode pairs and a plurality of data electrodes, and a data electrode driving circuit for applying a write pulse to the data electrodes. The data electrode driving circuit applies the high voltage side voltage of the write pulse or the low voltage side voltage of the write pulse to the data electrode for each write cycle in the write period. The data electrode drive circuit includes a recovery capacitor and a recovery coil connected in series with the recovery capacitor, and is connected to a high voltage side switch that outputs a high voltage side voltage, a low voltage side switch that outputs a low voltage side voltage, and the recovery capacitor. An output buffer having a recovery switch for each of the data electrodes. When the output buffer transitions the voltage of the write pulse from the low-voltage side voltage to the high-voltage side voltage, the output switch is turned on in the first transition period provided in the write cycle to recover the load capacity and the recovery of the data electrode. The output voltage is raised by resonating with the coil, and then the recovery switch is turned off and the high-voltage side switch is turned on to clamp the output voltage to the high-voltage side voltage. In addition, when the voltage of the write pulse transitions from the high voltage side voltage to the low voltage side voltage, the output buffer turns on the recovery switch during the second transition period provided in the write cycle and recovers the load capacity and recovery of the data electrode. The output voltage is lowered by resonating with the coil, and then the recovery switch is turned off and the low-voltage side switch is turned on to clamp the output voltage to the low-voltage side voltage. Then, the second transition period and the first transition period immediately after the second transition period are separated in time.
 これにより、データ電極駆動回路に安定に電力を供給して安定した書込み動作を行うとともに、データ電極駆動回路の消費電力を削減することができる。 Thus, it is possible to stably supply power to the data electrode driving circuit to perform a stable addressing operation and reduce the power consumption of the data electrode driving circuit.
 また、本発明のプラズマディスプレイ装置において、データ電極駆動回路は、複数の出力バッファを集積した集積回路を複数用いて構成し、集積回路が駆動する複数のデータ電極の実質的な負荷容量の総和を算出する。そして、データ電極駆動回路は、算出した総和が大きいときには、算出した総和が小さいときよりも第1遷移期間または第2遷移期間の時間長が長くなるように、算出した総和にもとづき出力バッファ部の高圧側スイッチ、低圧側スイッチおよび回収スイッチを制御する。 In the plasma display apparatus of the present invention, the data electrode driving circuit is configured by using a plurality of integrated circuits in which a plurality of output buffers are integrated, and the total sum of substantial load capacities of the plurality of data electrodes driven by the integrated circuit is calculated. calculate. The data electrode driving circuit is configured to output the output buffer unit based on the calculated sum so that when the calculated sum is large, the time length of the first transition period or the second transition period is longer than when the calculated sum is small. Controls the high-pressure side switch, low-pressure side switch, and recovery switch.
 また、本発明は、1フィールドを書込み期間と維持期間とを有する複数のサブフィールドで構成し、書込み期間において、複数の表示電極対と複数のデータ電極とを有するパネルのデータ電極に、回収コンデンサと回収コイルとを共振させて複数のデータ電極を駆動するデータドライバから書込みパルスを印加するプラズマディスプレイ装置の駆動方法である。この駆動方法においては、データドライバが駆動する複数のデータ電極の実質的な負荷容量の総和を算出する。そして、書込みパルスの電圧を低圧側電圧から高圧側電圧に遷移する第1遷移期間および書込みパルスの電圧を高圧側電圧から低圧側電圧に遷移する第2遷移期間の時間長を、算出した負荷容量の総和にもとづき制御する。算出した負荷容量の総和が大きいときには、その総和が小さいときよりも第1遷移期間または第2遷移期間の時間長を長くする。 Further, the present invention provides a recovery capacitor for a data electrode of a panel having a plurality of display electrode pairs and a plurality of data electrodes in a writing period in which one field is composed of a plurality of subfields having an address period and a sustain period. And a recovery coil are resonated with each other to drive a plurality of data electrodes, and a write pulse is applied from a data driver that drives a plurality of data electrodes. In this driving method, the sum of substantial load capacities of a plurality of data electrodes driven by the data driver is calculated. Then, the calculated load capacity is obtained by calculating the time length of the first transition period in which the voltage of the write pulse is changed from the low voltage to the high voltage and the second transition period in which the voltage of the write pulse is changed from the high voltage to the low voltage. Control based on the sum of When the calculated sum of the load capacities is large, the time length of the first transition period or the second transition period is made longer than when the sum is small.
 これにより、データ電極駆動回路に安定に電力を供給して安定した書込み動作を行うとともに、データ電極駆動回路の消費電力を削減することができる。 Thus, it is possible to stably supply power to the data electrode driving circuit to perform a stable addressing operation and reduce the power consumption of the data electrode driving circuit.
図1は、本発明の一実施の形態におけるプラズマディスプレイ装置に用いるパネルの構造を示す分解斜視図である。FIG. 1 is an exploded perspective view showing a structure of a panel used in a plasma display device according to an embodiment of the present invention. 図2は、本発明の一実施の形態におけるプラズマディスプレイ装置に用いるパネルの電極配列図である。FIG. 2 is an electrode array diagram of a panel used in the plasma display device according to one embodiment of the present invention. 図3は、本発明の一実施の形態におけるプラズマディスプレイ装置に用いるパネルの電極間容量を模式的に示した図である。FIG. 3 is a diagram schematically showing the interelectrode capacitance of the panel used in the plasma display device according to one embodiment of the present invention. 図4は、本発明の一実施の形態におけるプラズマディスプレイ装置に用いるパネルの各電極に印加する駆動電圧波形を概略的に示す図である。FIG. 4 schematically shows drive voltage waveforms applied to the respective electrodes of the panel used in the plasma display device in accordance with the exemplary embodiment of the present invention. 図5は、本発明の一実施の形態におけるプラズマディスプレイ装置を構成する回路ブロックの一例を概略的に示す図である。FIG. 5 is a diagram schematically showing an example of a circuit block constituting the plasma display device in one embodiment of the present invention. 図6は、本発明の一実施の形態におけるプラズマディスプレイ装置のデータ電極駆動回路の構成を概略的に示す回路図である。FIG. 6 is a circuit diagram schematically showing a configuration of a data electrode driving circuit of the plasma display device in accordance with the exemplary embodiment of the present invention. 図7は、本発明の一実施の形態におけるプラズマディスプレイ装置のデータ電極駆動回路が有する出力バッファ部の構成を概略的に示す回路図である。FIG. 7 is a circuit diagram schematically showing a configuration of an output buffer unit included in the data electrode driving circuit of the plasma display device in accordance with the exemplary embodiment of the present invention. 図8は、本発明の一実施の形態におけるプラズマディスプレイ装置において発生する書込みパルスの一例を概略的に示す図である。FIG. 8 is a diagram schematically showing an example of an address pulse generated in the plasma display device according to one embodiment of the present invention. 図9は、本発明の一実施の形態におけるプラズマディスプレイ装置の負荷算出部の構成を概略的に示す回路図である。FIG. 9 is a circuit diagram schematically showing the configuration of the load calculation unit of the plasma display device in one embodiment of the present invention. 図10は、本発明の一実施の形態におけるプラズマディスプレイ装置の書込みタイミング生成部の動作の一例を示すタイミングチャートである。FIG. 10 is a timing chart showing an example of the operation of the write timing generation unit of the plasma display device in one embodiment of the present invention. 図11は、本発明の一実施の形態におけるプラズマディスプレイ装置の出力バッファ部の他の構成例を概略的に示す回路図である。FIG. 11 is a circuit diagram schematically showing another configuration example of the output buffer unit of the plasma display device in accordance with the exemplary embodiment of the present invention.
 以下、本発明の実施の形態におけるプラズマディスプレイ装置について、図面を用いて説明する。 Hereinafter, a plasma display device according to an embodiment of the present invention will be described with reference to the drawings.
 (実施の形態)
 図1は、本発明の一実施の形態におけるプラズマディスプレイ装置に用いるパネル10の構造を示す分解斜視図である。
(Embodiment)
FIG. 1 is an exploded perspective view showing the structure of panel 10 used in the plasma display device according to one embodiment of the present invention.
 ガラス製の前面基板11上には、走査電極12と維持電極13とからなる表示電極対14が複数形成されている。そして、走査電極12と維持電極13とを覆うように誘電体層15が形成され、その誘電体層15上に保護層16が形成されている。 A plurality of display electrode pairs 14 each including a scanning electrode 12 and a sustaining electrode 13 are formed on a glass front substrate 11. A dielectric layer 15 is formed so as to cover the scan electrode 12 and the sustain electrode 13, and a protective layer 16 is formed on the dielectric layer 15.
 この保護層16は、放電セルにおける放電開始電圧を下げるために、パネルの材料として使用実績があり、ネオン(Ne)およびキセノン(Xe)ガスを封入した場合に2次電子放出係数が大きく耐久性に優れた酸化マグネシウム(MgO)を主成分とする材料で形成されている。 This protective layer 16 has been used as a panel material in order to lower the discharge start voltage in the discharge cell, and has a large secondary electron emission coefficient and durability when neon (Ne) and xenon (Xe) gas is sealed. It is made of a material mainly composed of magnesium oxide (MgO).
 背面基板21上にはデータ電極22が複数形成され、データ電極22を覆うように誘電体層23が形成され、さらにその上に井桁状の隔壁24が形成されている。そして、隔壁24の側面および誘電体層23上には赤色(R)に発光する蛍光体層25R、緑色(G)に発光する蛍光体層25G、および青色(B)に発光する蛍光体層25Bが設けられている。以下、蛍光体層25R、蛍光体層25G、蛍光体層25Bをまとめて蛍光体層25とも記す。 A plurality of data electrodes 22 are formed on the rear substrate 21, a dielectric layer 23 is formed so as to cover the data electrodes 22, and a grid-like partition wall 24 is further formed thereon. On the side surfaces of the barrier ribs 24 and on the dielectric layer 23, a phosphor layer 25R that emits red (R), a phosphor layer 25G that emits green (G), and a phosphor layer 25B that emits blue (B). Is provided. Hereinafter, the phosphor layer 25R, the phosphor layer 25G, and the phosphor layer 25B are collectively referred to as a phosphor layer 25.
 これら前面基板11と背面基板21とを、微小な空間を挟んで表示電極対14とデータ電極22とが交差するように対向配置し、前面基板11と背面基板21との間隙に放電空間を設ける。そして、その外周部をガラスフリット等の封着材によって封着する。そして、その内部の放電空間には、例えばネオンとキセノンの混合ガスを放電ガスとして封入する。 The front substrate 11 and the rear substrate 21 are arranged to face each other so that the display electrode pair 14 and the data electrode 22 intersect each other with a minute space therebetween, and a discharge space is provided in the gap between the front substrate 11 and the rear substrate 21. . And the outer peripheral part is sealed with sealing materials, such as glass frit. Then, for example, a mixed gas of neon and xenon is sealed in the discharge space inside as a discharge gas.
 放電空間は隔壁24によって複数の区画に仕切られており、表示電極対14とデータ電極22とが交差する部分に放電セルが形成されている。 The discharge space is divided into a plurality of sections by the partition walls 24, and discharge cells are formed at the intersections between the display electrode pairs 14 and the data electrodes 22.
 そして、これらの放電セルで放電を発生し、放電セルの蛍光体層25を発光(放電セルを点灯)することにより、パネル10にカラーの画像を表示する。 Then, a discharge is generated in these discharge cells, and the phosphor layer 25 of the discharge cells emits light (lights the discharge cells), thereby displaying a color image on the panel 10.
 なお、パネル10においては、表示電極対14が延伸する方向に配列された連続する3つの放電セルで1つの画素を構成する。この3つの放電セルとは、蛍光体層25Rを有し赤色(R)に発光する放電セル(赤の放電セル)と、蛍光体層25Gを有し緑色(G)に発光する放電セル(緑の放電セル)と、蛍光体層25Bを有し青色(B)に発光する放電セル(青の放電セル)である。 In the panel 10, one pixel is composed of three consecutive discharge cells arranged in the direction in which the display electrode pair 14 extends. The three discharge cells are a discharge cell having a phosphor layer 25R and emitting red (R) (red discharge cell), and a discharge cell having a phosphor layer 25G and emitting green (G) (green). And a discharge cell having a phosphor layer 25B and emitting blue (B) light (blue discharge cell).
 なお、パネル10の構造は上述したものに限られるわけではなく、例えばストライプ状の隔壁を備えたものであってもよい。 Note that the structure of the panel 10 is not limited to the above-described structure, and may be, for example, provided with a stripe-shaped partition wall.
 図2は、本発明の一実施の形態におけるプラズマディスプレイ装置に用いるパネル10の電極配列図である。 FIG. 2 is an electrode array diagram of panel 10 used in the plasma display device according to one embodiment of the present invention.
 パネル10には、水平方向(行方向)に延長されたn本の走査電極SC(1)~走査電極SC(n)(図1の走査電極12)およびn本の維持電極SU(1)~維持電極SU(n)(図1の維持電極13)が配列され、垂直方向(列方向)に延長されたm本のデータ電極D(1)~データ電極D(m)(図1のデータ電極22)が配列されている。 The panel 10 includes n scan electrodes SC (1) to scan electrodes SC (n) (scan electrodes 12 in FIG. 1) and n sustain electrodes SU (1) to (horizontal direction (row direction)). Sustain electrodes SU (n) (sustain electrodes 13 in FIG. 1) are arranged and m data electrodes D (1) to D (m) (data electrodes in FIG. 1) extended in the vertical direction (column direction). 22) are arranged.
 そして、1対の走査電極SC(i)(i=1~n)および維持電極SU(i)と1つのデータ電極D(j)(j=1~m)とが交差した領域に1つの放電セルが形成される。すなわち、1対の表示電極対14上には、m個の放電セルが形成され、m/3個の画素が形成される。そして、放電セルは放電空間内にm×n個形成され、m×n個の放電セルが形成された領域がパネル10の画像表示領域となる。例えば、画素数が1920×1080個のパネルでは、m=1920×3となり、n=1080となる。 One discharge is generated in a region where a pair of scan electrodes SC (i) (i = 1 to n) and sustain electrodes SU (i) intersect with one data electrode D (j) (j = 1 to m). A cell is formed. In other words, m discharge cells are formed on one pair of display electrodes 14 and m / 3 pixels are formed. Then, m × n discharge cells are formed in the discharge space, and an area where m × n discharge cells are formed becomes an image display area of the panel 10. For example, in a panel having 1920 × 1080 pixels, m = 1920 × 3 and n = 1080.
 このように配列された電極の電極間には、電極間容量が存在する。 The interelectrode capacitance exists between the electrodes of the electrodes arranged in this way.
 図3は、本発明の一実施の形態におけるプラズマディスプレイ装置に用いるパネル10の電極間容量を模式的に示す図である。 FIG. 3 is a diagram schematically showing the interelectrode capacitance of panel 10 used in the plasma display device according to one embodiment of the present invention.
 図3には、一例として、5本の走査電極SC(i-2)~走査電極SC(i+2)および5本の維持電極SU(i-2)~維持電極SU(i+2)と、6本のデータ電極D(j-2)~データ電極D(j+3)とを示し、データ電極22に関する電極間容量を示す。なお、図3には、走査電極SC(i)と維持電極SU(i)とからなる表示電極対を1本の太い横線で示す。 In FIG. 3, as an example, five scan electrodes SC (i−2) to scan electrode SC (i + 2), five sustain electrodes SU (i−2) to sustain electrode SU (i + 2), Data electrodes D (j−2) to data electrode D (j + 3) are shown, and the interelectrode capacitance related to the data electrode 22 is shown. In FIG. 3, a display electrode pair composed of scan electrode SC (i) and sustain electrode SU (i) is indicated by one thick horizontal line.
 図3に示すように、パネル10においては、表示電極対14とデータ電極22とが交差している領域のそれぞれに「容量Cs」が存在する。また、互いに隣接するデータ電極22とデータ電極22との間のそれぞれに「容量Cc」が存在する。 As shown in FIG. 3, in the panel 10, “capacitance Cs” exists in each of the regions where the display electrode pair 14 and the data electrode 22 intersect. Further, “capacitance Cc” exists between the data electrodes 22 adjacent to each other.
 1本のデータ電極D(j)は、n本の走査電極SC(1)~走査電極SC(n)およびn本の維持電極SU(1)~維持電極SU(n)と交差する。すなわち、1本のデータ電極D(j)は、n本の表示電極対14と交差する。したがって、パネル10においては、1本のデータ電極D(j)と表示電極対14との間には、容量(n×Cs)が存在する。以下、容量(n×Cs)を「容量Cg」と表記する。 One data electrode D (j) intersects n scan electrodes SC (1) to scan electrode SC (n) and n sustain electrodes SU (1) to sustain electrode SU (n). That is, one data electrode D (j) intersects n display electrode pairs 14. Therefore, in the panel 10, a capacitance (n × Cs) exists between one data electrode D (j) and the display electrode pair 14. Hereinafter, the capacity (n × Cs) is expressed as “capacity Cg”.
 また、1本のデータ電極D(j)は、右側に隣接するデータ電極D(j+1)との間に容量Ccが存在し、左側に隣接するデータ電極D(j-1)との間に容量Ccが存在する。 Further, one data electrode D (j) has a capacitance Cc between the data electrode D (j + 1) adjacent to the right side and a capacitance between the data electrode D (j−1) adjacent to the left side. Cc exists.
 このように、1本のデータ電極D(j)には容量Cgと容量Ccと容量Ccとが存在するため、1本のデータ電極D(j)における負荷容量の合計は容量(Cg+2Cc)となる。したがって、パネル10においては、データ電極22のそれぞれに、容量(Cg+2Cc)が存在する。 Thus, since the capacitance Cg, the capacitance Cc, and the capacitance Cc exist in one data electrode D (j), the total load capacitance in one data electrode D (j) is the capacitance (Cg + 2Cc). . Therefore, in the panel 10, a capacitance (Cg + 2Cc) exists in each of the data electrodes 22.
 次に、パネル10を駆動するための駆動電圧波形とその動作の概要について説明する。 Next, a driving voltage waveform for driving the panel 10 and an outline of its operation will be described.
 本実施の形態におけるプラズマディスプレイ装置は、サブフィールド法によってパネル10を駆動する。サブフィールド法では、画像信号の1フィールドを時間軸上で複数のサブフィールドに分割し、各サブフィールドに輝度重みをそれぞれ設定する。したがって、各フィールドは輝度重みが異なる複数のサブフィールドを有する。 The plasma display device in the present embodiment drives the panel 10 by the subfield method. In the subfield method, one field of an image signal is divided into a plurality of subfields on the time axis, and a luminance weight is set for each subfield. Therefore, each field has a plurality of subfields having different luminance weights.
 それぞれのサブフィールドは初期化期間、書込み期間および維持期間を有する。そして、画像信号にもとづき、サブフィールド毎に各放電セルの発光・非発光を制御する。すなわち、画像信号にもとづき、発光するサブフィールドと非発光のサブフィールドとを組み合わせることによって、画像信号にもとづく複数の階調をパネル10に表示する。 Each subfield has an initialization period, an address period, and a sustain period. Based on the image signal, light emission / non-light emission of each discharge cell is controlled for each subfield. That is, a plurality of gradations based on the image signal are displayed on the panel 10 by combining the light-emitting subfield and the non-light-emitting subfield based on the image signal.
 初期化期間では、放電セルに初期化放電を発生し、続く書込み期間における書込み放電に必要な壁電荷を各電極上に形成する初期化動作を行う。 In the initializing period, an initializing operation is performed in which initializing discharge is generated in the discharge cells and wall charges necessary for the address discharge in the subsequent address period are formed on each electrode.
 書込み期間では、走査電極12に走査パルスを印加するとともにデータ電極22に選択的に書込みパルスを印加し、発光するべき放電セルに選択的に書込み放電を発生する。そして、続く維持期間で維持放電を発生するための壁電荷をその放電セル内に形成する書込み動作を行う。 In the address period, a scan pulse is applied to the scan electrode 12 and an address pulse is selectively applied to the data electrode 22 to selectively generate an address discharge in the discharge cells to emit light. Then, an address operation is performed to form wall charges in the discharge cells for generating a sustain discharge in the subsequent sustain period.
 維持期間では、それぞれのサブフィールドに設定された輝度重みに所定の比例定数を乗じた数の維持パルスを走査電極12および維持電極13に交互に印加し、直前の書込み期間に書込み放電を発生した放電セルで維持放電を発生し、その放電セルを発光する維持動作を行う。この比例定数が輝度倍数である。例えば、輝度倍数が2倍のとき、輝度重み「2」のサブフィールドの維持期間では、走査電極12と維持電極13とにそれぞれ4回ずつ維持パルスを印加する。そのため、その維持期間で発生する維持パルスの数は8となる。 In the sustain period, the sustain pulses of the number obtained by multiplying the luminance weight set in each subfield by a predetermined proportional constant are alternately applied to the scan electrode 12 and the sustain electrode 13 to generate the address discharge in the immediately preceding address period. A sustain discharge is generated in the discharge cell, and a sustain operation for emitting light from the discharge cell is performed. This proportionality constant is a luminance multiple. For example, when the luminance multiple is twice, the sustain pulse is applied four times to each of the scan electrode 12 and the sustain electrode 13 in the sustain period of the subfield having the luminance weight “2”. Therefore, the number of sustain pulses generated in the sustain period is 8.
 輝度重みとは、各サブフィールドで表示する輝度の大きさの比を表すものであり、各サブフィールドでは輝度重みに応じた数の維持パルスを維持期間に発生する。そのため、例えば、輝度重み「8」のサブフィールドは、輝度重み「1」のサブフィールドの約8倍の輝度で発光し、輝度重み「2」のサブフィールドの約4倍の輝度で発光する。 The luminance weight represents a ratio of the luminance magnitudes displayed in each subfield, and the number of sustain pulses corresponding to the luminance weight is generated in the sustain period in each subfield. Therefore, for example, the subfield with the luminance weight “8” emits light with a luminance about eight times that of the subfield with the luminance weight “1”, and emits light with about four times the luminance of the subfield with the luminance weight “2”.
 したがって、例えば、1フィールドを8つのサブフィールド(サブフィールドSF1、サブフィールドSF2、サブフィールドSF3、サブフィールドSF4、サブフィールドSF5、サブフィールドSF6、サブフィールドSF7、サブフィールドSF8)で構成し、サブフィールドSF1からサブフィールドSF8の各サブフィールドにそれぞれ(1、2、4、8、16、32、64、128)の輝度重みを設定すれば、各放電セルは、階調値「0」から階調値「255」までの256通りの階調値を表示することができる。 Thus, for example, one field is composed of eight subfields (subfield SF1, subfield SF2, subfield SF3, subfield SF4, subfield SF5, subfield SF6, subfield SF7, subfield SF8). If luminance weights of (1, 2, 4, 8, 16, 32, 64, 128) are set in each subfield of SF1 to subfield SF8, each discharge cell has a gradation value of “0”. The 256 gradation values up to the value “255” can be displayed.
 こうして、画像信号に応じた組合せでサブフィールド毎に各放電セルの発光・非発光を制御して各サブフィールドを選択的に発光することにより、様々な階調値で各放電セルを発光し、画像をパネル10に表示することができる。 In this way, by controlling the light emission / non-light emission of each discharge cell for each subfield in a combination according to the image signal, each subfield is selectively emitted to emit each discharge cell with various gradation values, An image can be displayed on the panel 10.
 なお、本発明は1フィールドを構成するサブフィールドの数、各サブフィールドが有する輝度重み等が上述した数値に限定されるものではない。 In the present invention, the number of subfields constituting one field, the luminance weight of each subfield, and the like are not limited to the above-described numerical values.
 なお、初期化動作には、直前のサブフィールドの動作にかかわらず放電セルに初期化放電を発生する全セル初期化動作と、直前のサブフィールドの書込み期間で書込み放電を発生し維持期間で維持放電を発生した放電セルだけに選択的に初期化放電を発生する選択初期化動作とがある。全セル初期化動作では上昇する上り傾斜波形電圧および下降する下り傾斜波形電圧を走査電極12に印加し、画像表示領域内の全ての放電セルに初期化放電を発生する。そして、複数のサブフィールドのうち、1つのサブフィールドの初期化期間においては全セル初期化動作を行い、他のサブフィールドの初期化期間においては、選択初期化動作を行う。以下、全セル初期化動作を行う初期化期間を「全セル初期化期間」と記し、全セル初期化期間を有するサブフィールドを「全セル初期化サブフィールド」と記す。また、選択初期化動作を行う初期化期間を「選択初期化期間」と記し、選択初期化期間を有するサブフィールドを「選択初期化サブフィールド」と記す。 The initializing operation includes all-cell initializing operation that generates initializing discharge in the discharge cells regardless of the operation of the immediately preceding subfield, and the address discharge is generated in the immediately preceding subfield addressing period and is maintained in the sustaining period. There is a selective initializing operation in which initializing discharge is selectively generated only in the discharge cells that have generated discharge. In the all-cell initialization operation, an ascending rising waveform voltage and a descending falling waveform voltage are applied to the scan electrode 12 to generate an initializing discharge in all the discharge cells in the image display region. Then, among all the subfields, the all-cell initialization operation is performed in the initialization period of one subfield, and the selective initialization operation is performed in the initialization period of the other subfield. Hereinafter, the initialization period for performing the all-cell initialization operation is referred to as “all-cell initialization period”, and the subfield having the all-cell initialization period is referred to as “all-cell initialization subfield”. An initialization period for performing the selective initialization operation is referred to as “selective initialization period”, and a subfield having the selective initialization period is referred to as “selective initialization subfield”.
 そして、本実施の形態では、各フィールドの最初のサブフィールド(サブフィールドSF1)を全セル初期化サブフィールドとし、他のサブフィールドは選択初期化サブフィールドとする。 In this embodiment, the first subfield (subfield SF1) of each field is an all-cell initializing subfield, and the other subfields are selective initializing subfields.
 これにより、少なくとも1フィールドに1回は全ての放電セルで初期化放電を発生するので、全セル初期化動作以降の書込み動作を安定化することができる。また、画像の表示に関係のない発光はサブフィールドSF1における全セル初期化動作の放電にともなう発光のみとなる。したがって、維持放電を発生しない黒を表示する領域の輝度である黒輝度は全セル初期化動作における微弱発光だけとなり、パネル10にコントラストの高い画像を表示することが可能となる。 Thereby, since the initializing discharge is generated in all the discharge cells at least once in one field, the addressing operation after the initializing operation for all the cells can be stabilized. Further, light emission not related to image display is only light emission due to discharge in the all-cell initializing operation in the subfield SF1. Therefore, the black luminance that is the luminance of the black display region where no sustain discharge occurs is only weak light emission in the all-cell initialization operation, and an image with high contrast can be displayed on the panel 10.
 しかし、本実施の形態は、1フィールドを構成するサブフィールドの数や各サブフィールドの輝度重みが上述した数値に限定されるものではない。また、画像信号等にもとづいてサブフィールド構成を切り換える構成であってもよい。 However, in the present embodiment, the number of subfields constituting one field and the luminance weight of each subfield are not limited to the above-described numerical values. Moreover, the structure which switches a subfield structure based on an image signal etc. may be sufficient.
 図4は、本発明の一実施の形態におけるプラズマディスプレイ装置に用いるパネル10の各電極に印加する駆動電圧波形を概略的に示す図である。 FIG. 4 is a diagram schematically showing driving voltage waveforms applied to the respective electrodes of panel 10 used in the plasma display device according to one embodiment of the present invention.
 図4には、書込み期間において最初に書込み動作を行う走査電極SC(1)、書込み期間において最後に書込み動作を行う走査電極SC(n)(例えば、走査電極SC(1080))、維持電極SU(1)~維持電極SU(n)、およびデータ電極D(1)~データ電極D(m)のそれぞれに印加する駆動電圧波形を示す。また、以下における走査電極SC(i)、維持電極SU(i)、データ電極D(k)は、各電極の中から画像データ(サブフィールド毎の発光・非発光を示すデータ)にもとづき選択された電極を表す。 FIG. 4 shows scan electrode SC (1) that performs the address operation first in the address period, scan electrode SC (n) that performs the address operation last in the address period (for example, scan electrode SC (1080)), and sustain electrode SU. (1) Drive voltage waveforms applied to sustain electrode SU (n) and data electrode D (1) to data electrode D (m) are shown. In addition, scan electrode SC (i), sustain electrode SU (i), and data electrode D (k) in the following are selected from each electrode based on image data (data indicating light emission / non-light emission for each subfield). Represents an electrode.
 また、図4には、サブフィールドSF1、サブフィールドSF2の2つのサブフィールドの駆動電圧波形を示す。サブフィールドSF1は全セル初期化動作を行うサブフィールドであり、サブフィールドSF2は選択初期化動作を行うサブフィールドである。したがって、サブフィールドSF1と、サブフィールドSF2とでは、初期化期間に走査電極12に印加する駆動電圧の波形形状が異なる。なお、他のサブフィールドにおける駆動電圧波形は、維持期間における維持パルスの発生数が異なる以外はサブフィールドSF2の駆動電圧波形とほぼ同様である。 FIG. 4 shows driving voltage waveforms of two subfields, subfield SF1 and subfield SF2. The subfield SF1 is a subfield for performing an all-cell initialization operation, and the subfield SF2 is a subfield for performing a selective initialization operation. Therefore, the waveform shape of the drive voltage applied to the scan electrode 12 in the initialization period differs between the subfield SF1 and the subfield SF2. The drive voltage waveform in the other subfield is substantially the same as the drive voltage waveform in subfield SF2 except that the number of sustain pulses generated in the sustain period is different.
 なお、本実施の形態は、1フィールドを構成するサブフィールドの数や各サブフィールドの輝度重みが上記の値に限定されるものではない。 In the present embodiment, the number of subfields constituting one field and the luminance weight of each subfield are not limited to the above values.
 まず、全セル初期化サブフィールドであるサブフィールドSF1について説明する。 First, the subfield SF1, which is an all-cell initialization subfield, will be described.
 全セル初期化動作を行うサブフィールドSF1の初期化期間の前半部では、データ電極D(1)~データ電極D(m)、維持電極SU(1)~維持電極SU(n)には、それぞれ電圧0(V)を印加する。走査電極SC(1)~走査電極SC(n)には、電圧0(V)を印加した後に電圧Vi1を印加し、電圧Vi1から電圧Vi2に向かって緩やかに上昇する上り傾斜波形電圧(ランプ電圧)を印加する。電圧Vi1は、維持電極SU(1)~維持電極SU(n)に対して放電開始電圧よりも低い電圧に設定し、電圧Vi2は、放電開始電圧を超える電圧に設定する。 In the first half of the initialization period of the subfield SF1 that performs the all-cell initialization operation, the data electrode D (1) to the data electrode D (m) and the sustain electrode SU (1) to the sustain electrode SU (n) A voltage of 0 (V) is applied. A voltage Vi1 is applied to scan electrode SC (1) to scan electrode SC (n) after voltage 0 (V) is applied, and an upward ramp waveform voltage (ramp voltage) gradually rising from voltage Vi1 to voltage Vi2. ) Is applied. Voltage Vi1 is set to a voltage lower than the discharge start voltage with respect to sustain electrode SU (1) to sustain electrode SU (n), and voltage Vi2 is set to a voltage exceeding the discharge start voltage.
 このランプ電圧が上昇する間に、各放電セルの走査電極SC(1)~走査電極SC(n)と維持電極SU(1)~維持電極SU(n)との間、および走査電極SC(1)~走査電極SC(n)とデータ電極D(1)~データ電極D(m)との間に、それぞれ微弱な初期化放電が持続して発生する。そして、走査電極SC(1)~走査電極SC(n)上に負の壁電圧が蓄積され、データ電極D(1)~データ電極D(m)上および維持電極SU(1)~維持電極SU(n)上には正の壁電圧が蓄積される。この電極上の壁電圧とは、電極を覆う誘電体層上、保護層上、蛍光体層上等に蓄積された壁電荷により生じる電圧を表す。 While this ramp voltage rises, scan electrode SC (1) to scan electrode SC (n) and sustain electrode SU (1) to sustain electrode SU (n) of each discharge cell, and scan electrode SC (1 ) To the scan electrode SC (n) and the data electrode D (1) to the data electrode D (m), weak initializing discharges are continuously generated. Then, negative wall voltage is accumulated on scan electrode SC (1) to scan electrode SC (n), and data electrode D (1) to data electrode D (m) and sustain electrode SU (1) to sustain electrode SU. (N) A positive wall voltage is accumulated on the top. The wall voltage on the electrode represents a voltage generated by wall charges accumulated on the dielectric layer covering the electrode, the protective layer, the phosphor layer, and the like.
 サブフィールドSF1の初期化期間の後半部では、維持電極SU(1)~維持電極SU(n)には正の電圧Veを印加し、データ電極D(1)~データ電極D(m)には電圧0(V)を印加する。走査電極SC(1)~走査電極SC(n)には、電圧Vi3から負の電圧Vi4に向かって緩やかに下降する下り傾斜波形電圧(ランプ電圧)を印加する。電圧Vi3は、維持電極SU(1)~維持電極SU(n)に対して放電開始電圧未満となる電圧に設定し、電圧Vi4は放電開始電圧を超える電圧に設定する。 In the second half of the initializing period of subfield SF1, positive voltage Ve is applied to sustain electrode SU (1) to sustain electrode SU (n), and data electrode D (1) to data electrode D (m) are applied to data electrode D (1) to data electrode D (m). A voltage of 0 (V) is applied. Scan electrode SC (1) to scan electrode SC (n) are applied with a downward ramp waveform voltage (ramp voltage) that gently falls from voltage Vi3 toward negative voltage Vi4. Voltage Vi3 is set to a voltage lower than the discharge start voltage with respect to sustain electrode SU (1) to sustain electrode SU (n), and voltage Vi4 is set to a voltage exceeding the discharge start voltage.
 このランプ電圧を走査電極SC(1)~走査電極SC(n)に印加する間に、各放電セルの走査電極SC(1)~走査電極SC(n)と維持電極SU(1)~維持電極SU(n)との間、および走査電極SC(1)~走査電極SC(n)とデータ電極D(1)~データ電極D(m)との間に、それぞれ微弱な初期化放電が発生する。これにより、走査電極SC(1)~走査電極SC(n)上の負の壁電圧、維持電極SU(1)~維持電極SU(n)上の正の壁電圧、およびデータ電極D(1)~データ電極D(m)上の正の壁電圧は、書込み動作に適した値に調整される。 While this ramp voltage is applied to scan electrode SC (1) -scan electrode SC (n), scan electrode SC (1) -scan electrode SC (n) and sustain electrode SU (1) -sustain electrode of each discharge cell. A weak initializing discharge occurs between SU (n) and between scan electrode SC (1) -scan electrode SC (n) and data electrode D (1) -data electrode D (m). . Thus, negative wall voltage on scan electrode SC (1) to scan electrode SC (n), positive wall voltage on sustain electrode SU (1) to sustain electrode SU (n), and data electrode D (1) The positive wall voltage on the data electrode D (m) is adjusted to a value suitable for the write operation.
 以上により、サブフィールドSF1の初期化期間における全セル初期化動作が終了し、全ての放電セルにおいて、続く書込み動作に必要な壁電荷が各電極上に形成される。 Thus, the all-cell initializing operation in the initializing period of the subfield SF1 is completed, and wall charges necessary for the subsequent addressing operation are formed on each electrode in all the discharge cells.
 本実施の形態では、続く書込み期間において、データ電極D(1)~データ電極D(m)に印加する書込みパルスの波形形状に、消費電力を削減するための工夫を施している。この詳細については後述する。以下、書込み期間における書込み動作の概要について説明する。 In this embodiment, a device for reducing power consumption is applied to the waveform shape of the address pulse applied to the data electrode D (1) to the data electrode D (m) in the subsequent address period. Details of this will be described later. Hereinafter, an outline of the write operation in the write period will be described.
 サブフィールドSF1の書込み期間では、まず、維持電極SU(1)~維持電極SU(n)には電圧Veを印加し、データ電極D(1)~データ電極D(m)には電圧0(V)を印加し、走査電極SC(1)~走査電極SC(n)には電圧Vcを印加する。 In the address period of subfield SF1, first, voltage Ve is applied to sustain electrode SU (1) to sustain electrode SU (n), and voltage 0 (V) is applied to data electrode D (1) to data electrode D (m). ) And a voltage Vc is applied to scan electrode SC (1) to scan electrode SC (n).
 そして、最初の書込み周期において、1ライン目(1行目)の走査電極SC(1)に負の電圧Vaの負極性の走査パルスを印加する。そして、データ電極D(1)~データ電極D(m)のうちの1ライン目において発光するべき放電セルのデータ電極D(k)に正の電圧Vdの正極性の書込みパルスを印加する。 Then, in the first address period, a negative scan pulse with a negative voltage Va is applied to the scan electrode SC (1) of the first line (first row). Then, a positive address pulse having a positive voltage Vd is applied to the data electrode D (k) of the discharge cell that should emit light in the first line among the data electrodes D (1) to D (m).
 書込みパルスの電圧Vdを印加したデータ電極D(k)と走査パルスの電圧Vaを印加した走査電極SC(1)との交差部にある放電セルでは、データ電極D(k)と走査電極SC(1)との間に放電が発生する。 In the discharge cell at the intersection of the data electrode D (k) to which the address pulse voltage Vd is applied and the scan electrode SC (1) to which the scan pulse voltage Va is applied, the data electrode D (k) and the scan electrode SC ( Discharge occurs between 1) and 1).
 また、維持電極SU(1)~維持電極SU(n)に電圧Veを印加しているため、データ電極D(k)と走査電極SC(1)との間に発生する放電に誘発されて、データ電極D(k)と交差する領域にある維持電極SU(1)と走査電極SC(1)との間にも放電が発生する。こうして、走査パルスの電圧Vaと書込みパルスの電圧Vdとが同時に印加された放電セル(発光するべき放電セル)に書込み放電が発生し、走査電極SC(1)上に正の壁電圧が蓄積され、維持電極SU(1)上に負の壁電圧が蓄積され、データ電極D(k)上にも負の壁電圧が蓄積される。 In addition, since voltage Ve is applied to sustain electrode SU (1) to sustain electrode SU (n), it is induced by a discharge generated between data electrode D (k) and scan electrode SC (1). Discharge is also generated between sustain electrode SU (1) and scan electrode SC (1) in the region intersecting data electrode D (k). Thus, an address discharge occurs in the discharge cell (discharge cell to emit light) to which the voltage Va of the scan pulse and the voltage Vd of the address pulse are simultaneously applied, and a positive wall voltage is accumulated on the scan electrode SC (1). A negative wall voltage is accumulated on the sustain electrode SU (1), and a negative wall voltage is also accumulated on the data electrode D (k).
 このようにして、1ライン目の放電セルにおける書込み動作が終了する。なお、書込みパルスを印加しなかった放電セルでは、書込み放電は発生せず、初期化期間終了後の壁電圧が保たれる。 In this way, the address operation in the discharge cell on the first line is completed. In the discharge cells to which no address pulse is applied, the address discharge does not occur, and the wall voltage after the end of the initialization period is maintained.
 次に、2番目の書込み周期において、2ライン目(2行目)の走査電極SC(2)に電圧Vaの走査パルスを印加するとともに、2ライン目に発光するべき放電セルに対応するデータ電極D(k)に電圧Vdの書込みパルスを印加する。これにより、走査パルスと書込みパルスとが同時に印加された2ライン目の放電セルでは書込み放電が発生する。こうして、2ライン目の放電セルにおける書込み動作を行う。 Next, in the second address period, a scan pulse of voltage Va is applied to the scan electrode SC (2) of the second line (second row), and the data electrode corresponding to the discharge cell that should emit light on the second line. An address pulse of voltage Vd is applied to D (k). As a result, address discharge occurs in the discharge cells of the second line to which the scan pulse and address pulse are simultaneously applied. Thus, an address operation is performed in the discharge cell of the second line.
 以下同様に、i番目の書込み周期においてiライン目の走査電極SC(i)に電圧Vaの走査パルスを印加するとともに、iライン目に発光するべき放電セルに対応するデータ電極D(k)に電圧Vdの書込みパルスを印加する。これにより、走査パルスと書込みパルスとが同時に印加されたiライン目の放電セルでは書込み放電が発生し、iライン目の放電セルにおける書込み動作が行われる。 Similarly, a scan pulse of voltage Va is applied to the scan electrode SC (i) of the i-th line in the i-th write cycle, and the data electrode D (k) corresponding to the discharge cell to emit light on the i-th line is applied. An address pulse of voltage Vd is applied. As a result, an address discharge occurs in the i-th line discharge cell to which the scan pulse and the address pulse are simultaneously applied, and an address operation is performed in the i-th line discharge cell.
 同様の書込み動作を、nライン目の放電セルに至るまで順次行い、サブフィールドSF1の書込み期間が終了する。 The same address operation is sequentially performed until the discharge cell on the n-th line, and the address period of the subfield SF1 ends.
 なお、初期化期間後半に維持電極SU(1)~維持電極SU(n)に印加する電圧Veと、書込み期間に維持電極SU(1)~維持電極SU(n)に印加する電圧Veとは互いに異なる電圧値であってもよい。 Note that voltage Ve applied to sustain electrode SU (1) to sustain electrode SU (n) in the latter half of the initialization period and voltage Ve applied to sustain electrode SU (1) to sustain electrode SU (n) in the address period Different voltage values may be used.
 続くサブフィールドSF1の維持期間では、まず維持電極SU(1)~維持電極SU(n)に電圧0(V)を印加する。そして、走査電極SC(1)~走査電極SC(n)に正の電圧Vsの維持パルスを印加する。 In the subsequent sustain period of subfield SF1, voltage 0 (V) is first applied to sustain electrode SU (1) to sustain electrode SU (n). Then, sustain pulse of positive voltage Vs is applied to scan electrode SC (1) to scan electrode SC (n).
 この維持パルスの印加により、書込み放電を発生した放電セルでは、走査電極SC(i)と維持電極SU(i)との電圧差が放電開始電圧を超え、維持放電が発生する。そして、この放電により発生した紫外線により蛍光体層25が発光する。また、この放電により、走査電極SC(i)上に負の壁電圧が蓄積され、維持電極SU(i)上に正の壁電圧が蓄積される。さらに、データ電極D(k)上にも正の壁電圧が蓄積される。ただし、書込み期間において書込み放電が発生しなかった放電セルでは維持放電は発生しない。 In the discharge cell in which the address discharge is generated by the application of the sustain pulse, the voltage difference between the scan electrode SC (i) and the sustain electrode SU (i) exceeds the discharge start voltage, and the sustain discharge is generated. And the fluorescent substance layer 25 light-emits with the ultraviolet-ray which generate | occur | produced by this discharge. Further, due to this discharge, a negative wall voltage is accumulated on scan electrode SC (i), and a positive wall voltage is accumulated on sustain electrode SU (i). Furthermore, a positive wall voltage is also accumulated on the data electrode D (k). However, no sustain discharge occurs in the discharge cells in which no address discharge has occurred during the address period.
 続いて、走査電極SC(1)~走査電極SC(n)には電圧0(V)を印加し、維持電極SU(1)~維持電極SU(n)には電圧Vsの維持パルスを印加する。直前に維持放電を発生した放電セルでは再び維持放電が発生し、維持電極SU(i)上に負の壁電圧が蓄積され、走査電極SC(i)上に正の壁電圧が蓄積される。 Subsequently, voltage 0 (V) is applied to scan electrode SC (1) to scan electrode SC (n), and a sustain pulse of voltage Vs is applied to sustain electrode SU (1) to sustain electrode SU (n). . In the discharge cell that has generated a sustain discharge immediately before, a sustain discharge occurs again, a negative wall voltage is accumulated on sustain electrode SU (i), and a positive wall voltage is accumulated on scan electrode SC (i).
 以降同様に、走査電極SC(1)~走査電極SC(n)と維持電極SU(1)~維持電極SU(n)とに、輝度重みに所定の輝度倍数を乗じた数の維持パルスを交互に印加する。こうして、書込み期間において書込み放電を発生した放電セルは、輝度重みに応じた輝度で発光する。 Thereafter, in the same manner, scan electrodes SC (1) to scan electrode SC (n) and sustain electrodes SU (1) to sustain electrode SU (n) are alternately supplied with the number of sustain pulses obtained by multiplying the brightness weight by a predetermined brightness multiple. Apply to. Thus, the discharge cells that have generated the address discharge in the address period emit light with a luminance corresponding to the luminance weight.
 そして、維持期間における維持パルスの発生後に、維持電極SU(1)~維持電極SU(n)およびデータ電極D(1)~データ電極D(m)に電圧0(V)を印加したまま、走査電極SC(1)~走査電極SC(n)に電圧0(V)から電圧Vrに向かって緩やかに上昇する傾斜波形電圧(ランプ電圧)を印加する。 Then, after the sustain pulse is generated in the sustain period, scanning is performed with voltage 0 (V) applied to sustain electrode SU (1) to sustain electrode SU (n) and data electrode D (1) to data electrode D (m). A ramp waveform voltage (ramp voltage) that gently rises from voltage 0 (V) to voltage Vr is applied to electrode SC (1) to scan electrode SC (n).
 このランプ電圧を走査電極SC(1)~走査電極SC(n)へ印加する間に、維持放電を発生した放電セルに微弱な放電が発生する。この微弱な放電で発生した荷電粒子は、維持電極SU(i)と走査電極SC(i)との間の電圧差を緩和するように、維持電極SU(i)上および走査電極SC(i)上に壁電荷となって蓄積される。これにより、データ電極D(k)上の正の壁電圧を残したまま、走査電極SC(i)および維持電極SU(i)上の壁電圧が弱められる。すなわち、放電セル内における不要な壁電荷が消去される。 During the application of this ramp voltage to scan electrode SC (1) to scan electrode SC (n), a weak discharge is generated in the discharge cell that has generated the sustain discharge. The charged particles generated by the weak discharge are on the sustain electrode SU (i) and the scan electrode SC (i) so as to alleviate the voltage difference between the sustain electrode SU (i) and the scan electrode SC (i). Accumulated as wall charges on top. Thereby, the wall voltage on scan electrode SC (i) and sustain electrode SU (i) is weakened while the positive wall voltage on data electrode D (k) remains. That is, unnecessary wall charges in the discharge cell are erased.
 走査電極SC(1)~走査電極SC(n)に印加する電圧が電圧Vrに到達したら、走査電極SC(1)~走査電極SC(n)への印加電圧を電圧0(V)まで下降する。こうして、サブフィールドSF1の維持期間における維持動作が終了する。 When the voltage applied to scan electrode SC (1) to scan electrode SC (n) reaches voltage Vr, the voltage applied to scan electrode SC (1) to scan electrode SC (n) is lowered to voltage 0 (V). . Thus, the sustain operation in the sustain period of subfield SF1 is completed.
 以上により、サブフィールドSF1が終了する。 Thus, subfield SF1 is completed.
 次に、選択初期化サブフィールドであるサブフィールドSF2について説明する。 Next, subfield SF2, which is a selective initialization subfield, will be described.
 サブフィールドSF2の初期化期間では、維持電極SU(1)~維持電極SU(n)には電圧Veを印加し、データ電極D(1)~データ電極D(m)には電圧0(V)を印加する。走査電極SC(1)~走査電極SC(n)には放電開始電圧未満となる電圧(例えば、電圧0(V))から負の電圧Vi4に向かって緩やかに下降する傾斜波形電圧(ランプ電圧)を印加する。電圧Vi4は、維持電極SU(1)~維持電極SU(n)に対して放電開始電圧を超える電圧に設定する。 In the initializing period of subfield SF2, voltage Ve is applied to sustain electrode SU (1) to sustain electrode SU (n), and voltage 0 (V) is applied to data electrode D (1) to data electrode D (m). Is applied. Scan electrode SC (1) to scan electrode SC (n) have a ramp waveform voltage (ramp voltage) that gently falls from a voltage (for example, voltage 0 (V)) that is less than the discharge start voltage toward negative voltage Vi4. Is applied. Voltage Vi4 is set to a voltage exceeding the discharge start voltage with respect to sustain electrode SU (1) to sustain electrode SU (n).
 このランプ電圧を走査電極SC(1)~走査電極SC(n)に印加する間に、直前のサブフィールド(図4では、サブフィールドSF1)の維持期間に維持放電を発生した放電セルでは、微弱な初期化放電が発生する。そして、この初期化放電により、走査電極SC(i)上および維持電極SU(i)上の壁電圧が弱められる。また、データ電極D(k)上に蓄積された壁電圧の過剰な部分が放電される。こうして、放電セル内の壁電圧は書込み動作に適した壁電圧に調整される。 In a discharge cell in which a sustain discharge is generated in the sustain period of the immediately preceding subfield (subfield SF1 in FIG. 4) while this ramp voltage is applied to scan electrode SC (1) to scan electrode SC (n), it is weak. Initializing discharge occurs. The initialization discharge weakens the wall voltage on scan electrode SC (i) and sustain electrode SU (i). In addition, an excessive portion of the wall voltage accumulated on the data electrode D (k) is discharged. Thus, the wall voltage in the discharge cell is adjusted to a wall voltage suitable for the address operation.
 一方、直前のサブフィールド(サブフィールドSF1)の維持期間に維持放電を発生しなかった放電セルでは、初期化放電は発生せず、それ以前の壁電圧が保たれる。 On the other hand, in the discharge cells that did not generate the sustain discharge in the sustain period of the immediately preceding subfield (subfield SF1), the initialization discharge does not occur and the previous wall voltage is maintained.
 このように、サブフィールドSF2における初期化動作は、直前のサブフィールドの書込み期間で書込み動作を行った放電セルで選択的に初期化放電を発生する選択初期化動作となる。 As described above, the initializing operation in the subfield SF2 is a selective initializing operation in which the initializing discharge is selectively generated in the discharge cells that have performed the addressing operation in the address period of the immediately preceding subfield.
 以上により、サブフィールドSF2の初期化期間における選択初期化動作が終了する。 Thus, the selective initialization operation in the initialization period of subfield SF2 is completed.
 サブフィールドSF2の書込み期間では、サブフィールドSF1の書込み期間と同様の駆動電圧波形を各電極に印加し、発光するべき放電セルの各電極上に壁電圧を蓄積する書込み動作を行う。 In the address period of the subfield SF2, a drive voltage waveform similar to that in the address period of the subfield SF1 is applied to each electrode, and an address operation for accumulating wall voltage on each electrode of the discharge cell to emit light is performed.
 続く維持期間も、サブフィールドSF1の維持期間と同様に、輝度重みに応じた数の維持パルスを走査電極SC(1)~走査電極SC(n)と維持電極SU(1)~維持電極SU(n)とに交互に印加し、書込み期間において書込み放電を発生した放電セルに維持放電を発生する。 In the subsequent sustain period, similarly to the sustain period of subfield SF1, the number of sustain pulses corresponding to the luminance weight is applied to scan electrode SC (1) to scan electrode SC (n) and sustain electrode SU (1) to sustain electrode SU ( n) alternately, and sustain discharge is generated in the discharge cells that have generated address discharge in the address period.
 サブフィールドSF3以降の各サブフィールドの初期化期間および書込み期間では、各電極に対してサブフィールドSF2の初期化期間および書込み期間と同様の駆動電圧波形を印加する。また、サブフィールドSF3以降の各サブフィールドの維持期間では、維持期間に発生する維持パルスの数を除き、サブフィールドSF2と同様の駆動電圧波形を各電極に印加する。 In the initialization period and address period of each subfield after subfield SF3, the same drive voltage waveform as that in the initialization period and address period of subfield SF2 is applied to each electrode. In the sustain period of each subfield after subfield SF3, the drive voltage waveform similar to that of subfield SF2 is applied to each electrode except for the number of sustain pulses generated in the sustain period.
 以上が、本実施の形態においてパネル10の各電極に印加する駆動電圧波形の概要である。 The above is the outline of the drive voltage waveform applied to each electrode of panel 10 in the present embodiment.
 図5は、本発明の実施の形態1におけるプラズマディスプレイ装置30を構成する回路ブロックの一例を概略的に示す図である。 FIG. 5 is a diagram schematically showing an example of a circuit block constituting the plasma display device 30 according to the first embodiment of the present invention.
 本実施の形態に示すプラズマディスプレイ装置30は、パネル10と、パネル10を駆動する駆動回路とを備えている。駆動回路は、画像信号処理回路31、データ電極駆動回路32、走査電極駆動回路33、維持電極駆動回路34、タイミング発生回路35および各回路ブロックに必要な電源を供給する電源回路(図示せず)を備えている。 The plasma display device 30 shown in the present embodiment includes a panel 10 and a drive circuit that drives the panel 10. The drive circuit includes an image signal processing circuit 31, a data electrode drive circuit 32, a scan electrode drive circuit 33, a sustain electrode drive circuit 34, a timing generation circuit 35, and a power supply circuit (not shown) that supplies necessary power to each circuit block. It has.
 画像信号処理回路31に入力される画像信号は、赤の画像信号、緑の画像信号、青の画像信号である。画像信号処理回路31は、赤の画像信号、緑の画像信号、青の画像信号にもとづき、各放電セルに赤、緑、青の各階調値を設定する。なお、画像信号処理回路31は、入力される画像信号が輝度信号(Y信号)および彩度信号(C信号、またはR-Y信号およびB-Y信号、またはu信号およびv信号等)を含むときには、その輝度信号および彩度信号にもとづき赤の画像信号、緑の画像信号、青の画像信号を算出し、その後、各放電セルに赤、緑、青の各階調値(1フィールドで表現される階調値)を設定する。そして、各放電セルに設定した赤、緑、青の階調値を、サブフィールド毎の点灯・非点灯を示す画像データ(発光・非発光をデジタル信号の「1」、「0」に対応させたデータのこと)に変換する。すなわち、画像信号処理回路31は、赤の画像信号、緑の画像信号、青の画像信号を、赤の画像データ、緑の画像データ、青の画像データに変換して出力する。 The image signals input to the image signal processing circuit 31 are a red image signal, a green image signal, and a blue image signal. The image signal processing circuit 31 sets each gradation value of red, green, and blue in each discharge cell based on the red image signal, the green image signal, and the blue image signal. In the image signal processing circuit 31, the input image signal includes a luminance signal (Y signal) and a saturation signal (C signal, or RY signal and BY signal, or u signal and v signal, etc.). In some cases, a red image signal, a green image signal, and a blue image signal are calculated based on the luminance signal and the saturation signal, and then each of the red, green, and blue tone values (represented by one field) is stored in each discharge cell. Tone value). Then, the red, green, and blue gradation values set in each discharge cell are associated with image data indicating lighting / non-lighting for each subfield (light emission / non-light emission corresponds to digital signals “1” and “0”). Data). That is, the image signal processing circuit 31 converts the red image signal, the green image signal, and the blue image signal into red image data, green image data, and blue image data and outputs the converted image data.
 タイミング発生回路35は、水平同期信号および垂直同期信号にもとづき、各回路ブロックの動作を制御する各種のタイミング信号を発生する。そして、発生したタイミング信号をそれぞれの回路ブロック(データ電極駆動回路32、走査電極駆動回路33、維持電極駆動回路34、および画像信号処理回路31等)へ供給する。 The timing generation circuit 35 generates various timing signals for controlling the operation of each circuit block based on the horizontal synchronization signal and the vertical synchronization signal. The generated timing signal is supplied to each circuit block (data electrode drive circuit 32, scan electrode drive circuit 33, sustain electrode drive circuit 34, image signal processing circuit 31, etc.).
 データ電極駆動回路32は、画像信号処理回路31から出力される各色の画像データおよびタイミング発生回路35から供給されるタイミング信号にもとづき、各データ電極D(1)~データ電極D(m)に対応する書込みパルスを発生する。そして、データ電極駆動回路32は、その書込みパルスを書込み期間に各データ電極D(1)~データ電極D(m)に印加する。 The data electrode drive circuit 32 corresponds to each data electrode D (1) to data electrode D (m) based on the image data of each color output from the image signal processing circuit 31 and the timing signal supplied from the timing generation circuit 35. A write pulse is generated. Then, the data electrode drive circuit 32 applies the address pulse to the data electrodes D (1) to D (m) during the address period.
 データ電極駆動回路32は、複数の集積回路を有する。各集積回路は、それぞれが所定の数のデータ電極22に印加する書込みパルスを発生する。この集積回路を、以下「データドライバ」と呼称する。本実施の形態において、データドライバ40は、例えばモノリシックICとして構成されている。そして、各データドライバ40は、それぞれが、例えば384本のデータ電極22に印加する書込みパルスを発生する。本実施の形態におけるパネル10は、水平方向に1920の画素を有する。すなわち、パネル10は、1ラインに1920×3=5760の放電セルを有する。したがって、データ電極駆動回路32は、例えば15個のデータドライバ40(データドライバ40(1)~データドライバ40(15))を有し、5760本のデータ電極22を駆動する。 The data electrode drive circuit 32 has a plurality of integrated circuits. Each integrated circuit generates an address pulse that is applied to a predetermined number of data electrodes 22. This integrated circuit is hereinafter referred to as a “data driver”. In the present embodiment, the data driver 40 is configured as a monolithic IC, for example. Each data driver 40 generates an address pulse to be applied to, for example, 384 data electrodes 22. Panel 10 in the present embodiment has 1920 pixels in the horizontal direction. That is, the panel 10 has 1920 × 3 = 5760 discharge cells in one line. Therefore, the data electrode drive circuit 32 has, for example, 15 data drivers 40 (data driver 40 (1) to data driver 40 (15)), and drives 5760 data electrodes 22.
 走査電極駆動回路33は、初期化波形発生回路、維持パルス発生回路、走査パルス発生回路(図5には示さず)を備え、タイミング発生回路35から供給されるタイミング信号にもとづいて駆動電圧波形を作成し、走査電極SC(1)~走査電極SC(n)のそれぞれに印加する。初期化波形発生回路は、タイミング信号にもとづき、初期化期間に、走査電極SC(1)~走査電極SC(n)に印加する初期化波形を発生する。維持パルス発生回路は、タイミング信号にもとづき、維持期間に、走査電極SC(1)~走査電極SC(n)に印加する維持パルスを発生する。走査パルス発生回路は、複数の走査電極駆動IC(走査IC)を備え、タイミング信号にもとづき、書込み期間に、走査電極SC(1)~走査電極SC(n)に印加する走査パルスを発生する。 Scan electrode drive circuit 33 includes an initialization waveform generation circuit, a sustain pulse generation circuit, and a scan pulse generation circuit (not shown in FIG. 5), and generates a drive voltage waveform based on a timing signal supplied from timing generation circuit 35. It is prepared and applied to each of scan electrode SC (1) to scan electrode SC (n). The initialization waveform generation circuit generates an initialization waveform to be applied to scan electrode SC (1) to scan electrode SC (n) during the initialization period based on the timing signal. The sustain pulse generation circuit generates a sustain pulse to be applied to scan electrode SC (1) to scan electrode SC (n) during the sustain period based on the timing signal. The scan pulse generation circuit includes a plurality of scan electrode drive ICs (scan ICs), and generates scan pulses to be applied to scan electrode SC (1) to scan electrode SC (n) during an address period based on a timing signal.
 維持電極駆動回路34は、維持パルス発生回路、および電圧Veを発生する回路(図5には示さず)を備え、タイミング発生回路35から供給されるタイミング信号にもとづいて駆動電圧波形を作成し、維持電極SU(1)~維持電極SU(n)のそれぞれに印加する。維持期間では、タイミング信号にもとづいて維持パルスを発生し、維持電極SU(1)~維持電極SU(n)に印加する。 Sustain electrode drive circuit 34 includes a sustain pulse generation circuit and a circuit (not shown in FIG. 5) for generating voltage Ve, creates a drive voltage waveform based on the timing signal supplied from timing generation circuit 35, The voltage is applied to each of sustain electrode SU (1) to sustain electrode SU (n). In the sustain period, a sustain pulse is generated based on the timing signal and applied to sustain electrode SU (1) to sustain electrode SU (n).
 次に、データ電極駆動回路32の詳細について説明する。 Next, details of the data electrode drive circuit 32 will be described.
 図6は、本発明の一実施の形態におけるプラズマディスプレイ装置30のデータ電極駆動回路32の構成を概略的に示す回路図である。なお、図6には、データ電極駆動回路32を構成する回路ブロックの一部のみを示し、同じ構成となる他の回路ブロックは省略している。 FIG. 6 is a circuit diagram schematically showing the configuration of the data electrode drive circuit 32 of the plasma display device 30 in one embodiment of the present invention. In FIG. 6, only a part of the circuit blocks constituting the data electrode drive circuit 32 is shown, and other circuit blocks having the same configuration are omitted.
 データ電極駆動回路32は、15個のデータドライバ40(データドライバ40(1)~データドライバ40(15))と、データドライバ40のそれぞれに対応して設けられた負荷算出部52と、データドライバ40のそれぞれに対応して設けられた書込みタイミング生成部54と、データドライバ40のそれぞれに対応して設けられた回収コンデンサC40と、データドライバ40のそれぞれに対応して設けられた回収コイルL40とを有する。 The data electrode drive circuit 32 includes fifteen data drivers 40 (data driver 40 (1) to data driver 40 (15)), a load calculation unit 52 provided corresponding to each of the data drivers 40, a data driver 40, a write timing generator 54 provided corresponding to each of the data drivers 40, a recovery capacitor C40 provided corresponding to each of the data drivers 40, and a recovery coil L40 provided corresponding to each of the data drivers 40. Have
 以下、データドライバ40(1)~データドライバ40(15)を総称して「データドライバ40(p)」と記し、データドライバ40(p)に対応する負荷算出部52を負荷算出部52(p)と記し、データドライバ40(p)に対応する書込みタイミング生成部54を書込みタイミング生成部54(p)と記し、データドライバ40(p)に対応する回収コンデンサC40を回収コンデンサC40(p)と記し、データドライバ40(p)に対応する回収コイルL40を回収コイルL40(p)と記す。本実施の形態において、pは1から15の各数値である。 Hereinafter, the data driver 40 (1) to the data driver 40 (15) are collectively referred to as “data driver 40 (p)”, and the load calculation unit 52 corresponding to the data driver 40 (p) is referred to as the load calculation unit 52 (p ), The write timing generator 54 corresponding to the data driver 40 (p) is referred to as a write timing generator 54 (p), and the recovery capacitor C40 corresponding to the data driver 40 (p) is referred to as a recovery capacitor C40 (p). The recovery coil L40 corresponding to the data driver 40 (p) is referred to as a recovery coil L40 (p). In the present embodiment, p is a numerical value from 1 to 15.
 負荷算出部52(p)は、データドライバ40(p)が駆動する複数のデータ電極22のそれぞれにおける実質的な負荷容量を算出し、算出した負荷容量の総和を算出する。すなわち、負荷算出部52(p)は、データドライバ40(p)が駆動する複数のデータ電極22の負荷容量の総和を算出する。データ電極22の実質的な負荷容量を算出する方法の詳細については、後述する。 The load calculation unit 52 (p) calculates a substantial load capacity in each of the plurality of data electrodes 22 driven by the data driver 40 (p), and calculates a total of the calculated load capacity. That is, the load calculation unit 52 (p) calculates the sum of the load capacities of the plurality of data electrodes 22 driven by the data driver 40 (p). Details of the method of calculating the substantial load capacity of the data electrode 22 will be described later.
 書込みタイミング生成部54(p)は、負荷算出部52(p)が算出した負荷容量の総和にもとづき、書込みタイミング信号LLP(p)を生成し、生成した書込みタイミング信号LLP(p)を出力する。 The write timing generation unit 54 (p) generates a write timing signal LLP (p) based on the total load capacity calculated by the load calculation unit 52 (p), and outputs the generated write timing signal LLP (p). .
 データドライバ40(1)~データドライバ40(15)のそれぞれは、シフトレジスタ部41と、データラッチ部43と、出力バッファ部45とを有する。 Each of the data driver 40 (1) to the data driver 40 (15) includes a shift register unit 41, a data latch unit 43, and an output buffer unit 45.
 シフトレジスタ部41は、シフトレジスタである。シフトレジスタ部41は、データドライバ40が駆動するN本(例えば、N=384)のデータ電極22と同じ数、もしくはそれ以上の数のラッチ42を有する。各ラッチ42は直列に接続され、クロック信号(クロックDck)に同期して、入力信号を後段のラッチ42に順送り(シフト)する。そして、データ変換部(図示せず)から送信されるシリアルデータをパラレルデータに変換する。 The shift register unit 41 is a shift register. The shift register unit 41 has the same number of latches 42 as the number of N (for example, N = 384) data electrodes 22 driven by the data driver 40 or more than that. Each latch 42 is connected in series, and forwards (shifts) the input signal to the subsequent latch 42 in synchronization with the clock signal (clock Dck). Then, serial data transmitted from a data converter (not shown) is converted into parallel data.
 シリアルデータとは、1つのデータを構成する複数のbit信号を、1本の信号線で伝送できるように、時間的に連続する複数のbit信号の形式で表したデータのことである。例えば、8bitで構成されたデータであれば、時間的に連続する8個のbit信号となる。 Serial data is data expressed in the form of a plurality of bit signals that are temporally continuous so that a plurality of bit signals constituting one data can be transmitted by one signal line. For example, if the data is composed of 8 bits, it becomes 8 bit signals continuous in time.
 パラレルデータとは、1つのデータを構成する複数のbit信号を、1つのクロック信号に同期して同タイミングで伝送できるように、bit信号と同数の信号線で伝送できる形式で表したデータのことである。例えば、8bitで構成されたデータであれば、データの変化に応じて同タイミングで変化する8個の並列なbit信号となり、8本の信号線で並列に伝送することができる。 Parallel data refers to data expressed in a format that can be transmitted through the same number of signal lines as bit signals so that a plurality of bit signals constituting one data can be transmitted at the same timing in synchronization with one clock signal. It is. For example, if the data is composed of 8 bits, it becomes 8 parallel bit signals that change at the same timing according to the change of the data, and can be transmitted in parallel by 8 signal lines.
 データ変換部は、図示していないが、画像信号処理回路31とデータドライバ40との間に設けられており、画像信号処理回路31から送信されてくる画像データ(各放電に割り当てられる画像データ)をサブフィールド毎のデータに変換する。この変換について説明する。 Although not shown, the data converter is provided between the image signal processing circuit 31 and the data driver 40, and image data (image data assigned to each discharge) transmitted from the image signal processing circuit 31 is provided. Is converted into data for each subfield. This conversion will be described.
 例えば、1フィールドが8つのサブフィールド(サブフィールドSF1~サブフィールドSF8)で構成されていれば、画像データは8bitのデータとなる。そして、画像データの各bitのデータは、サブフィールドSF1からサブフィールドSF8の各サブフィールドにおける発光・非発光を表す。パネル10はサブフィールド法によって駆動されるので、パネル10の各放電セルは、それぞれ、サブフィールド毎に発光・非発光を制御される必要がある。そのため、画像データのままでは、各放電セルの発光・非発光を、サブフィールド毎に制御することができない。 For example, if one field is composed of eight subfields (subfield SF1 to subfield SF8), the image data is 8-bit data. Each bit data of the image data represents light emission / non-light emission in each subfield of subfield SF1 to subfield SF8. Since the panel 10 is driven by the subfield method, each discharge cell of the panel 10 needs to be controlled to emit or not emit light for each subfield. Therefore, if the image data is used as it is, the light emission / non-light emission of each discharge cell cannot be controlled for each subfield.
 パネル10をサブフィールド法によって駆動するためには、例えば、サブフィールドSF1では、各放電セルに割り当てられた画像データのサブフィールドSF1に対応するbitのデータだけを抜き出して1つのデータとし、サブフィールドSF2では、各放電セルに割り当てられた画像データのサブフィールドSF2に対応するbitのデータだけを抜き出して1つのデータとする必要がある。この変換を行うのがデータ変換部である。 In order to drive the panel 10 by the subfield method, for example, in the subfield SF1, only the bit data corresponding to the subfield SF1 of the image data assigned to each discharge cell is extracted as one data, In SF2, it is necessary to extract only the bit data corresponding to the subfield SF2 of the image data assigned to each discharge cell to be one data. The data conversion unit performs this conversion.
 すなわち、データ変換部は、サブフィールド毎に、各放電セルに割り当てられた画像データから、そのサブフィールドに対応するbitのデータだけを抜き出して1つのデータとする変換を行う。 That is, for each subfield, the data conversion unit extracts only the bit data corresponding to the subfield from the image data assigned to each discharge cell and performs conversion into one data.
 そして、そのデータは、シリアルデータとしてシフトレジスタ部41に送信され、シフトレジスタ部41は、データ変換部から送信されてくるそのサブフィールドに対応する複数のbitのシリアルデータをパラレルデータに変換する。 The data is transmitted as serial data to the shift register unit 41. The shift register unit 41 converts a plurality of bits of serial data corresponding to the subfield transmitted from the data conversion unit into parallel data.
 以下、画像データのうち、サブフィールドSFQに対応するbitの画像データを「画像データQ」と記す。すなわち、シフトレジスタ部41は、データ変換部から送信されてくるN本のデータ電極22のそれぞれに対応するNbitのシリアルの画像データQを、N本のデータ電極22のそれぞれに対応するNbitのパラレルの画像データQに変換して出力する。 Hereinafter, of the image data, the bit image data corresponding to the subfield SFQ is referred to as “image data Q”. That is, the shift register unit 41 receives N-bit serial image data Q corresponding to each of the N data electrodes 22 transmitted from the data conversion unit, and N-bit parallel image data corresponding to each of the N data electrodes 22. Is converted into image data Q and output.
 データラッチ部43は、データドライバ40が駆動するN本(例えば、N=384)のデータ電極22のそれぞれに対応するN個のラッチ44を有する。そして、各ラッチ44は、データ電極22のそれぞれに対応する画像データQを書込みタイミング信号LLPでラッチして出力バッファ部45に出力する。 The data latch unit 43 has N latches 44 corresponding to N (for example, N = 384) data electrodes 22 driven by the data driver 40. Each latch 44 latches the image data Q corresponding to each of the data electrodes 22 with the write timing signal LLP and outputs the latched data to the output buffer unit 45.
 出力バッファ部45は、データドライバ40が駆動するN本(例えば、N=384)のデータ電極22のそれぞれに対応するN個の出力バッファ46を有する。各出力バッファ46は、データ電極22に印加する書込みパルスを発生する。 The output buffer unit 45 includes N output buffers 46 corresponding to each of N (for example, N = 384) data electrodes 22 driven by the data driver 40. Each output buffer 46 generates an address pulse to be applied to the data electrode 22.
 ここで、出力バッファ部45について説明する。 Here, the output buffer unit 45 will be described.
 図7は、本発明の一実施の形態におけるプラズマディスプレイ装置30のデータ電極駆動回路32が有する出力バッファ部45の構成を概略的に示す回路図である。なお、図7には、出力バッファ部45を構成する回路ブロックの一部のみを示し、同じ構成となる他の回路ブロックは省略している。 FIG. 7 is a circuit diagram schematically showing the configuration of the output buffer unit 45 included in the data electrode drive circuit 32 of the plasma display device 30 in one embodiment of the present invention. FIG. 7 shows only a part of the circuit blocks constituting the output buffer unit 45, and other circuit blocks having the same configuration are omitted.
 出力バッファ部45は、N個の高圧側スイッチQHと、N個の低圧側スイッチQLと、N個の回収スイッチQCとを有する。高圧側スイッチQHは書込みパルスの高圧側電圧Vdを出力し、低圧側スイッチQLは書込みパルスの低圧側電圧0(V)を出力する。例えば、N=384であれば、出力バッファ部45は、高圧側スイッチQH(1)~高圧側スイッチQH(384)と、低圧側スイッチQL(1)~低圧側スイッチQL(384)と、回収スイッチQC(1)~回収スイッチQC(384)とを有する。 The output buffer unit 45 has N high-voltage switches QH, N low-voltage switches QL, and N recovery switches QC. The high voltage side switch QH outputs the high voltage side voltage Vd of the write pulse, and the low voltage side switch QL outputs the low voltage side voltage 0 (V) of the write pulse. For example, if N = 384, the output buffer unit 45 collects the high-voltage side switch QH (1) to the high-voltage side switch QH (384), the low-voltage side switch QL (1) to the low-voltage side switch QL (384), A switch QC (1) to a recovery switch QC (384).
 本実施の形態において、回収スイッチQCは、それぞれが1個のPチャンネルMOSFETによって構成される。 In the present embodiment, each recovery switch QC is composed of one P-channel MOSFET.
 そして、図7に示すように、本実施の形態において、各出力バッファ46は、1つの高圧側スイッチQHと1つの低圧側スイッチQLと1つの回収スイッチQCとを組み合わせた回路を有し、その回路は、ラッチ44から出力される信号および書込みタイミング信号LLPによって制御される。そして、この回路は、書込みタイミング信号LLPのタイミングに同期して動作し、ラッチ44から出力される信号もとづき高圧側の電圧Vdまたは低圧側の電圧0(V)を出力する。このようにして、出力バッファ46は書込みパルスを発生し、データ電極22に印加する。 As shown in FIG. 7, in the present embodiment, each output buffer 46 has a circuit in which one high-voltage side switch QH, one low-voltage side switch QL, and one recovery switch QC are combined. The circuit is controlled by a signal output from the latch 44 and a write timing signal LLP. This circuit operates in synchronization with the timing of the write timing signal LLP, and outputs a high voltage Vd or a low voltage 0 (V) based on the signal output from the latch 44. In this way, the output buffer 46 generates a write pulse and applies it to the data electrode 22.
 回収コンデンサC40は、電極間容量に比較して十分に大きい容量を有し、書込みパルスの高圧側電圧Vdより低く、かつ書込みパルスの低圧側電圧0(V)よりも高い中間電圧(Vd/2)に充電されている。 The recovery capacitor C40 has a sufficiently large capacity compared to the interelectrode capacity, and is an intermediate voltage (Vd / 2) lower than the high-voltage side voltage Vd of the write pulse and higher than the low-voltage side voltage 0 (V) of the write pulse. ) Is charged.
 回収コイルL40は、一方の端子が回収コンデンサC40に接続され、他方の端子がデータドライバ40のN個の回収スイッチQC(1)~回収スイッチQC(N)のそれぞれに接続されている。そして、データドライバ40が駆動するデータ電極22の実質的な負荷容量と回収コイルL40とが共振して、N本のデータ電極22のそれぞれの電圧が遷移する。 The recovery coil L40 has one terminal connected to the recovery capacitor C40 and the other terminal connected to each of the N recovery switches QC (1) to QC (N) of the data driver 40. Then, the substantial load capacity of the data electrode 22 driven by the data driver 40 and the recovery coil L40 resonate, and the voltages of the N data electrodes 22 transition.
 このように、データ電極駆動回路32は、書込みパルスの高圧側電圧Vdよりも低く書込みパルスの低圧側電圧0(V)よりも高い中間電圧(Vd/2)に充電された回収コンデンサC40と、回収コンデンサC40に直列に接続された回収コイルL40とをデータドライバ40と同数(例えば、それぞれ15個ずつ)備えるとともに、高圧側電圧Vdを出力する高圧側スイッチQHと低圧側電圧0(V)を出力する低圧側スイッチQLと回収コンデンサC40に接続された回収スイッチQCとを有する出力バッファ46をデータ電極D(1)~データ電極D(m)(例えば、m=5760)のそれぞれに対して備えている。 In this way, the data electrode driving circuit 32 includes a recovery capacitor C40 charged to an intermediate voltage (Vd / 2) lower than the high voltage Vd of the write pulse and higher than the low voltage 0 (V) of the write pulse, The number of recovery coils L40 connected in series to the recovery capacitor C40 is the same as the number of data drivers 40 (for example, 15 each), and the high voltage side switch QH that outputs the high voltage side voltage Vd and the low voltage side voltage 0 (V) are provided. An output buffer 46 having a low voltage side switch QL for outputting and a recovery switch QC connected to the recovery capacitor C40 is provided for each of the data electrodes D (1) to D (m) (for example, m = 5760). ing.
 そして、データ電極駆動回路32は、複数個(例えば、384個)の出力バッファ46を1つのチップに集積した集積回路(データドライバ40)を複数個(例えば、15個)用いて構成されている。 The data electrode drive circuit 32 is configured by using a plurality (for example, 15) of integrated circuits (data drivers 40) in which a plurality of (for example, 384) output buffers 46 are integrated on one chip. .
 そして、データ電極駆動回路32は、後述する書込み期間の書込み周期毎に、書込みパルスの高圧側電圧Vdまたは書込みパルスの低圧側電圧0(V)をデータ電極D(1)~データ電極D(m)のそれぞれに印加する。 The data electrode driving circuit 32 applies the high voltage side voltage Vd of the write pulse or the low voltage side voltage 0 (V) of the write pulse to the data electrode D (1) to the data electrode D (m) for each write cycle of the write period to be described later. ).
 次に、データ電極D(1)~データ電極D(m)に印加する書込みパルスの詳細について、データドライバ40の動作とともに説明する。 Next, details of the address pulse applied to the data electrode D (1) to the data electrode D (m) will be described together with the operation of the data driver 40.
 本実施の形態においては、各書込み周期の最初にそれぞれ第1遷移期間Taを設け、各書込み周期の最後にそれぞれ第2遷移期間Tbを設ける。この書込み周期とは、1つの書込み動作が開始してから終了するまでの期間のことであり、例えば、1つの走査パルスが発生開始してから発生終了するまでの周期のことである。 In the present embodiment, a first transition period Ta is provided at the beginning of each write cycle, and a second transition period Tb is provided at the end of each write cycle. This write cycle is a period from the start to the end of one write operation, for example, a cycle from the start of generation of one scan pulse to the end of generation.
 そして、データ電極22に書込みパルスを印加する際に、データ電極22に印加する電圧を低圧側電圧0(V)から高圧側電圧Vdに遷移させるのは第1遷移期間Taであり、データ電極22に印加する電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移させるのは第2遷移期間Tbである。 When the address pulse is applied to the data electrode 22, the voltage applied to the data electrode 22 is changed from the low voltage side voltage 0 (V) to the high voltage side voltage Vd during the first transition period Ta. It is during the second transition period Tb that the voltage applied to is shifted from the high voltage Vd to the low voltage 0 (V).
 図8は、本発明の一実施の形態におけるプラズマディスプレイ装置30において発生する書込みパルスの一例を概略的に示す図である。 FIG. 8 is a diagram schematically showing an example of the write pulse generated in the plasma display device 30 according to the embodiment of the present invention.
 なお、第1遷移期間Taおよび第2遷移期間Tbについての詳細は後述し、以下、書込み動作を行うときの概略について説明する。 The details of the first transition period Ta and the second transition period Tb will be described later, and the outline when performing the write operation will be described below.
 図8には、書込み期間における3つの書込み周期(書込み周期T(i-1)、書込み周期T(i)、書込み周期T(i+1))を例に挙げて示し、走査電極SC(i-1)~走査電極SC(i+1)およびデータ電極D(j-2)~データ電極D(j+3)に印加する駆動電圧波形を例に挙げて示す。 FIG. 8 shows three address periods (address period T (i−1), address period T (i), address period T (i + 1)) in the address period as an example, and scan electrode SC (i−1) ) To scanning electrode SC (i + 1) and data electrode D (j−2) to driving electrode waveform applied to data electrode D (j + 3) by way of example.
 以下、データ電極D(j-2)~データ電極D(j+3)は、データドライバ40(1)によって駆動されているものとして説明を行う。 Hereinafter, the data electrode D (j-2) to the data electrode D (j + 3) will be described as being driven by the data driver 40 (1).
 また、図8には、書込み周期T(i-1)ではデータ電極D(j-2)、データ電極D(j-1)、データ電極D(j)およびデータ電極D(j+2)には書込みパルスを印加し、データ電極D(j+1)およびデータ電極D(j+3)には書込みパルスを印加せず、書込み周期T(i)ではデータ電極D(j+1)およびデータ電極D(j+3)には書込みパルスを印加し、データ電極D(j-2)、データ電極D(j-1)、データ電極D(j)およびデータ電極D(j+2)には書込みパルスを印加せず、書込み周期T(i+1)ではデータ電極D(j-1)、データ電極D(j)およびデータ電極D(j+3)には書込みパルスを印加し、データ電極D(j-2)、データ電極D(j+1)およびデータ電極D(j+2)には書込みパルスを印加しない例を示す。 In FIG. 8, data electrode D (j-2), data electrode D (j-1), data electrode D (j), and data electrode D (j + 2) are written in address cycle T (i-1). A pulse is applied, no address pulse is applied to the data electrode D (j + 1) and the data electrode D (j + 3), and an address is written to the data electrode D (j + 1) and the data electrode D (j + 3) in the address period T (i). A pulse is applied, an address pulse is not applied to the data electrode D (j-2), the data electrode D (j-1), the data electrode D (j), and the data electrode D (j + 2), and the address period T (i + 1 ), An address pulse is applied to data electrode D (j−1), data electrode D (j) and data electrode D (j + 3), and data electrode D (j−2), data electrode D (j + 1) and data electrode are applied. Write to D (j + 2) An example applying no pulse.
 なお、図8には示していないが、以下に説明する例では、書込み周期T(i-1)の直前の書込み周期T(i-2)では、データ電極D(j-2)~データ電極D(j+3)に書込みパルスを印加していないものとする。 Although not shown in FIG. 8, in the example described below, in the write cycle T (i-2) immediately before the write cycle T (i-1), the data electrode D (j-2) to the data electrode It is assumed that no write pulse is applied to D (j + 3).
 書込み周期T(i-1)において、(i-1)ライン目の走査電極SC(i-1)に電圧Vaの負極性の走査パルスを印加する。 In the write cycle T (i-1), a negative polarity scan pulse of voltage Va is applied to the scan electrode SC (i-1) of the (i-1) th line.
 そして、書込み周期T(i-1)における第1遷移期間Taの開始時刻t11において、データドライバ40(1)が有する出力バッファ部45(1)の回収スイッチQC(j-2)、回収スイッチQC(j-1)、回収スイッチQC(j)および回収スイッチQC(j+2)をオンにする。 Then, at the start time t11 of the first transition period Ta in the write cycle T (i-1), the recovery switch QC (j-2) and the recovery switch QC of the output buffer unit 45 (1) included in the data driver 40 (1). (J-1), the recovery switch QC (j) and the recovery switch QC (j + 2) are turned on.
 これにより、データドライバ40(1)が駆動する複数のデータ電極22の実質的な負荷容量の総和と回収コイルL40(1)とが共振し、回収コンデンサC40(1)から回収コイルL40(1)、および各回収スイッチQC(回収スイッチQC(j-2)、回収スイッチQC(j-1)、回収スイッチQC(j)、回収スイッチQC(j+2))を介して、データ電極D(j-2)、データ電極D(j-1)、データ電極D(j)およびデータ電極D(j+2)に電流が流れ始め、これらのデータ電極22の電圧が上昇し始める。 As a result, the sum of the substantial load capacities of the plurality of data electrodes 22 driven by the data driver 40 (1) resonates with the recovery coil L40 (1), and the recovery coil C40 (1) to the recovery coil L40 (1). , And each recovery switch QC (recovery switch QC (j-2), recovery switch QC (j-1), recovery switch QC (j), recovery switch QC (j + 2)) through the data electrode D (j-2 ), Current begins to flow through the data electrode D (j−1), the data electrode D (j), and the data electrode D (j + 2), and the voltage of these data electrodes 22 begins to rise.
 そして、時刻t12には、これらのデータ電極22の電圧は電圧Vd付近まで上昇する。なお、時刻t11から時刻t12までの時間は、データドライバ40(1)が駆動する複数のデータ電極22の実質的な負荷容量の総和と回収コイルL40(1)との共振周期の1/2の時間にほぼ等しい。 At time t12, the voltage of these data electrodes 22 rises to near the voltage Vd. The time from the time t11 to the time t12 is ½ of the total sum of the substantial load capacities of the plurality of data electrodes 22 driven by the data driver 40 (1) and the resonance period of the recovery coil L40 (1). Approximately equal to time.
 そして、時刻t12において、回収スイッチQC(j-2)、回収スイッチQC(j-1)、回収スイッチQC(j)および回収スイッチQC(j+2)をオフにし、高圧側スイッチQH(j-2)、高圧側スイッチQH(j-1)、高圧側スイッチQH(j)および高圧側スイッチQH(j+2)をオンにして、これらのデータ電極22(データ電極D(j-2)、データ電極D(j-1)、データ電極D(j)およびデータ電極D(j+2))の電圧を高圧側電圧Vdにクランプする。こうして書込み周期T(i-1)における第1遷移期間Taが終了する。 At time t12, the recovery switch QC (j-2), the recovery switch QC (j-1), the recovery switch QC (j) and the recovery switch QC (j + 2) are turned off, and the high voltage side switch QH (j-2) The high voltage side switch QH (j-1), the high voltage side switch QH (j) and the high voltage side switch QH (j + 2) are turned on, and the data electrodes 22 (data electrode D (j-2), data electrode D ( j-1), the voltage of the data electrode D (j) and the data electrode D (j + 2)) is clamped to the high voltage Vd. Thus, the first transition period Ta in the write cycle T (i−1) ends.
 データ電極D(j-2)、データ電極D(j-1)、データ電極D(j)およびデータ電極D(j+2)に電圧Vdの書込みパルスを印加すると、走査パルスと書込みパルスとが同時に印加された(i-1)ライン目の放電セルでは書込み放電が発生する。 When an address pulse of voltage Vd is applied to data electrode D (j-2), data electrode D (j-1), data electrode D (j) and data electrode D (j + 2), a scan pulse and an address pulse are applied simultaneously. Address discharge occurs in the discharge cell on the (i-1) th line.
 そして、書込み放電の発生後から時刻t21までの間に、高圧側スイッチQH(j-2)、高圧側スイッチQH(j-1)、高圧側スイッチQH(j)および高圧側スイッチQH(j+2)をオフにする。 Then, after the occurrence of the address discharge until the time t21, the high voltage side switch QH (j-2), the high voltage side switch QH (j-1), the high voltage side switch QH (j) and the high voltage side switch QH (j + 2) Turn off.
 次に、書込み周期T(i-1)における第2遷移期間Tbが開始する時刻t21において、出力バッファ部45(1)の回収スイッチQC(j-2)、回収スイッチQC(j-1)、回収スイッチQC(j)、回収スイッチQC(j+2)をオンにする。 Next, at the time t21 when the second transition period Tb in the write cycle T (i-1) starts, the recovery switch QC (j-2), the recovery switch QC (j-1) of the output buffer unit 45 (1), The recovery switch QC (j) and the recovery switch QC (j + 2) are turned on.
 これにより、データドライバ40(1)が駆動する複数のデータ電極22の実質的な負荷容量の総和と回収コイルL40(1)とが共振し、データ電極D(j-2)、データ電極D(j-1)、データ電極D(j)およびデータ電極D(j+2)のそれぞれから各回収スイッチQC(回収スイッチQC(j-2)、回収スイッチQC(j-1)、回収スイッチQC(j)、回収スイッチQC(j+2))および回収コイルL40(1)を介して回収コンデンサC40(1)に電流が流れ始め、これらのデータ電極22の電圧が下降し始める。 As a result, the sum of the substantial load capacities of the plurality of data electrodes 22 driven by the data driver 40 (1) and the recovery coil L40 (1) resonate, and the data electrode D (j-2) and the data electrode D ( j-1), the data electrode D (j), and the data electrode D (j + 2), respectively, the recovery switches QC (recovery switch QC (j-2), recovery switch QC (j-1), recovery switch QC (j) , The recovery switch QC (j + 2)) and the recovery coil L40 (1), current begins to flow to the recovery capacitor C40 (1), and the voltage of these data electrodes 22 starts to decrease.
 そして、時刻t22には、これらのデータ電極22の電圧は電圧0(V)付近まで低下する。なお、時刻t21から時刻t22までの時間は、データドライバ40(1)が駆動する複数のデータ電極22の実質的な負荷容量の総和と回収コイルL40(1)との共振周期の1/2の時間にほぼ等しい。 Then, at time t22, the voltage of these data electrodes 22 decreases to near voltage 0 (V). The time from time t21 to time t22 is ½ of the total load capacity of the plurality of data electrodes 22 driven by the data driver 40 (1) and the resonance period of the recovery coil L40 (1). Approximately equal to time.
 そして、時刻t22において、回収スイッチQC(j-2)、回収スイッチQC(j-1)、回収スイッチQC(j)および回収スイッチQC(j+2)をオフにし、低圧側スイッチQL(j-2)、低圧側スイッチQL(j-1)、低圧側スイッチQL(j)および低圧側スイッチQL(j+2)をオンにして、これらのデータ電極22(データ電極D(j-2)、データ電極D(j-1)、データ電極D(j)およびデータ電極D(j+2))の電圧を低圧側電圧0(V)にクランプする。こうして書込み周期T(i-1)における第2遷移期間Tbが終了する。 At time t22, the recovery switch QC (j-2), the recovery switch QC (j-1), the recovery switch QC (j), and the recovery switch QC (j + 2) are turned off, and the low-pressure side switch QL (j-2) The low voltage side switch QL (j−1), the low voltage side switch QL (j) and the low voltage side switch QL (j + 2) are turned on, and the data electrodes 22 (data electrode D (j−2), data electrode D ( j-1), the voltage of the data electrode D (j) and the data electrode D (j + 2)) is clamped to the low voltage 0 (V). Thus, the second transition period Tb in the write cycle T (i−1) ends.
 なお、この間に、(i-1)ライン目の走査電極SC(i-1)の電圧を、電圧Vaから電圧Vcに戻す動作を開始し、走査電極SC(i-1)の電圧が電圧Vcとなって書込み周期T(i-1)が終了する。 During this time, the operation of returning the voltage of the scan electrode SC (i-1) of the (i-1) -th line from the voltage Va to the voltage Vc is started, and the voltage of the scan electrode SC (i-1) becomes the voltage Vc. Thus, the write cycle T (i−1) ends.
 続く書込み周期T(i)において、(i)ライン目の走査電極SC(i)に電圧Vaの負極性の走査パルスを印加する。 In the subsequent address period T (i), a negative scan pulse of voltage Va is applied to the scan electrode SC (i) on the (i) line.
 そして、書込み周期T(i)における第1遷移期間Taの開始時刻t31において、出力バッファ部45(1)の回収スイッチQC(j+1)および回収スイッチQC(j+3)をオンにする。これにより、データドライバ40(1)が駆動する複数のデータ電極22の実質的な負荷容量の総和と回収コイルL40(1)とが共振し、回収コンデンサC40(1)からデータ電極D(j+1)およびデータ電極D(j+3)に電流が流れ始め、これらのデータ電極22の電圧が上昇し始める。 Then, at the start time t31 of the first transition period Ta in the write cycle T (i), the recovery switch QC (j + 1) and the recovery switch QC (j + 3) of the output buffer unit 45 (1) are turned on. As a result, the sum of the substantial load capacities of the plurality of data electrodes 22 driven by the data driver 40 (1) resonates with the recovery coil L40 (1), and the data electrode D (j + 1) is recovered from the recovery capacitor C40 (1). In addition, current starts to flow through the data electrodes D (j + 3), and the voltages of these data electrodes 22 start to rise.
 そして、これらのデータ電極22の電圧が電圧Vd付近まで上昇する時刻t32に、回収スイッチQC(j+1)および回収スイッチQC(j+3)をオフにし、高圧側スイッチQH(j+1)および高圧側スイッチQH(j+3)をオンにして、これらのデータ電極22(データ電極D(j+1)およびデータ電極Dj+3)の電圧を高圧側電圧Vdにクランプする。こうして書込み周期T(i)における第1遷移期間Taが終了する。 At time t32 when the voltage of these data electrodes 22 rises to near the voltage Vd, the recovery switch QC (j + 1) and the recovery switch QC (j + 3) are turned off, and the high voltage side switch QH (j + 1) and the high voltage side switch QH ( j + 3) is turned on, and the voltages of the data electrodes 22 (data electrode D (j + 1) and data electrode Dj + 3) are clamped to the high voltage Vd. Thus, the first transition period Ta in the write cycle T (i) ends.
 このようにして、データ電極D(j+1)およびデータ電極D(j+3)に電圧Vdの書込みパルスを印加すると、走査パルスと書込みパルスとが同時に印加された(i)ライン目の放電セルでは書込み放電が発生する。 In this way, when the address pulse of the voltage Vd is applied to the data electrode D (j + 1) and the data electrode D (j + 3), the address discharge is caused in the discharge cell on the (i) line where the scan pulse and the address pulse are simultaneously applied. Occurs.
 そして、書込み放電の発生後から時刻t41までの間に、高圧側スイッチQH(j+1)をオフにする。なお、続く書込み周期T(i+1)において、データ電極D(j+3)に書込みパルスを印加するため、高圧側スイッチQH(j+3)はオンの状態を維持する。 Then, the high-voltage side switch QH (j + 1) is turned off between the occurrence of the address discharge and the time t41. Note that, in the subsequent address period T (i + 1), the address pulse is applied to the data electrode D (j + 3), so that the high voltage side switch QH (j + 3) is kept on.
 次に、書込み周期T(i)における第2遷移期間Tbが開始する時刻t41において、出力バッファ部45(1)の回収スイッチQC(j+1)をオンにする。 Next, at time t41 when the second transition period Tb in the write cycle T (i) starts, the recovery switch QC (j + 1) of the output buffer unit 45 (1) is turned on.
 これにより、データドライバ40(1)が駆動する複数のデータ電極22の実質的な負荷容量の総和と回収コイルL40(1)とが共振し、データ電極D(j+1)から回収コンデンサC40(1)に電流が流れ始め、データ電極D(j+1)の電圧が下降し始める。 As a result, the sum of the substantial load capacities of the plurality of data electrodes 22 driven by the data driver 40 (1) resonates with the recovery coil L40 (1), and the recovery capacitor C40 (1) is recovered from the data electrode D (j + 1). Current starts to flow, and the voltage of the data electrode D (j + 1) begins to drop.
 そして、データ電極D(j+1)の電圧が電圧0(V)付近まで下降する時刻t42に、回収スイッチQC(j+1)をオフにし、低圧側スイッチQL(j+1)をオンにして、データ電極D(j+1)の電圧を低圧側電圧0(V)にクランプする。こうして書込み周期T(i)における第2遷移期間Tbが終了する。 At time t42 when the voltage of the data electrode D (j + 1) drops to near voltage 0 (V), the recovery switch QC (j + 1) is turned off, the low-voltage side switch QL (j + 1) is turned on, and the data electrode D ( The voltage of j + 1) is clamped to the low voltage 0 (V). Thus, the second transition period Tb in the write cycle T (i) ends.
 なお、この間に、(i)ライン目の走査電極SC(i)の電圧を、電圧Vaから電圧Vcに戻す動作を開始し、走査電極SC(i)の電圧が電圧Vcとなって書込み周期T(i)が終了する。 During this time, the operation of returning the voltage of the scan electrode SC (i) on the (i) line from the voltage Va to the voltage Vc is started, and the voltage of the scan electrode SC (i) becomes the voltage Vc and the write cycle T (I) ends.
 続く書込み周期T(i+1)において、(i+1)ライン目の走査電極SC(i+1)に電圧Vaの負極性の走査パルスを印加する。 In the subsequent write cycle T (i + 1), a negative scan pulse of voltage Va is applied to the scan electrode SC (i + 1) of the (i + 1) th line.
 そして、書込み周期T(i+1)における第1遷移期間Taの開始時刻t51において、出力バッファ部45(1)の回収スイッチQC(j-1)および回収スイッチQC(j)をオンにする。これにより、データドライバ40(1)が駆動する複数のデータ電極22の実質的な負荷容量の総和と回収コイルL40(1)とが共振し、回収コンデンサC40(1)からデータ電極D(j-1)およびデータ電極D(j)に電流が流れ始め、これらのデータ電極22の電圧が上昇し始める。 Then, at the start time t51 of the first transition period Ta in the write cycle T (i + 1), the recovery switch QC (j−1) and the recovery switch QC (j) of the output buffer unit 45 (1) are turned on. As a result, the sum of the substantial load capacities of the plurality of data electrodes 22 driven by the data driver 40 (1) and the recovery coil L40 (1) resonate, and the recovery electrode C40 (1) and the data electrode D (j− 1) and the data electrode D (j) start to flow, and the voltage of these data electrodes 22 begins to rise.
 そして、これらのデータ電極22の電圧が電圧Vd付近まで上昇する時刻t52に、回収スイッチQC(j-1)および回収スイッチQC(j)をオフにし、高圧側スイッチQH(j-1)および高圧側スイッチQH(j)をオンにして、これらのデータ電極22(データ電極D(j-1)およびデータ電極D(j))の電圧を高圧側電圧Vdにクランプする。こうして書込み周期T(i+1)における第1遷移期間Taが終了する。 At time t52 when the voltage of these data electrodes 22 rises to near the voltage Vd, the recovery switch QC (j-1) and the recovery switch QC (j) are turned off, and the high voltage side switch QH (j-1) and the high voltage switch The side switch QH (j) is turned on, and the voltages of the data electrodes 22 (data electrode D (j-1) and data electrode D (j)) are clamped to the high voltage side voltage Vd. Thus, the first transition period Ta in the write cycle T (i + 1) ends.
 なお、書込み周期T(i)の第2遷移期間Tbから高圧側スイッチQH(j+3)はオンの状態を維持しているので、書込み周期T(i+1)の第1遷移期間Taにおいて、データ電極D(j+3)の電圧は高圧側電圧Vdのままである。 Note that, since the high-voltage side switch QH (j + 3) has been on since the second transition period Tb of the write cycle T (i), the data electrode D is output during the first transition period Ta of the write cycle T (i + 1). The voltage (j + 3) remains the high voltage Vd.
 このようにして、データ電極D(j-1)、データ電極D(j)およびデータ電極D(j+3)に電圧Vdの書込みパルスを印加すると、走査パルスと書込みパルスとが同時に印加された(i+1)ライン目の放電セルでは書込み放電が発生する。 In this manner, when the address pulse of the voltage Vd is applied to the data electrode D (j−1), the data electrode D (j), and the data electrode D (j + 3), the scan pulse and the address pulse are simultaneously applied (i + 1). ) Address discharge occurs in the discharge cells on the line.
 そして、書込み放電の発生後から時刻t61までの間に、高圧側スイッチQH(j-1)および高圧側スイッチQH(j+3)をオフにする。なお、続く書込み周期T(i+2)において、データ電極D(j)に書込みパルスを印加するため、高圧側スイッチQH(j)はオンの状態を維持する。 The high-voltage side switch QH (j−1) and the high-voltage side switch QH (j + 3) are turned off after the address discharge occurs until time t61. Note that, in the subsequent address period T (i + 2), the address pulse is applied to the data electrode D (j), so that the high-voltage side switch QH (j) remains on.
 次に、書込み周期T(i+1)における第2遷移期間Tbが開始する時刻t61において、出力バッファ部45(1)の回収スイッチQC(j-1)および回収スイッチQC(j+3)をオンにする。 Next, at time t61 when the second transition period Tb in the write cycle T (i + 1) starts, the recovery switch QC (j−1) and the recovery switch QC (j + 3) of the output buffer unit 45 (1) are turned on.
 これにより、データドライバ40(1)が駆動する複数のデータ電極22の実質的な負荷容量の総和と回収コイルL40(1)とが共振し、データ電極D(j-1)およびデータ電極D(j+3)から回収コンデンサC40(1)に電流が流れ始め、データ電極D(j-1)およびデータ電極D(j+3)の電圧が下降し始める。 As a result, the sum of the substantial load capacities of the plurality of data electrodes 22 driven by the data driver 40 (1) and the recovery coil L40 (1) resonate, and the data electrode D (j-1) and the data electrode D ( The current starts to flow from j + 3) to the recovery capacitor C40 (1), and the voltage of the data electrode D (j−1) and the data electrode D (j + 3) starts to drop.
 そして、データ電極D(j-1)およびデータ電極D(j+3)の電圧が電圧0(V)付近まで下降する時刻t62に、回収スイッチQC(j-1)および回収スイッチQC(j+3)をオフにし、低圧側スイッチQL(j-1)および低圧側スイッチQL(j+3)をオンにして、データ電極D(j-1)およびデータ電極D(j+3)の電圧を低圧側電圧0(V)にクランプする。こうして書込み周期T(i+1)における第2遷移期間Tbが終了する。 The recovery switch QC (j−1) and the recovery switch QC (j + 3) are turned off at time t62 when the voltage of the data electrode D (j−1) and the data electrode D (j + 3) decreases to near the voltage 0 (V). The low voltage side switch QL (j-1) and the low voltage side switch QL (j + 3) are turned on, and the voltage of the data electrode D (j-1) and the data electrode D (j + 3) is set to the low voltage side voltage 0 (V). Clamp. Thus, the second transition period Tb in the write cycle T (i + 1) ends.
 なお、この間に、(i+1)ライン目の走査電極SC(i+1)の電圧を、電圧Vaから電圧Vcに戻す動作を開始し、走査電極SC(i+1)の電圧が電圧Vcとなって書込み周期T(i+1)が終了する。 During this time, the operation of returning the voltage of the scan electrode SC (i + 1) of the (i + 1) -th line from the voltage Va to the voltage Vc is started, and the voltage of the scan electrode SC (i + 1) becomes the voltage Vc and the write cycle T (I + 1) ends.
 以上の動作をまとめると、本実施の形態における出力バッファ46は、出力電圧を低圧側電圧0(V)から高圧側電圧Vdに遷移させるときは次のように動作する。すなわち、書込み周期のそれぞれに設けられた第1遷移期間Taにおいて、回収スイッチQCをオンにして、データドライバ40が駆動する複数のデータ電極22の実質的な負荷容量の総和と回収コイルL40とを共振させ、出力電圧を上昇させる。そして、出力電圧が電圧Vdに近づいたら、回収スイッチQCをオフにし、高圧側スイッチQHをオンにして、出力電圧を高圧側電圧Vdにクランプする。 Summarizing the above operations, the output buffer 46 in the present embodiment operates as follows when the output voltage is changed from the low voltage 0 (V) to the high voltage Vd. That is, in the first transition period Ta provided in each write cycle, the recovery switch QC is turned on, and the sum of substantial load capacities of the plurality of data electrodes 22 driven by the data driver 40 and the recovery coil L40 are Resonate and increase the output voltage. When the output voltage approaches the voltage Vd, the recovery switch QC is turned off, the high-voltage side switch QH is turned on, and the output voltage is clamped to the high-voltage side voltage Vd.
 また、出力バッファ46は、出力電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移させるときは次のように動作する。すなわち、書込み周期のそれぞれに設けられかつ第1遷移期間Taと時間的に重ならない(時間的に分離した)第2遷移期間Tbにおいて、回収スイッチQCをオンにして、データドライバ40が駆動する複数のデータ電極22の実質的な負荷容量の総和と回収コイルL40とを共振させ、出力電圧を下降させる。そして、出力電圧が低圧側電圧0(V)に近づいたら、回収スイッチQCをオフにし、低圧側スイッチQLをオンにして、出力電圧を低圧側電圧0(V)にクランプする。 The output buffer 46 operates as follows when the output voltage is changed from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V). That is, in the second transition period Tb that is provided in each of the write cycles and does not overlap with the first transition period Ta in time (separated in time), the recovery switch QC is turned on to drive the data driver 40. The total sum of the load capacities of the data electrodes 22 and the recovery coil L40 are resonated to lower the output voltage. When the output voltage approaches the low voltage 0 (V), the recovery switch QC is turned off, the low voltage switch QL is turned on, and the output voltage is clamped to the low voltage 0 (V).
 これにより、一定の電圧Vdを有する電源からデータ電極駆動回路32に電力を供給して安定した書込み動作を行うとともに、データ電極駆動回路32の消費電力を削減することができる。その理由について以下に説明する。 Thus, power can be supplied from the power supply having a constant voltage Vd to the data electrode driving circuit 32 to perform a stable addressing operation, and the power consumption of the data electrode driving circuit 32 can be reduced. The reason will be described below.
 上述したように、本実施の形態においては、データ電極22に印加する電圧を低圧側電圧0(V)から高圧側電圧Vdに遷移させるときには、データ電極22の負荷容量と回収コイルL40とを共振させ、回収コンデンサC40からデータ電極22に電流を流すことでデータ電極22の電圧を電圧Vd付近まで上昇させる。 As described above, in the present embodiment, when the voltage applied to the data electrode 22 is shifted from the low voltage side voltage 0 (V) to the high voltage side voltage Vd, the load capacitance of the data electrode 22 and the recovery coil L40 are resonated. The voltage of the data electrode 22 is raised to the vicinity of the voltage Vd by causing a current to flow from the recovery capacitor C40 to the data electrode 22.
 データ電極22に印加する電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移させるときには、データ電極22の負荷容量と回収コイルL40とを共振させ、データ電極22から回収コンデンサC40に電流を流すことでデータ電極22の電圧を低圧側電圧0(V)付近まで下降させる。 When the voltage applied to the data electrode 22 is changed from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V), the load capacitance of the data electrode 22 and the recovery coil L40 are resonated, and a current is supplied from the data electrode 22 to the recovery capacitor C40. By flowing, the voltage of the data electrode 22 is lowered to near the low voltage 0 (V).
 そして、これらの動作において、電力原となるのは回収コンデンサC40であり、電圧Vdの電源からデータ電極22への電力供給は生じない。 In these operations, the power source is the recovery capacitor C40, and power supply from the power source of the voltage Vd to the data electrode 22 does not occur.
 電圧Vdの電源からデータ電極22へ電力の供給が行われるのは、データ電極22の電圧が電圧Vd付近まで上昇した後にデータ電極22の電圧を高圧側電圧Vdにクランプさせるとき、および放電セルに書込み放電が発生するときに生じる放電電流を供給するときに限られる。 The power is supplied from the power source of the voltage Vd to the data electrode 22 when the voltage of the data electrode 22 is increased to the vicinity of the voltage Vd after the voltage of the data electrode 22 is clamped to the high voltage Vd and to the discharge cell. This is limited to supplying a discharge current generated when an address discharge occurs.
 したがって、本実施の形態によれば、データ電極22を駆動する際に、データ電極22の負荷容量の充放電に使用する電力を大幅に削減することができる。 Therefore, according to the present embodiment, when the data electrode 22 is driven, the power used for charging and discharging the load capacity of the data electrode 22 can be greatly reduced.
 次に、データ電極22の実質的な負荷容量を求める方法を、負荷算出部52の構成とともに詳細に説明する。 Next, a method for obtaining the substantial load capacity of the data electrode 22 will be described in detail together with the configuration of the load calculation unit 52.
 上述したように、1本のデータ電極D(j)の負荷容量は、表示電極対14との間に生じる容量Cgと、右側に隣接するデータ電極D(j+1)との間に生じる容量Ccと、左側に隣接するデータ電極D(j-1)との間に生じる容量Ccとを合計した容量(Cg+2Cc)である。 As described above, the load capacitance of one data electrode D (j) includes the capacitance Cg generated between the display electrode pair 14 and the capacitance Cc generated between the data electrode D (j + 1) adjacent to the right side. , The total capacitance (Cg + 2Cc) of the capacitance Cc generated between the data electrode D (j−1) adjacent on the left side.
 しかし、データ電極D(j)に印加する電圧を遷移させる際に影響する実質的な負荷容量は、隣接するデータ電極D(j+1)およびデータ電極D(j-1)に印加する電圧に依存して変化する。 However, the substantial load capacitance that affects the transition of the voltage applied to the data electrode D (j) depends on the voltage applied to the adjacent data electrode D (j + 1) and data electrode D (j−1). Change.
 例えば、図8に示した書込み周期T(i-1)の第1遷移期間Taにおいて、データ電極D(j-1)に印加する電圧は、低圧側電圧0(V)から高圧側電圧Vdに遷移する。そして、データ電極D(j-1)に隣接するデータ電極D(j-2)およびデータ電極D(j)のそれぞれに印加する電圧も、同様に低圧側電圧0(V)から高圧側電圧Vdに遷移する。 For example, in the first transition period Ta of the write cycle T (i−1) shown in FIG. 8, the voltage applied to the data electrode D (j−1) is changed from the low voltage side voltage 0 (V) to the high voltage side voltage Vd. Transition. Similarly, the voltage applied to each of the data electrode D (j-2) and the data electrode D (j) adjacent to the data electrode D (j-1) is also changed from the low voltage side voltage 0 (V) to the high voltage side voltage Vd. Transition to.
 そのため、書込み周期T(i-1)の第1遷移期間Taにおけるデータ電極D(j-1)に関しては、電圧が同じ方向に遷移するデータ電極D(j-2)との間の容量Ccおよびデータ電極D(j)との間の容量Ccを無視することができる。したがって、書込み周期T(i-1)の第1遷移期間Taにおけるデータ電極D(j-1)の実質的な負荷容量は容量Cgとなる。 Therefore, with respect to the data electrode D (j−1) in the first transition period Ta of the write cycle T (i−1), the capacitance Cc between the data electrode D (j−2) whose voltage changes in the same direction and The capacitance Cc between the data electrode D (j) can be ignored. Therefore, the substantial load capacitance of the data electrode D (j−1) in the first transition period Ta of the write cycle T (i−1) is the capacitance Cg.
 図8に示した書込み周期T(i-1)の第1遷移期間Taにおいて、データ電極D(j)に印加する電圧は、低圧側電圧0(V)から高圧側電圧Vdに遷移する。そして、データ電極D(j)に隣接するデータ電極D(j-1)に印加する電圧も、同様に低圧側電圧0(V)から高圧側電圧Vdに遷移する。しかし、データ電極D(j)に隣接するデータ電極D(j+1)に印加する電圧は、低圧側電圧0(V)のまま変化しない。 In the first transition period Ta of the write cycle T (i−1) shown in FIG. 8, the voltage applied to the data electrode D (j) transitions from the low voltage side voltage 0 (V) to the high voltage side voltage Vd. The voltage applied to the data electrode D (j−1) adjacent to the data electrode D (j) similarly changes from the low voltage side voltage 0 (V) to the high voltage side voltage Vd. However, the voltage applied to the data electrode D (j + 1) adjacent to the data electrode D (j) remains unchanged at the low voltage 0 (V).
 そのため、書込み周期T(i-1)の第1遷移期間Taにおけるデータ電極D(j)に関しては、電圧が同じ方向に遷移するデータ電極D(j-1)との間の容量Ccは無視することができる。しかし、データ電極D(j+1)との間の容量Ccに関しては無視することができない。したがって、書込み周期T(i-1)の第1遷移期間Taにおけるデータ電極D(j)の実質的な負荷容量は容量(Cg+Cc)となる。 Therefore, regarding the data electrode D (j) in the first transition period Ta of the write cycle T (i−1), the capacitance Cc between the data electrode D (j−1) whose voltage transitions in the same direction is ignored. be able to. However, the capacitance Cc between the data electrode D (j + 1) cannot be ignored. Therefore, the substantial load capacitance of the data electrode D (j) in the first transition period Ta of the write cycle T (i−1) is the capacitance (Cg + Cc).
 図8に示した書込み周期T(i-1)の第1遷移期間Taにおいて、データ電極D(j+2)に印加する電圧は、低圧側電圧0(V)から高圧側電圧Vdに遷移する。しかし、データ電極D(j+2)に隣接するデータ電極D(j+1)およびデータ電極D(j+3)に印加する電圧は、低圧側電圧0(V)のまま変化しない。 In the first transition period Ta of the write cycle T (i−1) shown in FIG. 8, the voltage applied to the data electrode D (j + 2) transitions from the low voltage side voltage 0 (V) to the high voltage side voltage Vd. However, the voltage applied to the data electrode D (j + 1) and the data electrode D (j + 3) adjacent to the data electrode D (j + 2) remains the low voltage 0 (V).
 そのため、書込み周期T(i-1)の第1遷移期間Taにおけるデータ電極D(j+2)に関しては、データ電極D(j+1)との間の容量Ccおよびデータ電極D(j+3)との間の容量Ccを、ともに無視することができない。したがって、書込み周期T(i-1)の第1遷移期間Taにおけるデータ電極D(j+2)の実質的な負荷容量は容量(Cg+2Cc)となる。 Therefore, regarding the data electrode D (j + 2) in the first transition period Ta of the write cycle T (i−1), the capacitance Cc between the data electrode D (j + 1) and the capacitance between the data electrode D (j + 3). Both Cc cannot be ignored. Therefore, the substantial load capacity of the data electrode D (j + 2) in the first transition period Ta of the write cycle T (i−1) is the capacity (Cg + 2Cc).
 これらの現象は、データ電極22に印加する電圧が高圧側電圧Vdから低圧側電圧0(V)に遷移する第2遷移期間Tbにおいても、第1遷移期間Taと同様である。 These phenomena are the same as those in the first transition period Ta in the second transition period Tb in which the voltage applied to the data electrode 22 transitions from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V).
 例えば、データ電極D(j-1)に印加する電圧が高圧側電圧Vdから低圧側電圧0(V)に遷移するとき、データ電極D(j-1)に隣接するデータ電極D(j-2)およびデータ電極D(j)に印加する電圧も同様に高圧側電圧Vdから低圧側電圧0(V)に遷移すれば、データ電極D(j-1)の第2遷移期間Tbにおける実質的な負荷容量は容量Cgとなる。 For example, when the voltage applied to the data electrode D (j−1) transitions from the high voltage side voltage Vd to the low voltage side voltage 0 (V), the data electrode D (j−2) adjacent to the data electrode D (j−1). ) And the voltage applied to the data electrode D (j) are also substantially changed in the second transition period Tb of the data electrode D (j−1) if the voltage is changed from the high voltage Vd to the low voltage 0 (V). The load capacity is the capacity Cg.
 また、データ電極D(j)に印加する電圧が高圧側電圧Vdから低圧側電圧0(V)に遷移するとき、データ電極D(j)に隣接するデータ電極D(j-1)に印加する電圧は同様に高圧側電圧Vdから低圧側電圧0(V)に遷移するが、データ電極D(j)に隣接するデータ電極D(j+1)に印加する電圧は低圧側電圧0(V)のまま(あるいは高圧側電圧Vdのまま)変化しなければ、データ電極D(j)の第2遷移期間Tbにおける実質的な負荷容量は容量(Cg+Cc)となる。 Further, when the voltage applied to the data electrode D (j) transitions from the high voltage side voltage Vd to the low voltage side voltage 0 (V), it is applied to the data electrode D (j−1) adjacent to the data electrode D (j). Similarly, the voltage transits from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V), but the voltage applied to the data electrode D (j + 1) adjacent to the data electrode D (j) remains the low-voltage side voltage 0 (V). If it does not change (or remains at the high-voltage side voltage Vd), the substantial load capacity in the second transition period Tb of the data electrode D (j) is the capacity (Cg + Cc).
 また、データ電極D(j+2)に印加する電圧が高圧側電圧Vdから低圧側電圧0(V)に遷移するとき、データ電極D(j+2)に隣接するデータ電極D(j+1)およびデータ電極D(j+3)に印加する電圧が低圧側電圧0(V)のまま(あるいは高圧側電圧Vdのまま)変化しなければ、データ電極D(j+2)の第2遷移期間Tbにおける実質的な負荷容量は容量(Cg+2Cc)となる。 When the voltage applied to the data electrode D (j + 2) transitions from the high voltage side voltage Vd to the low voltage side voltage 0 (V), the data electrode D (j + 1) and the data electrode D (( If the voltage applied to j + 3) remains unchanged at the low voltage 0 (V) (or remains at the high voltage Vd), the substantial load capacitance of the data electrode D (j + 2) in the second transition period Tb is the capacitance (Cg + 2Cc).
 このように、データ電極22に印加する電圧を遷移させる際に影響する実質的な負荷容量は、画像データに応じて変化する。すなわち、注目するデータ電極22に印加する電圧と、注目するデータ電極22に隣接する2つのデータ電極22に印加する電圧とが同様に遷移するときには、注目するデータ電極22における実質的な負荷容量は容量Cgとなる。また、注目するデータ電極22に印加する電圧と、注目するデータ電極22に隣接する一方のデータ電極22に印加する電圧だけが同様に遷移するときには、注目するデータ電極22における実質的な負荷容量は容量(Cg+Cc)となる。また、注目するデータ電極22に印加する電圧が遷移し、注目するデータ電極22に隣接する2つのデータ電極22に印加する電圧がともに変化しないときには、注目するデータ電極22における実質的な負荷容量は容量(Cg+2Cc)となる。 As described above, the substantial load capacity that affects the transition of the voltage applied to the data electrode 22 varies according to the image data. That is, when the voltage applied to the data electrode 22 of interest and the voltage applied to the two data electrodes 22 adjacent to the data electrode 22 of interest transition in the same way, the substantial load capacitance at the data electrode 22 of interest is The capacity is Cg. In addition, when only the voltage applied to the data electrode 22 of interest and the voltage applied to one data electrode 22 adjacent to the data electrode 22 of interest change in the same manner, the substantial load capacitance at the data electrode 22 of interest is Capacity (Cg + Cc). In addition, when the voltage applied to the data electrode 22 of interest transitions and the voltages applied to the two data electrodes 22 adjacent to the data electrode 22 of interest do not change, the substantial load capacitance at the data electrode 22 of interest is Capacity (Cg + 2Cc).
 そして、負荷算出部52(p)は、データドライバ40(p)が駆動する複数のデータ電極22のそれぞれにおける実質的な負荷容量を算出し、算出した負荷容量の総和を算出する。すなわち、負荷算出部52(p)は、データ電極22の実質的な負荷容量を、書込み期間にデータ電極22に印加する電圧が、互いに隣接するデータ電極22間で同相に変化するか否かによって算出する。そして、データドライバ40(p)が駆動する複数のデータ電極22の負荷容量の総和を算出する。 Then, the load calculation unit 52 (p) calculates a substantial load capacity in each of the plurality of data electrodes 22 driven by the data driver 40 (p), and calculates the total of the calculated load capacity. That is, the load calculation unit 52 (p) determines the substantial load capacitance of the data electrode 22 depending on whether or not the voltage applied to the data electrode 22 during the writing period changes in phase between the adjacent data electrodes 22. calculate. Then, the sum of the load capacities of the plurality of data electrodes 22 driven by the data driver 40 (p) is calculated.
 図9は、本発明の一実施の形態におけるプラズマディスプレイ装置30の負荷算出部52の構成を概略的に示す回路図である。なお、図9には、負荷算出部52を構成する回路ブロックの一部のみを示し、同じ構成となる他の回路ブロックは省略している。 FIG. 9 is a circuit diagram schematically showing the configuration of the load calculation unit 52 of the plasma display device 30 in one embodiment of the present invention. In FIG. 9, only a part of the circuit blocks configuring the load calculation unit 52 is illustrated, and other circuit blocks having the same configuration are omitted.
 負荷算出部52は、シフトレジスタ部61と、負荷算出部63と、第1負荷総和部65と、第2負荷総和部66とを有する。 The load calculation unit 52 includes a shift register unit 61, a load calculation unit 63, a first load summation unit 65, and a second load summation unit 66.
 シフトレジスタ部61は、シフトレジスタである。シフトレジスタ部61は、データドライバ40が駆動するN本(例えば、N=384)のデータ電極22と同じ数、もしくはそれ以上の数のラッチ62を有する。各ラッチ62は直列に接続され、クロック信号(クロックDck)に同期して、入力信号を後段のラッチ62に順送り(シフト)する。そして、上述したデータ変換部(図示せず)から送信されるシリアルデータをパラレルデータに変換する。 The shift register unit 61 is a shift register. The shift register unit 61 includes the same number or more latches 62 as the N (for example, N = 384) data electrodes 22 driven by the data driver 40. Each latch 62 is connected in series, and forwards (shifts) the input signal to the subsequent latch 62 in synchronization with the clock signal (clock Dck). And the serial data transmitted from the data converter (not shown) mentioned above are converted into parallel data.
 すなわち、シフトレジスタ部61は、シフトレジスタ部41と同様に、サブフィールド毎にデータ変換部から送信されてくるN本のデータ電極22のそれぞれに対応するNbitのシリアルの画像データQを、N本のデータ電極22のそれぞれに対応するNbitのパラレルの画像データQに変換して出力する。 That is, like the shift register unit 41, the shift register unit 61 converts N pieces of serial image data Q corresponding to each of the N data electrodes 22 transmitted from the data conversion unit for each subfield into N pieces. Are converted into N-bit parallel image data Q corresponding to each of the data electrodes 22 and output.
 負荷算出部63は、データドライバ40が駆動するN本(例えば、N=384)のデータ電極22のそれぞれに対応するN個の電極負荷算出部64を有する。 The load calculation unit 63 includes N electrode load calculation units 64 corresponding to each of N (for example, N = 384) data electrodes 22 driven by the data driver 40.
 電極負荷算出部64は、それぞれが、1ラインディレイ71、論理ゲート72、論理ゲート74、論理ゲート75、論理ゲート76、論理ゲート77、論理ゲート78、論理ゲート82、論理ゲート84、論理ゲート85、論理ゲート86、論理ゲート87、論理ゲート88を有する。 Each of the electrode load calculation units 64 includes a one-line delay 71, a logic gate 72, a logic gate 74, a logic gate 75, a logic gate 76, a logic gate 77, a logic gate 78, a logic gate 82, a logic gate 84, and a logic gate 85. , Logic gate 86, logic gate 87, and logic gate 88.
 論理ゲート72および論理ゲート82は2入力1出力のアンドゲート(論理積演算を行う論理回路)である。論理ゲート74、論理ゲート75、論理ゲート76、論理ゲート78、論理ゲート84、論理ゲート85、論理ゲート86および論理ゲート88は3入力1出力のアンドゲートである。論理ゲート77および論理ゲート87は2入力1出力のオアゲート(論理和演算を行う論理回路)である。また、図9において、各論理ゲートの入力端子にある小さい丸印はインバータ(論理反転を行う論理回路)である。 The logic gate 72 and the logic gate 82 are 2-input and 1-output AND gates (logic circuits that perform a logical product operation). The logic gate 74, the logic gate 75, the logic gate 76, the logic gate 78, the logic gate 84, the logic gate 85, the logic gate 86, and the logic gate 88 are three-input one-output AND gates. The logic gate 77 and the logic gate 87 are two-input one-output OR gates (logic circuits that perform a logical sum operation). In FIG. 9, the small circles at the input terminals of the logic gates are inverters (logic circuits that perform logic inversion).
 以下、データ電極D(j)における実質的な負荷容量を算出する場合を例に挙げて電極負荷算出部64の動作を説明する。したがって、以下に説明する電極負荷算出部64の動作は電極負荷算出部64(j)の動作となるが、他の電極負荷算出部64も電極負荷算出部64(j)と同様の構成、動作である。 Hereinafter, the operation of the electrode load calculation unit 64 will be described by taking as an example the case of calculating the substantial load capacity in the data electrode D (j). Therefore, the operation of the electrode load calculation unit 64 described below is the operation of the electrode load calculation unit 64 (j), but the other electrode load calculation units 64 have the same configuration and operation as the electrode load calculation unit 64 (j). It is.
 1ラインディレイ71(j)はデータ電極D(j)に対応する画像データQ(j)を1ライン遅延して画像データDQ(j)を出力する。 The 1-line delay 71 (j) delays the image data Q (j) corresponding to the data electrode D (j) by 1 line and outputs the image data DQ (j).
 論理ゲート72(j)および論理ゲート82(j)は、画像データDQ(j)と画像データQ(j)とにもとづき、データ電極D(j)に印加する電圧の変化を検出する。 The logic gate 72 (j) and the logic gate 82 (j) detect a change in voltage applied to the data electrode D (j) based on the image data DQ (j) and the image data Q (j).
 画像データDQ(j)が「L」で画像データQ(j)が「H」のとき、論理ゲート72(j)の出力は「H」となる。したがって、論理ゲート72(j)の出力が「H」であれば、画像データQ(j)が「L」から「H」へ変化し、データ電極D(j)に印加する電圧が低圧側電圧0(V)から高圧側電圧Vdへ(「L」から「H」へ)変化すると判断することができる。 When the image data DQ (j) is “L” and the image data Q (j) is “H”, the output of the logic gate 72 (j) is “H”. Therefore, if the output of the logic gate 72 (j) is “H”, the image data Q (j) changes from “L” to “H”, and the voltage applied to the data electrode D (j) is the low voltage side voltage. It can be determined that the voltage changes from 0 (V) to the high-voltage side voltage Vd (from “L” to “H”).
 画像データDQ(j)が「H」で画像データQ(j)が「L」のとき、論理ゲート82(j)の出力は「H」となる。したがって、論理ゲート82(j)の出力が「H」であれば、画像データQ(j)が「H」から「L」へ変化し、データ電極D(j)に印加する電圧が高圧側電圧Vdから低圧側電圧0(V)へ(「H」から「L」へ)変化すると判断することができる。 When the image data DQ (j) is “H” and the image data Q (j) is “L”, the output of the logic gate 82 (j) is “H”. Therefore, if the output of the logic gate 82 (j) is “H”, the image data Q (j) changes from “H” to “L”, and the voltage applied to the data electrode D (j) is the high voltage side voltage. It can be determined that the voltage changes from Vd to the low voltage 0 (V) (from “H” to “L”).
 上記以外のときには、論理ゲート72(j)の出力および論理ゲート82(j)の出力は「L」となる。このとき、画像データQ(j)は「L」の状態もしくは「H」の状態を維持しており、データ電極D(j)に印加する電圧も低圧側電圧0(V)(「L」)の状態もしくは高圧側電圧Vd(「H」)の状態を維持していると判断することができる。 In other cases, the output of the logic gate 72 (j) and the output of the logic gate 82 (j) are “L”. At this time, the image data Q (j) maintains the “L” state or the “H” state, and the voltage applied to the data electrode D (j) is also the low-voltage side voltage 0 (V) (“L”). Or the high voltage side voltage Vd (“H”).
 図9に示す論理ゲート74(j)、論理ゲート75(j)、論理ゲート76(j)、論理ゲート77(j)、論理ゲート78(j)、論理ゲート84(j)、論理ゲート85(j)、論理ゲート86(j)、論理ゲート87(j)および論理ゲート88(j)で構成された論理回路は、データ電極D(j)と、データ電極D(j)に隣接するデータ電極D(j-1)およびデータ電極D(j+1)とに対応する画像データの変化を検出するための回路である。そして、本実施の形態では、その検出結果にもとづき、データ電極D(j)の実質的な負荷容量の大きさを算出する。 The logic gate 74 (j), logic gate 75 (j), logic gate 76 (j), logic gate 77 (j), logic gate 78 (j), logic gate 84 (j), logic gate 85 ( j), a logic gate 86 (j), a logic gate 87 (j), and a logic gate 88 (j) are composed of a data electrode D (j) and a data electrode adjacent to the data electrode D (j). This is a circuit for detecting a change in image data corresponding to D (j−1) and data electrode D (j + 1). In the present embodiment, the substantial load capacitance of the data electrode D (j) is calculated based on the detection result.
 以下、上述した論理回路の具体的な動作について説明する。以下の説明では、データ電極D(j)の実質的な負荷容量の大きさを算出するときの例を説明する。なお、データ電極D(j)に隣接するデータ電極22はデータ電極D(j-1)およびデータ電極D(j+1)であるものとする。 Hereinafter, specific operations of the above-described logic circuit will be described. In the following description, an example in which the substantial load capacity of the data electrode D (j) is calculated will be described. It is assumed that the data electrode 22 adjacent to the data electrode D (j) is the data electrode D (j−1) and the data electrode D (j + 1).
 データ電極D(j)の画像データQ(j)が「L」から「H」へ変化し、かつデータ電極D(j-1)の画像データQ(j-1)およびデータ電極D(j+1)の画像データQ(j+1)がともに変化しない(「L」の状態を維持、もしくは「H」の状態を維持)ときには、論理ゲート74(j)の出力は「H」となる。このとき、データ電極D(j)の実質的な負荷容量は、上述したように容量(Cg+2Cc)である。また、データ電極D(j)の画像データQ(j)が「L」から「H」へ変化するのは第1遷移期間Taである。したがって、論理ゲート74(j)の出力が「H」であれば、第1遷移期間Taにおけるデータ電極D(j)の実質的な負荷容量は容量(Cg+2Cc)であると判断することができる。 The image data Q (j) of the data electrode D (j) changes from “L” to “H”, and the image data Q (j−1) and the data electrode D (j + 1) of the data electrode D (j−1) When the image data Q (j + 1) is not changed (the “L” state is maintained or the “H” state is maintained), the output of the logic gate 74 (j) is “H”. At this time, the substantial load capacity of the data electrode D (j) is the capacity (Cg + 2Cc) as described above. The image data Q (j) of the data electrode D (j) changes from “L” to “H” during the first transition period Ta. Therefore, if the output of the logic gate 74 (j) is “H”, it can be determined that the substantial load capacitance of the data electrode D (j) in the first transition period Ta is the capacitance (Cg + 2Cc).
 データ電極D(j)の画像データQ(j)が「L」から「H」へ変化し、かつデータ電極D(j-1)の画像データQ(j-1)とデータ電極D(j+1)の画像データQ(j+1)のいずれか一方の画像データだけが「L」から「H」へ変化するときには、論理ゲート77(j)の出力は「H」となる。このとき、データ電極D(j)の実質的な負荷容量は、上述したように容量(Cg+Cc)である。したがって、論理ゲート77(j)の出力が「H」であれば、第1遷移期間Taにおけるデータ電極D(j)の実質的な負荷容量は容量(Cg+Cc)であると判断することができる。 The image data Q (j) of the data electrode D (j) changes from “L” to “H”, and the image data Q (j−1) and the data electrode D (j + 1) of the data electrode D (j−1) When only one of the image data Q (j + 1) is changed from “L” to “H”, the output of the logic gate 77 (j) becomes “H”. At this time, the substantial load capacity of the data electrode D (j) is the capacity (Cg + Cc) as described above. Therefore, if the output of the logic gate 77 (j) is “H”, it can be determined that the substantial load capacitance of the data electrode D (j) in the first transition period Ta is the capacitance (Cg + Cc).
 データ電極D(j)の画像データQ(j)が「L」から「H」へ変化し、かつデータ電極D(j-1)の画像データQ(j-1)およびデータ電極D(j+1)の画像データQ(j+1)がともに「L」から「H」へ変化するときには、論理ゲート78(j)の出力は「H」となる。このとき、データ電極D(j)の実質的な負荷容量は、上述したように容量Cgである。したがって、論理ゲート78(j)の出力が「H」であれば、第1遷移期間Taにおけるデータ電極D(j)の実質的な負荷容量は容量Cgであると判断することができる。 The image data Q (j) of the data electrode D (j) changes from “L” to “H”, and the image data Q (j−1) and the data electrode D (j + 1) of the data electrode D (j−1) When the image data Q (j + 1) of both change from “L” to “H”, the output of the logic gate 78 (j) becomes “H”. At this time, the substantial load capacity of the data electrode D (j) is the capacity Cg as described above. Therefore, if the output of the logic gate 78 (j) is “H”, it can be determined that the substantial load capacitance of the data electrode D (j) in the first transition period Ta is the capacitance Cg.
 それ以外のとき、例えば、データ電極D(j)の画像データQ(j)が「L」の状態を維持、もしくは「H」の状態を維持するときには、論理ゲート74(j)の出力、論理ゲート77(j)の出力および論理ゲート78(j)の出力は全て「L」となる。このようなときにはデータ電極D(j)に電圧変化が生じないので、データ電極D(j)の実質的な負荷容量を「0」とみなしてもかまわない。したがって、論理ゲート74(j)、論理ゲート77(j)および論理ゲート78(j)の出力が全て「L」のときには、第1遷移期間Taにおけるデータ電極D(j)の実質的な負荷容量は「0」であるものとする。 In other cases, for example, when the image data Q (j) of the data electrode D (j) maintains the “L” state or the “H” state, the output of the logic gate 74 (j), the logic The output of the gate 77 (j) and the output of the logic gate 78 (j) are all “L”. In such a case, since no voltage change occurs in the data electrode D (j), the substantial load capacitance of the data electrode D (j) may be regarded as “0”. Therefore, when the outputs of logic gate 74 (j), logic gate 77 (j), and logic gate 78 (j) are all “L”, the substantial load capacitance of data electrode D (j) in first transition period Ta Is “0”.
 データ電極D(j)の画像データQ(j)が「H」から「L」へ変化し、かつデータ電極D(j-1)の画像データQ(j-1)およびデータ電極D(j+1)の画像データQ(j+1)がともに変化しない(「L」の状態を維持、もしくは「H」の状態を維持)ときには、論理ゲート84(j)の出力は「H」となる。このとき、データ電極D(j)の実質的な負荷容量は、上述したように容量(Cg+2Cc)である。また、データ電極D(j)の画像データQ(j)が「H」から「L」へ変化するのは第2遷移期間Tbである。したがって、論理ゲート84(j)の出力が「H」であれば、第2遷移期間Tbにおけるデータ電極D(j)の実質的な負荷容量は容量(Cg+2Cc)であると判断することができる。 The image data Q (j) of the data electrode D (j) changes from “H” to “L”, and the image data Q (j−1) and the data electrode D (j + 1) of the data electrode D (j−1) When the image data Q (j + 1) is not changed (the “L” state is maintained or the “H” state is maintained), the output of the logic gate 84 (j) is “H”. At this time, the substantial load capacity of the data electrode D (j) is the capacity (Cg + 2Cc) as described above. The image data Q (j) of the data electrode D (j) changes from “H” to “L” during the second transition period Tb. Therefore, if the output of the logic gate 84 (j) is “H”, it can be determined that the substantial load capacitance of the data electrode D (j) in the second transition period Tb is the capacitance (Cg + 2Cc).
 データ電極D(j)の画像データQ(j)が「H」から「L」へ変化し、かつデータ電極D(j-1)の画像データQ(j-1)とデータ電極D(j+1)の画像データQ(j+1)のいずれか一方の画像データだけが「H」から「L」へ変化するときには、論理ゲート87(j)の出力は「H」となる。このとき、データ電極D(j)の実質的な負荷容量は、上述したように容量(Cg+Cc)である。したがって、論理ゲート87(j)の出力が「H」であれば、第2遷移期間Tbにおけるデータ電極D(j)の実質的な負荷容量は容量(Cg+Cc)であると判断することができる。 The image data Q (j) of the data electrode D (j) changes from “H” to “L”, and the image data Q (j−1) and the data electrode D (j + 1) of the data electrode D (j−1) When only one of the image data Q (j + 1) is changed from “H” to “L”, the output of the logic gate 87 (j) becomes “H”. At this time, the substantial load capacity of the data electrode D (j) is the capacity (Cg + Cc) as described above. Therefore, if the output of the logic gate 87 (j) is “H”, it can be determined that the substantial load capacitance of the data electrode D (j) in the second transition period Tb is the capacitance (Cg + Cc).
 データ電極D(j)の画像データQ(j)が「H」から「L」へ変化し、かつデータ電極D(j-1)の画像データQ(j-1)およびデータ電極D(j+1)の画像データQ(j+1)がともに「H」から「L」へ変化するときには、論理ゲート88(j)の出力は「H」となる。このとき、データ電極D(j)の実質的な負荷容量は、上述したように容量Cgである。したがって、論理ゲート88(j)の出力が「H」であれば、第2遷移期間Tbにおけるデータ電極D(j)の実質的な負荷容量は容量Cgであると判断することができる。 The image data Q (j) of the data electrode D (j) changes from “H” to “L”, and the image data Q (j−1) and the data electrode D (j + 1) of the data electrode D (j−1) When the image data Q (j + 1) of both change from “H” to “L”, the output of the logic gate 88 (j) becomes “H”. At this time, the substantial load capacity of the data electrode D (j) is the capacity Cg as described above. Therefore, if the output of the logic gate 88 (j) is “H”, it can be determined that the substantial load capacitance of the data electrode D (j) in the second transition period Tb is the capacitance Cg.
 それ以外のとき、例えば、データ電極D(j)の画像データQ(j)が「L」の状態を維持、もしくは「H」の状態を維持するときには、論理ゲート84(j)の出力、論理ゲート87(j)の出力および論理ゲート88(j)の出力は全て「L」となる。このようなときにはデータ電極D(j)に電圧変化が生じないので、データ電極D(j)の実質的な負荷容量を「0」とみなしてもかまわない。したがって、論理ゲート84(j)、論理ゲート87(j)および論理ゲート88(j)の出力が全て「L」のときには、第2遷移期間Tbにおけるデータ電極D(j)の実質的な負荷容量は「0」であるものとする。 In other cases, for example, when the image data Q (j) of the data electrode D (j) is maintained in the “L” state or the “H” state, the output of the logic gate 84 (j), the logic The outputs of the gate 87 (j) and the logic gate 88 (j) are all “L”. In such a case, since no voltage change occurs in the data electrode D (j), the substantial load capacitance of the data electrode D (j) may be regarded as “0”. Therefore, when the outputs of the logic gate 84 (j), the logic gate 87 (j), and the logic gate 88 (j) are all “L”, the substantial load capacitance of the data electrode D (j) in the second transition period Tb. Is “0”.
 以上がデータ電極D(j)における実質的な負荷容量を算出する電極負荷算出部64(j)の動作である。負荷算出部52には、この電極負荷算出部64(j)と同様の動作をする電極負荷算出部64が複数備えられており、その数は、1つのデータドライバ40が駆動するデータ電極22の数と同数(例えば、384)である。 The above is the operation of the electrode load calculation unit 64 (j) that calculates the substantial load capacity in the data electrode D (j). The load calculation unit 52 includes a plurality of electrode load calculation units 64 that operate in the same manner as the electrode load calculation unit 64 (j). The number of the load calculation units 52 is the same as that of the data electrodes 22 driven by one data driver 40. It is the same number as the number (for example, 384).
 第1負荷総和部65には、負荷算出部52に備えられた全ての論理ゲート74、論理ゲート77および論理ゲート78の出力が入力される。第1負荷総和部65は、論理ゲート74、論理ゲート77および論理ゲート78の各出力信号のいずれが「L」でいずれが「H」であるのかを判断し、上述した論理ゲート74、論理ゲート77および論理ゲート78の各出力と実質的な負荷容量との関係から、各データ電極22における実質的な負荷容量を算出し、それらの総和を算出する。したがって、この算出結果は、データ電極22の第1遷移期間Taにおける実質的な負荷容量の総和となる。 The output of all the logic gates 74, logic gates 77, and logic gates 78 provided in the load calculation unit 52 is input to the first load summation unit 65. The first load summing unit 65 determines which of the output signals of the logic gate 74, the logic gate 77, and the logic gate 78 is “L” and which is “H”. 77, the substantial load capacity in each data electrode 22 is calculated from the relationship between the outputs of 77 and logic gate 78 and the substantial load capacity, and the sum of them is calculated. Therefore, this calculation result is the sum of substantial load capacities of the data electrode 22 in the first transition period Ta.
 このようにして、第1負荷総和部65は、1つのデータドライバ40が駆動する全てのデータ電極22(例えば、384本のデータ電極22)の第1遷移期間Taにおける実質的な負荷容量の総和を算出する。 In this way, the first load summation unit 65 sums the substantial load capacitance in the first transition period Ta of all the data electrodes 22 (for example, 384 data electrodes 22) driven by one data driver 40. Is calculated.
 第2負荷総和部66には、負荷算出部52に備えられた全ての論理ゲート84、論理ゲート87および論理ゲート88の出力が入力される。第2負荷総和部66は、論理ゲート84、論理ゲート87および論理ゲート88の各出力信号のいずれが「L」でいずれが「H」であるのかを判断し、上述した論理ゲート84、論理ゲート87および論理ゲート88の各出力と実質的な負荷容量との関係から、各データ電極22における実質的な負荷容量を算出し、それらの総和を算出する。したがって、この算出結果は、データ電極22の第2遷移期間Tbにおける実質的な負荷容量の総和となる。 The outputs of all the logic gates 84, logic gates 87, and logic gates 88 provided in the load calculation unit 52 are input to the second load summation unit 66. The second load summing unit 66 determines which of the output signals of the logic gate 84, the logic gate 87, and the logic gate 88 is “L” and which is “H”, and the logic gate 84, logic gate, and the like described above. Based on the relationship between each output of 87 and logic gate 88 and the substantial load capacity, the substantial load capacity in each data electrode 22 is calculated, and the sum of them is calculated. Therefore, this calculation result is the sum of substantial load capacities of the data electrode 22 in the second transition period Tb.
 このようにして、第2負荷総和部66は、1つのデータドライバ40が駆動する全てのデータ電極22(例えば、384本のデータ電極22)の第2遷移期間Tbにおける実質的な負荷容量の総和を算出する。 In this way, the second load summation unit 66 sums the substantial load capacitance in the second transition period Tb of all the data electrodes 22 (for example, 384 data electrodes 22) driven by one data driver 40. Is calculated.
 このようにして、負荷算出部52は、1つのデータドライバ40が駆動する全てのデータ電極22(例えば、384本のデータ電極22)の第1遷移期間Taおよび第2遷移期間Tbのそれぞれにおける実質的な負荷容量の総和を算出する。 In this manner, the load calculating unit 52 substantially includes the first transition period Ta and the second transition period Tb of all the data electrodes 22 (for example, 384 data electrodes 22) driven by one data driver 40. Total load capacity is calculated.
 次に、書込みタイミング生成部54の動作について説明する。 Next, the operation of the write timing generation unit 54 will be described.
 図10は、本発明の一実施の形態におけるプラズマディスプレイ装置30の書込みタイミング生成部54の動作の一例を示すタイミングチャートである。 FIG. 10 is a timing chart showing an example of the operation of the write timing generation unit 54 of the plasma display device 30 in one embodiment of the present invention.
 図10には、書込みタイミング生成部54(p-1)が出力する書込みタイミング信号LLP(p-1)と、書込みタイミング生成部54(p)が出力する書込みタイミング信号LLP(p)と、書込みタイミング生成部54(p+1)が出力する書込みタイミング信号LLP(p+1)と、データドライバ40(p-1)、データドライバ40(p)およびデータドライバ40(p+1)の各データドライバ40が出力する書込みパルスとを示す。 In FIG. 10, the write timing signal LLP (p-1) output from the write timing generation unit 54 (p-1), the write timing signal LLP (p) output from the write timing generation unit 54 (p), Write timing signal LLP (p + 1) output from the timing generator 54 (p + 1), and write output from each data driver 40 of the data driver 40 (p−1), the data driver 40 (p), and the data driver 40 (p + 1) And pulse.
 書込みタイミング生成部54(p)は、負荷算出部52(p)が算出した実質的な負荷容量の総和にもとづき、書込みタイミング信号LLP(p)を生成し、生成した書込みタイミング信号LLP(p)を出力する。したがって、書込みタイミング生成部54(p-1)は、負荷算出部52(p-1)が算出した実質的な負荷容量の総和にもとづき、書込みタイミング信号LLP(p-1)を生成し出力する。また、書込みタイミング生成部54(p+1)は、負荷算出部52(p+1)が算出した実質的な負荷容量の総和にもとづき、書込みタイミング信号LLP(p+1)を生成し出力する。 The write timing generation unit 54 (p) generates a write timing signal LLP (p) based on the substantial sum of the load capacities calculated by the load calculation unit 52 (p), and the generated write timing signal LLP (p) Is output. Accordingly, the write timing generation unit 54 (p−1) generates and outputs the write timing signal LLP (p−1) based on the substantial sum of the load capacities calculated by the load calculation unit 52 (p−1). . Further, the write timing generation unit 54 (p + 1) generates and outputs a write timing signal LLP (p + 1) based on the substantial sum of the load capacities calculated by the load calculation unit 52 (p + 1).
 なお、本実施の形態において、出力バッファ部45は、書込みタイミング信号LLPが「H」のときは、回収スイッチQCがオフとなり高圧側スイッチQHまたは低圧側スイッチQLがオンとなって、データ電極22を高圧側電圧Vdまたは低圧側電圧0(V)にクランプするものとする。また、出力バッファ部45は、書込みタイミング信号LLPが「L」のときは、回収スイッチQCがオンとなり高圧側スイッチQHおよび低圧側スイッチQLがオフとなって、データ電極22の負荷容量と回収コイルL40とのLC共振によって、回収コンデンサC40からデータ電極22に電力を供給し、またはデータ電極22から回収コンデンサC40に電力を回収するものとする。 In the present embodiment, when the write timing signal LLP is “H”, the output buffer 45 turns off the recovery switch QC and turns on the high-voltage side switch QH or the low-voltage side switch QL, and the data electrode 22 Is clamped to the high voltage Vd or the low voltage 0 (V). When the write timing signal LLP is “L”, the output buffer unit 45 turns on the recovery switch QC, turns off the high-voltage side switch QH and the low-voltage side switch QL, and sets the load capacity of the data electrode 22 and the recovery coil. It is assumed that power is supplied from the recovery capacitor C40 to the data electrode 22 by LC resonance with L40, or power is recovered from the data electrode 22 to the recovery capacitor C40.
 本実施の形態において、書込みタイミング信号LLPが立下るときの時刻(以下、「立下りタイミング」と記す)は、第1遷移期間Taまたは第2遷移期間Tbの開始時刻を表す。また、書込みタイミング信号LLPが立上るときの時刻(以下、「立上りタイミング」と記す)は、第1遷移期間Taまたは第2遷移期間Tbの終了時刻を表す。 In the present embodiment, the time when the write timing signal LLP falls (hereinafter referred to as “falling timing”) represents the start time of the first transition period Ta or the second transition period Tb. The time when the write timing signal LLP rises (hereinafter referred to as “rise timing”) represents the end time of the first transition period Ta or the second transition period Tb.
 そして、本実施の形態においては、負荷算出部52が算出した実質的な負荷容量の総和が大きくなるほど、第1遷移期間Taおよび第2遷移期間Tbの時間長が長くなるように、書込みタイミング信号LLPを発生する。 In this embodiment, the write timing signal is set so that the time length of the first transition period Ta and the second transition period Tb becomes longer as the total sum of the substantial load capacities calculated by the load calculation unit 52 becomes larger. Generate LLP.
 ただし、本実施の形態において、第1遷移期間Taの開始時刻は、負荷算出部52における算出結果とは独立に設定している。 However, in the present embodiment, the start time of the first transition period Ta is set independently of the calculation result in the load calculation unit 52.
 例えば、図10において、書込み周期T(i-1)の第1遷移期間Taの開始時刻は時刻t11であり、書込み周期T(i)の第1遷移期間Taの開始時刻は時刻t31であり、書込み周期T(i+1)の第1遷移期間Taの開始時刻は時刻t51であるが、これらの時刻はあらかじめ定められた時刻であり、負荷算出部52における算出結果によって変化することはない。 For example, in FIG. 10, the start time of the first transition period Ta of the write cycle T (i-1) is time t11, the start time of the first transition period Ta of the write cycle T (i) is time t31, The start time of the first transition period Ta of the write cycle T (i + 1) is time t51, but these times are predetermined times and do not change depending on the calculation result in the load calculation unit 52.
 一方、第1遷移期間Taの終了時刻は負荷算出部52における算出結果に応じて変化する。 On the other hand, the end time of the first transition period Ta changes according to the calculation result in the load calculation unit 52.
 例えば、書込み周期T(i-1)の第1遷移期間Taにおいて、負荷算出部52(p+1)における算出結果は負荷算出部52(p-1)における算出結果よりも大きく、負荷算出部52(p)における算出結果は負荷算出部52(p+1)における算出結果よりもさらに大きいとき、各共振周期は以下のようになる。 For example, in the first transition period Ta of the write cycle T (i−1), the calculation result in the load calculation unit 52 (p + 1) is larger than the calculation result in the load calculation unit 52 (p−1), and the load calculation unit 52 ( When the calculation result in p) is larger than the calculation result in the load calculation unit 52 (p + 1), each resonance period is as follows.
 データドライバ40(p+1)が駆動するN本(例えば、N=384)のデータ電極22の実質的な負荷容量の総和と回収コイルL40(p+1)との共振周期は、データドライバ40(p-1)が駆動するN本のデータ電極22の実質的な負荷容量の総和と回収コイルL40(p-1)との共振周期よりも長くなる。そして、データドライバ40(p)が駆動するN本のデータ電極22の実質的な負荷容量の総和と回収コイルL40(p)との共振周期は、データドライバ40(p+1)が駆動するN本のデータ電極22の実質的な負荷容量の総和と回収コイルL40(p+1)との共振周期よりもさらに長くなる。 The resonance period between the sum of substantial load capacities of N (for example, N = 384) data electrodes 22 driven by the data driver 40 (p + 1) and the recovery coil L40 (p + 1) is the data driver 40 (p−1). ) Is longer than the total sum of the substantial load capacities of the N data electrodes 22 driven and the resonance period of the recovery coil L40 (p-1). The resonance period between the sum of the substantial load capacities of the N data electrodes 22 driven by the data driver 40 (p) and the recovery coil L40 (p) is determined by N data drivers 40 (p + 1). It becomes longer than the total sum of the substantial load capacities of the data electrodes 22 and the resonance period of the recovery coil L40 (p + 1).
 なお、LC共振の周波数fは以下の式で求めることができる。
f=1/(2π√(LC))
L:回収コイルL40のインダクタンス
C:負荷算出部52において算出された実質的な負荷容量の総和
 そして、書込みタイミング生成部54は、負荷算出部52において算出された第1遷移期間Taおよび第2遷移期間Tbのそれぞれにおける実質的な負荷容量の総和にもとづき、上述の計算式から、第1遷移期間Taおよび第2遷移期間Tbのそれぞれにおける共振周期を算出する。そして、算出した共振周期にもとづき、書込みタイミング信号LLPを発生する。
The LC resonance frequency f can be obtained by the following equation.
f = 1 / (2π√ (LC))
L: Inductance of recovery coil L40 C: Sum of substantial load capacities calculated in load calculator 52 And write timing generator 54 includes first transition period Ta and second transition calculated in load calculator 52 Based on the total sum of the substantial load capacities in each of the periods Tb, the resonance period in each of the first transition period Ta and the second transition period Tb is calculated from the above formula. Then, a write timing signal LLP is generated based on the calculated resonance period.
 なお、以下、第1遷移期間Taにおいて、データドライバ40(p-1)が駆動するN本のデータ電極22の実質的な負荷容量の総和と回収コイルL40(p-1)との共振周期の1/2の時間長を時間Ta(p-1)とする。また、データドライバ40(p)が駆動するN本のデータ電極22の実質的な負荷容量の総和と回収コイルL40(p)との共振周期の1/2の時間長を時間Ta(p)とする。また、データドライバ40(p+1)が駆動するN本のデータ電極22の実質的な負荷容量の総和と回収コイルL40(p+1)との共振周期の1/2の時間長を時間Ta(p+1)とする。 Hereinafter, in the first transition period Ta, the sum of the substantial load capacities of the N data electrodes 22 driven by the data driver 40 (p−1) and the resonance period of the recovery coil L40 (p−1) A time length of ½ is time Ta (p−1). Further, the time length of the sum of the substantial load capacities of the N data electrodes 22 driven by the data driver 40 (p) and the half of the resonance period of the recovery coil L40 (p) is defined as time Ta (p). To do. In addition, a time length that is half of the total load capacity of the N data electrodes 22 driven by the data driver 40 (p + 1) and a resonance period of the recovery coil L40 (p + 1) is a time Ta (p + 1). To do.
 したがって、例えば、書込み周期T(i-1)の第1遷移期間Taにおいて、負荷算出部52(p+1)における算出結果が負荷算出部52(p-1)における算出結果よりも大きく、負荷算出部52(p)における算出結果が負荷算出部52(p+1)における算出結果よりもさらに大きければ、時間Ta(p+1)は時間Ta(p-1)よりも長くなり、時間Ta(p)は時間Ta(p+1)よりもさらに長くなる。 Therefore, for example, in the first transition period Ta of the write cycle T (i−1), the calculation result in the load calculation unit 52 (p + 1) is larger than the calculation result in the load calculation unit 52 (p−1), and the load calculation unit If the calculation result at 52 (p) is larger than the calculation result at the load calculation unit 52 (p + 1), the time Ta (p + 1) is longer than the time Ta (p−1), and the time Ta (p) is equal to the time Ta. It becomes longer than (p + 1).
 回収コンデンサC40に蓄えられた電力をできるだけ多く使用し、消費電力の削減効果を高めるためには、第1遷移期間Taの開始から、共振周期の1/2の時間が経過した時刻で第1遷移期間Taを終了することが望ましい。 In order to use as much power stored in the recovery capacitor C40 as possible and increase the power consumption reduction effect, the first transition is performed at the time when half the resonance period has elapsed from the start of the first transition period Ta. It is desirable to end the period Ta.
 そして、データドライバ40(p-1)に関して、第1遷移期間Taの開始から、共振周期の1/2の時間が経過した時刻で第1遷移期間Taを終了させるためには、書込みタイミング信号LLP(p-1)の立上りタイミングは、書込み周期T(i-1)においては、時刻t11から時間Ta(p-1)が経過した時刻t12(p-1)とすればよく、書込み周期T(i)においては、時刻t31から時間Ta(p-1)が経過した時刻t32(p-1)とすればよく、書込み周期T(i+1)においては、時刻t51から時間Ta(p-1)が経過した時刻t52(p-1)とすればよい。 For the data driver 40 (p−1), in order to end the first transition period Ta at the time when half the resonance period has elapsed from the start of the first transition period Ta, the write timing signal LLP The rising timing of (p−1) may be the time t12 (p−1) when the time Ta (p−1) has elapsed from the time t11 in the writing cycle T (i−1). In i), the time Ta (p-1) from the time t31 may be set to the time t32 (p-1). In the write cycle T (i + 1), the time Ta (p-1) is set from the time t51. The elapsed time t52 (p-1) may be set.
 また、データドライバ40(p)に関して、第1遷移期間Taの開始から、共振周期の1/2の時間が経過した時刻で第1遷移期間Taを終了させるためには、書込みタイミング信号LLP(p)の立上りタイミングは、書込み周期T(i-1)においては、時刻t11から時間Ta(p)が経過した時刻t12(p)とすればよく、書込み周期T(i)においては、時刻t31から時間Ta(p)が経過した時刻t32(p)とすればよく、書込み周期T(i+1)においては、時刻t51から時間Ta(p)が経過した時刻t52(p)とすればよい。 For the data driver 40 (p), in order to end the first transition period Ta at the time when half the resonance period has elapsed from the start of the first transition period Ta, the write timing signal LLP (p ) Rise timing may be the time t12 (p) when the time Ta (p) has elapsed from the time t11 in the write cycle T (i-1), and from the time t31 in the write cycle T (i). The time t32 (p) at which the time Ta (p) has elapsed may be set, and in the writing cycle T (i + 1), the time t52 (p) at which the time Ta (p) has elapsed from the time t51 may be set.
 また、データドライバ40(p+1)に関して、第1遷移期間Taの開始から、共振周期の1/2の時間が経過した時刻で第1遷移期間Taを終了させるためには、書込みタイミング信号LLP(p+1)の立上りタイミングは、書込み周期T(i-1)においては、時刻t11から時間Ta(p+1)が経過した時刻t12(p+1)とすればよく、書込み周期T(i)においては、時刻t31から時間Ta(p+1)が経過した時刻t32(p+1)とすればよく、書込み周期T(i+1)においては、時刻t51から時間Ta(p+1)が経過した時刻t52(p+1)とすればよい。 For the data driver 40 (p + 1), in order to end the first transition period Ta at the time when half the resonance period has elapsed from the start of the first transition period Ta, the write timing signal LLP (p + 1 ) May be set at time t12 (p + 1) when the time Ta (p + 1) has elapsed from time t11 in the write cycle T (i-1), and from time t31 in the write cycle T (i). The time t32 (p + 1) at which the time Ta (p + 1) has elapsed may be set, and the time t52 (p + 1) at which the time Ta (p + 1) has elapsed from the time t51 may be set in the writing cycle T (i + 1).
 したがって、例えば、書込み周期T(i-1)の第1遷移期間Taにおいて、負荷算出部52(p+1)における算出結果が負荷算出部52(p-1)における算出結果よりも大きく、負荷算出部52(p)における算出結果が負荷算出部52(p+1)における算出結果よりもさらに大きければ、図10に示すように、時刻t12(p+1)は時刻t12(p-1)よりも遅くなり、時刻t12(p)は時刻t12(p+1)よりもさらに遅くなる。 Therefore, for example, in the first transition period Ta of the write cycle T (i−1), the calculation result in the load calculation unit 52 (p + 1) is larger than the calculation result in the load calculation unit 52 (p−1), and the load calculation unit If the calculation result at 52 (p) is larger than the calculation result at the load calculation unit 52 (p + 1), as shown in FIG. 10, the time t12 (p + 1) is later than the time t12 (p−1), and the time t12 (p) is further later than time t12 (p + 1).
 あるいは、例えば、書込み周期T(i)の第1遷移期間Taにおいて、負荷算出部52(p)における算出結果が負荷算出部52(p-1)における算出結果よりも大きく、負荷算出部52(p+1)における算出結果が負荷算出部52(p)における算出結果よりもさらに大きければ、図10に示すように、時刻t32(p)は時刻t32(p-1)よりも遅くなり、時刻t32(p+1)は時刻t32(p)よりもさらに遅くなる。 Alternatively, for example, in the first transition period Ta of the write cycle T (i), the calculation result in the load calculation unit 52 (p) is larger than the calculation result in the load calculation unit 52 (p−1), and the load calculation unit 52 ( If the calculation result at (p + 1) is larger than the calculation result at the load calculation unit 52 (p), as shown in FIG. 10, the time t32 (p) is later than the time t32 (p−1) and the time t32 (p−1) p + 1) is later than time t32 (p).
 あるいは、例えば、書込み周期T(i+1)の第1遷移期間Taにおいて、負荷算出部52(p)における算出結果が負荷算出部52(p+1)における算出結果よりも大きく、負荷算出部52(p-1)における算出結果が負荷算出部52(p)における算出結果よりもさらに大きければ、図10に示すように、時刻t52(p)は時刻t52(p+1)よりも遅くなり、時刻t52(p-1)は時刻t52(p)よりもさらに遅くなる。 Alternatively, for example, in the first transition period Ta of the write cycle T (i + 1), the calculation result in the load calculation unit 52 (p) is larger than the calculation result in the load calculation unit 52 (p + 1), and the load calculation unit 52 (p− If the calculation result in 1) is larger than the calculation result in the load calculation unit 52 (p), the time t52 (p) is later than the time t52 (p + 1) and the time t52 (p−) as shown in FIG. 1) is later than time t52 (p).
 また、本実施の形態において、第2遷移期間Tbの終了時刻は、負荷算出部52における算出結果とは独立に設定している。 In the present embodiment, the end time of the second transition period Tb is set independently of the calculation result in the load calculation unit 52.
 例えば、図10において、書込み周期T(i-1)の第2遷移期間Tbの終了時刻は時刻t22であり、書込み周期T(i)の第2遷移期間Tbの終了時刻は時刻t42であり、書込み周期T(i+1)の第2遷移期間Tbの終了時刻は時刻t62であるが、これらの時刻はあらかじめ定められた時刻であり、負荷算出部52における算出結果によって変化することはない。 For example, in FIG. 10, the end time of the second transition period Tb of the write cycle T (i−1) is time t22, and the end time of the second transition period Tb of the write cycle T (i) is time t42. The end time of the second transition period Tb of the write cycle T (i + 1) is time t62, but these times are predetermined times and do not change depending on the calculation result in the load calculation unit 52.
 一方、第2遷移期間Tbの開始時刻は負荷算出部52における算出結果に応じて変化する。 On the other hand, the start time of the second transition period Tb changes according to the calculation result in the load calculation unit 52.
 例えば、書込み周期T(i+1)の第2遷移期間Tbにおいて、負荷算出部52(p+1)における算出結果は負荷算出部52(p-1)における算出結果よりも大きく、負荷算出部52(p)における算出結果は負荷算出部52(p+1)における算出結果よりもさらに大きいとき、各共振周期は以下のようになる。 For example, in the second transition period Tb of the write cycle T (i + 1), the calculation result in the load calculation unit 52 (p + 1) is larger than the calculation result in the load calculation unit 52 (p−1), and the load calculation unit 52 (p) When the calculation result in is larger than the calculation result in the load calculation unit 52 (p + 1), each resonance period is as follows.
 データドライバ40(p+1)が駆動するN本(例えば、N=384)のデータ電極22の実質的な負荷容量の総和と回収コイルL40(p+1)との共振周期は、データドライバ40(p-1)が駆動するN本のデータ電極22の実質的な負荷容量の総和と回収コイルL40(p-1)との共振周期よりも長くなる。そして、データドライバ40(p)が駆動するN本のデータ電極22の実質的な負荷容量の総和と回収コイルL40(p)との共振周期は、データドライバ40(p+1)が駆動するN本のデータ電極22の実質的な負荷容量の総和と回収コイルL40(p+1)との共振周期よりもさらに長くなる。 The resonance period between the sum of substantial load capacities of N (for example, N = 384) data electrodes 22 driven by the data driver 40 (p + 1) and the recovery coil L40 (p + 1) is the data driver 40 (p−1). ) Is longer than the total sum of the substantial load capacities of the N data electrodes 22 driven and the resonance period of the recovery coil L40 (p-1). The resonance period between the sum of the substantial load capacities of the N data electrodes 22 driven by the data driver 40 (p) and the recovery coil L40 (p) is determined by N data drivers 40 (p + 1). It becomes longer than the total sum of the substantial load capacities of the data electrodes 22 and the resonance period of the recovery coil L40 (p + 1).
 なお、以下、第2遷移期間Tbにおいて、データドライバ40(p-1)が駆動するN本のデータ電極22の実質的な負荷容量の総和と回収コイルL40(p-1)との共振周期の1/2の時間長を時間Tb(p-1)とする。また、データドライバ40(p)が駆動するN本のデータ電極22の実質的な負荷容量の総和と回収コイルL40(p)との共振周期の1/2の時間長を時間Tb(p)とする。また、データドライバ40(p+1)が駆動するN本のデータ電極22の実質的な負荷容量の総和と回収コイルL40(p+1)との共振周期の1/2の時間長を時間Tb(p+1)とする。 Hereinafter, in the second transition period Tb, the sum of the substantial load capacities of the N data electrodes 22 driven by the data driver 40 (p−1) and the resonance period of the recovery coil L40 (p−1) The time length of ½ is time Tb (p−1). Further, the total length of the substantial load capacities of the N data electrodes 22 driven by the data driver 40 (p) and the time length ½ of the resonance period of the recovery coil L40 (p) are defined as time Tb (p). To do. In addition, a time length ½ of a resonance period of the total load capacity of the N data electrodes 22 driven by the data driver 40 (p + 1) and the recovery coil L40 (p + 1) is defined as a time Tb (p + 1). To do.
 したがって、例えば、書込み周期T(i+1)の第2遷移期間Tbにおいて、負荷算出部52(p+1)における算出結果が負荷算出部52(p-1)における算出結果よりも大きく、負荷算出部52(p)における算出結果が負荷算出部52(p+1)における算出結果よりもさらに大きければ、時間Tb(p+1)は時間Tb(p-1)よりも長くなり、時間Tb(p)は時間Tb(p+1)よりもさらに長くなる。 Therefore, for example, in the second transition period Tb of the write cycle T (i + 1), the calculation result in the load calculation unit 52 (p + 1) is larger than the calculation result in the load calculation unit 52 (p−1), and the load calculation unit 52 ( If the calculation result in p) is larger than the calculation result in the load calculation unit 52 (p + 1), the time Tb (p + 1) is longer than the time Tb (p−1), and the time Tb (p) is the time Tb (p + 1). ) Is even longer.
 回収コンデンサC40にできるだけ多くの電力を回収するためには、第2遷移期間Tbの開始から、共振周期の1/2の時間が経過した時刻で第2遷移期間Tbを終了することが望ましい。 In order to recover as much power as possible in the recovery capacitor C40, it is desirable to end the second transition period Tb at the time when half the resonance period has elapsed since the start of the second transition period Tb.
 そして、データドライバ40(p-1)に関して、第2遷移期間Tbの開始から、共振周期の1/2の時間が経過した時刻で第2遷移期間Tbを終了させるためには、書込みタイミング信号LLP(p-1)の立下りタイミングは、書込み周期T(i-1)においては、時刻t22から時間Tb(p-1)前の時刻t21(p-1)とすればよく、書込み周期T(i)においては、時刻t42から時間Tb(p-1)前の時刻t41(p-1)とすればよく、書込み周期T(i+1)においては、時刻t62から時間Tb(p-1)前の時刻t61(p-1)とすればよい。 For the data driver 40 (p−1), in order to end the second transition period Tb at the time when ½ of the resonance period has elapsed from the start of the second transition period Tb, the write timing signal LLP The falling timing of (p-1) may be the time t21 (p-1) before the time Tb (p-1) from the time t22 in the write cycle T (i-1). In i), time t41 (p-1) before time Tb (p-1) from time t42 may be set. In write cycle T (i + 1), time Tb (p-1) before time t62. Time t61 (p-1) may be set.
 また、データドライバ40(p)に関して、第2遷移期間Tbの開始から、共振周期の1/2の時間が経過した時刻で第2遷移期間Tbを終了させるためには、書込みタイミング信号LLP(p)の立下りタイミングは、書込み周期T(i-1)においては、時刻t22から時間Tb(p)前の時刻t21(p)とすればよく、書込み周期T(i)においては、時刻t42から時間Tb(p)前の時刻t41(p)とすればよく、書込み周期T(i+1)においては、時刻t62から時間Tb(p)前の時刻t61(p)とすればよい。 For the data driver 40 (p), in order to end the second transition period Tb at the time when half the resonance period has elapsed from the start of the second transition period Tb, the write timing signal LLP (p ) May be set to the time t21 (p) before the time Tb (p) from the time t22 in the write cycle T (i-1), and from the time t42 in the write cycle T (i). The time t41 (p) before the time Tb (p) may be set, and the time t61 (p) before the time Tb (p) from the time t62 may be set in the writing cycle T (i + 1).
 また、データドライバ40(p+1)に関して、第2遷移期間Tbの開始から、共振周期の1/2の時間が経過した時刻で第2遷移期間Tbを終了させるためには、書込みタイミング信号LLP(p+1)の立下りタイミングは、書込み周期T(i-1)においては、時刻t22から時間Tb(p+1)前の時刻t21(p+1)とすればよく、書込み周期T(i)においては、時刻t42から時間Tb(p+1)前の時刻t41(p+1)とすればよく、書込み周期T(i+1)においては、時刻t62から時間Tb(p+1)前の時刻t61(p+1)とすればよい。 For the data driver 40 (p + 1), in order to end the second transition period Tb at the time when a half of the resonance period has elapsed from the start of the second transition period Tb, the write timing signal LLP (p + 1 ) In the write cycle T (i−1) may be the time t21 (p + 1) before the time Tb (p + 1) from the time t22, and from the time t42 in the write cycle T (i). Time t41 (p + 1) before time Tb (p + 1) may be set, and time t61 (p + 1) before time Tb (p + 1) from time t62 may be set in the write cycle T (i + 1).
 したがって、例えば、書込み周期T(i-1)の第2遷移期間Tbにおいて、負荷算出部52(p)における算出結果が負荷算出部52(p+1)における算出結果よりも大きく、負荷算出部52(p-1)における算出結果が負荷算出部52(p)における算出結果よりもさらに大きければ、図10に示すように、時刻t21(p)は時刻t21(p+1)よりも早くなり、時刻t21(p-1)は時刻t21(p)よりもさらに早くなる。 Therefore, for example, in the second transition period Tb of the write cycle T (i−1), the calculation result in the load calculation unit 52 (p) is larger than the calculation result in the load calculation unit 52 (p + 1), and the load calculation unit 52 ( If the calculation result at p-1) is larger than the calculation result at the load calculation unit 52 (p), as shown in FIG. 10, time t21 (p) is earlier than time t21 (p + 1), and time t21 (p + 1) p-1) is earlier than time t21 (p).
 あるいは、例えば、書込み周期T(i)の第2遷移期間Tbにおいて、負荷算出部52(p+1)における算出結果が負荷算出部52(p)における算出結果よりも大きく、負荷算出部52(p-1)における算出結果が負荷算出部52(p+1)における算出結果よりもさらに大きければ、図10に示すように、時刻t41(p+1)は時刻t41(p)よりも早くなり、時刻t41(p-1)は時刻t41(p+1)よりもさらに早くなる。 Alternatively, for example, in the second transition period Tb of the write cycle T (i), the calculation result in the load calculation unit 52 (p + 1) is larger than the calculation result in the load calculation unit 52 (p), and the load calculation unit 52 (p− If the calculation result in 1) is larger than the calculation result in the load calculation unit 52 (p + 1), as shown in FIG. 10, the time t41 (p + 1) is earlier than the time t41 (p), and the time t41 (p− 1) is earlier than time t41 (p + 1).
 あるいは、例えば、書込み周期T(i+1)の第2遷移期間Tbにおいて、負荷算出部52(p+1)における算出結果が負荷算出部52(p-1)における算出結果よりも大きく、負荷算出部52(p)における算出結果が負荷算出部52(p+1)における算出結果よりもさらに大きければ、図10に示すように、時刻t61(p+1)は時刻t61(p-1)よりも早くなり、時刻t61(p)は時刻t61(p+1)よりもさらに早くなる。 Alternatively, for example, in the second transition period Tb of the write cycle T (i + 1), the calculation result in the load calculation unit 52 (p + 1) is larger than the calculation result in the load calculation unit 52 (p−1), and the load calculation unit 52 ( If the calculation result at p) is larger than the calculation result at the load calculation unit 52 (p + 1), as shown in FIG. 10, the time t61 (p + 1) is earlier than the time t61 (p-1), and the time t61 (p-1) p) is earlier than time t61 (p + 1).
 以上示したように、本実施の形態におけるデータ電極駆動回路32は、データドライバ40が駆動するN本(例えば、N=384)のデータ電極22の実質的な負荷容量の総和を算出し、その算出結果と回収コイルL40との共振周期を算出する。そして、その結果にもとづき、出力バッファ部45の各スイッチを制御し、回収コンデンサC40からデータ電極22に電力を供給する時間長(第1遷移期間Ta)、またはデータ電極22から回収コンデンサC40に電力を回収する時間長(第2遷移期間Tb)を制御する。共振周期が長いときには、第1遷移期間Taまたは第2遷移期間Tbが長くなるように各スイッチを制御し、共振周期が短いときには、第1遷移期間Taまたは第2遷移期間Tbが短くなるように各スイッチを制御する。 As described above, the data electrode driving circuit 32 according to the present embodiment calculates the sum of substantial load capacities of N (for example, N = 384) data electrodes 22 driven by the data driver 40, and A resonance period between the calculation result and the recovery coil L40 is calculated. Based on the result, each switch of the output buffer unit 45 is controlled, and the length of time for supplying power from the recovery capacitor C40 to the data electrode 22 (first transition period Ta), or the power from the data electrode 22 to the recovery capacitor C40. The time length (second transition period Tb) for collecting the data is controlled. When the resonance period is long, each switch is controlled so that the first transition period Ta or the second transition period Tb is long. When the resonance period is short, the first transition period Ta or the second transition period Tb is short. Control each switch.
 すなわち、第1の遷移期間において、実質的な負荷容量の総和が相対的に大きいデータドライバ40では、実質的な負荷容量の総和が相対的に小さいデータドライバ40よりも、第1の遷移期間の時間長を長くする。例えば、第1の遷移期間の開始時刻が各データドライバ40で同タイミングであれば、第1の遷移期間の終了時刻は、実質的な負荷容量の総和が相対的に大きいデータドライバ40では、実質的な負荷容量の総和が相対的に小さいデータドライバ40よりも遅くなる。 That is, in the first transition period, the data driver 40 having a relatively large sum of substantial load capacities in the first transition period than the data driver 40 having a relatively small sum of substantial load capacities. Increase the length of time. For example, if the start time of the first transition period is the same timing for each data driver 40, the end time of the first transition period is substantially the same for the data driver 40 having a relatively large sum of substantial load capacities. The total load capacity is slower than that of the data driver 40, which is relatively small.
 同様に、第2の遷移期間において、実質的な負荷容量の総和が相対的に大きいデータドライバ40では、実質的な負荷容量の総和が相対的に小さいデータドライバ40よりも、第2の遷移期間の時間長を長くする。例えば、第2の遷移期間の終了時刻が各データドライバ40で同タイミングであれば、第2の遷移期間の開始時刻は、実質的な負荷容量の総和が相対的に大きいデータドライバ40では、実質的な負荷容量の総和が相対的に小さいデータドライバ40よりも早くなる。 Similarly, in the second transition period, the data driver 40 having a relatively large sum of substantial load capacities has a second transition period compared to the data driver 40 having a relatively small sum of substantial load capacities. Increase the time length of. For example, if the end time of the second transition period is the same timing for each data driver 40, the start time of the second transition period is substantially the same for the data driver 40 having a relatively large sum of substantial load capacities. The total sum of the load capacities is faster than that of the data driver 40, which is relatively small.
 また、本実施の形態によれば、上述した構成、動作により、出力バッファ部45において各回収スイッチQCをそれぞれ1個のMOSFETで構成しても、データ電極駆動回路32の消費電力を削減することが可能となる。また、書込みパルスの電圧Vdを印加する時間を長くすることができ、駆動時間を有効に用いた書込み動作を行うことができる。 Further, according to the present embodiment, the power consumption of the data electrode driving circuit 32 can be reduced by the configuration and operation described above even if each recovery switch QC is configured by one MOSFET in the output buffer unit 45. Is possible. Further, the time for applying the voltage Vd of the write pulse can be extended, and the write operation using the drive time can be performed effectively.
 なお、本実施の形態では、図7に示したように、PチャンネルMOSFETを用いて回収スイッチQCを構成する例を説明したが、本発明は何らこの構成に限定されるものではない。図11は、本発明の一実施の形態におけるプラズマディスプレイ装置の出力バッファ部の他の構成例を概略的に示す回路図である。例えば、図11に示すように、出力バッファ部において、回収スイッチQCをNチャンネルMOSFETを用いて構成することも可能である。 In the present embodiment, as shown in FIG. 7, an example in which the recovery switch QC is configured using a P-channel MOSFET has been described. However, the present invention is not limited to this configuration. FIG. 11 is a circuit diagram schematically showing another configuration example of the output buffer unit of the plasma display device in accordance with the exemplary embodiment of the present invention. For example, as shown in FIG. 11, in the output buffer unit, the recovery switch QC can be configured using an N-channel MOSFET.
 なお、本実施の形態では、データ電極駆動回路32が、画像データにもとづきデータドライバ40が駆動するN本(例えば、N=384)のデータ電極22の実質的な負荷容量の総和を算出し、その算出結果と回収コイルL40との共振周期を算出して、出力バッファ部45の各スイッチを制御する構成を説明した。しかし、例えば、データ電極駆動回路32が、データ電極22に印加する電圧の変化にもとづき負荷容量と回収コイルとの共振周期を検出し、その検出結果にもとづき出力バッファ部45の各スイッチを制御する構成としても、上述と同様の効果を得ることができる。 In the present embodiment, the data electrode driving circuit 32 calculates the total sum of substantial load capacities of N (for example, N = 384) data electrodes 22 driven by the data driver 40 based on the image data, The configuration in which the calculation result and the resonance period of the recovery coil L40 are calculated to control each switch of the output buffer unit 45 has been described. However, for example, the data electrode drive circuit 32 detects the resonance period between the load capacitance and the recovery coil based on the change in the voltage applied to the data electrode 22, and controls each switch of the output buffer unit 45 based on the detection result. Even in the configuration, the same effect as described above can be obtained.
 なお、図4、図8、図10に示した駆動電圧波形は本発明の実施の形態における一例を示したものに過ぎず、本発明は何らこれらの駆動電圧波形に限定されるものではない。 The drive voltage waveforms shown in FIGS. 4, 8, and 10 are merely examples in the embodiment of the present invention, and the present invention is not limited to these drive voltage waveforms.
 また、図5、図6、図7、図9に示した回路構成も本発明の実施の形態における一例を示したものに過ぎず、本発明は何らこれらの回路構成に限定されるものではない。 Further, the circuit configurations shown in FIGS. 5, 6, 7, and 9 are merely examples in the embodiment of the present invention, and the present invention is not limited to these circuit configurations. .
 なお、本発明における実施の形態に示した各回路ブロックは、実施の形態に示した各動作を行う電気回路として構成されてもよく、あるいは、同様の動作をするようにプログラミングされたマイクロコンピュータ等を用いて構成されてもよい。 Note that each circuit block shown in the embodiment of the present invention may be configured as an electric circuit that performs each operation shown in the embodiment, or a microcomputer that is programmed to perform the same operation. May be used.
 なお、本発明における実施の形態では、1つのフィールドを8つのサブフィールドで構成する例を説明した。しかし、本発明は1フィールドを構成するサブフィールドの数が何ら上記の数に限定されるものではない。例えば、サブフィールドの数をより多くすることで、パネル10に表示できる階調の数をさらに増加することができる。 In the embodiment of the present invention, an example in which one field is composed of eight subfields has been described. However, in the present invention, the number of subfields constituting one field is not limited to the above number. For example, by increasing the number of subfields, the number of gradations that can be displayed on the panel 10 can be further increased.
 なお、本発明における実施の形態では、1画素を赤、緑、青の3色の放電セルで構成する例を説明したが、1画素を4色あるいはそれ以上の色の放電セルで構成するパネルにおいても、本発明における実施の形態に示した構成を適用することは可能であり、同様の効果を得ることができる。 In the embodiment of the present invention, an example in which one pixel is constituted by discharge cells of three colors of red, green, and blue has been described. However, a panel in which one pixel is constituted by discharge cells of four colors or more. However, it is possible to apply the configuration shown in the embodiment of the present invention, and the same effect can be obtained.
 なお、本発明の実施の形態において示した具体的な数値は、画面サイズが50インチ、表示電極対14の数が1024のパネル10の特性にもとづき設定したものであって、単に実施の形態における一例を示したものに過ぎない。本発明はこれらの数値に何ら限定されるものではなく、各数値はパネルの仕様やパネルの特性、およびプラズマディスプレイ装置の仕様等にあわせて最適に設定することが望ましい。また、これらの各数値は、上述した効果を得られる範囲でのばらつきを許容するものとする。また、1フィールドを構成するサブフィールドの数や各サブフィールドの輝度重み等も本発明における実施の形態に示した値に限定されるものではなく、また、画像信号等にもとづいてサブフィールド構成を切り換える構成であってもよい。 The specific numerical values shown in the embodiment of the present invention are set based on the characteristics of the panel 10 having a screen size of 50 inches and the number of display electrode pairs 14 of 1024. It is just an example. The present invention is not limited to these numerical values, and each numerical value is desirably set optimally in accordance with panel specifications, panel characteristics, plasma display device specifications, and the like. Each of these numerical values is allowed to vary within a range where the above-described effect can be obtained. Also, the number of subfields constituting one field, the luminance weight of each subfield, etc. are not limited to the values shown in the embodiment of the present invention, and the subfield configuration is based on the image signal or the like. It may be configured to switch.
 本発明は、データ電極駆動回路に安定に電力を供給して安定した書込み動作を行うとともに、データ電極駆動回路の消費電力を削減することができるので、プラズマディスプレイ装置およびプラズマディスプレイ装置の駆動方法として有用である。 The present invention can stably supply power to a data electrode driving circuit to perform a stable address operation and reduce power consumption of the data electrode driving circuit. Therefore, the present invention provides a plasma display device and a plasma display device driving method. Useful.
 10  パネル
 11  前面基板
 12  走査電極
 13  維持電極
 14  表示電極対
 15,23  誘電体層
 16  保護層
 21  背面基板
 22  データ電極
 24  隔壁
 25,25R,25G,25B  蛍光体層
 30  プラズマディスプレイ装置
 31  画像信号処理回路
 32  データ電極駆動回路
 33  走査電極駆動回路
 34  維持電極駆動回路
 35  タイミング発生回路
 40  データドライバ
 41,61  シフトレジスタ部
 42,44,62  ラッチ
 43  データラッチ部
 45  出力バッファ部
 46  出力バッファ
 52  負荷算出部
 54  書込みタイミング生成部
 63  負荷算出部
 64  電極負荷算出部
 65  第1負荷総和部
 66  第2負荷総和部
 71  1ラインディレイ
 72,74,75,76,77,78,82,84,85,86,87,88  論理ゲート
 C40  回収コンデンサ
 L40  回収コイル
 LLP  書込みタイミング信号
 QH  高圧側スイッチ
 QL  低圧側スイッチ
 QC  回収スイッチ
DESCRIPTION OF SYMBOLS 10 Panel 11 Front substrate 12 Scan electrode 13 Sustain electrode 14 Display electrode pair 15, 23 Dielectric layer 16 Protective layer 21 Back substrate 22 Data electrode 24 Partition 25, 25R, 25G, 25B Phosphor layer 30 Plasma display device 31 Image signal processing Circuit 32 Data electrode drive circuit 33 Scan electrode drive circuit 34 Sustain electrode drive circuit 35 Timing generation circuit 40 Data driver 41, 61 Shift register unit 42, 44, 62 Latch 43 Data latch unit 45 Output buffer unit 46 Output buffer 52 Load calculation unit 52 54 write timing generation unit 63 load calculation unit 64 electrode load calculation unit 65 first load summation unit 66 second load summation unit 71 one line delay 72, 74, 75, 76, 77, 78, 82, 84, 85, 86, 87,88 Logic gate C40 Recovery capacitor L40 Recovery coil LLP Write timing signal QH High voltage side switch QL Low voltage side switch QC Recovery switch

Claims (3)

  1. 複数の表示電極対と複数のデータ電極とを有するプラズマディスプレイパネルと、前記データ電極に書込みパルスを印加するデータ電極駆動回路とを備え、前記データ電極駆動回路は書込み期間における書込み周期毎に前記書込みパルスの高圧側電圧または前記書込みパルスの低圧側電圧を前記データ電極に印加するプラズマディスプレイ装置であって、
    前記データ電極駆動回路は、回収コンデンサと前記回収コンデンサに直列に接続された回収コイルとを備えるとともに、前記高圧側電圧を出力する高圧側スイッチと前記低圧側電圧を出力する低圧側スイッチと前記回収コンデンサに接続する回収スイッチとを有する出力バッファを前記データ電極のそれぞれに対して備え、
    前記出力バッファは、前記書込みパルスの電圧を前記低圧側電圧から前記高圧側電圧に遷移する際には、前記書込み周期に設けられた第1遷移期間において、前記回収スイッチをオンにして前記データ電極の負荷容量と前記回収コイルとを共振させて出力電圧を上昇し、その後、前記回収スイッチをオフにし前記高圧側スイッチをオンにして出力電圧を前記高圧側電圧にクランプし、
    前記書込みパルスの電圧を前記高圧側電圧から前記低圧側電圧に遷移する際には、前記書込み周期に設けられた第2遷移期間において、前記回収スイッチをオンにして前記データ電極の負荷容量と前記回収コイルとを共振させて出力電圧を降下し、その後、前記回収スイッチをオフにし前記低圧側スイッチをオンにして出力電圧を前記低圧側電圧にクランプし、
    前記第2遷移期間と、前記第2遷移期間の直後の前記第1遷移期間とを時間的に分離する
    ことを特徴とするプラズマディスプレイ装置。
    A plasma display panel having a plurality of display electrode pairs and a plurality of data electrodes, and a data electrode driving circuit for applying an address pulse to the data electrodes, wherein the data electrode driving circuit performs the writing for each writing cycle in a writing period. A plasma display apparatus that applies a high voltage side voltage of a pulse or a low voltage side voltage of the write pulse to the data electrode,
    The data electrode driving circuit includes a recovery capacitor and a recovery coil connected in series to the recovery capacitor, and includes a high-voltage side switch that outputs the high-voltage side voltage, a low-voltage side switch that outputs the low-voltage side voltage, and the recovery An output buffer having a recovery switch connected to a capacitor for each of the data electrodes;
    The output buffer turns on the recovery switch during the first transition period provided in the write cycle when the voltage of the write pulse changes from the low-voltage side voltage to the high-voltage side voltage. The output capacitance is increased by resonating the load capacity of the recovery coil and the recovery coil, and then the recovery switch is turned off and the high-voltage side switch is turned on to clamp the output voltage to the high-voltage side voltage,
    When transitioning the voltage of the write pulse from the high-voltage side voltage to the low-voltage side voltage, the recovery switch is turned on in the second transition period provided in the write cycle and the load capacitance of the data electrode and the Resonate with the recovery coil to lower the output voltage, then turn off the recovery switch and turn on the low-voltage side switch to clamp the output voltage to the low-voltage side voltage,
    The plasma display apparatus characterized by temporally separating the second transition period and the first transition period immediately after the second transition period.
  2. 前記データ電極駆動回路は、複数の前記出力バッファを集積した集積回路を複数用いて構成し、前記集積回路が駆動する複数の前記データ電極の実質的な負荷容量の総和を算出し、前記総和が大きいときには前記総和が小さいときよりも前記第1遷移期間または前記第2遷移期間の時間長が長くなるように、前記総和にもとづき前記高圧側スイッチ、前記低圧側スイッチおよび前記回収スイッチを制御する
    ことを特徴とする請求項1に記載のプラズマディスプレイ装置。
    The data electrode driving circuit is configured by using a plurality of integrated circuits in which a plurality of output buffers are integrated, and calculates a sum of substantial load capacities of the plurality of data electrodes driven by the integrated circuit. Controlling the high-pressure side switch, the low-pressure side switch, and the recovery switch based on the sum so that the time length of the first transition period or the second transition period is longer when the sum is smaller than when the sum is small. The plasma display device according to claim 1.
  3. 1フィールドを書込み期間と維持期間とを有する複数のサブフィールドで構成し、
    前記書込み期間において、複数の表示電極対と複数のデータ電極とを有するプラズマディスプレイパネルの前記データ電極に、回収コンデンサと回収コイルとを共振させて複数の前記データ電極を駆動するデータドライバから書込みパルスを印加するプラズマディスプレイ装置の駆動方法であって、
    前記データドライバが駆動する複数の前記データ電極の実質的な負荷容量の総和を算出し、
    前記書込みパルスの電圧を低圧側電圧から高圧側電圧に遷移する第1遷移期間および前記書込みパルスの電圧を前記高圧側電圧から前記低圧側電圧に遷移する第2遷移期間の時間長を、前記総和にもとづき制御し、前記総和が大きいときには前記総和が小さいときよりも前記第1遷移期間または前記第2遷移期間の時間長を長くする
    ことを特徴とするプラズマディスプレイ装置の駆動方法。
    One field is composed of a plurality of subfields having an address period and a sustain period,
    In the write period, a write pulse from a data driver that drives a plurality of data electrodes by causing a recovery capacitor and a recovery coil to resonate with the data electrodes of a plasma display panel having a plurality of display electrode pairs and a plurality of data electrodes. A method of driving a plasma display device that applies
    Calculating a sum of substantial load capacities of the plurality of data electrodes driven by the data driver;
    A time length of a first transition period in which the voltage of the write pulse is changed from a low voltage to a high voltage and a second transition period in which the voltage of the write pulse is changed from the high voltage to the low voltage is the sum. The method of driving a plasma display device according to claim 1, wherein the time length of the first transition period or the second transition period is made longer when the sum is large than when the sum is small.
PCT/JP2011/006626 2010-11-30 2011-11-29 Plasma display device and method for driving plasma display device WO2012073478A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-266153 2010-11-30
JP2010266153 2010-11-30

Publications (1)

Publication Number Publication Date
WO2012073478A1 true WO2012073478A1 (en) 2012-06-07

Family

ID=46171451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006626 WO2012073478A1 (en) 2010-11-30 2011-11-29 Plasma display device and method for driving plasma display device

Country Status (1)

Country Link
WO (1) WO2012073478A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123998A (en) * 1996-10-15 1998-05-15 Fujitsu Ltd Display device utilizing flat display panel
JP2008250162A (en) * 2007-03-30 2008-10-16 Pioneer Electronic Corp Drive device of plasma display

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123998A (en) * 1996-10-15 1998-05-15 Fujitsu Ltd Display device utilizing flat display panel
JP2008250162A (en) * 2007-03-30 2008-10-16 Pioneer Electronic Corp Drive device of plasma display

Similar Documents

Publication Publication Date Title
KR20080069978A (en) Plasma display device and plasma display panel drive method
US20070139306A1 (en) Plasma display panel with simultaneous address drive operation and sustain drive operation
KR101168553B1 (en) Plasma display panel driving method
JP5092276B2 (en) Plasma display panel driving method and plasma display device
JP2007304259A (en) Method for driving plasma display panel, and plasma display device
JP2011149969A (en) Plasma display device and method of driving plasma display panel
JP2008096803A (en) Driving method of plasma display panel, and plasma display device
WO2012073478A1 (en) Plasma display device and method for driving plasma display device
JP5003191B2 (en) Driving method of plasma display device
WO2011007563A1 (en) Plasma display device and drive method for a plasma display panel
WO2010146827A1 (en) Driving method for plasma display panel, and plasma display device
JP5024482B2 (en) Plasma display panel driving method and plasma display device
WO2012090451A1 (en) Driving method for plasma display panel, and plasma display device
WO2012073477A1 (en) Plasma display device and method for driving plasma display device
KR20120028292A (en) Driving method for plasma display panel, and plasma display device
WO2012073516A1 (en) Method of driving plasma display device and plasma display device
WO2011089886A1 (en) Plasma display panel driving method and plasma display device
KR101110971B1 (en) Plasma display device and method for driving plasma display device
WO2009139163A1 (en) Method for driving plasma display panel, and plasma display device
KR100480173B1 (en) Driving Method Of Plasma Display Panel
JP2009192647A (en) Plasma display device and method of driving the same
JP2008096802A (en) Driving method of plasma display panel, and plasma display device
WO2012102033A1 (en) Plasma display panel drive method and plasma display device
WO2012102043A1 (en) Method for driving plasma display panel, and plasma display apparatus
JP2009251267A (en) Plasma display device and method for driving plasma display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11845384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11845384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP