WO2012073477A1 - Plasma display device and method for driving plasma display device - Google Patents

Plasma display device and method for driving plasma display device Download PDF

Info

Publication number
WO2012073477A1
WO2012073477A1 PCT/JP2011/006625 JP2011006625W WO2012073477A1 WO 2012073477 A1 WO2012073477 A1 WO 2012073477A1 JP 2011006625 W JP2011006625 W JP 2011006625W WO 2012073477 A1 WO2012073477 A1 WO 2012073477A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
data electrode
data
voltage side
electrode
Prior art date
Application number
PCT/JP2011/006625
Other languages
French (fr)
Japanese (ja)
Inventor
岩見 隆
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012073477A1 publication Critical patent/WO2012073477A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/294Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for lighting or sustain discharge
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/296Driving circuits for producing the waveforms applied to the driving electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/066Waveforms comprising a gently increasing or decreasing portion, e.g. ramp

Definitions

  • the present invention relates to a plasma display device which is an image display device using an AC surface discharge type plasma display panel and a driving method of the plasma display device.
  • a typical AC surface discharge type panel as a plasma display panel (hereinafter abbreviated as “panel”) has a large number of discharge cells formed between a front substrate and a rear substrate that are arranged to face each other.
  • a plurality of pairs of display electrodes composed of a pair of scan electrodes and sustain electrodes are formed on the front glass substrate in parallel with each other.
  • a dielectric layer and a protective layer are formed so as to cover the display electrode pairs.
  • the back substrate has a plurality of parallel data electrodes formed on the glass substrate on the back side, a dielectric layer is formed so as to cover the data electrodes, and a plurality of barrier ribs are formed thereon in parallel with the data electrodes. ing. And the fluorescent substance layer is formed in the surface of a dielectric material layer, and the side surface of a partition.
  • the front substrate and the rear substrate are arranged opposite to each other and sealed so that the display electrode pair and the data electrode are three-dimensionally crossed.
  • a discharge gas containing xenon at a partial pressure ratio of 5% is sealed, and a discharge cell is formed in a portion where the display electrode pair and the data electrode face each other.
  • ultraviolet rays are generated by gas discharge in each discharge cell, and the phosphors of each color of red (R), green (G) and blue (B) are excited and emitted by the ultraviolet rays. Display an image.
  • the subfield method is generally used as a method for driving the panel.
  • one field is divided into a plurality of subfields, and gradation display is performed by causing each discharge cell to emit light or not emit light in each subfield.
  • Each subfield has an initialization period, an address period, and a sustain period.
  • an initialization waveform is applied to each scan electrode, and an initialization operation is performed to generate an initialization discharge in each discharge cell.
  • wall charges necessary for the subsequent address operation are formed, and priming particles (excited particles for generating the discharge) for generating the address discharge stably are generated.
  • the scan pulse is sequentially applied to the scan electrodes, and the address pulse is selectively applied to the data electrodes based on the image signal to be displayed.
  • an address discharge is generated between the scan electrode and the data electrode of the discharge cell to emit light, and a wall charge is formed in the discharge cell (hereinafter, these operations are also collectively referred to as “address”). ).
  • the number of sustain pulses based on the luminance weight determined for each subfield is alternately applied to the display electrode pairs composed of the scan electrodes and the sustain electrodes.
  • a sustain discharge is generated in the discharge cell that has generated the address discharge, and the phosphor layer of the discharge cell emits light (hereinafter referred to as “lighting” that the discharge cell emits light by the sustain discharge, and “non-emitting”). Also written as “lit”.)
  • each discharge cell is made to emit light with the luminance according to the luminance weight.
  • each discharge cell of the panel is caused to emit light with a luminance corresponding to the gradation value of the image signal, and an image is displayed in the image display area of the panel.
  • the plasma display device has a scan electrode drive circuit, a sustain electrode drive circuit, and a data electrode drive circuit in order to generate a drive voltage waveform necessary for image display.
  • the drive voltage waveform generated in the scan electrode drive circuit is applied to the scan electrode
  • the drive voltage waveform generated in the sustain electrode drive circuit is applied to the sustain electrode
  • the drive voltage waveform generated in the data electrode drive circuit is applied to the data electrode.
  • the data electrode When viewed from the data electrode drive circuit, the data electrode is a capacitive load (load capacity).
  • a plasma display device is disclosed in which a power recovery unit is added to a power source that supplies power to a data electrode driving circuit (see, for example, Patent Document 1).
  • this power supply reduces power consumption by resonating the load capacitance and the recovery coil and supplying power to the data electrode driving circuit.
  • the image data is data generated based on an image signal in order to display an image on the panel.
  • Patent Document 2 A plasma display device that improves this point is also disclosed (see, for example, Patent Document 2).
  • the output amplitude of the power recovery unit added to the power supply is controlled according to the image data.
  • the power consumption in the plasma display device can be reduced by adding the power recovery unit to the power source that supplies power to the data electrode driving circuit.
  • the power recovery unit if a power recovery unit is added to the power supply, the voltage supplied to the data electrode drive circuit tends to be unstable, and the address discharge may become unstable. When the address discharge becomes unstable, the image display quality in the plasma display device is degraded.
  • the present invention includes a panel having a plurality of display electrode pairs and a plurality of data electrodes, and a data electrode driving circuit for applying a writing pulse to the data electrodes, the data electrode driving circuit having a writing pulse for each writing cycle in a writing period.
  • the high voltage side voltage or the low voltage side voltage of the write pulse is applied to each data electrode.
  • the data electrode driving circuit includes an output buffer having a high-voltage side switch that outputs a high-voltage side voltage and a low-voltage side switch that outputs a low-voltage side voltage for each of the data electrodes.
  • the output buffer turns off the low-voltage side switch and turns on the high-voltage side switch during the first transition period provided in the write cycle when the voltage of the write pulse changes from the low-voltage side voltage to the high-voltage side voltage. To high voltage.
  • the high-voltage side switch is turned off and the low-voltage side switch is turned on during the second transition period provided in the write cycle. To. Then, the second transition period and the first transition period immediately after the second transition period are separated in time.
  • the data electrode driving circuit calculates a substantial load capacity between adjacent data electrodes, and the data electrode having a relatively large substantial load capacity is substantially
  • the high voltage side switch and the low voltage side switch may be controlled for each output buffer so that the start time of the first transition period or the second transition period is earlier than the data electrode having a relatively small load capacity.
  • the data electrode driving circuit is constituted by using a plurality of integrated circuits in which a plurality of output buffers are integrated.
  • the substantial load capacitance generated for each data electrode is determined.
  • the high-voltage side switch and the low-voltage side switch are integrated so that the start time of the first transition period or the second transition period is earlier than that of the integrated circuit with a small maximum value. You may control for every circuit.
  • the present invention also includes a panel having a plurality of display electrode pairs and a plurality of data electrodes, and a data electrode driving circuit for applying an address pulse to the data electrodes, and the data electrode driving circuit is provided for each address period in the address period.
  • a high voltage side voltage of an address pulse or a low voltage side voltage of an address pulse is applied to each data electrode.
  • the data electrode driving circuit includes an output buffer having a high-voltage side switch that outputs a high-voltage side voltage and a low-voltage side switch that outputs a low-voltage side voltage for each of the data electrodes.
  • the output buffer turns off the low-voltage side switch and turns on the high-voltage side switch during the first transition period provided in the write cycle when the voltage of the write pulse changes from the low-voltage side voltage to the high-voltage side voltage. To high voltage.
  • the high-voltage side switch is turned off and the low-voltage side switch is turned on during the second transition period provided in the write cycle.
  • the second transition period and the first transition period immediately after the second transition period are temporally separated.
  • one field includes a plurality of subfields each having an address period and a sustain period, and in the address period, a write cycle is applied to a data electrode of a panel having a plurality of display electrode pairs and a plurality of data electrodes.
  • This is a driving method of a plasma display device in which an address pulse is applied every time.
  • the voltage of the write pulse is changed from the low voltage side voltage to the high voltage side voltage in the first transition period provided in the write cycle, and the voltage of the write pulse is changed in the second transition period provided in the write cycle. Transition from high voltage to low voltage. Then, the second transition period and the first transition period immediately after the second transition period are separated in time.
  • FIG. 1 is an exploded perspective view showing a structure of a panel used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • FIG. 2 is an electrode array diagram of the panel used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • FIG. 3 is a diagram schematically showing the interelectrode capacitance of the panel used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • FIG. 4 is a diagram schematically showing drive voltage waveforms applied to each electrode of the panel used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • FIG. 5 is a diagram schematically showing an example of a circuit block constituting the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • FIG. 1 is an exploded perspective view showing a structure of a panel used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • FIG. 2 is an electrode array diagram of the panel used in the plasma display
  • FIG. 6 is a circuit diagram schematically showing a configuration of an output buffer included in the data electrode driving circuit of the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • FIG. 7 is a timing chart schematically showing an example of the operation of the data electrode driving circuit of the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • FIG. 8A is a circuit diagram schematically showing a configuration of an output buffer provided in the data electrode driving circuit of the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • FIG. 8B is a diagram schematically showing an example of the operating state of the output buffer provided in the data electrode driving circuit of the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • FIG. 8C is a diagram schematically showing another example of the operating state of the output buffer provided in the data electrode driving circuit of the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • FIG. 8D is a diagram schematically showing another example of the operating state of the output buffer provided in the data electrode driving circuit of the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • FIG. 8E is a diagram schematically showing another example of the operating state of the output buffer provided in the data electrode driving circuit of the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • FIG. 9 is a circuit diagram schematically showing a configuration of a data electrode driving circuit of the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • FIG. 10 is a diagram schematically showing an example of a circuit block constituting the plasma display device in accordance with the second exemplary embodiment of the present invention.
  • FIG. 11 is a circuit diagram schematically showing a configuration of a data electrode driving circuit of the plasma display device in accordance with the second exemplary embodiment of the present invention.
  • FIG. 12 is a timing chart schematically showing an example of the operation of the data electrode driving circuit of the plasma display device in accordance with the second exemplary embodiment of the present invention.
  • FIG. 13 is a circuit diagram schematically showing a configuration of a data electrode driving circuit of the plasma display device in accordance with the third exemplary embodiment of the present invention.
  • FIG. 11 is a circuit diagram schematically showing a configuration of a data electrode driving circuit of the plasma display device in accordance with the second exemplary embodiment of the present invention.
  • FIG. 12 is a timing chart schematically showing an example of the operation of the data electrode driving circuit of the plasma display device in accordance with the second exemplary embodiment of the present invention.
  • FIG. 13
  • FIG. 14 is a timing chart schematically showing an example of the operation of the data electrode driving circuit of the plasma display device in accordance with the third exemplary embodiment of the present invention.
  • FIG. 15 is a circuit diagram schematically showing a configuration of a data electrode driving circuit of the plasma display device in accordance with the fourth exemplary embodiment of the present invention.
  • FIG. 16 is a timing chart schematically showing an example of the operation of the data electrode driving circuit of the plasma display device in accordance with the fourth exemplary embodiment of the present invention.
  • FIG. 1 is an exploded perspective view showing the structure of panel 10 used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • a plurality of display electrode pairs 14 each including a scanning electrode 12 and a sustaining electrode 13 are formed on a glass front substrate 11.
  • a dielectric layer 15 is formed so as to cover the scan electrode 12 and the sustain electrode 13, and a protective layer 16 is formed on the dielectric layer 15.
  • This protective layer 16 has been used as a panel material in order to lower the discharge start voltage in the discharge cell, and has a large secondary electron emission coefficient and durability when neon (Ne) and xenon (Xe) gas is sealed. It is made of a material mainly composed of magnesium oxide (MgO).
  • a plurality of data electrodes 22 are formed on the rear substrate 21, a dielectric layer 23 is formed so as to cover the data electrodes 22, and a grid-like partition wall 24 is further formed thereon.
  • a phosphor layer 25R that emits red (R)
  • a phosphor layer 25G that emits green (G)
  • a phosphor layer 25B that emits blue (B).
  • the phosphor layer 25R, the phosphor layer 25G, and the phosphor layer 25B are collectively referred to as a phosphor layer 25.
  • the front substrate 11 and the rear substrate 21 are arranged to face each other so that the display electrode pair 14 and the data electrode 22 intersect each other with a minute space therebetween, and a discharge space is provided in the gap between the front substrate 11 and the rear substrate 21.
  • the outer peripheral part is sealed with sealing materials, such as glass frit. Then, for example, a mixed gas of neon and xenon is sealed in the discharge space inside as a discharge gas.
  • the discharge space is divided into a plurality of sections by the partition walls 24, and discharge cells are formed at the intersections between the display electrode pairs 14 and the data electrodes 22.
  • one pixel is composed of three consecutive discharge cells arranged in the direction in which the display electrode pair 14 extends.
  • the three discharge cells are a discharge cell having a phosphor layer 25R and emitting red (R) (red discharge cell), and a discharge cell having a phosphor layer 25G and emitting green (G) (green). And a discharge cell having a phosphor layer 25B and emitting blue (B) light (blue discharge cell).
  • the structure of the panel 10 is not limited to the above-described structure, and may be, for example, provided with a stripe-shaped partition wall.
  • FIG. 2 is an electrode array diagram of panel 10 used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • the panel 10 includes n scan electrodes SC (1) to scan electrodes SC (n) (scan electrodes 12 in FIG. 1) and n sustain electrodes SU (1) to (horizontal direction (row direction)).
  • Sustain electrodes SU (n) (sustain electrodes 13 in FIG. 1) are arranged and m data electrodes D (1) to D (m) (data electrodes in FIG. 1) extended in the vertical direction (column direction). 22) are arranged.
  • a cell is formed.
  • m discharge cells are formed on one pair of display electrodes 14 and m / 3 pixels are formed.
  • the interelectrode capacitance exists between the electrodes of the electrodes arranged in this way.
  • FIG. 3 is a diagram schematically showing the interelectrode capacitance of panel 10 used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • FIG. 3 as an example, five scan electrodes SC (i ⁇ 2) to scan electrode SC (i + 2), five sustain electrodes SU (i ⁇ 2) to sustain electrode SU (i + 2), Data electrodes D (j ⁇ 2) to data electrode D (j + 3) are shown, and the interelectrode capacitance related to the data electrode 22 is shown.
  • a display electrode pair composed of scan electrode SC (i) and sustain electrode SU (i) is indicated by one thick horizontal line.
  • capacitor Cs exists in each of the regions where the display electrode pair 14 and the data electrode 22 intersect. Further, “capacitance Cc” exists between the data electrodes 22 adjacent to each other.
  • One data electrode D (j) intersects n scan electrodes SC (1) to scan electrode SC (n) and n sustain electrodes SU (1) to sustain electrode SU (n). That is, one data electrode D (j) intersects n display electrode pairs 14. Therefore, in the panel 10, a capacitance (n ⁇ Cs) exists between one data electrode D (j) and the display electrode pair 14.
  • the capacity (n ⁇ Cs) is expressed as “capacity Cg”.
  • one data electrode D (j) has a capacitance Cc between the data electrode D (j + 1) adjacent to the right side and a capacitance between the data electrode D (j ⁇ 1) adjacent to the left side. Cc exists.
  • the capacitance Cg, the capacitance Cc, and the capacitance Cc exist in one data electrode D (j)
  • the total load capacitance in one data electrode D (j) is the capacitance (Cg + 2Cc). . Therefore, in the panel 10, a capacitance (Cg + 2Cc) exists in each of the data electrodes 22.
  • the plasma display device in the present embodiment drives the panel 10 by the subfield method.
  • the subfield method one field of an image signal is divided into a plurality of subfields on the time axis, and a luminance weight is set for each subfield. Therefore, each field has a plurality of subfields having different luminance weights.
  • Each subfield has an initialization period, an address period, and a sustain period. Based on the image signal, light emission / non-light emission of each discharge cell is controlled for each subfield. That is, a plurality of gradations based on the image signal are displayed on the panel 10 by combining the light-emitting subfield and the non-light-emitting subfield based on the image signal.
  • an initializing operation is performed in which initializing discharge is generated in the discharge cells and wall charges necessary for the address discharge in the subsequent address period are formed on each electrode.
  • a scan pulse is applied to the scan electrode 12 and an address pulse is selectively applied to the data electrode 22 to selectively generate an address discharge in the discharge cells to emit light. Then, an address operation is performed to form wall charges in the discharge cells for generating a sustain discharge in the subsequent sustain period.
  • the sustain pulses of the number obtained by multiplying the luminance weight set in each subfield by a predetermined proportional constant are alternately applied to the scan electrode 12 and the sustain electrode 13 to generate the address discharge in the immediately preceding address period.
  • a sustain discharge is generated in the discharge cell, and a sustain operation for emitting light from the discharge cell is performed.
  • This proportionality constant is a luminance multiple. For example, when the luminance multiple is twice, the sustain pulse is applied four times to each of the scan electrode 12 and the sustain electrode 13 in the sustain period of the subfield having the luminance weight “2”. Therefore, the number of sustain pulses generated in the sustain period is 8.
  • the luminance weight represents a ratio of the luminance magnitudes displayed in each subfield, and the number of sustain pulses corresponding to the luminance weight is generated in the sustain period in each subfield. Therefore, for example, the subfield with the luminance weight “8” emits light with a luminance about eight times that of the subfield with the luminance weight “1”, and emits light with about four times the luminance of the subfield with the luminance weight “2”.
  • one field is composed of eight subfields (subfield SF1, subfield SF2, subfield SF3, subfield SF4, subfield SF5, subfield SF6, subfield SF7, subfield SF8). If luminance weights of (1, 2, 4, 8, 16, 32, 64, 128) are set in each subfield of SF1 to subfield SF8, each discharge cell has a gradation value of “0”. The 256 gradation values up to the value “255” can be displayed.
  • each subfield is selectively emitted to emit each discharge cell with various gradation values, An image can be displayed on the panel 10.
  • the number of subfields constituting one field, the luminance weight of each subfield, and the like are not limited to the above-described numerical values.
  • the initializing operation includes all-cell initializing operation that generates initializing discharge in the discharge cells regardless of the operation of the immediately preceding subfield, and the address discharge is generated in the immediately preceding subfield addressing period and is maintained in the sustaining period.
  • an ascending rising waveform voltage and a descending falling waveform voltage are applied to the scan electrode 12 to generate an initializing discharge in all the discharge cells in the image display region. Then, among all the subfields, the all-cell initialization operation is performed in the initialization period of one subfield, and the selective initialization operation is performed in the initialization period of the other subfield.
  • the initialization period for performing the all-cell initialization operation is referred to as “all-cell initialization period”, and the subfield having the all-cell initialization period is referred to as “all-cell initialization subfield”.
  • An initialization period for performing the selective initialization operation is referred to as “selective initialization period”, and a subfield having the selective initialization period is referred to as “selective initialization subfield”.
  • the first subfield (subfield SF1) of each field is an all-cell initializing subfield, and the other subfields are selective initializing subfields.
  • the initializing discharge is generated in all the discharge cells at least once in one field, the addressing operation after the initializing operation for all the cells can be stabilized. Further, light emission not related to image display is only light emission due to discharge in the all-cell initializing operation in the subfield SF1. Therefore, the black luminance that is the luminance of the black display region where no sustain discharge occurs is only weak light emission in the all-cell initialization operation, and an image with high contrast can be displayed on the panel 10.
  • the number of subfields constituting one field and the luminance weight of each subfield are not limited to the above-described numerical values.
  • the structure which switches a subfield structure based on an image signal etc. may be sufficient.
  • FIG. 4 is a diagram schematically showing drive voltage waveforms applied to the respective electrodes of panel 10 used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • FIG. 4 shows scan electrode SC (1) that performs the address operation first in the address period, scan electrode SC (n) that performs the address operation last in the address period (for example, scan electrode SC (1080)), and sustain electrode SU.
  • scan electrode SC (1) that performs the address operation first in the address period
  • scan electrode SC (n) that performs the address operation last in the address period
  • sustain electrode SU for example, scan electrode SC (1080)
  • sustain electrode SU for example, scan electrode SC (1080)
  • sustain electrode SU drive voltage waveforms applied to sustain electrode SU (n) and data electrode D (1) to data electrode D (m) are shown.
  • scan electrode SC (i), sustain electrode SU (i), and data electrode D (k) in the following are selected from each electrode based on image data (data indicating light emission / non-light emission for each subfield). Represents an electrode.
  • FIG. 4 shows driving voltage waveforms of two subfields, subfield SF1 and subfield SF2.
  • the subfield SF1 is a subfield for performing an all-cell initialization operation
  • the subfield SF2 is a subfield for performing a selective initialization operation. Therefore, the waveform shape of the drive voltage applied to the scan electrode 12 in the initialization period differs between the subfield SF1 and the subfield SF2.
  • the drive voltage waveform in the other subfield is substantially the same as the drive voltage waveform in subfield SF2 except that the number of sustain pulses generated in the sustain period is different.
  • the number of subfields constituting one field and the luminance weight of each subfield are not limited to the above values.
  • subfield SF1 which is an all-cell initialization subfield
  • the data electrode D (1) to the data electrode D (m) and the sustain electrode SU (1) to the sustain electrode SU (n) A voltage of 0 (V) is applied.
  • a voltage Vi1 is applied to scan electrode SC (1) to scan electrode SC (n) after voltage 0 (V) is applied, and an upward ramp waveform voltage (ramp voltage) gradually rising from voltage Vi1 to voltage Vi2. ) Is applied.
  • Voltage Vi1 is set to a voltage lower than the discharge start voltage with respect to sustain electrode SU (1) to sustain electrode SU (n), and voltage Vi2 is set to a voltage exceeding the discharge start voltage.
  • positive voltage Ve is applied to sustain electrode SU (1) to sustain electrode SU (n), and data electrode D (1) to data electrode D (m) are applied to data electrode D (1) to data electrode D (m).
  • a voltage of 0 (V) is applied.
  • Scan electrode SC (1) to scan electrode SC (n) are applied with a downward ramp waveform voltage (ramp voltage) that gently falls from voltage Vi3 toward negative voltage Vi4.
  • Voltage Vi3 is set to a voltage lower than the discharge start voltage with respect to sustain electrode SU (1) to sustain electrode SU (n), and voltage Vi4 is set to a voltage exceeding the discharge start voltage.
  • While this ramp voltage is applied to scan electrode SC (1) -scan electrode SC (n), scan electrode SC (1) -scan electrode SC (n) and sustain electrode SU (1) -sustain electrode of each discharge cell.
  • a weak initializing discharge occurs between SU (n) and between scan electrode SC (1) -scan electrode SC (n) and data electrode D (1) -data electrode D (m). .
  • negative wall voltage on scan electrode SC (1) to scan electrode SC (n) positive wall voltage on sustain electrode SU (1) to sustain electrode SU (n), and data electrode D (1)
  • the positive wall voltage on the data electrode D (m) is adjusted to a value suitable for the write operation.
  • a device for reducing power consumption is applied to the waveform shape of the address pulse applied to the data electrode D (1) to the data electrode D (m) in the subsequent address period. Details of this will be described later. Hereinafter, an outline of the write operation in the write period will be described.
  • a negative scan pulse with a negative voltage Va is applied to the scan electrode SC (1) of the first line (first row).
  • a positive address pulse having a positive voltage Vd is applied to the data electrode D (k) of the discharge cell that should emit light in the first line among the data electrodes D (1) to D (m).
  • a scan pulse of voltage Va is applied to the scan electrode SC (2) of the second line (second row), and the data electrode corresponding to the discharge cell that should emit light on the second line.
  • An address pulse of voltage Vd is applied to D (k).
  • address discharge occurs in the discharge cells of the second line to which the scan pulse and address pulse are simultaneously applied.
  • an address operation is performed in the discharge cell of the second line.
  • a scan pulse of voltage Va is applied to the scan electrode SC (i) of the i-th line in the i-th write cycle, and the data electrode D (k) corresponding to the discharge cell to emit light on the i-th line is applied.
  • An address pulse of voltage Vd is applied.
  • the same address operation is sequentially performed until the discharge cell on the n-th line, and the address period of the subfield SF1 ends.
  • voltage Ve applied to sustain electrode SU (1) to sustain electrode SU (n) in the latter half of the initialization period and voltage Ve applied to sustain electrode SU (1) to sustain electrode SU (n) in the address period may be used.
  • V voltage 0
  • Vs sustain pulse of positive voltage
  • the voltage difference between the scan electrode SC (i) and the sustain electrode SU (i) exceeds the discharge start voltage, and the sustain discharge is generated. And the fluorescent substance layer 25 light-emits with the ultraviolet-ray which generate
  • scan electrodes SC (1) to scan electrode SC (n) and sustain electrodes SU (1) to sustain electrode SU (n) are alternately supplied with the number of sustain pulses obtained by multiplying the brightness weight by a predetermined brightness multiple. Apply to.
  • the discharge cells that have generated the address discharge in the address period emit light with a luminance corresponding to the luminance weight.
  • subfield SF2 which is a selective initialization subfield
  • voltage Ve is applied to sustain electrode SU (1) to sustain electrode SU (n), and voltage 0 (V) is applied to data electrode D (1) to data electrode D (m).
  • Scan electrode SC (1) to scan electrode SC (n) have a ramp waveform voltage (ramp voltage) that gently falls from a voltage (for example, voltage 0 (V)) that is less than the discharge start voltage toward negative voltage Vi4.
  • Voltage Vi4 is set to a voltage exceeding the discharge start voltage with respect to sustain electrode SU (1) to sustain electrode SU (n).
  • the initializing operation in the subfield SF2 is a selective initializing operation in which the initializing discharge is selectively generated in the discharge cells that have performed the addressing operation in the address period of the immediately preceding subfield.
  • a drive voltage waveform similar to that in the address period of the subfield SF1 is applied to each electrode, and an address operation for accumulating wall voltage on each electrode of the discharge cell to emit light is performed.
  • the number of sustain pulses corresponding to the luminance weight is applied to scan electrode SC (1) to scan electrode SC (n) and sustain electrode SU (1) to sustain electrode SU ( n) alternately, and sustain discharge is generated in the discharge cells that have generated address discharge in the address period.
  • each subfield after subfield SF3 In the initialization period and address period of each subfield after subfield SF3, the same drive voltage waveform as that in the initialization period and address period of subfield SF2 is applied to each electrode. In the sustain period of each subfield after subfield SF3, the drive voltage waveform similar to that of subfield SF2 is applied to each electrode except for the number of sustain pulses generated in the sustain period.
  • FIG. 5 is a diagram schematically showing an example of a circuit block constituting the plasma display device 30 according to the first embodiment of the present invention.
  • the plasma display device 30 shown in the present embodiment includes a panel 10 and a drive circuit that drives the panel 10.
  • the drive circuit includes an image signal processing circuit 31, a data electrode drive circuit 32, a scan electrode drive circuit 33, a sustain electrode drive circuit 34, a timing generation circuit 35, and a power supply circuit (not shown) that supplies necessary power to each circuit block. It has.
  • the image signals input to the image signal processing circuit 31 are a red image signal, a green image signal, and a blue image signal.
  • the image signal processing circuit 31 sets each gradation value of red, green, and blue in each discharge cell based on the red image signal, the green image signal, and the blue image signal.
  • the input image signal includes a luminance signal (Y signal) and a saturation signal (C signal, or RY signal and BY signal, or u signal and v signal, etc.).
  • a red image signal, a green image signal, and a blue image signal are calculated based on the luminance signal and the saturation signal, and then each of the red, green, and blue tone values (represented by one field) is stored in each discharge cell. Tone value).
  • the red, green, and blue gradation values set in each discharge cell are associated with image data indicating lighting / non-lighting for each subfield (light emission / non-light emission corresponds to digital signals “1” and “0”). Data). That is, the image signal processing circuit 31 converts the red image signal, the green image signal, and the blue image signal into red image data, green image data, and blue image data and outputs the converted image data.
  • the timing generation circuit 35 generates various timing signals for controlling the operation of each circuit block based on the horizontal synchronization signal and the vertical synchronization signal.
  • the generated timing signal is supplied to each circuit block (data electrode drive circuit 32, scan electrode drive circuit 33, sustain electrode drive circuit 34, image signal processing circuit 31, etc.).
  • Scan electrode drive circuit 33 includes an initialization waveform generation circuit, a sustain pulse generation circuit, and a scan pulse generation circuit (not shown in FIG. 5), and generates a drive voltage waveform based on a timing signal supplied from timing generation circuit 35. It is prepared and applied to each of scan electrode SC (1) to scan electrode SC (n).
  • the initialization waveform generation circuit generates an initialization waveform to be applied to scan electrode SC (1) to scan electrode SC (n) during the initialization period based on the timing signal.
  • the sustain pulse generation circuit generates a sustain pulse to be applied to scan electrode SC (1) to scan electrode SC (n) during the sustain period based on the timing signal.
  • the scan pulse generation circuit includes a plurality of scan electrode drive ICs (scan ICs), and generates scan pulses to be applied to scan electrode SC (1) to scan electrode SC (n) during an address period based on a timing signal.
  • Sustain electrode drive circuit 34 includes a sustain pulse generation circuit and a circuit (not shown in FIG. 5) for generating voltage Ve, creates a drive voltage waveform based on the timing signal supplied from timing generation circuit 35, The voltage is applied to each of sustain electrode SU (1) to sustain electrode SU (n). In the sustain period, a sustain pulse is generated based on the timing signal and applied to sustain electrode SU (1) to sustain electrode SU (n).
  • the data electrode drive circuit 32 corresponds to each data electrode D (1) to data electrode D (m) based on the image data of each color output from the image signal processing circuit 31 and the timing signal supplied from the timing generation circuit 35. A write pulse is generated. Then, the data electrode drive circuit 32 applies the address pulse to the data electrodes D (1) to D (m) during the address period.
  • the data electrode driving circuit 32 has an output buffer provided for each of the data electrode D (1) to the data electrode D (m). This output buffer will be described with reference to FIG.
  • FIG. 6 is a circuit diagram schematically showing a configuration of an output buffer included in data electrode drive circuit 32 of plasma display device 30 according to the first exemplary embodiment of the present invention.
  • FIG. 6 shows only circuit blocks that constitute the output buffer, and other circuit blocks are omitted.
  • the data electrode drive circuit 32 has m output buffers provided for each of the data electrodes D (1) to D (m).
  • One output buffer has one high-voltage side switch QH that outputs the high-voltage side voltage Vd of the write pulse, and one low-voltage side switch QL that outputs the low-voltage side voltage 0 (V) of the write pulse. Therefore, the data electrode drive circuit 32 has m high-voltage side switches QH (1) to high-voltage side switches QH (m) and m low-voltage side switches QL (1) to low-voltage side switches QL (m). .
  • the data electrode driving circuit 32 turns on the low voltage side switch QL (j) corresponding to the data electrode D (j), thereby applying the low voltage side voltage 0 (V) of the write pulse to the data electrode D (j). Apply.
  • the data electrode driving circuit 32 applies the high-voltage side voltage Vd of the write pulse to the data electrode D (j) by turning on the high-voltage side switch QH (j) corresponding to the data electrode D (j).
  • the data electrode driving circuit 32 applies the high voltage side voltage Vd of the write pulse or the low voltage side voltage 0 (V) of the write pulse to the data electrode D (1) to the data electrode D (m) for each write cycle of the write period to be described later. ).
  • FIG. 1 Details of the address pulse applied to the data electrode D (1) to the data electrode D (m) will be described together with the operation of the data electrode drive circuit 32.
  • a first transition period Ta is provided at the beginning of each write cycle, and a second transition period Tb is provided at the end of each write cycle.
  • This write cycle is a period from the start to the end of one write operation, for example, a cycle from the start of generation of one scan pulse to the end of generation.
  • the voltage applied to the data electrode 22 is changed from the low voltage side voltage 0 (V) to the high voltage side voltage Vd during the first transition period Ta. It is during the second transition period Tb that the voltage applied to is shifted from the high voltage Vd to the low voltage 0 (V).
  • FIG. 7 is a timing chart schematically showing an example of the operation of the data electrode driving circuit 32 of the plasma display device 30 in the first exemplary embodiment of the present invention.
  • FIG. 7 shows three address periods (address period T (i ⁇ 1), address period T (i), address period T (i + 1)) in the address period as an example, and scan electrode SC (i ⁇ 1) ) To scanning electrode SC (i + 1) and data electrode D (j ⁇ 2) to driving electrode waveform applied to data electrode D (j + 3) by way of example.
  • FIG. 7 also shows that data electrode D (j-2), data electrode D (j-1), data electrode D (j) and data electrode D (j + 2) are written in address cycle T (i-1). A pulse is applied, no address pulse is applied to the data electrode D (j + 1) and the data electrode D (j + 3), and an address is written to the data electrode D (j + 1) and the data electrode D (j + 3) in the address period T (i).
  • a pulse is applied, an address pulse is not applied to the data electrode D (j-2), the data electrode D (j-1), the data electrode D (j), and the data electrode D (j + 2), and the address period T (i + 1 ), An address pulse is applied to data electrode D (j ⁇ 1), data electrode D (j) and data electrode D (j + 3), and data electrode D (j ⁇ 2), data electrode D (j + 1) and data electrode are applied.
  • D (j + 2) An example applying no pulse.
  • a negative polarity scan pulse of voltage Va is applied to the scan electrode SC (i-1) of the (i-1) th line.
  • an address pulse is applied to the data electrode D (j-2), the data electrode D (j-1), the data electrode D (j), and the data electrode D (j + 2).
  • the high-voltage side switch QH (j) and the high-voltage side switch QH (j + 2) are turned on, and the data electrode D (j-2), the data electrode D (j-1), the data electrode D (j), and the data electrode D
  • the high voltage Vd is applied to (j + 2), and the voltage of the data electrodes 22 is changed from the low voltage 0 (V) to the high voltage Vd.
  • an address pulse of voltage Vd is applied to data electrode D (j-2), data electrode D (j-1), data electrode D (j), and data electrode D (j + 2).
  • the address discharge is generated in the discharge cell on the (i-1) th line to which the scan pulse and the address pulse are simultaneously applied.
  • the high voltage side switch QH (j-2), the high voltage side switch QH (j-1), the high voltage side switch QH (j) and the high voltage side switch QH (j + 2) Turn off.
  • the voltage of the data electrode D (j ⁇ 2), the data electrode D (j ⁇ 1), the data electrode D (j), and the data electrode D (j + 2) is decreased from the high-voltage side voltage Vd.
  • the side voltage is changed to 0 (V).
  • the start time of the second transition period Tb is set to a different time for each of the data electrodes 22.
  • the start time of the second transition period Tb is set to one of the earliest start time t21, the next start time t22, and the latest start time t23 for each of the data electrodes 22.
  • the start time t21 is the start time of the second transition period Tb in the data electrode D (j + 2), and the second transition period Tb in the data electrode D (j-2) and the data electrode D (j)
  • the start time is the start time t22, and the start time of the second transition period Tb in the data electrode D (j ⁇ 1) is the start time t23.
  • the second transition period Tb starting from the start time t21 is referred to as “second transition period Tb1”
  • the second transition period Tb starting from the start time t22 is referred to as “second transition period”.
  • the second transition period Tb starting from the start time t23 is referred to as“ second transition period Tb3 ”.
  • the low voltage side switch QL (j + 2) of the output buffer is turned on, and the voltage of the data electrode D (j + 2) is changed from the high voltage side voltage Vd to the low voltage side voltage 0 (V).
  • the low voltage side switch QL (j-2) and the low voltage side switch QL (j) of the output buffer are turned on, and the data electrode D (j-2) and the data electrode D ( The voltage j) is transitioned from the high voltage Vd to the low voltage 0 (V).
  • the low voltage side switch QL (j-1) of the output buffer is turned on, and the voltage of the data electrode D (j-1) is changed from the high voltage side voltage Vd to the low voltage side voltage 0 ( Transition to V).
  • write pulses are applied to the data electrodes D (1) to D (m) from the output buffers corresponding to the data electrodes 22 at different timings.
  • a negative scan pulse of voltage Va is applied to the scan electrode SC (i) on the (i) line.
  • the high-voltage side switch QH (j + 1) and the high-voltage side switch QH (j + 3) of the output buffer included in the data electrode driving circuit 32 are turned on.
  • the high voltage side voltage Vd is applied to the data electrode D (j + 1) and the data electrode D (j + 3), and the voltage of the data electrode 22 is changed from the low voltage side voltage 0 (V) to the high voltage side voltage Vd.
  • an address pulse of voltage Vd is applied to the data electrode D (j + 1) and the data electrode D (j + 3).
  • the address discharge is generated in the discharge cell on the (i) line to which the scan pulse and the address pulse are simultaneously applied.
  • the high-voltage side switch QH (j + 1) is turned off between the occurrence of the address discharge and the time t41. Note that, in the subsequent address period T (i + 1), the address pulse is applied to the data electrode D (j + 3), so that the high voltage side switch QH (j + 3) is kept on.
  • the voltage of the data electrode D (j + 1) is changed from the high-voltage side voltage Vd to the low-voltage side voltage. Transition to 0 (V).
  • the low-voltage side switch QL (j + 1) of the output buffer is turned on, and the voltage of the data electrode D (j + 1) is changed from the high-voltage side voltage Vd to the low-voltage side. Transition to voltage 0 (V).
  • a negative scan pulse of voltage Va is applied to the scan electrode SC (i + 1) of the (i + 1) -th line.
  • an address pulse is applied to the data electrode D (j ⁇ 1), the data electrode D (j), and the data electrode D (j + 3).
  • the high voltage side switch QH (j ⁇ 1) and the high voltage side switch QH (j) of the output buffer included in the data electrode driving circuit 32 are turned on.
  • the high voltage side voltage Vd is applied to the data electrode D (j ⁇ 1) and the data electrode D (j), and the voltage of the data electrode 22 is changed from the low voltage side voltage 0 (V) to the high voltage side voltage Vd.
  • the high-voltage side switch QH (j + 3) is kept on from the second transition period Tb1 of the write cycle T (i), the data electrode D is output during the first transition period Ta of the write cycle T (i + 1).
  • the voltage (j + 3) remains the high voltage Vd.
  • the high-voltage side switch QH (j ⁇ 1) and the high-voltage side switch QH (j + 3) are turned off after the address discharge occurs until time t61. Note that, in the subsequent address period T (i + 2), the address pulse is applied to the data electrode D (j), so that the high-voltage side switch QH (j) remains on.
  • the voltage of the data electrode D (j ⁇ 1) and the data electrode D (j + 3) is transitioned from the high voltage side voltage Vd to the low voltage side voltage 0 (V).
  • the start time of the second transition period Tb is set to a relatively early start time t61 with respect to the data electrode D (j ⁇ 1), and the data electrode D (j + 3) Is set to a relatively late start time t62.
  • second transition period Tb1 the second transition period starting from the start time t61
  • second transition period Tb2 the second transition period starting from the start time t62
  • the low-voltage side switch QL (j-1) of the output buffer is turned on, and the voltage of the data electrode D (j-1) is changed from the high-voltage side voltage Vd to the low-voltage side voltage 0 ( Transition to V). Further, at the start time t62 of the second transition period Tb2, the low-voltage side switch QL (j + 3) of the output buffer is turned on, and the voltage of the data electrode D (j + 3) is changed from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V).
  • the first transition period Ta and the second transition period Tb do not overlap in time, and the first transition period Ta and the second transition period Tb are separated in time. .
  • the second transition period Tb in the write cycle T (i-2) and the first transition period Ta in the write cycle T (i-1) do not overlap in time, and in the write cycle T (i-1).
  • the second transition period Tb and the first transition period Ta in the write period T (i) do not overlap in time, and the second transition period Tb in the write period T (i) and the first in the write period T (i + 1).
  • the transition period Ta does not overlap in time
  • the second transition period Tb in the write cycle T (i + 1) and the first transition period Ta in the write cycle T (i + 2) do not overlap in time.
  • the output buffer of the data electrode driving circuit 32 in the present embodiment turns on the high-voltage side switch QH in the first transition period Ta provided in each of the write cycles, and the output voltage is reduced to the low-voltage side voltage. Transition from 0 (V) to the high voltage Vd.
  • the output buffer is provided in each of the write cycles and turns on the low-voltage side switch QL in the second transition period Tb that does not overlap with the first transition period Ta in time, and the output voltage is lowered from the high-voltage side voltage Vd.
  • the side voltage is changed to 0 (V).
  • FIG. 8A is a circuit diagram schematically showing a configuration of an output buffer provided in data electrode drive circuit 32 of plasma display device 30 in accordance with the first exemplary embodiment of the present invention.
  • FIG. 8B is a diagram schematically showing an example of the operation state of the output buffer provided in the data electrode drive circuit 32 of the plasma display device 30 in accordance with the first exemplary embodiment of the present invention.
  • FIG. 8C is a diagram schematically showing another example of the operation state of the output buffer provided in the data electrode driving circuit 32 of the plasma display device 30 in accordance with the first exemplary embodiment of the present invention.
  • FIG. 8D is a diagram schematically showing another example of the operation state of the output buffer provided in the data electrode driving circuit 32 of the plasma display device 30 according to the first exemplary embodiment of the present invention.
  • FIG. 8E is a diagram schematically showing another example of the operating state of the output buffer provided in the data electrode driving circuit 32 of the plasma display device 30 in accordance with the first exemplary embodiment of the present invention.
  • FIG. 8A shows an output buffer that drives the data electrode D (j) and an output buffer that drives the data electrode D (j + 1)
  • FIGS. 8A schematically shows a current flowing through each output buffer shown in FIG. 8A. 8A to 8E, the interelectrode capacitance generated between the data electrode D (j) and the data electrode D (j + 1) is represented by a capacitor Cc.
  • the data electrode D (j) transitions from a state where no address pulse is applied to a state where an address pulse is applied, and the data electrode D (j + 1) transitions from a state where the address pulse is applied to the address pulse.
  • the data electrode D (j + 1) transitions from a state where the address pulse is applied to the address pulse.
  • the terminal voltage on the data electrode D (j) side of the capacitor Cc is the low voltage 0 (V) of the write pulse, and the data electrode D (j + 1) side Is a high-voltage side voltage Vd of the write pulse.
  • the high-voltage side switch QH (j) connected to the data electrode D (j) and the low-voltage side switch QL (j + 1) connected to the data electrode D (j + 1) are simultaneously Turn on. Therefore, the current Ic flows from the power source of the voltage Vd to the high voltage side switch QH (j), the capacitor Cc, the low voltage side switch QL (j + 1), and the ground potential. As a result, the capacitor Cc is charged, the one terminal voltage of the capacitor Cc (that is, the voltage on the data electrode D (j) side) becomes the high voltage Vd, and the other terminal voltage of the capacitor Cc (that is, the data electrode D). (Voltage on the side of (j + 1)) is the low voltage 0 (V).
  • the first transition period Ta and the second transition period Tb are temporally separated. Therefore, first, from the initial state shown in FIG. 8B, the low-voltage side switch QL (j + 1) is turned on in the second transition period Tb. As a result, as shown in FIG. 8D, a current Id flows from the ground potential to the parasitic diode of the low-voltage side switch QL (j), the capacitor Cc, the low-voltage side switch QL (j + 1), and the ground potential. As a result, the capacitor Cc is discharged, and the two terminal voltages of the capacitor Cc (that is, the voltages of the data electrode D (j) and the data electrode D (j + 1)) are both set to the low voltage 0 (V).
  • the high-voltage side switch QH (j) is turned on in the first transition period Ta.
  • a current Ie flows from the power source of the voltage Vd to the high-voltage side switch QH (j), the capacitor Cc, the low-voltage side switch QL (j + 1), and the ground potential.
  • the capacitor Cc is charged.
  • the capacitor Cc is charged, the one terminal voltage of the capacitor Cc (that is, the voltage on the data electrode D (j) side) becomes the high voltage Vd, and the other terminal voltage of the capacitor Cc (that is, the data electrode D).
  • Voltage on the side of (j + 1) is the low voltage 0 (V).
  • the voltages of the two adjacent data electrodes 22 transition to voltages having opposite phases to each other (that is, the voltage of one data electrode 22 changes from the low voltage 0 (V) to the high voltage Vd.
  • the voltage of the other data electrode 22 transits from the high voltage Vd to the low voltage 0 (V)
  • the first transition period Ta and the second transition period Tb are separated in time.
  • the power required for charging / discharging the interelectrode capacitance Cc can be reduced to approximately half.
  • the load capacitance of the data electrode 22 includes the capacitance Cg generated between the display electrode pair 14 and the data electrode 22 (for example, the data electrode D ( j + 1)) and the capacitance Cc generated between the data electrode 22 adjacent to the left side (for example, the data electrode D (j ⁇ 1)) (Cg + 2Cc).
  • the capacitance Cc between the data electrode D (j ⁇ 2) whose voltage transitions in the same direction and The capacitance Cc between the data electrode D (j) can be ignored. Therefore, the substantial load capacitance of the data electrode D (j ⁇ 1) in the second transition period Tb of the write cycle T (i ⁇ 1) is the capacitance Cg.
  • the voltage applied to the data electrode D (j) transitions from the high voltage side voltage Vd to the low voltage side voltage 0 (V).
  • the voltage applied to the data electrode D (j ⁇ 1) adjacent to the data electrode D (j) also changes from the high voltage side voltage Vd to the low voltage side voltage 0 (V).
  • the voltage applied to the data electrode D (j + 1) adjacent to the data electrode D (j) remains unchanged at the low voltage 0 (V).
  • the capacitance Cc between the data electrode D (j ⁇ 1) whose voltage transitions in the same direction is ignored. be able to.
  • the capacitance Cc between the data electrode D (j + 1) cannot be ignored. Therefore, the substantial load capacitance of the data electrode D (j) in the second transition period Tb of the write cycle T (i ⁇ 1) is the capacitance (Cg + Cc).
  • the time required to transition the voltage of the data electrode D (j) from the high voltage side voltage Vd to the low voltage side voltage 0 (V) is It becomes longer than the time required for the voltage of D (j ⁇ 1) to transition from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V).
  • the voltage applied to the data electrode D (j + 2) transitions from the high voltage side voltage Vd to the low voltage side voltage 0 (V).
  • the voltage applied to the data electrode D (j + 1) and the data electrode D (j + 3) adjacent to the data electrode D (j + 2) remains the low voltage 0 (V).
  • the capacitance Cc between the data electrode D (j + 1) and the capacitance between the data electrode D (j + 3) Both Cc cannot be ignored. Therefore, the substantial load capacitance of the data electrode D (j + 2) in the second transition period Tb of the write cycle T (i ⁇ 1) is the capacitance (Cg + 2Cc).
  • the time required for the voltage of the data electrode D (j + 2) to transition from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V) is It becomes longer than the time required for the voltage of D (j) to transition from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V).
  • the substantial load capacity that affects the transition of the voltage applied to the data electrode 22 varies according to the image data. That is, when the voltage applied to the data electrode 22 of interest and the voltage applied to the two data electrodes 22 adjacent to the data electrode 22 of interest transition in the same way, the substantial load capacitance at the data electrode 22 of interest is The capacity is Cg. In addition, when only the voltage applied to the data electrode 22 of interest and the voltage applied to one data electrode 22 adjacent to the data electrode 22 of interest change in the same manner, the substantial load capacitance at the data electrode 22 of interest is Capacity (Cg + Cc).
  • the substantial load capacitance at the data electrode 22 of interest is Capacity (Cg + 2Cc).
  • the start time of the second transition period is set for each of the output buffers according to the substantial load capacity generated in the data electrode 22.
  • one of the two adjacent data electrodes 22 (for example, the data electrode D (j ⁇ 1) and the data electrode D (j + 1)) (for example, the data electrode D ( In the output buffer corresponding to the data electrode 22 (for example, the data electrode D (j)) in which only the voltage applied to j-1)) transits from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V),
  • the data electrode 22 (for example, the data electrode 22 (for example, the data electrode D (j-2) and the data electrode D (j)) of which the voltage applied to the data electrode 22 (for example, the data electrode D (j-2) and the data electrode D (j)) transitions from the high voltage side voltage Vd to the low voltage side voltage 0 (V).
  • the start time of the second transition period is set earlier than the output buffer corresponding to the data electrode D (j ⁇ 1)).
  • the data electrode 22 (for example, the data electrode D) in which the voltage applied to the two adjacent data electrodes 22 (for example, the data electrode D (j + 1) and the data electrode D (j + 3)) does not transition together.
  • the output buffer corresponding to (j + 2) one of the two adjacent data electrodes 22 (for example, the data electrode D (j ⁇ 1) and the data electrode D (j + 1)) (for example, the data electrode 22 Than the output buffer corresponding to the data electrode 22 (for example, the data electrode D (j)) in which only the voltage applied to the electrode D (j-1)) transitions from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V).
  • the start time of the second transition period is set to an early time.
  • the time required for the voltage applied to the data electrode 22 to transition from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V) is relatively long.
  • the start time of the second transition period is set relatively early.
  • the end time of the second transition period in each data electrode 22 can be made substantially the same time (for example, time t3) regardless of the substantial load capacitance. Therefore, it is possible to effectively use the time required for the write operation in the write period.
  • the time for applying the high-voltage side voltage Vd of the write pulse can be made relatively long.
  • FIG. 9 is a circuit diagram schematically showing the configuration of the data electrode driving circuit 32 of the plasma display device 30 according to the first embodiment of the present invention. In FIG. 9, only a part of the circuit blocks constituting the data electrode drive circuit 32 is shown, and other circuit blocks having the same configuration are omitted.
  • the data electrode drive circuit 32 includes a shift register unit 41, a self load calculation unit 42, an adjacent load calculation unit 44, and an output buffer unit 48.
  • the shift register unit 41 is a shift register.
  • Each latch 141 is connected in series, and the input signal is forwarded (shifted) to the subsequent latch 141 in synchronization with the clock signal (clock Dck). Then, serial data transmitted from a data converter (not shown) is converted into parallel data.
  • Serial data is data expressed in the form of a plurality of bit signals that are temporally continuous so that a plurality of bit signals constituting one data can be transmitted by one signal line. For example, if the data is composed of 8 bits, it becomes 8 bit signals continuous in time.
  • Parallel data refers to data expressed in a format that can be transmitted through the same number of signal lines as bit signals so that a plurality of bit signals constituting one data can be transmitted at the same timing in synchronization with one clock signal. It is. For example, if the data is composed of 8 bits, it becomes 8 parallel bit signals that change at the same timing according to the change of the data, and can be transmitted in parallel by 8 signal lines.
  • the data conversion unit is provided between the image signal processing circuit 31 and the data electrode driving circuit 32, and receives image data (images assigned to each discharge) transmitted from the image signal processing circuit 31. Data) is converted into data for each subfield. This conversion will be described.
  • the image data is 8-bit data.
  • Each bit data of the image data represents light emission / non-light emission in each subfield of subfield SF1 to subfield SF8. Since the panel 10 is driven by the subfield method, each discharge cell of the panel 10 needs to be controlled to emit or not emit light for each subfield. Therefore, if the image data is used as it is, the light emission / non-light emission of each discharge cell cannot be controlled for each subfield.
  • the data conversion unit extracts only the bit data corresponding to the subfield from the image data assigned to each discharge cell and performs conversion into one data.
  • the data is transmitted as serial data to the shift register unit 41.
  • the shift register unit 41 converts a plurality of bits of serial data corresponding to the subfield transmitted from the data conversion unit into parallel data.
  • the bit image data corresponding to the subfield SFQ is referred to as “image data Q”. That is, the shift register unit 41 receives N-bit serial image data Q corresponding to each of the N data electrodes 22 transmitted from the data conversion unit, and N-bit parallel image data corresponding to each of the N data electrodes 22. Is converted into image data Q and output.
  • the configuration and operation of the data electrode driving circuit 32 will be described by taking as an example the case of calculating the substantial load capacity in the data electrode D (j). Therefore, the configuration and operation of data electrode driving circuit 32 described below are the configuration and operation for data electrode D (j), but the configuration and operation for other data electrode 22 are also the configuration and operation for data electrode D (j). It is the same.
  • the data electrode 22 adjacent to the data electrode D (j) is the data electrode D (j ⁇ 1) and the data electrode D (j + 1).
  • the 1-line delay 142 (j) delays the image data Q (j) corresponding to the data electrode D (j) by 1 line (1 horizontal synchronization period) and outputs the image data DQ (j).
  • the logic gate 43 (j) is an AND gate with two inputs and one output (a logic circuit that performs an AND operation).
  • the small circles at the input terminals of the logic gates are inverters (logic circuits that perform logic inversion). Therefore, a signal obtained by inverting the image data Q (j) is input to the logic gate 43 (j).
  • the logic gate 43 (j) detects a change in the voltage applied to the data electrode D (j) based on the image data DQ (j) and the image data Q (j).
  • the output of the logic gate 43 (j) is “L”.
  • the image data Q (j) maintains the “L” state or the “H” state, and the voltage applied to the data electrode D (j) is also the low-voltage side voltage 0 (V) (“L”). Or the high voltage side voltage Vd (“H”).
  • the adjacent load calculation unit 44 has a logic circuit provided corresponding to each of the data electrodes 22.
  • Each circuit includes a logic gate 144, a logic gate 45, a logic gate 46, and a logic gate 47.
  • the logic gate 144, the logic gate 45, and the logic gate 46 are AND gates having two inputs and one output, and the logic gate 47 is an OR gate having two inputs and one output (a logic circuit that performs an OR operation).
  • a logic circuit including the logic gate 144 (j), the logic gate 45 (j), the logic gate 46 (j), and the logic gate 47 (j) illustrated in FIG. 9 includes a data electrode D (j) and a data electrode D.
  • This is a circuit for detecting a change in image data corresponding to the data electrode D (j ⁇ 1) and the data electrode D (j + 1) adjacent to (j).
  • the substantial load capacitance of the data electrode D (j) is calculated based on the detection result.
  • each output buffer 148 includes a circuit combining one high-voltage side switch QH and one low-voltage side switch QL, and one HL timing control unit 49. Have.
  • the high voltage side switch QH outputs the voltage Vd on the high voltage side of the write pulse
  • the low voltage side switch QL outputs the voltage 0 (V) on the low voltage side of the write pulse.
  • the HL timing control unit 49 controls the high-voltage side switch QH and the low-voltage side switch QL based on the signals output from the adjacent load calculation unit 44 (the output signal of the logic gate 46 and the output signal of the logic gate 47). That is, the HL timing control unit 49 controls the timing at which the voltage applied to the data electrode 22 transitions from the high voltage side voltage Vd to the low voltage side voltage 0 (V) based on the signal output from the adjacent load calculation unit 44.
  • the HL timing control unit 49 (j) reduces the voltage applied to the data electrode D (j) from the high-voltage side voltage Vd to the low voltage side.
  • the second transition period starts at the earliest timing (for example, time t21) so that the time length of the second transition period becomes the longest.
  • the HL timing control unit 49 (j) reduces the voltage applied to the data electrode D (j) from the high-voltage side voltage Vd to the low voltage side.
  • the second transition period is started at the second earliest timing (for example, time t22) so that the time length of the second transition period becomes the second longest.
  • the HL timing control unit 49 (j) applies the data electrode D (j) to the data electrode D (j) in the second transition period if both the output of the logic gate 46 (j) and the output of the logic gate 47 (j) are “L”.
  • the second transition period is at the latest timing (for example, time t23) so that the time length of the second transition period becomes the shortest. To start.
  • the plasma display device 30 in the present embodiment calculates the substantial load capacity between the adjacent data electrodes 22 in the second transition period. Then, the start time when the voltage applied to the data electrode 22 is changed from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V) according to the substantial load capacitance between the adjacent data electrodes 22. That is, the start time of the second transition period is controlled.
  • the data electrode drive circuit 32 finishes transition of all voltages applied to the data electrodes 22 of the data electrode D (1) to the data electrode D (m) from the high voltage side voltage Vd to the low voltage side voltage 0 (V).
  • the subsequent first transition period starts and the voltage applied to the data electrode 22 transitions from the low voltage side voltage 0 (V) to the high voltage side voltage Vd.
  • the start time of the second transition period can be set for each of the integrated circuits.
  • this configuration will be described.
  • FIG. 10 is a diagram schematically showing an example of a circuit block constituting the plasma display device 60 according to the second embodiment of the present invention.
  • the plasma display device 60 shown in the present embodiment includes a panel 10 and a drive circuit that drives the panel 10.
  • the drive circuit includes an image signal processing circuit 31, a data electrode drive circuit 62, a scan electrode drive circuit 33, a sustain electrode drive circuit 34, a timing generation circuit 35, and a power supply circuit (not shown) that supplies necessary power to each circuit block. It has.
  • the plasma display device 60 shown in the present embodiment is different from the plasma display device 30 shown in FIG. 5 in the first embodiment in the configuration of the data electrode driving circuit 62, but the other circuit blocks are the same as the plasma display device 30. It has the same configuration and performs the same operation. Therefore, the same reference numerals as those shown in FIG. 5 are given to the circuit blocks having the same configuration and operation as those of the circuit block shown in FIG.
  • the data electrode drive circuit 62 is based on the image data of each color output from the image signal processing circuit 31 and the timing signal supplied from the timing generation circuit 35. -An address pulse corresponding to the data electrode D (m) is generated. Then, the data electrode drive circuit 32 applies the address pulse to the data electrodes D (1) to D (m) during the address period.
  • the data electrode driving circuit 62 has a plurality of integrated circuits. Each integrated circuit generates an address pulse that is applied to a predetermined number of data electrodes 22. This integrated circuit is hereinafter referred to as a “data driver”.
  • the data driver 80 is configured as a monolithic IC, for example. Each data driver 80 generates an address pulse to be applied to, for example, 384 data electrodes 22.
  • FIG. 11 is a circuit diagram schematically showing a configuration of data electrode drive circuit 62 of plasma display device 60 in accordance with the second exemplary embodiment of the present invention.
  • FIG. 11 only a part of the circuit blocks constituting the data electrode driving circuit 62 is shown, and other circuit blocks having the same configuration are omitted.
  • the data electrode drive circuit 62 includes fifteen data drivers 80 (data driver 80 (1) to data driver 80 (15)), a maximum load calculation unit 72 provided corresponding to each of the data drivers 80, data And a timing pulse selector 74 provided corresponding to each of the drivers 80.
  • the data drivers 80 (1) to 80 (15) are collectively referred to as “data driver 80 (p)”, and the maximum load calculation unit 72 corresponding to the data driver 80 (p) is referred to as the maximum load calculation unit 72. (P), and the timing pulse selector 74 corresponding to the data driver 80 (p) is referred to as a timing pulse selector 74 (p).
  • p is a numerical value from 1 to 15.
  • the maximum load calculation unit 72 (p) calculates a substantial load capacity in each of the plurality of data electrodes 22 (for example, 384 data electrodes 22) driven by the data driver 80 (p), and calculates the calculated load capacity. The maximum value of is calculated.
  • the timing pulse selection unit 74 (p) has three timing signals LLP (a timing signal LLP1, a timing signal LLP2, and a timing signal LLP3) based on the substantial maximum value of the load capacity calculated by the maximum load calculation unit 72 (p). One of the timing signals LLP is selected. Then, the selected timing signal LLP is output as the write timing signal LP (p).
  • timing signal LLP1 the timing signal LLP2, and the timing signal LLP3 will be described.
  • FIG. 12 is a timing chart schematically showing an example of the operation of the data electrode drive circuit 62 of the plasma display device 60 in the second exemplary embodiment of the present invention.
  • timing signal LLP1 the timing signal LLP2, the timing signal LLP3, the write timing signal LP (p) output from the timing pulse selector 74 (p), and the write output from the timing pulse selector 74 (p + 1) are shown.
  • the timing of rising of each timing signal LLP of the timing signal LLP1, the timing signal LLP2, and the timing signal LLP3 is the same.
  • the timing of the fall of each timing signal LLP is the earliest timing signal LLP1, the next timing signal LLP2, and the latest timing signal LLP3.
  • the time when each timing signal LLP falls represents the start time of the second transition period
  • the time when each timing signal LLP rises represents the start time of the first transition period
  • the timing pulse selection unit 74 selects the timing signal LLP1 as the write timing signal LP, the time length of the second transition period becomes the longest.
  • the timing pulse selector 74 selects the timing signal LLP2 as the write timing signal LP, the time length of the second transition period becomes the second longest.
  • the timing pulse selector 74 selects the timing signal LLP3 as the write timing signal LP, the time length of the second transition period becomes the shortest.
  • the timing pulse selection unit 74 (p) generates a write timing signal LP based on the maximum value of the substantial load capacity of the plurality of data electrodes 22 (for example, 384 data electrodes 22) driven by the data driver 80 (p). Select.
  • the timing pulse selection unit 74 (p) selects the timing signal LLP1 as the write timing signal LP (p) if the substantial maximum value of the load capacity in the second transition period is the capacity (Cg + 2Cc). To do. If the maximum value of the substantial load capacity in the second transition period is the capacity (Cg + Cc), the timing pulse selection unit 74 (p) selects the timing signal LLP2 as the write timing signal LP (p). Then, the timing pulse selection unit 74 (p) selects the timing signal LLP3 as the write timing signal LP (p) if the substantial maximum value of the load capacity in the second transition period is the capacity Cg.
  • Each of the data driver 80 (1) to the data driver 80 includes a shift register unit 81, a data latch unit 83, and an output buffer unit 85.
  • the shift register unit 81 is a shift register.
  • Each latch 82 is connected in series, and the input signal is forwarded (shifted) to the subsequent latch 82 in synchronization with the clock signal (clock Dck).
  • clock Dck clock signal
  • the shift register unit 81 outputs N pieces of N-bit serial image data Q corresponding to each of the N data electrodes 22 transmitted from the data conversion unit for each subfield. Are converted into N-bit parallel image data Q corresponding to each of the data electrodes 22 and output.
  • Each latch 84 latches the image data Q corresponding to each data electrode 22 with the write timing signal LP and outputs the latched data to the output buffer unit 85.
  • each output buffer 86 includes a circuit combining one high-voltage side switch QH and one low-voltage side switch QL, and one HL timing control unit 89. Have.
  • the high voltage side switch QH outputs the high voltage side voltage Vd of the write pulse
  • the low voltage side switch QL outputs the low voltage side voltage 0 (V) of the write pulse.
  • the HL timing control unit 89 controls the high voltage side switch QH and the low voltage side switch QL based on the signal output from the latch 84 and the write timing signal LP. That is, the HL timing control unit 89 controls the timing at which the voltage applied to the data electrode 22 transitions from the high voltage side voltage Vd to the low voltage side voltage 0 (V) based on the write timing signal LP. As a result, each output buffer 86 generates a write pulse at a timing based on the write timing signal LP.
  • the timing pulse selector 74 (p) corresponding to the data driver 80 (p) selects the timing signal LLP3 in the write cycle T (i-1), and selects the timing signal LLP1 in the write cycle T (i).
  • the write cycle T (i + 1) if the timing signal LLP2 is selected and output as the write timing signal LP (p), as shown in FIG. 12, the buffer unit 85 (p) of the data driver 80 (p) is selected.
  • a write pulse is generated so that the second transition period starts at time t62 in the write cycle T (i + 1).
  • the timing pulse selector 74 (p + 1) corresponding to the data driver 80 (p + 1) selects the timing signal LLP1 in the write cycle T (i ⁇ 1) and selects the timing signal LLP2 in the write cycle T (i).
  • the buffer unit 85 (p + 1) of the data driver 80 (p + 1) Generates a write pulse so that the second transition period starts at time t21 in the write period T (i-1), and starts the second transition period at time t42 in the write period T (i). Is written so that the second transition period starts at time t63 in the write cycle T (i + 1). It generates a write pulse to pulse to generation.
  • the plasma display device 60 has the second transition period start time based on the substantial maximum value of the load capacity generated in each of the plurality of data electrodes 22 driven by the data driver 80. Is set for each of the data drivers 80.
  • the timing pulse selection unit 74 (p) selects the timing signal LLP1 as the write timing signal LP (p) if the substantial maximum value of the load capacity in the second transition period is the capacity (Cg + 2Cc). If the maximum value of the substantial load capacity in the second transition period is the capacity (Cg + Cc), the timing pulse selection unit 74 (p) selects the timing signal LLP2 as the write timing signal LP (p). Then, the timing pulse selection unit 74 (p) selects the timing signal LLP3 as the write timing signal LP (p) if the substantial maximum value of the load capacity in the second transition period is the capacity Cg.
  • the voltage applied to at least one data electrode 22 of the two data electrodes 22 adjacent to each of both sides is low voltage 0 (V) in the second transition period.
  • the data driver 80 for example, the data driver 80 (p) in the write cycle T (i + 1)
  • the data driver 80 for example, writing
  • the data driver 80 in which the voltage applied to all the data electrodes 22 driven by the data driver 80 transitions from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V) in the second transition period.
  • Time (for example, time t63) is set at an earlier time than.
  • the voltage applied to all the data electrodes 22 driven by the data driver 80 does not change at the low voltage 0 (V) in the second transition period, or does not change at the high voltage Vd.
  • the start time (for example, time t41) of the second transition period in the data driver 80 that does not perform (for example, the data driver 80 (p) in the write cycle T (i)) is the two data electrodes 22 adjacent to both sides.
  • the data driver 80 (for example, writing) in which the data electrode 22 in which the applied voltage to at least one of the data electrodes 22 does not change as the low voltage side voltage 0 (V) or does not change as the high voltage side voltage Vd exists in the second transition period.
  • Start time of second transition period in data driver 80 (p + 1) in period T (i) (example) If, time t42) is set at an earlier time than.
  • the data having the data electrode 22 having a relatively large substantial load capacity and a relatively long time length for transition from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V).
  • the substantial load capacity of the data electrode 22 is relatively small, and the time length required for the transition from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V) is relatively short compared to the data driver 80.
  • the start time of the two transition periods can be advanced. Therefore, the end times of the second transition periods can be made uniform among the data drivers 80.
  • the data electrode drive circuit 62 finishes the transition of all voltages applied to the data electrodes 22 of the data electrodes D (1) to D (m) from the high voltage side voltage Vd to the low voltage side voltage 0 (V). After the second transition period ends, the subsequent first transition period starts and the voltage applied to the data electrode 22 transitions from the low voltage side voltage 0 (V) to the high voltage side voltage Vd.
  • the start times of the second transition periods are set to the same time in the respective data drivers 80 regardless of the substantial difference in load capacity
  • the data drivers are displayed at the end times of the second transition periods. Differences between 80 are likely to occur.
  • the second transition period and the first transition period that occurs immediately after the second transition period are temporally mutually different. It becomes easy to set the first transition period and the second transition period so as not to overlap. Therefore, it is possible to drive the panel 10 while effectively using the time required for the writing operation in the writing period.
  • the present invention is not limited to this configuration.
  • the start time of the first transition period may be set for each data electrode 22 or for each data driver 80.
  • the start time of the first transition period and the start time of the second transition period may be set for each data electrode 22 or for each data driver 80.
  • FIG. 13 is a circuit diagram schematically showing a configuration of data electrode driving circuit 132 of the plasma display device in accordance with the third exemplary embodiment of the present invention.
  • FIG. 13 shows only a part of the circuit blocks constituting the data electrode driving circuit 132, and other circuit blocks having the same configuration are omitted.
  • the plasma display device in the present embodiment is different from the plasma display device 30 shown in FIG. 5 in the first embodiment in the configuration of the data electrode driving circuit 132.
  • the other circuit blocks have the same configuration as the plasma display device 30 and perform the same operation. Therefore, only the data electrode driving circuit 132 will be described below.
  • the data electrode driving circuit 132 includes a shift register unit 41, a self load calculation unit 42, an adjacent load calculation unit 44, a self load calculation unit 50, an adjacent load calculation unit 54, and an output buffer unit 57.
  • the self-load calculation unit 42 is referred to as a “first self-load calculation unit 42”
  • the self-load calculation unit 50 is referred to as a “second self-load calculation unit 50”
  • the adjacent load calculation unit 44 is referred to as a “first self-load calculation unit 42”.
  • the adjacent load calculator 54 is referred to as a “first adjacent load calculator 44”
  • the adjacent load calculator 54 is referred to as a “second adjacent load calculator 54”.
  • the shift register unit 41 in the present embodiment has the same configuration and operation as the shift register unit 41 described in the first embodiment.
  • the first self-load calculation unit 42 has the same configuration and operation as the self-load calculation unit 42 described in the first embodiment.
  • the first adjacent load calculation unit 44 has the same configuration and operation as the adjacent load calculation unit 44 described in the first embodiment. Therefore, description of these circuit blocks is omitted in this embodiment.
  • the configuration and operation of the data electrode driving circuit 132 will be described by taking as an example the case where an address pulse is applied to the data electrode D (j). Therefore, the configuration and operation of data electrode drive circuit 132 described below are the configuration and operation for data electrode D (j), but the configuration and operation for other data electrode 22 are also the configuration and operation for data electrode D (j). It is the same.
  • the data electrode 22 adjacent to the data electrode D (j) is the data electrode D (j ⁇ 1) and the data electrode D (j + 1).
  • the one-line delay 51 (j) in the second self-load calculating unit 50 is the image data Q (j) corresponding to the data electrode D (j), similarly to the one-line delay 142 (j) shown in the first embodiment. Is delayed by one line (one horizontal synchronization period) to output image data DQ (j).
  • the logic gate 52 (j) and the logic gate 53 (j) are 2-input 1-output AND gates (logic circuits that perform a logical product operation).
  • small circles at the input terminals of the logic gates are inverters (logic circuits that perform logic inversion). Therefore, a signal obtained by inverting the image data Q (j) is input to the logic gate 52 (j), and a signal obtained by inverting the image data DQ (j) is input to the logic gate 53 (j).
  • the logic gate 52 (j) and the logic gate 53 (j) detect a change in the voltage applied to the data electrode D (j) based on the image data DQ (j) and the image data Q (j).
  • the output of the logic gate 53 (j) is “H”. Therefore, if the output of the logic gate 53 (j) is “H”, the image data Q (j) changes from “L” to “H”, and the voltage applied to the data electrode D (j) is the low voltage side voltage. It can be determined that the voltage changes from 0 (V) to the high-voltage side voltage Vd (from “L” to “H”).
  • the output of the logic gate 52 (j) and the output of the logic gate 53 (j) are both “L”.
  • the image data Q (j) maintains the “L” state or the “H” state, and the voltage applied to the data electrode D (j) is also the low-voltage side voltage 0 (V) (“L”). Or the high voltage side voltage Vd (“H”).
  • the second adjacent load calculation unit 54 has a logic circuit provided corresponding to each of the data electrodes 22.
  • Each of the logic circuits includes a logic gate 154, a logic gate 55, and a logic gate 56.
  • the logic gate 154 and the logic gate 55 are AND gates having two inputs and one output, and the logic gate 56 is an OR gate having two inputs and one output (a logic circuit that performs an OR operation).
  • the logic circuit including the logic gate 154 (j), the logic gate 55 (j), and the logic gate 56 (j) shown in FIG. 13 has image data Q (j ⁇ 1) corresponding to the data electrode D (j ⁇ 1). ), A circuit for detecting changes in the image data Q (j) corresponding to the data electrode D (j) and the image data Q (j + 1) corresponding to the data electrode D (j + 1).
  • At least one of the image data Q (j ⁇ 1) of the data electrode D (j ⁇ 1) and the image data Q (j + 1) of the data electrode D (j + 1) changes from “H” to “L”, and
  • the output of the logic gate 56 (j) becomes “H”.
  • the voltage applied to the data electrode D (j) transits from the low voltage side voltage 0 (V) to the high voltage side voltage Vd, and the voltage and data applied to the data electrode D (j ⁇ 1). This represents that at least one of the voltages applied to the electrode D (j + 1) transits from the high voltage side voltage Vd to the low voltage side voltage 0 (V).
  • the output of the logic gate 56 (j) is “L”.
  • each output buffer 157 includes a circuit combining one high-voltage side switch QH and one low-voltage side switch QL, and one LH timing control unit 58 and 1.
  • the high voltage side switch QH outputs the voltage Vd on the high voltage side of the write pulse
  • the low voltage side switch QL outputs the voltage 0 (V) on the low voltage side of the write pulse.
  • the HL timing control unit 59 outputs signals from the first adjacent load calculation unit 44 (the output signal of the logic gate 46 and the output signal of the logic gate 47). Based on this, the high voltage side switch QH and the low voltage side switch QL are controlled, and the timing at which the voltage applied to the data electrode 22 transitions from the high voltage side voltage Vd to the low voltage side voltage 0 (V) is controlled.
  • the HL timing control unit 59 (j) reduces the voltage applied to the data electrode D (j) from the high-voltage side voltage Vd to the low voltage side.
  • the second transition period starts at the earliest timing so that the time length of the second transition period becomes the longest.
  • the HL timing control unit 59 (j) reduces the voltage applied to the data electrode D (j) from the high-voltage side voltage Vd to the low voltage side.
  • the second transition period is started at the second earliest timing so that the time length of the second transition period is the second longest.
  • the HL timing control unit 59 (j) applies the data electrode D (j) to the data electrode D (j) in the second transition period if both the output of the logic gate 46 (j) and the output of the logic gate 47 (j) are “L”.
  • the second transition period is started at the latest timing so that the time length of the second transition period becomes the shortest.
  • the LH timing control unit 58 controls the high-voltage side switch QH and the low-voltage side switch QL based on the signal output from the second adjacent load calculation unit 54 (the output signal of the logic gate 56), and determines the voltage to be applied to the data electrode 22. The timing of transition from the low-voltage side voltage 0 (V) to the high-voltage side voltage Vd is controlled.
  • the LH timing control unit 58 (j) when the output of the logic gate 56 (j) is “H”, the LH timing control unit 58 (j), as in the first embodiment, the data electrodes D (1) to D (m). After all the voltages applied to each data electrode 22 have transitioned from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V) and the second transition period has ended, the subsequent first transition period is started and the data electrode 22 The applied voltage transits from the low-voltage side voltage 0 (V) to the high-voltage side voltage Vd.
  • the LH timing control unit 58 (j) performs the first transition at an earlier timing than when the output of the logic gate 56 (j) is “H”. Start the period. That is, if the output of the logic gate 56 (j) is “L”, the LH timing control unit 58 (j) starts the first transition period that follows before the end of the second transition period and applies the data electrode 22 to the data electrode 22.
  • the applied voltage transits from the low-voltage side voltage 0 (V) to the high-voltage side voltage Vd.
  • FIG. 14 is a timing chart schematically showing an example of the operation of the data electrode drive circuit 132 of the plasma display device in accordance with the third exemplary embodiment of the present invention.
  • FIG. 14 shows four write cycles (write cycle T (i ⁇ 1), write cycle T (i), write cycle T (i + 1), and write cycle T (i + 2)) in the write period as examples.
  • the drive voltage waveforms applied to scan electrode SC (i ⁇ 1) to scan electrode SC (i + 1) and data electrode D (j ⁇ 2) to data electrode D (j + 3) will be described as an example.
  • a write pulse is applied to the data electrode D (j ⁇ 2) and the data electrode D (j + 3), and the data electrode D (j ⁇ 1), the data electrode No write pulse is applied to D (j), data electrode D (j + 1) and data electrode D (j + 2), and data electrode D (j ⁇ 1), data electrode D (j), An address pulse is applied to the data electrode D (j + 1) and the data electrode D (j + 2), no address pulse is applied to the data electrode D (j-2) and the data electrode D (j + 3), and an address period T (i + 1) ), An address pulse is applied to the data electrode D (j-2) and the data electrode D (j + 3), and the data electrode D (j-1), the data electrode D (j), the data electrode D (j + 1), and the data electrode D (j + 2) In the write cycle T (i + 2), no write pulse is applied to the data electrode D (j-2), the data electrode D (j-1), the data electrode D (j + 1), and the data electrode D (j + 2) In the write cycle T (i +
  • the voltage applied to the data electrode D (j ⁇ 2) and the data electrode D (j + 3) is changed from the high voltage side voltage Vd to the low voltage side voltage 0 (V). Transition.
  • the voltage applied to the data electrode D (j ⁇ 1), the data electrode D (j), the data electrode D (j + 1), and the data electrode D (j + 2) is the low-voltage side voltage. Transition from 0 (V) to the high voltage Vd.
  • the outputs of the logic gate 52 (j ⁇ 2) and the logic gate 52 (j + 3) of the second self-load calculating unit 50 are “H”, and the logic gate 53 (j ⁇ 1) and the logic gate 53 (j ), The outputs of the logic gate 53 (j + 1) and the logic gate 53 (j + 2) are “H”.
  • the LH timing control unit 58 (j ⁇ 1) and the LH timing control unit 58 (j + 2) In the transition period (here, the second transition period of the write cycle T (i-1)), all the voltages applied to the data electrode 22 to which the voltage should be transitioned from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V) At timing t33 after the transition from the side voltage Vd to the low voltage side voltage 0 (V), the voltage applied to the data electrode D (j-1) and the data electrode D (j + 2) is changed from the low voltage side voltage 0 (V). Transition to the high voltage Vd.
  • the data electrode D (j) Since the outputs of the logic gate 56 (j) and the logic gate 56 (j + 1) are “L” in the LH timing control unit 58 (j) and the LH timing control unit 58 (j + 1), the data electrode D (j) The voltage applied to the data electrode D (j + 1) starts to transition from the low-voltage side voltage 0 (V) to the high-voltage side voltage Vd at a timing t31 earlier than the timing t33.
  • the LH timing control unit 58 (j) and the LH timing control unit 58 (j + 1) have a voltage applied to the data electrode D (j-2) and the data electrode D (j + 3) from the high voltage side voltage Vd to the low voltage side voltage 0.
  • the operation of transitioning the voltage applied to the data electrode D (j) and the data electrode D (j + 1) from the low voltage side voltage 0 (V) to the high voltage side voltage Vd is started.
  • the outputs of the logic gate 52 (j ⁇ 1), the logic gate 52 (j), the logic gate 52 (j + 1), and the logic gate 52 (j + 2) of the second self-load calculation unit 50 are “H”.
  • the outputs of logic gate 53 (j ⁇ 2) and logic gate 53 (j + 3) are “H”.
  • the LH timing control unit 58 (j ⁇ 2) and the LH timing control unit 58 (j + 3) In the transition period (here, the second transition period of the write cycle T (i)), all the voltages applied to the data electrode 22 to which the voltage should be transitioned from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V) At the timing t53 after the transition from Vd to the low-voltage side voltage 0 (V), the voltage applied to the data electrode D (j-2) and the data electrode D (j + 3) is changed from the low-voltage side voltage 0 (V) to the high-voltage side. Transition to voltage Vd.
  • the voltage applied to the data electrode D (j + 3) transits from the high voltage side voltage Vd to the low voltage side voltage 0 (V).
  • the voltage applied to the data electrode D (j ⁇ 1), the data electrode D (j + 1), and the data electrode D (j + 2) is from the low voltage side voltage 0 (V) to the high voltage side. Transition to voltage Vd.
  • the output of the logic gate 52 (j + 3) of the second self-load calculation unit 50 is “H”, and the logic gate 53 (j ⁇ 1), the logic gate 53 (j + 1), and the logic gate 53 (j + 2) The output is “H”.
  • the LH timing control unit 58 (j + 2) Since the output of the logic gate 56 (j + 2) is “H”, the LH timing control unit 58 (j + 2) has a high voltage in the immediately preceding second transition period (here, the second transition period of the write cycle T (i + 1)).
  • the timing t73 After all the voltages applied to the data electrode 22 to which the voltage is to be changed from the side voltage Vd to the low voltage 0 (V) have been changed from the high voltage Vd to the low voltage 0 (V), The voltage applied to the data electrode D (j + 2) transits from the low voltage side voltage 0 (V) to the high voltage side voltage Vd.
  • the LH timing controller 58 (j ⁇ 1) and the LH timing controller 58 (j + 1) are “L”, the LH timing controller 58 (j ⁇ 1) and the LH timing controller 58 (j + 1)
  • the voltage applied to D (j ⁇ 1) and the data electrode D (j + 1) starts to transition from the low voltage side voltage 0 (V) to the high voltage side voltage Vd at a timing t71 earlier than the timing t73.
  • the LH timing control unit 58 (j ⁇ 1) and the LH timing control unit 58 (j + 1) finish the transition of the voltage applied to the data electrode D (j + 3) from the high voltage side voltage Vd to the low voltage side voltage 0 (V).
  • the voltage applied to the data electrode D (j ⁇ 1) and the data electrode D (j + 1) is changed from the low voltage side voltage 0 (V) to the high voltage side voltage Vd.
  • the address pulse when the address pulse is applied to the data electrode 22 in the address period, two data adjacent to both sides in the immediately preceding second transition period.
  • the data electrode D (j + 2)) at which the first transition period start time (for example, time t33) is to be transferred from the high voltage Vd to the low voltage 0 (V) in the immediately preceding second transition period.
  • the time is set after all the voltages to be applied to the electrodes 22 have finished transitioning from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V).
  • the voltage applied to the data electrode 22 is changed to the low voltage side while the voltage applied to the adjacent data electrode 22 transits from the high voltage side voltage Vd to the low voltage side voltage 0 (V). Transition from the voltage 0 (V) to the high voltage Vd can be prevented. That is, the voltage applied to the data electrode 22 can be prevented from transitioning from the low voltage side voltage 0 (V) to the high voltage side voltage Vd in a state where the substantial load capacity is relatively large. Thereby, the power consumption in the data electrode drive circuit 132 can be reduced.
  • a first transition period in the data electrode 22 (for example, the data electrode D (j) and the data electrode D (j + 1) in the write cycle T (i)) in which both voltages do not transition from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V). Can be set to a time before the end of the immediately preceding second transition period.
  • the plasma display device sets the start time of the first transition period and the time before the end of the immediately preceding second transition period for the data electrode 22 having a relatively small substantial load capacity.
  • the time length of the first transition period can be increased accordingly. Therefore, for the data electrode 22 having a relatively small substantial load capacity, the write cycle can be made relatively long, and the write operation can be performed more stably.
  • FIG. 15 is a circuit diagram schematically showing a configuration of data electrode drive circuit 232 of the plasma display device in accordance with the fourth exemplary embodiment of the present invention.
  • FIG. 15 shows only a part of the circuit blocks constituting the data electrode drive circuit 232, and other circuit blocks having the same configuration are omitted.
  • the plasma display device in the present embodiment is different from the plasma display device 30 shown in FIG. 5 in the first embodiment in the configuration of the data electrode driving circuit 232.
  • the other circuit blocks have the same configuration as the plasma display device 30 and perform the same operation. Therefore, only the data electrode driving circuit 232 will be described below.
  • the data electrode drive circuit 232 includes a shift register unit 41, a second self-load calculation unit 50, an adjacent load calculation unit 160, and an output buffer unit 67.
  • the adjacent load calculation unit 160 is referred to as a “third adjacent load calculation unit 160”.
  • the shift register unit 41 in the present embodiment has the same configuration and operation as the shift register unit 41 described in the first embodiment.
  • the second self-load calculation unit 50 has the same configuration and operation as the second self-load calculation unit 50 described in the third embodiment. Therefore, description of these circuit blocks is omitted in this embodiment.
  • the configuration and operation of the data electrode driving circuit 232 will be described by taking as an example the case where an address pulse is applied to the data electrode D (j). Therefore, the configuration and operation of data electrode drive circuit 232 described below are the configuration and operation for data electrode D (j), but the configuration and operation for other data electrode 22 are also the configuration and operation for data electrode D (j). It is the same.
  • the data electrode 22 adjacent to the data electrode D (j) is the data electrode D (j ⁇ 1) and the data electrode D (j + 1).
  • the third adjacent load calculation unit 160 has a logic circuit provided corresponding to each of the data electrodes 22.
  • Each logic circuit includes a logic gate 61, a logic gate 162, a logic gate 63, a logic gate 64, a logic gate 65, and a logic gate 66.
  • the logic gate 61, the logic gate 162, the logic gate 63, and the logic gate 65 are AND gates with two inputs and one output, and the logic gate 64 and the logic gate 66 are OR gates with two inputs and one output (a logic circuit that performs an OR operation). is there.
  • small circles at the input terminals of the logic gates are inverters (logic circuits that perform logic inversion). Therefore, for example, a signal obtained by inverting the output signal of the logic gate 52 (j ⁇ 1) is input to the logic gate 63 (j + 1), and the logic gate 52 (j + 1) has the signal of the logic gate 52 (j + 1). A signal obtained by inverting the output signal is input.
  • the logic circuit composed of the logic gate 61 (j), the logic gate 162 (j), the logic gate 63 (j), the logic gate 64 (j), the logic gate 65 (j), and the logic gate 66 (j) This is a logic circuit provided corresponding to the electrode D (j).
  • the logic circuit includes image data Q (j-2) and image data DQ (j-2) corresponding to the data electrode D (j-2), and image data Q corresponding to the data electrode D (j-1).
  • the result of the logical operation indicates whether or not the voltage applied to the data electrode D (j ⁇ 1) and the data electrode D (j + 1) changes from the high voltage side voltage Vd to the low voltage side voltage 0 (V). When a change occurs, it represents the time length required for the change (the length of the second transition period).
  • the logic gate 162 (j) outputs “H” when the image data Q (j + 1) changes from “H” to “L” and the image data Q (j) changes from “L” to “H”. Is output. In other cases, the logic gate 162 (j) outputs “L”.
  • the logic gate 64 (j) outputs “H” when at least one of the outputs of the logic gate 61 (j) and the logic gate 162 (j) is “H”, and the logic gate 64 (j) When both the gate 162 (j) outputs “L”, “L” is output.
  • the logic gate 64 (j) has the image data Q (j) set to “L”. "H” is output when changing from “" to “H”. At other times (for example, both the image data Q (j ⁇ 1) and the image data Q (j + 1) do not change from “H” to “L”), the logic gate 64 (j) is “L”. Is output.
  • the output of the logic gate 64 (j) is output from the high-voltage side voltage Vd to the low-voltage side voltage 0 to at least one of the voltage applied to the data electrode D (j-1) and the voltage applied to the data electrode D (j + 1).
  • transition to (V) occurs (second transition period) and the voltage applied to the data electrode D (j) transitions from the low voltage 0 (V) to the high voltage Vd in the subsequent first transition period. “H”. If the voltage applied to the data electrode D (j ⁇ 1) and the voltage applied to the data electrode D (j + 1) are both maintained at the high voltage Vd or the low voltage 0 (V), “L”. It becomes.
  • the logic gate 63 (j) does not change the image data Q (j-2) from “H” to “L” (that is, changes from “L” to “H” or maintains “L”). Or “H” is maintained), and “H” is output when the output of the logic gate 61 (j) is “H”. In other cases (the image data Q (j-2) changes from “H” to “L”, or the image data Q (j ⁇ 1) is maintained at “H” or “L”). The logic gate 63 (j) outputs “L”.
  • the logic gate 65 (j) does not change the image data Q (j + 2) from “H” to “L” (that is, changes from “L” to “H”, or maintains “L”, or “ “H” is maintained), and "H” is output when the output of the logic gate 162 (j) is "H”.
  • the logic gate 65 (J) outputs “L”.
  • the logic gate 66 (j) outputs “H” when at least one of the outputs of the logic gate 63 (j) and the logic gate 65 (j) is “H”, and the logic gate 63 (j) When both the gate 65 (j) outputs “L”, “L” is output.
  • the output of the logic gate 66 (j) becomes “H” at the following time.
  • the image data Q (j-2) does not change from “H” to “L”
  • the image data Q (j ⁇ 1) changes from “H” to “L”
  • the image data Q (j) It changes from “L” to “H”.
  • the image data Q (j + 2) does not change from “H” to “L”
  • the image data Q (j + 1) changes from “H” to “L”
  • the image data Q (j) becomes “L”. "" To "H”.
  • the output of the logic gate 66 (j) is “L”. That is, the image data Q (j-2) changes from “H” to “L”, or the image data Q (j ⁇ 1) is maintained at “H” or “L”, and the image data Q (J + 2) changes from “H” to “L”, or the image data Q (j + 1) is maintained at “H” or “L”.
  • the output of the logic gate 66 (j) is such that the voltage applied to the data electrode D (j-2) is maintained at the high voltage Vd or the low voltage 0 (V), and the data electrode D (j ⁇ 1) ) Changes from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V) (second transition period), and the voltage applied to the data electrode D (j) in the subsequent first transition period becomes the low-voltage side voltage 0. It becomes “H” when transitioning from (V) to the high voltage Vd.
  • the output of the logic gate 66 (j) is a voltage applied to the data electrode D (j + 2) while the voltage applied to the data electrode D (j + 2) is maintained at the high-voltage side voltage Vd or the low-voltage side voltage 0 (V). Transitions from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V) (second transition period), and the voltage applied to the data electrode D (j) in the subsequent first transition period increases from the low-voltage side voltage 0 (V). It also becomes “H” when transitioning to the side voltage Vd.
  • the output of the logic gate 66 (j) is applied to the data electrode D (j-2) while the voltage applied to the data electrode D (j + 1) is maintained at the high voltage Vd or the low voltage 0 (V). And the voltage applied to the data electrode D (j ⁇ 1) both transition from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V) (second transition period), and in the subsequent first transition period, the data electrode D ( It becomes “L” when the voltage applied to j) transitions from the low voltage 0 (V) to the high voltage Vd.
  • the output of the logic gate 66 (j) is applied to the data electrode D (j + 2) while the voltage applied to the data electrode D (j-1) is maintained at the high voltage Vd or the low voltage 0 (V). And the voltage applied to the data electrode D (j + 1) both transition from the high voltage Vd to the low voltage 0 (V) (second transition period), and the data electrode D (j) in the subsequent first transition period. Becomes “L” when the voltage applied to is transitioned from the low-voltage side voltage 0 (V) to the high-voltage side voltage Vd.
  • the output of the logic gate 66 (j) includes a voltage applied to the data electrode D (j-2), a voltage applied to the data electrode D (j-1), a voltage applied to the data electrode D (j + 1), and data.
  • the voltage applied to the electrode D (j + 2) both changes from the high voltage side voltage Vd to the low voltage side voltage 0 (V) (second transition period), and the voltage applied to the data electrode D (j) in the subsequent first transition period. Becomes “L” when transitioning from the low voltage 0 (V) to the high voltage Vd.
  • each output buffer 69 includes a circuit combining one high-voltage side switch QH and one low-voltage side switch QL, and one LH timing control unit 68. Have.
  • the high voltage side switch QH outputs the voltage Vd on the high voltage side of the write pulse
  • the low voltage side switch QL outputs the voltage 0 (V) on the low voltage side of the write pulse.
  • the LH timing control unit 68 controls the high voltage side switch QH and the low voltage side switch QL based on the signals (the output signal of the logic gate 64 and the output signal of the logic gate 66) output from the third adjacent load calculation unit 160. That is, the LH timing control unit 68 controls the timing at which the voltage applied to the data electrode 22 transitions from the low voltage side voltage 0 (V) to the high voltage side voltage Vd based on the signal output from the third adjacent load calculation unit 160. To do.
  • the LH timing control unit 68 (j) has the data electrode D (1).
  • the first transition period that continues after the end of the second transition period after all the voltages applied to the data electrodes 22 of the data electrode D (m) have transitioned from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V).
  • the voltage applied to the data electrode D (j) is changed from the low voltage 0 (V) to the high voltage Vd.
  • the LH timing control unit 68 (j) The voltage applied to the data electrode D (j) by starting the first transition period at a time earlier than when the output of the logic gate 66 (j) is “H” and the output of the logic gate 66 (j) is “H”. A transition is made from the side voltage 0 (V) to the high voltage side voltage Vd.
  • the voltage applied to the data electrode D (j ⁇ 2), the data electrode D (j The voltage applied to -1), the voltage applied to the data electrode D (j + 1), and the voltage applied to the data electrode D (j + 2) all transit from the high voltage side voltage Vd to the low voltage side voltage 0 (V).
  • the substantial load capacitance generated at the data electrode D (j ⁇ 1) at that time is such that the voltage applied to the data electrode D (j ⁇ 2) is maintained at the high voltage Vd or the low voltage 0 (V).
  • the voltage applied to the data electrode D (j ⁇ 1) is smaller than when the high voltage side voltage Vd transits to the low voltage side voltage 0 (V). Therefore, the time required for the voltage applied to the data electrode D (j ⁇ 1) to transition from the high voltage Vd to the low voltage 0 (V) is relatively small.
  • the substantial load capacitance generated at the data electrode D (j + 1) at that time is such that the voltage applied to the data electrode D (j + 2) is maintained at the high voltage Vd or the low voltage 0 (V), and the data The voltage applied to the electrode D (j + 1) is smaller than when transitioning from the high voltage side voltage Vd to the low voltage side voltage 0 (V). Therefore, the time required for the voltage applied to the data electrode D (j + 1) to transition from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V) is relatively small.
  • the time at which the voltage applied to the data electrode D (j) transitions from the low-voltage side voltage 0 (V) to the high-voltage side voltage Vd can be relatively advanced, and the data electrode D (j) It is possible to perform the writing operation more stably by relatively increasing the time length during which the high-voltage side voltage Vd is applied.
  • the LH timing control unit 68 (j) indicates that the output of the logic gate 64 (j) is “H” and the logic gate 66 (j).
  • the first transition period starts at a time earlier than when the output of “L” is “L”, and the voltage applied to the data electrode D (j) transitions from the low voltage 0 (V) to the high voltage Vd.
  • the voltage applied to the data electrode D (j ⁇ 1) and the data electrode D (j + 1) is set to the high voltage side voltage Vd or the low voltage side voltage 0 (V). Maintained.
  • the time at which the voltage applied to the data electrode D (j) transitions from the low voltage side voltage 0 (V) to the high voltage side voltage Vd can be relatively advanced, and the data electrode D (j) It is possible to perform the writing operation more stably by relatively increasing the length of time during which the high-voltage side voltage Vd is applied.
  • FIG. 16 is a timing chart schematically showing an example of the operation of the data electrode drive circuit 232 of the plasma display device in accordance with the fourth exemplary embodiment of the present invention.
  • write cycle T (i ⁇ 1), write cycle T (i), write cycle T (i + 1), and write cycle T (i + 2)) in the write period are shown as examples.
  • the drive voltage waveforms applied to scan electrode SC (i ⁇ 1) to scan electrode SC (i + 1) and data electrode D (j ⁇ 2) to data electrode D (j + 3) will be described as an example.
  • a write pulse is applied to the data electrode D (j ⁇ 1), the data electrode D (j + 2), and the data electrode D (j + 3), and the data electrode D ( j-2), an address pulse is not applied to the data electrode D (j) and the data electrode D (j + 1), and the address is written to the data electrode D (j) and the data electrode D (j + 1) in the address period T (i).
  • a pulse is applied, an address pulse is not applied to the data electrode D (j-2), the data electrode D (j-1), the data electrode D (j + 2), and the data electrode D (j + 3), and the address period T (i + 1 ), An address pulse is applied to data electrode D (j-1), data electrode D (j + 1) and data electrode D (j + 2), and data electrode D (j-2), data electrode D (j) and data electrode D (j + 3)
  • T (i + 2) the data electrode D (j-2), the data electrode D (j-1), the data electrode D (j), the data electrode D (j + 1), and the data electrode D (
  • An example in which an address pulse is applied to j + 3) and an address pulse is not applied to the data electrode D (j + 2) is shown.
  • the voltage applied to the data electrode D (j ⁇ 1), the data electrode D (j + 2) and the data electrode D (j + 3) is changed from the high voltage side voltage Vd to the low voltage side. Transition to voltage 0 (V).
  • the voltage applied to the data electrode D (j) and the data electrode D (j + 1) transitions from the low voltage side voltage 0 (V) to the high voltage side voltage Vd.
  • the outputs of the logic gate 52 (j ⁇ 1), the logic gate 52 (j + 2), and the logic gate 52 (j + 3) of the second self-load calculating unit 50 become “H”, and the logic gate 53 (j) and The output of the logic gate 53 (j + 1) is “H”.
  • the LH timing control unit 68 (j) Since both the output of the logic gate 64 (j) and the output of the logic gate 66 (j) are “H”, the LH timing control unit 68 (j) has the data electrode D (1) to the data electrode D (m). At time t33 after all the voltages applied to each data electrode 22 have finished transitioning from the high voltage side voltage Vd to the low voltage side voltage 0 (V), the voltage applied to the data electrode D (j) is changed to the low voltage side voltage 0 ( The operation of transition from V) to the high voltage Vd is started.
  • the LH timing control unit 68 (j + 1) is more timely than the time t33.
  • the operation of transitioning the voltage applied to the data electrode D (j + 1) from the low voltage side voltage 0 (V) to the high voltage side voltage Vd is started.
  • the voltage applied to the data electrode D (j) transits from the high voltage side voltage Vd to the low voltage side voltage 0 (V).
  • the voltage applied to the data electrode D (j ⁇ 1) and the data electrode D (j + 2) transitions from the low voltage side voltage 0 (V) to the high voltage side voltage Vd.
  • the output of the logic gate 64 (j ⁇ 1) and the output of the logic gate 66 (j ⁇ 1) of the third adjacent load calculation unit 160 are both “H”, and the output of the logic gate 64 (j + 2) is “L”.
  • the LH timing control unit 68 (j-1) Since the LH timing control unit 68 (j-1) has both the output of the logic gate 64 (j-1) and the output of the logic gate 66 (j-1) being "H", the data electrode D (1) to the data electrode D Applied to data electrode D (j-1) at time t53 after all the voltages applied to each data electrode 22 of electrode D (m) have transitioned from high-voltage side voltage Vd to low-voltage side voltage 0 (V). The operation of changing the voltage to be changed from the low voltage 0 (V) to the high voltage Vd is started.
  • the LH timing control unit 68 (j + 2) reduces the voltage applied to the data electrode D (j + 2) at time t51 earlier than time t53.
  • the operation of transitioning from the side voltage 0 (V) to the high voltage side voltage Vd is started.
  • the time length between time t51 and time t53 is longer than the time length between time t32 and time t33.
  • the address pulse is applied to one data electrode 22 of the two adjacent data electrodes 22 and then the other data electrode 22 is addressed. Is applied, the voltage applied to one data electrode 22 is set to the high voltage Vd so that the second transition period of one data electrode 22 and the first transition period of the other data electrode 22 do not overlap in time. After the transition to the low voltage 0 (V) from the second voltage (second transition period), the voltage applied to the other data electrode 22 transitions from the low voltage 0 (V) to the high voltage Vd (first transition period). . Then, the start time of the first transition period in the other data electrode 22 is controlled according to the time length of the second transition period in one data electrode 22.
  • the voltage applied to the data electrode 22 changes from the low voltage 0 (V) to the high voltage while the voltage applied to the adjacent data electrode 22 changes from the high voltage Vd to the low voltage 0 (V). Transition to Vd can be prevented. That is, the voltage applied to the data electrode 22 can be prevented from transitioning from the low voltage side voltage 0 (V) to the high voltage side voltage Vd in a state where the substantial load capacity is relatively large. Thereby, power consumption in the data electrode drive circuit 232 can be reduced.
  • the write operation can be performed more stably.
  • the low voltage side voltage 0 (V) when the voltage applied to the data electrode 22 is changed, the low voltage side voltage 0 (V) is first changed from the high voltage side voltage Vd to the low voltage side voltage 0 (V).
  • the configuration of transition from the high voltage Vd to the high voltage Vd has been described. Therefore, the start time of the second transition period is set for each output buffer or each data driver.
  • the transition may be made from the high voltage side voltage Vd to the low voltage side voltage 0 (V). In this case, the start time of the first transition period may be set for each output buffer or each data driver.
  • the drive voltage waveforms shown in FIGS. 4, 7, 12, 14, and 16 are merely examples in the embodiment of the present invention, and the present invention is not limited to these drive voltage waveforms. Is not to be done.
  • circuit configurations shown in FIGS. 5, 6, 9, 10, 11, 13, and 15 are merely examples in the embodiment of the present invention, and the present invention is not limited to these.
  • the circuit configuration is not limited.
  • each circuit block shown in the embodiment of the present invention may be configured as an electric circuit that performs each operation shown in the embodiment, or a microcomputer that is programmed to perform the same operation. May be used.
  • the number of subfields constituting one field is not limited to the above number.
  • the number of gradations that can be displayed on the panel 10 can be further increased.
  • one pixel is constituted by discharge cells of three colors of red, green, and blue.
  • a panel in which one pixel is constituted by discharge cells of four colors or more has been described.
  • the specific numerical values shown in the embodiment of the present invention are set based on the characteristics of the panel 10 having a screen size of 50 inches and the number of display electrode pairs 14 of 1024. It is just an example.
  • the present invention is not limited to these numerical values, and each numerical value is desirably set optimally in accordance with panel specifications, panel characteristics, plasma display device specifications, and the like. Each of these numerical values is allowed to vary within a range where the above-described effect can be obtained.
  • the number of subfields constituting one field, the luminance weight of each subfield, etc. are not limited to the values shown in the embodiment of the present invention, and the subfield configuration is based on the image signal or the like. It may be configured to switch.
  • the present invention can stably supply power to a data electrode driving circuit to perform a stable address operation and reduce power consumption of the data electrode driving circuit. Therefore, the present invention provides a plasma display device and a plasma display device driving method. Useful.

Abstract

In order to reduce the power consumption of a data-electrode drive circuit in a plasma display device, the data-electrode drive circuit includes, for each data electrode, an output buffer having a high-voltage-side switch that outputs a high-side voltage and a low-voltage-side switch that outputs a low-side voltage. When the voltage of a write pulse is to be transitioned from the low-side voltage to the high-side voltage, the output buffer turns the low-voltage-side switch off and the high-voltage-side switch on and thereby changes the output voltage to the high-side voltage in a first transition period provided in each write cycle. When the voltage of the write pulse is to be transitioned from the high-side voltage to the low-side voltage, the output buffer turns the high-voltage-side switch off and the low-voltage-side switch on and thereby changes the output voltage to the low-side voltage in a second transition period provided in the write cycle. The second transition period and the first transition period immediately after the second transition period are separated temporally.

Description

プラズマディスプレイ装置およびプラズマディスプレイ装置の駆動方法Plasma display apparatus and driving method of plasma display apparatus
 本発明は、交流面放電型のプラズマディスプレイパネルを用いた画像表示装置であるプラズマディスプレイ装置およびプラズマディスプレイ装置の駆動方法に関する。 The present invention relates to a plasma display device which is an image display device using an AC surface discharge type plasma display panel and a driving method of the plasma display device.
 プラズマディスプレイパネル(以下、「パネル」と略記する)として代表的な交流面放電型パネルは、対向配置された前面基板と背面基板との間に多数の放電セルが形成されている。前面基板は、1対の走査電極と維持電極とからなる表示電極対が前面側のガラス基板上に互いに平行に複数対形成されている。そして、それら表示電極対を覆うように誘電体層および保護層が形成されている。 2. Description of the Related Art A typical AC surface discharge type panel as a plasma display panel (hereinafter abbreviated as “panel”) has a large number of discharge cells formed between a front substrate and a rear substrate that are arranged to face each other. In the front substrate, a plurality of pairs of display electrodes composed of a pair of scan electrodes and sustain electrodes are formed on the front glass substrate in parallel with each other. A dielectric layer and a protective layer are formed so as to cover the display electrode pairs.
 背面基板は、背面側のガラス基板上に複数の平行なデータ電極が形成され、それらデータ電極を覆うように誘電体層が形成され、さらにその上にデータ電極と平行に複数の隔壁が形成されている。そして、誘電体層の表面と隔壁の側面とに蛍光体層が形成されている。 The back substrate has a plurality of parallel data electrodes formed on the glass substrate on the back side, a dielectric layer is formed so as to cover the data electrodes, and a plurality of barrier ribs are formed thereon in parallel with the data electrodes. ing. And the fluorescent substance layer is formed in the surface of a dielectric material layer, and the side surface of a partition.
 そして、表示電極対とデータ電極とが立体交差するように、前面基板と背面基板とを対向配置して密封する。密封された内部の放電空間には、例えば分圧比で5%のキセノンを含む放電ガスを封入し、表示電極対とデータ電極とが対向する部分に放電セルを形成する。このような構成のパネルにおいて、各放電セル内でガス放電により紫外線を発生し、この紫外線で赤色(R)、緑色(G)および青色(B)の各色の蛍光体を励起発光してカラーの画像表示を行う。 Then, the front substrate and the rear substrate are arranged opposite to each other and sealed so that the display electrode pair and the data electrode are three-dimensionally crossed. In the sealed internal discharge space, for example, a discharge gas containing xenon at a partial pressure ratio of 5% is sealed, and a discharge cell is formed in a portion where the display electrode pair and the data electrode face each other. In the panel having such a configuration, ultraviolet rays are generated by gas discharge in each discharge cell, and the phosphors of each color of red (R), green (G) and blue (B) are excited and emitted by the ultraviolet rays. Display an image.
 パネルを駆動する方法としては一般にサブフィールド法が用いられている。サブフィールド法では、1フィールドを複数のサブフィールドに分割し、それぞれのサブフィールドで各放電セルを発光または非発光にすることにより階調表示を行う。各サブフィールドは、初期化期間、書込み期間および維持期間を有する。 The subfield method is generally used as a method for driving the panel. In the subfield method, one field is divided into a plurality of subfields, and gradation display is performed by causing each discharge cell to emit light or not emit light in each subfield. Each subfield has an initialization period, an address period, and a sustain period.
 初期化期間では、各走査電極に初期化波形を印加し、各放電セルで初期化放電を発生する初期化動作を行う。これにより、各放電セルにおいて、続く書込み動作のために必要な壁電荷を形成するとともに、書込み放電を安定して発生するためのプライミング粒子(放電を発生させるための励起粒子)を発生する。 In the initialization period, an initialization waveform is applied to each scan electrode, and an initialization operation is performed to generate an initialization discharge in each discharge cell. Thereby, in each discharge cell, wall charges necessary for the subsequent address operation are formed, and priming particles (excited particles for generating the discharge) for generating the address discharge stably are generated.
 書込み期間では、走査電極に走査パルスを順次印加するとともに、データ電極には表示すべき画像信号にもとづき選択的に書込みパルスを印加する。これにより、発光を行うべき放電セルの走査電極とデータ電極との間に書込み放電を発生し、その放電セル内に壁電荷を形成する(以下、これらの動作を総称して「書込み」とも記す)。 In the address period, the scan pulse is sequentially applied to the scan electrodes, and the address pulse is selectively applied to the data electrodes based on the image signal to be displayed. As a result, an address discharge is generated between the scan electrode and the data electrode of the discharge cell to emit light, and a wall charge is formed in the discharge cell (hereinafter, these operations are also collectively referred to as “address”). ).
 維持期間では、サブフィールド毎に定められた輝度重みにもとづく数の維持パルスを走査電極と維持電極とからなる表示電極対に交互に印加する。これにより、書込み放電を発生した放電セルで維持放電を発生し、その放電セルの蛍光体層を発光させる(以下、放電セルを維持放電により発光させることを「点灯」、発光させないことを「非点灯」とも記す)。これにより、各放電セルを、輝度重みに応じた輝度で発光させる。このようにして、パネルの各放電セルを画像信号の階調値に応じた輝度で発光させて、パネルの画像表示領域に画像を表示する。 In the sustain period, the number of sustain pulses based on the luminance weight determined for each subfield is alternately applied to the display electrode pairs composed of the scan electrodes and the sustain electrodes. As a result, a sustain discharge is generated in the discharge cell that has generated the address discharge, and the phosphor layer of the discharge cell emits light (hereinafter referred to as “lighting” that the discharge cell emits light by the sustain discharge, and “non-emitting”). Also written as “lit”.) Thereby, each discharge cell is made to emit light with the luminance according to the luminance weight. In this way, each discharge cell of the panel is caused to emit light with a luminance corresponding to the gradation value of the image signal, and an image is displayed in the image display area of the panel.
 プラズマディスプレイ装置は、画像の表示に必要な駆動電圧波形を発生するために、走査電極駆動回路、維持電極駆動回路、データ電極駆動回路を有する。そして、走査電極駆動回路で発生した駆動電圧波形を走査電極に印加し、維持電極駆動回路で発生した駆動電圧波形を維持電極に印加し、データ電極駆動回路で発生した駆動電圧波形をデータ電極に印加する。 The plasma display device has a scan electrode drive circuit, a sustain electrode drive circuit, and a data electrode drive circuit in order to generate a drive voltage waveform necessary for image display. The drive voltage waveform generated in the scan electrode drive circuit is applied to the scan electrode, the drive voltage waveform generated in the sustain electrode drive circuit is applied to the sustain electrode, and the drive voltage waveform generated in the data electrode drive circuit is applied to the data electrode. Apply.
 近年、パネルの大画面化、高精細度化にともない、書込み動作で消費される電力が増大している。そして、データ電極駆動回路における消費電力がプラズマディスプレイ装置の消費電力を増大させている。 In recent years, with the increase in screen size and resolution, the power consumed in write operations has increased. And the power consumption in the data electrode driving circuit increases the power consumption of the plasma display device.
 そこで、データ電極駆動回路の消費電力を削減する様々な方法が提案されている。 Therefore, various methods for reducing the power consumption of the data electrode driving circuit have been proposed.
 データ電極駆動回路から見ると、データ電極は容量性の負荷(負荷容量)である。そのことに注目し、データ電極駆動回路に電力を供給する電源に電力回収部を付加したプラズマディスプレイ装置が開示されている(例えば、特許文献1参照)。特許文献1に記載された技術では、この電源は、負荷容量と回収コイルとを共振させてデータ電極駆動回路に電力を供給することで消費電力を削減する。 When viewed from the data electrode drive circuit, the data electrode is a capacitive load (load capacity). In view of this, a plasma display device is disclosed in which a power recovery unit is added to a power source that supplies power to a data electrode driving circuit (see, for example, Patent Document 1). In the technique described in Patent Document 1, this power supply reduces power consumption by resonating the load capacitance and the recovery coil and supplying power to the data electrode driving circuit.
 しかし、データ電極の負荷容量は、画像データに依存して大きく変化する。そのため、特許文献1に記載された技術では、画像の図柄によっては消費電力が増大することもある。なお、画像データとは、パネルに画像を表示するために、画像信号にもとづき発生するデータのことである。 However, the load capacity of the data electrode varies greatly depending on the image data. Therefore, in the technique described in Patent Document 1, the power consumption may increase depending on the design of the image. The image data is data generated based on an image signal in order to display an image on the panel.
 この点を改良するプラズマディスプレイ装置も開示されている(例えば、特許文献2参照)。特許文献2に記載された技術では、電源に付加した電力回収部の出力振幅を、画像データに応じて制御する。 A plasma display device that improves this point is also disclosed (see, for example, Patent Document 2). In the technique described in Patent Document 2, the output amplitude of the power recovery unit added to the power supply is controlled according to the image data.
 このように、データ電極駆動回路に電力を供給する電源に電力回収部を付加することで、プラズマディスプレイ装置における消費電力を削減することができる。しかし、電源に電力回収部を付加すると、データ電極駆動回路に供給する電圧が不安定になりやすく、書込み放電が不安定になることがある。そして、書込み放電が不安定になると、プラズマディスプレイ装置における画像表示品質が低下する。 Thus, the power consumption in the plasma display device can be reduced by adding the power recovery unit to the power source that supplies power to the data electrode driving circuit. However, if a power recovery unit is added to the power supply, the voltage supplied to the data electrode drive circuit tends to be unstable, and the address discharge may become unstable. When the address discharge becomes unstable, the image display quality in the plasma display device is degraded.
 これらのことから、データ電極駆動回路に安定に電力を供給して安定した書込み動作を行うとともに、データ電極駆動回路の消費電力を削減することができるプラズマディスプレイ装置が望まれている。 For these reasons, there is a demand for a plasma display device capable of stably supplying power to the data electrode driving circuit to perform a stable addressing operation and reducing power consumption of the data electrode driving circuit.
特開2002-278509号公報JP 2002-278509 A 特開2004-212699号公報JP 2004-212699 A
 本発明は、複数の表示電極対と複数のデータ電極とを有するパネルと、データ電極に書込みパルスを印加するデータ電極駆動回路とを備え、データ電極駆動回路は書込み期間における書込み周期毎に書込みパルスの高圧側電圧または書込みパルスの低圧側電圧をデータ電極のそれぞれに印加するプラズマディスプレイ装置である。データ電極駆動回路は、高圧側電圧を出力する高圧側スイッチと低圧側電圧を出力する低圧側スイッチとを有する出力バッファをデータ電極のそれぞれに対して備える。出力バッファは、書込みパルスの電圧を低圧側電圧から高圧側電圧に遷移する際には、書込み周期に設けられた第1遷移期間において、低圧側スイッチをオフにし高圧側スイッチをオンにして出力電圧を高圧側電圧にする。書込みパルスの電圧を高圧側電圧から低圧側電圧に遷移する際には、書込み周期に設けられた第2遷移期間において、高圧側スイッチをオフにし低圧側スイッチをオンにして出力電圧を低圧側電圧にする。そして、第2遷移期間と、第2遷移期間の直後の第1遷移期間とを時間的に分離する。 The present invention includes a panel having a plurality of display electrode pairs and a plurality of data electrodes, and a data electrode driving circuit for applying a writing pulse to the data electrodes, the data electrode driving circuit having a writing pulse for each writing cycle in a writing period. The high voltage side voltage or the low voltage side voltage of the write pulse is applied to each data electrode. The data electrode driving circuit includes an output buffer having a high-voltage side switch that outputs a high-voltage side voltage and a low-voltage side switch that outputs a low-voltage side voltage for each of the data electrodes. The output buffer turns off the low-voltage side switch and turns on the high-voltage side switch during the first transition period provided in the write cycle when the voltage of the write pulse changes from the low-voltage side voltage to the high-voltage side voltage. To high voltage. When transitioning the voltage of the write pulse from the high-voltage side voltage to the low-voltage side voltage, the high-voltage side switch is turned off and the low-voltage side switch is turned on during the second transition period provided in the write cycle. To. Then, the second transition period and the first transition period immediately after the second transition period are separated in time.
 これにより、データ電極駆動回路に安定に電力を供給して安定した書込み動作を行うとともに、データ電極駆動回路の消費電力を削減することができる。 Thus, it is possible to stably supply power to the data electrode driving circuit to perform a stable addressing operation and reduce the power consumption of the data electrode driving circuit.
 また、本発明のプラズマディスプレイ装置において、データ電極駆動回路は、隣接するデータ電極間の実質的な負荷容量の大きさを算出し、実質的な負荷容量が相対的に大きいデータ電極では、実質的な負荷容量が相対的に小さいデータ電極よりも第1遷移期間または第2遷移期間の開始時刻が早くなるように、高圧側スイッチおよび低圧側スイッチを出力バッファ毎に制御してもよい。 In the plasma display apparatus of the present invention, the data electrode driving circuit calculates a substantial load capacity between adjacent data electrodes, and the data electrode having a relatively large substantial load capacity is substantially The high voltage side switch and the low voltage side switch may be controlled for each output buffer so that the start time of the first transition period or the second transition period is earlier than the data electrode having a relatively small load capacity.
 また、本発明のプラズマディスプレイ装置において、データ電極駆動回路は、複数の出力バッファを集積した集積回路を複数用いて構成し、集積回路において、データ電極毎に発生する実質的な負荷容量の大きさの最大値を算出し、最大値が大きい集積回路では、最大値が小さい集積回路よりも第1遷移期間または第2遷移期間の開始時刻が早くなるように、高圧側スイッチおよび低圧側スイッチを集積回路毎に制御してもよい。 In the plasma display device of the present invention, the data electrode driving circuit is constituted by using a plurality of integrated circuits in which a plurality of output buffers are integrated. In the integrated circuit, the substantial load capacitance generated for each data electrode is determined. In an integrated circuit with a large maximum value, the high-voltage side switch and the low-voltage side switch are integrated so that the start time of the first transition period or the second transition period is earlier than that of the integrated circuit with a small maximum value. You may control for every circuit.
 また、本発明は、複数の表示電極対と複数のデータ電極とを有するパネルと、データ電極に書込みパルスを印加するデータ電極駆動回路とを備え、データ電極駆動回路は書込み期間における書込み周期毎に書込みパルスの高圧側電圧または書込みパルスの低圧側電圧をデータ電極のそれぞれに印加するプラズマディスプレイ装置である。データ電極駆動回路は、高圧側電圧を出力する高圧側スイッチと低圧側電圧を出力する低圧側スイッチとを有する出力バッファをデータ電極のそれぞれに対して備える。出力バッファは、書込みパルスの電圧を低圧側電圧から高圧側電圧に遷移する際には、書込み周期に設けられた第1遷移期間において、低圧側スイッチをオフにし高圧側スイッチをオンにして出力電圧を高圧側電圧にする。書込みパルスの電圧を高圧側電圧から低圧側電圧に遷移する際には、書込み周期に設けられた第2遷移期間において、高圧側スイッチをオフにし低圧側スイッチをオンにして出力電圧を低圧側電圧にする。そして、互いに隣接する2本のデータ電極において、第2遷移期間と、第2遷移期間の直後の第1遷移期間とを時間的に分離する。 The present invention also includes a panel having a plurality of display electrode pairs and a plurality of data electrodes, and a data electrode driving circuit for applying an address pulse to the data electrodes, and the data electrode driving circuit is provided for each address period in the address period. In the plasma display device, a high voltage side voltage of an address pulse or a low voltage side voltage of an address pulse is applied to each data electrode. The data electrode driving circuit includes an output buffer having a high-voltage side switch that outputs a high-voltage side voltage and a low-voltage side switch that outputs a low-voltage side voltage for each of the data electrodes. The output buffer turns off the low-voltage side switch and turns on the high-voltage side switch during the first transition period provided in the write cycle when the voltage of the write pulse changes from the low-voltage side voltage to the high-voltage side voltage. To high voltage. When transitioning the voltage of the write pulse from the high-voltage side voltage to the low-voltage side voltage, the high-voltage side switch is turned off and the low-voltage side switch is turned on during the second transition period provided in the write cycle. To. Then, in the two data electrodes adjacent to each other, the second transition period and the first transition period immediately after the second transition period are temporally separated.
 これにより、データ電極駆動回路に安定に電力を供給して安定した書込み動作を行うとともに、データ電極駆動回路の消費電力を削減することができる。 Thus, it is possible to stably supply power to the data electrode driving circuit to perform a stable addressing operation and reduce the power consumption of the data electrode driving circuit.
 また、本発明は、1フィールドを書込み期間と維持期間とを有する複数のサブフィールドで構成し、書込み期間において、複数の表示電極対と複数のデータ電極とを有するパネルのデータ電極に、書込み周期毎に書込みパルスを印加するプラズマディスプレイ装置の駆動方法である。この駆動方法では、書込み周期に設けられた第1遷移期間において、書込みパルスの電圧を低圧側電圧から高圧側電圧に遷移し、書込み周期に設けられた第2遷移期間において、書込みパルスの電圧を高圧側電圧から低圧側電圧に遷移する。そして、第2遷移期間と、第2遷移期間の直後の第1遷移期間とを時間的に分離する。 According to the present invention, one field includes a plurality of subfields each having an address period and a sustain period, and in the address period, a write cycle is applied to a data electrode of a panel having a plurality of display electrode pairs and a plurality of data electrodes. This is a driving method of a plasma display device in which an address pulse is applied every time. In this driving method, the voltage of the write pulse is changed from the low voltage side voltage to the high voltage side voltage in the first transition period provided in the write cycle, and the voltage of the write pulse is changed in the second transition period provided in the write cycle. Transition from high voltage to low voltage. Then, the second transition period and the first transition period immediately after the second transition period are separated in time.
 これにより、データ電極駆動回路に安定に電力を供給して安定した書込み動作を行うとともに、データ電極駆動回路の消費電力を削減することができる。 Thus, it is possible to stably supply power to the data electrode driving circuit to perform a stable addressing operation and reduce the power consumption of the data electrode driving circuit.
図1は、本発明の実施の形態1におけるプラズマディスプレイ装置に用いるパネルの構造を示す分解斜視図である。FIG. 1 is an exploded perspective view showing a structure of a panel used in the plasma display device in accordance with the first exemplary embodiment of the present invention. 図2は、本発明の実施の形態1におけるプラズマディスプレイ装置に用いるパネルの電極配列図である。FIG. 2 is an electrode array diagram of the panel used in the plasma display device in accordance with the first exemplary embodiment of the present invention. 図3は、本発明の実施の形態1におけるプラズマディスプレイ装置に用いるパネルの電極間容量を模式的に示した図である。FIG. 3 is a diagram schematically showing the interelectrode capacitance of the panel used in the plasma display device in accordance with the first exemplary embodiment of the present invention. 図4は、本発明の実施の形態1におけるプラズマディスプレイ装置に用いるパネルの各電極に印加する駆動電圧波形を概略的に示す図である。FIG. 4 is a diagram schematically showing drive voltage waveforms applied to each electrode of the panel used in the plasma display device in accordance with the first exemplary embodiment of the present invention. 図5は、本発明の実施の形態1におけるプラズマディスプレイ装置を構成する回路ブロックの一例を概略的に示す図である。FIG. 5 is a diagram schematically showing an example of a circuit block constituting the plasma display device in accordance with the first exemplary embodiment of the present invention. 図6は、本発明の実施の形態1におけるプラズマディスプレイ装置のデータ電極駆動回路が有する出力バッファの構成を概略的に示す回路図である。FIG. 6 is a circuit diagram schematically showing a configuration of an output buffer included in the data electrode driving circuit of the plasma display device in accordance with the first exemplary embodiment of the present invention. 図7は、本発明の実施の形態1におけるプラズマディスプレイ装置のデータ電極駆動回路の動作の一例を概略的に示すタイミングチャートである。FIG. 7 is a timing chart schematically showing an example of the operation of the data electrode driving circuit of the plasma display device in accordance with the first exemplary embodiment of the present invention. 図8Aは、本発明の実施の形態1におけるプラズマディスプレイ装置のデータ電極駆動回路に備えられた出力バッファの構成を概略的に示す回路図である。FIG. 8A is a circuit diagram schematically showing a configuration of an output buffer provided in the data electrode driving circuit of the plasma display device in accordance with the first exemplary embodiment of the present invention. 図8Bは、本発明の実施の形態1におけるプラズマディスプレイ装置のデータ電極駆動回路に備えられた出力バッファの動作状態の一例を概略的に示す図である。FIG. 8B is a diagram schematically showing an example of the operating state of the output buffer provided in the data electrode driving circuit of the plasma display device in accordance with the first exemplary embodiment of the present invention. 図8Cは、本発明の実施の形態1におけるプラズマディスプレイ装置のデータ電極駆動回路に備えられた出力バッファの動作状態の他の一例を概略的に示す図である。FIG. 8C is a diagram schematically showing another example of the operating state of the output buffer provided in the data electrode driving circuit of the plasma display device in accordance with the first exemplary embodiment of the present invention. 図8Dは、本発明の実施の形態1におけるプラズマディスプレイ装置のデータ電極駆動回路に備えられた出力バッファの動作状態の他の一例を概略的に示す図である。FIG. 8D is a diagram schematically showing another example of the operating state of the output buffer provided in the data electrode driving circuit of the plasma display device in accordance with the first exemplary embodiment of the present invention. 図8Eは、本発明の実施の形態1におけるプラズマディスプレイ装置のデータ電極駆動回路に備えられた出力バッファの動作状態の他の一例を概略的に示す図である。FIG. 8E is a diagram schematically showing another example of the operating state of the output buffer provided in the data electrode driving circuit of the plasma display device in accordance with the first exemplary embodiment of the present invention. 図9は、本発明の実施の形態1におけるプラズマディスプレイ装置のデータ電極駆動回路の構成を概略的に示す回路図である。FIG. 9 is a circuit diagram schematically showing a configuration of a data electrode driving circuit of the plasma display device in accordance with the first exemplary embodiment of the present invention. 図10は、本発明の実施の形態2におけるプラズマディスプレイ装置を構成する回路ブロックの一例を概略的に示す図である。FIG. 10 is a diagram schematically showing an example of a circuit block constituting the plasma display device in accordance with the second exemplary embodiment of the present invention. 図11は、本発明の実施の形態2におけるプラズマディスプレイ装置のデータ電極駆動回路の構成を概略的に示す回路図である。FIG. 11 is a circuit diagram schematically showing a configuration of a data electrode driving circuit of the plasma display device in accordance with the second exemplary embodiment of the present invention. 図12は、本発明の実施の形態2におけるプラズマディスプレイ装置のデータ電極駆動回路の動作の一例を概略的に示すタイミングチャートである。FIG. 12 is a timing chart schematically showing an example of the operation of the data electrode driving circuit of the plasma display device in accordance with the second exemplary embodiment of the present invention. 図13は、本発明の実施の形態3におけるプラズマディスプレイ装置のデータ電極駆動回路の構成を概略的に示す回路図である。FIG. 13 is a circuit diagram schematically showing a configuration of a data electrode driving circuit of the plasma display device in accordance with the third exemplary embodiment of the present invention. 図14は、本発明の実施の形態3におけるプラズマディスプレイ装置のデータ電極駆動回路の動作の一例を概略的に示すタイミングチャートである。FIG. 14 is a timing chart schematically showing an example of the operation of the data electrode driving circuit of the plasma display device in accordance with the third exemplary embodiment of the present invention. 図15は、本発明の実施の形態4におけるプラズマディスプレイ装置のデータ電極駆動回路の構成を概略的に示す回路図である。FIG. 15 is a circuit diagram schematically showing a configuration of a data electrode driving circuit of the plasma display device in accordance with the fourth exemplary embodiment of the present invention. 図16は、本発明の実施の形態4におけるプラズマディスプレイ装置のデータ電極駆動回路の動作の一例を概略的に示すタイミングチャートである。FIG. 16 is a timing chart schematically showing an example of the operation of the data electrode driving circuit of the plasma display device in accordance with the fourth exemplary embodiment of the present invention.
 以下、本発明の実施の形態におけるプラズマディスプレイ装置について、図面を用いて説明する。 Hereinafter, a plasma display device according to an embodiment of the present invention will be described with reference to the drawings.
 (実施の形態1)
 図1は、本発明の実施の形態1におけるプラズマディスプレイ装置に用いるパネル10の構造を示す分解斜視図である。
(Embodiment 1)
FIG. 1 is an exploded perspective view showing the structure of panel 10 used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
 ガラス製の前面基板11上には、走査電極12と維持電極13とからなる表示電極対14が複数形成されている。そして、走査電極12と維持電極13とを覆うように誘電体層15が形成され、その誘電体層15上に保護層16が形成されている。 A plurality of display electrode pairs 14 each including a scanning electrode 12 and a sustaining electrode 13 are formed on a glass front substrate 11. A dielectric layer 15 is formed so as to cover the scan electrode 12 and the sustain electrode 13, and a protective layer 16 is formed on the dielectric layer 15.
 この保護層16は、放電セルにおける放電開始電圧を下げるために、パネルの材料として使用実績があり、ネオン(Ne)およびキセノン(Xe)ガスを封入した場合に2次電子放出係数が大きく耐久性に優れた酸化マグネシウム(MgO)を主成分とする材料で形成されている。 This protective layer 16 has been used as a panel material in order to lower the discharge start voltage in the discharge cell, and has a large secondary electron emission coefficient and durability when neon (Ne) and xenon (Xe) gas is sealed. It is made of a material mainly composed of magnesium oxide (MgO).
 背面基板21上にはデータ電極22が複数形成され、データ電極22を覆うように誘電体層23が形成され、さらにその上に井桁状の隔壁24が形成されている。そして、隔壁24の側面および誘電体層23上には赤色(R)に発光する蛍光体層25R、緑色(G)に発光する蛍光体層25G、および青色(B)に発光する蛍光体層25Bが設けられている。以下、蛍光体層25R、蛍光体層25G、蛍光体層25Bをまとめて蛍光体層25とも記す。 A plurality of data electrodes 22 are formed on the rear substrate 21, a dielectric layer 23 is formed so as to cover the data electrodes 22, and a grid-like partition wall 24 is further formed thereon. On the side surfaces of the barrier ribs 24 and on the dielectric layer 23, a phosphor layer 25R that emits red (R), a phosphor layer 25G that emits green (G), and a phosphor layer 25B that emits blue (B). Is provided. Hereinafter, the phosphor layer 25R, the phosphor layer 25G, and the phosphor layer 25B are collectively referred to as a phosphor layer 25.
 これら前面基板11と背面基板21とを、微小な空間を挟んで表示電極対14とデータ電極22とが交差するように対向配置し、前面基板11と背面基板21との間隙に放電空間を設ける。そして、その外周部をガラスフリット等の封着材によって封着する。そして、その内部の放電空間には、例えばネオンとキセノンの混合ガスを放電ガスとして封入する。 The front substrate 11 and the rear substrate 21 are arranged to face each other so that the display electrode pair 14 and the data electrode 22 intersect each other with a minute space therebetween, and a discharge space is provided in the gap between the front substrate 11 and the rear substrate 21. . And the outer peripheral part is sealed with sealing materials, such as glass frit. Then, for example, a mixed gas of neon and xenon is sealed in the discharge space inside as a discharge gas.
 放電空間は隔壁24によって複数の区画に仕切られており、表示電極対14とデータ電極22とが交差する部分に放電セルが形成されている。 The discharge space is divided into a plurality of sections by the partition walls 24, and discharge cells are formed at the intersections between the display electrode pairs 14 and the data electrodes 22.
 そして、これらの放電セルで放電を発生し、放電セルの蛍光体層25を発光(放電セルを点灯)することにより、パネル10にカラーの画像を表示する。 Then, a discharge is generated in these discharge cells, and the phosphor layer 25 of the discharge cells emits light (lights the discharge cells), thereby displaying a color image on the panel 10.
 なお、パネル10においては、表示電極対14が延伸する方向に配列された連続する3つの放電セルで1つの画素を構成する。この3つの放電セルとは、蛍光体層25Rを有し赤色(R)に発光する放電セル(赤の放電セル)と、蛍光体層25Gを有し緑色(G)に発光する放電セル(緑の放電セル)と、蛍光体層25Bを有し青色(B)に発光する放電セル(青の放電セル)である。 In the panel 10, one pixel is composed of three consecutive discharge cells arranged in the direction in which the display electrode pair 14 extends. The three discharge cells are a discharge cell having a phosphor layer 25R and emitting red (R) (red discharge cell), and a discharge cell having a phosphor layer 25G and emitting green (G) (green). And a discharge cell having a phosphor layer 25B and emitting blue (B) light (blue discharge cell).
 なお、パネル10の構造は上述したものに限られるわけではなく、例えばストライプ状の隔壁を備えたものであってもよい。 Note that the structure of the panel 10 is not limited to the above-described structure, and may be, for example, provided with a stripe-shaped partition wall.
 図2は、本発明の実施の形態1におけるプラズマディスプレイ装置に用いるパネル10の電極配列図である。 FIG. 2 is an electrode array diagram of panel 10 used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
 パネル10には、水平方向(行方向)に延長されたn本の走査電極SC(1)~走査電極SC(n)(図1の走査電極12)およびn本の維持電極SU(1)~維持電極SU(n)(図1の維持電極13)が配列され、垂直方向(列方向)に延長されたm本のデータ電極D(1)~データ電極D(m)(図1のデータ電極22)が配列されている。 The panel 10 includes n scan electrodes SC (1) to scan electrodes SC (n) (scan electrodes 12 in FIG. 1) and n sustain electrodes SU (1) to (horizontal direction (row direction)). Sustain electrodes SU (n) (sustain electrodes 13 in FIG. 1) are arranged and m data electrodes D (1) to D (m) (data electrodes in FIG. 1) extended in the vertical direction (column direction). 22) are arranged.
 そして、1対の走査電極SC(i)(i=1~n)および維持電極SU(i)と1つのデータ電極D(j)(j=1~m)とが交差した領域に1つの放電セルが形成される。すなわち、1対の表示電極対14上には、m個の放電セルが形成され、m/3個の画素が形成される。そして、放電セルは放電空間内にm×n個形成され、m×n個の放電セルが形成された領域がパネル10の画像表示領域となる。例えば、画素数が1920×1080個のパネルでは、m=1920×3となり、n=1080となる。 One discharge is generated in a region where a pair of scan electrodes SC (i) (i = 1 to n) and sustain electrodes SU (i) intersect with one data electrode D (j) (j = 1 to m). A cell is formed. In other words, m discharge cells are formed on one pair of display electrodes 14 and m / 3 pixels are formed. Then, m × n discharge cells are formed in the discharge space, and an area where m × n discharge cells are formed becomes an image display area of the panel 10. For example, in a panel having 1920 × 1080 pixels, m = 1920 × 3 and n = 1080.
 このように配列された電極の電極間には、電極間容量が存在する。 The interelectrode capacitance exists between the electrodes of the electrodes arranged in this way.
 図3は、本発明の実施の形態1におけるプラズマディスプレイ装置に用いるパネル10の電極間容量を模式的に示す図である。 FIG. 3 is a diagram schematically showing the interelectrode capacitance of panel 10 used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
 図3には、一例として、5本の走査電極SC(i-2)~走査電極SC(i+2)および5本の維持電極SU(i-2)~維持電極SU(i+2)と、6本のデータ電極D(j-2)~データ電極D(j+3)とを示し、データ電極22に関する電極間容量を示す。なお、図3には、走査電極SC(i)と維持電極SU(i)とからなる表示電極対を1本の太い横線で示す。 In FIG. 3, as an example, five scan electrodes SC (i−2) to scan electrode SC (i + 2), five sustain electrodes SU (i−2) to sustain electrode SU (i + 2), Data electrodes D (j−2) to data electrode D (j + 3) are shown, and the interelectrode capacitance related to the data electrode 22 is shown. In FIG. 3, a display electrode pair composed of scan electrode SC (i) and sustain electrode SU (i) is indicated by one thick horizontal line.
 図3に示すように、パネル10においては、表示電極対14とデータ電極22とが交差している領域のそれぞれに「容量Cs」が存在する。また、互いに隣接するデータ電極22とデータ電極22との間のそれぞれに「容量Cc」が存在する。 As shown in FIG. 3, in the panel 10, “capacitance Cs” exists in each of the regions where the display electrode pair 14 and the data electrode 22 intersect. Further, “capacitance Cc” exists between the data electrodes 22 adjacent to each other.
 1本のデータ電極D(j)は、n本の走査電極SC(1)~走査電極SC(n)およびn本の維持電極SU(1)~維持電極SU(n)と交差する。すなわち、1本のデータ電極D(j)は、n本の表示電極対14と交差する。したがって、パネル10においては、1本のデータ電極D(j)と表示電極対14との間には、容量(n×Cs)が存在する。以下、容量(n×Cs)を「容量Cg」と表記する。 One data electrode D (j) intersects n scan electrodes SC (1) to scan electrode SC (n) and n sustain electrodes SU (1) to sustain electrode SU (n). That is, one data electrode D (j) intersects n display electrode pairs 14. Therefore, in the panel 10, a capacitance (n × Cs) exists between one data electrode D (j) and the display electrode pair 14. Hereinafter, the capacity (n × Cs) is expressed as “capacity Cg”.
 また、1本のデータ電極D(j)は、右側に隣接するデータ電極D(j+1)との間に容量Ccが存在し、左側に隣接するデータ電極D(j-1)との間に容量Ccが存在する。 Further, one data electrode D (j) has a capacitance Cc between the data electrode D (j + 1) adjacent to the right side and a capacitance between the data electrode D (j−1) adjacent to the left side. Cc exists.
 このように、1本のデータ電極D(j)には容量Cgと容量Ccと容量Ccとが存在するため、1本のデータ電極D(j)における負荷容量の合計は容量(Cg+2Cc)となる。したがって、パネル10においては、データ電極22のそれぞれに、容量(Cg+2Cc)が存在する。 Thus, since the capacitance Cg, the capacitance Cc, and the capacitance Cc exist in one data electrode D (j), the total load capacitance in one data electrode D (j) is the capacitance (Cg + 2Cc). . Therefore, in the panel 10, a capacitance (Cg + 2Cc) exists in each of the data electrodes 22.
 次に、パネル10を駆動するための駆動電圧波形とその動作の概要について説明する。 Next, a driving voltage waveform for driving the panel 10 and an outline of its operation will be described.
 本実施の形態におけるプラズマディスプレイ装置は、サブフィールド法によってパネル10を駆動する。サブフィールド法では、画像信号の1フィールドを時間軸上で複数のサブフィールドに分割し、各サブフィールドに輝度重みをそれぞれ設定する。したがって、各フィールドは輝度重みが異なる複数のサブフィールドを有する。 The plasma display device in the present embodiment drives the panel 10 by the subfield method. In the subfield method, one field of an image signal is divided into a plurality of subfields on the time axis, and a luminance weight is set for each subfield. Therefore, each field has a plurality of subfields having different luminance weights.
 それぞれのサブフィールドは初期化期間、書込み期間および維持期間を有する。そして、画像信号にもとづき、サブフィールド毎に各放電セルの発光・非発光を制御する。すなわち、画像信号にもとづき、発光するサブフィールドと非発光のサブフィールドとを組み合わせることによって、画像信号にもとづく複数の階調をパネル10に表示する。 Each subfield has an initialization period, an address period, and a sustain period. Based on the image signal, light emission / non-light emission of each discharge cell is controlled for each subfield. That is, a plurality of gradations based on the image signal are displayed on the panel 10 by combining the light-emitting subfield and the non-light-emitting subfield based on the image signal.
 初期化期間では、放電セルに初期化放電を発生し、続く書込み期間における書込み放電に必要な壁電荷を各電極上に形成する初期化動作を行う。 In the initializing period, an initializing operation is performed in which initializing discharge is generated in the discharge cells and wall charges necessary for the address discharge in the subsequent address period are formed on each electrode.
 書込み期間では、走査電極12に走査パルスを印加するとともにデータ電極22に選択的に書込みパルスを印加し、発光するべき放電セルに選択的に書込み放電を発生する。そして、続く維持期間で維持放電を発生するための壁電荷をその放電セル内に形成する書込み動作を行う。 In the address period, a scan pulse is applied to the scan electrode 12 and an address pulse is selectively applied to the data electrode 22 to selectively generate an address discharge in the discharge cells to emit light. Then, an address operation is performed to form wall charges in the discharge cells for generating a sustain discharge in the subsequent sustain period.
 維持期間では、それぞれのサブフィールドに設定された輝度重みに所定の比例定数を乗じた数の維持パルスを走査電極12および維持電極13に交互に印加し、直前の書込み期間に書込み放電を発生した放電セルで維持放電を発生し、その放電セルを発光する維持動作を行う。この比例定数が輝度倍数である。例えば、輝度倍数が2倍のとき、輝度重み「2」のサブフィールドの維持期間では、走査電極12と維持電極13とにそれぞれ4回ずつ維持パルスを印加する。そのため、その維持期間で発生する維持パルスの数は8となる。 In the sustain period, the sustain pulses of the number obtained by multiplying the luminance weight set in each subfield by a predetermined proportional constant are alternately applied to the scan electrode 12 and the sustain electrode 13 to generate the address discharge in the immediately preceding address period. A sustain discharge is generated in the discharge cell, and a sustain operation for emitting light from the discharge cell is performed. This proportionality constant is a luminance multiple. For example, when the luminance multiple is twice, the sustain pulse is applied four times to each of the scan electrode 12 and the sustain electrode 13 in the sustain period of the subfield having the luminance weight “2”. Therefore, the number of sustain pulses generated in the sustain period is 8.
 輝度重みとは、各サブフィールドで表示する輝度の大きさの比を表すものであり、各サブフィールドでは輝度重みに応じた数の維持パルスを維持期間に発生する。そのため、例えば、輝度重み「8」のサブフィールドは、輝度重み「1」のサブフィールドの約8倍の輝度で発光し、輝度重み「2」のサブフィールドの約4倍の輝度で発光する。 The luminance weight represents a ratio of the luminance magnitudes displayed in each subfield, and the number of sustain pulses corresponding to the luminance weight is generated in the sustain period in each subfield. Therefore, for example, the subfield with the luminance weight “8” emits light with a luminance about eight times that of the subfield with the luminance weight “1”, and emits light with about four times the luminance of the subfield with the luminance weight “2”.
 したがって、例えば、1フィールドを8つのサブフィールド(サブフィールドSF1、サブフィールドSF2、サブフィールドSF3、サブフィールドSF4、サブフィールドSF5、サブフィールドSF6、サブフィールドSF7、サブフィールドSF8)で構成し、サブフィールドSF1からサブフィールドSF8の各サブフィールドにそれぞれ(1、2、4、8、16、32、64、128)の輝度重みを設定すれば、各放電セルは、階調値「0」から階調値「255」までの256通りの階調値を表示することができる。 Thus, for example, one field is composed of eight subfields (subfield SF1, subfield SF2, subfield SF3, subfield SF4, subfield SF5, subfield SF6, subfield SF7, subfield SF8). If luminance weights of (1, 2, 4, 8, 16, 32, 64, 128) are set in each subfield of SF1 to subfield SF8, each discharge cell has a gradation value of “0”. The 256 gradation values up to the value “255” can be displayed.
 こうして、画像信号に応じた組合せでサブフィールド毎に各放電セルの発光・非発光を制御して各サブフィールドを選択的に発光することにより、様々な階調値で各放電セルを発光し、画像をパネル10に表示することができる。 In this way, by controlling the light emission / non-light emission of each discharge cell for each subfield in a combination according to the image signal, each subfield is selectively emitted to emit each discharge cell with various gradation values, An image can be displayed on the panel 10.
 なお、本発明は1フィールドを構成するサブフィールドの数、各サブフィールドが有する輝度重み等が上述した数値に限定されるものではない。 In the present invention, the number of subfields constituting one field, the luminance weight of each subfield, and the like are not limited to the above-described numerical values.
 なお、初期化動作には、直前のサブフィールドの動作にかかわらず放電セルに初期化放電を発生する全セル初期化動作と、直前のサブフィールドの書込み期間で書込み放電を発生し維持期間で維持放電を発生した放電セルだけに選択的に初期化放電を発生する選択初期化動作とがある。全セル初期化動作では上昇する上り傾斜波形電圧および下降する下り傾斜波形電圧を走査電極12に印加し、画像表示領域内の全ての放電セルに初期化放電を発生する。そして、複数のサブフィールドのうち、1つのサブフィールドの初期化期間においては全セル初期化動作を行い、他のサブフィールドの初期化期間においては、選択初期化動作を行う。以下、全セル初期化動作を行う初期化期間を「全セル初期化期間」と記し、全セル初期化期間を有するサブフィールドを「全セル初期化サブフィールド」と記す。また、選択初期化動作を行う初期化期間を「選択初期化期間」と記し、選択初期化期間を有するサブフィールドを「選択初期化サブフィールド」と記す。 The initializing operation includes all-cell initializing operation that generates initializing discharge in the discharge cells regardless of the operation of the immediately preceding subfield, and the address discharge is generated in the immediately preceding subfield addressing period and is maintained in the sustaining period. There is a selective initializing operation in which initializing discharge is selectively generated only in the discharge cells that have generated discharge. In the all-cell initialization operation, an ascending rising waveform voltage and a descending falling waveform voltage are applied to the scan electrode 12 to generate an initializing discharge in all the discharge cells in the image display region. Then, among all the subfields, the all-cell initialization operation is performed in the initialization period of one subfield, and the selective initialization operation is performed in the initialization period of the other subfield. Hereinafter, the initialization period for performing the all-cell initialization operation is referred to as “all-cell initialization period”, and the subfield having the all-cell initialization period is referred to as “all-cell initialization subfield”. An initialization period for performing the selective initialization operation is referred to as “selective initialization period”, and a subfield having the selective initialization period is referred to as “selective initialization subfield”.
 そして、本実施の形態では、各フィールドの最初のサブフィールド(サブフィールドSF1)を全セル初期化サブフィールドとし、他のサブフィールドは選択初期化サブフィールドとする。 In this embodiment, the first subfield (subfield SF1) of each field is an all-cell initializing subfield, and the other subfields are selective initializing subfields.
 これにより、少なくとも1フィールドに1回は全ての放電セルで初期化放電を発生するので、全セル初期化動作以降の書込み動作を安定化することができる。また、画像の表示に関係のない発光はサブフィールドSF1における全セル初期化動作の放電にともなう発光のみとなる。したがって、維持放電を発生しない黒を表示する領域の輝度である黒輝度は全セル初期化動作における微弱発光だけとなり、パネル10にコントラストの高い画像を表示することが可能となる。 Thereby, since the initializing discharge is generated in all the discharge cells at least once in one field, the addressing operation after the initializing operation for all the cells can be stabilized. Further, light emission not related to image display is only light emission due to discharge in the all-cell initializing operation in the subfield SF1. Therefore, the black luminance that is the luminance of the black display region where no sustain discharge occurs is only weak light emission in the all-cell initialization operation, and an image with high contrast can be displayed on the panel 10.
 しかし、本実施の形態は、1フィールドを構成するサブフィールドの数や各サブフィールドの輝度重みが上述した数値に限定されるものではない。また、画像信号等にもとづいてサブフィールド構成を切り換える構成であってもよい。 However, in the present embodiment, the number of subfields constituting one field and the luminance weight of each subfield are not limited to the above-described numerical values. Moreover, the structure which switches a subfield structure based on an image signal etc. may be sufficient.
 図4は、本発明の実施の形態1におけるプラズマディスプレイ装置に用いるパネル10の各電極に印加する駆動電圧波形を概略的に示す図である。 FIG. 4 is a diagram schematically showing drive voltage waveforms applied to the respective electrodes of panel 10 used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
 図4には、書込み期間において最初に書込み動作を行う走査電極SC(1)、書込み期間において最後に書込み動作を行う走査電極SC(n)(例えば、走査電極SC(1080))、維持電極SU(1)~維持電極SU(n)、およびデータ電極D(1)~データ電極D(m)のそれぞれに印加する駆動電圧波形を示す。また、以下における走査電極SC(i)、維持電極SU(i)、データ電極D(k)は、各電極の中から画像データ(サブフィールド毎の発光・非発光を示すデータ)にもとづき選択された電極を表す。 FIG. 4 shows scan electrode SC (1) that performs the address operation first in the address period, scan electrode SC (n) that performs the address operation last in the address period (for example, scan electrode SC (1080)), and sustain electrode SU. (1) Drive voltage waveforms applied to sustain electrode SU (n) and data electrode D (1) to data electrode D (m) are shown. In addition, scan electrode SC (i), sustain electrode SU (i), and data electrode D (k) in the following are selected from each electrode based on image data (data indicating light emission / non-light emission for each subfield). Represents an electrode.
 また、図4には、サブフィールドSF1、サブフィールドSF2の2つのサブフィールドの駆動電圧波形を示す。サブフィールドSF1は全セル初期化動作を行うサブフィールドであり、サブフィールドSF2は選択初期化動作を行うサブフィールドである。したがって、サブフィールドSF1と、サブフィールドSF2とでは、初期化期間に走査電極12に印加する駆動電圧の波形形状が異なる。なお、他のサブフィールドにおける駆動電圧波形は、維持期間における維持パルスの発生数が異なる以外はサブフィールドSF2の駆動電圧波形とほぼ同様である。 FIG. 4 shows driving voltage waveforms of two subfields, subfield SF1 and subfield SF2. The subfield SF1 is a subfield for performing an all-cell initialization operation, and the subfield SF2 is a subfield for performing a selective initialization operation. Therefore, the waveform shape of the drive voltage applied to the scan electrode 12 in the initialization period differs between the subfield SF1 and the subfield SF2. The drive voltage waveform in the other subfield is substantially the same as the drive voltage waveform in subfield SF2 except that the number of sustain pulses generated in the sustain period is different.
 なお、本実施の形態は、1フィールドを構成するサブフィールドの数や各サブフィールドの輝度重みが上記の値に限定されるものではない。 In the present embodiment, the number of subfields constituting one field and the luminance weight of each subfield are not limited to the above values.
 まず、全セル初期化サブフィールドであるサブフィールドSF1について説明する。 First, the subfield SF1, which is an all-cell initialization subfield, will be described.
 全セル初期化動作を行うサブフィールドSF1の初期化期間の前半部では、データ電極D(1)~データ電極D(m)、維持電極SU(1)~維持電極SU(n)には、それぞれ電圧0(V)を印加する。走査電極SC(1)~走査電極SC(n)には、電圧0(V)を印加した後に電圧Vi1を印加し、電圧Vi1から電圧Vi2に向かって緩やかに上昇する上り傾斜波形電圧(ランプ電圧)を印加する。電圧Vi1は、維持電極SU(1)~維持電極SU(n)に対して放電開始電圧よりも低い電圧に設定し、電圧Vi2は、放電開始電圧を超える電圧に設定する。 In the first half of the initialization period of the subfield SF1 that performs the all-cell initialization operation, the data electrode D (1) to the data electrode D (m) and the sustain electrode SU (1) to the sustain electrode SU (n) A voltage of 0 (V) is applied. A voltage Vi1 is applied to scan electrode SC (1) to scan electrode SC (n) after voltage 0 (V) is applied, and an upward ramp waveform voltage (ramp voltage) gradually rising from voltage Vi1 to voltage Vi2. ) Is applied. Voltage Vi1 is set to a voltage lower than the discharge start voltage with respect to sustain electrode SU (1) to sustain electrode SU (n), and voltage Vi2 is set to a voltage exceeding the discharge start voltage.
 このランプ電圧が上昇する間に、各放電セルの走査電極SC(1)~走査電極SC(n)と維持電極SU(1)~維持電極SU(n)との間、および走査電極SC(1)~走査電極SC(n)とデータ電極D(1)~データ電極D(m)との間に、それぞれ微弱な初期化放電が持続して発生する。そして、走査電極SC(1)~走査電極SC(n)上に負の壁電圧が蓄積され、データ電極D(1)~データ電極D(m)上および維持電極SU(1)~維持電極SU(n)上には正の壁電圧が蓄積される。この電極上の壁電圧とは、電極を覆う誘電体層上、保護層上、蛍光体層上等に蓄積された壁電荷により生じる電圧を表す。 While this ramp voltage rises, scan electrode SC (1) to scan electrode SC (n) and sustain electrode SU (1) to sustain electrode SU (n) of each discharge cell, and scan electrode SC (1 ) To the scan electrode SC (n) and the data electrode D (1) to the data electrode D (m), weak initializing discharges are continuously generated. Then, negative wall voltage is accumulated on scan electrode SC (1) to scan electrode SC (n), and data electrode D (1) to data electrode D (m) and sustain electrode SU (1) to sustain electrode SU. (N) A positive wall voltage is accumulated on the top. The wall voltage on the electrode represents a voltage generated by wall charges accumulated on the dielectric layer covering the electrode, the protective layer, the phosphor layer, and the like.
 サブフィールドSF1の初期化期間の後半部では、維持電極SU(1)~維持電極SU(n)には正の電圧Veを印加し、データ電極D(1)~データ電極D(m)には電圧0(V)を印加する。走査電極SC(1)~走査電極SC(n)には、電圧Vi3から負の電圧Vi4に向かって緩やかに下降する下り傾斜波形電圧(ランプ電圧)を印加する。電圧Vi3は、維持電極SU(1)~維持電極SU(n)に対して放電開始電圧未満となる電圧に設定し、電圧Vi4は放電開始電圧を超える電圧に設定する。 In the second half of the initializing period of subfield SF1, positive voltage Ve is applied to sustain electrode SU (1) to sustain electrode SU (n), and data electrode D (1) to data electrode D (m) are applied to data electrode D (1) to data electrode D (m). A voltage of 0 (V) is applied. Scan electrode SC (1) to scan electrode SC (n) are applied with a downward ramp waveform voltage (ramp voltage) that gently falls from voltage Vi3 toward negative voltage Vi4. Voltage Vi3 is set to a voltage lower than the discharge start voltage with respect to sustain electrode SU (1) to sustain electrode SU (n), and voltage Vi4 is set to a voltage exceeding the discharge start voltage.
 このランプ電圧を走査電極SC(1)~走査電極SC(n)に印加する間に、各放電セルの走査電極SC(1)~走査電極SC(n)と維持電極SU(1)~維持電極SU(n)との間、および走査電極SC(1)~走査電極SC(n)とデータ電極D(1)~データ電極D(m)との間に、それぞれ微弱な初期化放電が発生する。これにより、走査電極SC(1)~走査電極SC(n)上の負の壁電圧、維持電極SU(1)~維持電極SU(n)上の正の壁電圧、およびデータ電極D(1)~データ電極D(m)上の正の壁電圧は、書込み動作に適した値に調整される。 While this ramp voltage is applied to scan electrode SC (1) -scan electrode SC (n), scan electrode SC (1) -scan electrode SC (n) and sustain electrode SU (1) -sustain electrode of each discharge cell. A weak initializing discharge occurs between SU (n) and between scan electrode SC (1) -scan electrode SC (n) and data electrode D (1) -data electrode D (m). . Thus, negative wall voltage on scan electrode SC (1) to scan electrode SC (n), positive wall voltage on sustain electrode SU (1) to sustain electrode SU (n), and data electrode D (1) The positive wall voltage on the data electrode D (m) is adjusted to a value suitable for the write operation.
 以上により、サブフィールドSF1の初期化期間における全セル初期化動作が終了し、全ての放電セルにおいて、続く書込み動作に必要な壁電荷が各電極上に形成される。 Thus, the all-cell initializing operation in the initializing period of the subfield SF1 is completed, and wall charges necessary for the subsequent addressing operation are formed on each electrode in all the discharge cells.
 本実施の形態では、続く書込み期間において、データ電極D(1)~データ電極D(m)に印加する書込みパルスの波形形状に、消費電力を削減するための工夫を施している。この詳細については後述する。以下、書込み期間における書込み動作の概要について説明する。 In this embodiment, a device for reducing power consumption is applied to the waveform shape of the address pulse applied to the data electrode D (1) to the data electrode D (m) in the subsequent address period. Details of this will be described later. Hereinafter, an outline of the write operation in the write period will be described.
 サブフィールドSF1の書込み期間では、まず、維持電極SU(1)~維持電極SU(n)には電圧Veを印加し、データ電極D(1)~データ電極D(m)には電圧0(V)を印加し、走査電極SC(1)~走査電極SC(n)には電圧Vcを印加する。 In the address period of subfield SF1, first, voltage Ve is applied to sustain electrode SU (1) to sustain electrode SU (n), and voltage 0 (V) is applied to data electrode D (1) to data electrode D (m). ) And a voltage Vc is applied to scan electrode SC (1) to scan electrode SC (n).
 そして、最初の書込み周期において、1ライン目(1行目)の走査電極SC(1)に負の電圧Vaの負極性の走査パルスを印加する。そして、データ電極D(1)~データ電極D(m)のうちの1ライン目において発光するべき放電セルのデータ電極D(k)に正の電圧Vdの正極性の書込みパルスを印加する。 Then, in the first address period, a negative scan pulse with a negative voltage Va is applied to the scan electrode SC (1) of the first line (first row). Then, a positive address pulse having a positive voltage Vd is applied to the data electrode D (k) of the discharge cell that should emit light in the first line among the data electrodes D (1) to D (m).
 書込みパルスの電圧Vdを印加したデータ電極D(k)と走査パルスの電圧Vaを印加した走査電極SC(1)との交差部にある放電セルでは、データ電極D(k)と走査電極SC(1)との間に放電が発生する。 In the discharge cell at the intersection of the data electrode D (k) to which the address pulse voltage Vd is applied and the scan electrode SC (1) to which the scan pulse voltage Va is applied, the data electrode D (k) and the scan electrode SC ( Discharge occurs between 1) and 1).
 また、維持電極SU(1)~維持電極SU(n)に電圧Veを印加しているため、データ電極D(k)と走査電極SC(1)との間に発生する放電に誘発されて、データ電極D(k)と交差する領域にある維持電極SU(1)と走査電極SC(1)との間にも放電が発生する。こうして、走査パルスの電圧Vaと書込みパルスの電圧Vdとが同時に印加された放電セル(発光するべき放電セル)に書込み放電が発生し、走査電極SC(1)上に正の壁電圧が蓄積され、維持電極SU(1)上に負の壁電圧が蓄積され、データ電極D(k)上にも負の壁電圧が蓄積される。 In addition, since voltage Ve is applied to sustain electrode SU (1) to sustain electrode SU (n), it is induced by a discharge generated between data electrode D (k) and scan electrode SC (1). Discharge is also generated between sustain electrode SU (1) and scan electrode SC (1) in the region intersecting data electrode D (k). Thus, an address discharge occurs in the discharge cell (discharge cell to emit light) to which the voltage Va of the scan pulse and the voltage Vd of the address pulse are simultaneously applied, and a positive wall voltage is accumulated on the scan electrode SC (1). A negative wall voltage is accumulated on the sustain electrode SU (1), and a negative wall voltage is also accumulated on the data electrode D (k).
 このようにして、1ライン目の放電セルにおける書込み動作が終了する。なお、書込みパルスを印加しなかった放電セルでは、書込み放電は発生せず、初期化期間終了後の壁電圧が保たれる。 In this way, the address operation in the discharge cell on the first line is completed. In the discharge cells to which no address pulse is applied, the address discharge does not occur, and the wall voltage after the end of the initialization period is maintained.
 次に、2番目の書込み周期において、2ライン目(2行目)の走査電極SC(2)に電圧Vaの走査パルスを印加するとともに、2ライン目に発光するべき放電セルに対応するデータ電極D(k)に電圧Vdの書込みパルスを印加する。これにより、走査パルスと書込みパルスとが同時に印加された2ライン目の放電セルでは書込み放電が発生する。こうして、2ライン目の放電セルにおける書込み動作を行う。 Next, in the second address period, a scan pulse of voltage Va is applied to the scan electrode SC (2) of the second line (second row), and the data electrode corresponding to the discharge cell that should emit light on the second line. An address pulse of voltage Vd is applied to D (k). As a result, address discharge occurs in the discharge cells of the second line to which the scan pulse and address pulse are simultaneously applied. Thus, an address operation is performed in the discharge cell of the second line.
 以下同様に、i番目の書込み周期においてiライン目の走査電極SC(i)に電圧Vaの走査パルスを印加するとともに、iライン目に発光するべき放電セルに対応するデータ電極D(k)に電圧Vdの書込みパルスを印加する。これにより、走査パルスと書込みパルスとが同時に印加されたiライン目の放電セルでは書込み放電が発生し、iライン目の放電セルにおける書込み動作が行われる。 Similarly, a scan pulse of voltage Va is applied to the scan electrode SC (i) of the i-th line in the i-th write cycle, and the data electrode D (k) corresponding to the discharge cell to emit light on the i-th line is applied. An address pulse of voltage Vd is applied. As a result, an address discharge occurs in the i-th line discharge cell to which the scan pulse and the address pulse are simultaneously applied, and an address operation is performed in the i-th line discharge cell.
 同様の書込み動作を、nライン目の放電セルに至るまで順次行い、サブフィールドSF1の書込み期間が終了する。 The same address operation is sequentially performed until the discharge cell on the n-th line, and the address period of the subfield SF1 ends.
 なお、初期化期間後半に維持電極SU(1)~維持電極SU(n)に印加する電圧Veと、書込み期間に維持電極SU(1)~維持電極SU(n)に印加する電圧Veとは互いに異なる電圧値であってもよい。 Note that voltage Ve applied to sustain electrode SU (1) to sustain electrode SU (n) in the latter half of the initialization period and voltage Ve applied to sustain electrode SU (1) to sustain electrode SU (n) in the address period Different voltage values may be used.
 続くサブフィールドSF1の維持期間では、まず維持電極SU(1)~維持電極SU(n)に電圧0(V)を印加する。そして、走査電極SC(1)~走査電極SC(n)に正の電圧Vsの維持パルスを印加する。 In the subsequent sustain period of subfield SF1, voltage 0 (V) is first applied to sustain electrode SU (1) to sustain electrode SU (n). Then, sustain pulse of positive voltage Vs is applied to scan electrode SC (1) to scan electrode SC (n).
 この維持パルスの印加により、書込み放電を発生した放電セルでは、走査電極SC(i)と維持電極SU(i)との電圧差が放電開始電圧を超え、維持放電が発生する。そして、この放電により発生した紫外線により蛍光体層25が発光する。また、この放電により、走査電極SC(i)上に負の壁電圧が蓄積され、維持電極SU(i)上に正の壁電圧が蓄積される。さらに、データ電極D(k)上にも正の壁電圧が蓄積される。ただし、書込み期間において書込み放電が発生しなかった放電セルでは維持放電は発生しない。 In the discharge cell in which the address discharge is generated by the application of the sustain pulse, the voltage difference between the scan electrode SC (i) and the sustain electrode SU (i) exceeds the discharge start voltage, and the sustain discharge is generated. And the fluorescent substance layer 25 light-emits with the ultraviolet-ray which generate | occur | produced by this discharge. Further, due to this discharge, a negative wall voltage is accumulated on scan electrode SC (i), and a positive wall voltage is accumulated on sustain electrode SU (i). Furthermore, a positive wall voltage is also accumulated on the data electrode D (k). However, no sustain discharge occurs in the discharge cells in which no address discharge has occurred during the address period.
 続いて、走査電極SC(1)~走査電極SC(n)には電圧0(V)を印加し、維持電極SU(1)~維持電極SU(n)には電圧Vsの維持パルスを印加する。直前に維持放電を発生した放電セルでは再び維持放電が発生し、維持電極SU(i)上に負の壁電圧が蓄積され、走査電極SC(i)上に正の壁電圧が蓄積される。 Subsequently, voltage 0 (V) is applied to scan electrode SC (1) to scan electrode SC (n), and a sustain pulse of voltage Vs is applied to sustain electrode SU (1) to sustain electrode SU (n). . In the discharge cell that has generated a sustain discharge immediately before, a sustain discharge occurs again, a negative wall voltage is accumulated on sustain electrode SU (i), and a positive wall voltage is accumulated on scan electrode SC (i).
 以降同様に、走査電極SC(1)~走査電極SC(n)と維持電極SU(1)~維持電極SU(n)とに、輝度重みに所定の輝度倍数を乗じた数の維持パルスを交互に印加する。こうして、書込み期間において書込み放電を発生した放電セルは、輝度重みに応じた輝度で発光する。 Thereafter, in the same manner, scan electrodes SC (1) to scan electrode SC (n) and sustain electrodes SU (1) to sustain electrode SU (n) are alternately supplied with the number of sustain pulses obtained by multiplying the brightness weight by a predetermined brightness multiple. Apply to. Thus, the discharge cells that have generated the address discharge in the address period emit light with a luminance corresponding to the luminance weight.
 そして、維持期間における維持パルスの発生後に、維持電極SU(1)~維持電極SU(n)およびデータ電極D(1)~データ電極D(m)に電圧0(V)を印加したまま、走査電極SC(1)~走査電極SC(n)に電圧0(V)から電圧Vrに向かって緩やかに上昇する傾斜波形電圧(ランプ電圧)を印加する。 Then, after the sustain pulse is generated in the sustain period, scanning is performed with voltage 0 (V) applied to sustain electrode SU (1) to sustain electrode SU (n) and data electrode D (1) to data electrode D (m). A ramp waveform voltage (ramp voltage) that gently rises from voltage 0 (V) to voltage Vr is applied to electrode SC (1) to scan electrode SC (n).
 このランプ電圧を走査電極SC(1)~走査電極SC(n)へ印加する間に、維持放電を発生した放電セルに微弱な放電が発生する。この微弱な放電で発生した荷電粒子は、維持電極SU(i)と走査電極SC(i)との間の電圧差を緩和するように、維持電極SU(i)上および走査電極SC(i)上に壁電荷となって蓄積される。これにより、データ電極D(k)上の正の壁電圧を残したまま、走査電極SC(i)および維持電極SU(i)上の壁電圧が弱められる。すなわち、放電セル内における不要な壁電荷が消去される。 During the application of this ramp voltage to scan electrode SC (1) to scan electrode SC (n), a weak discharge is generated in the discharge cell that has generated the sustain discharge. The charged particles generated by the weak discharge are on the sustain electrode SU (i) and the scan electrode SC (i) so as to alleviate the voltage difference between the sustain electrode SU (i) and the scan electrode SC (i). Accumulated as wall charges on top. Thereby, the wall voltage on scan electrode SC (i) and sustain electrode SU (i) is weakened while the positive wall voltage on data electrode D (k) remains. That is, unnecessary wall charges in the discharge cell are erased.
 走査電極SC(1)~走査電極SC(n)に印加する電圧が電圧Vrに到達したら、走査電極SC(1)~走査電極SC(n)への印加電圧を電圧0(V)まで下降する。こうして、サブフィールドSF1の維持期間における維持動作が終了する。 When the voltage applied to scan electrode SC (1) to scan electrode SC (n) reaches voltage Vr, the voltage applied to scan electrode SC (1) to scan electrode SC (n) is lowered to voltage 0 (V). . Thus, the sustain operation in the sustain period of subfield SF1 is completed.
 以上により、サブフィールドSF1が終了する。 Thus, subfield SF1 is completed.
 次に、選択初期化サブフィールドであるサブフィールドSF2について説明する。 Next, subfield SF2, which is a selective initialization subfield, will be described.
 サブフィールドSF2の初期化期間では、維持電極SU(1)~維持電極SU(n)には電圧Veを印加し、データ電極D(1)~データ電極D(m)には電圧0(V)を印加する。走査電極SC(1)~走査電極SC(n)には放電開始電圧未満となる電圧(例えば、電圧0(V))から負の電圧Vi4に向かって緩やかに下降する傾斜波形電圧(ランプ電圧)を印加する。電圧Vi4は、維持電極SU(1)~維持電極SU(n)に対して放電開始電圧を超える電圧に設定する。 In the initializing period of subfield SF2, voltage Ve is applied to sustain electrode SU (1) to sustain electrode SU (n), and voltage 0 (V) is applied to data electrode D (1) to data electrode D (m). Is applied. Scan electrode SC (1) to scan electrode SC (n) have a ramp waveform voltage (ramp voltage) that gently falls from a voltage (for example, voltage 0 (V)) that is less than the discharge start voltage toward negative voltage Vi4. Is applied. Voltage Vi4 is set to a voltage exceeding the discharge start voltage with respect to sustain electrode SU (1) to sustain electrode SU (n).
 このランプ電圧を走査電極SC(1)~走査電極SC(n)に印加する間に、直前のサブフィールド(図4では、サブフィールドSF1)の維持期間に維持放電を発生した放電セルでは、微弱な初期化放電が発生する。そして、この初期化放電により、走査電極SC(i)上および維持電極SU(i)上の壁電圧が弱められる。また、データ電極D(k)上に蓄積された壁電圧の過剰な部分が放電される。こうして、放電セル内の壁電圧は書込み動作に適した壁電圧に調整される。 In a discharge cell in which a sustain discharge is generated in the sustain period of the immediately preceding subfield (subfield SF1 in FIG. 4) while this ramp voltage is applied to scan electrode SC (1) to scan electrode SC (n), it is weak. Initializing discharge occurs. The initialization discharge weakens the wall voltage on scan electrode SC (i) and sustain electrode SU (i). In addition, an excessive portion of the wall voltage accumulated on the data electrode D (k) is discharged. Thus, the wall voltage in the discharge cell is adjusted to a wall voltage suitable for the address operation.
 一方、直前のサブフィールド(サブフィールドSF1)の維持期間に維持放電を発生しなかった放電セルでは、初期化放電は発生せず、それ以前の壁電圧が保たれる。 On the other hand, in the discharge cells that did not generate the sustain discharge in the sustain period of the immediately preceding subfield (subfield SF1), the initialization discharge does not occur and the previous wall voltage is maintained.
 このように、サブフィールドSF2における初期化動作は、直前のサブフィールドの書込み期間で書込み動作を行った放電セルで選択的に初期化放電を発生する選択初期化動作となる。 As described above, the initializing operation in the subfield SF2 is a selective initializing operation in which the initializing discharge is selectively generated in the discharge cells that have performed the addressing operation in the address period of the immediately preceding subfield.
 以上により、サブフィールドSF2の初期化期間における選択初期化動作が終了する。 Thus, the selective initialization operation in the initialization period of subfield SF2 is completed.
 サブフィールドSF2の書込み期間では、サブフィールドSF1の書込み期間と同様の駆動電圧波形を各電極に印加し、発光するべき放電セルの各電極上に壁電圧を蓄積する書込み動作を行う。 In the address period of the subfield SF2, a drive voltage waveform similar to that in the address period of the subfield SF1 is applied to each electrode, and an address operation for accumulating wall voltage on each electrode of the discharge cell to emit light is performed.
 続く維持期間も、サブフィールドSF1の維持期間と同様に、輝度重みに応じた数の維持パルスを走査電極SC(1)~走査電極SC(n)と維持電極SU(1)~維持電極SU(n)とに交互に印加し、書込み期間において書込み放電を発生した放電セルに維持放電を発生する。 In the subsequent sustain period, similarly to the sustain period of subfield SF1, the number of sustain pulses corresponding to the luminance weight is applied to scan electrode SC (1) to scan electrode SC (n) and sustain electrode SU (1) to sustain electrode SU ( n) alternately, and sustain discharge is generated in the discharge cells that have generated address discharge in the address period.
 サブフィールドSF3以降の各サブフィールドの初期化期間および書込み期間では、各電極に対してサブフィールドSF2の初期化期間および書込み期間と同様の駆動電圧波形を印加する。また、サブフィールドSF3以降の各サブフィールドの維持期間では、維持期間に発生する維持パルスの数を除き、サブフィールドSF2と同様の駆動電圧波形を各電極に印加する。 In the initialization period and address period of each subfield after subfield SF3, the same drive voltage waveform as that in the initialization period and address period of subfield SF2 is applied to each electrode. In the sustain period of each subfield after subfield SF3, the drive voltage waveform similar to that of subfield SF2 is applied to each electrode except for the number of sustain pulses generated in the sustain period.
 以上が、本実施の形態においてパネル10の各電極に印加する駆動電圧波形の概要である。 The above is the outline of the drive voltage waveform applied to each electrode of panel 10 in the present embodiment.
 図5は、本発明の実施の形態1におけるプラズマディスプレイ装置30を構成する回路ブロックの一例を概略的に示す図である。 FIG. 5 is a diagram schematically showing an example of a circuit block constituting the plasma display device 30 according to the first embodiment of the present invention.
 本実施の形態に示すプラズマディスプレイ装置30は、パネル10と、パネル10を駆動する駆動回路とを備えている。駆動回路は、画像信号処理回路31、データ電極駆動回路32、走査電極駆動回路33、維持電極駆動回路34、タイミング発生回路35および各回路ブロックに必要な電源を供給する電源回路(図示せず)を備えている。 The plasma display device 30 shown in the present embodiment includes a panel 10 and a drive circuit that drives the panel 10. The drive circuit includes an image signal processing circuit 31, a data electrode drive circuit 32, a scan electrode drive circuit 33, a sustain electrode drive circuit 34, a timing generation circuit 35, and a power supply circuit (not shown) that supplies necessary power to each circuit block. It has.
 画像信号処理回路31に入力される画像信号は、赤の画像信号、緑の画像信号、青の画像信号である。画像信号処理回路31は、赤の画像信号、緑の画像信号、青の画像信号にもとづき、各放電セルに赤、緑、青の各階調値を設定する。なお、画像信号処理回路31は、入力される画像信号が輝度信号(Y信号)および彩度信号(C信号、またはR-Y信号およびB-Y信号、またはu信号およびv信号等)を含むときには、その輝度信号および彩度信号にもとづき赤の画像信号、緑の画像信号、青の画像信号を算出し、その後、各放電セルに赤、緑、青の各階調値(1フィールドで表現される階調値)を設定する。そして、各放電セルに設定した赤、緑、青の階調値を、サブフィールド毎の点灯・非点灯を示す画像データ(発光・非発光をデジタル信号の「1」、「0」に対応させたデータのこと)に変換する。すなわち、画像信号処理回路31は、赤の画像信号、緑の画像信号、青の画像信号を、赤の画像データ、緑の画像データ、青の画像データに変換して出力する。 The image signals input to the image signal processing circuit 31 are a red image signal, a green image signal, and a blue image signal. The image signal processing circuit 31 sets each gradation value of red, green, and blue in each discharge cell based on the red image signal, the green image signal, and the blue image signal. In the image signal processing circuit 31, the input image signal includes a luminance signal (Y signal) and a saturation signal (C signal, or RY signal and BY signal, or u signal and v signal, etc.). In some cases, a red image signal, a green image signal, and a blue image signal are calculated based on the luminance signal and the saturation signal, and then each of the red, green, and blue tone values (represented by one field) is stored in each discharge cell. Tone value). Then, the red, green, and blue gradation values set in each discharge cell are associated with image data indicating lighting / non-lighting for each subfield (light emission / non-light emission corresponds to digital signals “1” and “0”). Data). That is, the image signal processing circuit 31 converts the red image signal, the green image signal, and the blue image signal into red image data, green image data, and blue image data and outputs the converted image data.
 タイミング発生回路35は、水平同期信号および垂直同期信号にもとづき、各回路ブロックの動作を制御する各種のタイミング信号を発生する。そして、発生したタイミング信号をそれぞれの回路ブロック(データ電極駆動回路32、走査電極駆動回路33、維持電極駆動回路34、および画像信号処理回路31等)へ供給する。 The timing generation circuit 35 generates various timing signals for controlling the operation of each circuit block based on the horizontal synchronization signal and the vertical synchronization signal. The generated timing signal is supplied to each circuit block (data electrode drive circuit 32, scan electrode drive circuit 33, sustain electrode drive circuit 34, image signal processing circuit 31, etc.).
 走査電極駆動回路33は、初期化波形発生回路、維持パルス発生回路、走査パルス発生回路(図5には示さず)を備え、タイミング発生回路35から供給されるタイミング信号にもとづいて駆動電圧波形を作成し、走査電極SC(1)~走査電極SC(n)のそれぞれに印加する。初期化波形発生回路は、タイミング信号にもとづき、初期化期間に、走査電極SC(1)~走査電極SC(n)に印加する初期化波形を発生する。維持パルス発生回路は、タイミング信号にもとづき、維持期間に、走査電極SC(1)~走査電極SC(n)に印加する維持パルスを発生する。走査パルス発生回路は、複数の走査電極駆動IC(走査IC)を備え、タイミング信号にもとづき、書込み期間に、走査電極SC(1)~走査電極SC(n)に印加する走査パルスを発生する。 Scan electrode drive circuit 33 includes an initialization waveform generation circuit, a sustain pulse generation circuit, and a scan pulse generation circuit (not shown in FIG. 5), and generates a drive voltage waveform based on a timing signal supplied from timing generation circuit 35. It is prepared and applied to each of scan electrode SC (1) to scan electrode SC (n). The initialization waveform generation circuit generates an initialization waveform to be applied to scan electrode SC (1) to scan electrode SC (n) during the initialization period based on the timing signal. The sustain pulse generation circuit generates a sustain pulse to be applied to scan electrode SC (1) to scan electrode SC (n) during the sustain period based on the timing signal. The scan pulse generation circuit includes a plurality of scan electrode drive ICs (scan ICs), and generates scan pulses to be applied to scan electrode SC (1) to scan electrode SC (n) during an address period based on a timing signal.
 維持電極駆動回路34は、維持パルス発生回路、および電圧Veを発生する回路(図5には示さず)を備え、タイミング発生回路35から供給されるタイミング信号にもとづいて駆動電圧波形を作成し、維持電極SU(1)~維持電極SU(n)のそれぞれに印加する。維持期間では、タイミング信号にもとづいて維持パルスを発生し、維持電極SU(1)~維持電極SU(n)に印加する。 Sustain electrode drive circuit 34 includes a sustain pulse generation circuit and a circuit (not shown in FIG. 5) for generating voltage Ve, creates a drive voltage waveform based on the timing signal supplied from timing generation circuit 35, The voltage is applied to each of sustain electrode SU (1) to sustain electrode SU (n). In the sustain period, a sustain pulse is generated based on the timing signal and applied to sustain electrode SU (1) to sustain electrode SU (n).
 データ電極駆動回路32は、画像信号処理回路31から出力される各色の画像データおよびタイミング発生回路35から供給されるタイミング信号にもとづき、各データ電極D(1)~データ電極D(m)に対応する書込みパルスを発生する。そして、データ電極駆動回路32は、その書込みパルスを書込み期間に各データ電極D(1)~データ電極D(m)に印加する。 The data electrode drive circuit 32 corresponds to each data electrode D (1) to data electrode D (m) based on the image data of each color output from the image signal processing circuit 31 and the timing signal supplied from the timing generation circuit 35. A write pulse is generated. Then, the data electrode drive circuit 32 applies the address pulse to the data electrodes D (1) to D (m) during the address period.
 データ電極駆動回路32は、データ電極D(1)~データ電極D(m)のそれぞれに対して設けられた出力バッファを有する。この出力バッファについて、図6を用いて説明する。 The data electrode driving circuit 32 has an output buffer provided for each of the data electrode D (1) to the data electrode D (m). This output buffer will be described with reference to FIG.
 図6は、本発明の実施の形態1におけるプラズマディスプレイ装置30のデータ電極駆動回路32が有する出力バッファの構成を概略的に示す回路図である。なお、図6には出力バッファを構成する回路ブロックのみを示し、他の回路ブロックは省略している。 FIG. 6 is a circuit diagram schematically showing a configuration of an output buffer included in data electrode drive circuit 32 of plasma display device 30 according to the first exemplary embodiment of the present invention. FIG. 6 shows only circuit blocks that constitute the output buffer, and other circuit blocks are omitted.
 データ電極駆動回路32は、データ電極D(1)~データ電極D(m)のそれぞれに対して設けられたm個の出力バッファを有する。1つの出力バッファは、書込みパルスの高圧側電圧Vdを出力する1つの高圧側スイッチQHと、書込みパルスの低圧側電圧0(V)を出力する1つの低圧側スイッチQLとを有する。したがって、データ電極駆動回路32は、m個の高圧側スイッチQH(1)~高圧側スイッチQH(m)と、m個の低圧側スイッチQL(1)~低圧側スイッチQL(m)とを有する。 The data electrode drive circuit 32 has m output buffers provided for each of the data electrodes D (1) to D (m). One output buffer has one high-voltage side switch QH that outputs the high-voltage side voltage Vd of the write pulse, and one low-voltage side switch QL that outputs the low-voltage side voltage 0 (V) of the write pulse. Therefore, the data electrode drive circuit 32 has m high-voltage side switches QH (1) to high-voltage side switches QH (m) and m low-voltage side switches QL (1) to low-voltage side switches QL (m). .
 例えば、1ラインに1920×3=5760の放電セルを有するパネル10を駆動するデータ電極駆動回路32であれば、5760個の出力バッファを有し、5760個の出力バッファを構成する5760個の高圧側スイッチQH(1)~高圧側スイッチQH(5760)と、5760個の低圧側スイッチQL(1)~低圧側スイッチQL(5760)とを有する。 For example, in the case of the data electrode driving circuit 32 that drives the panel 10 having 1920 × 3 = 5760 discharge cells in one line, 5760 high-voltages that have 5760 output buffers and constitute 5760 output buffers. Side switch QH (1) to high voltage side switch QH (5760) and 5760 low voltage side switches QL (1) to low voltage side switch QL (5760).
 そして、データ電極駆動回路32は、データ電極D(j)に対応する低圧側スイッチQL(j)をオンにすることで、データ電極D(j)に書込みパルスの低圧側電圧0(V)を印加する。また、データ電極駆動回路32は、データ電極D(j)に対応する高圧側スイッチQH(j)をオンにすることで、データ電極D(j)に書込みパルスの高圧側電圧Vdを印加する。 Then, the data electrode driving circuit 32 turns on the low voltage side switch QL (j) corresponding to the data electrode D (j), thereby applying the low voltage side voltage 0 (V) of the write pulse to the data electrode D (j). Apply. In addition, the data electrode driving circuit 32 applies the high-voltage side voltage Vd of the write pulse to the data electrode D (j) by turning on the high-voltage side switch QH (j) corresponding to the data electrode D (j).
 そして、データ電極駆動回路32は、後述する書込み期間の書込み周期毎に、書込みパルスの高圧側電圧Vdまたは書込みパルスの低圧側電圧0(V)をデータ電極D(1)~データ電極D(m)のそれぞれに印加する。 The data electrode driving circuit 32 applies the high voltage side voltage Vd of the write pulse or the low voltage side voltage 0 (V) of the write pulse to the data electrode D (1) to the data electrode D (m) for each write cycle of the write period to be described later. ).
 次に、データ電極D(1)~データ電極D(m)に印加する書込みパルスの詳細について、データ電極駆動回路32の動作とともに説明する。 Next, details of the address pulse applied to the data electrode D (1) to the data electrode D (m) will be described together with the operation of the data electrode drive circuit 32. FIG.
 本実施の形態においては、各書込み周期の最初にそれぞれ第1遷移期間Taを設け、各書込み周期の最後にそれぞれ第2遷移期間Tbを設ける。この書込み周期とは、1つの書込み動作が開始してから終了するまでの期間のことであり、例えば、1つの走査パルスが発生開始してから発生終了するまでの周期のことである。 In the present embodiment, a first transition period Ta is provided at the beginning of each write cycle, and a second transition period Tb is provided at the end of each write cycle. This write cycle is a period from the start to the end of one write operation, for example, a cycle from the start of generation of one scan pulse to the end of generation.
 そして、データ電極22に書込みパルスを印加する際に、データ電極22に印加する電圧を低圧側電圧0(V)から高圧側電圧Vdに遷移させるのは第1遷移期間Taであり、データ電極22に印加する電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移させるのは第2遷移期間Tbである。 When the address pulse is applied to the data electrode 22, the voltage applied to the data electrode 22 is changed from the low voltage side voltage 0 (V) to the high voltage side voltage Vd during the first transition period Ta. It is during the second transition period Tb that the voltage applied to is shifted from the high voltage Vd to the low voltage 0 (V).
 図7は、本発明の実施の形態1におけるプラズマディスプレイ装置30のデータ電極駆動回路32の動作の一例を概略的に示すタイミングチャート。 FIG. 7 is a timing chart schematically showing an example of the operation of the data electrode driving circuit 32 of the plasma display device 30 in the first exemplary embodiment of the present invention.
 図7には、書込み期間における3つの書込み周期(書込み周期T(i-1)、書込み周期T(i)、書込み周期T(i+1))を例に挙げて示し、走査電極SC(i-1)~走査電極SC(i+1)およびデータ電極D(j-2)~データ電極D(j+3)に印加する駆動電圧波形を例に挙げて示す。 FIG. 7 shows three address periods (address period T (i−1), address period T (i), address period T (i + 1)) in the address period as an example, and scan electrode SC (i−1) ) To scanning electrode SC (i + 1) and data electrode D (j−2) to driving electrode waveform applied to data electrode D (j + 3) by way of example.
 また、図7には、書込み周期T(i-1)ではデータ電極D(j-2)、データ電極D(j-1)、データ電極D(j)およびデータ電極D(j+2)には書込みパルスを印加し、データ電極D(j+1)およびデータ電極D(j+3)には書込みパルスを印加せず、書込み周期T(i)ではデータ電極D(j+1)およびデータ電極D(j+3)には書込みパルスを印加し、データ電極D(j-2)、データ電極D(j-1)、データ電極D(j)およびデータ電極D(j+2)には書込みパルスを印加せず、書込み周期T(i+1)ではデータ電極D(j-1)、データ電極D(j)およびデータ電極D(j+3)には書込みパルスを印加し、データ電極D(j-2)、データ電極D(j+1)およびデータ電極D(j+2)には書込みパルスを印加しない例を示す。 FIG. 7 also shows that data electrode D (j-2), data electrode D (j-1), data electrode D (j) and data electrode D (j + 2) are written in address cycle T (i-1). A pulse is applied, no address pulse is applied to the data electrode D (j + 1) and the data electrode D (j + 3), and an address is written to the data electrode D (j + 1) and the data electrode D (j + 3) in the address period T (i). A pulse is applied, an address pulse is not applied to the data electrode D (j-2), the data electrode D (j-1), the data electrode D (j), and the data electrode D (j + 2), and the address period T (i + 1 ), An address pulse is applied to data electrode D (j−1), data electrode D (j) and data electrode D (j + 3), and data electrode D (j−2), data electrode D (j + 1) and data electrode are applied. Write to D (j + 2) An example applying no pulse.
 なお、図7には示していないが、以下に説明する例では、書込み周期T(i-1)の直前の書込み周期T(i-2)では、データ電極D(j-2)~データ電極D(j+3)に書込みパルスを印加していないものとする。 Although not shown in FIG. 7, in the example described below, in the write cycle T (i-2) immediately before the write cycle T (i-1), the data electrode D (j-2) to the data electrode It is assumed that no write pulse is applied to D (j + 3).
 書込み周期T(i-1)において、(i-1)ライン目の走査電極SC(i-1)に電圧Vaの負極性の走査パルスを印加する。 In the write cycle T (i-1), a negative polarity scan pulse of voltage Va is applied to the scan electrode SC (i-1) of the (i-1) th line.
 そして、データ電極D(j-2)、データ電極D(j-1)、データ電極D(j)およびデータ電極D(j+2)に書込みパルスを印加する。 Then, an address pulse is applied to the data electrode D (j-2), the data electrode D (j-1), the data electrode D (j), and the data electrode D (j + 2).
 すなわち、書込み周期T(i-1)における第1遷移期間Taの開始時刻t1において、データ電極駆動回路32が有する出力バッファの高圧側スイッチQH(j-2)、高圧側スイッチQH(j-1)、高圧側スイッチQH(j)および高圧側スイッチQH(j+2)をオンにして、データ電極D(j-2)、データ電極D(j-1)、データ電極D(j)およびデータ電極D(j+2)に高圧側電圧Vdを印加し、それらのデータ電極22の電圧を低圧側電圧0(V)から高圧側電圧Vdに遷移させる。 That is, at the start time t1 of the first transition period Ta in the write cycle T (i−1), the high-voltage side switch QH (j−2) and the high-voltage side switch QH (j−1) of the output buffer included in the data electrode driving circuit 32. ), The high-voltage side switch QH (j) and the high-voltage side switch QH (j + 2) are turned on, and the data electrode D (j-2), the data electrode D (j-1), the data electrode D (j), and the data electrode D The high voltage Vd is applied to (j + 2), and the voltage of the data electrodes 22 is changed from the low voltage 0 (V) to the high voltage Vd.
 こうして、データ電極D(j-2)、データ電極D(j-1)、データ電極D(j)およびデータ電極D(j+2)に電圧Vdの書込みパルスを印加する。そして、走査パルスと書込みパルスとが同時に印加された(i-1)ライン目の放電セルでは書込み放電が発生する。 Thus, an address pulse of voltage Vd is applied to data electrode D (j-2), data electrode D (j-1), data electrode D (j), and data electrode D (j + 2). The address discharge is generated in the discharge cell on the (i-1) th line to which the scan pulse and the address pulse are simultaneously applied.
 そして、書込み放電の発生後から時刻t21までの間に、高圧側スイッチQH(j-2)、高圧側スイッチQH(j-1)、高圧側スイッチQH(j)および高圧側スイッチQH(j+2)をオフにする。 Then, after the occurrence of the address discharge until the time t21, the high voltage side switch QH (j-2), the high voltage side switch QH (j-1), the high voltage side switch QH (j) and the high voltage side switch QH (j + 2) Turn off.
 次に、第2遷移期間Tbにおいて、データ電極D(j-2)、データ電極D(j-1)、データ電極D(j)およびデータ電極D(j+2)の電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移させる。このとき、本実施の形態では、図7に示すように、第2遷移期間Tbの開始時刻をデータ電極22のそれぞれに対して互いに異なる時刻に設定する。 Next, in the second transition period Tb, the voltage of the data electrode D (j−2), the data electrode D (j−1), the data electrode D (j), and the data electrode D (j + 2) is decreased from the high-voltage side voltage Vd. The side voltage is changed to 0 (V). At this time, in the present embodiment, as shown in FIG. 7, the start time of the second transition period Tb is set to a different time for each of the data electrodes 22.
 具体的には、第2遷移期間Tbの開始時刻を、データ電極22のそれぞれにおいて、最も早い開始時刻t21、その次の開始時刻t22、最も遅い開始時刻t23のいずれかに設定する。 Specifically, the start time of the second transition period Tb is set to one of the earliest start time t21, the next start time t22, and the latest start time t23 for each of the data electrodes 22.
 図7に示す例では、データ電極D(j+2)における第2遷移期間Tbの開始時刻を開始時刻t21とし、データ電極D(j-2)およびデータ電極D(j)における第2遷移期間Tbの開始時刻を開始時刻t22とし、データ電極D(j-1)における第2遷移期間Tbの開始時刻を開始時刻t23とする。 In the example shown in FIG. 7, the start time t21 is the start time of the second transition period Tb in the data electrode D (j + 2), and the second transition period Tb in the data electrode D (j-2) and the data electrode D (j) The start time is the start time t22, and the start time of the second transition period Tb in the data electrode D (j−1) is the start time t23.
 以下、書込み周期T(i-1)においては、開始時刻t21から開始する第2遷移期間Tbを「第2遷移期間Tb1」とし、開始時刻t22から開始する第2遷移期間Tbを「第2遷移期間Tb2」とし、開始時刻t23から開始する第2遷移期間Tbを「第2遷移期間Tb3」とする。 Hereinafter, in the write cycle T (i−1), the second transition period Tb starting from the start time t21 is referred to as “second transition period Tb1”, and the second transition period Tb starting from the start time t22 is referred to as “second transition period”. Period Tb2 ”, and the second transition period Tb starting from the start time t23 is referred to as“ second transition period Tb3 ”.
 すなわち、第2遷移期間Tb1の開始時刻t21において、出力バッファの低圧側スイッチQL(j+2)をオンにし、データ電極D(j+2)の電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移させる。また、第2遷移期間Tb2の開始時刻t22において、出力バッファの低圧側スイッチQL(j-2)および低圧側スイッチQL(j)をオンにし、データ電極D(j-2)およびデータ電極D(j)の電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移させる。また、第2遷移期間Tb3の開始時刻t23において、出力バッファの低圧側スイッチQL(j-1)をオンにし、データ電極D(j-1)の電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移させる。 That is, at the start time t21 of the second transition period Tb1, the low voltage side switch QL (j + 2) of the output buffer is turned on, and the voltage of the data electrode D (j + 2) is changed from the high voltage side voltage Vd to the low voltage side voltage 0 (V). Let Further, at the start time t22 of the second transition period Tb2, the low voltage side switch QL (j-2) and the low voltage side switch QL (j) of the output buffer are turned on, and the data electrode D (j-2) and the data electrode D ( The voltage j) is transitioned from the high voltage Vd to the low voltage 0 (V). Further, at the start time t23 of the second transition period Tb3, the low voltage side switch QL (j-1) of the output buffer is turned on, and the voltage of the data electrode D (j-1) is changed from the high voltage side voltage Vd to the low voltage side voltage 0 ( Transition to V).
 こうして書込み周期T(i-1)における第2遷移期間Tbが終了する。 Thus, the second transition period Tb in the write cycle T (i-1) ends.
 なお、この間に、(i-1)ライン目の走査電極SC(i-1)の電圧を、電圧Vaから電圧Vcに戻す動作を開始し、走査電極SC(i-1)の電圧が電圧Vcとなって書込み周期T(i-1)が終了する。 During this time, the operation of returning the voltage of the scan electrode SC (i-1) of the (i-1) -th line from the voltage Va to the voltage Vc is started, and the voltage of the scan electrode SC (i-1) becomes the voltage Vc. Thus, the write cycle T (i−1) ends.
 上述したように、データ電極D(1)~データ電極D(m)には、各データ電極22に対応する各出力バッファから互いに異なるタイミングで書込みパルスが印加される。 As described above, write pulses are applied to the data electrodes D (1) to D (m) from the output buffers corresponding to the data electrodes 22 at different timings.
 次に、書込み周期T(i)において、(i)ライン目の走査電極SC(i)に電圧Vaの負極性の走査パルスを印加する。 Next, in the write cycle T (i), a negative scan pulse of voltage Va is applied to the scan electrode SC (i) on the (i) line.
 そして、データ電極D(j+1)およびデータ電極D(j+3)に書込みパルスを印加する。 Then, an address pulse is applied to the data electrode D (j + 1) and the data electrode D (j + 3).
 すなわち、書込み周期T(i)における第1遷移期間Taの開始時刻t3において、データ電極駆動回路32が有する出力バッファの高圧側スイッチQH(j+1)および高圧側スイッチQH(j+3)をオンにして、データ電極D(j+1)およびデータ電極D(j+3)に高圧側電圧Vdを印加し、それらのデータ電極22の電圧を低圧側電圧0(V)から高圧側電圧Vdに遷移させる。 That is, at the start time t3 of the first transition period Ta in the write cycle T (i), the high-voltage side switch QH (j + 1) and the high-voltage side switch QH (j + 3) of the output buffer included in the data electrode driving circuit 32 are turned on. The high voltage side voltage Vd is applied to the data electrode D (j + 1) and the data electrode D (j + 3), and the voltage of the data electrode 22 is changed from the low voltage side voltage 0 (V) to the high voltage side voltage Vd.
 こうして、データ電極D(j+1)およびデータ電極D(j+3)に電圧Vdの書込みパルスを印加する。そして、走査パルスと書込みパルスとが同時に印加された(i)ライン目の放電セルでは書込み放電が発生する。 Thus, an address pulse of voltage Vd is applied to the data electrode D (j + 1) and the data electrode D (j + 3). The address discharge is generated in the discharge cell on the (i) line to which the scan pulse and the address pulse are simultaneously applied.
 そして、書込み放電の発生後から時刻t41までの間に、高圧側スイッチQH(j+1)をオフにする。なお、続く書込み周期T(i+1)において、データ電極D(j+3)に書込みパルスを印加するため、高圧側スイッチQH(j+3)はオンの状態を維持する。 Then, the high-voltage side switch QH (j + 1) is turned off between the occurrence of the address discharge and the time t41. Note that, in the subsequent address period T (i + 1), the address pulse is applied to the data electrode D (j + 3), so that the high voltage side switch QH (j + 3) is kept on.
 次に、書込み周期T(i)における第2遷移期間Tb(図7には、「第2遷移期間Tb1」と記す)において、データ電極D(j+1)の電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移させる。 Next, in the second transition period Tb (referred to as “second transition period Tb1” in FIG. 7) in the write cycle T (i), the voltage of the data electrode D (j + 1) is changed from the high-voltage side voltage Vd to the low-voltage side voltage. Transition to 0 (V).
 すなわち、書込み周期T(i)における第2遷移期間Tb1の開始時刻t41において、出力バッファの低圧側スイッチQL(j+1)をオンにし、データ電極D(j+1)の電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移させる。 That is, at the start time t41 of the second transition period Tb1 in the write cycle T (i), the low-voltage side switch QL (j + 1) of the output buffer is turned on, and the voltage of the data electrode D (j + 1) is changed from the high-voltage side voltage Vd to the low-voltage side. Transition to voltage 0 (V).
 こうして書込み周期T(i)における第2遷移期間Tbが終了する。 Thus, the second transition period Tb in the write cycle T (i) ends.
 なお、この間に、(i)ライン目の走査電極SC(i)の電圧を、電圧Vaから電圧Vcに戻す動作を開始し、走査電極SC(i)の電圧が電圧Vcとなって書込み周期T(i)が終了する。 During this time, the operation of returning the voltage of the scan electrode SC (i) on the (i) line from the voltage Va to the voltage Vc is started, and the voltage of the scan electrode SC (i) becomes the voltage Vc and the write cycle T (I) ends.
 次に、書込み周期T(i+1)において、(i+1)ライン目の走査電極SC(i+1)に電圧Vaの負極性の走査パルスを印加する。 Next, in the write cycle T (i + 1), a negative scan pulse of voltage Va is applied to the scan electrode SC (i + 1) of the (i + 1) -th line.
 そして、データ電極D(j-1)、データ電極D(j)およびデータ電極D(j+3)に書込みパルスを印加する。 Then, an address pulse is applied to the data electrode D (j−1), the data electrode D (j), and the data electrode D (j + 3).
 すなわち、書込み周期T(i+1)における第1遷移期間Taの開始時刻t5において、データ電極駆動回路32が有する出力バッファの高圧側スイッチQH(j-1)および高圧側スイッチQH(j)をオンにして、データ電極D(j-1)およびデータ電極D(j)に高圧側電圧Vdを印加し、それらのデータ電極22の電圧を低圧側電圧0(V)から高圧側電圧Vdに遷移させる。 That is, at the start time t5 of the first transition period Ta in the write cycle T (i + 1), the high voltage side switch QH (j−1) and the high voltage side switch QH (j) of the output buffer included in the data electrode driving circuit 32 are turned on. Thus, the high voltage side voltage Vd is applied to the data electrode D (j−1) and the data electrode D (j), and the voltage of the data electrode 22 is changed from the low voltage side voltage 0 (V) to the high voltage side voltage Vd.
 なお、書込み周期T(i)の第2遷移期間Tb1から高圧側スイッチQH(j+3)はオンの状態を維持しているので、書込み周期T(i+1)の第1遷移期間Taにおいて、データ電極D(j+3)の電圧は高圧側電圧Vdのままである。 Note that, since the high-voltage side switch QH (j + 3) is kept on from the second transition period Tb1 of the write cycle T (i), the data electrode D is output during the first transition period Ta of the write cycle T (i + 1). The voltage (j + 3) remains the high voltage Vd.
 このようにして、データ電極D(j-1)、データ電極D(j)およびデータ電極D(j+3)に電圧Vdの書込みパルスを印加すると、走査パルスと書込みパルスとが同時に印加された(i+1)ライン目の放電セルでは書込み放電が発生する。 In this manner, when the address pulse of the voltage Vd is applied to the data electrode D (j−1), the data electrode D (j), and the data electrode D (j + 3), the scan pulse and the address pulse are simultaneously applied (i + 1). ) Address discharge occurs in the discharge cells on the line.
 そして、書込み放電の発生後から時刻t61までの間に、高圧側スイッチQH(j-1)および高圧側スイッチQH(j+3)をオフにする。なお、続く書込み周期T(i+2)において、データ電極D(j)に書込みパルスを印加するため、高圧側スイッチQH(j)はオンの状態を維持する。 The high-voltage side switch QH (j−1) and the high-voltage side switch QH (j + 3) are turned off after the address discharge occurs until time t61. Note that, in the subsequent address period T (i + 2), the address pulse is applied to the data electrode D (j), so that the high-voltage side switch QH (j) remains on.
 次に、第2遷移期間Tbにおいて、データ電極D(j-1)およびデータ電極D(j+3)の電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移させる。 Next, in the second transition period Tb, the voltage of the data electrode D (j−1) and the data electrode D (j + 3) is transitioned from the high voltage side voltage Vd to the low voltage side voltage 0 (V).
 このとき、図7に示す例では、第2遷移期間Tbの開始時刻を、データ電極D(j-1)に対しては、相対的に早い開始時刻t61に設定し、データ電極D(j+3)に対しては、相対的に遅い開始時刻t62に設定する。 At this time, in the example shown in FIG. 7, the start time of the second transition period Tb is set to a relatively early start time t61 with respect to the data electrode D (j−1), and the data electrode D (j + 3) Is set to a relatively late start time t62.
 以下、書込み周期T(i+1)においては、開始時刻t61から開始する第2遷移期間Tbを「第2遷移期間Tb1」とし、開始時刻t62から開始する第2遷移期間Tbを「第2遷移期間Tb2」とする。 Hereinafter, in the write cycle T (i + 1), the second transition period Tb starting from the start time t61 is referred to as “second transition period Tb1”, and the second transition period Tb starting from the start time t62 is referred to as “second transition period Tb2”. "
 すなわち、第2遷移期間Tb1の開始時刻t61において、出力バッファの低圧側スイッチQL(j-1)をオンにし、データ電極D(j-1)の電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移させる。また、第2遷移期間Tb2の開始時刻t62において、出力バッファの低圧側スイッチQL(j+3)をオンにし、データ電極D(j+3)の電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移させる。 That is, at the start time t61 of the second transition period Tb1, the low-voltage side switch QL (j-1) of the output buffer is turned on, and the voltage of the data electrode D (j-1) is changed from the high-voltage side voltage Vd to the low-voltage side voltage 0 ( Transition to V). Further, at the start time t62 of the second transition period Tb2, the low-voltage side switch QL (j + 3) of the output buffer is turned on, and the voltage of the data electrode D (j + 3) is changed from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V). Let
 こうして書込み周期T(i+1)における第2遷移期間Tbが終了する。 Thus, the second transition period Tb in the write cycle T (i + 1) ends.
 なお、この間に、(i+1)ライン目の走査電極SC(i+1)の電圧を、電圧Vaから電圧Vcに戻す動作を開始し、走査電極SC(i+1)の電圧が電圧Vcとなって書込み周期T(i+1)が終了する。 During this time, the operation of returning the voltage of the scan electrode SC (i + 1) of the (i + 1) -th line from the voltage Va to the voltage Vc is started, and the voltage of the scan electrode SC (i + 1) becomes the voltage Vc and the write cycle T (I + 1) ends.
 なお、本実施の形態においては、第1遷移期間Taと第2遷移期間Tbとが時間的に重なることはなく、第1遷移期間Taと第2遷移期間Tbとは時間的に分離している。 In the present embodiment, the first transition period Ta and the second transition period Tb do not overlap in time, and the first transition period Ta and the second transition period Tb are separated in time. .
 すなわち、書込み周期T(i-2)における第2遷移期間Tbと書込み周期T(i-1)における第1遷移期間Taとが時間的に重なることはなく、書込み周期T(i-1)における第2遷移期間Tbと書込み周期T(i)における第1遷移期間Taとが時間的に重なることはなく、書込み周期T(i)における第2遷移期間Tbと書込み周期T(i+1)における第1遷移期間Taとが時間的に重なることはなく、書込み周期T(i+1)における第2遷移期間Tbと書込み周期T(i+2)における第1遷移期間Taとが時間的に重なることはない。 That is, the second transition period Tb in the write cycle T (i-2) and the first transition period Ta in the write cycle T (i-1) do not overlap in time, and in the write cycle T (i-1). The second transition period Tb and the first transition period Ta in the write period T (i) do not overlap in time, and the second transition period Tb in the write period T (i) and the first in the write period T (i + 1). The transition period Ta does not overlap in time, and the second transition period Tb in the write cycle T (i + 1) and the first transition period Ta in the write cycle T (i + 2) do not overlap in time.
 以上のように、本実施の形態におけるデータ電極駆動回路32の出力バッファは、書込み周期のそれぞれに設けられた第1遷移期間Taにおいて、高圧側スイッチQHをオンにして、出力電圧を低圧側電圧0(V)から高圧側電圧Vdに遷移させる。また、出力バッファは、書込み周期のそれぞれに設けられかつ第1遷移期間Taと時間的に重ならない第2遷移期間Tbにおいて、低圧側スイッチQLをオンにして、出力電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移させる。 As described above, the output buffer of the data electrode driving circuit 32 in the present embodiment turns on the high-voltage side switch QH in the first transition period Ta provided in each of the write cycles, and the output voltage is reduced to the low-voltage side voltage. Transition from 0 (V) to the high voltage Vd. The output buffer is provided in each of the write cycles and turns on the low-voltage side switch QL in the second transition period Tb that does not overlap with the first transition period Ta in time, and the output voltage is lowered from the high-voltage side voltage Vd. The side voltage is changed to 0 (V).
 これにより、一定の電圧Vdを有する電源からデータ電極駆動回路32に電力を供給して安定した書込み動作を行うとともに、データ電極駆動回路32の消費電力を削減することができる。その理由を、図8Aから図8Eを用いて、以下に説明する。 Thus, power can be supplied from the power supply having a constant voltage Vd to the data electrode driving circuit 32 to perform a stable addressing operation, and the power consumption of the data electrode driving circuit 32 can be reduced. The reason will be described below with reference to FIGS. 8A to 8E.
 図8Aは、本発明の実施の形態1におけるプラズマディスプレイ装置30のデータ電極駆動回路32に備えられた出力バッファの構成を概略的に示す回路図である。 FIG. 8A is a circuit diagram schematically showing a configuration of an output buffer provided in data electrode drive circuit 32 of plasma display device 30 in accordance with the first exemplary embodiment of the present invention.
 図8Bは、本発明の実施の形態1におけるプラズマディスプレイ装置30のデータ電極駆動回路32に備えられた出力バッファの動作状態の一例を概略的に示す図である。 FIG. 8B is a diagram schematically showing an example of the operation state of the output buffer provided in the data electrode drive circuit 32 of the plasma display device 30 in accordance with the first exemplary embodiment of the present invention.
 図8Cは、本発明の実施の形態1におけるプラズマディスプレイ装置30のデータ電極駆動回路32に備えられた出力バッファの動作状態の他の一例を概略的に示す図である。 FIG. 8C is a diagram schematically showing another example of the operation state of the output buffer provided in the data electrode driving circuit 32 of the plasma display device 30 in accordance with the first exemplary embodiment of the present invention.
 図8Dは、本発明の実施の形態1におけるプラズマディスプレイ装置30のデータ電極駆動回路32に備えられた出力バッファの動作状態の他の一例を概略的に示す図である。 FIG. 8D is a diagram schematically showing another example of the operation state of the output buffer provided in the data electrode driving circuit 32 of the plasma display device 30 according to the first exemplary embodiment of the present invention.
 図8Eは、本発明の実施の形態1におけるプラズマディスプレイ装置30のデータ電極駆動回路32に備えられた出力バッファの動作状態の他の一例を概略的に示す図である。 FIG. 8E is a diagram schematically showing another example of the operating state of the output buffer provided in the data electrode driving circuit 32 of the plasma display device 30 in accordance with the first exemplary embodiment of the present invention.
 説明をわかりやすくするために、図8Aには、データ電極D(j)を駆動する出力バッファと、データ電極D(j+1)を駆動する出力バッファとを示し、図8Bから図8Eには、図8Aに示した各出力バッファに流れる電流を概略的に示す。なお、図8Aから図8Eには、データ電極D(j)とデータ電極D(j+1)との間に生じる電極間容量をコンデンサCcで表している。 For ease of explanation, FIG. 8A shows an output buffer that drives the data electrode D (j) and an output buffer that drives the data electrode D (j + 1), and FIGS. 8A schematically shows a current flowing through each output buffer shown in FIG. 8A. 8A to 8E, the interelectrode capacitance generated between the data electrode D (j) and the data electrode D (j + 1) is represented by a capacitor Cc.
 以下、データ電極D(j)においては、書込みパルスを印加していない状態から書込みパルスを印加する状態に遷移し、データ電極D(j+1)においては、書込みパルスを印加している状態から書込みパルスを印加しない状態に遷移する場合について考える。 Hereinafter, the data electrode D (j) transitions from a state where no address pulse is applied to a state where an address pulse is applied, and the data electrode D (j + 1) transitions from a state where the address pulse is applied to the address pulse. Consider the case of transition to a state where no voltage is applied.
 この場合、初期状態は、図8Bに示すように、コンデンサCcのデータ電極D(j)の側の端子電圧は書込みパルスの低圧側電圧0(V)であり、データ電極D(j+1)の側の端子電圧は書込みパルスの高圧側電圧Vdである。 In this case, as shown in FIG. 8B, in the initial state, the terminal voltage on the data electrode D (j) side of the capacitor Cc is the low voltage 0 (V) of the write pulse, and the data electrode D (j + 1) side Is a high-voltage side voltage Vd of the write pulse.
 本実施の形態における動作との比較のために、第1遷移期間Taと第2遷移期間Tbとが時間的に分離しておらず、コンデンサCcの両端の電圧を同時に遷移させる場合、すなわち、データ電極D(j)の電圧を低圧側電圧0(V)から高圧側電圧Vdに遷移させる動作と、データ電極D(j+1)の電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移させる動作とを同時に行う場合を考える。 For comparison with the operation in the present embodiment, when the first transition period Ta and the second transition period Tb are not temporally separated and the voltages at both ends of the capacitor Cc are simultaneously shifted, that is, data The operation of transitioning the voltage of the electrode D (j) from the low-voltage side voltage 0 (V) to the high-voltage side voltage Vd and the voltage of the data electrode D (j + 1) are transitioned from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V). Consider a case in which operations are performed simultaneously.
 この場合には、図8Cに示すように、データ電極D(j)に接続された高圧側スイッチQH(j)とデータ電極D(j+1)に接続された低圧側スイッチQL(j+1)とは同時にオンになる。したがって、電圧Vdの電源から高圧側スイッチQH(j)、コンデンサCc、低圧側スイッチQL(j+1)、接地電位へと電流Icが流れる。これにより、コンデンサCcが充電され、コンデンサCcの一方の端子電圧(すなわち、データ電極D(j)の側の電圧)は高圧側電圧Vdとなり、コンデンサCcの他方の端子電圧(すなわち、データ電極D(j+1)の側の電圧)は低圧側電圧0(V)となる。 In this case, as shown in FIG. 8C, the high-voltage side switch QH (j) connected to the data electrode D (j) and the low-voltage side switch QL (j + 1) connected to the data electrode D (j + 1) are simultaneously Turn on. Therefore, the current Ic flows from the power source of the voltage Vd to the high voltage side switch QH (j), the capacitor Cc, the low voltage side switch QL (j + 1), and the ground potential. As a result, the capacitor Cc is charged, the one terminal voltage of the capacitor Cc (that is, the voltage on the data electrode D (j) side) becomes the high voltage Vd, and the other terminal voltage of the capacitor Cc (that is, the data electrode D). (Voltage on the side of (j + 1)) is the low voltage 0 (V).
 このとき、コンデンサCcの端子間電圧(データ電極D(j+1)を基準としたときのデータ電極D(j)の電圧)は電圧(-Vd)から電圧Vdに変化する。したがって、コンデンサCcを充電するために電源から供給する電荷は、
Q=Cc×2Vd
となり、そのときの電力は
QV=2Cc×Vd×Vd
となる。
At this time, the voltage between the terminals of the capacitor Cc (the voltage of the data electrode D (j) with the data electrode D (j + 1) as a reference) changes from the voltage (−Vd) to the voltage Vd. Therefore, the charge supplied from the power source to charge the capacitor Cc is
Q = Cc × 2Vd
The power at that time is QV = 2Cc × Vd × Vd
It becomes.
 一方、本実施の形態においては、第1遷移期間Taと第2遷移期間Tbとは時間的に分離している。したがって、まず、図8Bに示す初期状態から、第2遷移期間Tbにおいて低圧側スイッチQL(j+1)がオンになる。これにより、図8Dに示すように、接地電位から低圧側スイッチQL(j)の寄生ダイオード、コンデンサCc、低圧側スイッチQL(j+1)、接地電位へと電流Idが流れる。これにより、コンデンサCcが放電し、コンデンサCcの2つの端子電圧(すなわち、データ電極D(j)およびデータ電極D(j+1)の電圧)はどちらも低圧側電圧0(V)となる。 On the other hand, in the present embodiment, the first transition period Ta and the second transition period Tb are temporally separated. Therefore, first, from the initial state shown in FIG. 8B, the low-voltage side switch QL (j + 1) is turned on in the second transition period Tb. As a result, as shown in FIG. 8D, a current Id flows from the ground potential to the parasitic diode of the low-voltage side switch QL (j), the capacitor Cc, the low-voltage side switch QL (j + 1), and the ground potential. As a result, the capacitor Cc is discharged, and the two terminal voltages of the capacitor Cc (that is, the voltages of the data electrode D (j) and the data electrode D (j + 1)) are both set to the low voltage 0 (V).
 その後、第1遷移期間Taにおいて高圧側スイッチQH(j)がオンになる。これにより、図8Eに示すように、電圧Vdの電源から高圧側スイッチQH(j)、コンデンサCc、低圧側スイッチQL(j+1)、接地電位へと電流Ieが流れる。これにより、コンデンサCcが充電される。これにより、コンデンサCcが充電され、コンデンサCcの一方の端子電圧(すなわち、データ電極D(j)の側の電圧)は高圧側電圧Vdとなり、コンデンサCcの他方の端子電圧(すなわち、データ電極D(j+1)の側の電圧)は低圧側電圧0(V)となる。 Thereafter, the high-voltage side switch QH (j) is turned on in the first transition period Ta. As a result, as shown in FIG. 8E, a current Ie flows from the power source of the voltage Vd to the high-voltage side switch QH (j), the capacitor Cc, the low-voltage side switch QL (j + 1), and the ground potential. Thereby, the capacitor Cc is charged. As a result, the capacitor Cc is charged, the one terminal voltage of the capacitor Cc (that is, the voltage on the data electrode D (j) side) becomes the high voltage Vd, and the other terminal voltage of the capacitor Cc (that is, the data electrode D). (Voltage on the side of (j + 1)) is the low voltage 0 (V).
 このとき、コンデンサCcの端子間電圧(データ電極D(j+1)を基準としたときのデータ電極D(j)の電圧)は電圧0(V)から電圧Vdに変化する。したがって、コンデンサCcを充電するために電源から供給する電荷は、
Q=Cc×Vd
となり、そのときの電力は
QV=Cc×Vd×Vd
となる。この電力は、第1遷移期間Taと第2遷移期間Tbとが時間的に分離しておらず、コンデンサCcの両端の電圧を同時に遷移させる場合の電力(QV=2Cc×Vd×Vd)の半分である。
At this time, the voltage between the terminals of the capacitor Cc (the voltage of the data electrode D (j) when the data electrode D (j + 1) is used as a reference) changes from the voltage 0 (V) to the voltage Vd. Therefore, the charge supplied from the power source to charge the capacitor Cc is
Q = Cc × Vd
The power at that time is QV = Cc × Vd × Vd
It becomes. This power is not temporally separated from the first transition period Ta and the second transition period Tb, and is half the power (QV = 2Cc × Vd × Vd) when the voltages at both ends of the capacitor Cc are transitioned simultaneously. It is.
 このように、互いに隣接する2本のデータ電極22の電圧が、互いに逆相の電圧に遷移する場合(すなわち、一方のデータ電極22の電圧が低圧側電圧0(V)から高圧側電圧Vdに遷移し、他方のデータ電極22の電圧が高圧側電圧Vdから低圧側電圧0(V)に遷移する場合)には、第1遷移期間Taと第2遷移期間Tbとを時間的に分離することで、第1遷移期間Taと第2遷移期間Tbとが時間的に重なる場合と比較して、電極間容量Ccの充放電に要する電力をおよそ半分に削減することができる。 As described above, when the voltages of the two adjacent data electrodes 22 transition to voltages having opposite phases to each other (that is, the voltage of one data electrode 22 changes from the low voltage 0 (V) to the high voltage Vd. When the voltage of the other data electrode 22 transits from the high voltage Vd to the low voltage 0 (V)), the first transition period Ta and the second transition period Tb are separated in time. Thus, compared with the case where the first transition period Ta and the second transition period Tb overlap in time, the power required for charging / discharging the interelectrode capacitance Cc can be reduced to approximately half.
 以上が、本発明の実施の形態1におけるプラズマディスプレイ装置30においてデータ電極駆動回路32の電力を削減することができる理由である。 The above is the reason why the power of the data electrode driving circuit 32 can be reduced in the plasma display device 30 according to the first exemplary embodiment of the present invention.
 次に、第2遷移期間Tbの開始時刻を、データ電極22のそれぞれで異なる時刻に設定した理由について説明する。 Next, the reason why the start time of the second transition period Tb is set to a different time for each of the data electrodes 22 will be described.
 上述したように、データ電極22(例えば、データ電極D(j))の負荷容量は、表示電極対14との間に生じる容量Cgと、右側に隣接するデータ電極22(例えば、データ電極D(j+1))との間に生じる容量Ccと、左側に隣接するデータ電極22(例えば、データ電極D(j-1))との間に生じる容量Ccとを合計した容量(Cg+2Cc)である。 As described above, the load capacitance of the data electrode 22 (for example, the data electrode D (j)) includes the capacitance Cg generated between the display electrode pair 14 and the data electrode 22 (for example, the data electrode D ( j + 1)) and the capacitance Cc generated between the data electrode 22 adjacent to the left side (for example, the data electrode D (j−1)) (Cg + 2Cc).
 しかし、データ電極D(j)に印加する電圧を遷移させる際に、出力バッファから見た実質的な付加容量は、隣接するデータ電極D(j+1)およびデータ電極D(j-1)に印加する電圧に依存して変化する。 However, when the voltage applied to the data electrode D (j) is transitioned, the substantial additional capacitance viewed from the output buffer is applied to the adjacent data electrode D (j + 1) and data electrode D (j−1). Varies depending on the voltage.
 例えば、図7に示した書込み周期T(i-1)の第2遷移期間Tbにおいて、データ電極D(j-1)の負荷容量について考える。データ電極D(j-1)に印加する電圧は高圧側電圧Vdから低圧側電圧0(V)に遷移する。そして、データ電極D(j-1)に隣接するデータ電極D(j-2)およびデータ電極D(j)のそれぞれに印加する電圧も、同様に高圧側電圧Vdから低圧側電圧0(V)に遷移する。 For example, consider the load capacitance of the data electrode D (j−1) in the second transition period Tb of the write cycle T (i−1) shown in FIG. The voltage applied to the data electrode D (j−1) transitions from the high voltage side voltage Vd to the low voltage side voltage 0 (V). The voltage applied to each of the data electrode D (j-2) and the data electrode D (j) adjacent to the data electrode D (j-1) is similarly changed from the high voltage side voltage Vd to the low voltage side voltage 0 (V). Transition to.
 そのため、書込み周期T(i-1)の第2遷移期間Tbにおけるデータ電極D(j-1)に関しては、電圧が同じ方向に遷移するデータ電極D(j-2)との間の容量Ccおよびデータ電極D(j)との間の容量Ccを無視することができる。したがって、書込み周期T(i-1)の第2遷移期間Tbにおけるデータ電極D(j-1)の実質的な負荷容量は容量Cgとなる。 Therefore, with respect to the data electrode D (j−1) in the second transition period Tb of the write cycle T (i−1), the capacitance Cc between the data electrode D (j−2) whose voltage transitions in the same direction and The capacitance Cc between the data electrode D (j) can be ignored. Therefore, the substantial load capacitance of the data electrode D (j−1) in the second transition period Tb of the write cycle T (i−1) is the capacitance Cg.
 図7に示した書込み周期T(i-1)の第2遷移期間Tbにおいて、データ電極D(j)に印加する電圧は高圧側電圧Vdから低圧側電圧0(V)に遷移する。そして、データ電極D(j)に隣接するデータ電極D(j-1)に印加する電圧も、同様に高圧側電圧Vdから低圧側電圧0(V)に遷移する。しかし、データ電極D(j)に隣接するデータ電極D(j+1)に印加する電圧は、低圧側電圧0(V)のまま変化しない。 In the second transition period Tb of the write cycle T (i-1) shown in FIG. 7, the voltage applied to the data electrode D (j) transitions from the high voltage side voltage Vd to the low voltage side voltage 0 (V). Similarly, the voltage applied to the data electrode D (j−1) adjacent to the data electrode D (j) also changes from the high voltage side voltage Vd to the low voltage side voltage 0 (V). However, the voltage applied to the data electrode D (j + 1) adjacent to the data electrode D (j) remains unchanged at the low voltage 0 (V).
 そのため、書込み周期T(i-1)の第2遷移期間Tbにおけるデータ電極D(j)に関しては、電圧が同じ方向に遷移するデータ電極D(j-1)との間の容量Ccは無視することができる。しかし、データ電極D(j+1)との間の容量Ccに関しては無視することができない。したがって、書込み周期T(i-1)の第2遷移期間Tbにおけるデータ電極D(j)の実質的な負荷容量は容量(Cg+Cc)となる。 Therefore, regarding the data electrode D (j) in the second transition period Tb of the write cycle T (i−1), the capacitance Cc between the data electrode D (j−1) whose voltage transitions in the same direction is ignored. be able to. However, the capacitance Cc between the data electrode D (j + 1) cannot be ignored. Therefore, the substantial load capacitance of the data electrode D (j) in the second transition period Tb of the write cycle T (i−1) is the capacitance (Cg + Cc).
 したがって、書込み周期T(i-1)の第2遷移期間Tbにおいて、データ電極D(j)の電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移するのに要する時間は、データ電極D(j-1)の電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移するのに要する時間よりも長くなる。 Therefore, in the second transition period Tb of the write cycle T (i−1), the time required to transition the voltage of the data electrode D (j) from the high voltage side voltage Vd to the low voltage side voltage 0 (V) is It becomes longer than the time required for the voltage of D (j−1) to transition from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V).
 図7に示した書込み周期T(i-1)の第2遷移期間Tbにおいて、データ電極D(j+2)に印加する電圧は、高圧側電圧Vdから低圧側電圧0(V)に遷移する。しかし、データ電極D(j+2)に隣接するデータ電極D(j+1)およびデータ電極D(j+3)に印加する電圧は、低圧側電圧0(V)のまま変化しない。 In the second transition period Tb of the write cycle T (i−1) shown in FIG. 7, the voltage applied to the data electrode D (j + 2) transitions from the high voltage side voltage Vd to the low voltage side voltage 0 (V). However, the voltage applied to the data electrode D (j + 1) and the data electrode D (j + 3) adjacent to the data electrode D (j + 2) remains the low voltage 0 (V).
 そのため、書込み周期T(i-1)の第2遷移期間Tbにおけるデータ電極D(j+2)に関しては、データ電極D(j+1)との間の容量Ccおよびデータ電極D(j+3)との間の容量Ccを、ともに無視することができない。したがって、書込み周期T(i-1)の第2遷移期間Tbにおけるデータ電極D(j+2)の実質的な負荷容量は容量(Cg+2Cc)となる。 Therefore, for the data electrode D (j + 2) in the second transition period Tb of the write cycle T (i−1), the capacitance Cc between the data electrode D (j + 1) and the capacitance between the data electrode D (j + 3) Both Cc cannot be ignored. Therefore, the substantial load capacitance of the data electrode D (j + 2) in the second transition period Tb of the write cycle T (i−1) is the capacitance (Cg + 2Cc).
 したがって、書込み周期T(i-1)の第2遷移期間Tbにおいて、データ電極D(j+2)の電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移するのに要する時間は、データ電極D(j)の電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移するのに要する時間よりもさらに長くなる。 Therefore, in the second transition period Tb of the write cycle T (i−1), the time required for the voltage of the data electrode D (j + 2) to transition from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V) is It becomes longer than the time required for the voltage of D (j) to transition from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V).
 このように、データ電極22に印加する電圧を遷移させる際に影響する実質的な負荷容量は、画像データに応じて変化する。すなわち、注目するデータ電極22に印加する電圧と、注目するデータ電極22に隣接する2つのデータ電極22に印加する電圧とが同様に遷移するときには、注目するデータ電極22における実質的な負荷容量は容量Cgとなる。また、注目するデータ電極22に印加する電圧と、注目するデータ電極22に隣接する一方のデータ電極22に印加する電圧だけが同様に遷移するときには、注目するデータ電極22における実質的な負荷容量は容量(Cg+Cc)となる。また、注目するデータ電極22に印加する電圧が遷移し、注目するデータ電極22に隣接する2つのデータ電極22に印加する電圧がともに変化しないときには、注目するデータ電極22における実質的な負荷容量は容量(Cg+2Cc)となる。 As described above, the substantial load capacity that affects the transition of the voltage applied to the data electrode 22 varies according to the image data. That is, when the voltage applied to the data electrode 22 of interest and the voltage applied to the two data electrodes 22 adjacent to the data electrode 22 of interest transition in the same way, the substantial load capacitance at the data electrode 22 of interest is The capacity is Cg. In addition, when only the voltage applied to the data electrode 22 of interest and the voltage applied to one data electrode 22 adjacent to the data electrode 22 of interest change in the same manner, the substantial load capacitance at the data electrode 22 of interest is Capacity (Cg + Cc). In addition, when the voltage applied to the data electrode 22 of interest transitions and the voltages applied to the two data electrodes 22 adjacent to the data electrode 22 of interest do not change, the substantial load capacitance at the data electrode 22 of interest is Capacity (Cg + 2Cc).
 そして、データ電極22に印加する電圧を遷移させるのに要する時間は、データ電極22に生じる実質的な負荷容量が大きくなるほど長くなる。 And, the time required to transition the voltage applied to the data electrode 22 becomes longer as the substantial load capacity generated in the data electrode 22 becomes larger.
 これらのことから、本実施の形態においては、第2遷移期間の開始時刻を、出力バッファのそれぞれに対し、データ電極22に生じる実質的な負荷容量に応じて設定する。 For these reasons, in the present embodiment, the start time of the second transition period is set for each of the output buffers according to the substantial load capacity generated in the data electrode 22.
 すなわち、第2遷移期間において、隣接する2本のデータ電極22(例えば、データ電極D(j-1)およびデータ電極D(j+1))のうちの一方のデータ電極22(例えば、データ電極D(j-1))に印加する電圧だけが高圧側電圧Vdから低圧側電圧0(V)に遷移するデータ電極22(例えば、データ電極D(j))に対応する出力バッファでは、隣接する2本のデータ電極22(例えば、データ電極D(j-2)およびデータ電極D(j))に印加する電圧がともに高圧側電圧Vdから低圧側電圧0(V)に遷移するデータ電極22(例えば、データ電極D(j-1))に対応する出力バッファよりも、第2遷移期間の開始時刻を早い時刻に設定する。 That is, in the second transition period, one of the two adjacent data electrodes 22 (for example, the data electrode D (j−1) and the data electrode D (j + 1)) (for example, the data electrode D ( In the output buffer corresponding to the data electrode 22 (for example, the data electrode D (j)) in which only the voltage applied to j-1)) transits from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V), The data electrode 22 (for example, the data electrode 22 (for example, the data electrode D (j-2) and the data electrode D (j)) of which the voltage applied to the data electrode 22 (for example, the data electrode D (j-2) and the data electrode D (j)) transitions from the high voltage side voltage Vd to the low voltage side voltage 0 (V). The start time of the second transition period is set earlier than the output buffer corresponding to the data electrode D (j−1)).
 また、第2遷移期間において、隣接する2本のデータ電極22(例えば、データ電極D(j+1)およびデータ電極D(j+3))に印加する電圧がともに遷移しないデータ電極22(例えば、データ電極D(j+2))に対応する出力バッファでは、隣接する2本のデータ電極22(例えば、データ電極D(j-1)およびデータ電極D(j+1))のうちの一方のデータ電極22(例えば、データ電極D(j-1))に印加する電圧だけが高圧側電圧Vdから低圧側電圧0(V)に遷移するデータ電極22(例えば、データ電極D(j))に対応する出力バッファよりも、第2遷移期間の開始時刻を早い時刻に設定する。 Further, in the second transition period, the data electrode 22 (for example, the data electrode D) in which the voltage applied to the two adjacent data electrodes 22 (for example, the data electrode D (j + 1) and the data electrode D (j + 3)) does not transition together. In the output buffer corresponding to (j + 2)), one of the two adjacent data electrodes 22 (for example, the data electrode D (j−1) and the data electrode D (j + 1)) (for example, the data electrode 22 Than the output buffer corresponding to the data electrode 22 (for example, the data electrode D (j)) in which only the voltage applied to the electrode D (j-1)) transitions from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V). The start time of the second transition period is set to an early time.
 このように、本実施の形態においては、データ電極22に印加する電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移させるのに要する時間が相対的に長くなることがあらかじめわかっているデータ電極22に対しては、第2遷移期間の開始時刻を相対的に早く設定する。これにより、実質的な負荷容量の大きさにかかわらず、各データ電極22における第2遷移期間の終了時刻をほぼ同時刻(例えば、時刻t3)に揃えることが可能になる。したがって、書込み期間において、書込み動作に要する時間を有効に使用することが可能となる。例えば、実質的な負荷容量の大きさが相対的に小さいデータ電極22では、書込みパルスの高圧側電圧Vdを印加する時間を相対的に長くすることができる。 As described above, in the present embodiment, it is known in advance that the time required for the voltage applied to the data electrode 22 to transition from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V) is relatively long. For the data electrode 22, the start time of the second transition period is set relatively early. As a result, the end time of the second transition period in each data electrode 22 can be made substantially the same time (for example, time t3) regardless of the substantial load capacitance. Therefore, it is possible to effectively use the time required for the write operation in the write period. For example, in the data electrode 22 having a relatively small substantial load capacity, the time for applying the high-voltage side voltage Vd of the write pulse can be made relatively long.
 次に、データ電極駆動回路32の詳細について図9を用いて説明する。 Next, details of the data electrode drive circuit 32 will be described with reference to FIG.
 図9は、本発明の実施の形態1におけるプラズマディスプレイ装置30のデータ電極駆動回路32の構成を概略的に示す回路図である。なお、図9には、データ電極駆動回路32を構成する回路ブロックの一部のみを示し、同じ構成となる他の回路ブロックは省略している。 FIG. 9 is a circuit diagram schematically showing the configuration of the data electrode driving circuit 32 of the plasma display device 30 according to the first embodiment of the present invention. In FIG. 9, only a part of the circuit blocks constituting the data electrode drive circuit 32 is shown, and other circuit blocks having the same configuration are omitted.
 データ電極駆動回路32は、シフトレジスタ部41と、自己負荷算出部42と、隣接負荷算出部44と、出力バッファ部48とを有する。 The data electrode drive circuit 32 includes a shift register unit 41, a self load calculation unit 42, an adjacent load calculation unit 44, and an output buffer unit 48.
 シフトレジスタ部41は、シフトレジスタである。シフトレジスタ部41は、データ電極駆動回路32が駆動するN本(例えば、N=1920×3)のデータ電極22と同じ数、もしくはそれ以上の数のラッチ141を有する。各ラッチ141は直列に接続され、クロック信号(クロックDck)に同期して、入力信号を後段のラッチ141に順送り(シフト)する。そして、データ変換部(図示せず)から送信されるシリアルデータをパラレルデータに変換する。 The shift register unit 41 is a shift register. The shift register unit 41 includes the same number of latches 141 as the number of N (for example, N = 1920 × 3) data electrodes 22 driven by the data electrode driving circuit 32 or more. Each latch 141 is connected in series, and the input signal is forwarded (shifted) to the subsequent latch 141 in synchronization with the clock signal (clock Dck). Then, serial data transmitted from a data converter (not shown) is converted into parallel data.
 シリアルデータとは、1つのデータを構成する複数のbit信号を、1本の信号線で伝送できるように、時間的に連続する複数のbit信号の形式で表したデータのことである。例えば、8bitで構成されたデータであれば、時間的に連続する8個のbit信号となる。 Serial data is data expressed in the form of a plurality of bit signals that are temporally continuous so that a plurality of bit signals constituting one data can be transmitted by one signal line. For example, if the data is composed of 8 bits, it becomes 8 bit signals continuous in time.
 パラレルデータとは、1つのデータを構成する複数のbit信号を、1つのクロック信号に同期して同タイミングで伝送できるように、bit信号と同数の信号線で伝送できる形式で表したデータのことである。例えば、8bitで構成されたデータであれば、データの変化に応じて同タイミングで変化する8個の並列なbit信号となり、8本の信号線で並列に伝送することができる。 Parallel data refers to data expressed in a format that can be transmitted through the same number of signal lines as bit signals so that a plurality of bit signals constituting one data can be transmitted at the same timing in synchronization with one clock signal. It is. For example, if the data is composed of 8 bits, it becomes 8 parallel bit signals that change at the same timing according to the change of the data, and can be transmitted in parallel by 8 signal lines.
 データ変換部は、図示していないが、画像信号処理回路31とデータ電極駆動回路32との間に設けられており、画像信号処理回路31から送信されてくる画像データ(各放電に割り当てられる画像データ)をサブフィールド毎のデータに変換する。この変換について説明する。 Although not shown, the data conversion unit is provided between the image signal processing circuit 31 and the data electrode driving circuit 32, and receives image data (images assigned to each discharge) transmitted from the image signal processing circuit 31. Data) is converted into data for each subfield. This conversion will be described.
 例えば、1フィールドが8つのサブフィールド(サブフィールドSF1~サブフィールドSF8)で構成されていれば、画像データは8bitのデータとなる。そして、画像データの各bitのデータは、サブフィールドSF1からサブフィールドSF8の各サブフィールドにおける発光・非発光を表す。パネル10はサブフィールド法によって駆動されるので、パネル10の各放電セルは、それぞれ、サブフィールド毎に発光・非発光を制御される必要がある。そのため、画像データのままでは、各放電セルの発光・非発光を、サブフィールド毎に制御することができない。 For example, if one field is composed of eight subfields (subfield SF1 to subfield SF8), the image data is 8-bit data. Each bit data of the image data represents light emission / non-light emission in each subfield of subfield SF1 to subfield SF8. Since the panel 10 is driven by the subfield method, each discharge cell of the panel 10 needs to be controlled to emit or not emit light for each subfield. Therefore, if the image data is used as it is, the light emission / non-light emission of each discharge cell cannot be controlled for each subfield.
 パネル10をサブフィールド法によって駆動するためには、例えば、サブフィールドSF1では、各放電セルに割り当てられた画像データのサブフィールドSF1に対応するbitのデータだけを抜き出して1つのデータとし、サブフィールドSF2では、各放電セルに割り当てられた画像データのサブフィールドSF2に対応するbitのデータだけを抜き出して1つのデータとする必要がある。この変換を行うのがデータ変換部である。 In order to drive the panel 10 by the subfield method, for example, in the subfield SF1, only the bit data corresponding to the subfield SF1 of the image data assigned to each discharge cell is extracted as one data, In SF2, it is necessary to extract only the bit data corresponding to the subfield SF2 of the image data assigned to each discharge cell to be one data. The data conversion unit performs this conversion.
 すなわち、データ変換部は、サブフィールド毎に、各放電セルに割り当てられた画像データから、そのサブフィールドに対応するbitのデータだけを抜き出して1つのデータとする変換を行う。 That is, for each subfield, the data conversion unit extracts only the bit data corresponding to the subfield from the image data assigned to each discharge cell and performs conversion into one data.
 そして、そのデータは、シリアルデータとしてシフトレジスタ部41に送信され、シフトレジスタ部41は、データ変換部から送信されてくるそのサブフィールドに対応する複数のbitのシリアルデータをパラレルデータに変換する。 The data is transmitted as serial data to the shift register unit 41. The shift register unit 41 converts a plurality of bits of serial data corresponding to the subfield transmitted from the data conversion unit into parallel data.
 以下、画像データのうち、サブフィールドSFQに対応するbitの画像データを「画像データQ」と記す。すなわち、シフトレジスタ部41は、データ変換部から送信されてくるN本のデータ電極22のそれぞれに対応するNbitのシリアルの画像データQを、N本のデータ電極22のそれぞれに対応するNbitのパラレルの画像データQに変換して出力する。 Hereinafter, of the image data, the bit image data corresponding to the subfield SFQ is referred to as “image data Q”. That is, the shift register unit 41 receives N-bit serial image data Q corresponding to each of the N data electrodes 22 transmitted from the data conversion unit, and N-bit parallel image data corresponding to each of the N data electrodes 22. Is converted into image data Q and output.
 自己負荷算出部42は、データ電極駆動回路32が駆動するN本(例えば、N=1920×3)のデータ電極22のそれぞれに対応するN個の1ラインディレイ142と論理ゲート43とを有する。 The self-load calculating unit 42 includes N 1-line delays 142 and logic gates 43 corresponding to the N (for example, N = 1920 × 3) data electrodes 22 driven by the data electrode driving circuit 32.
 以下、データ電極D(j)における実質的な負荷容量を算出する場合を例に挙げてデータ電極駆動回路32の構成および動作を説明する。したがって、以下に説明するデータ電極駆動回路32の構成および動作はデータ電極D(j)に対する構成および動作となるが、他のデータ電極22に対する構成および動作もデータ電極D(j)に対する構成および動作と同様である。 Hereinafter, the configuration and operation of the data electrode driving circuit 32 will be described by taking as an example the case of calculating the substantial load capacity in the data electrode D (j). Therefore, the configuration and operation of data electrode driving circuit 32 described below are the configuration and operation for data electrode D (j), but the configuration and operation for other data electrode 22 are also the configuration and operation for data electrode D (j). It is the same.
 なお、データ電極D(j)に隣接するデータ電極22はデータ電極D(j-1)およびデータ電極D(j+1)であるものとする。 It is assumed that the data electrode 22 adjacent to the data electrode D (j) is the data electrode D (j−1) and the data electrode D (j + 1).
 1ラインディレイ142(j)はデータ電極D(j)に対応する画像データQ(j)を1ライン(1水平同期期間)遅延して画像データDQ(j)を出力する。 The 1-line delay 142 (j) delays the image data Q (j) corresponding to the data electrode D (j) by 1 line (1 horizontal synchronization period) and outputs the image data DQ (j).
 論理ゲート43(j)は2入力1出力のアンドゲート(論理積演算を行う論理回路)である。なお、図9において、各論理ゲートの入力端子にある小さい丸印はインバータ(論理反転を行う論理回路)である。したがって、論理ゲート43(j)には、画像データQ(j)を反転した信号が入力される。 The logic gate 43 (j) is an AND gate with two inputs and one output (a logic circuit that performs an AND operation). In FIG. 9, the small circles at the input terminals of the logic gates are inverters (logic circuits that perform logic inversion). Therefore, a signal obtained by inverting the image data Q (j) is input to the logic gate 43 (j).
 論理ゲート43(j)は、画像データDQ(j)と画像データQ(j)とにもとづき、データ電極D(j)に印加する電圧の変化を検出する。 The logic gate 43 (j) detects a change in the voltage applied to the data electrode D (j) based on the image data DQ (j) and the image data Q (j).
 画像データDQ(j)が「H」で画像データQ(j)が「L」のとき、論理ゲート43(j)の出力は「H」となる。したがって、論理ゲート43(j)の出力が「H」であれば、画像データQ(j)が「H」から「L」へ変化し、データ電極D(j)に印加する電圧が高圧側電圧Vdから低圧側電圧0(V)へ(「H」から「L」へ)変化すると判断することができる。 When the image data DQ (j) is “H” and the image data Q (j) is “L”, the output of the logic gate 43 (j) is “H”. Therefore, if the output of the logic gate 43 (j) is “H”, the image data Q (j) changes from “H” to “L”, and the voltage applied to the data electrode D (j) is the high voltage side voltage. It can be determined that the voltage changes from Vd to the low voltage 0 (V) (from “H” to “L”).
 上記以外のときには、論理ゲート43(j)の出力は「L」となる。このとき、画像データQ(j)は「L」の状態もしくは「H」の状態を維持しており、データ電極D(j)に印加する電圧も低圧側電圧0(V)(「L」)の状態もしくは高圧側電圧Vd(「H」)の状態を維持していると判断することができる。 In other cases, the output of the logic gate 43 (j) is “L”. At this time, the image data Q (j) maintains the “L” state or the “H” state, and the voltage applied to the data electrode D (j) is also the low-voltage side voltage 0 (V) (“L”). Or the high voltage side voltage Vd (“H”).
 隣接負荷算出部44は、データ電極22のそれぞれに対応して設けられた論理回路を有する。この論理回路は、論理ゲート144、論理ゲート45、論理ゲート46、論理ゲート47で構成される。したがって、隣接負荷算出部44は、データ電極駆動回路32が駆動するN本(例えば、N=1920×3)のデータ電極22のそれぞれに対応するN個の論理回路を有し、N個の論理回路のそれぞれが、論理ゲート144、論理ゲート45、論理ゲート46、論理ゲート47で構成される。 The adjacent load calculation unit 44 has a logic circuit provided corresponding to each of the data electrodes 22. This logic circuit includes a logic gate 144, a logic gate 45, a logic gate 46, and a logic gate 47. Therefore, the adjacent load calculation unit 44 has N logic circuits corresponding to N (for example, N = 1920 × 3) data electrodes 22 driven by the data electrode driving circuit 32, and N logic circuits Each circuit includes a logic gate 144, a logic gate 45, a logic gate 46, and a logic gate 47.
 論理ゲート144、論理ゲート45および論理ゲート46は2入力1出力のアンドゲートであり、論理ゲート47は2入力1出力のオアゲート(論理和演算を行う論理回路)である。 The logic gate 144, the logic gate 45, and the logic gate 46 are AND gates having two inputs and one output, and the logic gate 47 is an OR gate having two inputs and one output (a logic circuit that performs an OR operation).
 図9に示す論理ゲート144(j)、論理ゲート45(j)、論理ゲート46(j)および論理ゲート47(j)で構成された論理回路は、データ電極D(j)と、データ電極D(j)に隣接するデータ電極D(j-1)およびデータ電極D(j+1)とに対応する画像データの変化を検出するための回路である。そして、本実施の形態では、その検出結果にもとづき、データ電極D(j)の実質的な負荷容量の大きさを算出する。 A logic circuit including the logic gate 144 (j), the logic gate 45 (j), the logic gate 46 (j), and the logic gate 47 (j) illustrated in FIG. 9 includes a data electrode D (j) and a data electrode D. This is a circuit for detecting a change in image data corresponding to the data electrode D (j−1) and the data electrode D (j + 1) adjacent to (j). In the present embodiment, the substantial load capacitance of the data electrode D (j) is calculated based on the detection result.
 データ電極D(j-1)の画像データQ(j-1)およびデータ電極D(j+1)の画像データQ(j+1)がともに変化しない(「L」の状態を維持、もしくは「H」の状態を維持)ときには、論理ゲート46(j)の出力は「H」となる。このとき、第2遷移期間Tbにおいてデータ電極D(j)の画像データQ(j)が「H」から「L」へ変化するときのデータ電極D(j)の実質的な負荷容量は、上述したように容量(Cg+2Cc)である。したがって、論理ゲート46(j)の出力が「H」であれば、第2遷移期間Tbにおけるデータ電極D(j)の実質的な負荷容量は容量(Cg+2Cc)であると判断することができる。 Both the image data Q (j−1) of the data electrode D (j−1) and the image data Q (j + 1) of the data electrode D (j + 1) do not change (maintain “L” state or “H” state) Is maintained), the output of the logic gate 46 (j) becomes “H”. At this time, the substantial load capacity of the data electrode D (j) when the image data Q (j) of the data electrode D (j) changes from “H” to “L” in the second transition period Tb is described above. As shown, the capacity is (Cg + 2Cc). Therefore, if the output of the logic gate 46 (j) is “H”, it can be determined that the substantial load capacitance of the data electrode D (j) in the second transition period Tb is the capacitance (Cg + 2Cc).
 データ電極D(j-1)の画像データQ(j-1)とデータ電極D(j+1)の画像データQ(j+1)のいずれか一方の画像データだけが「H」から「L」へ変化するときには、論理ゲート47(j)の出力は「H」となる。このとき、第2遷移期間Tbにおいてデータ電極D(j)の画像データQ(j)が「H」から「L」へ変化するときのデータ電極D(j)の実質的な負荷容量は、上述したように容量(Cg+Cc)である。したがって、論理ゲート47(j)の出力が「H」であれば、第2遷移期間Tbにおけるデータ電極D(j)の実質的な負荷容量は容量(Cg+Cc)であると判断することができる。 Only one of the image data Q (j−1) of the data electrode D (j−1) and the image data Q (j + 1) of the data electrode D (j + 1) changes from “H” to “L”. Sometimes, the output of the logic gate 47 (j) becomes “H”. At this time, the substantial load capacity of the data electrode D (j) when the image data Q (j) of the data electrode D (j) changes from “H” to “L” in the second transition period Tb is described above. As shown, the capacitance is (Cg + Cc). Therefore, if the output of the logic gate 47 (j) is “H”, it can be determined that the substantial load capacitance of the data electrode D (j) in the second transition period Tb is the capacitance (Cg + Cc).
 データ電極D(j-1)の画像データQ(j-1)およびデータ電極D(j+1)の画像データQ(j+1)がともに「H」から「L」へ変化するときには、論理ゲート46(j)の出力および論理ゲート47(j)の出力はともに「L」となる。このとき、第2遷移期間Tbにおいてデータ電極D(j)の画像データQ(j)が「H」から「L」へ変化するときのデータ電極D(j)の実質的な負荷容量は、上述したように容量Cgである。したがって、論理ゲート46(j)の出力および論理ゲート47(j)の出力がともに「L」であれば、第2遷移期間Tbにおけるデータ電極D(j)の実質的な負荷容量は容量Cgであると判断することができる。 When both the image data Q (j−1) of the data electrode D (j−1) and the image data Q (j + 1) of the data electrode D (j + 1) change from “H” to “L”, the logic gate 46 (j ) And the output of the logic gate 47 (j) are both “L”. At this time, the substantial load capacity of the data electrode D (j) when the image data Q (j) of the data electrode D (j) changes from “H” to “L” in the second transition period Tb is described above. As shown, the capacity is Cg. Therefore, if both the output of the logic gate 46 (j) and the output of the logic gate 47 (j) are “L”, the substantial load capacitance of the data electrode D (j) in the second transition period Tb is the capacitance Cg. It can be judged that there is.
 以上がデータ電極D(j)における実質的な負荷容量を算出する隣接負荷算出部44の動作である。 The above is the operation of the adjacent load calculation unit 44 that calculates the substantial load capacity at the data electrode D (j).
 出力バッファ部48は、データ電極駆動回路32が駆動するN本(例えば、N=1920×3)のデータ電極22のそれぞれに対応するN個の出力バッファ148を有する。各出力バッファ148は、データ電極22に印加する書込みパルスを発生する。 The output buffer unit 48 includes N output buffers 148 corresponding to each of N (for example, N = 1920 × 3) data electrodes 22 driven by the data electrode driving circuit 32. Each output buffer 148 generates an address pulse to be applied to the data electrode 22.
 出力バッファ部48は、N個の高圧側スイッチQHと、N個の低圧側スイッチQLと、N個のHLタイミング制御部49とを有する。例えば、N=1920×3であれば、出力バッファ部48は、高圧側スイッチQH(1)~高圧側スイッチQH(5760)と、低圧側スイッチQL(1)~低圧側スイッチQL(5760)と、HLタイミング制御部49(1)~HLタイミング制御部49(5760)とを有する。 The output buffer unit 48 includes N high-voltage switches QH, N low-voltage switches QL, and N HL timing controllers 49. For example, if N = 1920 × 3, the output buffer unit 48 includes the high voltage side switch QH (1) to the high voltage side switch QH (5760), and the low voltage side switch QL (1) to the low voltage side switch QL (5760). HL timing control unit 49 (1) to HL timing control unit 49 (5760).
 そして、図9に示すように、本実施の形態において、各出力バッファ148は、1つの高圧側スイッチQHと1つの低圧側スイッチQLとを組み合わせた回路と、1つのHLタイミング制御部49とを有する。 As shown in FIG. 9, in this embodiment, each output buffer 148 includes a circuit combining one high-voltage side switch QH and one low-voltage side switch QL, and one HL timing control unit 49. Have.
 高圧側スイッチQHは書込みパルスの高圧側の電圧Vdを出力し、低圧側スイッチQLは書込みパルスの低圧側の電圧0(V)を出力する。 The high voltage side switch QH outputs the voltage Vd on the high voltage side of the write pulse, and the low voltage side switch QL outputs the voltage 0 (V) on the low voltage side of the write pulse.
 HLタイミング制御部49は、隣接負荷算出部44から出力される信号(論理ゲート46の出力信号および論理ゲート47の出力信号)にもとづき高圧側スイッチQHおよび低圧側スイッチQLを制御する。すなわち、HLタイミング制御部49は、隣接負荷算出部44から出力される信号にもとづき、データ電極22に印加する電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移するタイミングを制御する。 The HL timing control unit 49 controls the high-voltage side switch QH and the low-voltage side switch QL based on the signals output from the adjacent load calculation unit 44 (the output signal of the logic gate 46 and the output signal of the logic gate 47). That is, the HL timing control unit 49 controls the timing at which the voltage applied to the data electrode 22 transitions from the high voltage side voltage Vd to the low voltage side voltage 0 (V) based on the signal output from the adjacent load calculation unit 44.
 例えば、HLタイミング制御部49(j)は、論理ゲート46(j)の出力が「H」であれば、第2遷移期間においてデータ電極D(j)に印加する電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移する際に、第2遷移期間の時間長が最も長くなるように、最も早いタイミング(例えば、時刻t21)で第2遷移期間を開始する。 For example, if the output of the logic gate 46 (j) is “H”, the HL timing control unit 49 (j) reduces the voltage applied to the data electrode D (j) from the high-voltage side voltage Vd to the low voltage side. When transitioning to the side voltage 0 (V), the second transition period starts at the earliest timing (for example, time t21) so that the time length of the second transition period becomes the longest.
 また、HLタイミング制御部49(j)は、論理ゲート47(j)の出力が「H」であれば、第2遷移期間においてデータ電極D(j)に印加する電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移する際に、第2遷移期間の時間長が2番目に長くなるように、2番目に早いタイミング(例えば、時刻t22)で第2遷移期間を開始する。 In addition, when the output of the logic gate 47 (j) is “H”, the HL timing control unit 49 (j) reduces the voltage applied to the data electrode D (j) from the high-voltage side voltage Vd to the low voltage side. At the time of transition to the side voltage 0 (V), the second transition period is started at the second earliest timing (for example, time t22) so that the time length of the second transition period becomes the second longest.
 また、HLタイミング制御部49(j)は、論理ゲート46(j)の出力および論理ゲート47(j)の出力がともに「L」であれば、第2遷移期間においてデータ電極D(j)に印加する電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移する際に、第2遷移期間の時間長が最も短くなるように、最も遅いタイミング(例えば、時刻t23)で第2遷移期間を開始する。 The HL timing control unit 49 (j) applies the data electrode D (j) to the data electrode D (j) in the second transition period if both the output of the logic gate 46 (j) and the output of the logic gate 47 (j) are “L”. When the applied voltage transitions from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V), the second transition period is at the latest timing (for example, time t23) so that the time length of the second transition period becomes the shortest. To start.
 以上示したように、本実施の形態におけるプラズマディスプレイ装置30は、第2遷移期間において、隣接するデータ電極22との間の実質的な負荷容量の大きさを算出する。そして、隣接するデータ電極22との間の実質的な負荷容量の大きさに応じて、データ電極22に印加する電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移させるときの開始時刻、すなわち、第2遷移期間の開始時刻を制御する。 As described above, the plasma display device 30 in the present embodiment calculates the substantial load capacity between the adjacent data electrodes 22 in the second transition period. Then, the start time when the voltage applied to the data electrode 22 is changed from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V) according to the substantial load capacitance between the adjacent data electrodes 22. That is, the start time of the second transition period is controlled.
 そして、データ電極駆動回路32は、データ電極D(1)~データ電極D(m)の各データ電極22に印加する全ての電圧が高圧側電圧Vdから低圧側電圧0(V)に遷移し終えて第2遷移期間が終了した後に、続く第1遷移期間を開始してデータ電極22に印加する電圧を低圧側電圧0(V)から高圧側電圧Vdに遷移する。 Then, the data electrode drive circuit 32 finishes transition of all voltages applied to the data electrodes 22 of the data electrode D (1) to the data electrode D (m) from the high voltage side voltage Vd to the low voltage side voltage 0 (V). After the second transition period ends, the subsequent first transition period starts and the voltage applied to the data electrode 22 transitions from the low voltage side voltage 0 (V) to the high voltage side voltage Vd.
 これにより、書込み期間において書込み動作に要する時間を有効に使用しながら、パネル10の駆動を行うことが可能となる。 Thereby, it becomes possible to drive the panel 10 while effectively using the time required for the writing operation in the writing period.
 (実施の形態2)
 実施の形態1では、各出力バッファ148のそれぞれに対して第2遷移期間の開始時刻を設定する例を説明した。しかし、本発明は何らこの構成に限定されるものではない。
(Embodiment 2)
In the first embodiment, the example in which the start time of the second transition period is set for each of the output buffers 148 has been described. However, the present invention is not limited to this configuration.
 例えば、複数の出力バッファを有する集積回路を複数個用いてデータ電極駆動回路を構成するとき、各集積回路のそれぞれに対して第2遷移期間の開始時刻を設定することもできる。実施の形態2では、この構成について説明する。 For example, when a data electrode driving circuit is configured by using a plurality of integrated circuits having a plurality of output buffers, the start time of the second transition period can be set for each of the integrated circuits. In the second embodiment, this configuration will be described.
 図10は、本発明の実施の形態2におけるプラズマディスプレイ装置60を構成する回路ブロックの一例を概略的に示す図である。 FIG. 10 is a diagram schematically showing an example of a circuit block constituting the plasma display device 60 according to the second embodiment of the present invention.
 本実施の形態に示すプラズマディスプレイ装置60は、パネル10と、パネル10を駆動する駆動回路とを備えている。駆動回路は、画像信号処理回路31、データ電極駆動回路62、走査電極駆動回路33、維持電極駆動回路34、タイミング発生回路35および各回路ブロックに必要な電源を供給する電源回路(図示せず)を備えている。 The plasma display device 60 shown in the present embodiment includes a panel 10 and a drive circuit that drives the panel 10. The drive circuit includes an image signal processing circuit 31, a data electrode drive circuit 62, a scan electrode drive circuit 33, a sustain electrode drive circuit 34, a timing generation circuit 35, and a power supply circuit (not shown) that supplies necessary power to each circuit block. It has.
 本実施の形態に示すプラズマディスプレイ装置60は、実施の形態1において図5に示したプラズマディスプレイ装置30とはデータ電極駆動回路62の構成が異なるが、その他の回路ブロックは、プラズマディスプレイ装置30と同じ構成を有し、同じ動作をする。したがって、図5に示した回路ブロックと同じ構成・動作の回路ブロックには、図5に示した符号と同じ符号を付与し、説明を省略する。 The plasma display device 60 shown in the present embodiment is different from the plasma display device 30 shown in FIG. 5 in the first embodiment in the configuration of the data electrode driving circuit 62, but the other circuit blocks are the same as the plasma display device 30. It has the same configuration and performs the same operation. Therefore, the same reference numerals as those shown in FIG. 5 are given to the circuit blocks having the same configuration and operation as those of the circuit block shown in FIG.
 データ電極駆動回路62は、データ電極駆動回路32と同様に、画像信号処理回路31から出力される各色の画像データおよびタイミング発生回路35から供給されるタイミング信号にもとづき、各データ電極D(1)~データ電極D(m)に対応する書込みパルスを発生する。そして、データ電極駆動回路32は、その書込みパルスを書込み期間に各データ電極D(1)~データ電極D(m)に印加する。 Similarly to the data electrode drive circuit 32, the data electrode drive circuit 62 is based on the image data of each color output from the image signal processing circuit 31 and the timing signal supplied from the timing generation circuit 35. -An address pulse corresponding to the data electrode D (m) is generated. Then, the data electrode drive circuit 32 applies the address pulse to the data electrodes D (1) to D (m) during the address period.
 ただし、データ電極駆動回路62は、複数の集積回路を有する。各集積回路は、それぞれが所定の数のデータ電極22に印加する書込みパルスを発生する。この集積回路を、以下「データドライバ」と呼称する。本実施の形態において、データドライバ80は、例えばモノリシックICとして構成されている。そして、各データドライバ80は、それぞれが、例えば384本のデータ電極22に印加する書込みパルスを発生する。本実施の形態におけるパネル10は、水平方向に1920の画素を有する。すなわち、パネル10は、1ラインに1920×3=5760の放電セルを有する。したがって、データ電極駆動回路62は、例えば15個のデータドライバ80(データドライバ80(1)~データドライバ80(15))を有し、5760本のデータ電極22を駆動する。 However, the data electrode driving circuit 62 has a plurality of integrated circuits. Each integrated circuit generates an address pulse that is applied to a predetermined number of data electrodes 22. This integrated circuit is hereinafter referred to as a “data driver”. In the present embodiment, the data driver 80 is configured as a monolithic IC, for example. Each data driver 80 generates an address pulse to be applied to, for example, 384 data electrodes 22. Panel 10 in the present embodiment has 1920 pixels in the horizontal direction. That is, the panel 10 has 1920 × 3 = 5760 discharge cells in one line. Therefore, the data electrode drive circuit 62 includes, for example, 15 data drivers 80 (data driver 80 (1) to data driver 80 (15)), and drives 5760 data electrodes 22.
 図11は、本発明の実施の形態2におけるプラズマディスプレイ装置60のデータ電極駆動回路62の構成を概略的に示す回路図である。なお、図11には、データ電極駆動回路62を構成する回路ブロックの一部のみを示し、同じ構成となる他の回路ブロックは省略している。 FIG. 11 is a circuit diagram schematically showing a configuration of data electrode drive circuit 62 of plasma display device 60 in accordance with the second exemplary embodiment of the present invention. In FIG. 11, only a part of the circuit blocks constituting the data electrode driving circuit 62 is shown, and other circuit blocks having the same configuration are omitted.
 データ電極駆動回路62は、15個のデータドライバ80(データドライバ80(1)~データドライバ80(15))と、データドライバ80のそれぞれに対応して設けられた最大負荷算出部72と、データドライバ80のそれぞれに対応して設けられたタイミングパルス選択部74とを有する。 The data electrode drive circuit 62 includes fifteen data drivers 80 (data driver 80 (1) to data driver 80 (15)), a maximum load calculation unit 72 provided corresponding to each of the data drivers 80, data And a timing pulse selector 74 provided corresponding to each of the drivers 80.
 以下、データドライバ80(1)~データドライバ80(15)を総称して「データドライバ80(p)」と記し、データドライバ80(p)に対応する最大負荷算出部72を最大負荷算出部72(p)と記し、データドライバ80(p)に対応するタイミングパルス選択部74をタイミングパルス選択部74(p)と記す。本実施の形態において、pは1から15の各数値である。 Hereinafter, the data drivers 80 (1) to 80 (15) are collectively referred to as “data driver 80 (p)”, and the maximum load calculation unit 72 corresponding to the data driver 80 (p) is referred to as the maximum load calculation unit 72. (P), and the timing pulse selector 74 corresponding to the data driver 80 (p) is referred to as a timing pulse selector 74 (p). In the present embodiment, p is a numerical value from 1 to 15.
 最大負荷算出部72(p)は、データドライバ80(p)が駆動する複数のデータ電極22(例えば、384本のデータ電極22)のそれぞれにおける実質的な負荷容量を算出し、算出した負荷容量の最大値を算出する。 The maximum load calculation unit 72 (p) calculates a substantial load capacity in each of the plurality of data electrodes 22 (for example, 384 data electrodes 22) driven by the data driver 80 (p), and calculates the calculated load capacity. The maximum value of is calculated.
 タイミングパルス選択部74(p)は、最大負荷算出部72(p)が算出した実質的な負荷容量の最大値にもとづき、3つのタイミング信号LLP(タイミング信号LLP1、タイミング信号LLP2およびタイミング信号LLP3)の中のいずれか1つのタイミング信号LLPを選択する。そして、選択したタイミング信号LLPを書込みタイミング信号LP(p)として出力する。 The timing pulse selection unit 74 (p) has three timing signals LLP (a timing signal LLP1, a timing signal LLP2, and a timing signal LLP3) based on the substantial maximum value of the load capacity calculated by the maximum load calculation unit 72 (p). One of the timing signals LLP is selected. Then, the selected timing signal LLP is output as the write timing signal LP (p).
 ここで、タイミング信号LLP1、タイミング信号LLP2およびタイミング信号LLP3について説明する。 Here, the timing signal LLP1, the timing signal LLP2, and the timing signal LLP3 will be described.
 図12は、本発明の実施の形態2におけるプラズマディスプレイ装置60のデータ電極駆動回路62の動作の一例を概略的に示すタイミングチャートである。 FIG. 12 is a timing chart schematically showing an example of the operation of the data electrode drive circuit 62 of the plasma display device 60 in the second exemplary embodiment of the present invention.
 図12には、タイミング信号LLP1、タイミング信号LLP2およびタイミング信号LLP3と、タイミングパルス選択部74(p)が出力する書込みタイミング信号LP(p)と、タイミングパルス選択部74(p+1)が出力する書込みタイミング信号LP(p+1)と、データ電極D(p)に印加する書込みパルスと、データ電極D(p+1)に印加する書込みパルスとを示す。 In FIG. 12, the timing signal LLP1, the timing signal LLP2, the timing signal LLP3, the write timing signal LP (p) output from the timing pulse selector 74 (p), and the write output from the timing pulse selector 74 (p + 1) are shown. A timing signal LP (p + 1), an address pulse applied to the data electrode D (p), and an address pulse applied to the data electrode D (p + 1) are shown.
 図12に示すように、タイミング信号LLP1、タイミング信号LLP2およびタイミング信号LLP3の各タイミング信号LLPの立ち上がりのタイミングは互いに同じである。しかし、各タイミング信号LLPの立ち下がりのタイミングは、タイミング信号LLP1が最も早く、次にタイミング信号LLP2であり、タイミング信号LLP3が最も遅い。 As shown in FIG. 12, the timing of rising of each timing signal LLP of the timing signal LLP1, the timing signal LLP2, and the timing signal LLP3 is the same. However, the timing of the fall of each timing signal LLP is the earliest timing signal LLP1, the next timing signal LLP2, and the latest timing signal LLP3.
 本実施の形態において、各タイミング信号LLPが立下る時刻は第2遷移期間の開始時刻を表し、各タイミング信号LLPが立上る時刻は第1遷移期間の開始時刻を表す。 In the present embodiment, the time when each timing signal LLP falls represents the start time of the second transition period, and the time when each timing signal LLP rises represents the start time of the first transition period.
 したがって、タイミングパルス選択部74が書込みタイミング信号LPとしてタイミング信号LLP1を選択すると、第2遷移期間の時間長は最も長くなる。タイミングパルス選択部74が書込みタイミング信号LPとしてタイミング信号LLP2を選択すると、第2遷移期間の時間長は2番目に長くなる。そして、タイミングパルス選択部74が書込みタイミング信号LPとしてタイミング信号LLP3を選択すると、第2遷移期間の時間長は最も短くなる。 Therefore, when the timing pulse selection unit 74 selects the timing signal LLP1 as the write timing signal LP, the time length of the second transition period becomes the longest. When the timing pulse selector 74 selects the timing signal LLP2 as the write timing signal LP, the time length of the second transition period becomes the second longest. When the timing pulse selector 74 selects the timing signal LLP3 as the write timing signal LP, the time length of the second transition period becomes the shortest.
 タイミングパルス選択部74(p)は、データドライバ80(p)が駆動する複数のデータ電極22(例えば、384本のデータ電極22)の実質的な負荷容量の最大値にもとづき、書込みタイミング信号LPを選択する。 The timing pulse selection unit 74 (p) generates a write timing signal LP based on the maximum value of the substantial load capacity of the plurality of data electrodes 22 (for example, 384 data electrodes 22) driven by the data driver 80 (p). Select.
 具体的には、タイミングパルス選択部74(p)は、第2遷移期間における実質的な負荷容量の最大値が容量(Cg+2Cc)であれば、書込みタイミング信号LP(p)としてタイミング信号LLP1を選択する。タイミングパルス選択部74(p)は、第2遷移期間における実質的な負荷容量の最大値が容量(Cg+Cc)であれば、書込みタイミング信号LP(p)としてタイミング信号LLP2を選択する。そして、タイミングパルス選択部74(p)は、第2遷移期間における実質的な負荷容量の最大値が容量Cgであれば、書込みタイミング信号LP(p)としてタイミング信号LLP3を選択する。 Specifically, the timing pulse selection unit 74 (p) selects the timing signal LLP1 as the write timing signal LP (p) if the substantial maximum value of the load capacity in the second transition period is the capacity (Cg + 2Cc). To do. If the maximum value of the substantial load capacity in the second transition period is the capacity (Cg + Cc), the timing pulse selection unit 74 (p) selects the timing signal LLP2 as the write timing signal LP (p). Then, the timing pulse selection unit 74 (p) selects the timing signal LLP3 as the write timing signal LP (p) if the substantial maximum value of the load capacity in the second transition period is the capacity Cg.
 データドライバ80(1)~データドライバ80(15)のそれぞれは、シフトレジスタ部81と、データラッチ部83と、出力バッファ部85とを有する。 Each of the data driver 80 (1) to the data driver 80 (15) includes a shift register unit 81, a data latch unit 83, and an output buffer unit 85.
 シフトレジスタ部81は、シフトレジスタである。シフトレジスタ部81は、データドライバ80が駆動するN本(例えば、N=384)のデータ電極22と同じ数、もしくはそれ以上の数のラッチ82を有する。各ラッチ82は直列に接続され、クロック信号(クロックDck)に同期して、入力信号を後段のラッチ82に順送り(シフト)する。そして、上述したデータ変換部(図示せず)から送信されるシリアルデータをパラレルデータに変換する。 The shift register unit 81 is a shift register. The shift register unit 81 has the same number of latches 82 as the number of N (for example, N = 384) data electrodes 22 driven by the data driver 80 or more. Each latch 82 is connected in series, and the input signal is forwarded (shifted) to the subsequent latch 82 in synchronization with the clock signal (clock Dck). And the serial data transmitted from the data converter (not shown) mentioned above are converted into parallel data.
 すなわち、シフトレジスタ部81は、シフトレジスタ部41と同様に、サブフィールド毎にデータ変換部から送信されてくるN本のデータ電極22のそれぞれに対応するNbitのシリアルの画像データQを、N本のデータ電極22のそれぞれに対応するNbitのパラレルの画像データQに変換して出力する。 That is, like the shift register unit 41, the shift register unit 81 outputs N pieces of N-bit serial image data Q corresponding to each of the N data electrodes 22 transmitted from the data conversion unit for each subfield. Are converted into N-bit parallel image data Q corresponding to each of the data electrodes 22 and output.
 データラッチ部83は、データドライバ80が駆動するN本(例えば、N=384)のデータ電極22のそれぞれに対応するN個のラッチ84を有する。そして、各ラッチ84は、データ電極22のそれぞれに対応する画像データQを書込みタイミング信号LPでラッチして出力バッファ部85に出力する。 The data latch unit 83 includes N latches 84 corresponding to the N (for example, N = 384) data electrodes 22 driven by the data driver 80. Each latch 84 latches the image data Q corresponding to each data electrode 22 with the write timing signal LP and outputs the latched data to the output buffer unit 85.
 出力バッファ部85は、データドライバ80が駆動するN本(例えば、N=384)のデータ電極22のそれぞれに対応するN個の出力バッファ86を有する。各出力バッファ86は、データ電極22に印加する書込みパルスを発生する。 The output buffer unit 85 includes N output buffers 86 corresponding to N (for example, N = 384) data electrodes 22 driven by the data driver 80. Each output buffer 86 generates an address pulse to be applied to the data electrode 22.
 出力バッファ部85は、N個の高圧側スイッチQHと、N個の低圧側スイッチQLと、N個のHLタイミング制御部89とを有する。例えば、N=384であれば、出力バッファ部85は、高圧側スイッチQH(1)~高圧側スイッチQH(384)と、低圧側スイッチQL(1)~低圧側スイッチQL(384)と、HLタイミング制御部89(1)~HLタイミング制御部89(384)とを有する。 The output buffer unit 85 includes N high-voltage switches QH, N low-voltage switches QL, and N HL timing controllers 89. For example, if N = 384, the output buffer unit 85 includes the high voltage side switch QH (1) to the high voltage side switch QH (384), the low voltage side switch QL (1) to the low voltage side switch QL (384), and HL. Timing control unit 89 (1) to HL timing control unit 89 (384).
 そして、図11に示すように、本実施の形態において、各出力バッファ86は、1つの高圧側スイッチQHと1つの低圧側スイッチQLとを組み合わせた回路と、1つのHLタイミング制御部89とを有する。 As shown in FIG. 11, in this embodiment, each output buffer 86 includes a circuit combining one high-voltage side switch QH and one low-voltage side switch QL, and one HL timing control unit 89. Have.
 高圧側スイッチQHは書込みパルスの高圧側電圧Vdを出力し、低圧側スイッチQLは書込みパルスの低圧側電圧0(V)を出力する。 The high voltage side switch QH outputs the high voltage side voltage Vd of the write pulse, and the low voltage side switch QL outputs the low voltage side voltage 0 (V) of the write pulse.
 HLタイミング制御部89は、ラッチ84から出力される信号および書込みタイミング信号LPにもとづき高圧側スイッチQHおよび低圧側スイッチQLを制御する。すなわち、HLタイミング制御部89は、データ電極22に印加する電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移するタイミングを、書込みタイミング信号LPにもとづき制御する。これにより、各出力バッファ86は、書込みタイミング信号LPにもとづくタイミングで書込みパルスを発生する。 The HL timing control unit 89 controls the high voltage side switch QH and the low voltage side switch QL based on the signal output from the latch 84 and the write timing signal LP. That is, the HL timing control unit 89 controls the timing at which the voltage applied to the data electrode 22 transitions from the high voltage side voltage Vd to the low voltage side voltage 0 (V) based on the write timing signal LP. As a result, each output buffer 86 generates a write pulse at a timing based on the write timing signal LP.
 例えば、データドライバ80(p)に対応するタイミングパルス選択部74(p)が、書込み周期T(i-1)においてはタイミング信号LLP3を選択し、書込み周期T(i)においてはタイミング信号LLP1を選択し、書込み周期T(i+1)においてはタイミング信号LLP2を選択して書込みタイミング信号LP(p)として出力すれば、図12に示したように、データドライバ80(p)のバッファ部85(p)は、書込み周期T(i-1)においては時刻t23に第2遷移期間が開始するように書込みパルスを発生し、書込み周期T(i)においては時刻t41に第2遷移期間が開始するように書込みパルスを発生し、書込み周期T(i+1)においては時刻t62に第2遷移期間が開始するように書込みパルスを発生する。 For example, the timing pulse selector 74 (p) corresponding to the data driver 80 (p) selects the timing signal LLP3 in the write cycle T (i-1), and selects the timing signal LLP1 in the write cycle T (i). In the write cycle T (i + 1), if the timing signal LLP2 is selected and output as the write timing signal LP (p), as shown in FIG. 12, the buffer unit 85 (p) of the data driver 80 (p) is selected. ) Generates a write pulse so that the second transition period starts at time t23 in the write cycle T (i-1), and starts the second transition period at time t41 in the write cycle T (i). And a write pulse is generated so that the second transition period starts at time t62 in the write cycle T (i + 1).
 また、データドライバ80(p+1)に対応するタイミングパルス選択部74(p+1)が、書込み周期T(i-1)においてはタイミング信号LLP1を選択し、書込み周期T(i)においてタイミング信号LLP2を選択し、書込み周期T(i+1)においてはタイミング信号LLP3を選択して書込みタイミング信号LP(p+1)として出力すれば、図12に示したように、データドライバ80(p+1)のバッファ部85(p+1)は、書込み周期T(i-1)においいては時刻t21に第2遷移期間が開始するように書込みパルスを発生し、書込み周期T(i)においては時刻t42に第2遷移期間が開始するように書込みパルスを発生し、書込み周期T(i+1)においては時刻t63に第2遷移期間が開始するように書込みパルスを発生ように書込みパルスを発生する。 In addition, the timing pulse selector 74 (p + 1) corresponding to the data driver 80 (p + 1) selects the timing signal LLP1 in the write cycle T (i−1) and selects the timing signal LLP2 in the write cycle T (i). In the write cycle T (i + 1), if the timing signal LLP3 is selected and output as the write timing signal LP (p + 1), as shown in FIG. 12, the buffer unit 85 (p + 1) of the data driver 80 (p + 1) Generates a write pulse so that the second transition period starts at time t21 in the write period T (i-1), and starts the second transition period at time t42 in the write period T (i). Is written so that the second transition period starts at time t63 in the write cycle T (i + 1). It generates a write pulse to pulse to generation.
 以上示したように、本実施の形態におけるプラズマディスプレイ装置60は、データドライバ80が駆動する複数のデータ電極22のそれぞれに生じる実質的な負荷容量の最大値にもとづき、第2遷移期間の開始時刻をデータドライバ80のそれぞれに対して設定する。 As described above, the plasma display device 60 according to the present exemplary embodiment has the second transition period start time based on the substantial maximum value of the load capacity generated in each of the plurality of data electrodes 22 driven by the data driver 80. Is set for each of the data drivers 80.
 すなわち、タイミングパルス選択部74(p)は、第2遷移期間における実質的な負荷容量の最大値が容量(Cg+2Cc)であれば、書込みタイミング信号LP(p)としてタイミング信号LLP1を選択する。タイミングパルス選択部74(p)は、第2遷移期間における実質的な負荷容量の最大値が容量(Cg+Cc)であれば、書込みタイミング信号LP(p)としてタイミング信号LLP2を選択する。そして、タイミングパルス選択部74(p)は、第2遷移期間における実質的な負荷容量の最大値が容量Cgであれば、書込みタイミング信号LP(p)としてタイミング信号LLP3を選択する。 That is, the timing pulse selection unit 74 (p) selects the timing signal LLP1 as the write timing signal LP (p) if the substantial maximum value of the load capacity in the second transition period is the capacity (Cg + 2Cc). If the maximum value of the substantial load capacity in the second transition period is the capacity (Cg + Cc), the timing pulse selection unit 74 (p) selects the timing signal LLP2 as the write timing signal LP (p). Then, the timing pulse selection unit 74 (p) selects the timing signal LLP3 as the write timing signal LP (p) if the substantial maximum value of the load capacity in the second transition period is the capacity Cg.
 言い換えると、本実施の形態におけるプラズマディスプレイ装置60においては、両側のそれぞれに隣接する2本のデータ電極22の少なくとも一方のデータ電極22への印加電圧が第2遷移期間において低圧側電圧0(V)のまま遷移しない、あるいは高圧側電圧Vdのまま遷移しないデータ電極22が存在するデータドライバ80(例えば、書込み周期T(i+1)におけるデータドライバ80(p))における第2遷移期間の開始時刻(例えば、時刻t62)は、データドライバ80が駆動する全てのデータ電極22への印加電圧が第2遷移期間において高圧側電圧Vdから低圧側電圧0(V)へ遷移するデータドライバ80(例えば、書込み周期T(i+1)におけるデータドライバ80(p+1))における第2遷移期間の開始時刻(例えば、時刻t63)よりも早い時刻に設定される。 In other words, in the plasma display device 60 according to the present exemplary embodiment, the voltage applied to at least one data electrode 22 of the two data electrodes 22 adjacent to each of both sides is low voltage 0 (V) in the second transition period. ) Without transition, or the data driver 80 (for example, the data driver 80 (p) in the write cycle T (i + 1)) having the data electrode 22 that does not transition as the high-voltage side voltage Vd is the start time ( For example, at time t62), the data driver 80 (for example, writing) in which the voltage applied to all the data electrodes 22 driven by the data driver 80 transitions from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V) in the second transition period. Start of second transition period in data driver 80 (p + 1)) in period T (i + 1) Time (for example, time t63) is set at an earlier time than.
 また、プラズマディスプレイ装置60においては、データドライバ80が駆動する全てのデータ電極22への印加電圧が第2遷移期間において低圧側電圧0(V)のまま遷移しない、あるいは高圧側電圧Vdのまま遷移しないデータドライバ80(例えば、書込み周期T(i)におけるデータドライバ80(p))における第2遷移期間の開始時刻(例えば、時刻t41)は、両側のそれぞれに隣接する2本のデータ電極22の少なくとも一方のデータ電極22への印加電圧が第2遷移期間において低圧側電圧0(V)のまま遷移しない、あるいは高圧側電圧Vdのまま遷移しないデータ電極22が存在するデータドライバ80(例えば、書込み周期T(i)におけるデータドライバ80(p+1))における第2遷移期間の開始時刻(例えば、時刻t42)よりも早い時刻に設定される。 In the plasma display device 60, the voltage applied to all the data electrodes 22 driven by the data driver 80 does not change at the low voltage 0 (V) in the second transition period, or does not change at the high voltage Vd. The start time (for example, time t41) of the second transition period in the data driver 80 that does not perform (for example, the data driver 80 (p) in the write cycle T (i)) is the two data electrodes 22 adjacent to both sides. The data driver 80 (for example, writing) in which the data electrode 22 in which the applied voltage to at least one of the data electrodes 22 does not change as the low voltage side voltage 0 (V) or does not change as the high voltage side voltage Vd exists in the second transition period. Start time of second transition period in data driver 80 (p + 1) in period T (i) (example) If, time t42) is set at an earlier time than.
 これにより、第2遷移期間において、実質的な負荷容量が相対的に大きく高圧側電圧Vdから低圧側電圧0(V)へ遷移するのに要する時間長が相対的に長いデータ電極22を有するデータドライバ80では、データ電極22の実質的な負荷容量が相対的に小さく高圧側電圧Vdから低圧側電圧0(V)へ遷移するのに要する時間長が相対的に短いデータドライバ80よりも、第2遷移期間の開始時刻を早くすることができる。したがって、データドライバ80間で、第2遷移期間の終了時刻を互いに揃えることができる。 Thereby, in the second transition period, the data having the data electrode 22 having a relatively large substantial load capacity and a relatively long time length for transition from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V). In the driver 80, the substantial load capacity of the data electrode 22 is relatively small, and the time length required for the transition from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V) is relatively short compared to the data driver 80. The start time of the two transition periods can be advanced. Therefore, the end times of the second transition periods can be made uniform among the data drivers 80.
 そして、データ電極駆動回路62は、データ電極D(1)~データ電極D(m)の各データ電極22に印加する全ての電圧が高圧側電圧Vdから低圧側電圧0(V)に遷移し終えて第2遷移期間が終了した後に、続く第1遷移期間を開始してデータ電極22に印加する電圧を低圧側電圧0(V)から高圧側電圧Vdに遷移する。 Then, the data electrode drive circuit 62 finishes the transition of all voltages applied to the data electrodes 22 of the data electrodes D (1) to D (m) from the high voltage side voltage Vd to the low voltage side voltage 0 (V). After the second transition period ends, the subsequent first transition period starts and the voltage applied to the data electrode 22 transitions from the low voltage side voltage 0 (V) to the high voltage side voltage Vd.
 例えば、実質的な負荷容量の大きさの差にかかわらず各データドライバ80で第2遷移期間の開始時刻を互いに同じ時刻に設定するプラズマディスプレイ装置では、第2遷移期間の終了時刻に、データドライバ80間での差が生じやすい。 For example, in the plasma display device in which the start times of the second transition periods are set to the same time in the respective data drivers 80 regardless of the substantial difference in load capacity, the data drivers are displayed at the end times of the second transition periods. Differences between 80 are likely to occur.
 したがって、このようなプラズマディスプレイ装置と比較して、本実施の形態に示すプラズマディスプレイ装置60では、第2遷移期間と、第2遷移期間の直後に発生する第1遷移期間とが時間的に互いに重ならないように第1遷移期間および第2遷移期間を設定することが容易になる。したがって、書込み期間において書込み動作に要する時間を有効に使用しながら、パネル10の駆動を行うことが可能となる。 Therefore, as compared with such a plasma display device, in the plasma display device 60 shown in the present embodiment, the second transition period and the first transition period that occurs immediately after the second transition period are temporally mutually different. It becomes easy to set the first transition period and the second transition period so as not to overlap. Therefore, it is possible to drive the panel 10 while effectively using the time required for the writing operation in the writing period.
 なお、実施の形態1では、実質的な負荷容量の大きさにもとづき、第2遷移期間の開始時刻をデータ電極22毎に設定する例を説明した。また、実施の形態2では、実質的な負荷容量の最大値にもとづき、第2遷移期間の開始時刻をデータドライバ80毎に設定する例を説明した。しかし、本発明は何らこの構成に限定されるものではない。 In the first embodiment, the example in which the start time of the second transition period is set for each data electrode 22 based on the substantial load capacity has been described. In the second embodiment, the example in which the start time of the second transition period is set for each data driver 80 based on the substantial maximum value of the load capacity has been described. However, the present invention is not limited to this configuration.
 例えば、第1遷移期間の開始時刻を、データ電極22毎に、またはデータドライバ80毎に、設定する構成とすることもできる。あるいは、第1遷移期間の開始時刻および第2遷移期間の開始時刻を、データ電極22毎に、またはデータドライバ80毎に、設定する構成とすることもできる。 For example, the start time of the first transition period may be set for each data electrode 22 or for each data driver 80. Alternatively, the start time of the first transition period and the start time of the second transition period may be set for each data electrode 22 or for each data driver 80.
 以下、実施の形態3および実施の形態4では、第1遷移期間の開始時刻を、データ電極22毎に設定する例について説明する。 Hereinafter, in the third and fourth embodiments, an example in which the start time of the first transition period is set for each data electrode 22 will be described.
 (実施の形態3)
 実施の形態3では、書込み期間においてデータ電極22に書込みパルスを印加する際に、直前の第2遷移期間において、両側のそれぞれに隣接する2本のデータ電極22への印加電圧がともに高圧側電圧Vdから低圧側電圧0(V)へ遷移しないデータ電極22における第1遷移期間の開始時刻を相対的に早める構成について説明する。これにより、本実施の形態では、安定した書込み動作とデータ電極駆動回路における消費電力の削減とを実現する。
(Embodiment 3)
In the third embodiment, when an address pulse is applied to the data electrode 22 in the address period, the voltage applied to the two data electrodes 22 adjacent to both sides in the immediately preceding second transition period is the high voltage side voltage. A configuration in which the start time of the first transition period in the data electrode 22 that does not transition from Vd to the low-voltage side voltage 0 (V) is relatively advanced will be described. Thereby, in the present embodiment, stable write operation and reduction of power consumption in the data electrode driving circuit are realized.
 図13は、本発明の実施の形態3におけるプラズマディスプレイ装置のデータ電極駆動回路132の構成を概略的に示す回路図である。なお、図13には、データ電極駆動回路132を構成する回路ブロックの一部のみを示し、同じ構成となる他の回路ブロックは省略している。 FIG. 13 is a circuit diagram schematically showing a configuration of data electrode driving circuit 132 of the plasma display device in accordance with the third exemplary embodiment of the present invention. FIG. 13 shows only a part of the circuit blocks constituting the data electrode driving circuit 132, and other circuit blocks having the same configuration are omitted.
 本実施の形態におけるプラズマディスプレイ装置は、実施の形態1において図5に示したプラズマディスプレイ装置30とはデータ電極駆動回路132の構成が異なる。しかし、その他の回路ブロックは、プラズマディスプレイ装置30と同じ構成を有し、同じ動作をする。したがって、以下、データ電極駆動回路132についてのみ説明を行う。 The plasma display device in the present embodiment is different from the plasma display device 30 shown in FIG. 5 in the first embodiment in the configuration of the data electrode driving circuit 132. However, the other circuit blocks have the same configuration as the plasma display device 30 and perform the same operation. Therefore, only the data electrode driving circuit 132 will be described below.
 データ電極駆動回路132は、シフトレジスタ部41と、自己負荷算出部42と、隣接負荷算出部44と、自己負荷算出部50と、隣接負荷算出部54と、出力バッファ部57とを有する。 The data electrode driving circuit 132 includes a shift register unit 41, a self load calculation unit 42, an adjacent load calculation unit 44, a self load calculation unit 50, an adjacent load calculation unit 54, and an output buffer unit 57.
 なお、以下、自己負荷算出部42を「第1自己負荷算出部42」と呼称し、自己負荷算出部50を「第2自己負荷算出部50」と呼称し、隣接負荷算出部44を「第1隣接負荷算出部44」と呼称し、隣接負荷算出部54を「第2隣接負荷算出部54」と呼称する。 Hereinafter, the self-load calculation unit 42 is referred to as a “first self-load calculation unit 42”, the self-load calculation unit 50 is referred to as a “second self-load calculation unit 50”, and the adjacent load calculation unit 44 is referred to as a “first self-load calculation unit 42”. The adjacent load calculator 54 is referred to as a “first adjacent load calculator 44”, and the adjacent load calculator 54 is referred to as a “second adjacent load calculator 54”.
 なお、本実施の形態におけるシフトレジスタ部41は、実施の形態1で説明したシフトレジスタ部41と同様の構成・動作である。また、第1自己負荷算出部42は実施の形態1で説明した自己負荷算出部42と同様の構成・動作である。また、第1隣接負荷算出部44は、実施の形態1で説明した隣接負荷算出部44と同様の構成・動作である。したがって、本実施の形態では、これらの回路ブロックの説明は省略する。 Note that the shift register unit 41 in the present embodiment has the same configuration and operation as the shift register unit 41 described in the first embodiment. The first self-load calculation unit 42 has the same configuration and operation as the self-load calculation unit 42 described in the first embodiment. The first adjacent load calculation unit 44 has the same configuration and operation as the adjacent load calculation unit 44 described in the first embodiment. Therefore, description of these circuit blocks is omitted in this embodiment.
 第2自己負荷算出部50は、データ電極駆動回路32が駆動するN本(例えば、N=1920×3)のデータ電極22のそれぞれに対応するN個の1ラインディレイ51と論理ゲート52および論理ゲート53とを有する。 The second self-load calculating unit 50 includes N one-line delays 51, logic gates 52, and logic corresponding to each of N (for example, N = 1920 × 3) data electrodes 22 driven by the data electrode driving circuit 32. And a gate 53.
 以下、データ電極D(j)に書込みパルスを印加する場合を例に挙げてデータ電極駆動回路132の構成および動作を説明する。したがって、以下に説明するデータ電極駆動回路132の構成および動作はデータ電極D(j)に対する構成および動作となるが、他のデータ電極22に対する構成および動作もデータ電極D(j)に対する構成および動作と同様である。 Hereinafter, the configuration and operation of the data electrode driving circuit 132 will be described by taking as an example the case where an address pulse is applied to the data electrode D (j). Therefore, the configuration and operation of data electrode drive circuit 132 described below are the configuration and operation for data electrode D (j), but the configuration and operation for other data electrode 22 are also the configuration and operation for data electrode D (j). It is the same.
 なお、データ電極D(j)に隣接するデータ電極22はデータ電極D(j-1)およびデータ電極D(j+1)であるものとする。 It is assumed that the data electrode 22 adjacent to the data electrode D (j) is the data electrode D (j−1) and the data electrode D (j + 1).
 第2自己負荷算出部50における1ラインディレイ51(j)は、実施の形態1に示した1ラインディレイ142(j)と同様に、データ電極D(j)に対応する画像データQ(j)を1ライン(1水平同期期間)遅延して画像データDQ(j)を出力する。 The one-line delay 51 (j) in the second self-load calculating unit 50 is the image data Q (j) corresponding to the data electrode D (j), similarly to the one-line delay 142 (j) shown in the first embodiment. Is delayed by one line (one horizontal synchronization period) to output image data DQ (j).
 論理ゲート52(j)および論理ゲート53(j)は2入力1出力のアンドゲート(論理積演算を行う論理回路)である。なお、図13において、各論理ゲートの入力端子にある小さい丸印はインバータ(論理反転を行う論理回路)である。したがって、論理ゲート52(j)には、画像データQ(j)を反転した信号が入力され、論理ゲート53(j)には、画像データDQ(j)を反転した信号が入力される。 The logic gate 52 (j) and the logic gate 53 (j) are 2-input 1-output AND gates (logic circuits that perform a logical product operation). In FIG. 13, small circles at the input terminals of the logic gates are inverters (logic circuits that perform logic inversion). Therefore, a signal obtained by inverting the image data Q (j) is input to the logic gate 52 (j), and a signal obtained by inverting the image data DQ (j) is input to the logic gate 53 (j).
 論理ゲート52(j)および論理ゲート53(j)は、画像データDQ(j)と画像データQ(j)とにもとづき、データ電極D(j)に印加する電圧の変化を検出する。 The logic gate 52 (j) and the logic gate 53 (j) detect a change in the voltage applied to the data electrode D (j) based on the image data DQ (j) and the image data Q (j).
 画像データDQ(j)が「H」で画像データQ(j)が「L」のとき、論理ゲート52(j)の出力は「H」となる。したがって、論理ゲート52(j)の出力が「H」であれば、画像データQ(j)が「H」から「L」へ変化し、データ電極D(j)に印加する電圧が高圧側電圧Vdから低圧側電圧0(V)へ(「H」から「L」へ)変化すると判断することができる。 When the image data DQ (j) is “H” and the image data Q (j) is “L”, the output of the logic gate 52 (j) is “H”. Therefore, if the output of the logic gate 52 (j) is “H”, the image data Q (j) changes from “H” to “L”, and the voltage applied to the data electrode D (j) is the high voltage side voltage. It can be determined that the voltage changes from Vd to the low voltage 0 (V) (from “H” to “L”).
 画像データDQ(j)が「L」で画像データQ(j)が「H」のとき、論理ゲート53(j)の出力は「H」となる。したがって、論理ゲート53(j)の出力が「H」であれば、画像データQ(j)が「L」から「H」へ変化し、データ電極D(j)に印加する電圧が低圧側電圧0(V)から高圧側電圧Vdへ(「L」から「H」へ)変化すると判断することができる。 When the image data DQ (j) is “L” and the image data Q (j) is “H”, the output of the logic gate 53 (j) is “H”. Therefore, if the output of the logic gate 53 (j) is “H”, the image data Q (j) changes from “L” to “H”, and the voltage applied to the data electrode D (j) is the low voltage side voltage. It can be determined that the voltage changes from 0 (V) to the high-voltage side voltage Vd (from “L” to “H”).
 上記以外のときには、論理ゲート52(j)の出力および論理ゲート53(j)の出力はともに「L」となる。このとき、画像データQ(j)は「L」の状態もしくは「H」の状態を維持しており、データ電極D(j)に印加する電圧も低圧側電圧0(V)(「L」)の状態もしくは高圧側電圧Vd(「H」)の状態を維持していると判断することができる。 In other cases, the output of the logic gate 52 (j) and the output of the logic gate 53 (j) are both “L”. At this time, the image data Q (j) maintains the “L” state or the “H” state, and the voltage applied to the data electrode D (j) is also the low-voltage side voltage 0 (V) (“L”). Or the high voltage side voltage Vd (“H”).
 第2隣接負荷算出部54は、データ電極22のそれぞれに対応して設けられた論理回路を有する。この論理回路は、論理ゲート154、論理ゲート55、論理ゲート56で構成される。したがって、第2隣接負荷算出部54は、データ電極駆動回路132が駆動するN本(例えば、N=1920×3)のデータ電極22のそれぞれに対応するN個の論理回路を有し、N個の論理回路のそれぞれが、論理ゲート154、論理ゲート55および論理ゲート56で構成される。 The second adjacent load calculation unit 54 has a logic circuit provided corresponding to each of the data electrodes 22. This logic circuit includes a logic gate 154, a logic gate 55, and a logic gate 56. Therefore, the second adjacent load calculation unit 54 has N logic circuits corresponding to each of N (for example, N = 1920 × 3) data electrodes 22 driven by the data electrode driving circuit 132, and N Each of the logic circuits includes a logic gate 154, a logic gate 55, and a logic gate 56.
 論理ゲート154および論理ゲート55は2入力1出力のアンドゲートであり、論理ゲート56は2入力1出力のオアゲート(論理和演算を行う論理回路)である。 The logic gate 154 and the logic gate 55 are AND gates having two inputs and one output, and the logic gate 56 is an OR gate having two inputs and one output (a logic circuit that performs an OR operation).
 図13に示す論理ゲート154(j)、論理ゲート55(j)および論理ゲート56(j)で構成された論理回路は、データ電極D(j-1)に対応する画像データQ(j-1)、データ電極D(j)に対応する画像データQ(j)およびデータ電極D(j+1)に対応する画像データQ(j+1)の変化を検出するための回路である。 The logic circuit including the logic gate 154 (j), the logic gate 55 (j), and the logic gate 56 (j) shown in FIG. 13 has image data Q (j−1) corresponding to the data electrode D (j−1). ), A circuit for detecting changes in the image data Q (j) corresponding to the data electrode D (j) and the image data Q (j + 1) corresponding to the data electrode D (j + 1).
 データ電極D(j-1)の画像データQ(j-1)とデータ電極D(j+1)の画像データQ(j+1)の少なくとも一方の画像データが「H」から「L」へ変化し、かつデータ電極D(j)の画像データQ(j)が「L」から「H」へ変化するときには、論理ゲート56(j)の出力は「H」となる。 At least one of the image data Q (j−1) of the data electrode D (j−1) and the image data Q (j + 1) of the data electrode D (j + 1) changes from “H” to “L”, and When the image data Q (j) of the data electrode D (j) changes from “L” to “H”, the output of the logic gate 56 (j) becomes “H”.
 これは、第1遷移期間において、データ電極D(j)に印加する電圧が低圧側電圧0(V)から高圧側電圧Vdへ遷移し、データ電極D(j-1)に印加する電圧とデータ電極D(j+1)に印加する電圧との少なくとも一方の電圧が高圧側電圧Vdから低圧側電圧0(V)へ遷移することを表す。 This is because, in the first transition period, the voltage applied to the data electrode D (j) transits from the low voltage side voltage 0 (V) to the high voltage side voltage Vd, and the voltage and data applied to the data electrode D (j−1). This represents that at least one of the voltages applied to the electrode D (j + 1) transits from the high voltage side voltage Vd to the low voltage side voltage 0 (V).
 なお、これ以外のときには、論理ゲート56(j)の出力は「L」となる。 In other cases, the output of the logic gate 56 (j) is “L”.
 出力バッファ部57は、N個の高圧側スイッチQHと、N個の低圧側スイッチQLと、N個のLHタイミング制御部58と、N個のHLタイミング制御部59とを有する。例えば、N=1920×3であれば、出力バッファ部57は、高圧側スイッチQH(1)~高圧側スイッチQH(5760)と、低圧側スイッチQL(1)~低圧側スイッチQL(5760)と、LHタイミング制御部58(1)~LHタイミング制御部58(5760)と、HLタイミング制御部59(1)~HLタイミング制御部59(5760)とを有する。 The output buffer unit 57 includes N high-voltage switches QH, N low-voltage switches QL, N LH timing controllers 58, and N HL timing controllers 59. For example, if N = 1920 × 3, the output buffer unit 57 includes the high voltage side switch QH (1) to the high voltage side switch QH (5760), the low voltage side switch QL (1) to the low voltage side switch QL (5760). , An LH timing control unit 58 (1) to an LH timing control unit 58 (5760) and an HL timing control unit 59 (1) to an HL timing control unit 59 (5760).
 そして、図13に示すように、本実施の形態において、各出力バッファ157は、1つの高圧側スイッチQHと1つの低圧側スイッチQLとを組み合わせた回路と、1つのLHタイミング制御部58および1つのHLタイミング制御部59とを有する。 As shown in FIG. 13, in this embodiment, each output buffer 157 includes a circuit combining one high-voltage side switch QH and one low-voltage side switch QL, and one LH timing control unit 58 and 1. Two HL timing control units 59.
 高圧側スイッチQHは書込みパルスの高圧側の電圧Vdを出力し、低圧側スイッチQLは書込みパルスの低圧側の電圧0(V)を出力する。 The high voltage side switch QH outputs the voltage Vd on the high voltage side of the write pulse, and the low voltage side switch QL outputs the voltage 0 (V) on the low voltage side of the write pulse.
 HLタイミング制御部59は、実施の形態1に示したHLタイミング制御部49と同様に、第1隣接負荷算出部44から出力される信号(論理ゲート46の出力信号および論理ゲート47の出力信号)にもとづき高圧側スイッチQHおよび低圧側スイッチQLを制御し、データ電極22に印加する電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移するタイミングを制御する。 Similarly to the HL timing control unit 49 shown in the first embodiment, the HL timing control unit 59 outputs signals from the first adjacent load calculation unit 44 (the output signal of the logic gate 46 and the output signal of the logic gate 47). Based on this, the high voltage side switch QH and the low voltage side switch QL are controlled, and the timing at which the voltage applied to the data electrode 22 transitions from the high voltage side voltage Vd to the low voltage side voltage 0 (V) is controlled.
 例えば、HLタイミング制御部59(j)は、論理ゲート46(j)の出力が「H」であれば、第2遷移期間においてデータ電極D(j)に印加する電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移する際に、第2遷移期間の時間長が最も長くなるように、最も早いタイミングで第2遷移期間を開始する。 For example, when the output of the logic gate 46 (j) is “H”, the HL timing control unit 59 (j) reduces the voltage applied to the data electrode D (j) from the high-voltage side voltage Vd to the low voltage side. When transitioning to the side voltage 0 (V), the second transition period starts at the earliest timing so that the time length of the second transition period becomes the longest.
 また、HLタイミング制御部59(j)は、論理ゲート47(j)の出力が「H」であれば、第2遷移期間においてデータ電極D(j)に印加する電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移する際に、第2遷移期間の時間長が2番目に長くなるように、2番目に早いタイミングで第2遷移期間を開始する。 In addition, when the output of the logic gate 47 (j) is “H”, the HL timing control unit 59 (j) reduces the voltage applied to the data electrode D (j) from the high-voltage side voltage Vd to the low voltage side. When transitioning to the side voltage 0 (V), the second transition period is started at the second earliest timing so that the time length of the second transition period is the second longest.
 また、HLタイミング制御部59(j)は、論理ゲート46(j)の出力および論理ゲート47(j)の出力がともに「L」であれば、第2遷移期間においてデータ電極D(j)に印加する電圧を高圧側電圧Vdから低圧側電圧0(V)に遷移する際に、第2遷移期間の時間長が最も短くなるように、最も遅いタイミングで第2遷移期間を開始する。 The HL timing control unit 59 (j) applies the data electrode D (j) to the data electrode D (j) in the second transition period if both the output of the logic gate 46 (j) and the output of the logic gate 47 (j) are “L”. When the voltage to be applied is changed from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V), the second transition period is started at the latest timing so that the time length of the second transition period becomes the shortest.
 LHタイミング制御部58は、第2隣接負荷算出部54から出力される信号(論理ゲート56の出力信号)にもとづき高圧側スイッチQHおよび低圧側スイッチQLを制御し、データ電極22に印加する電圧を低圧側電圧0(V)から高圧側電圧Vdに遷移するタイミングを制御する。 The LH timing control unit 58 controls the high-voltage side switch QH and the low-voltage side switch QL based on the signal output from the second adjacent load calculation unit 54 (the output signal of the logic gate 56), and determines the voltage to be applied to the data electrode 22. The timing of transition from the low-voltage side voltage 0 (V) to the high-voltage side voltage Vd is controlled.
 例えば、LHタイミング制御部58(j)は、論理ゲート56(j)の出力が「H」であれば、実施の形態1と同様に、データ電極D(1)~データ電極D(m)の各データ電極22に印加する全ての電圧が高圧側電圧Vdから低圧側電圧0(V)に遷移し終えて第2遷移期間が終了した後に、続く第1遷移期間を開始してデータ電極22に印加する電圧を低圧側電圧0(V)から高圧側電圧Vdに遷移する。 For example, when the output of the logic gate 56 (j) is “H”, the LH timing control unit 58 (j), as in the first embodiment, the data electrodes D (1) to D (m). After all the voltages applied to each data electrode 22 have transitioned from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V) and the second transition period has ended, the subsequent first transition period is started and the data electrode 22 The applied voltage transits from the low-voltage side voltage 0 (V) to the high-voltage side voltage Vd.
 また、LHタイミング制御部58(j)は、論理ゲート56(j)の出力が「L」であれば、論理ゲート56(j)の出力が「H」のときよりも早いタイミングで第1遷移期間を開始する。すなわち、LHタイミング制御部58(j)は、論理ゲート56(j)の出力が「L」であれば、第2遷移期間が終了する前に続く第1遷移期間を開始してデータ電極22に印加する電圧を低圧側電圧0(V)から高圧側電圧Vdに遷移する。 Further, when the output of the logic gate 56 (j) is “L”, the LH timing control unit 58 (j) performs the first transition at an earlier timing than when the output of the logic gate 56 (j) is “H”. Start the period. That is, if the output of the logic gate 56 (j) is “L”, the LH timing control unit 58 (j) starts the first transition period that follows before the end of the second transition period and applies the data electrode 22 to the data electrode 22. The applied voltage transits from the low-voltage side voltage 0 (V) to the high-voltage side voltage Vd.
 図14は、本発明の実施の形態3におけるプラズマディスプレイ装置のデータ電極駆動回路132の動作の一例を概略的に示すタイミングチャートである。 FIG. 14 is a timing chart schematically showing an example of the operation of the data electrode drive circuit 132 of the plasma display device in accordance with the third exemplary embodiment of the present invention.
 図14には、書込み期間における4つの書込み周期(書込み周期T(i-1)、書込み周期T(i)、書込み周期T(i+1)および書込み周期T(i+2))を例に挙げて示し、走査電極SC(i-1)~走査電極SC(i+1)およびデータ電極D(j-2)~データ電極D(j+3)に印加する駆動電圧波形を例に挙げて示す。 FIG. 14 shows four write cycles (write cycle T (i−1), write cycle T (i), write cycle T (i + 1), and write cycle T (i + 2)) in the write period as examples. The drive voltage waveforms applied to scan electrode SC (i−1) to scan electrode SC (i + 1) and data electrode D (j−2) to data electrode D (j + 3) will be described as an example.
 また、図14には、書込み周期T(i-1)ではデータ電極D(j-2)およびデータ電極D(j+3)には書込みパルスを印加し、データ電極D(j-1)、データ電極D(j)、データ電極D(j+1)およびデータ電極D(j+2)には書込みパルスを印加せず、書込み周期T(i)ではデータ電極D(j-1)、データ電極D(j)、データ電極D(j+1)およびデータ電極D(j+2)には書込みパルスを印加し、データ電極D(j-2)およびデータ電極D(j+3)には書込みパルスを印加せず、書込み周期T(i+1)ではデータ電極D(j-2)およびデータ電極D(j+3)には書込みパルスを印加し、データ電極D(j-1)、データ電極D(j)、データ電極D(j+1)およびデータ電極D(j+2)には書込みパルスを印加せず、書込み周期T(i+2)ではデータ電極D(j-2)、データ電極D(j-1)、データ電極D(j+1)およびデータ電極D(j+2)には書込みパルスを印加し、データ電極D(j)およびデータ電極D(j+3)には書込みパルスを印加しない例を示す。 In FIG. 14, in the write cycle T (i−1), a write pulse is applied to the data electrode D (j−2) and the data electrode D (j + 3), and the data electrode D (j−1), the data electrode No write pulse is applied to D (j), data electrode D (j + 1) and data electrode D (j + 2), and data electrode D (j−1), data electrode D (j), An address pulse is applied to the data electrode D (j + 1) and the data electrode D (j + 2), no address pulse is applied to the data electrode D (j-2) and the data electrode D (j + 3), and an address period T (i + 1) ), An address pulse is applied to the data electrode D (j-2) and the data electrode D (j + 3), and the data electrode D (j-1), the data electrode D (j), the data electrode D (j + 1), and the data electrode D (j + 2) In the write cycle T (i + 2), no write pulse is applied to the data electrode D (j-2), the data electrode D (j-1), the data electrode D (j + 1), and the data electrode D (j + 2). An example is shown in which the write pulse is not applied to the data electrode D (j) and the data electrode D (j + 3).
 書込み周期T(i-1)の第2遷移期間では、データ電極D(j-2)およびデータ電極D(j+3)に印加する電圧は、高圧側電圧Vdから低高圧側電圧0(V)に遷移する。書込み周期T(i)の第1遷移期間では、データ電極D(j-1)、データ電極D(j)、データ電極D(j+1)およびデータ電極D(j+2)に印加する電圧は低圧側電圧0(V)から高圧側電圧Vdに遷移する。 In the second transition period of the write cycle T (i−1), the voltage applied to the data electrode D (j−2) and the data electrode D (j + 3) is changed from the high voltage side voltage Vd to the low voltage side voltage 0 (V). Transition. In the first transition period of the write cycle T (i), the voltage applied to the data electrode D (j−1), the data electrode D (j), the data electrode D (j + 1), and the data electrode D (j + 2) is the low-voltage side voltage. Transition from 0 (V) to the high voltage Vd.
 したがって、このとき、第2自己負荷算出部50の論理ゲート52(j-2)および論理ゲート52(j+3)の出力は「H」となり、論理ゲート53(j-1)、論理ゲート53(j)、論理ゲート53(j+1)および論理ゲート53(j+2)の出力は「H」となる。 Accordingly, at this time, the outputs of the logic gate 52 (j−2) and the logic gate 52 (j + 3) of the second self-load calculating unit 50 are “H”, and the logic gate 53 (j−1) and the logic gate 53 (j ), The outputs of the logic gate 53 (j + 1) and the logic gate 53 (j + 2) are “H”.
 これにより、第2隣接負荷算出部54の論理ゲート56(j-1)および論理ゲート56(j+2)の出力は「H」となり、論理ゲート56(j)および論理ゲート56(j+1)の出力は「L」となる。 Thereby, the outputs of the logic gate 56 (j−1) and the logic gate 56 (j + 2) of the second adjacent load calculating unit 54 become “H”, and the outputs of the logic gate 56 (j) and the logic gate 56 (j + 1) are “L”.
 LHタイミング制御部58(j-1)およびLHタイミング制御部58(j+2)は、論理ゲート56(j-1)および論理ゲート56(j+2)の出力が「H」であるので、直前の第2遷移期間(ここでは、書込み周期T(i-1)の第2遷移期間)において高圧側電圧Vdから低圧側電圧0(V)に電圧を遷移すべきデータ電極22に印加する全ての電圧が高圧側電圧Vdから低圧側電圧0(V)に遷移し終わった後のタイミングt33で、データ電極D(j-1)およびデータ電極D(j+2)に印加する電圧を低圧側電圧0(V)から高圧側電圧Vdに遷移する。 Since the outputs of the logic gate 56 (j−1) and the logic gate 56 (j + 2) are “H”, the LH timing control unit 58 (j−1) and the LH timing control unit 58 (j + 2) In the transition period (here, the second transition period of the write cycle T (i-1)), all the voltages applied to the data electrode 22 to which the voltage should be transitioned from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V) At timing t33 after the transition from the side voltage Vd to the low voltage side voltage 0 (V), the voltage applied to the data electrode D (j-1) and the data electrode D (j + 2) is changed from the low voltage side voltage 0 (V). Transition to the high voltage Vd.
 一方、LHタイミング制御部58(j)およびLHタイミング制御部58(j+1)は、論理ゲート56(j)および論理ゲート56(j+1)の出力が「L」であるので、データ電極D(j)およびデータ電極D(j+1)に印加する電圧を、タイミングt33よりも早いタイミングt31で低圧側電圧0(V)から高圧側電圧Vdに遷移し始める。 On the other hand, since the outputs of the logic gate 56 (j) and the logic gate 56 (j + 1) are “L” in the LH timing control unit 58 (j) and the LH timing control unit 58 (j + 1), the data electrode D (j) The voltage applied to the data electrode D (j + 1) starts to transition from the low-voltage side voltage 0 (V) to the high-voltage side voltage Vd at a timing t31 earlier than the timing t33.
 すなわち、LHタイミング制御部58(j)およびLHタイミング制御部58(j+1)は、データ電極D(j-2)およびデータ電極D(j+3)に印加する電圧が高圧側電圧Vdから低圧側電圧0(V)に遷移し終わる前に、データ電極D(j)およびデータ電極D(j+1)に印加する電圧を低圧側電圧0(V)から高圧側電圧Vdに遷移する動作を開始する。 In other words, the LH timing control unit 58 (j) and the LH timing control unit 58 (j + 1) have a voltage applied to the data electrode D (j-2) and the data electrode D (j + 3) from the high voltage side voltage Vd to the low voltage side voltage 0. Before the transition to (V) is completed, the operation of transitioning the voltage applied to the data electrode D (j) and the data electrode D (j + 1) from the low voltage side voltage 0 (V) to the high voltage side voltage Vd is started.
 書込み周期T(i)の第2遷移期間では、データ電極D(j-1)、データ電極D(j)、データ電極D(j+1)およびデータ電極D(j+2)に印加する電圧は、高圧側電圧Vdから低高圧側電圧0(V)に遷移する。書込み周期T(i+1)の第1遷移期間では、データ電極D(j-2)およびデータ電極D(j+3)に印加する電圧は低圧側電圧0(V)から高圧側電圧Vdに遷移する。 In the second transition period of the write cycle T (i), the voltage applied to the data electrode D (j−1), the data electrode D (j), the data electrode D (j + 1), and the data electrode D (j + 2) Transition from the voltage Vd to the low high voltage 0 (V). In the first transition period of the write cycle T (i + 1), the voltage applied to the data electrode D (j−2) and the data electrode D (j + 3) transitions from the low voltage side voltage 0 (V) to the high voltage side voltage Vd.
 したがって、このとき、第2自己負荷算出部50の論理ゲート52(j-1)、論理ゲート52(j)、論理ゲート52(j+1)および論理ゲート52(j+2)の出力は「H」となり、論理ゲート53(j-2)および論理ゲート53(j+3)の出力は「H」となる。 Therefore, at this time, the outputs of the logic gate 52 (j−1), the logic gate 52 (j), the logic gate 52 (j + 1), and the logic gate 52 (j + 2) of the second self-load calculation unit 50 are “H”. The outputs of logic gate 53 (j−2) and logic gate 53 (j + 3) are “H”.
 これにより、第2隣接負荷算出部54の論理ゲート56(j-2)および論理ゲート56(j+3)の出力は「H」となる。 Thereby, the outputs of the logic gate 56 (j−2) and the logic gate 56 (j + 3) of the second adjacent load calculation unit 54 become “H”.
 LHタイミング制御部58(j-2)およびLHタイミング制御部58(j+3)は、論理ゲート56(j-2)および論理ゲート56(j+3)の出力が「H」であるので、直前の第2遷移期間(ここでは、書込み周期T(i)の第2遷移期間)において高圧側電圧Vdから低圧側電圧0(V)に電圧を遷移すべきデータ電極22に印加する全ての電圧が高圧側電圧Vdから低圧側電圧0(V)に遷移し終わった後のタイミングt53で、データ電極D(j-2)およびデータ電極D(j+3)に印加する電圧を低圧側電圧0(V)から高圧側電圧Vdに遷移する。 Since the outputs of the logic gate 56 (j-2) and the logic gate 56 (j + 3) are “H”, the LH timing control unit 58 (j−2) and the LH timing control unit 58 (j + 3) In the transition period (here, the second transition period of the write cycle T (i)), all the voltages applied to the data electrode 22 to which the voltage should be transitioned from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V) At the timing t53 after the transition from Vd to the low-voltage side voltage 0 (V), the voltage applied to the data electrode D (j-2) and the data electrode D (j + 3) is changed from the low-voltage side voltage 0 (V) to the high-voltage side. Transition to voltage Vd.
 書込み周期T(i+1)の第2遷移期間では、データ電極D(j+3)に印加する電圧は、高圧側電圧Vdから低高圧側電圧0(V)に遷移する。書込み周期T(i+2)の第1遷移期間では、データ電極D(j-1)、データ電極D(j+1)およびデータ電極D(j+2)に印加する電圧は低圧側電圧0(V)から高圧側電圧Vdに遷移する。 In the second transition period of the write cycle T (i + 1), the voltage applied to the data electrode D (j + 3) transits from the high voltage side voltage Vd to the low voltage side voltage 0 (V). In the first transition period of the write cycle T (i + 2), the voltage applied to the data electrode D (j−1), the data electrode D (j + 1), and the data electrode D (j + 2) is from the low voltage side voltage 0 (V) to the high voltage side. Transition to voltage Vd.
 したがって、このとき、第2自己負荷算出部50の論理ゲート52(j+3)の出力は「H」となり、論理ゲート53(j-1)、論理ゲート53(j+1)および論理ゲート53(j+2)の出力は「H」となる。 Therefore, at this time, the output of the logic gate 52 (j + 3) of the second self-load calculation unit 50 is “H”, and the logic gate 53 (j−1), the logic gate 53 (j + 1), and the logic gate 53 (j + 2) The output is “H”.
 これにより、第2隣接負荷算出部54の論理ゲート56(j+2)の出力は「H」となり、論理ゲート56(j-1)および論理ゲート56(j+1)の出力は「L」となる。 Thereby, the output of the logic gate 56 (j + 2) of the second adjacent load calculation unit 54 becomes “H”, and the outputs of the logic gate 56 (j−1) and the logic gate 56 (j + 1) become “L”.
 LHタイミング制御部58(j+2)は、論理ゲート56(j+2)の出力が「H」であるので、直前の第2遷移期間(ここでは、書込み周期T(i+1)の第2遷移期間)において高圧側電圧Vdから低圧側電圧0(V)に電圧を遷移すべきデータ電極22に印加する全ての電圧が高圧側電圧Vdから低圧側電圧0(V)に遷移し終わった後のタイミングt73で、データ電極D(j+2)に印加する電圧を低圧側電圧0(V)から高圧側電圧Vdに遷移する。 Since the output of the logic gate 56 (j + 2) is “H”, the LH timing control unit 58 (j + 2) has a high voltage in the immediately preceding second transition period (here, the second transition period of the write cycle T (i + 1)). At the timing t73 after all the voltages applied to the data electrode 22 to which the voltage is to be changed from the side voltage Vd to the low voltage 0 (V) have been changed from the high voltage Vd to the low voltage 0 (V), The voltage applied to the data electrode D (j + 2) transits from the low voltage side voltage 0 (V) to the high voltage side voltage Vd.
 一方、LHタイミング制御部58(j-1)およびLHタイミング制御部58(j+1)は、論理ゲート56(j-1)および論理ゲート56(j+1)の出力が「L」であるので、データ電極D(j-1)およびデータ電極D(j+1)に印加する電圧を、タイミングt73よりも早いタイミングt71で低圧側電圧0(V)から高圧側電圧Vdに遷移し始める。 On the other hand, since the outputs of the logic gate 56 (j−1) and the logic gate 56 (j + 1) are “L”, the LH timing controller 58 (j−1) and the LH timing controller 58 (j + 1) The voltage applied to D (j−1) and the data electrode D (j + 1) starts to transition from the low voltage side voltage 0 (V) to the high voltage side voltage Vd at a timing t71 earlier than the timing t73.
 すなわち、LHタイミング制御部58(j-1)およびLHタイミング制御部58(j+1)は、データ電極D(j+3)に印加する電圧が高圧側電圧Vdから低圧側電圧0(V)に遷移し終わる前に、データ電極D(j-1)およびデータ電極D(j+1)に印加する電圧を低圧側電圧0(V)から高圧側電圧Vdに遷移する動作を開始する。 That is, the LH timing control unit 58 (j−1) and the LH timing control unit 58 (j + 1) finish the transition of the voltage applied to the data electrode D (j + 3) from the high voltage side voltage Vd to the low voltage side voltage 0 (V). Before the operation, the voltage applied to the data electrode D (j−1) and the data electrode D (j + 1) is changed from the low voltage side voltage 0 (V) to the high voltage side voltage Vd.
 以上示したように、本実施の形態におけるプラズマディスプレイ装置においては、書込み期間においてデータ電極22に書込みパルスを印加する際に、直前の第2遷移期間において、両側のそれぞれに隣接する2本のデータ電極22の少なくとも一方のデータ電極22への印加電圧が高圧側電圧Vdから低圧側電圧0(V)へ遷移するデータ電極22(例えば、書込み周期T(i)におけるデータ電極D(j-1)およびデータ電極D(j+2))における第1遷移期間の開始時刻(例えば、時刻t33)を、直前の第2遷移期間において高圧側電圧Vdから低圧側電圧0(V)に電圧を遷移すべきデータ電極22に印加する全ての電圧が高圧側電圧Vdから低圧側電圧0(V)に遷移し終わった後の時刻に設定する。 As described above, in the plasma display device according to the present embodiment, when the address pulse is applied to the data electrode 22 in the address period, two data adjacent to both sides in the immediately preceding second transition period. Data electrode 22 in which the voltage applied to at least one data electrode 22 of electrode 22 changes from high-voltage side voltage Vd to low-voltage side voltage 0 (V) (for example, data electrode D (j−1) in write cycle T (i)) And the data electrode D (j + 2)) at which the first transition period start time (for example, time t33) is to be transferred from the high voltage Vd to the low voltage 0 (V) in the immediately preceding second transition period. The time is set after all the voltages to be applied to the electrodes 22 have finished transitioning from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V).
 これにより、本実施の形態におけるプラズマディスプレイ装置は、隣接するデータ電極22に印加する電圧が高圧側電圧Vdから低圧側電圧0(V)へ遷移する途中にデータ電極22への印加電圧が低圧側電圧0(V)から高圧側電圧Vdへ遷移することを防止できる。すなわち、データ電極22への印加電圧を、実質的な負荷容量が相対的に大きい状態で低圧側電圧0(V)から高圧側電圧Vdへ遷移することを防止することができる。これにより、データ電極駆動回路132における消費電力を削減することができる。 Thereby, in the plasma display device according to the present embodiment, the voltage applied to the data electrode 22 is changed to the low voltage side while the voltage applied to the adjacent data electrode 22 transits from the high voltage side voltage Vd to the low voltage side voltage 0 (V). Transition from the voltage 0 (V) to the high voltage Vd can be prevented. That is, the voltage applied to the data electrode 22 can be prevented from transitioning from the low voltage side voltage 0 (V) to the high voltage side voltage Vd in a state where the substantial load capacity is relatively large. Thereby, the power consumption in the data electrode drive circuit 132 can be reduced.
 また、本実施の形態におけるプラズマディスプレイ装置は、書込み期間においてデータ電極22に書込みパルスを印加する際に、直前の第2遷移期間において、両側のそれぞれに隣接する2本のデータ電極22への印加電圧がともに高圧側電圧Vdから低圧側電圧0(V)へ遷移しないデータ電極22(例えば、書込み周期T(i)におけるデータ電極D(j)およびデータ電極D(j+1))における第1遷移期間の開始時刻(例えば、時刻t31)を、直前の第2遷移期間が終了する前の時刻に設定することができる。 Further, in the plasma display device according to the present embodiment, when an address pulse is applied to the data electrode 22 in the address period, application to the two data electrodes 22 adjacent to both sides in the immediately preceding second transition period is performed. A first transition period in the data electrode 22 (for example, the data electrode D (j) and the data electrode D (j + 1) in the write cycle T (i)) in which both voltages do not transition from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V). Can be set to a time before the end of the immediately preceding second transition period.
 これにより、本実施の形態におけるプラズマディスプレイ装置は、実質的な負荷容量が相対的に小さいデータ電極22に関しては、第1遷移期間の開始時刻を、直前の第2遷移期間が終了する前の時刻に設定することができ、その分、第1遷移期間の時間長を長くすることができる。したがって、実質的な負荷容量が相対的に小さいデータ電極22に関しては、書込み周期を相対的に長くすることができ、書込み動作をより安定に行うことが可能となる。 As a result, the plasma display device according to the present exemplary embodiment sets the start time of the first transition period and the time before the end of the immediately preceding second transition period for the data electrode 22 having a relatively small substantial load capacity. The time length of the first transition period can be increased accordingly. Therefore, for the data electrode 22 having a relatively small substantial load capacity, the write cycle can be made relatively long, and the write operation can be performed more stably.
 (実施の形態4)
 実施の形態4では、書込み期間において、互いに隣接する2本のデータ電極22の一方のデータ電極22に書込みパルスを印加した後に他方のデータ電極22に書込みパルスを印加するとき、一方のデータ電極22における第2遷移期間と他方のデータ電極22における第1遷移期間とが時間的に重ならないように、一方のデータ電極22に印加する電圧が高圧側電圧Vdから低圧側電圧0(V)へ遷移した(第2遷移期間)後に、他方のデータ電極22に印加する電圧を低圧側電圧0(V)から高圧側電圧Vdへ遷移する(第1遷移期間)構成について説明する。そして、本実施の形態では、このときに、一方のデータ電極22における第2遷移期間の時間長に応じて、他方のデータ電極22における第1遷移期間の開始時刻を制御する。これにより、安定した書込み動作とデータ電極駆動回路における消費電力の削減とを実現する。
(Embodiment 4)
In the fourth embodiment, when an address pulse is applied to one data electrode 22 of two adjacent data electrodes 22 and then an address pulse is applied to the other data electrode 22 in the address period, one data electrode 22 is applied. The voltage applied to one data electrode 22 changes from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V) so that the second transition period in the second data electrode 22 and the first transition period in the other data electrode 22 do not overlap in time. After that (second transition period), the configuration in which the voltage applied to the other data electrode 22 transitions from the low voltage side voltage 0 (V) to the high voltage side voltage Vd (first transition period) will be described. In this embodiment, at this time, the start time of the first transition period in the other data electrode 22 is controlled according to the time length of the second transition period in one data electrode 22. This realizes a stable write operation and a reduction in power consumption in the data electrode drive circuit.
 図15は、本発明の実施の形態4におけるプラズマディスプレイ装置のデータ電極駆動回路232の構成を概略的に示す回路図である。なお、図15には、データ電極駆動回路232を構成する回路ブロックの一部のみを示し、同じ構成となる他の回路ブロックは省略している。 FIG. 15 is a circuit diagram schematically showing a configuration of data electrode drive circuit 232 of the plasma display device in accordance with the fourth exemplary embodiment of the present invention. FIG. 15 shows only a part of the circuit blocks constituting the data electrode drive circuit 232, and other circuit blocks having the same configuration are omitted.
 本実施の形態におけるプラズマディスプレイ装置は、実施の形態1において図5に示したプラズマディスプレイ装置30とはデータ電極駆動回路232の構成が異なる。しかし、その他の回路ブロックは、プラズマディスプレイ装置30と同じ構成を有し、同じ動作をする。したがって、以下、データ電極駆動回路232についてのみ説明を行う。 The plasma display device in the present embodiment is different from the plasma display device 30 shown in FIG. 5 in the first embodiment in the configuration of the data electrode driving circuit 232. However, the other circuit blocks have the same configuration as the plasma display device 30 and perform the same operation. Therefore, only the data electrode driving circuit 232 will be described below.
 データ電極駆動回路232は、シフトレジスタ部41と、第2自己負荷算出部50と、隣接負荷算出部160と、出力バッファ部67とを有する。 The data electrode drive circuit 232 includes a shift register unit 41, a second self-load calculation unit 50, an adjacent load calculation unit 160, and an output buffer unit 67.
 なお、以下、隣接負荷算出部160を「第3隣接負荷算出部160」と呼称する。 Hereinafter, the adjacent load calculation unit 160 is referred to as a “third adjacent load calculation unit 160”.
 なお、本実施の形態におけるシフトレジスタ部41は、実施の形態1で説明したシフトレジスタ部41と同様の構成・動作である。また、第2自己負荷算出部50は実施の形態3で説明した第2自己負荷算出部50と同様の構成・動作である。したがって、本実施の形態では、これらの回路ブロックの説明は省略する。 Note that the shift register unit 41 in the present embodiment has the same configuration and operation as the shift register unit 41 described in the first embodiment. The second self-load calculation unit 50 has the same configuration and operation as the second self-load calculation unit 50 described in the third embodiment. Therefore, description of these circuit blocks is omitted in this embodiment.
 以下、データ電極D(j)に書込みパルスを印加する場合を例に挙げてデータ電極駆動回路232の構成および動作を説明する。したがって、以下に説明するデータ電極駆動回路232の構成および動作はデータ電極D(j)に対する構成および動作となるが、他のデータ電極22に対する構成および動作もデータ電極D(j)に対する構成および動作と同様である。 Hereinafter, the configuration and operation of the data electrode driving circuit 232 will be described by taking as an example the case where an address pulse is applied to the data electrode D (j). Therefore, the configuration and operation of data electrode drive circuit 232 described below are the configuration and operation for data electrode D (j), but the configuration and operation for other data electrode 22 are also the configuration and operation for data electrode D (j). It is the same.
 なお、データ電極D(j)に隣接するデータ電極22はデータ電極D(j-1)およびデータ電極D(j+1)であるものとする。 It is assumed that the data electrode 22 adjacent to the data electrode D (j) is the data electrode D (j−1) and the data electrode D (j + 1).
 第3隣接負荷算出部160は、データ電極22のそれぞれに対応して設けられた論理回路を有する。この論理回路は、論理ゲート61、論理ゲート162、論理ゲート63、論理ゲート64、論理ゲート65および論理ゲート66で構成される。したがって、第3隣接負荷算出部160は、データ電極駆動回路232が駆動するN本(例えば、N=1920×3)のデータ電極22のそれぞれに対応するN個の論理回路を有し、N個の論理回路のそれぞれが、論理ゲート61、論理ゲート162、論理ゲート63、論理ゲート64、論理ゲート65および論理ゲート66で構成される。 The third adjacent load calculation unit 160 has a logic circuit provided corresponding to each of the data electrodes 22. This logic circuit includes a logic gate 61, a logic gate 162, a logic gate 63, a logic gate 64, a logic gate 65, and a logic gate 66. Therefore, the third adjacent load calculation unit 160 includes N logic circuits corresponding to each of N (for example, N = 1920 × 3) data electrodes 22 driven by the data electrode driving circuit 232, and N Each logic circuit includes a logic gate 61, a logic gate 162, a logic gate 63, a logic gate 64, a logic gate 65, and a logic gate 66.
 論理ゲート61、論理ゲート162、論理ゲート63および論理ゲート65は2入力1出力のアンドゲートであり、論理ゲート64および論理ゲート66は2入力1出力のオアゲート(論理和演算を行う論理回路)である。なお、図15において、各論理ゲートの入力端子にある小さい丸印はインバータ(論理反転を行う論理回路)である。したがって、例えば、論理ゲート63(j+1)には、論理ゲート52(j-1)の出力信号を反転した信号が入力され、論理ゲート65(j-1)には、論理ゲート52(j+1)の出力信号を反転した信号が入力される。 The logic gate 61, the logic gate 162, the logic gate 63, and the logic gate 65 are AND gates with two inputs and one output, and the logic gate 64 and the logic gate 66 are OR gates with two inputs and one output (a logic circuit that performs an OR operation). is there. In FIG. 15, small circles at the input terminals of the logic gates are inverters (logic circuits that perform logic inversion). Therefore, for example, a signal obtained by inverting the output signal of the logic gate 52 (j−1) is input to the logic gate 63 (j + 1), and the logic gate 52 (j + 1) has the signal of the logic gate 52 (j + 1). A signal obtained by inverting the output signal is input.
 論理ゲート61(j)、論理ゲート162(j)、論理ゲート63(j)、論理ゲート64(j)、論理ゲート65(j)および論理ゲート66(j)で構成される論理回路は、データ電極D(j)に対応して設けられた論理回路である。そして、この論理回路は、データ電極D(j-2)に対応する画像データQ(j-2)および画像データDQ(j-2)、データ電極D(j-1)に対応する画像データQ(j-1)および画像データDQ(j-1)、データ電極D(j)に対応する画像データQ(j)および画像データDQ(j)、データ電極D(j+1)に対応する画像データQ(j+1)および画像データDQ(j+1)、データ電極D(j+2)に対応する画像データQ(j+2)および画像データDQ(j+2)にもとづき、論理演算を行う。そして、その論理演算の結果は、例えば、データ電極D(j)に印加する電圧が低圧側電圧0(V)から高圧側電圧Vdに変化するかどうかを表す。また、その論理演算の結果は、データ電極D(j-1)およびデータ電極D(j+1)に印加する電圧が高圧側電圧Vdから低圧側電圧0(V)に変化するかどうかを表し、その変化が生じる場合にはその変化に要する時間長(第2遷移期間の長さ)を表す。 The logic circuit composed of the logic gate 61 (j), the logic gate 162 (j), the logic gate 63 (j), the logic gate 64 (j), the logic gate 65 (j), and the logic gate 66 (j) This is a logic circuit provided corresponding to the electrode D (j). The logic circuit includes image data Q (j-2) and image data DQ (j-2) corresponding to the data electrode D (j-2), and image data Q corresponding to the data electrode D (j-1). (J-1) and image data DQ (j-1), image data Q (j) corresponding to the data electrode D (j), image data DQ (j), image data Q corresponding to the data electrode D (j + 1) Based on (j + 1) and image data DQ (j + 1), image data Q (j + 2) and image data DQ (j + 2) corresponding to data electrode D (j + 2), a logical operation is performed. The result of the logical operation indicates, for example, whether or not the voltage applied to the data electrode D (j) changes from the low voltage 0 (V) to the high voltage Vd. The result of the logical operation indicates whether or not the voltage applied to the data electrode D (j−1) and the data electrode D (j + 1) changes from the high voltage side voltage Vd to the low voltage side voltage 0 (V). When a change occurs, it represents the time length required for the change (the length of the second transition period).
 なお、上述したように、例えば、画像データDQ(j)が「L」で画像データQ(j)が「H」のときには画像データQ(j)は「L」から「H」へ変化し、画像データDQ(j)が「H」で画像データQ(j)が「L」のときには画像データQ(j)は「H」から「L」へ変化することになる。 As described above, for example, when the image data DQ (j) is “L” and the image data Q (j) is “H”, the image data Q (j) changes from “L” to “H”. When the image data DQ (j) is “H” and the image data Q (j) is “L”, the image data Q (j) changes from “H” to “L”.
 論理ゲート61(j)は、画像データQ(j-1)が「H」から「L」へ変化し、かつ画像データQ(j)が「L」から「H」へ変化するときに、「H」を出力する。それ以外のときには、論理ゲート61(j)は「L」を出力する。 When the image data Q (j−1) changes from “H” to “L” and the image data Q (j) changes from “L” to “H”, the logic gate 61 (j) H "is output. In other cases, the logic gate 61 (j) outputs “L”.
 論理ゲート162(j)は、画像データQ(j+1)が「H」から「L」へ変化し、かつ画像データQ(j)が「L」から「H」へ変化するときに、「H」を出力する。それ以外のときには、論理ゲート162(j)は「L」を出力する。 The logic gate 162 (j) outputs “H” when the image data Q (j + 1) changes from “H” to “L” and the image data Q (j) changes from “L” to “H”. Is output. In other cases, the logic gate 162 (j) outputs “L”.
 そして、論理ゲート64(j)は、論理ゲート61(j)と論理ゲート162(j)の少なくとも一方の出力が「H」のときに「H」を出力し、論理ゲート61(j)と論理ゲート162(j)とがともに「L」を出力するときに「L」を出力する。 Then, the logic gate 64 (j) outputs “H” when at least one of the outputs of the logic gate 61 (j) and the logic gate 162 (j) is “H”, and the logic gate 64 (j) When both the gate 162 (j) outputs “L”, “L” is output.
 すなわち、画像データQ(j-1)および画像データQ(j+1)の少なくとも一方が「H」から「L」へ変化し、かつ論理ゲート64(j)は、画像データQ(j)が「L」から「H」へ変化するときに、「H」を出力する。そして、それ以外のとき(例えば、画像データQ(j-1)および画像データQ(j+1)がともに「H」から「L」へ変化しない)には、論理ゲート64(j)は「L」を出力する。 That is, at least one of the image data Q (j−1) and the image data Q (j + 1) changes from “H” to “L”, and the logic gate 64 (j) has the image data Q (j) set to “L”. "H" is output when changing from "" to "H". At other times (for example, both the image data Q (j−1) and the image data Q (j + 1) do not change from “H” to “L”), the logic gate 64 (j) is “L”. Is output.
 言い換えると、論理ゲート64(j)の出力は、データ電極D(j-1)に印加する電圧とデータ電極D(j+1)に印加する電圧との少なくとも一方に高圧側電圧Vdから低圧側電圧0(V)への遷移が生じ(第2遷移期間)、それに続く第1遷移期間においてデータ電極D(j)に印加する電圧が低圧側電圧0(V)から高圧側電圧Vdへ遷移するときに「H」となる。また、データ電極D(j-1)に印加する電圧とデータ電極D(j+1)に印加する電圧とがともに高圧側電圧Vdまたは低圧側電圧0(V)に維持されていれば、「L」となる。 In other words, the output of the logic gate 64 (j) is output from the high-voltage side voltage Vd to the low-voltage side voltage 0 to at least one of the voltage applied to the data electrode D (j-1) and the voltage applied to the data electrode D (j + 1). When the transition to (V) occurs (second transition period) and the voltage applied to the data electrode D (j) transitions from the low voltage 0 (V) to the high voltage Vd in the subsequent first transition period. “H”. If the voltage applied to the data electrode D (j−1) and the voltage applied to the data electrode D (j + 1) are both maintained at the high voltage Vd or the low voltage 0 (V), “L”. It becomes.
 論理ゲート63(j)は、画像データQ(j-2)が「H」から「L」へ変化せず(すなわち、「L」から「H」へ変化する、または「L」を維持する、または「H」を維持する)、かつ論理ゲート61(j)の出力が「H」のときに、「H」を出力する。それ以外のとき(画像データQ(j-2)が「H」から「L」へ変化する、または、画像データQ(j-1)が「H」または「L」に維持される)には、論理ゲート63(j)は「L」を出力する。 The logic gate 63 (j) does not change the image data Q (j-2) from “H” to “L” (that is, changes from “L” to “H” or maintains “L”). Or “H” is maintained), and “H” is output when the output of the logic gate 61 (j) is “H”. In other cases (the image data Q (j-2) changes from “H” to “L”, or the image data Q (j−1) is maintained at “H” or “L”). The logic gate 63 (j) outputs “L”.
 論理ゲート65(j)は、画像データQ(j+2)が「H」から「L」へ変化せず(すなわち、「L」から「H」へ変化する、または「L」を維持する、または「H」を維持する)、かつ論理ゲート162(j)の出力が「H」のときに、「H」を出力する。それ以外のとき(画像データQ(j+2)が「H」から「L」へ変化する、または、画像データQ(j+1)が「H」または「L」に維持される)には、論理ゲート65(j)は「L」を出力する。 The logic gate 65 (j) does not change the image data Q (j + 2) from “H” to “L” (that is, changes from “L” to “H”, or maintains “L”, or “ "H" is maintained), and "H" is output when the output of the logic gate 162 (j) is "H". At other times (the image data Q (j + 2) changes from “H” to “L”, or the image data Q (j + 1) is maintained at “H” or “L”), the logic gate 65 (J) outputs “L”.
 そして、論理ゲート66(j)は、論理ゲート63(j)と論理ゲート65(j)の少なくとも一方の出力が「H」のときに「H」を出力し、論理ゲート63(j)と論理ゲート65(j)とがともに「L」を出力するときに「L」を出力する。 The logic gate 66 (j) outputs “H” when at least one of the outputs of the logic gate 63 (j) and the logic gate 65 (j) is “H”, and the logic gate 63 (j) When both the gate 65 (j) outputs “L”, “L” is output.
 すなわち、次のときに論理ゲート66(j)の出力は「H」となる。画像データQ(j-2)が「H」から「L」へ変化せず、かつ画像データQ(j-1)が「H」から「L」へ変化し、かつ画像データQ(j)が「L」から「H」へ変化する。または、画像データQ(j+2)が「H」から「L」へ変化せず、かつ画像データQ(j+1)が「H」から「L」へ変化し、かつ画像データQ(j)が「L」から「H」へ変化する。 That is, the output of the logic gate 66 (j) becomes “H” at the following time. The image data Q (j-2) does not change from “H” to “L”, the image data Q (j−1) changes from “H” to “L”, and the image data Q (j) It changes from “L” to “H”. Alternatively, the image data Q (j + 2) does not change from “H” to “L”, the image data Q (j + 1) changes from “H” to “L”, and the image data Q (j) becomes “L”. "" To "H".
 そして、それ以外のときには、論理ゲート66(j)の出力は「L」となる。すなわち、画像データQ(j-2)が「H」から「L」へ変化するか、または、画像データQ(j-1)が「H」または「L」に維持され、かつ、画像データQ(j+2)が「H」から「L」へ変化するか、または、画像データQ(j+1)が「H」または「L」に維持される。 In other cases, the output of the logic gate 66 (j) is “L”. That is, the image data Q (j-2) changes from “H” to “L”, or the image data Q (j−1) is maintained at “H” or “L”, and the image data Q (J + 2) changes from “H” to “L”, or the image data Q (j + 1) is maintained at “H” or “L”.
 言い換えると、論理ゲート66(j)の出力は、データ電極D(j-2)に印加する電圧が高圧側電圧Vdまたは低圧側電圧0(V)に維持され、かつデータ電極D(j-1)に印加する電圧が高圧側電圧Vdから低圧側電圧0(V)へ遷移し(第2遷移期間)、それに続く第1遷移期間においてデータ電極D(j)に印加する電圧が低圧側電圧0(V)から高圧側電圧Vdへ遷移するときに「H」となる。 In other words, the output of the logic gate 66 (j) is such that the voltage applied to the data electrode D (j-2) is maintained at the high voltage Vd or the low voltage 0 (V), and the data electrode D (j−1) ) Changes from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V) (second transition period), and the voltage applied to the data electrode D (j) in the subsequent first transition period becomes the low-voltage side voltage 0. It becomes “H” when transitioning from (V) to the high voltage Vd.
 また、論理ゲート66(j)の出力は、データ電極D(j+2)に印加する電圧が高圧側電圧Vdまたは低圧側電圧0(V)に維持され、かつデータ電極D(j+1)に印加する電圧が高圧側電圧Vdから低圧側電圧0(V)へ遷移し(第2遷移期間)、それに続く第1遷移期間においてデータ電極D(j)に印加する電圧が低圧側電圧0(V)から高圧側電圧Vdへ遷移するときにも「H」となる。 The output of the logic gate 66 (j) is a voltage applied to the data electrode D (j + 2) while the voltage applied to the data electrode D (j + 2) is maintained at the high-voltage side voltage Vd or the low-voltage side voltage 0 (V). Transitions from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V) (second transition period), and the voltage applied to the data electrode D (j) in the subsequent first transition period increases from the low-voltage side voltage 0 (V). It also becomes “H” when transitioning to the side voltage Vd.
 また、論理ゲート66(j)の出力は、データ電極D(j+1)に印加する電圧が高圧側電圧Vdまたは低圧側電圧0(V)に維持されるとともにデータ電極D(j-2)に印加する電圧およびデータ電極D(j-1)に印加する電圧がともに高圧側電圧Vdから低圧側電圧0(V)へ遷移し(第2遷移期間)、それに続く第1遷移期間においてデータ電極D(j)に印加する電圧が低圧側電圧0(V)から高圧側電圧Vdへ遷移するときに「L」となる。 The output of the logic gate 66 (j) is applied to the data electrode D (j-2) while the voltage applied to the data electrode D (j + 1) is maintained at the high voltage Vd or the low voltage 0 (V). And the voltage applied to the data electrode D (j−1) both transition from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V) (second transition period), and in the subsequent first transition period, the data electrode D ( It becomes “L” when the voltage applied to j) transitions from the low voltage 0 (V) to the high voltage Vd.
 また、論理ゲート66(j)の出力は、データ電極D(j―1)に印加する電圧が高圧側電圧Vdまたは低圧側電圧0(V)に維持されるとともにデータ電極D(j+2)に印加する電圧およびデータ電極D(j+1)に印加する電圧がともに高圧側電圧Vdから低圧側電圧0(V)へ遷移し(第2遷移期間)、それに続く第1遷移期間においてデータ電極D(j)に印加する電圧が低圧側電圧0(V)から高圧側電圧Vdへ遷移するときに「L」となる。 The output of the logic gate 66 (j) is applied to the data electrode D (j + 2) while the voltage applied to the data electrode D (j-1) is maintained at the high voltage Vd or the low voltage 0 (V). And the voltage applied to the data electrode D (j + 1) both transition from the high voltage Vd to the low voltage 0 (V) (second transition period), and the data electrode D (j) in the subsequent first transition period. Becomes “L” when the voltage applied to is transitioned from the low-voltage side voltage 0 (V) to the high-voltage side voltage Vd.
 また、論理ゲート66(j)の出力は、データ電極D(j-2)に印加する電圧、データ電極D(j-1)に印加する電圧、データ電極D(j+1)に印加する電圧およびデータ電極D(j+2)に印加する電圧がともに高圧側電圧Vdから低圧側電圧0(V)へ遷移し(第2遷移期間)、それに続く第1遷移期間においてデータ電極D(j)に印加する電圧が低圧側電圧0(V)から高圧側電圧Vdへ遷移するときに「L」となる。 The output of the logic gate 66 (j) includes a voltage applied to the data electrode D (j-2), a voltage applied to the data electrode D (j-1), a voltage applied to the data electrode D (j + 1), and data. The voltage applied to the electrode D (j + 2) both changes from the high voltage side voltage Vd to the low voltage side voltage 0 (V) (second transition period), and the voltage applied to the data electrode D (j) in the subsequent first transition period. Becomes “L” when transitioning from the low voltage 0 (V) to the high voltage Vd.
 出力バッファ部67は、データ電極駆動回路232が駆動するN本(例えば、N=1920×3)のデータ電極22のそれぞれに対応するN個の出力バッファ69を有する。各出力バッファ69は、データ電極22に印加する書込みパルスを発生する。 The output buffer section 67 has N output buffers 69 corresponding to each of N (for example, N = 1920 × 3) data electrodes 22 driven by the data electrode driving circuit 232. Each output buffer 69 generates an address pulse to be applied to the data electrode 22.
 出力バッファ部67は、N個の高圧側スイッチQHと、N個の低圧側スイッチQLと、N個のLHタイミング制御部68とを有する。例えば、N=1920×3であれば、出力バッファ部67は、高圧側スイッチQH(1)~高圧側スイッチQH(5760)と、低圧側スイッチQL(1)~低圧側スイッチQL(5760)と、LHタイミング制御部68(1)~LHタイミング制御部68(5760)とを有する。 The output buffer unit 67 includes N high-voltage switches QH, N low-voltage switches QL, and N LH timing controllers 68. For example, if N = 1920 × 3, the output buffer unit 67 includes a high voltage side switch QH (1) to a high voltage side switch QH (5760), and a low voltage side switch QL (1) to a low voltage side switch QL (5760). , LH timing control unit 68 (1) to LH timing control unit 68 (5760).
 そして、図15に示すように、本実施の形態において、各出力バッファ69は、1つの高圧側スイッチQHと1つの低圧側スイッチQLとを組み合わせた回路と、1つのLHタイミング制御部68とを有する。 As shown in FIG. 15, in this embodiment, each output buffer 69 includes a circuit combining one high-voltage side switch QH and one low-voltage side switch QL, and one LH timing control unit 68. Have.
 高圧側スイッチQHは書込みパルスの高圧側の電圧Vdを出力し、低圧側スイッチQLは書込みパルスの低圧側の電圧0(V)を出力する。 The high voltage side switch QH outputs the voltage Vd on the high voltage side of the write pulse, and the low voltage side switch QL outputs the voltage 0 (V) on the low voltage side of the write pulse.
 LHタイミング制御部68は、第3隣接負荷算出部160から出力される信号(論理ゲート64の出力信号および論理ゲート66の出力信号)にもとづき高圧側スイッチQHおよび低圧側スイッチQLを制御する。すなわち、LHタイミング制御部68は、第3隣接負荷算出部160から出力される信号にもとづき、データ電極22に印加する電圧を低圧側電圧0(V)から高圧側電圧Vdに遷移するタイミングを制御する。 The LH timing control unit 68 controls the high voltage side switch QH and the low voltage side switch QL based on the signals (the output signal of the logic gate 64 and the output signal of the logic gate 66) output from the third adjacent load calculation unit 160. That is, the LH timing control unit 68 controls the timing at which the voltage applied to the data electrode 22 transitions from the low voltage side voltage 0 (V) to the high voltage side voltage Vd based on the signal output from the third adjacent load calculation unit 160. To do.
 例えば、LHタイミング制御部68(j)は、論理ゲート64(j)の出力が「H」であり、かつ論理ゲート66(j)の出力が「H」であれば、データ電極D(1)~データ電極D(m)の各データ電極22に印加する全ての電圧が高圧側電圧Vdから低圧側電圧0(V)に遷移し終えて第2遷移期間が終了した後に、続く第1遷移期間を開始してデータ電極D(j)に印加する電圧を低圧側電圧0(V)から高圧側電圧Vdに遷移する。 For example, if the output of the logic gate 64 (j) is “H” and the output of the logic gate 66 (j) is “H”, the LH timing control unit 68 (j) has the data electrode D (1). The first transition period that continues after the end of the second transition period after all the voltages applied to the data electrodes 22 of the data electrode D (m) have transitioned from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V). And the voltage applied to the data electrode D (j) is changed from the low voltage 0 (V) to the high voltage Vd.
 また、論理ゲート64(j)の出力が「H」であり、かつ論理ゲート66(j)の出力が「L」であれば、LHタイミング制御部68(j)は、論理ゲート64(j)の出力が「H」であり、かつ論理ゲート66(j)の出力が「H」であるときよりも早い時刻に第1遷移期間を開始してデータ電極D(j)に印加する電圧を低圧側電圧0(V)から高圧側電圧Vdに遷移する。 When the output of the logic gate 64 (j) is “H” and the output of the logic gate 66 (j) is “L”, the LH timing control unit 68 (j) The voltage applied to the data electrode D (j) by starting the first transition period at a time earlier than when the output of the logic gate 66 (j) is “H” and the output of the logic gate 66 (j) is “H”. A transition is made from the side voltage 0 (V) to the high voltage side voltage Vd.
 論理ゲート64(j)の出力が「H」であり、かつ論理ゲート66(j)の出力が「L」であれば、データ電極D(j-2)に印加する電圧、データ電極D(j-1)に印加する電圧、データ電極D(j+1)に印加する電圧およびデータ電極D(j+2)に印加する電圧がともに高圧側電圧Vdから低圧側電圧0(V)へ遷移する。 If the output of the logic gate 64 (j) is “H” and the output of the logic gate 66 (j) is “L”, the voltage applied to the data electrode D (j−2), the data electrode D (j The voltage applied to -1), the voltage applied to the data electrode D (j + 1), and the voltage applied to the data electrode D (j + 2) all transit from the high voltage side voltage Vd to the low voltage side voltage 0 (V).
 したがって、そのときにデータ電極D(j-1)に生じる実質的な負荷容量は、データ電極D(j-2)に印加する電圧が高圧側電圧Vdまたは低圧側電圧0(V)に維持され、かつデータ電極D(j-1)に印加する電圧が高圧側電圧Vdから低圧側電圧0(V)へ遷移するときよりも小さい。したがって、データ電極D(j-1)に印加する電圧が高圧側電圧Vdから低圧側電圧0(V)へ遷移するのに要する時間は相対的に小さくなる。 Therefore, the substantial load capacitance generated at the data electrode D (j−1) at that time is such that the voltage applied to the data electrode D (j−2) is maintained at the high voltage Vd or the low voltage 0 (V). In addition, the voltage applied to the data electrode D (j−1) is smaller than when the high voltage side voltage Vd transits to the low voltage side voltage 0 (V). Therefore, the time required for the voltage applied to the data electrode D (j−1) to transition from the high voltage Vd to the low voltage 0 (V) is relatively small.
 同様に、そのときにデータ電極D(j+1)に生じる実質的な負荷容量は、データ電極D(j+2)に印加する電圧が高圧側電圧Vdまたは低圧側電圧0(V)に維持され、かつデータ電極D(j+1)に印加する電圧が高圧側電圧Vdから低圧側電圧0(V)へ遷移するときよりも小さい。したがって、データ電極D(j+1)に印加する電圧が高圧側電圧Vdから低圧側電圧0(V)へ遷移するのに要する時間は相対的に小さくなる。 Similarly, the substantial load capacitance generated at the data electrode D (j + 1) at that time is such that the voltage applied to the data electrode D (j + 2) is maintained at the high voltage Vd or the low voltage 0 (V), and the data The voltage applied to the electrode D (j + 1) is smaller than when transitioning from the high voltage side voltage Vd to the low voltage side voltage 0 (V). Therefore, the time required for the voltage applied to the data electrode D (j + 1) to transition from the high-voltage side voltage Vd to the low-voltage side voltage 0 (V) is relatively small.
 したがって、そのようなときには、データ電極D(j)に印加する電圧を低圧側電圧0(V)から高圧側電圧Vdに遷移する時刻を相対的に早めることができ、データ電極D(j)に高圧側電圧Vdを印加する時間長を相対的に長くして、書込み動作をより安定に行うことが可能となる。 Therefore, in such a case, the time at which the voltage applied to the data electrode D (j) transitions from the low-voltage side voltage 0 (V) to the high-voltage side voltage Vd can be relatively advanced, and the data electrode D (j) It is possible to perform the writing operation more stably by relatively increasing the time length during which the high-voltage side voltage Vd is applied.
 また、論理ゲート64(j)の出力が「L」であれば、LHタイミング制御部68(j)は、論理ゲート64(j)の出力が「H」であり、かつ論理ゲート66(j)の出力が「L」であるときよりもさらに早い時刻に第1遷移期間を開始してデータ電極D(j)に印加する電圧を低圧側電圧0(V)から高圧側電圧Vdに遷移する。 If the output of the logic gate 64 (j) is “L”, the LH timing control unit 68 (j) indicates that the output of the logic gate 64 (j) is “H” and the logic gate 66 (j). The first transition period starts at a time earlier than when the output of “L” is “L”, and the voltage applied to the data electrode D (j) transitions from the low voltage 0 (V) to the high voltage Vd.
 論理ゲート64(j)の出力が「L」であれば、データ電極D(j-1)およびデータ電極D(j+1)に印加する電圧は、高圧側電圧Vdまたは低圧側電圧0(V)に維持される。 If the output of the logic gate 64 (j) is “L”, the voltage applied to the data electrode D (j−1) and the data electrode D (j + 1) is set to the high voltage side voltage Vd or the low voltage side voltage 0 (V). Maintained.
 したがって、そのようなときには、データ電極D(j)に印加する電圧を低圧側電圧0(V)から高圧側電圧Vdに遷移する時刻を相対的により早めることができ、データ電極D(j)に高圧側電圧Vdを印加する時間長を相対的により長くして、書込み動作をより安定に行うことが可能となる。 Therefore, in such a case, the time at which the voltage applied to the data electrode D (j) transitions from the low voltage side voltage 0 (V) to the high voltage side voltage Vd can be relatively advanced, and the data electrode D (j) It is possible to perform the writing operation more stably by relatively increasing the length of time during which the high-voltage side voltage Vd is applied.
 図16は、本発明の実施の形態4におけるプラズマディスプレイ装置のデータ電極駆動回路232の動作の一例を概略的に示すタイミングチャートである。 FIG. 16 is a timing chart schematically showing an example of the operation of the data electrode drive circuit 232 of the plasma display device in accordance with the fourth exemplary embodiment of the present invention.
 図16には、書込み期間における4つの書込み周期(書込み周期T(i-1)、書込み周期T(i)、書込み周期T(i+1)および書込み周期T(i+2))を例に挙げて示し、走査電極SC(i-1)~走査電極SC(i+1)およびデータ電極D(j-2)~データ電極D(j+3)に印加する駆動電圧波形を例に挙げて示す。 In FIG. 16, four write cycles (write cycle T (i−1), write cycle T (i), write cycle T (i + 1), and write cycle T (i + 2)) in the write period are shown as examples. The drive voltage waveforms applied to scan electrode SC (i−1) to scan electrode SC (i + 1) and data electrode D (j−2) to data electrode D (j + 3) will be described as an example.
 また、図16には、書込み周期T(i-1)ではデータ電極D(j-1)、データ電極D(j+2)およびデータ電極D(j+3)には書込みパルスを印加し、データ電極D(j-2)、データ電極D(j)およびデータ電極D(j+1)には書込みパルスを印加せず、書込み周期T(i)ではデータ電極D(j)およびデータ電極D(j+1)には書込みパルスを印加し、データ電極D(j-2)、データ電極D(j-1)、データ電極D(j+2)およびデータ電極D(j+3)には書込みパルスを印加せず、書込み周期T(i+1)ではデータ電極D(j-1)、データ電極D(j+1)およびデータ電極D(j+2)には書込みパルスを印加し、データ電極D(j-2)、データ電極D(j)およびデータ電極D(j+3)には書込みパルスを印加せず、書込み周期T(i+2)ではデータ電極D(j-2)、データ電極D(j-1)、データ電極D(j)、データ電極D(j+1)およびデータ電極D(j+3)には書込みパルスを印加し、データ電極D(j+2)には書込みパルスを印加しない例を示す。 In FIG. 16, in the write cycle T (i−1), a write pulse is applied to the data electrode D (j−1), the data electrode D (j + 2), and the data electrode D (j + 3), and the data electrode D ( j-2), an address pulse is not applied to the data electrode D (j) and the data electrode D (j + 1), and the address is written to the data electrode D (j) and the data electrode D (j + 1) in the address period T (i). A pulse is applied, an address pulse is not applied to the data electrode D (j-2), the data electrode D (j-1), the data electrode D (j + 2), and the data electrode D (j + 3), and the address period T (i + 1 ), An address pulse is applied to data electrode D (j-1), data electrode D (j + 1) and data electrode D (j + 2), and data electrode D (j-2), data electrode D (j) and data electrode D (j + 3) In the write cycle T (i + 2), the data electrode D (j-2), the data electrode D (j-1), the data electrode D (j), the data electrode D (j + 1), and the data electrode D ( An example in which an address pulse is applied to j + 3) and an address pulse is not applied to the data electrode D (j + 2) is shown.
 書込み周期T(i-1)の第2遷移期間では、データ電極D(j-1)、データ電極D(j+2)およびデータ電極D(j+3)に印加する電圧は高圧側電圧Vdから低高圧側電圧0(V)に遷移する。書込み周期T(i)の第1遷移期間では、データ電極D(j)、データ電極D(j+1)に印加する電圧は低圧側電圧0(V)から高圧側電圧Vdに遷移する。 In the second transition period of the write cycle T (i−1), the voltage applied to the data electrode D (j−1), the data electrode D (j + 2) and the data electrode D (j + 3) is changed from the high voltage side voltage Vd to the low voltage side. Transition to voltage 0 (V). In the first transition period of the write cycle T (i), the voltage applied to the data electrode D (j) and the data electrode D (j + 1) transitions from the low voltage side voltage 0 (V) to the high voltage side voltage Vd.
 したがって、このとき、第2自己負荷算出部50の論理ゲート52(j-1)、論理ゲート52(j+2)および論理ゲート52(j+3)の出力は「H」となり、論理ゲート53(j)および論理ゲート53(j+1)の出力は「H」となる。 Accordingly, at this time, the outputs of the logic gate 52 (j−1), the logic gate 52 (j + 2), and the logic gate 52 (j + 3) of the second self-load calculating unit 50 become “H”, and the logic gate 53 (j) and The output of the logic gate 53 (j + 1) is “H”.
 これにより、第3隣接負荷算出部160の論理ゲート64(j)の出力および論理ゲート66(j)の出力は「H」となり、論理ゲート64(j+1)の出力は「H」となり、論理ゲート66(j+1)の出力は「L」となる。 As a result, the output of the logic gate 64 (j) and the output of the logic gate 66 (j) of the third adjacent load calculation unit 160 become “H”, the output of the logic gate 64 (j + 1) becomes “H”, and the logic gate The output of 66 (j + 1) is “L”.
 LHタイミング制御部68(j)は、論理ゲート64(j)の出力および論理ゲート66(j)の出力がともに「H」であるので、データ電極D(1)~データ電極D(m)の各データ電極22に印加する全ての電圧が高圧側電圧Vdから低圧側電圧0(V)に遷移し終えた後の時刻t33において、データ電極D(j)に印加する電圧を低圧側電圧0(V)から高圧側電圧Vdに遷移する動作を開始する。 Since both the output of the logic gate 64 (j) and the output of the logic gate 66 (j) are “H”, the LH timing control unit 68 (j) has the data electrode D (1) to the data electrode D (m). At time t33 after all the voltages applied to each data electrode 22 have finished transitioning from the high voltage side voltage Vd to the low voltage side voltage 0 (V), the voltage applied to the data electrode D (j) is changed to the low voltage side voltage 0 ( The operation of transition from V) to the high voltage Vd is started.
 また、LHタイミング制御部68(j+1)は、論理ゲート64(j+1)の出力が「H」であり、論理ゲート66(j+1)の出力が「L」であるので、時刻t33よりも時刻的に早い時刻t32において、データ電極D(j+1)に印加する電圧を低圧側電圧0(V)から高圧側電圧Vdに遷移する動作を開始する。 In addition, since the output of the logic gate 64 (j + 1) is “H” and the output of the logic gate 66 (j + 1) is “L”, the LH timing control unit 68 (j + 1) is more timely than the time t33. At an early time t32, the operation of transitioning the voltage applied to the data electrode D (j + 1) from the low voltage side voltage 0 (V) to the high voltage side voltage Vd is started.
 書込み周期T(i)の第2遷移期間では、データ電極D(j)に印加する電圧は高圧側電圧Vdから低高圧側電圧0(V)に遷移する。書込み周期T(i+1)の第1遷移期間では、データ電極D(j-1)およびデータ電極D(j+2)に印加する電圧が低圧側電圧0(V)から高圧側電圧Vdに遷移する。 In the second transition period of the write cycle T (i), the voltage applied to the data electrode D (j) transits from the high voltage side voltage Vd to the low voltage side voltage 0 (V). In the first transition period of the write cycle T (i + 1), the voltage applied to the data electrode D (j−1) and the data electrode D (j + 2) transitions from the low voltage side voltage 0 (V) to the high voltage side voltage Vd.
 したがって、これにより、第3隣接負荷算出部160の論理ゲート64(j-1)の出力および論理ゲート66(j-1)の出力はともに「H」となり、論理ゲート64(j+2)の出力は「L」となる。 Therefore, as a result, the output of the logic gate 64 (j−1) and the output of the logic gate 66 (j−1) of the third adjacent load calculation unit 160 are both “H”, and the output of the logic gate 64 (j + 2) is “L”.
 LHタイミング制御部68(j-1)は、論理ゲート64(j-1)の出力および論理ゲート66(j-1)の出力がともに「H」であるので、データ電極D(1)~データ電極D(m)の各データ電極22に印加する全ての電圧が高圧側電圧Vdから低圧側電圧0(V)に遷移し終えた後の時刻t53において、データ電極D(j-1)に印加する電圧を低圧側電圧0(V)から高圧側電圧Vdに遷移する動作を開始する。 Since the LH timing control unit 68 (j-1) has both the output of the logic gate 64 (j-1) and the output of the logic gate 66 (j-1) being "H", the data electrode D (1) to the data electrode D Applied to data electrode D (j-1) at time t53 after all the voltages applied to each data electrode 22 of electrode D (m) have transitioned from high-voltage side voltage Vd to low-voltage side voltage 0 (V). The operation of changing the voltage to be changed from the low voltage 0 (V) to the high voltage Vd is started.
 LHタイミング制御部68(j+2)は、論理ゲート64(j+2)の出力が「L」であるので、時刻t53よりも時刻的に早い時刻t51において、データ電極D(j+2)に印加する電圧を低圧側電圧0(V)から高圧側電圧Vdに遷移する動作を開始する。そして、時刻t51と時刻t53との間の時間長は、時刻t32と時刻t33との間の時間長よりも長い。 Since the output of the logic gate 64 (j + 2) is “L”, the LH timing control unit 68 (j + 2) reduces the voltage applied to the data electrode D (j + 2) at time t51 earlier than time t53. The operation of transitioning from the side voltage 0 (V) to the high voltage side voltage Vd is started. The time length between time t51 and time t53 is longer than the time length between time t32 and time t33.
 以上示したように、本実施の形態におけるプラズマディスプレイ装置では、書込み期間において、互いに隣接する2本のデータ電極22の一方のデータ電極22に書込みパルスを印加した後に他方のデータ電極22に書込みパルスを印加するとき、一方のデータ電極22における第2遷移期間と他方のデータ電極22における第1遷移期間とが時間的に重ならないように、一方のデータ電極22に印加する電圧が高圧側電圧Vdから低圧側電圧0(V)へ遷移した(第2遷移期間)後に、他方のデータ電極22に印加する電圧を低圧側電圧0(V)から高圧側電圧Vdへ遷移する(第1遷移期間)。そして、一方のデータ電極22における第2遷移期間の時間長に応じて、他方のデータ電極22における第1遷移期間の開始時刻を制御する。 As described above, in the plasma display device in the present embodiment, in the address period, the address pulse is applied to one data electrode 22 of the two adjacent data electrodes 22 and then the other data electrode 22 is addressed. Is applied, the voltage applied to one data electrode 22 is set to the high voltage Vd so that the second transition period of one data electrode 22 and the first transition period of the other data electrode 22 do not overlap in time. After the transition to the low voltage 0 (V) from the second voltage (second transition period), the voltage applied to the other data electrode 22 transitions from the low voltage 0 (V) to the high voltage Vd (first transition period). . Then, the start time of the first transition period in the other data electrode 22 is controlled according to the time length of the second transition period in one data electrode 22.
 これにより、隣接するデータ電極22に印加する電圧が高圧側電圧Vdから低圧側電圧0(V)へ遷移する途中に、データ電極22への印加電圧が低圧側電圧0(V)から高圧側電圧Vdへ遷移することを防止できる。すなわち、データ電極22への印加電圧を、実質的な負荷容量が相対的に大きい状態で低圧側電圧0(V)から高圧側電圧Vdへ遷移することを防止することができる。これにより、データ電極駆動回路232における消費電力を削減することができる。 As a result, the voltage applied to the data electrode 22 changes from the low voltage 0 (V) to the high voltage while the voltage applied to the adjacent data electrode 22 changes from the high voltage Vd to the low voltage 0 (V). Transition to Vd can be prevented. That is, the voltage applied to the data electrode 22 can be prevented from transitioning from the low voltage side voltage 0 (V) to the high voltage side voltage Vd in a state where the substantial load capacity is relatively large. Thereby, power consumption in the data electrode drive circuit 232 can be reduced.
 そして、一方のデータ電極22における第2遷移期間の時間長に応じて、他方のデータ電極22における第1遷移期間の開始時刻を制御することで、実質的な負荷容量が相対的に小さいデータ電極22に関しては、書込み周期の時間長を相対的に長くすることができるので、書込み動作をより安定に行うことが可能となる。 Then, by controlling the start time of the first transition period in the other data electrode 22 according to the time length of the second transition period in one data electrode 22, the data electrode having a relatively small substantial load capacity As for No. 22, since the time length of the write cycle can be made relatively long, the write operation can be performed more stably.
 なお、実施の形態1、実施の形態2では、データ電極22に印加する電圧を遷移させる場合、まず高圧側電圧Vdから低圧側電圧0(V)に遷移した後に、低圧側電圧0(V)から高圧側電圧Vdに遷移する構成を説明した。そのため、第2遷移期間の開始時刻を出力バッファのそれぞれ、あるいはデータドライバのそれぞれに対して設定した。しかし、例えば、まず低圧側電圧0(V)から高圧側電圧Vdに遷移した後に、高圧側電圧Vdから低圧側電圧0(V)に遷移してもよい。この場合には、第1遷移期間の開始時刻を、出力バッファのそれぞれ、あるいはデータドライバのそれぞれに対して設定すればよい。 In the first embodiment and the second embodiment, when the voltage applied to the data electrode 22 is changed, the low voltage side voltage 0 (V) is first changed from the high voltage side voltage Vd to the low voltage side voltage 0 (V). The configuration of transition from the high voltage Vd to the high voltage Vd has been described. Therefore, the start time of the second transition period is set for each output buffer or each data driver. However, for example, first, after the transition from the low voltage side voltage 0 (V) to the high voltage side voltage Vd, the transition may be made from the high voltage side voltage Vd to the low voltage side voltage 0 (V). In this case, the start time of the first transition period may be set for each output buffer or each data driver.
 なお、図4、図7、図12、図14、図16に示した駆動電圧波形は本発明の実施の形態における一例を示したものに過ぎず、本発明は何らこれらの駆動電圧波形に限定されるものではない。 The drive voltage waveforms shown in FIGS. 4, 7, 12, 14, and 16 are merely examples in the embodiment of the present invention, and the present invention is not limited to these drive voltage waveforms. Is not to be done.
 また、図5、図6、図9、図10、図11、図13、図15に示した回路構成も本発明の実施の形態における一例を示したものに過ぎず、本発明は何らこれらの回路構成に限定されるものではない。 Further, the circuit configurations shown in FIGS. 5, 6, 9, 10, 11, 13, and 15 are merely examples in the embodiment of the present invention, and the present invention is not limited to these. The circuit configuration is not limited.
 なお、本発明における実施の形態に示した各回路ブロックは、実施の形態に示した各動作を行う電気回路として構成されてもよく、あるいは、同様の動作をするようにプログラミングされたマイクロコンピュータ等を用いて構成されてもよい。 Note that each circuit block shown in the embodiment of the present invention may be configured as an electric circuit that performs each operation shown in the embodiment, or a microcomputer that is programmed to perform the same operation. May be used.
 なお、本発明における実施の形態では、1つのフィールドを8つのサブフィールドで構成する例を説明した。しかし、本発明は1フィールドを構成するサブフィールドの数が何ら上記の数に限定されるものではない。例えば、サブフィールドの数をより多くすることで、パネル10に表示できる階調の数をさらに増加することができる。 In the embodiment of the present invention, an example in which one field is composed of eight subfields has been described. However, in the present invention, the number of subfields constituting one field is not limited to the above number. For example, by increasing the number of subfields, the number of gradations that can be displayed on the panel 10 can be further increased.
 なお、本発明における実施の形態では、1画素を赤、緑、青の3色の放電セルで構成する例を説明したが、1画素を4色あるいはそれ以上の色の放電セルで構成するパネルにおいても、本発明における実施の形態に示した構成を適用することは可能であり、同様の効果を得ることができる。 In the embodiment of the present invention, an example in which one pixel is constituted by discharge cells of three colors of red, green, and blue has been described. However, a panel in which one pixel is constituted by discharge cells of four colors or more. However, it is possible to apply the configuration shown in the embodiment of the present invention, and the same effect can be obtained.
 なお、本発明の実施の形態において示した具体的な数値は、画面サイズが50インチ、表示電極対14の数が1024のパネル10の特性にもとづき設定したものであって、単に実施の形態における一例を示したものに過ぎない。本発明はこれらの数値に何ら限定されるものではなく、各数値はパネルの仕様やパネルの特性、およびプラズマディスプレイ装置の仕様等にあわせて最適に設定することが望ましい。また、これらの各数値は、上述した効果を得られる範囲でのばらつきを許容するものとする。また、1フィールドを構成するサブフィールドの数や各サブフィールドの輝度重み等も本発明における実施の形態に示した値に限定されるものではなく、また、画像信号等にもとづいてサブフィールド構成を切り換える構成であってもよい。 The specific numerical values shown in the embodiment of the present invention are set based on the characteristics of the panel 10 having a screen size of 50 inches and the number of display electrode pairs 14 of 1024. It is just an example. The present invention is not limited to these numerical values, and each numerical value is desirably set optimally in accordance with panel specifications, panel characteristics, plasma display device specifications, and the like. Each of these numerical values is allowed to vary within a range where the above-described effect can be obtained. Also, the number of subfields constituting one field, the luminance weight of each subfield, etc. are not limited to the values shown in the embodiment of the present invention, and the subfield configuration is based on the image signal or the like. It may be configured to switch.
 本発明は、データ電極駆動回路に安定に電力を供給して安定した書込み動作を行うとともに、データ電極駆動回路の消費電力を削減することができるので、プラズマディスプレイ装置およびプラズマディスプレイ装置の駆動方法として有用である。 The present invention can stably supply power to a data electrode driving circuit to perform a stable address operation and reduce power consumption of the data electrode driving circuit. Therefore, the present invention provides a plasma display device and a plasma display device driving method. Useful.
 10  パネル
 11  前面基板
 12  走査電極
 13  維持電極
 14  表示電極対
 15,23  誘電体層
 16  保護層
 21  背面基板
 22  データ電極
 24  隔壁
 25,25R,25G,25B  蛍光体層
 30,60  プラズマディスプレイ装置
 31  画像信号処理回路
 32,62,132,232  データ電極駆動回路
 33  走査電極駆動回路
 34  維持電極駆動回路
 35  タイミング発生回路
 41,81  シフトレジスタ部
 42,50  自己負荷算出部
 43,45,46,47,52,53,55,56,61,63,64,65,66,144,154,162  論理ゲート
 44,54,160  隣接負荷算出部
 48,57,67,85  出力バッファ部
 49,59,89  HLタイミング制御部
 51,142  1ラインディレイ
 58,68  LHタイミング制御部
 69,86,157,148  出力バッファ
 72  最大負荷算出部
 74 タイミングパルス選択部
 80  データドライバ
 82,84,141  ラッチ
 83  データラッチ部
 LP  書込みタイミング信号
 LLP,LLP1,LLP2,LLP3  タイミング信号
 QH  高圧側スイッチ
 QL  低圧側スイッチ
DESCRIPTION OF SYMBOLS 10 Panel 11 Front substrate 12 Scan electrode 13 Sustain electrode 14 Display electrode pair 15, 23 Dielectric layer 16 Protection layer 21 Back substrate 22 Data electrode 24 Partition 25, 25R, 25G, 25B Phosphor layer 30, 60 Plasma display device 31 Image Signal processing circuit 32, 62, 132, 232 Data electrode drive circuit 33 Scan electrode drive circuit 34 Sustain electrode drive circuit 35 Timing generation circuit 41, 81 Shift register unit 42, 50 Self load calculation unit 43, 45, 46, 47, 52 , 53, 55, 56, 61, 63, 64, 65, 66, 144, 154, 162 Logic gate 44, 54, 160 Adjacent load calculation unit 48, 57, 67, 85 Output buffer unit 49, 59, 89 HL timing Control unit 51, 142 1 line delay 58, 6 LH timing control unit 69, 86, 157, 148 Output buffer 72 Maximum load calculation unit 74 Timing pulse selection unit 80 Data driver 82, 84, 141 Latch 83 Data latch unit LP Write timing signal LLP, LLP1, LLP2, LLP3 Timing signal QH High pressure side switch QL Low pressure side switch

Claims (5)

  1. 複数の表示電極対と複数のデータ電極とを有するプラズマディスプレイパネルと、前記データ電極に書込みパルスを印加するデータ電極駆動回路とを備え、前記データ電極駆動回路は書込み期間における書込み周期毎に前記書込みパルスの高圧側電圧または前記書込みパルスの低圧側電圧を前記データ電極のそれぞれに印加するプラズマディスプレイ装置であって、
    前記データ電極駆動回路は、前記高圧側電圧を出力する高圧側スイッチと前記低圧側電圧を出力する低圧側スイッチとを有する出力バッファを前記データ電極のそれぞれに対して備え、
    前記出力バッファは、前記書込みパルスの電圧を前記低圧側電圧から前記高圧側電圧に遷移する際には、前記書込み周期に設けられた第1遷移期間において、前記低圧側スイッチをオフにし前記高圧側スイッチをオンにして出力電圧を前記高圧側電圧にし、
    前記書込みパルスの電圧を前記高圧側電圧から前記低圧側電圧に遷移する際には、前記書込み周期に設けられた第2遷移期間において、前記高圧側スイッチをオフにし前記低圧側スイッチをオンにして出力電圧を前記低圧側電圧にし、
    前記第2遷移期間と、前記第2遷移期間の直後の前記第1遷移期間とを時間的に分離する
    ことを特徴とするプラズマディスプレイ装置。
    A plasma display panel having a plurality of display electrode pairs and a plurality of data electrodes, and a data electrode driving circuit for applying an address pulse to the data electrodes, wherein the data electrode driving circuit performs the writing for each writing cycle in a writing period. A plasma display device that applies a high-voltage side voltage of a pulse or a low-voltage side voltage of the write pulse to each of the data electrodes,
    The data electrode drive circuit includes an output buffer having a high voltage side switch for outputting the high voltage side voltage and a low voltage side switch for outputting the low voltage side voltage for each of the data electrodes,
    The output buffer turns off the low-voltage side switch during the first transition period provided in the write cycle when the voltage of the write pulse changes from the low-voltage side voltage to the high-voltage side voltage. Turn on the switch to set the output voltage to the high-voltage side voltage,
    When transitioning the voltage of the write pulse from the high voltage side voltage to the low voltage side voltage, the high voltage side switch is turned off and the low voltage side switch is turned on during the second transition period provided in the write cycle. The output voltage is the low voltage side voltage,
    The plasma display apparatus characterized by temporally separating the second transition period and the first transition period immediately after the second transition period.
  2. 前記データ電極駆動回路は、
    隣接する前記データ電極間の実質的な負荷容量の大きさを算出し、前記実質的な負荷容量が相対的に大きいデータ電極では、前記実質的な負荷容量が相対的に小さいデータ電極よりも前記第1遷移期間または前記第2遷移期間の開始時刻が早くなるように、前記高圧側スイッチおよび前記低圧側スイッチを前記出力バッファ毎に制御する
    ことを特徴とする請求項1に記載のプラズマディスプレイ装置。
    The data electrode driving circuit includes:
    The size of the substantial load capacity between the adjacent data electrodes is calculated, and the data electrode having a relatively large substantial load capacity is compared with the data electrode having a relatively small substantial load capacity. 2. The plasma display device according to claim 1, wherein the high-voltage side switch and the low-voltage side switch are controlled for each of the output buffers so that a start time of the first transition period or the second transition period is advanced. .
  3. 前記データ電極駆動回路は、
    複数の前記出力バッファを集積した集積回路を複数用いて構成し、
    前記集積回路において、データ電極毎に発生する実質的な負荷容量の大きさの最大値を算出し、
    前記最大値が大きい集積回路では、前記最大値が小さい集積回路よりも前記第1遷移期間または前記第2遷移期間の開始時刻が早くなるように、前記高圧側スイッチおよび前記低圧側スイッチを前記集積回路毎に制御する
    ことを特徴とする請求項1に記載のプラズマディスプレイ装置。
    The data electrode driving circuit includes:
    A plurality of integrated circuits in which a plurality of the output buffers are integrated,
    In the integrated circuit, the maximum value of the substantial load capacitance generated for each data electrode is calculated,
    In the integrated circuit having a large maximum value, the high-voltage side switch and the low-voltage side switch are integrated so that the start time of the first transition period or the second transition period is earlier than that of the integrated circuit having the small maximum value. The plasma display device according to claim 1, wherein the control is performed for each circuit.
  4. 複数の表示電極対と複数のデータ電極とを有するプラズマディスプレイパネルと、前記データ電極に書込みパルスを印加するデータ電極駆動回路とを備え、前記データ電極駆動回路は書込み期間における書込み周期毎に前記書込みパルスの高圧側電圧または前記書込みパルスの低圧側電圧を前記データ電極のそれぞれに印加するプラズマディスプレイ装置であって、
    前記データ電極駆動回路は、前記高圧側電圧を出力する高圧側スイッチと前記低圧側電圧を出力する低圧側スイッチとを有する出力バッファを前記データ電極のそれぞれに対して備え、
    前記出力バッファは、前記書込みパルスの電圧を前記低圧側電圧から前記高圧側電圧に遷移する際には、前記書込み周期に設けられた第1遷移期間において、前記低圧側スイッチをオフにし前記高圧側スイッチをオンにして出力電圧を前記高圧側電圧にし、
    前記書込みパルスの電圧を前記高圧側電圧から前記低圧側電圧に遷移する際には、前記書込み周期に設けられた第2遷移期間において、前記高圧側スイッチをオフにし前記低圧側スイッチをオンにして出力電圧を前記低圧側電圧にし、
    互いに隣接する2本の前記データ電極において、前記第2遷移期間と、前記第2遷移期間の直後の前記第1遷移期間とを時間的に分離する
    ことを特徴とするプラズマディスプレイ装置。
    A plasma display panel having a plurality of display electrode pairs and a plurality of data electrodes, and a data electrode driving circuit for applying an address pulse to the data electrodes, wherein the data electrode driving circuit performs the writing for each writing cycle in a writing period. A plasma display device that applies a high-voltage side voltage of a pulse or a low-voltage side voltage of the write pulse to each of the data electrodes,
    The data electrode drive circuit includes an output buffer having a high voltage side switch for outputting the high voltage side voltage and a low voltage side switch for outputting the low voltage side voltage for each of the data electrodes,
    The output buffer turns off the low-voltage side switch during the first transition period provided in the write cycle when the voltage of the write pulse changes from the low-voltage side voltage to the high-voltage side voltage. Turn on the switch to set the output voltage to the high-voltage side voltage,
    When transitioning the voltage of the write pulse from the high voltage side voltage to the low voltage side voltage, the high voltage side switch is turned off and the low voltage side switch is turned on during the second transition period provided in the write cycle. The output voltage is the low voltage side voltage,
    A plasma display apparatus characterized in that, in two data electrodes adjacent to each other, the second transition period and the first transition period immediately after the second transition period are separated in time.
  5. 1フィールドを書込み期間と維持期間とを有する複数のサブフィールドで構成し、
    前記書込み期間において、複数の表示電極対と複数のデータ電極とを有するプラズマディスプレイパネルの前記データ電極に、書込み周期毎に書込みパルスを印加するプラズマディスプレイ装置の駆動方法であって、
    前記書込み周期に設けられた第1遷移期間において、前記書込みパルスの電圧を前記低圧側電圧から前記高圧側電圧に遷移し、
    前記書込み周期に設けられた第2遷移期間において、前記書込みパルスの電圧を前記高圧側電圧から前記低圧側電圧に遷移し、
    前記第2遷移期間と、前記第2遷移期間の直後の前記第1遷移期間とを時間的に分離する
    ことを特徴とするプラズマディスプレイ装置の駆動方法。
    One field is composed of a plurality of subfields having an address period and a sustain period,
    A driving method of a plasma display device, wherein an address pulse is applied to each data electrode of a plasma display panel having a plurality of display electrode pairs and a plurality of data electrodes in the address period,
    In the first transition period provided in the write cycle, the voltage of the write pulse is changed from the low voltage to the high voltage.
    In a second transition period provided in the write cycle, the voltage of the write pulse is changed from the high voltage side voltage to the low voltage side voltage,
    A method for driving a plasma display device, characterized in that the second transition period and the first transition period immediately after the second transition period are separated in time.
PCT/JP2011/006625 2010-11-30 2011-11-29 Plasma display device and method for driving plasma display device WO2012073477A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-266151 2010-11-30
JP2010266151 2010-11-30

Publications (1)

Publication Number Publication Date
WO2012073477A1 true WO2012073477A1 (en) 2012-06-07

Family

ID=46171450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006625 WO2012073477A1 (en) 2010-11-30 2011-11-29 Plasma display device and method for driving plasma display device

Country Status (1)

Country Link
WO (1) WO2012073477A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123998A (en) * 1996-10-15 1998-05-15 Fujitsu Ltd Display device utilizing flat display panel
JP2008250162A (en) * 2007-03-30 2008-10-16 Pioneer Electronic Corp Drive device of plasma display
JP2009204787A (en) * 2008-02-27 2009-09-10 Fuji Electric Device Technology Co Ltd Semiconductor integrated circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123998A (en) * 1996-10-15 1998-05-15 Fujitsu Ltd Display device utilizing flat display panel
JP2008250162A (en) * 2007-03-30 2008-10-16 Pioneer Electronic Corp Drive device of plasma display
JP2009204787A (en) * 2008-02-27 2009-09-10 Fuji Electric Device Technology Co Ltd Semiconductor integrated circuit

Similar Documents

Publication Publication Date Title
JP2007041251A (en) Method for driving plasma display panel
KR100828862B1 (en) Drive circuit for plasma display panel, and drive method for the plasma display panel
JP5131241B2 (en) Driving method of plasma display panel
JP2003271092A (en) Method for driving plasma display panel and plasma display device
WO2012073477A1 (en) Plasma display device and method for driving plasma display device
WO2011007563A1 (en) Plasma display device and drive method for a plasma display panel
WO2010146827A1 (en) Driving method for plasma display panel, and plasma display device
JP5024482B2 (en) Plasma display panel driving method and plasma display device
WO2012090451A1 (en) Driving method for plasma display panel, and plasma display device
WO2012073478A1 (en) Plasma display device and method for driving plasma display device
WO2012073516A1 (en) Method of driving plasma display device and plasma display device
WO2011096220A1 (en) Plasma display device and method for driving a plasma display panel
WO2011089886A1 (en) Plasma display panel driving method and plasma display device
WO2012102031A1 (en) Method for driving plasma display panel, and plasma display apparatus
WO2012102043A1 (en) Method for driving plasma display panel, and plasma display apparatus
WO2012102032A1 (en) Plasma display panel drive method and plasma display device
WO2009139163A1 (en) Method for driving plasma display panel, and plasma display device
JP2009192648A (en) Plasma display device and method of driving the same
JP2009192647A (en) Plasma display device and method of driving the same
WO2011148644A1 (en) Method for driving plasma display panel, and plasma display device
WO2012102033A1 (en) Plasma display panel drive method and plasma display device
WO2012017647A1 (en) Plasma display panel driving method and plasma display apparatus
WO2011089887A1 (en) Plasma display panel driving method and plasma display device
JP2005321500A (en) Method for driving plasma display panel
WO2011089890A1 (en) Method for driving plasma display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11845243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11845243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP