WO2012102033A1 - Plasma display panel drive method and plasma display device - Google Patents

Plasma display panel drive method and plasma display device Download PDF

Info

Publication number
WO2012102033A1
WO2012102033A1 PCT/JP2012/000446 JP2012000446W WO2012102033A1 WO 2012102033 A1 WO2012102033 A1 WO 2012102033A1 JP 2012000446 W JP2012000446 W JP 2012000446W WO 2012102033 A1 WO2012102033 A1 WO 2012102033A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
scan
scan electrode
period
electrode
Prior art date
Application number
PCT/JP2012/000446
Other languages
French (fr)
Japanese (ja)
Inventor
裕也 塩崎
貴彦 折口
鮎彦 齋藤
富岡 直之
佑紀 今井
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012102033A1 publication Critical patent/WO2012102033A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2018Display of intermediate tones by time modulation using two or more time intervals
    • G09G3/2022Display of intermediate tones by time modulation using two or more time intervals using sub-frames
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/292Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for reset discharge, priming discharge or erase discharge occurring in a phase other than addressing
    • G09G3/2927Details of initialising
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/293Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for address discharge
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/296Driving circuits for producing the waveforms applied to the driving electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/296Driving circuits for producing the waveforms applied to the driving electrodes
    • G09G3/2965Driving circuits for producing the waveforms applied to the driving electrodes using inductors for energy recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0228Increasing the driving margin in plasma displays

Definitions

  • the present invention relates to a plasma display device using an AC surface discharge type plasma display panel and a driving method of the plasma display panel.
  • a typical AC surface discharge type panel as a plasma display panel (hereinafter abbreviated as “panel”) has a large number of discharge cells formed between a front substrate and a rear substrate that are arranged to face each other.
  • a plurality of pairs of display electrodes composed of a pair of scan electrodes and sustain electrodes are formed in parallel with each other on the front glass substrate.
  • a dielectric layer and a protective layer are formed so as to cover the display electrode pairs.
  • the back substrate has a plurality of parallel data electrodes formed on the glass substrate on the back side, a dielectric layer is formed so as to cover the data electrodes, and a plurality of barrier ribs are formed thereon in parallel with the data electrodes. ing. And the fluorescent substance layer is formed in the surface of a dielectric material layer, and the side surface of a partition.
  • the front substrate and the rear substrate are arranged opposite to each other and sealed so that the display electrode pair and the data electrode are three-dimensionally crossed.
  • a discharge gas containing xenon at a partial pressure ratio of 5% is sealed, and a discharge cell is formed in a portion where the display electrode pair and the data electrode face each other.
  • ultraviolet rays are generated by gas discharge in each discharge cell, and the phosphors of each color of red (R), green (G) and blue (B) are excited and emitted by the ultraviolet rays. Display an image.
  • a subfield method is generally used as a method for displaying an image in an image display area of a panel by combining binary control of light emission and non-light emission in a discharge cell.
  • each discharge cell In the subfield method, one field is divided into a plurality of subfields having different emission luminances.
  • each discharge cell light emission / non-light emission of each subfield is controlled by a combination according to a desired gradation value.
  • each discharge cell emits light with the emission luminance of one field set to a desired gradation value, and an image composed of various combinations of gradation values is displayed in the image display area of the panel.
  • each subfield has an initialization period, an address period, and a sustain period.
  • an initialization waveform is applied to each scan electrode, and an initialization operation is performed to generate an initialization discharge in each discharge cell.
  • wall charges necessary for the subsequent address operation are formed, and priming particles (excited particles for generating the discharge) for generating the address discharge stably are generated.
  • the scan pulse is sequentially applied to the scan electrodes, and the address pulse is selectively applied to the data electrodes based on the image signal to be displayed.
  • an address discharge is generated between the scan electrode and the data electrode of the discharge cell to emit light, and a wall charge is formed in the discharge cell (hereinafter, these operations are also collectively referred to as “address”). ).
  • the number of sustain pulses based on the luminance weight determined for each subfield is alternately applied to the display electrode pairs composed of the scan electrodes and the sustain electrodes.
  • a sustain discharge is generated in the discharge cell that has generated the address discharge, and the phosphor layer of the discharge cell emits light (hereinafter referred to as “lighting” that the discharge cell emits light by the sustain discharge, and “non-emitting”). Also written as “lit”.)
  • each discharge cell is made to emit light with the luminance according to the luminance weight.
  • each discharge cell of the panel is caused to emit light with a luminance corresponding to the gradation value of the image signal, and an image is displayed in the image display area of the panel.
  • a ramp voltage that maintains the voltage for a certain period is applied to the scan electrode after rising to a predetermined voltage, and then the ramp voltage that rises is maintained.
  • a technique for erasing wall charges in a discharge cell by applying to an electrode is disclosed (for example, see Patent Document 2).
  • a plasma display device provided with such a panel is also required to stably generate an address discharge and stably display an image on the panel.
  • wall charges formed in the discharge cell by the initializing discharge gradually decrease under the influence of the address pulse applied to the data electrode in order to generate the address discharge in other discharge cells. For this reason, in a discharge cell in which the scan pulse is applied in a late order, wall charges may decrease before the scan pulse and the address pulse are applied to the discharge cell, and a discharge failure of address discharge may occur.
  • the time spent for the address operation becomes longer due to the increase in the number of scan electrodes, and therefore, the wall charge in the discharge cell in which the address is written toward the end of the address period is reduced. Further, the address discharge tends to become unstable.
  • the present invention provides a panel including a plurality of discharge cells each having a display electrode pair composed of a scan electrode and a sustain electrode and a data electrode, and a plurality of scan electrodes each including a first scan electrode group and a second scan electrode group.
  • This is a method for driving a panel that is divided into scan electrode groups. In this driving method, after the adjustment period for maintaining the display electrode pair and the data electrode at the base potential, the first downward ramp waveform voltage is applied to the first scan electrode group and the second scan electrode group is supplied with the second scan electrode group.
  • Initialization period in which a downward ramp waveform voltage is applied, an address operation in which an address pulse is applied to a discharge cell to emit light in the first scan electrode group, and an address pulse is applied to a discharge cell to emit light in the second scan electrode group
  • One field is a subfield having an address period in which the third downward ramp waveform voltage is applied to the scan electrodes and an sustain period in which the number of sustain pulses corresponding to the luminance weight is applied to the display electrode pair during the address operation. Included. Then, the length of the adjustment period is changed according to the number of sustain pulses generated in the sustain period of the immediately preceding subfield.
  • the difference between the lowest voltage of the first falling ramp waveform voltage and the lowest voltage of the third falling ramp waveform voltage is calculated by subtracting the length of the adjustment period from the subfield having a longer adjustment period. It is desirable to change with a short subfield.
  • the panel driving method of the present invention it is desirable to lower the minimum voltage of the third downward ramp waveform voltage in the subfield having a short adjustment period than in the subfield having a long adjustment period.
  • the present invention applies a panel having a plurality of discharge cells each having a display electrode pair consisting of a scan electrode and a sustain electrode and a data electrode, and applies a number of sustain pulses corresponding to the address period and luminance weight to the display electrode pair.
  • driving the panel by dividing the scan electrodes into a plurality of scan electrode groups including a first scan electrode group and a second scan electrode group, wherein one field is composed of a plurality of subfields having a sustain period. It is.
  • the first type subfield and the second type subfield are provided in one field.
  • the first type subfield includes a scan electrode that applies an upward ramp waveform voltage that rises to a voltage at which discharge occurs in the discharge cell and a downward ramp waveform voltage that decreases toward a negative voltage, and no discharge occurs in the discharge cell.
  • This is a subfield having an initialization period in which a scan electrode to which a voltage and a falling ramp waveform voltage are applied exists.
  • the second type subfield is a subfield having an initializing period in which a first downward ramp waveform voltage that drops to a voltage at which discharge occurs only in the discharge cells that have generated address discharge in the immediately preceding subfield is applied to the scan electrodes. is there.
  • the first voltage is applied to the data electrode during the period in which the downward ramp waveform voltage is applied to the scan electrode.
  • a second voltage higher than the first voltage is applied to the data electrode during the period in which the first downward ramp waveform voltage is applied to the scan electrode.
  • the rising ramp waveform voltage that rises from the base potential to a predetermined voltage set lower than the sustain pulse voltage after the generation of the last sustain pulse in the sustain period is applied to the scan electrodes. Apply.
  • an adjustment period for maintaining the display electrode pair and the data electrode at the base potential is provided immediately before the initialization period.
  • the first downward ramp waveform voltage is applied to the first scan electrode group and the second downward ramp waveform voltage is applied to the second scan electrode group.
  • an address operation that applies an address pulse to the discharge cells that should emit light in the first scan electrode group and an address that applies an address pulse to the discharge cells that should emit light in the second scan electrode group A third downward ramp waveform voltage is applied to the scan electrode during the operation. Then, the length of the adjustment period is changed according to the number of sustain pulses generated in the sustain period of the immediately preceding subfield.
  • the difference between the lowest voltage of the first falling ramp waveform voltage and the lowest voltage of the third falling ramp waveform voltage is calculated by subtracting the length of the adjustment period from the subfield and the adjustment period. It is desirable to change the subfield with a short length.
  • the lowest voltage of the third downward ramp waveform voltage can be set lower than in the subfield having a long adjustment period. Good.
  • the lowest voltage of the first descending ramp waveform voltage is set to a voltage higher than the lowest voltage of the descending ramp waveform voltage of the first type subfield, and the first descending ramp waveform is set.
  • a voltage may be generated.
  • a positive voltage is applied to the sustain electrode during the period in which the down-gradient waveform voltage of the first type subfield is applied to the scan electrode, and the first down-gradient waveform voltage is applied to the scan electrode.
  • a voltage higher than the positive voltage may be applied to the sustain electrode during the period applied to the sustain electrode.
  • the present invention also provides a panel including a plurality of discharge cells each having a display electrode pair composed of a scan electrode and a sustain electrode and a data electrode, and a plurality of scan electrodes including a first scan electrode group and a second scan electrode group. And a driving circuit for driving the panel divided into the scanning electrode groups.
  • the drive circuit applies the first downward ramp waveform voltage to the first scan electrode group and the second scan electrode after the adjustment period for maintaining the display electrode pair and the data electrode at the base potential.
  • An initializing period in which a second downward ramp waveform voltage is applied to the group, an address operation in which an address pulse is applied to the discharge cells to emit light in the first scan electrode group, and a discharge cell to emit light in the second scan electrode group A write period in which a third downward ramp waveform voltage is applied to the scan electrodes between the write operation for applying the write pulses to the scan electrodes, and a sustain period in which the number of sustain pulses corresponding to the luminance weight is applied to the display electrode pairs
  • the panel is driven by including subfields in one field. Then, the driving circuit changes the length of the adjustment period according to the number of sustain pulses generated in the sustain period of the immediately preceding subfield.
  • the driving circuit may calculate the difference between the lowest voltage of the first falling ramp waveform voltage and the lowest voltage of the third falling ramp waveform voltage as a subfield having a long adjustment period. It is desirable to change the subfield with a short adjustment period.
  • the drive circuit lowers the minimum voltage of the third downward ramp waveform voltage in the subfield having a short adjustment period compared to the subfield having a long adjustment period. May be.
  • the present invention applies a panel having a plurality of discharge cells each having a display electrode pair consisting of a scan electrode and a sustain electrode and a data electrode, and a number of sustain pulses corresponding to the address period and luminance weight to the display electrode pair.
  • Drive circuit for driving a panel by forming one field with a plurality of subfields having a sustain period and dividing the scan electrodes into a plurality of scan electrode groups including a first scan electrode group and a second scan electrode group Is a plasma display device.
  • the drive circuit drives the panel by providing the first type subfield and the second type subfield in one field.
  • the first type subfield includes a scan electrode that applies an upward ramp waveform voltage that rises to a voltage at which discharge occurs in the discharge cell, and a downward ramp waveform voltage that decreases toward a negative voltage, and discharge occurs in the discharge cell. And an initializing period in which there are scan electrodes to which the voltage to be applied and the downward ramp waveform voltage are applied.
  • the second type subfield has an initializing period in which a first falling ramp waveform voltage that drops to a voltage at which only the discharge cells that have generated address discharge in the immediately preceding subfield are discharged is applied to the scan electrodes. In the initialization period of the first type subfield, the first voltage is applied to the data electrode during the period in which the downward ramp waveform voltage is applied to the scan electrode.
  • a second voltage higher than the first voltage is applied to the data electrode during a period in which the first downward ramp waveform voltage is applied to the scan electrode.
  • an adjustment period for maintaining the display electrode pair and the data electrode at the base potential is provided immediately before the initialization period.
  • the first downward ramp waveform voltage is applied to the first scan electrode group and the second downward ramp waveform voltage is applied to the second scan electrode group.
  • an initialization period an address operation in which an address pulse is applied to the discharge cells to emit light in the first scan electrode group, and an address to the discharge cells to emit light in the second scan electrode group
  • a third downward ramp waveform voltage is applied to the scan electrode during the write operation in which a pulse is applied.
  • the drive circuit changes the length of the adjustment period according to the number of sustain pulses generated in the last subfield sustain period.
  • FIG. 1 is an exploded perspective view showing a structure of a panel used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • FIG. 2 is an electrode array diagram of the panel used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing an example of the division of the scan electrode group of the panel used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • FIG. 4 is a diagram showing a driving voltage waveform in a one-phase driving operation applied to each electrode of the panel used in the plasma display device in the first exemplary embodiment of the present invention.
  • FIG. 1 is an exploded perspective view showing a structure of a panel used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • FIG. 2 is an electrode array diagram of the panel used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing an example of the division of the scan electrode
  • FIG. 5 is a diagram showing a driving voltage waveform in a two-phase driving operation applied to each electrode of the panel used in the plasma display device in the first exemplary embodiment of the present invention.
  • FIG. 6 is a diagram showing a driving voltage waveform in a two-phase driving operation applied to each electrode of the panel used in the plasma display device in the first exemplary embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an example of parameters of the drive voltage waveform in the first embodiment of the present invention.
  • FIG. 8 is a diagram showing a relationship between the adjustment period TSF and the voltage Vset in the first embodiment of the present invention.
  • FIG. 9 is a diagram showing an example of the relationship between the adjustment period TSF and the voltage Vset in the first embodiment of the present invention.
  • FIG. 10 is a diagram showing another example of the relationship between the adjustment period TSF and the voltage Vset in the first embodiment of the present invention.
  • FIG. 11 is a diagram showing the relationship between the voltage difference between the voltage Vr and the voltage Vs and the voltage Vset2 in the first embodiment of the present invention.
  • FIG. 12 is a circuit block diagram of the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • FIG. 13 is a circuit diagram schematically showing a configuration of a scan electrode driving circuit of the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • FIG. 14 is a circuit diagram schematically showing a configuration of a sustain electrode driving circuit of the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • FIG. 15 is a circuit diagram schematically showing a configuration of a data electrode driving circuit of the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • FIG. 16 is a circuit diagram of the scan pulse generating circuit according to the first embodiment of the present invention.
  • FIG. 17 is a schematic diagram illustrating a connection state between the scan IC and the scan electrode of the scan electrode driving circuit according to the first embodiment of the present invention.
  • FIG. 18 is a diagram for explaining a correspondence relationship between the control signals OC1 and OC2 and the operation state of the scan IC in the first embodiment of the present invention.
  • FIG. 19 is a timing chart for explaining an example of the operation of the scan electrode driving circuit in one embodiment of the present invention.
  • FIG. 20 schematically shows the relationship between the scan pulse voltage (amplitude) necessary to generate a stable address discharge and the order of address operations when performing the two-phase drive operation in the first embodiment of the present invention.
  • FIG. FIG. 21 is a diagram showing a driving voltage waveform during a one-phase driving operation applied to each electrode of the panel used in the plasma display device in accordance with the second exemplary embodiment of the present invention.
  • FIG. 22 is a diagram showing a drive voltage waveform during a two-phase drive operation applied to each electrode of panel 10 used in the plasma display device in accordance with the second exemplary embodiment of the present invention.
  • FIG. 23 is a diagram schematically showing a relationship between a scan electrode to which a forced initialization waveform is applied and a field in the second embodiment of the present invention.
  • FIG. 24 is a timing chart for explaining the operation of the driving circuit of the plasma display device in accordance with the second exemplary embodiment of the present invention.
  • FIG. 25 is a waveform diagram showing another example of the waveform shape of the downward ramp waveform voltage applied to the scan electrode in the embodiment of the present invention.
  • FIG. 1 is an exploded perspective view showing the structure of panel 10 used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • a plurality of display electrode pairs 24 each including a scanning electrode 22 and a sustaining electrode 23 are formed on a glass front substrate 21.
  • a dielectric layer 25 is formed so as to cover the scan electrode 22 and the sustain electrode 23, and a protective layer 26 is formed on the dielectric layer 25.
  • the protective layer 26 is formed of a material mainly composed of magnesium oxide (MgO), which is a material having high electron emission performance, in order to easily generate discharge in the discharge cell.
  • MgO magnesium oxide
  • the protective layer 26 may be composed of a single layer or may be composed of a plurality of layers. Moreover, the structure which particle
  • a plurality of data electrodes 32 are formed on the rear substrate 31, a dielectric layer 33 is formed so as to cover the data electrodes 32, and a grid-like partition wall 34 is formed thereon.
  • a phosphor layer 35 that emits light of each color of red (R), green (G), and blue (B) is provided on the side surface of the partition wall 34 and on the dielectric layer 33.
  • the front substrate 21 and the rear substrate 31 are arranged to face each other so that the display electrode pair 24 and the data electrode 32 intersect each other with a minute discharge space interposed therebetween, and a discharge space is formed in the gap between the front substrate 21 and the rear substrate 31.
  • the outer peripheral part is sealed with sealing materials, such as glass frit. Then, for example, a mixed gas of neon (Ne) and xenon (Xe) is sealed in the discharge space inside as a discharge gas.
  • the discharge space is divided into a plurality of sections by partition walls 34, and discharge cells constituting pixels are formed at the intersections of the display electrode pairs 24 and the data electrodes 32.
  • a color image is displayed on the panel 10 by discharging and emitting (lighting) these discharge cells.
  • One pixel is composed of three discharge cells, ie, discharge cells emitting blue (B).
  • the structure of the panel 10 is not limited to the above-described structure, and may be, for example, provided with a stripe-shaped partition wall.
  • the mixing ratio of the discharge gas may be, for example, a xenon partial pressure of 10%, but the xenon partial pressure may be further increased in order to improve the light emission efficiency in the discharge cell. Good.
  • FIG. 2 is an electrode array diagram of panel 10 used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • the panel 10 includes n scan electrodes SC1 to SCn (scan electrode 22 in FIG. 1) extended in the horizontal direction (row direction and line direction) and n sustain electrodes SU1 to SUn (FIG. 1). Are arranged, and m data electrodes D1 to Dm (data electrode 32 in FIG. 1) extending in the vertical direction (column direction) are arranged.
  • the plasma display device in this embodiment performs gradation display by a subfield method.
  • the subfield method one field is divided into a plurality of subfields on the time axis, and a luminance weight is set for each subfield.
  • Each subfield has an initialization period, an address period, and a sustain period.
  • An image is displayed on the panel 10 by controlling light emission / non-light emission of each discharge cell for each subfield.
  • the luminance weight represents a ratio of the luminance magnitudes displayed in each subfield, and the number of sustain pulses corresponding to the luminance weight is generated in the sustain period in each subfield. Therefore, for example, the subfield with the luminance weight “8” emits light with a luminance about eight times that of the subfield with the luminance weight “1”, and emits light with about four times the luminance of the subfield with the luminance weight “2”. Therefore, various gradations can be displayed and images can be displayed by selectively causing each subfield to emit light in a combination according to the image signal.
  • one field is divided into 8 subfields (subfield SF1, subfield SF2,..., Subfield SF8), and the luminance weight increases in the subfield later in time.
  • each subfield has a luminance weight of (1, 2, 4, 8, 16, 32, 64, 128).
  • a red image signal (R signal), a green image signal (G signal), and a blue image signal (B signal) are displayed in 256 gradations from 0 to 255, respectively. Can do.
  • an initialization discharge is generated, and an initialization operation is performed to form wall charges necessary for the subsequent address discharge on each electrode.
  • the initializing operation at this time includes all-cell initializing operation in which initializing discharge is generated in all discharge cells, and selective initializing with respect to the discharge cells that have generated sustain discharge in the sustain period of the immediately preceding subfield. There is a selective initialization operation that generates a discharge.
  • an address operation is performed in which an address discharge is selectively generated in the discharge cells to emit light to form wall charges necessary for the sustain discharge.
  • a sustain pulse is alternately applied to the display electrode pair 24, and a sustain operation is performed in the discharge cell in which the address discharge is generated to emit light from the discharge cell.
  • the all-cell initialization operation is performed in the initialization period of one subfield, and the selective initialization operation is performed in the initialization period of the other subfield.
  • the subfield that performs the all-cell initializing operation is referred to as “all-cell initializing subfield”, and the subfield that performs the selective initializing operation is referred to as “selective initializing subfield”.
  • the all-cell initializing operation is performed in the initializing period of the subfield SF1
  • the selective initializing operation is performed in the initializing periods of the subfield SF2 to the subfield SF8.
  • the light emission not related to the image display is only the light emission due to the discharge of the all-cell initializing operation in the subfield SF1. Therefore, the black luminance, which is the luminance of the black display region where no sustain discharge occurs, is only weak light emission in the all-cell initialization operation, and an image with high contrast can be displayed on the panel 10.
  • the number of sustain pulses obtained by multiplying the luminance weight of each subfield by a predetermined proportional constant is applied to each display electrode pair 24.
  • This proportionality constant is the luminance magnification.
  • the sustain pulse is applied to the scan electrode 22 and the sustain electrode 23 four times in the sustain period of the subfield having the luminance weight “2”. Therefore, the number of sustain pulses generated in the sustain period is 8.
  • the number of subfields constituting one field and the luminance weight of each subfield are not limited to the above values.
  • the structure which switches a subfield structure based on an image signal etc. may be sufficient.
  • FIG. 3 is a schematic diagram showing an example of the division of the scan electrode group of panel 10 used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • the plasma display device in the present embodiment includes a plurality of scan electrode driving ICs (hereinafter referred to as “scan IC 95”), and drives the scan electrodes SC1 to SCn using the plurality of scan ICs 95. Details of the scan IC 95 will be described later.
  • One scan IC 95 is connected to the plurality of scan electrodes 22, and one scan IC 95 drives the plurality of scan electrodes 22.
  • panel 10 includes 1080 scan electrodes 22 (scan electrode SC1 to scan electrode SC1080), and one scan IC 95 drives 90 scan electrodes 22. Therefore, the plasma display device described in this embodiment includes 12 scan ICs 95 (scan IC 95 (1) to scan IC 95 (12)).
  • the scan IC 95 is driven in two groups, and the first scan IC group (in this embodiment, from the scan IC 95 (1) to the scan IC 95 (6)), the second IC Different control signals are input to the scan IC groups (in this embodiment, from scan IC 95 (7) to scan IC 95 (12)).
  • FIG. 3 simply shows the connection between the panel 10 and the scan IC 95.
  • the display electrode pairs 24 are arranged extending in the left-right direction in the drawing (direction parallel to the long side of the panel 10), as in FIG.
  • a region separated by a dotted line in the panel 10 represents a region where a plurality of (in this embodiment, 90) scanning electrodes 22 driven by one scanning IC 95 are arranged.
  • the output terminal of the scan IC 95 is connected to each of the scan electrodes SC1 to SCn by a generally used flexible wiring board 77.
  • the plasma display device divides the display area of panel 10 into two areas as indicated by broken lines in FIG.
  • a plurality of scan electrodes included in one region is defined as one scan electrode group. That is, scan electrode SC1 to scan electrode SCn are divided into two scan electrode groups, a first scan electrode group and a second scan electrode group, and panel 10 is driven.
  • this driving method is referred to as “two-phase driving”.
  • scan electrode SC1 to scan electrode SC540 are set as the first scan electrode group, and scan electrode SC541 to scan electrode SC1080 are set as the second scan electrode group. Perform phase drive.
  • a discharge cell constituted by the first scan electrode group is referred to as a “first discharge cell group”.
  • a discharge cell constituted by the second scan electrode group is referred to as a “second discharge cell group”.
  • two regions surrounded by a broken line are a first discharge cell group and a second discharge cell group.
  • the scan electrode SC1 to the scan electrode SC90 are connected to the first scan IC 95 (1).
  • scan electrode SC91 to scan electrode SC180 are connected to second scan IC 95 (2). In this way, 90 scanning electrodes are connected to the scanning IC 95 at a time.
  • Scan ICs 95 (1) to 95 (6) connected to scan electrodes SC 1 to SC 540 are set as a first scan IC group, and scan ICs 95 (7) to 95 (7) to 7 are connected to scan electrode SC 541 to scan electrode SC 1080.
  • the scan IC 95 (12) is a second scan IC group.
  • panel 10 is driven by dividing a plurality of subfields constituting one field into subfields that perform two-phase driving and subfields that do not perform two-phase driving.
  • different initialization waveforms are generated in the first scan IC group and the second scan IC group.
  • driving that is not two-phase driving is referred to as “one-phase driving”.
  • the plasma display device in the present embodiment performs one-phase driving in subfield SF1 and subfield SF2, and performs two-phase driving in other subfields (for example, subfield SF3 to subfield SF8).
  • FIG. 4 is a diagram showing a driving voltage waveform during a one-phase driving operation applied to each electrode of panel 10 used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • FIG. 4 shows scan electrode SC1 that performs the address operation first in the address period, scan electrode SCn that performs the address operation last in the address period, sustain electrode SU1 to sustain electrode SUn, and data electrode D1 to data electrode Dm.
  • the drive voltage waveform to be applied is shown.
  • FIG. 4 shows driving voltage waveforms of two subfields having different driving voltage waveform shapes applied to scan electrode SC1 through scan electrode SCn during the initialization period.
  • These two subfields are a subfield SF1 which is an all-cell initializing subfield and a subfield SF2 which is a selective initializing subfield.
  • drive voltage waveforms in the other subfields are substantially the same as the drive voltage waveforms in the subfield SF2 except that the number of sustain pulses generated in the sustain period is different.
  • scan electrode SCi, sustain electrode SUi, and data electrode Dk in the following represent electrodes selected from the electrodes based on image data (data indicating lighting / non-lighting for each subfield).
  • subfield SF1 which is an all-cell initialization subfield
  • voltage 0 (V) is applied to data electrode D1 through data electrode Dm and sustain electrode SU1 through sustain electrode SUn.
  • Voltage Vi1 is applied to scan electrode SC1 through scan electrode SCn.
  • Voltage Vi1 is set to a voltage lower than the discharge start voltage with respect to sustain electrode SU1 through sustain electrode SUn.
  • a ramp waveform voltage that gently rises from voltage Vi1 to voltage Vi2 is applied to scan electrode SC1 through scan electrode SCn.
  • this ramp waveform voltage is referred to as “up-ramp voltage L1”.
  • Voltage Vi2 is set to a voltage exceeding the discharge start voltage with respect to sustain electrode SU1 through sustain electrode SUn.
  • An example of the gradient of the up-ramp voltage L1 is a numerical value of about 1.3 V / ⁇ sec.
  • the wall voltage on the electrode represents a voltage generated by wall charges accumulated on the dielectric layer covering the electrode, the protective layer, the phosphor layer, and the like.
  • positive voltage Ve is applied to sustain electrode SU1 through sustain electrode SUn, and voltage 0 (V) is applied as the first voltage to data electrode D1 through data electrode Dm.
  • Scan electrode SC1 through scan electrode SCn are applied with a first downward ramp waveform voltage that gently decreases from voltage Vi3 toward negative voltage Vi4.
  • this first downward ramp waveform voltage is referred to as “down-ramp voltage L2”.
  • Voltage Vi3 is set to a voltage lower than the discharge start voltage with respect to sustain electrode SU1 through sustain electrode SUn, and voltage Vi4 is set to a voltage exceeding the discharge start voltage.
  • An example of the gradient of the down-ramp voltage L2 is a numerical value of about ⁇ 2.5 V / ⁇ sec.
  • the voltage Vi4 is equal to a voltage obtained by superimposing the voltage Vset2 on the negative voltage Va when a scanning pulse described later is generated.
  • the negative wall voltage on scan electrode SC1 through scan electrode SCn and the positive wall voltage on sustain electrode SU1 through sustain electrode SUn are weakened, and the positive wall voltage on data electrode D1 through data electrode Dm is used for the write operation. It is adjusted to a suitable value.
  • priming particles that help generate subsequent discharge are also generated.
  • the priming particles have a function of shortening the discharge delay time of the address discharge in the subsequent address period.
  • the discharge delay time is the time from when the voltage applied to the discharge cell exceeds the discharge start voltage until the actual discharge occurs.
  • all-cell initialization period the period for performing the all-cell initialization operation
  • all-cell initialization waveform The drive voltage waveform generated for performing the all-cell initialization operation
  • a scan pulse of voltage Va is sequentially applied to scan electrode SC1 through scan electrode SCn.
  • An address pulse of a positive voltage Vd is applied to data electrode D1 to data electrode Dm to data electrode Dk corresponding to the discharge cell to emit light.
  • an address discharge is selectively generated in each discharge cell.
  • voltage 0 (V) is applied to data electrode D1 to data electrode Dm
  • voltage Ve is applied to sustain electrode SU1 to sustain electrode SUn
  • scan electrode SC1 to scan electrode are applied.
  • a voltage Vc is applied to SCn.
  • a scan pulse of the negative voltage Va is applied to the scan electrode SC1 in the first row where the address operation is performed first.
  • an address pulse of a positive voltage Vd is applied to the data electrode Dk of the discharge cell that should emit light in the first row of the data electrodes D1 to Dm.
  • the voltage difference at the intersection between the data electrode Dk and the scan electrode SC1 is the difference between the wall voltage on the data electrode Dk and the wall voltage on the scan electrode SC1 due to the difference between the externally applied voltages (voltage Vd ⁇ voltage Va). It will be added.
  • the voltage difference between data electrode Dk and scan electrode SC1 exceeds the discharge start voltage, and a discharge is generated between data electrode Dk and scan electrode SC1.
  • the voltage difference between sustain electrode SU1 and scan electrode SC1 is the difference between the externally applied voltages (voltage Ve ⁇ voltage Va), and sustain electrode SU1.
  • the difference between the upper wall voltage and the wall voltage on the scan electrode SC1 is added.
  • the sustain electrode SU1 and the scan electrode SC1 are not easily discharged but are likely to be discharged. Can do.
  • a discharge is generated between the sustain electrode SU1 and the scan electrode SC1 in a region intersecting the data electrode Dk, induced by a discharge generated between the data electrode Dk and the scan electrode SC1.
  • an address discharge is generated in the discharge cell to emit light, a positive wall voltage is accumulated on scan electrode SC1, a negative wall voltage is accumulated on sustain electrode SU1, and a negative wall voltage is also accumulated on data electrode Dk. Is accumulated.
  • a scan pulse is applied to the scan electrode SC2 that performs the second address operation, and an address pulse is applied to the data electrode Dk that corresponds to the discharge cell that should emit light in the second row that performs the address operation.
  • an address discharge is generated and an address operation is performed.
  • the above address operation is sequentially performed until the discharge cell in the n-th row, and the address period ends.
  • address discharge is selectively generated in the discharge cells to emit light, and wall charges necessary for generating sustain discharge in the subsequent sustain period are formed in the discharge cells.
  • the voltage difference between scan electrode SCi and sustain electrode SUi exceeds the discharge start voltage, and a sustain discharge occurs between scan electrode SCi and sustain electrode SUi.
  • the fluorescent substance layer 35 light-emits with the ultraviolet-ray which generate
  • a negative wall voltage is accumulated on scan electrode SCi, and a positive wall voltage is accumulated on sustain electrode SUi.
  • a positive wall voltage is also accumulated on the data electrode Dk.
  • sustain pulses of the number obtained by multiplying the luminance weight by a predetermined luminance magnification are alternately applied to scan electrode SC1 through scan electrode SCn and sustain electrode SU1 through sustain electrode SUn. By doing so, sustain discharge is continuously generated in the discharge cells that have generated address discharge in the address period.
  • the weak discharge is continuously generated during a period in which the voltage applied to scan electrode SC1 through scan electrode SCn rises above the discharge start voltage.
  • the voltage applied to scan electrode SC1 through scan electrode SCn is decreased to voltage 0 (V).
  • the voltage Vr is set to a voltage lower than the sustain pulse voltage Vs. The reason will be described later.
  • the charged particles generated by this weak discharge are accumulated as wall charges on the sustain electrode SUi and the scan electrode SCi so as to reduce the voltage difference between the sustain electrode SUi and the scan electrode SCi.
  • the wall voltage between scan electrode SC1 through scan electrode SCn and sustain electrode SU1 through sustain electrode SUn is the difference between the voltage applied to scan electrode SCi and the discharge start voltage, for example, (voltage Vr ⁇ discharge start voltage). It is weakened to the extent. That is, the discharge generated by the ascending erasing ramp voltage L3 works as an erasing discharge.
  • scan electrode SC1 to scan electrode SCn are returned to voltage 0 (V), and the sustain operation in the sustain period ends.
  • the voltage 0 (V) that is the first voltage is applied to the data electrodes D1 to Dm.
  • voltage Ve is applied to sustain electrode SU1 through sustain electrode SUn.
  • Scan electrode SC1 through scan electrode SCn gradually decrease from voltage Vi3 ′ (eg, voltage 0 (V), which is the base potential), which is less than the discharge start voltage, to negative voltage Vi4 that exceeds the discharge start voltage.
  • a first downward ramp waveform voltage is applied.
  • the first downward ramp waveform voltage is referred to as “down-ramp voltage L4”.
  • the slope of the down-ramp voltage L4 may be the same as the slope of the down-ramp voltage L2, and an example thereof is a numerical value of about ⁇ 2.5 V / ⁇ sec.
  • the initialization discharge does not occur, and the wall charge at the end of the immediately preceding subfield initialization period is maintained. In this way, the initialization operation in the subfield SF2 is completed.
  • the initializing operation in subfield SF2 is a selective initializing operation in which initializing discharge is generated only in the discharge cells in which the address discharge is generated in the address period of the immediately preceding subfield and the sustain discharge is generated in the sustain period.
  • the period for performing the selective initialization operation is referred to as the selective initialization period.
  • a drive voltage waveform generated for performing the selective initialization operation is referred to as a “selective initialization waveform”.
  • the same drive voltage waveform as that in the address period and sustain period of the subfield SF1 is applied to each electrode, except for the number of sustain pulses.
  • the above is the outline of the driving voltage waveform during the one-phase driving operation applied to each electrode of the panel 10 when displaying an image in the present embodiment.
  • a one-phase driving operation is performed in the subfield SF1 and the subfield SF2.
  • a two-phase driving operation is performed in subfield SF3 to subfield SF8 in subfield SF3 to subfield SF8 in subfield SF3 to subfield SF8, a two-phase driving operation is performed.
  • FIG. 5 is a diagram showing a driving voltage waveform during a two-phase driving operation applied to each electrode of panel 10 used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • the scan electrode 22 that performs the address operation at the beginning of the address period the scan electrode SC1 that belongs to the first scan electrode group, and the scan electrode 22 that performs the address operation at the end of the first scan electrode group.
  • Scan electrode SCn / 2 for example, scan electrode SC540
  • scan electrode SCn / 2 + 1 for example, scan electrode SC541
  • scan electrode 22 that performs an address operation is applied to each of scan electrode SCn (for example, scan electrode SC1080) belonging to the second scan electrode group, sustain electrode SU1 through sustain electrode SUn, and data electrode D1 through data electrode Dm.
  • the drive voltage waveform to be shown is shown.
  • subfield SF3 to subfield SF8 are selective initialization subfields.
  • an adjustment period TSF is first generated.
  • this adjustment period TSF a voltage at which no discharge occurs in the discharge cell is applied to each electrode. That is, during the adjustment period TSF, the display electrode pair 24 and the data electrode 32 are maintained at the base potential. Therefore, during the adjustment period TSF, voltage 0 (V), which is the base potential, is applied to data electrode D1 to data electrode Dm, sustain electrode SU1 to sustain electrode SUn, and scan electrode SC1 to scan electrode SCn.
  • scan electrode SC1 to scan electrode SCn / 2 belonging to the first scan electrode group and scan electrode SCn / 2 + 1 to scan electrode SCn belonging to the second scan electrode group are different from each other.
  • the first and second scan electrode groups generate different down-slope waveform voltages having the lowest potential of the down-slope waveform voltage, and apply them to the scan electrodes.
  • the drive voltage waveform having the same waveform as the down-ramp voltage L4 described as the selective initialization waveform is applied to scan electrode SC1 to scan electrode SCn / 2 belonging to the first scan electrode group. Therefore, hereinafter, this drive voltage waveform is also referred to as “first downward ramp waveform voltage”. That is, the first downward ramp waveform voltage (down-ramp voltage L4) is a negative voltage Vi4 that exceeds the discharge start voltage from voltage Vi3 ′ that is less than the discharge start voltage with respect to sustain electrode SU1 to sustain electrode SUn / 2. That is, it is a ramp waveform voltage that drops to voltage Va + voltage Vset2.
  • the sustain period of the immediately preceding subfield (subfield SF2 in FIG. 5) is similar to the initialization period of subfield SF2.
  • a weak initializing discharge is generated only in the discharge cells that have generated the sustain discharge.
  • a second down-slope waveform voltage (hereinafter referred to as “down-ramp”) that gently falls from voltage Vi3 ′ toward negative voltage (Va + Vset5). (Referred to as voltage L8 ").
  • the voltage Vset5 is set to a voltage higher than the voltage Vset2.
  • the voltage Vset2 is set to 25 (V)
  • the voltage Vset5 is set to 70 (V).
  • the lowest voltage of the down-ramp voltage L8 applied to the second scan electrode group is higher than the lowest low voltage Vi4 of the down-ramp voltage L4 applied to the first scan electrode group.
  • the down-ramp voltage L4 applied to the first scan electrode group drops to the voltage (Va + Vset2), whereas the down-ramp voltage L8 applied to the second scan electrode group is higher than the voltage (Va + Vset2). It descends only to (Va + Vset5).
  • voltage Ve is applied to sustain electrode SU1 through sustain electrode SUn
  • scan pulses are sequentially applied to scan electrode SC1 to scan electrode SCn / 2 belonging to the first scan electrode group, similarly to the address period of subfield SF1 and subfield SF2. That is, an address operation for generating an address discharge by applying an address pulse to the discharge cells to emit light is sequentially performed from the discharge cells in the first row to the discharge cells in the n / 2th row.
  • a third downward ramp waveform voltage (hereinafter referred to as “down-ramp voltage L9”) that gently falls toward the voltage (Va + Vset3) is applied to the second scan electrode group.
  • the voltage Vset3 is set to a voltage lower than the voltage Vset2.
  • the voltage Vset2 is 25 (V) and the voltage Vset3 is 22 (V).
  • the down-ramp voltage L9 becomes a down-slope waveform voltage that drops to a voltage lower than the down-ramp voltage L4 (for example, to a voltage 3 (V) lower than the down-ramp voltage L4).
  • the down-ramp voltage L9 drops to a voltage (Va + Vset3) lower than the voltage Vi4 that is the lowest voltage of the down-ramp voltage L4. Is applied to the second scan electrode group.
  • the down-ramp voltage L8 applied to the second scan electrode group during the initialization period only drops to a negative voltage (Va + Vset5). Therefore, more wall charges remain in each discharge cell of the second discharge cell group than in each discharge cell of the first discharge cell group.
  • the downramp voltage L9 can be lowered to a voltage sufficiently lower than the downramp voltage L8.
  • an initializing discharge can be generated in a discharge cell that has generated a sustain discharge in the sustain period of the immediately preceding subfield (subfield SF2 in FIG. 5).
  • the voltage Vset3 is set to 22V
  • the voltage Vset5 is set to 70 (V)
  • the down-ramp voltage L9 is lowered to a voltage sufficiently lower than the down-ramp voltage L8.
  • an initialization operation can be performed immediately before starting an address operation to scan electrode SCn / 2 + 1 to scan electrode SCn belonging to the second scan electrode group.
  • the wall charge formed by the initialization discharge decreases with time. Therefore, in the drive method (one-phase drive) in which the initialization operation is performed only in the initialization period immediately before the address period in all the scan electrodes 22, the order of the address operation in the discharge cells in which the order of the address operation in the address period is slow. There is a risk that the wall charge is reduced more than in the early discharge cell, and the address operation becomes unstable.
  • the initialization operation is performed on the second discharge cell group immediately before the address operation is started in the second scan electrode group in the address period. Therefore, in the second discharge cell group, the wall charges can be brought into an appropriate state immediately before the address operation is started. Accordingly, even in the discharge cells belonging to the second discharge cell group whose address operation is late in the address period, it is possible to perform a stable address operation without increasing the applied voltage necessary for the address discharge.
  • FIG. 5 shows a waveform diagram in which the down-ramp voltage L9 is applied to the first scan electrode group at the same timing as the down-ramp voltage L9 is applied to the second scan electrode group. This is due to the following reason.
  • each discharge cell on the first scan electrode group that has already finished the address operation it is desirable not to generate unnecessary discharge until the subsequent sustain operation. Accordingly, it is desirable to apply a voltage at which no discharge occurs, for example, voltage 0 (V), to the first scan electrode group during the period in which the down-ramp voltage L9 is applied to the second scan electrode group.
  • a voltage at which no discharge occurs for example, voltage 0 (V)
  • the voltage 0 (V) is applied to the first scan electrode group during the period in which the down-ramp voltage L9 is applied to the second scan electrode group. It may be difficult to generate a drive voltage waveform.
  • a down-ramp voltage L4 that drops to the voltage (Va + Vset2) in the initialization period is applied to the first scan electrode group (scan electrode SC1 to scan electrode SCn / 2). Then perform the initialization operation. Therefore, even if the down-ramp voltage L9 that falls to a voltage (Va + Vset3) slightly lower than the voltage (Va + Vset2) is applied to the first scan electrode group in the middle of the address period, each discharge cell of the first discharge cell group It is very unlikely that initializing discharge will occur again. Therefore, even if the down-ramp voltage L6 is applied to the first scan electrode group during the address period, there is no problem.
  • scan pulses are sequentially applied to scan electrode SCn / 2 + 1 to scan electrode SCn belonging to the second scan electrode group in the same procedure as described above. To do.
  • the voltage 0 (V) is applied to the data electrodes D1 to Dm.
  • the same drive voltage waveform as in the sustain period of subfield SF2 is applied to each electrode, except for the number of sustain pulses generated.
  • the drive voltage waveform substantially similar to that of subfield SF3 is applied to each electrode, except for the number of sustain pulses.
  • the minimum voltage of the third downward ramp waveform voltage applied to / 2 + 1 to scan electrode SCn) is slightly changed.
  • FIG. 6 is a diagram showing drive voltage waveforms during a two-phase drive operation applied to each electrode of panel 10 used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
  • the voltage drops to the voltage Va + voltage Vset3 as the third downward ramp waveform voltage.
  • the ramp voltage L9 is applied to scan electrode SCn / 2 + 1 to scan electrode SCn belonging to the second scan electrode group.
  • the base that becomes less than the discharge start voltage as the third downward ramp waveform voltage is obtained.
  • a down-ramp voltage L10 that drops from voltage 0 (V) as a potential to voltage Va + voltage Vset4 is applied to scan electrode SCn / 2 + 1 to scan electrode SCn belonging to each scan electrode 22 of the second scan electrode group.
  • the voltage Vset4 is set to a voltage lower than the voltage Vset2 and higher than the voltage Vset3.
  • the voltage Vset2 is 25 (V)
  • the voltage Vset3 is 22 (V)
  • the voltage Vset4 is 23 (V).
  • the down-ramp voltage L9 becomes a third down-slope waveform voltage that drops to a voltage that is, for example, 3 (V) lower than the down-ramp voltage L4.
  • the down-ramp voltage L10 is a third down-slope waveform voltage that drops to a voltage that is 2 (V) lower than the down-ramp voltage L4, for example.
  • the above is the outline of the driving voltage waveform during the two-phase driving operation applied to each electrode of the panel 10 when displaying an image in the present embodiment.
  • these voltage values are only examples in the embodiment. Each voltage value is not limited to the value described above, and it is desirable to set the voltage value to an optimal value as appropriate in accordance with the characteristics of the panel 10 and the specifications of the plasma display device.
  • FIG. 7 is a diagram showing an example of parameters of the driving voltage waveform in the first embodiment of the present invention.
  • FIG. 7 shows the length of the adjustment period TSF in each subfield, the presence / absence of two-phase driving, and the voltage value of voltage Vset2-voltage Vset3 or voltage Vset2-voltage Vset4. Further, “ ⁇ ” shown in FIG. 7 indicates that two-phase driving is performed in the subfield.
  • the adjustment period TSF is set in accordance with the number of sustain pulses generated in the sustain period of the immediately preceding subfield in the subfield that performs two-phase driving.
  • the adjustment period TSF is set to 50 ⁇ sec in the subfield SF3 and the subfield SF4.
  • adjustment period TSF is set to 100 ⁇ sec.
  • adjustment period TSF is set to 200 ⁇ sec.
  • adjustment period TSF is set to 300 ⁇ sec.
  • the adjustment period TSF is set to 400 ⁇ sec.
  • the adjustment period TSF is lengthened as the number of sustain pulses generated in the sustain period of the immediately preceding subfield increases. This is due to the following reason.
  • Priming particles and wall charges are generated by the sustain discharge in the discharge cell where the sustain discharge has occurred in the sustain period of the immediately preceding subfield.
  • the amount of priming particles and wall charges generated increases as the number of sustain pulses generated in the sustain period increases.
  • the priming particles and wall charges generated by the sustain discharge are erased by the erasing discharge with the ascending erasing ramp voltage L3.
  • some priming particles and wall charges remain without being erased. If the number of sustain pulses generated in the sustain period increases and excessive priming particles and wall charges are generated, the erasing discharge with the ascending erasing ramp voltage L3 cannot sufficiently erase, and the amount of remaining priming particles and wall charges Will increase.
  • the inventor of the present application confirmed by experiments that the occurrence of the write failure can be reduced in such a discharge cell by providing the adjustment period TSF.
  • FIG. 8 is a diagram showing the relationship between the adjustment period TSF and the voltage Vset in the first embodiment of the present invention.
  • the voltage difference between the lowest voltage of the downward ramp waveform voltage generated in the selective initialization operation and the voltage Va is denoted as “voltage Vset”.
  • the horizontal axis represents the adjustment period TSF, and the vertical axis represents the voltage Vset.
  • the graph plotted with a circle represents the upper limit of the voltage Vset that can stably generate the address discharge in the subsequent address period. If the voltage Vset is set to a voltage exceeding this upper limit, there is a high possibility that erroneous discharge will occur in the subsequent address period. This erroneous discharge is a phenomenon in which an address discharge occurs even in a discharge cell to which an address pulse is not applied (a discharge cell to which only a scan pulse is applied).
  • the graph plotted with triangles represents the lower limit of the voltage Vset that can stably generate the address discharge in the subsequent address period. If the voltage Vset is set to a voltage lower than this lower limit, there is a high possibility that a write failure will occur in the subsequent write period.
  • the smaller the lower limit the smaller the amplitude of the write pulse necessary for preventing the occurrence of write failure in the subsequent write period. That is, if this lower limit is made small, the amplitude of the write pulse necessary for performing a stable write operation can be reduced.
  • the voltage Vset that can stably generate the address discharge in the subsequent address period decreases. This is because the priming particles and wall charges decrease with time, so that the longer the adjustment period TSF, the more priming particles and wall charges decrease during the adjustment period TSF, which occurs during the selective initialization operation. This is because the initializing discharge becomes weaker and the wall charges in the discharge cell are adjusted more appropriately.
  • the adjustment period TSF is lengthened as the number of sustain pulses generated in the sustain period of the immediately preceding subfield increases.
  • the minimum voltage of the downward ramp waveform voltage (first phase downward ramp waveform voltage) generated in the initialization period and the downlink generated in the middle of the writing period according to the length of the adjustment period TSF.
  • the voltage difference with the ramp waveform voltage (second phase descending ramp waveform voltage) is changed.
  • the down-ramp voltage L4 is the first-phase down-slope waveform voltage
  • the down-ramp voltage L9 and the down-ramp voltage L10 are the second-phase down-slope waveform voltage.
  • the difference between the lowest voltage of the first-phase downward ramp waveform voltage and the lowest voltage of the second-phase downward ramp waveform voltage ( In the example shown in FIG. 5, the first-phase downward ramp waveform voltage and the second-phase downward ramp waveform voltage are generated such that the voltage Vset2-voltage Vset3) is 3 (V).
  • the voltage Vset2 is set to 25 (V) to generate the downward ramp voltage L4, and the voltage Vset3 is set to 22 (V) to generate the downward ramp voltage L9.
  • the lowest voltage of the first-phase downward ramp waveform voltage and the lowest voltage of the second-phase downward ramp waveform voltage are The first-phase down-slope waveform voltage and the second-phase down-slope waveform voltage are generated so that the difference between them (corresponding to the voltage Vset2-voltage Vset4 in the example shown in FIG. 6) is 2 (V). .
  • the voltage Vset2 is set to 25 (V) to generate the down-ramp voltage L4, and the voltage Vset4 is set to 23 (V) to generate the down-ramp voltage L10.
  • the inventor of the present application has the lowest voltage of the downward ramp waveform voltage (first phase downward ramp waveform voltage) generated during the initialization period and the downward shift generated during the writing period. This is because it has been confirmed by experiments that the writing operation can be performed more stably by increasing the voltage difference from the ramp waveform voltage (second phase descending ramp waveform voltage) than when the adjustment period TSF is long.
  • FIG. 9 is a diagram showing an example of the relationship between the adjustment period TSF and the voltage Vset in the first embodiment of the present invention.
  • FIG. 10 is a diagram showing another example of the relationship between the adjustment period TSF and the voltage Vset in the first embodiment of the present invention.
  • the voltage difference between the lowest voltage of the first-phase downward ramp waveform voltage generated in the selective initialization operation and the voltage Va is denoted as voltage Vset.
  • one field is composed of eight subfields from subfield SF1 to subfield SF8, and the luminance weight of each subfield from subfield SF1 to subfield SF8 is ( 1, 2, 4, 8, 16, 32, 64, 128).
  • each parameter of the drive voltage waveform is set to the numerical value shown in FIG.
  • the graphs plotted with circles and solid lines represent the upper limit of the voltage Vset in the first-phase falling ramp waveform voltage that can stably generate the address discharge in the subsequent address period.
  • the graph plotted with a circle and a broken line represents the upper limit of the voltage Vset in the second-phase downward ramp waveform voltage that can generate the address discharge stably in the subsequent address period.
  • the graph plotted with a triangle mark and a solid line represents the lower limit of the voltage Vset in the first-phase downward ramp waveform voltage that can generate the address discharge stably in the subsequent address period.
  • the graph plotted with a triangle mark and a broken line represents the lower limit of the voltage Vset in the second-phase downward ramp waveform voltage that can generate the address discharge stably in the subsequent address period.
  • This erroneous discharge is a phenomenon in which an address discharge occurs even in a discharge cell to which an address pulse is not applied (a discharge cell to which only a scan pulse is applied).
  • the voltage Vset is set to a voltage lower than this lower limit, the possibility of a write failure occurring in the subsequent write period increases.
  • the smallest value of the upper limit of Vset is the upper limit of the voltage Vset at the second-phase downward ramp waveform voltage in the subfield SF3, which is about 85.5 (V).
  • the largest value of the lower limit of Vset is the lower limit of voltage Vset in the first-phase downward ramp waveform voltage in subfield SF4, which is about 76 (V).
  • the difference between the upper limit and the lower limit is about 9.5 (V).
  • the smallest value of the upper limit of Vset is the upper limit of voltage Vset in the second-phase downward ramp waveform voltage in subfield SF3, which is about 86.5 (V).
  • the largest value of the lower limit of Vset is the lower limit of voltage Vset in the first-phase downward ramp waveform voltage in subfield SF4, which is about 76 (V).
  • the difference between the upper limit and the lower limit is about 10.5 (V), which is about 1 (V) larger than the result shown in FIG. This indicates that the margin of the voltage Vset is increased, and the write operation can be stably performed correspondingly.
  • the minimum voltage of the downward ramp waveform voltage (first-phase downward ramp waveform voltage) generated during the initialization period and the downward ramp waveform voltage generated during the write period (Experiments have confirmed that the voltage difference from the second-phase downward ramp waveform voltage) is larger than when the adjustment period TSF is long, so that the margin of the voltage Vset is increased and the writing operation can be performed more stably. It was.
  • the voltage 0 (V) is used as the first-phase downward ramp waveform voltage.
  • the ramp-down voltage L4 that falls from the voltage Va to the voltage Vset2 is generated.
  • a down-ramp voltage L9 that falls from the voltage 0 (V) to the voltage Va + voltage Vset3 is generated as the second-phase down-slope waveform voltage.
  • a down-ramp voltage L10 that falls from the voltage 0 (V) to the voltage Va + voltage Vset4 is generated as the second-phase downward ramp waveform voltage.
  • the voltages Vset2, Vset3, and Vset4 are set so that the voltage Vset2-voltage Vset3 is larger than the voltage Vset2-voltage Vset4.
  • the adjustment period TSF in the present embodiment is provided to adjust excessively generated priming particles and wall charges. Therefore, an adjustment period TSF may be provided in a subfield that performs one-phase driving.
  • FIG. 11 is a diagram showing the relationship between the voltage difference between the voltage Vr and the voltage Vs and the voltage Vset2 in the first embodiment of the present invention.
  • the horizontal axis represents the voltage difference between the voltage Vr and the voltage Vs, that is, the voltage Vr ⁇ the voltage Vs, and the vertical axis represents the voltage Vset2.
  • the graph plotted with a circle represents the upper limit of the voltage Vset2 that can stably generate the address discharge in the subsequent address period. If the voltage Vset2 is set to a voltage exceeding this upper limit, the possibility of erroneous discharge occurring in the subsequent address period increases. This erroneous discharge is a phenomenon in which an address discharge occurs even in a discharge cell to which an address pulse is not applied (a discharge cell to which only a scan pulse is applied).
  • the graph plotted with triangles represents the lower limit of the voltage Vset2 at which address discharge can be stably generated in the subsequent address period. If the voltage Vset2 is set to a voltage lower than this lower limit, the possibility of a write failure occurring in the subsequent write period increases.
  • the address discharge can be stably performed in the subsequent address period, compared to when the voltage Vr is set to a voltage equal to the voltage Vs. It was confirmed that the write operation can be stabilized by increasing the difference between the upper limit and the lower limit of the voltage Vset2 that can be generated.
  • the voltage Vr is set to a voltage lower than the voltage Vs.
  • the sustain discharge is performed even in the discharge cell to which the address pulse is not applied in the subsequent sustain period. Has been confirmed to be more likely to persist. This is presumably because the erase discharge is insufficient due to the voltage Vr being lowered too much, and the remaining amount of wall charges and priming particles becomes excessive.
  • the voltage Vr is set to a voltage that is lower than the voltage Vs and does not cause erroneous discharge in the subsequent sustain period.
  • each voltage value is not limited to the value described above, and it is desirable to set the voltage value to an optimal value as appropriate in accordance with the characteristics of the panel 10 and the specifications of the plasma display device.
  • FIG. 12 is a circuit block diagram of plasma display device 40 in accordance with the first exemplary embodiment of the present invention.
  • the plasma display device 40 includes a panel 10 and a drive circuit that drives the panel 10.
  • the drive circuit includes an image signal processing circuit 41, a data electrode drive circuit 42, a scan electrode drive circuit 43, a sustain electrode drive circuit 44, a timing generation circuit 45, and a power supply circuit (not shown) that supplies necessary power to each circuit block. It has.
  • the image signal processing circuit 41 assigns a gradation value to each discharge cell based on the input image signal. Then, the gradation value is converted into image data indicating light emission / non-light emission for each subfield.
  • the input image signal sig when the input image signal sig includes an R signal, a G signal, and a B signal, R, G, and B gradation values (in one field) are assigned to each discharge cell based on the R signal, the G signal, and the B signal. Assigned gradation value).
  • the input image signal sig when the input image signal sig includes a luminance signal (Y signal) and a saturation signal (C signal, RY signal and BY signal, or u signal and v signal), the luminance signal and R, G, and B signals are calculated based on the saturation signal, and thereafter, R, G, and B gradation values are assigned to the respective discharge cells. Then, the R, G, and B gradation values assigned to each discharge cell are converted into image data indicating light emission / non-light emission for each subfield.
  • the timing generation circuit 45 generates various timing signals for controlling the operation of each circuit block based on the horizontal synchronization signal and the vertical synchronization signal. Then, the generated timing signal is supplied to each circuit block (image signal processing circuit 41, data electrode drive circuit 42, scan electrode drive circuit 43, sustain electrode drive circuit 44, etc.).
  • Scan electrode drive circuit 43 has an initialization waveform generation circuit, a sustain pulse generation circuit, and a scan pulse generation circuit (not shown).
  • the initialization waveform generating circuit generates an initialization waveform to be applied to scan electrode SC1 through scan electrode SCn during the initialization period.
  • the sustain pulse generation circuit generates a sustain pulse to be applied to scan electrode SC1 through scan electrode SCn during the sustain period.
  • the scan pulse generating circuit includes a plurality of scan electrode driving ICs (scan ICs), and generates scan pulses to be applied to scan electrode SC1 through scan electrode SCn in the address period.
  • Scan electrode driving circuit 43 drives scan electrode SC1 through scan electrode SCn based on the timing signal supplied from timing generation circuit 45, respectively.
  • the data electrode drive circuit 42 converts the data for each subfield constituting the image data into address pulses corresponding to the data electrodes D1 to Dm. Then, based on the timing signal supplied from the timing generation circuit 45, an address pulse is applied to each of the data electrodes D1 to Dm.
  • Sustain electrode drive circuit 44 includes a sustain pulse generation circuit and a circuit for generating voltage Ve (not shown), and drives sustain electrode SU1 through sustain electrode SUn based on the timing signal supplied from timing generation circuit 45.
  • FIG. 13 is a circuit diagram schematically showing a configuration of scan electrode drive circuit 43 of plasma display device 40 in accordance with the first exemplary embodiment of the present invention.
  • the scan electrode drive circuit 43 includes a sustain pulse generation circuit 50, a ramp waveform voltage generation circuit 60, and a scan pulse generation circuit 70. Each circuit block operates based on the timing signal supplied from the timing generation circuit 45, but details of the timing signal path are omitted in FIG.
  • the voltage input to the scan pulse generation circuit 70 is referred to as “reference potential A”.
  • Sustain pulse generation circuit 50 includes power recovery circuit 51, switching element Q55, switching element Q56, and switching element Q59.
  • the power recovery circuit 51 includes a power recovery capacitor C10, a switching element Q11, a switching element Q12, a backflow prevention diode Di11, a diode Di12, a resonance inductor L11, and an inductor L12.
  • the power recovery circuit 51 recovers the power stored in the panel 10 from the panel 10 through LC resonance between the interelectrode capacitance of the panel 10 and the inductor L12, and stores it in the capacitor C10.
  • the recovered power is LC-resonated between the interelectrode capacitance of the panel 10 and the inductor L11, supplied again from the capacitor C10 to the panel 10, and reused as power when driving the scan electrodes SC1 to SCn.
  • Switching element Q55 clamps scan electrode SC1 through scan electrode SCn to voltage Vs
  • switching element Q56 clamps scan electrode SC1 through scan electrode SCn to voltage 0 (V).
  • the switching element Q59 is a separation switch, and prevents a current from flowing back through a parasitic diode or the like of the switching element constituting the scan electrode driving circuit 43.
  • sustain pulse generating circuit 50 generates a sustain pulse of voltage Vs applied to scan electrode SC1 through scan electrode SCn.
  • Scan pulse generation circuit 70 sequentially applies scan pulses to scan electrode SC1 through scan electrode SCn at the timings shown in FIGS. Scan pulse generation circuit 70 outputs the output voltage of sustain pulse generation circuit 50 as it is during the sustain period. That is, the reference potential A is output to scan electrode SC1 through scan electrode SCn.
  • the ramp waveform voltage generation circuit 60 includes a Miller integration circuit 61, a Miller integration circuit 62, and a Miller integration circuit 63, and generates the ramp waveform voltages shown in FIGS.
  • Miller integrating circuit 61 includes transistor Q61, capacitor C61, and resistor R61. Then, by applying a constant voltage to the input terminal IN61 (giving a constant voltage difference between two circles shown as the input terminal IN61), an upward ramp waveform voltage that gradually increases toward the voltage Vt is obtained. appear.
  • the voltage Vi2 is set to be equal to a voltage obtained by superimposing the voltage Vp on the voltage Vt. That is, when Miller integrating circuit 61 is operated, switching element Q72 and switching elements Q71L1 to Q71Ln are turned off, switching elements Q71H1 to switching element Q71Hn are turned on, and the upward slope generated in Miller integrating circuit 61
  • the up-ramp voltage L1 is generated by superimposing the voltage Vp of the power source E71 on the waveform voltage.
  • Miller integrating circuit 62 includes transistor Q62, capacitor C62, resistor R62, and diode Di62 for preventing backflow. Then, by applying a constant voltage to the input terminal IN62 (giving a constant voltage difference between two circles shown as the input terminal IN62), an up-slope waveform voltage that gradually rises toward the voltage Vr ( Ascending erasing ramp voltage L3) is generated.
  • Miller integrating circuit 63 includes transistor Q63, capacitor C63, and resistor R63. Then, by applying a constant voltage to the input terminal IN63 (giving a constant voltage difference between two circles shown as the input terminal IN63), a downward ramp waveform voltage (gradiently decreasing toward the voltage Vi4 ( Down-ramp voltage L2 and down-ramp voltage L4) are generated.
  • the switching element Q69 is a separation switch, and prevents a current from flowing back through a parasitic diode or the like of the switching element constituting the scan electrode driving circuit 43.
  • switching elements and transistors can be configured using generally known semiconductor elements such as MOSFETs and IGBTs. These switching elements and transistors are controlled by timing signals corresponding to the respective switching elements and transistors generated by the timing generation circuit 45.
  • FIG. 14 is a circuit diagram schematically showing a configuration of sustain electrode drive circuit 44 of plasma display device 40 in accordance with the first exemplary embodiment of the present invention.
  • the sustain electrode driving circuit 44 includes a sustain pulse generating circuit 80 and a constant voltage generating circuit 85. Each circuit block operates based on the timing signal supplied from the timing generation circuit 45, but details of the timing signal path are omitted in FIG.
  • Sustain pulse generation circuit 80 includes a power recovery circuit 81, a switching element Q83, and a switching element Q84.
  • the power recovery circuit 81 includes a power recovery capacitor C20, a switching element Q21, a switching element Q22, a backflow prevention diode Di21, a diode Di22, a resonance inductor L21, and an inductor L22.
  • the power recovery circuit 81 recovers the power stored in the panel 10 from the panel 10 through LC resonance between the interelectrode capacitance of the panel 10 and the inductor L22, and stores it in the capacitor C20. Then, the recovered power is supplied to the panel 10 again from the capacitor C20 through LC resonance between the interelectrode capacitance of the panel 10 and the inductor L21, and reused as power when driving the sustain electrodes SU1 to SUn.
  • Switching element Q83 clamps sustain electrode SU1 through sustain electrode SUn to voltage Vs, and switching element Q84 clamps sustain electrode SU1 through sustain electrode SUn to voltage 0 (V).
  • sustain pulse generating circuit 80 generates a sustain pulse of voltage Vs applied to scan electrode SC1 through scan electrode SCn.
  • the constant voltage generation circuit 85 includes a switching element Q86 and a switching element Q87. Then, voltage Ve is applied to sustain electrode SU1 through sustain electrode SUn.
  • these switching elements can be configured using generally known elements such as MOSFETs and IGBTs. These switching elements are controlled by timing signals corresponding to the respective switching elements generated by the timing generation circuit 45.
  • FIG. 15 is a circuit diagram schematically showing the configuration of the data electrode drive circuit 42 of the plasma display device 40 according to the first embodiment of the present invention.
  • the data electrode drive circuit 42 operates based on the image data supplied from the image signal processing circuit 41 and the timing signal supplied from the timing generation circuit 45. In FIG. 15, details of the paths of these signals are omitted. To do.
  • the data electrode driving circuit 42 has switching elements Q91H1 to Q91Hm and switching elements Q91L1 to Q91Lm.
  • the voltage 0 (V) is applied to the data electrode Dj by turning on the switching element Q91Lj
  • the voltage Vd is applied to the data electrode Dj by turning on the switching element Q91Hj.
  • FIG. 16 is a circuit diagram of scan pulse generation circuit 70 in the first exemplary embodiment of the present invention.
  • each circuit block operates based on the timing signal supplied from the timing generation circuit 45, but details of the timing signal path are omitted in FIG.
  • Scan pulse generating circuit 70 includes a plurality of scan ICs 95, switching element Q72, diode Di31 and capacitor C31, comparator CP1 and comparator CP2, switching element SW1, switching element SW2, switching element SW3, and OR gate. OR and AND gate AG are provided.
  • a plurality of scan ICs 95 (in this embodiment, scan IC 95 (1) to scan IC 95 (12)) output scan pulses to scan electrode SC1 to scan electrode SCn, respectively.
  • the switching element Q72 connects the reference potential A to the negative voltage Va in the writing period.
  • the diode Di31 and the capacitor C31 are circuit elements for applying a voltage obtained by superimposing the voltage Vp on the reference potential A to the high voltage side (input terminal INb) of the scan IC 95.
  • the comparator CP1 and the comparator CP2 compare the magnitudes of the input signals input to the two input terminals.
  • Switching element SW1 applies a voltage (Va + Vset2) to one input terminal of comparator CP1.
  • the switching element SW2 applies a voltage (Va + Vset3) to one input terminal of the comparator CP1.
  • the switching element SW3 applies a voltage (Va + Vset4) to one input terminal of the comparator CP1.
  • the OR gate OR includes a control signal SID (control signal SID (1) in the present embodiment) for controlling the scan IC 95 (scan IC 95 (7) in the present embodiment) and an output signal CPO of the comparator CP2. Perform the logical OR operation.
  • the AND gate AG is a logic between a control signal OC1 which is a first control signal for controlling the scan IC 95 (in this embodiment, scan IC 95 (1) to scan IC 95 (6)) and an output signal of the OR gate OR. Perform product operation.
  • the other input terminal of the comparator CP1 is connected to the reference potential A.
  • One input terminal of the comparator CP2 is connected to the voltage (Va + Vset5), and the other input terminal of the comparator CP2 is connected to the reference potential A.
  • the scan IC 95 has two input terminals, ie, an input terminal INa that is an input terminal on the low voltage side and an input terminal INb that is an input terminal on the high voltage side, and a plurality of output terminals respectively connected to the scan electrodes. Then, the scan IC 95 outputs one of the voltages input to the two input terminals from each output terminal based on the control signal.
  • the scan IC 95 is driven in two groups, and the first scan IC group (in this embodiment, scan IC 95 (1) to scan IC 95 (6)) and the second scan IC 95 are driven. Different control signals are input to the scan IC groups (scan IC 95 (7) to scan IC 95 (12) in this embodiment).
  • control signals OC1 output from the timing generation circuit 45 during the write period and control signals output from the comparator CP1 are used as control signals.
  • OC2 is input.
  • the scan start signal SIU (1) output from the timing generation circuit 45 in the write period is input to the scan IC 95 (1) that starts the address operation first in the first scan IC group.
  • the control signals OC1 ′ which are the third control signals output from the AND gate AG, are output from the comparator CP1 to the scan ICs 95 (7) to 95 (12) belonging to the second scan IC group.
  • the control signal OC2 is input.
  • the scan start signal SID (1) which is the second control signal output from the timing generation circuit 45 in the address period. Is entered.
  • the control signal OC2 is a control signal input in common to all the scan ICs 95 (in this embodiment, the scan IC 95 (1) to the scan IC 95 (12)).
  • a clock signal CLK that is a synchronization signal for synchronizing the signal processing operation is commonly input to all the scan ICs 95 (in this embodiment, the scan IC 95 (1) to the scan IC 95 (12)).
  • FIG. 17 is a schematic diagram showing a connection state between scan IC 95 of scan electrode drive circuit 43 and scan electrode SC1 through scan electrode SCn in the first embodiment of the present invention.
  • circuits other than the scan IC 95 are omitted.
  • Scan pulse generation circuit 70 includes switching elements Q71H1 to Q71Hn and switching elements Q71L1 to Q71Ln for applying a scan pulse voltage to each of n scan electrodes SC1 to SCn.
  • Switching element Q71H1 to switching element Q71Hn and switching element Q71L1 to switching element Q71Ln are integrated into a plurality of ICs for each of a plurality of outputs. This IC is a scanning IC 95.
  • the numerical values given in the present embodiment are merely examples, and the present invention is not limited to these numerical values.
  • the scan IC 95 (1) connected to scan electrode SC1 through scan electrode SC90 is operated.
  • scan IC 95 (2) connected to scan electrode SC91 to scan electrode SC180 is operated.
  • the scan IC 95 (3) to the scan IC 95 (12) are sequentially operated.
  • scan IC 95 is divided into a first scan IC group and a second scan IC group, and scan electrodes SC1 to SCn are driven.
  • a first scan electrode group in this embodiment, scan electrode SC1 to scan electrode
  • SC540 a second scan electrode group connected to scan IC95 (7) to scan IC95 (12) belonging to the second scan IC group
  • subfields for applying initialization waveforms having different waveform shapes are included.
  • FIG. 18 is a diagram for explaining a correspondence relationship between the control signals OC1 and OC2 and the operation state of the scan IC 95 according to the first embodiment of the present invention.
  • the second scan IC group is assumed to be in the same operation state by replacing the control signal OC1 with the control signal OC1 '.
  • the scan IC 95 when both the control signal OC1 and the control signal OC2 are at a high level (hereinafter referred to as “Hi”), the scan IC 95 is in an “All-Hi” state.
  • the scanning IC 95 includes all the switching elements provided in the scanning IC 95 so that all the output terminals of the scanning IC 95 are electrically connected to the input terminal INb on the high voltage side. It will be in the switched state.
  • the scan IC 95 When the control signal OC1 is “Hi” and the control signal OC2 is low level (hereinafter referred to as “Lo”), the scan IC 95 is in the “All-Lo” state. In the case of “All-Lo”, the scan IC 95 includes all the switching elements provided in the scan IC 95 such that all the output terminals of the scan IC 95 are electrically connected to the input terminal INa on the low voltage side. It will be in the switched state.
  • the control signal OC1 is set to “Hi”, and the control signal OC2 is set to “Lo”, thereby setting the scan IC 95 to the “All-Lo” state.
  • switching elements Q71H1 to Q71Hn are turned off, switching elements Q71L1 to switching element Q71Ln are turned on, and reference potential A is output from scan IC 95. Therefore, a sustain pulse can be applied to each of scan electrode SC1 through scan electrode SCn via switching element Q71L1 through switching element Q71Ln.
  • the scanning IC 95 is in a high impedance state (hereinafter referred to as “HiZ”). In this “HiZ” state, the output voltage at the time when the scan IC 95 is in the “HiZ” state is held and output from each output terminal of the scan IC 95 as it is.
  • the scan IC 95 When the control signal OC1 is “Lo” and the control signal OC2 is “Hi”, the scan IC 95 is in the “DATA” state. In the “DATA” state, the scan IC 95 enters a state in which a predetermined series of operations are performed based on a scan start signal input to the scan IC 95.
  • the second output terminal of the scan IC 95 is electrically connected to the input terminal INa on the low voltage side, and all the remaining output terminals are high. It is electrically connected to the voltage side input terminal INb.
  • each output terminal of the scan IC 95 is electrically connected to the input terminal INa on the low voltage side in order for a predetermined time.
  • the scan IC 95 is set to this operation state in the address period to sequentially generate the scan pulse voltage Va, and the address operation of the scan electrodes SC1 to SCn is performed.
  • the scan start signal input to the scan IC 95 belonging to the first scan IC group is used as the scan start signal SIU, and the scan start signal input to the scan IC 95 belonging to the second scan IC group is used as the scan start.
  • the signal SID is used.
  • the scan start signal SIU (1) used for the scan IC 95 (1) performing the address operation first in the first scan IC group and the address operation first in the second scan IC group.
  • the timing generation circuit 45 generates a scan start signal SID (1) used for the scan IC 95 (7) that performs the above.
  • the remaining scan start signals that is, the scan start signals SIU (2) used for the scan IC 95 (2) to the scan start signals SIU (6) used for the scan IC 95 (6), and the scan IC 95 ( Each scan start signal from the scan start signal SID (2) used for 8) to the scan start signal SID (6) used for the scan IC 95 (12) is generated by the scan IC 95.
  • the scan IC 95 (1) delays the scan start signal SIU (1) by a predetermined time using a shift register or the like.
  • the created scan start signal SIU (2) is output and supplied to the next-stage scan IC 95 (2).
  • the scan IC 95 (2) supplies the scan start signal SIU (3) created by delaying the scan start signal SIU (2) by a predetermined time to the next stage scan IC 95 (3).
  • each scan IC 95 creates a new scan start signal by delaying the input scan start signal for a predetermined time, and supplies it to the next-stage scan IC 95.
  • the timing generation circuit 45 does not generate the scan start signal SIU (2) to the scan start signal SIU (6) and the scan start signal SID (2) to the scan start signal SID (6).
  • the number of wiring lines for the control signal connecting the timing generation circuit 45 and the scan electrode drive circuit 43 can be reduced.
  • one field has subfields that generate initialization waveforms having different waveform shapes in the first scan IC group and the second scan IC group. Therefore, in the subfield, the control timing is changed between the control signal OC1 used for the first scan IC group and the control signal OC1 used for the second scan IC group.
  • the control signal OC1 used for the first scan IC group is generated by the timing generation circuit 45.
  • the control signal OC1 used for the second scan IC group includes a third control signal generated by the AND gate AG (in order to distinguish it from the control signal OC1 used for the first scan IC group, “ Control signal OC1 ′ ”).
  • a signal generated by the comparator CP1 is used as the control signal OC2.
  • control signal OC1 'and the control signal OC2 are generated by a logical operation.
  • the number of control signals generated in the timing generation circuit 45 can be further reduced, and the number of wirings for the control signal connecting the timing generation circuit 45 and the scan electrode drive circuit 43 can be further reduced.
  • the comparator CP1 that outputs the control signal OC2 compares the voltage (Va + Vset2) with the reference potential A when the switching element SW1 is on and the switching element SW2 and the switching element SW3 are off, as shown in FIG.
  • the voltage (Va + Vset3) is compared with the reference potential A.
  • the voltage (Va + Vset4) is compared with the reference potential A.
  • the comparator CP1 outputs “Lo” when the reference potential A is higher, and outputs “Hi” otherwise and supplies it to the scan IC 95 (1) to the scan IC 95 (12).
  • the comparator CP2 that outputs the signal CPO used to generate the control signal OC1 ′ compares the voltage (Va + Vset5) with the reference potential A, and outputs “Hi” when the reference potential A is higher, otherwise Then, “Lo” is output.
  • the scan IC 95 adds the control signal OC1 ′ and the scan start signal SID (1) in accordance with the control signal OC2, and further adds the control signal OC1 ′ and the scan start signal SID (1) in the second scan IC group. It can be generated by switching at different voltages. Note that the timing generation circuit 45 controls ON / OFF of the switching elements SW1 to SW3.
  • FIG. 19 is a timing chart for explaining an example of the operation of scan electrode driving circuit 43 according to the embodiment of the present invention.
  • FIG. 19 mainly shows the operation in the subfield SF3.
  • FIG. 19 also shows a drive voltage waveform applied to scan electrode SC1 that performs the address operation at the beginning of the address period, and scan electrode SCn / 2 + 1 that performs the address operation first in the second scan electrode group (for example, The drive voltage waveform applied to scan electrode SC541) is shown.
  • the control signal OC1, the control signal OC2, the control signal OC1 ′, the output signal CPO of the comparator CP2, the scanning start signal SIU (1), and the scanning start signal SID (1) are shown, and are input to the input terminal IN1 and the input terminal IN2.
  • the constant current supply state is shown.
  • the scan IC 95 starts the writing operation when the scan start signal changes from “Hi” to “Lo” in the “DATA” state.
  • the switching element Q69 is turned on during the first half of the initialization period and the sustain period, and the switching element Q69 is turned off during the second half of the initialization period and the writing period.
  • the sustaining pulse generation circuit 50 is used while the switching element Q72 is kept off after the time t2 after the time t1 when the operation in the sustain period of the immediately preceding subfield ends. Then, the reference potential A is clamped to the voltage 0 (V) (switching element Q56 is turned on).
  • the control signal OC2 output from the comparator CP1 remains “Lo” following the sustain period of the immediately preceding subfield. Further, the control signal OC1 is also maintained at “Hi” after the sustain period of the immediately preceding subfield.
  • the reference potential A is output from the output terminals of all the scan ICs 95. That is, the drive voltage output from the ramp waveform voltage generation circuit 60 is output as it is from the output terminals of all the scan ICs 95.
  • a predetermined voltage is applied to the input terminal IN63 of the Miller integrating circuit 63 that generates the downward ramp waveform voltage, and the input terminal IN63 is set to “Hi”.
  • the drain voltage of the transistor Q63 decreases in a ramp shape
  • the potential of the reference potential A decreases in a ramp shape
  • the output voltage of the scan IC 95 also starts to decrease in a ramp shape.
  • the control signal OC2 output from the comparator CP1 switches from “Lo” to “Hi” at time t5 when the down-ramp waveform at the reference potential A becomes equal to or lower than the voltage (Va + Vset2).
  • both the control signal OC1 and the control signal OC2 are set to “Hi”, and the first scan IC group is set to the “All-Hi” state. Therefore, the first scan IC group outputs a voltage input to the input terminal INb. That is, the first scan IC group outputs a voltage in which the voltage Vp is superimposed on the reference potential A.
  • the down-ramp waveform applied to scan electrode SC1 to scan electrode SCn / 2 belonging to the first scan electrode group becomes down-ramp voltage L4 with an ultimate potential of voltage (Va + Vset2).
  • the scanning start signal SID (1) is set to “Lo” immediately after the initialization period starts.
  • the comparator CP2 the reference potential A is compared with the voltage (Va + Vset5). Therefore, the signal CPO output from the comparator CP2 becomes “Lo” at time t4 when the reference potential A becomes equal to or lower than the voltage (Va + Vset5).
  • both the control signal OC1 'and the control signal OC2 become "Lo", and the scan ICs 95 (7) to 95 (12) belonging to the second scan IC group are in the "HiZ" state. That is, the output voltages of scan IC 95 (7) to scan IC 95 (12) are voltages in which the output voltage at time t4 is held as it is.
  • the down-ramp waveform applied to scan electrode SCn / 2 + 1 to scan electrode SCn belonging to the second scan electrode group is a down-ramp voltage L8 having an ultimate potential of voltage (Va + Vset5).
  • control signal OC1 is set to “Lo” at time t6. Therefore, the control signal OC1 'output from the AND gate AG is also "Lo". As a result, all the scan ICs 95 are in the “DATA” state. That is, the scan IC 95 enters a state in which an address operation is started by a scan start signal.
  • the scanning start signal SIU (1) is set to “Lo” for a predetermined period (for example, one period of the clock signal CLK) at time t7 immediately after the start of the writing period.
  • the scanning IC 95 (1) starts the writing operation. Accordingly, scan pulses are sequentially applied from scan electrode SC1.
  • a scan start signal SIU (2) is output from the scan IC 95 (1) at the timing when the write operation of all the scan electrodes 22 connected to the scan IC 95 (1) is completed, and is supplied to the scan IC 95 (2). . As a result, the scan IC 95 (2) starts an address operation.
  • each scan IC 95 starts an address operation based on the input scan start signal, generates a new scan start signal, and supplies it to the next-stage scan IC 95.
  • the write operation of the scan electrodes belonging to the first scan electrode group is sequentially performed.
  • the control signal OC1 is set to “Hi”. . Since the scanning start signal SID (1) is maintained at “Hi”, the control signal OC1 ′ output from the AND gate AG also becomes “Hi”.
  • the switching element Q72 is turned off at time t8. Further, the switching element Q56 of the clamp circuit of the sustain pulse generating circuit 50 is turned on, and the reference potential A is set to voltage 0 (V).
  • the control signal OC2 output from the comparator CP1 becomes “Lo”. That is, the control signal OC1, the control signal OC1 'are “Hi”, the control signal OC2 is "Lo”, and all the scan ICs 95 are in the "All-Lo” state. Accordingly, the reference potential A (voltage 0 (V) at this time) is output from the output terminals of all the scan ICs 95.
  • a predetermined voltage is applied to the input terminal IN63 of the Miller integrating circuit 63 that generates the downward ramp waveform voltage, and the input terminal IN63 is set to “Hi”.
  • the drain voltage of the transistor Q63 decreases in a ramp shape
  • the potential of the reference potential A decreases in a ramp shape
  • the output voltage of the scan IC 95 also starts to decrease in a ramp shape from the voltage 0 (V).
  • the falling ramp waveform voltage at the reference potential A is compared with the voltage (Va + Vset3). Therefore, the control signal OC2 output from the comparator CP1 switches from “Lo” to “Hi” at time t10 when the downward ramp waveform voltage at the reference potential A becomes equal to or lower than the voltage (Va + Vset3).
  • control signal OC1 the control signal OC1 ', and the control signal OC2 are all "Hi"
  • all the scan ICs 95 are in the "All-Hi” state. Accordingly, all the scan ICs 95 output a voltage input to the input terminal INb (a voltage obtained by superimposing the voltage Vp on the reference potential A).
  • the downward ramp waveform voltage applied to scan electrode SC1 through scan electrode SCn becomes the down-ramp voltage L9 having an ultimate potential of voltage (Va + Vset3).
  • the input terminal IN63 is set to “Lo”.
  • the scan electrode driving circuit 43 generates the down-ramp voltage L9. Then, immediately before the address operation to the second scan electrode group is started, an initializing discharge is generated in the second discharge cell group.
  • the switching element Q72 is turned on to maintain the reference potential A at the negative voltage Va. Therefore, the reference potential A is lower than the voltage (Va + Vset3), and the control signal OC2 output from the comparator CP1 is “Hi”.
  • the control signal OC1 is set to “Lo”. Therefore, the control signal OC1 'output from the AND gate AG is also "Lo". As a result, all the scan ICs 95 are in the “DATA” state. That is, all the scan ICs 95 are in a state of starting an address operation by a scan start signal.
  • the scanning start signal SID (1) is set to “Lo” for a predetermined period (for example, one cycle of the clock signal CLK) at time t12 immediately after the start of the second half of the writing period.
  • the scan IC 95 (7) starts an address operation, and scan pulses are sequentially applied from the scan electrodes SCn / 2 + 1.
  • the switching element Q72 is turned off at time t13. Further, the switching element Q56 of the clamp circuit of the sustain pulse generating circuit 50 is turned on, and the reference potential A is set to voltage 0 (V).
  • the reference potential A becomes higher than the voltage (Va + Vset3), and the control signal OC2 output from the comparator CP1 becomes “Lo”.
  • the power recovery circuit and the clamp circuit of the sustain pulse generating circuit 50 are alternately operated to generate a predetermined number of sustain pulses. Then, at the end of the sustain period, an upstream erase ramp voltage L3 is generated. Thus, the maintenance period ends.
  • the switching element SW3 when generating the ramp-down voltage L10, the switching element SW3 may be turned on instead of the switching element SW2 while the Miller integrating circuit 63 generates the downward ramp waveform voltage.
  • the comparator CP1 may compare the downward ramp waveform voltage at the reference potential A with the voltage (Va + Vset4).
  • scan electrode drive circuit 43 causes scan electrode SC1 to scan electrode SCn / 2 belonging to the first scan electrode group to go from voltage 0 (V) to voltage (Va + Vset2) during the initialization period.
  • a downward ramp voltage L2 that falls is applied.
  • a down-ramp voltage L8 that decreases from voltage 0 (V) toward voltage (Va + Vset5) is applied to scan electrode SCn / 2 + 1 to scan electrode SCn belonging to the second scan electrode group.
  • the ramp-down voltage L9 that decreases from the voltage 0 (V) toward the voltage (Va + Vset3) is applied to the scan electrodes SC1 to SCn belonging to the first scan electrode group and the second scan electrode group.
  • the down-ramp voltage L10 that decreases from the voltage 0 (V) toward the voltage (Va + Vset4) is applied.
  • FIG. 20 schematically shows the relationship between the scan pulse voltage (amplitude) necessary to generate a stable address discharge and the order of address operations when performing the two-phase drive operation in the first embodiment of the present invention.
  • the diagram shown in the upper part of FIG. 20 is a diagram schematically showing the relationship between the scan pulse voltage (amplitude) necessary for generating a stable address discharge and the order of address operations when performing a two-phase drive operation. is there.
  • the horizontal axis represents the order of the address operation of scan electrode SC1 to scan electrode SCn
  • the vertical axis represents the scan pulse voltage (amplitude) necessary for generating a stable address discharge in each discharge cell.
  • the characteristic indicated by the broken line in the upper diagram of FIG. 20 is the scan pulse voltage (amplitude) necessary for generating a stable address discharge during the one-phase driving operation.
  • FIG. 20 is a diagram showing drive waveforms applied to scan electrode SC1 through scan electrode SCn when performing a two-phase drive operation.
  • the scan electrode 22 that performs the address operation at the beginning of the address period and the scan electrode SC1 that belongs to the first scan electrode group, and the scan electrode 22 that performs the address operation at approximately the midpoint of the address period and the second electrode Drive voltage waveforms applied to each of the scan electrode SCn / 2 + 1 belonging to the scan electrode group and the scan electrode 22 performing the address operation at the end of the address period and belonging to the second scan electrode group are shown.
  • an initialization operation with a down-ramp voltage is performed for each discharge cell group immediately before the address operation is started in each scan electrode group.
  • an initialization operation with the down-ramp voltage L4 is performed immediately before starting the address operation in each scan electrode 22 of the first scan electrode group.
  • an initialization operation using the down-ramp voltage L9 is performed immediately before starting the address operation in each scan electrode 22 of the second scan electrode group.
  • This initialization operation can bring the wall charge in the discharge cell to an appropriate state. Therefore, as indicated by a solid line in the upper diagram of FIG. 20, the scan pulse voltage (amplitude) necessary for generating a stable address discharge can be reduced in the second discharge cell group.
  • the scan pulse voltage (amplitude) necessary for generating a stable address discharge is approximately equal to that in the one-phase drive operation in the two-phase drive operation. It was confirmed by experiment that it could be reduced by 20 (V).
  • the initialization operation using the down-ramp voltage is performed before the address operation to the second scan electrode group is started in the address period.
  • the number of sustain pulses generated in the immediately preceding subfield is large, and in the subfield where priming particles generated by the sustain discharge and the wall charge are likely to remain excessively, 2 Perform phase drive.
  • the voltage necessary for stable operation is prevented from increasing, and a stable address operation can be performed.
  • the adjustment period TSF is set according to the luminance weight of the immediately preceding subfield. That is, the adjustment period TSF is lengthened as the number of sustain pulses generated in the immediately preceding subfield increases. As a result, the number of sustain pulses generated in the immediately preceding subfield is large, and the occurrence of defective writing can be reduced in a subfield where priming particles and wall charges generated by the sustain discharge are likely to remain excessively. .
  • the voltage difference with the ramp waveform voltage (second phase descending ramp waveform voltage) is changed.
  • the length of the adjustment period TSF is short, the voltage difference between the lowest voltage of the first-phase downward ramp waveform voltage and the second-phase downward ramp waveform voltage is made larger than when the length of the adjustment period TSF is long.
  • voltage 0 (V) is applied to sustain electrode SU1 through sustain electrode SUn and data electrode D1 through data electrode Dm, and scan electrode SC1 through scan electrode SCn
  • An ascending ramp waveform voltage (ascending erasing ramp voltage L3) that gently rises from a voltage 0 (V), which is less than the discharge start voltage, toward a voltage Vr that is a predetermined voltage is applied.
  • the voltage Vr is set to a voltage that is lower than the voltage Vs and does not cause erroneous discharge in the subsequent address period. This makes it possible to perform a stable writing operation even when driving the high-definition large-screen panel 10 and display a high-quality image on the panel 10.
  • the light emission generated by the all-cell initialization operation is generated as compared with the configuration in which the all-cell initialization operation is performed once per field. It is possible to reduce the black luminance (the luminance of the gradation that does not generate the sustain discharge), and the contrast of the image displayed on the panel 10 can be improved.
  • one-phase driving is performed in subfield SF1 and subfield SF2, and two-phase driving is performed in the other subfields (subfield SF3 to subfield SF8).
  • a driving voltage waveform for one-phase driving will be described, and then, a driving voltage waveform for two-phase driving will be described.
  • FIG. 21 is a diagram showing a drive voltage waveform during a one-phase drive operation applied to each electrode of panel 10 used in the plasma display device in accordance with the second exemplary embodiment of the present invention.
  • FIG. 21 shows each of scan electrode SC1 that performs an address operation first in the address period, scan electrode SC2 that performs an address operation second in the address period, sustain electrode SU1 to sustain electrode SUn, and data electrode D1 to data electrode Dm.
  • the drive voltage waveform applied to is shown.
  • subfield SF1 is a first type subfield in which there are discharge cells that perform the forced initialization operation and discharge cells that do not perform the forced initialization operation.
  • subfield SF2 to subfield SF8 are second type subfields for performing selective initialization operation in all discharge cells.
  • the forced initializing operation is an initializing operation for forcibly generating an initializing discharge in a discharge cell regardless of the occurrence of address discharge (sustain discharge) in the immediately preceding subfield. This is the same initialization operation as the cell initialization operation. Therefore, the drive voltage waveform applied to each electrode in the forced initialization operation is equal to the all-cell initialization waveform applied to each electrode in the all-cell initialization period.
  • the discharge cell formed on scan electrode SC1 performs a forced initialization operation
  • the discharge cell formed on scan electrode SC2 performs a forced initialization operation.
  • the drive voltage waveform when performing the selective initialization operation without performing is shown.
  • the voltage 0 (V) is applied to the data electrodes D1 to Dm, and the voltage 0 (V) is also applied to the sustain electrodes SU1 to SUn. To do. Then, a drive voltage waveform having the same waveform shape as the all-cell initialization waveform shown in the first embodiment is applied to scan electrode SC1 that performs the forced initialization operation.
  • the initialization operation similar to the all-cell initialization operation shown in the first embodiment is performed, and the address discharge (sustain discharge) in the immediately preceding subfield is performed.
  • An initializing discharge is generated in the discharge cell regardless of whether or not it occurs.
  • an up-slope waveform voltage (up-ramp voltage L5) that gently rises from voltage 0 (V) to voltage Vi5 lower than voltage Vi2 is applied to scan electrode SC2 that does not perform the forced initialization operation.
  • up-ramp voltage L5 an up-slope waveform voltage that gently rises from voltage 0 (V) to voltage Vi5 lower than voltage Vi2 is applied to scan electrode SC2 that does not perform the forced initialization operation.
  • the initialization discharge is not generated in the discharge cells formed on the scan electrode SC2.
  • the scan electrode 22 (for example, the scan electrode SC1) that performs the forced initialization operation has an occurrence of the address discharge (sustain discharge) in the immediately preceding subfield. Regardless, an upward ramp waveform voltage (up-ramp voltage L1) that gently rises toward the voltage Vi2 at which discharge occurs is applied. In addition, an up-slope waveform voltage (up-ramp voltage L5) that gently rises toward voltage Vi5 lower than voltage Vi2 is applied to scan electrode 22 (for example, scan electrode SC2) that does not perform the forced initialization operation.
  • a drive voltage waveform having the same waveform shape as that of the second half of the all-cell initialization period shown in the first embodiment is applied to each electrode.
  • the drive voltage waveform applied to the scan electrode 22 that performs the forced initialization operation and the drive voltage waveform applied to the scan electrode 22 that does not perform the forced initialization operation have the same waveform shape.
  • a weak initialization discharge is generated in the discharge cell (for example, the discharge cell formed on the scan electrode SC1) that has been subjected to the forced initialization operation.
  • a discharge cell that has not been subjected to the forced initialization operation for example, a discharge cell formed on scan electrode SC2
  • the immediately preceding subfield that is, the last subfield of the immediately preceding field (for example, subfield SF8).
  • a weak initialization discharge is generated only in the discharge cells that have generated the address discharge (sustain discharge).
  • the initialization discharge does not occur, and the previous wall voltage is maintained.
  • the initialization operation performed in the discharge cell that does not perform the forced initialization operation is the selective initialization operation.
  • the discharge cells that perform the forced initialization operation and the discharge cells that perform the selective initialization operation coexist in the initialization period.
  • an initialization waveform having the same waveform shape as the all-cell initialization waveform is applied to the scan electrode 22 of the discharge cell that performs the forced initialization operation. That is, the up-ramp voltage L1 and the down-ramp voltage L2 are applied to the scan electrode 22 of the discharge cell that performs the forced initialization operation.
  • the up-ramp voltage L1 is an up-slope waveform voltage that rises to a voltage Vi2 at which an initializing discharge is generated in the discharge cell regardless of whether an address discharge (sustain discharge) has occurred in the immediately preceding subfield.
  • the down-ramp voltage L2 is a down-slope waveform voltage that drops to the voltage Vi4 at which discharge occurs.
  • the up-ramp voltage L5 and the down-ramp voltage L2 are applied to the scan electrodes 22 of the discharge cells that do not perform the forced initialization operation.
  • the up-ramp voltage L5 is an up-slope waveform voltage that is lower than the voltage Vi2 and rises to a voltage Vi5 that does not generate an initialization discharge in the discharge cell.
  • the downward ramp voltage L2 is a downward ramp waveform voltage that decreases to the voltage Vi4.
  • forced initialization period A drive voltage waveform generated for performing the forced initialization operation is referred to as a “forced initialization waveform”.
  • Subfield SF2 which is a subsequent selective initialization subfield, is a second type subfield in which selective initialization operation is performed in all discharge cells in the initialization period.
  • a driving voltage waveform having the same waveform shape as the driving voltage waveform shown in the selective initializing period of the first embodiment may be applied to each electrode.
  • the minimum voltage of the downward ramp waveform voltage applied to scan electrode SC1 through scan electrode SCn may be set higher than voltage Vi4, which is the minimum voltage of down-ramp voltage L2.
  • the minimum voltage of the downward ramp waveform voltage applied to scan electrode SC1 through scan electrode SCn in the selective initialization period is set to voltage Vi6 having a voltage value higher than voltage Vi4, and voltage Vi3 ′ to voltage Vi6.
  • a description will be given of an example in which a downward ramp waveform voltage (hereinafter referred to as “down-ramp voltage L6”) that falls to the above is applied to scan electrode SC1 through scan electrode SCn.
  • this down-slope waveform voltage has the same function as the first down-slope waveform voltage shown in the first embodiment, this down-slope waveform voltage (down-ramp voltage L6) is also the first down-slope waveform voltage.
  • voltage Vh having a voltage value higher than voltage Ve is applied to sustain electrode SU1 through sustain electrode SUn.
  • Scan electrode SC1 to scan electrode SCn have a downward ramp waveform voltage (gradiently decreasing from voltage Vi3 ′ (eg, voltage 0 (V)), which is less than the discharge start voltage, to negative voltage Vi6, which exceeds the discharge start voltage.
  • a down-ramp voltage L6 is applied.
  • the slope of the down-ramp voltage L6 may be the same as the slope of the down-ramp voltage L2, and an example thereof is a numerical value of about ⁇ 2.5 V / ⁇ sec.
  • the voltage Vi6 can be generated by superimposing the voltage Vset6 on the voltage Va.
  • the voltage Vi6 that is the lowest voltage of the down-ramp voltage L6 is higher than the voltage Vi4 that is the lowest voltage of the down-ramp voltage L2, and the discharge cell that has generated the address discharge (sustain discharge) in the immediately preceding subfield. Only the voltage at which discharge occurs is set. At this time, it is desirable to set the voltage Vi6 so that the voltage difference between the voltage Vg and the voltage Vi6 (the voltage applied to the discharge cell) is approximately the same as the voltage Vi4.
  • the operation in the subsequent writing period and sustaining period of the subfield SF2 is the same as the driving voltage waveform shown in the first embodiment.
  • the above is the outline of the driving voltage waveform during the one-phase driving operation applied to each electrode of the panel 10 when displaying an image in the present embodiment.
  • a one-phase driving operation is performed in the subfield SF1 and the subfield SF2.
  • a two-phase driving operation is performed in subfield SF3 to subfield SF8 in subfield SF3 to subfield SF8 in subfield SF3 to subfield SF8, a two-phase driving operation is performed.
  • FIG. 22 is a diagram showing a driving voltage waveform during a two-phase driving operation applied to each electrode of the panel 10 used in the plasma display device in accordance with the second exemplary embodiment of the present invention.
  • the scan electrode 22 that performs the address operation at the beginning of the address period the scan electrode SC1 that belongs to the first scan electrode group, and the scan electrode 22 that performs the address operation at the end of the first scan electrode group.
  • Scan electrode SCn / 2 for example, scan electrode SC540
  • scan electrode SCn / 2 + 1 for example, scan electrode SC541
  • scan electrode 22 that performs an address operation is applied to each of scan electrode SCn (for example, scan electrode SC1080) belonging to the second scan electrode group, sustain electrode SU1 through sustain electrode SUn, and data electrode D1 through data electrode Dm.
  • the drive voltage waveform to be shown is shown.
  • the drive voltage waveform during the two-phase drive operation shown in FIG. 22 is substantially equal to the drive voltage waveform during the two-phase drive operation shown in FIG. However, the lowest voltage of the downward initialization waveform voltage and the voltage applied to the data electrode 32 and the sustain electrode 23 during the initialization operation are different from the drive voltage waveform during the two-phase drive operation shown in FIG.
  • scan electrode SC1 to scan electrode SCn / 2 belonging to the first scan electrode group has the same waveform shape as that of down-ramp voltage L6 described as the selective initializing waveform. Apply voltage waveform. Therefore, hereinafter, this drive voltage waveform is also referred to as “first downward ramp waveform voltage”.
  • the first downward ramp waveform voltage (down-ramp voltage L6) is a negative voltage Vi6 that exceeds the discharge start voltage from voltage Vi3 ′ that is less than the discharge start voltage with respect to sustain electrode SU1 to sustain electrode SUn / 2. That is, it is a ramp waveform voltage that drops to voltage Va + voltage Vset6.
  • the down-ramp voltage L6 is a first-phase down-slope waveform voltage.
  • a second down-gradient waveform voltage (down-ramp voltage L8) that gently falls from voltage Vi3 ′ toward negative voltage (Va + Vset5).
  • voltage Vh having a voltage value higher than voltage Ve is applied to sustain electrode SU1 through sustain electrode SUn, similar to the initialization period of subfield SF2.
  • a second voltage (positive voltage Vg) having a voltage value higher than that of the first voltage (voltage 0 (V)) is applied to the data electrodes D1 to Dm.
  • the third downward ramp waveform voltage is applied to the second scan electrode group before the write operation to the second scan electrode group is started.
  • the third downward ramp waveform voltage is a downward ramp waveform voltage that gradually falls from the voltage 0 (V), which is the base potential that is less than the discharge start voltage, toward the negative voltage (Va + Vset7).
  • the third downward ramp waveform voltage when the third downward ramp waveform voltage is applied to the second scan electrode group, the same third downward ramp waveform voltage is also applied to the first scan electrode group. The reason is as described in the first embodiment.
  • the third downward ramp waveform voltage is the second-phase downward ramp waveform voltage.
  • the same drive voltage waveform as that of the subfield SF3 is generated in the initialization period of the subfield SF5 to the subfield SF8.
  • the third downlink A ramp waveform voltage is applied to the second scan electrode group.
  • the third downward ramp waveform voltage is a downward ramp waveform voltage that gently falls from the voltage 0 (V), which is the base potential that is less than the discharge start voltage, toward the negative voltage (Va + Vset8).
  • the same third downward ramp waveform voltage is also applied to the first scan electrode group.
  • the third downward ramp waveform voltage is also the second phase downward ramp waveform voltage.
  • the voltage Vset8 is set to a voltage lower than the voltage Vset6 and higher than the voltage Vset7.
  • the voltage Vset6 is 80 (V)
  • the voltage Vset7 is 77 (V)
  • the voltage Vset8 is 78 (V).
  • the second-phase downward ramp waveform voltage generated in the writing period of the subfield SF3 and the subfield SF4 is the third downward ramp waveform voltage that drops to a voltage that is, for example, 3 (V) lower than the downward ramp voltage L6.
  • the second-phase downward ramp waveform voltage generated in the writing period of subfield SF5 to subfield SF8 is the third downward ramp waveform voltage that drops to a voltage that is, for example, 2 (V) lower than the downward ramp voltage L6. .
  • these voltage values are only examples in the embodiment. Each voltage value is not limited to the value described above, and it is desirable to set the voltage value to an optimal value as appropriate in accordance with the characteristics of the panel 10 and the specifications of the plasma display device.
  • the scan electrode 22 that applies the forced initialization waveform to each field is set based on the following rules.
  • N fields that are continuous in time are defined as one field group
  • N scanning electrodes 22 that are continuously arranged are defined as one scan electrode group.
  • three fields that are temporally continuous are defined as one field group
  • three consecutively arranged scan electrodes 22 are defined as one scan electrode group.
  • the forced initializing waveform is applied to each scan electrode 22 constituting one scan electrode group once for each field group.
  • a forced initializing waveform is applied only to one scan electrode 22 of each scan electrode group in one field group. Therefore, for example, if the number of scan electrodes 22 is 1080 and the number of scan electrode groups is 360, the number of scan electrodes 22 to which the forced initializing waveform is applied in one field is 360. Then, a forced initialization waveform is applied to the other 360 scan electrodes 22 in the next field, and a forced initialization waveform is applied to the remaining 360 scan electrodes 22 in the third field.
  • the scan electrode 22 to which the forced initialization waveform is applied is set so that the forced initialization waveform is not applied to the scan electrode 22 adjacent to the scan electrode 22 to which the forced initialization waveform is applied.
  • FIG. 23 is a diagram schematically showing the relationship between the scanning electrode 22 to which the forced initialization waveform is applied and the field in the second embodiment of the present invention.
  • field Fj to field Fj + 2, field Fj + 3 to field Fj + 5, field Fj + 6 to field Fj + 8, field Fj + 9 to field Fj + 11 constitute a field group
  • each of scan electrode SCi to scan electrode SCi + 2 and scan electrode An example is shown in which each of SCi + 3 to scan electrode SCi + 5 and scan electrode SCi + 6 to scan electrode SCi + 8 constitutes a scan electrode group.
  • “ ⁇ ” indicates that the forced initialization operation is performed in the initialization period of the subfield SF1. That is, “ ⁇ ” represents that a forced initializing waveform having the up-ramp voltage L1 and the down-ramp voltage L2 is applied to the scan electrode 22 in the initialization period of the subfield SF1.
  • “X” represents that the forced initialization operation is not performed in the initialization period of the subfield SF1. That is, “x” represents that an initialization waveform having an up-ramp voltage L5 and a down-ramp voltage L2 is applied to the scan electrode 22 in the initialization period of the subfield SF1.
  • the forced initializing waveform is applied to each scan electrode 22 constituting one scan electrode group once for each field group.
  • forcible initialization waveforms are applied to the scan electrode SCi in each of the field Fj, the field Fj + 3, the field Fj + 6, the field Fj + 9,.
  • the forced initializing waveform is applied only to one scan electrode 22 of each scan electrode group in one field group.
  • a forced initialization waveform is applied to scan electrode SCi, scan electrode SCi + 3, scan electrode SCi + 6,..., And in field Fj + 1, scan electrode SCi + 1, scan electrode SCi + 4, scan electrode SCi + 7,.
  • a forced initializing waveform is applied to scan electrode SCi + 2, scan electrode SCi + 5, scan electrode SCi + 8,... In field Fj + 2. The same applies to the other fields.
  • the forced initialization waveform is applied to the scan electrode SCi + 3, and the forced initialization waveform is not applied to the scan electrode SCi + 2 and the scan electrode SCi + 4 adjacent to the scan electrode SCi + 3.
  • the forced initialization waveform is not applied to the scan electrode SCi + 2 and the scan electrode SCi + 4 adjacent to the scan electrode SCi + 3. The same applies to the other scanning electrodes 22.
  • the forced initialization operation is performed in only one of a plurality of consecutive fields.
  • the number of times that the forced initialization operation is performed is set to once in a plurality of fields, light emission that is not related to the gradation display generated by the forced initialization operation is reduced, the black luminance is reduced, and an image with high contrast is displayed. 10 can be displayed.
  • the forced initialization operation has a function of accumulating wall charges necessary for generating an address discharge in the discharge cell in the subsequent address period. Furthermore, it has a function of generating priming particles necessary for shortening the discharge delay time and stably generating the address discharge.
  • the first voltage ( A second voltage (voltage Vg) higher than voltage 0 (V) is applied.
  • the lowest voltage (voltage Vi6) of the downward ramp waveform voltage (down-ramp voltage L6) applied to scan electrode SC1 through scan electrode SCn is applied to scan electrode SC1 through scan electrode SC1 through sub-field SF1 as the first type subfield. It is set higher than the lowest voltage (voltage Vi4) of the downward ramp waveform voltage (down ramp voltage L2) applied to scan electrode SCn.
  • the address discharge can be stably generated even in the driving method according to the present embodiment in which the number of forced initialization operations is reduced. This is due to the following reason.
  • discharge cells that perform a forced initializing operation in the initializing period of the first type subfield (subfield SF1). That is, in the first half of the initialization period, the rising ramp waveform voltage (up-ramp voltage L1) rising toward the voltage Vi2 at which discharge occurs regardless of the occurrence of address discharge (sustain discharge) in the immediately preceding subfield.
  • discharge cell that forcibly generates an initializing discharge when applied.
  • a wall voltage having a high positive polarity is accumulated on the data electrode 32 of such a discharge cell.
  • a positive voltage Vg is further applied to the data electrode D1 to the data electrode Dm to the discharge cell in which the wall voltage having a high positive polarity is accumulated on the data electrode 32, the voltage difference between the scan electrode 22 and the data electrode 32 is obtained.
  • wall charges and priming particles become excessive in the discharge cell, and the probability of generating an erroneous discharge in the subsequent address period increases.
  • a positive voltage is applied to the data electrode 32 during the initialization period of the first type subfield (subfield SF1) in which there are discharge cells that perform the forced initialization operation. Vg is not applied.
  • the discharge between the scan electrode 22 and the data electrode 32 is less likely to occur, and the initialization discharge is less likely to occur.
  • the inventor of the present application applies a positive voltage to the data electrode D1 to the data electrode Dm when performing the selective initialization operation, thereby stably generating the initialization discharge in the discharge cell performing the selective initialization operation. It was experimentally confirmed that the wall voltage on the data electrode Dk can be accurately adjusted. This is presumably because discharge between the scan electrode 22 and the data electrode 32 is likely to occur stably by applying a positive voltage to the data electrodes D1 to Dm.
  • positive voltage Vg is applied to data electrode D1 to data electrode Dm in the initialization period of the second type subfield (subfield SF2 to subfield SF8) in which the selective initialization operation is performed.
  • the voltage difference between the voltage Vi6 and the second voltage (voltage Vg) is the voltage Vi4. It is desirable to set each voltage so as to be substantially equal to the voltage difference between the first voltage (voltage 0 (V)). Thereby, the address discharge in the address period after the forced initializing operation and the address discharge in the address period after the selective initializing operation can be set to the same discharge intensity.
  • the voltage Vh higher than the voltage Ve is applied to the sustain electrodes SU1 to SUn because the voltage Vi6 is set higher than the voltage Vi4, so that a discharge is generated between the scan electrode 22 and the sustain electrode 23. This is to prevent it from becoming difficult.
  • the wall voltage on the data electrode Dk is adjusted with high accuracy in this way, so that the address discharge can be stably generated while reducing the number of forced initialization operations.
  • the scan electrode drive circuit, the sustain electrode drive circuit, and the data electrode drive circuit used in the present embodiment are the same as the scan electrode drive circuit 43, the sustain electrode drive circuit 44, and the data electrode drive circuit 42 described in the first embodiment. Since it is a structure, description is abbreviate
  • the voltage Vi1 is equal to the voltage Vp
  • the voltage Vi2 is equal to the voltage (Vt + Vp)
  • the voltage Vi3 is equal to the voltage Vs
  • the voltage Vc is equal to the voltage (Va + Vp). It shall be equal. The same applies to the drive voltage waveform shown in FIG.
  • the voltage Vi5 is equal to the voltage Vt
  • the voltage Vg is equal to the voltage Vd
  • the voltage Vh is equal to the voltage Vs.
  • these voltages are not limited to the above-described numerical values, and are desirably set as appropriate according to the characteristics of the panel 10 and the specifications of the plasma display device.
  • FIG. 24 is a timing chart for explaining the operation of the drive circuit of the plasma display device in accordance with the second exemplary embodiment of the present invention.
  • scan electrode 22 to which a forced initialization waveform is applied is indicated by scan electrode SCx
  • scan electrode 22 to which no forced initialization waveform is applied is indicated by scan electrode SCy.
  • the switching element corresponding to the scan electrode SCx is indicated by the switching element Q71Hx
  • the switching element corresponding to the scan electrode SCy is indicated by the switching element Q71Hy
  • switching elements Q71L1 to Q71Ln a switching element corresponding to scan electrode SCx is indicated by switching element Q71Lx
  • a switching element corresponding to scan electrode SCy is indicated by switching element Q71Ly.
  • switching element Q56 of scan electrode drive circuit 43 is turned on to apply voltage 0 (V) to scan electrode SCx and scan electrode SCy.
  • the switching element Q56 is turned off and the switching element Q71Lx is turned off, the switching element Q71Hx is turned on, and the voltage Vp is applied to the scan electrode SCx to which the forced initialization waveform is applied.
  • voltage 0 (V) is kept applied to scan electrode SCy that does not perform the forced initialization operation.
  • a constant voltage is applied to the input terminal IN61 of the Miller integrating circuit 61, and the voltage of the reference potential A is gradually raised to the voltage Vt. Since a voltage obtained by superimposing the voltage Vp on the reference potential A is applied to the scan electrode SCx to which the forced initializing waveform is applied, an upward ramp waveform that gradually rises from the voltage Vp to the voltage (Vt + Vp). A voltage (up-ramp voltage L1) can be applied.
  • an upward ramp waveform voltage (up-ramp voltage) that gradually rises from voltage 0 (V) to voltage Vt is applied to scan electrode SCy. L5) can be applied.
  • switching element Q84 of sustain electrode drive circuit 44 is turned off, switching element Q86 and switching element Q87 are turned on, and voltage Ve is applied to sustain electrode SU1 through sustain electrode SUn. To do.
  • switching element Q71Hx of scan electrode drive circuit 43 is turned off, switching element Q71Lx is turned on, switching element Q55 and switching element Q59 are turned on, and voltage Vs is applied to scan electrode SCx and scan electrode SCy.
  • the switching element Q69 is turned off and a constant voltage is applied to the input terminal IN63 of the Miller integrating circuit 63 to operate the Miller integrating circuit 63, so that the scanning electrode SCx and the scanning electrode SCy are gradually applied from the voltage Vi3 to the voltage Vi4.
  • a descending ramp waveform voltage (down ramp voltage L2) is applied.
  • the transistor Q63 of the Miller integrating circuit 63 of the scan electrode driving circuit 43 is turned off, the switching element Q72 is turned on, and the voltage of the reference potential A is set to the voltage Va. Then, switching element Q71Lx and switching element Q71Ly are turned off, switching element Q71Hx and switching element Q71Hy are turned on, and voltage (Va + Vp), that is, voltage Vc is applied to scan electrode SCx and scan electrode SCy.
  • switching element Q71H1 is turned off, switching element Q71L1 is turned on, and a scan pulse that is displaced from voltage Vc to voltage Va is applied to scan electrode SC1.
  • switching element Q91L1 to switching element Q91Lm of data electrode drive circuit 42 are turned on, switching element Q91H1 to switching element Q91Hm are turned off, and voltage 0 (V) is applied to data electrode D1 to data electrode Dm.
  • the switching element Q91Lj is turned off and the switching element Q91Hj is turned on for the data electrode Dj to which the address pulse is applied based on the image data, and the voltage 0 (V ) Is applied to the data electrode Dj.
  • the switching element Q71H1 is turned on, the switching element Q71L1 is turned off, and the voltage applied to the scan electrode SC1 is returned to the voltage Vc.
  • switching element Q91Lj is turned on, switching element Q91Hj is turned off, and the voltage applied to data electrode Dj is returned to voltage 0 (V). In this way, a scan pulse is applied to scan electrode SC1, and an address pulse is applied to data electrode Dj.
  • FIG. 24 shows an example in which a scan pulse is applied to scan electrode SCx, and then a scan pulse is applied to scan electrode SCy.
  • the scan pulse is sequentially applied to the scan electrode 22 and the address pulse is applied to the data electrode Dj until reaching the scan electrode SCn.
  • switching element Q72, switching element Q71Hx, and switching element Q71Hy are turned off, switching element Q56, switching element Q69, switching element Q71Lx, and switching element Q71Ly are turned on, respectively, and voltage 0 ( V) is applied.
  • the writing period ends.
  • sustain period of subfield SF1 scan electrode SC1 to scan electrode SCn and sustain electrode SU1 to sustain are maintained using sustain pulse generating circuit 50 of scan electrode driving circuit 43 and sustain pulse generating circuit 80 of sustain electrode driving circuit 44.
  • the number of sustain pulses corresponding to the luminance weight is applied to each electrode SUn.
  • the switching element Q56 of the scan electrode drive circuit 43 is turned off.
  • a constant voltage is applied to input terminal IN62 of Miller integrating circuit 62 to operate Miller integrating circuit 62, and an upward ramp waveform voltage that gradually rises to voltage Vr is applied to scan electrode SC1 through scan electrode SCn.
  • switching elements Q91L1 to Q91Lm of data electrode drive circuit 42 are turned off, switching elements Q91H1 to switching element Q91Hm are turned on, and positive voltage Vd is applied to data electrodes D1 to Dm. That is, the voltage Vg is applied.
  • switching element Q84 of sustain electrode drive circuit 44 is turned off, switching element Q83 is turned on, and voltage Vs, that is, voltage Vh, is applied to sustain electrode SU1 through sustain electrode SUn.
  • the subsequent operations in the writing period and the sustaining period of the subfield SF2 are the same as those in the writing period and the sustaining period of the subfield SF1.
  • the drive voltage waveforms shown in FIGS. 21 and 22 are generated using the data electrode drive circuit 42, the scan electrode drive circuit 43, and the sustain electrode drive circuit 44, and the data electrode D1 to data electrode Dm, scan electrode SC1 to scan electrode SCn, and sustain electrode SU1 to sustain electrode SUn can be applied to each.
  • a downward ramp waveform voltage is applied to the scan electrode 22 and a first voltage (voltage 0 (V)) is applied to the data electrode 32.
  • a downward ramp waveform voltage is applied to the scan electrode and a second voltage (voltage Vg) higher than the first voltage is applied to the data electrode in the initialization period of the second type subfield.
  • the forced initialization operation is performed once in a plurality of fields, so that the forced initialization operation is performed as compared with the configuration in which the forced initialization operation is performed once in one field. Accordingly, the emitted light can be reduced. As a result, the black luminance (the luminance of the gradation that does not generate the sustain discharge) can be lowered, and the contrast of the image displayed on the panel 10 can be improved.
  • the scan electrode SU1 to sustain electrode SUn and the data electrode D1 to data electrode Dm are applied with the voltage 0 (V) while being applied with the scan electrode.
  • An upward ramp waveform voltage (upward erasing ramp voltage L3) that gradually increases from voltage 0 (V), which is less than the discharge start voltage, toward voltage Vr, which is a predetermined voltage, is applied to SC1 through scan electrode SCn. Then, the voltage Vr is set to a voltage that is lower than the voltage Vs and does not cause erroneous discharge in the subsequent address period.
  • the present invention is not limited to this configuration. It is desirable to set the number of times of performing the forced initialization operation appropriately according to the characteristics of the panel 10, the specifications of the plasma display device, the setting of the contrast ratio of the image displayed on the panel 10, and the like. .
  • the configuration in which the up-ramp voltage L5 is applied to the scan electrode 22 that does not perform the forced initialization operation in the first half of the initialization period of the first type subfield has been described. It is not limited to this configuration.
  • the voltage applied to the scan electrode 22 that does not perform the forced initializing operation is a voltage that does not cause a discharge in the discharge cell formed on the scan electrode 22. Good. For example, it may be a fixed voltage of voltage 0 (V).
  • the configuration has been described in which all the downward ramp waveform voltages are generated with the same gradient.
  • the downward ramp waveform voltage is divided into a plurality of periods, and the gradient is changed in each period to generate the downward ramp waveform voltage. It may be configured to occur.
  • FIG. 25 is a waveform diagram showing another example of the waveform shape of the downward ramp waveform voltage applied to the scan electrode 22 in the embodiment of the present invention.
  • the voltage decreases at a relatively steep gradient (for example, ⁇ 8 V / ⁇ sec) until the initialization discharge occurs, and then has a slightly gentle gradient (for example, ⁇ 2.5 V / ⁇ sec). It is also possible to generate a downward ramp waveform voltage by descending at a lower slope and finally descending at a more gentle gradient (for example, -1 V / ⁇ sec). Even with such a configuration, it was confirmed that the same effect as described above was obtained. In addition, with this configuration, there is also an effect that the period for generating the downward ramp waveform voltage can be shortened.
  • the downward ramp waveform voltage may be divided into two periods, and the slope may be changed in each period to generate the downward ramp waveform voltage.
  • the panel may be driven while generating a field in which all cell initialization operations are not performed on all discharge cells on the panel. Even in such a case, the structure shown in this embodiment can be applied.
  • one-phase driving is performed in subfield SF1 and subfield SF2 and two-phase driving is performed in subfield SF3 to subfield SF8 has been described, but the present invention is not limited to this configuration. It is not something.
  • two-phase driving may be performed in all subfields constituting one field, or two-phase driving is performed in subfield SF1 and subfield SF2, and one-phase driving is performed in other subfields. May be. Which subfield is to be driven in one phase and which subfield is to be driven in two phases may be optimally set according to the characteristics of the panel, the use of the plasma display device, and the like. Even in such a case, the structure shown in this embodiment can be applied.
  • the number of subfields constituting one field, subfields to be forced initialization subfields, luminance weights of each subfield, and the like are not limited to the above-described numerical values. Moreover, the structure which switches a subfield structure based on an image signal etc. may be sufficient.
  • the drive voltage waveforms shown in FIGS. 4, 5, 6, 19, 21, and 22 are merely examples of the embodiment of the present invention, and the present invention is not limited to these drive voltage waveforms. It is not limited to.
  • the configuration of the drive circuit shown in FIGS. 12, 13, 14, 15, 16, and 17 is merely an example in the embodiment of the present invention, and the present invention is not limited to these circuits.
  • the configuration is not limited.
  • each circuit block shown in the embodiment of the present invention may be configured as an electric circuit that performs each operation shown in the embodiment, or a microcomputer that is programmed to perform the same operation. May be used.
  • the number of subfields constituting one field is not limited to the above number.
  • the number of gradations that can be displayed on the panel 10 can be further increased.
  • the time required for driving panel 10 can be shortened by reducing the number of subfields.
  • one pixel is constituted by discharge cells of three colors of red, green, and blue.
  • a panel in which one pixel is constituted by discharge cells of four colors or more has been described.
  • the specific numerical values shown in the embodiment of the present invention are set based on the characteristics of the panel 10 having a screen size of 50 inches and the number of display electrode pairs 24 of 1024. It is just an example.
  • the present invention is not limited to these numerical values, and each numerical value is desirably set optimally in accordance with panel specifications, panel characteristics, plasma display device specifications, and the like. Each of these numerical values is allowed to vary within a range where the above-described effect can be obtained.
  • the number of subfields constituting one field, the luminance weight of each subfield, etc. are not limited to the values shown in the embodiment of the present invention, and the subfield configuration is based on the image signal or the like. The structure to switch may be sufficient.
  • the present invention can perform a stable writing operation even when driving a high-definition large-screen panel, and can display a high-quality image on the panel. It is useful as a plasma display device.

Abstract

The purpose of the present invention is to perform stable write operations even when driving a high-definition large-screen plasma display panel. To that end, the plasma display panel is driven by dividing said panel into multiple scan electrode groups which include a first scan electrode group and a second scan electrode group. Further, a field is provided into subfields which comprise, after an adjustment period in which the scan electrodes, sustain electrodes and data electrodes are sustained at a base potential, an initialization period in which a first downward-sloping waveform voltage is applied to the first scan electrode group and a second downward-sloping waveform voltage is applied to the second scan electrode group, and a write period in which a third downward-sloping waveform voltage is applied to the scan electrodes between a write operation to the first scan electrode group and a write operation to the second scan electrode group. Also, the length of the adjustment period changes depending on the number of sustain pulses generated in the sustain period of the immediately preceding subfield.

Description

プラズマディスプレイパネルの駆動方法およびプラズマディスプレイ装置Plasma display panel driving method and plasma display device
 本発明は、交流面放電型のプラズマディスプレイパネルを用いたプラズマディスプレイ装置およびプラズマディスプレイパネルの駆動方法に関する。 The present invention relates to a plasma display device using an AC surface discharge type plasma display panel and a driving method of the plasma display panel.
 プラズマディスプレイパネル(以下、「パネル」と略記する)として代表的な交流面放電型パネルは、対向配置された前面基板と背面基板との間に多数の放電セルが形成されている。 2. Description of the Related Art A typical AC surface discharge type panel as a plasma display panel (hereinafter abbreviated as “panel”) has a large number of discharge cells formed between a front substrate and a rear substrate that are arranged to face each other.
 前面基板は、1対の走査電極と維持電極とからなる表示電極対が前面側のガラス基板上に互いに平行に複数対形成されている。そして、それら表示電極対を覆うように誘電体層および保護層が形成されている。 In the front substrate, a plurality of pairs of display electrodes composed of a pair of scan electrodes and sustain electrodes are formed in parallel with each other on the front glass substrate. A dielectric layer and a protective layer are formed so as to cover the display electrode pairs.
 背面基板は、背面側のガラス基板上に複数の平行なデータ電極が形成され、それらデータ電極を覆うように誘電体層が形成され、さらにその上にデータ電極と平行に複数の隔壁が形成されている。そして、誘電体層の表面と隔壁の側面とに蛍光体層が形成されている。 The back substrate has a plurality of parallel data electrodes formed on the glass substrate on the back side, a dielectric layer is formed so as to cover the data electrodes, and a plurality of barrier ribs are formed thereon in parallel with the data electrodes. ing. And the fluorescent substance layer is formed in the surface of a dielectric material layer, and the side surface of a partition.
 そして、表示電極対とデータ電極とが立体交差するように、前面基板と背面基板とを対向配置して密封する。密封された内部の放電空間には、例えば分圧比で5%のキセノンを含む放電ガスを封入し、表示電極対とデータ電極とが対向する部分に放電セルを形成する。このような構成のパネルにおいて、各放電セル内でガス放電により紫外線を発生し、この紫外線で赤色(R)、緑色(G)および青色(B)の各色の蛍光体を励起発光してカラーの画像表示を行う。 Then, the front substrate and the rear substrate are arranged opposite to each other and sealed so that the display electrode pair and the data electrode are three-dimensionally crossed. In the sealed internal discharge space, for example, a discharge gas containing xenon at a partial pressure ratio of 5% is sealed, and a discharge cell is formed in a portion where the display electrode pair and the data electrode face each other. In the panel having such a configuration, ultraviolet rays are generated by gas discharge in each discharge cell, and the phosphors of each color of red (R), green (G) and blue (B) are excited and emitted by the ultraviolet rays. Display an image.
 放電セルにおける発光と非発光との2値制御を組み合わせてパネルの画像表示領域に画像を表示する方法としては一般にサブフィールド法が用いられている。 A subfield method is generally used as a method for displaying an image in an image display area of a panel by combining binary control of light emission and non-light emission in a discharge cell.
 サブフィールド法では、1フィールドを、発光輝度が互いに異なる複数のサブフィールドに分割する。そして、各放電セルでは、所望の階調値に応じた組合せで各サブフィールドの発光・非発光を制御する。これにより1フィールドの発光輝度を所望の階調値にして各放電セルを発光し、パネルの画像表示領域に、様々な階調値の組合せで構成された画像を表示する。 In the subfield method, one field is divided into a plurality of subfields having different emission luminances. In each discharge cell, light emission / non-light emission of each subfield is controlled by a combination according to a desired gradation value. Thus, each discharge cell emits light with the emission luminance of one field set to a desired gradation value, and an image composed of various combinations of gradation values is displayed in the image display area of the panel.
 サブフィールド法において、各サブフィールドは、初期化期間、書込み期間および維持期間を有する。 In the subfield method, each subfield has an initialization period, an address period, and a sustain period.
 初期化期間では、各走査電極に初期化波形を印加し、各放電セルで初期化放電を発生する初期化動作を行う。これにより、各放電セルにおいて、続く書込み動作のために必要な壁電荷を形成するとともに、書込み放電を安定して発生するためのプライミング粒子(放電を発生させるための励起粒子)を発生する。 In the initialization period, an initialization waveform is applied to each scan electrode, and an initialization operation is performed to generate an initialization discharge in each discharge cell. Thereby, in each discharge cell, wall charges necessary for the subsequent address operation are formed, and priming particles (excited particles for generating the discharge) for generating the address discharge stably are generated.
 書込み期間では、走査電極に走査パルスを順次印加するとともに、データ電極には表示すべき画像信号にもとづき選択的に書込みパルスを印加する。これにより、発光を行うべき放電セルの走査電極とデータ電極との間に書込み放電を発生し、その放電セル内に壁電荷を形成する(以下、これらの動作を総称して「書込み」とも記す)。 In the address period, the scan pulse is sequentially applied to the scan electrodes, and the address pulse is selectively applied to the data electrodes based on the image signal to be displayed. As a result, an address discharge is generated between the scan electrode and the data electrode of the discharge cell to emit light, and a wall charge is formed in the discharge cell (hereinafter, these operations are also collectively referred to as “address”). ).
 維持期間では、サブフィールド毎に定められた輝度重みにもとづく数の維持パルスを走査電極と維持電極とからなる表示電極対に交互に印加する。これにより、書込み放電を発生した放電セルで維持放電を発生し、その放電セルの蛍光体層を発光させる(以下、放電セルを維持放電により発光させることを「点灯」、発光させないことを「非点灯」とも記す)。これにより、各サブフィールドにおいて、各放電セルを、輝度重みに応じた輝度で発光させる。このようにして、パネルの各放電セルを画像信号の階調値に応じた輝度で発光させて、パネルの画像表示領域に画像を表示する。 In the sustain period, the number of sustain pulses based on the luminance weight determined for each subfield is alternately applied to the display electrode pairs composed of the scan electrodes and the sustain electrodes. As a result, a sustain discharge is generated in the discharge cell that has generated the address discharge, and the phosphor layer of the discharge cell emits light (hereinafter referred to as “lighting” that the discharge cell emits light by the sustain discharge, and “non-emitting”). Also written as “lit”.) Thereby, in each subfield, each discharge cell is made to emit light with the luminance according to the luminance weight. In this way, each discharge cell of the panel is caused to emit light with a luminance corresponding to the gradation value of the image signal, and an image is displayed in the image display area of the panel.
 維持期間において、表示電極対への維持パルスの印加が終了した後、上昇する傾斜電圧を維持電極に印加して微弱放電(消去放電)を発生する技術が開示されている(例えば、特許文献1参照)。消去放電を発生することにより、維持放電によって生じた放電セル内の壁電荷を消去し、表示電極対間の電位差を緩和して、続くサブフィールドの書込み期間における書込み放電を安定に発生することが可能となる。 In the sustain period, a technique is disclosed in which, after the sustain pulse is applied to the display electrode pair, a rising ramp voltage is applied to the sustain electrode to generate a weak discharge (erase discharge) (for example, Patent Document 1). reference). By generating the erasing discharge, the wall charge in the discharge cell caused by the sustain discharge is erased, the potential difference between the pair of display electrodes is relaxed, and the address discharge in the subsequent subfield address period can be stably generated. It becomes possible.
 また、維持期間において表示電極対への維持パルスの印加が終了した後、所定の電圧まで上昇した後その電圧を一定期間維持する傾斜電圧を走査電極に印加し、その後、上昇する傾斜電圧を維持電極に印加して放電セル内の壁電荷を消去する技術が開示されている(例えば、特許文献2参照)。 In addition, after the application of the sustain pulse to the display electrode pair is completed in the sustain period, a ramp voltage that maintains the voltage for a certain period is applied to the scan electrode after rising to a predetermined voltage, and then the ramp voltage that rises is maintained. A technique for erasing wall charges in a discharge cell by applying to an electrode is disclosed (for example, see Patent Document 2).
 また、維持期間において表示電極対への維持パルスの印加が終了した後、上昇する傾斜電圧を走査電極に印加するとともにその傾斜を表示画像の平均輝度に応じて変更することで放電セル内の壁電荷を消去する技術が開示されている(例えば、特許文献3参照)。 In addition, after the sustain pulse is applied to the display electrode pair in the sustain period, a rising ramp voltage is applied to the scan electrode, and the tilt is changed in accordance with the average luminance of the display image, so that the wall in the discharge cell is changed. A technique for erasing electric charges is disclosed (for example, see Patent Document 3).
 高精細度化された大画面のパネルでは、駆動しなければならない電極の数が増加し、また、駆動時のインピーダンスも増加するため、書込み動作が不安定になりやすい傾向にある。そのため、そのようなパネルを備えたプラズマディスプレイ装置においても、安定に書込み放電を発生し、画像をパネルに安定して表示することが求められている。 In a large-screen panel with high definition, the number of electrodes that must be driven increases, and the impedance during driving also increases, so the writing operation tends to become unstable. Therefore, a plasma display device provided with such a panel is also required to stably generate an address discharge and stably display an image on the panel.
 また、初期化放電よって放電セルに形成された壁電荷は、他の放電セルに書込み放電を発生するためにデータ電極に印加される書込みパルスの影響を受けて徐々に減少する。そのため、走査パルスが印加される順番が遅い放電セルにおいては、その放電セルに走査パルスおよび書込みパルスが印加されるまでに壁電荷が減少し、書込み放電の放電不良が発生する場合がある。 Also, wall charges formed in the discharge cell by the initializing discharge gradually decrease under the influence of the address pulse applied to the data electrode in order to generate the address discharge in other discharge cells. For this reason, in a discharge cell in which the scan pulse is applied in a late order, wall charges may decrease before the scan pulse and the address pulse are applied to the discharge cell, and a discharge failure of address discharge may occur.
 特に、高精細度化されたパネルにおいては、走査電極数の増加により書込み動作に費やす時間がさらに長くなってしまうため、書込み期間の最後の方に書込みがなされる放電セルにおける壁電荷の減少はさらに大きくなり、書込み放電が不安定になりやすい。 In particular, in a high-definition panel, the time spent for the address operation becomes longer due to the increase in the number of scan electrodes, and therefore, the wall charge in the discharge cell in which the address is written toward the end of the address period is reduced. Further, the address discharge tends to become unstable.
特開2004-348140号公報JP 2004-348140 A 特開2005-141224号公報JP 2005-141224 A 特開2003-5700号公報JP 2003-5700 A
 本発明は、走査電極および維持電極からなる表示電極対とデータ電極とを有する放電セルを複数備えたパネルを、走査電極を第1の走査電極群と第2の走査電極群とを含む複数の走査電極群に分けて駆動するパネルの駆動方法である。この駆動方法では、表示電極対およびデータ電極をベース電位に維持する調整期間の後、第1の走査電極群へ第1の下り傾斜波形電圧を印加するとともに第2の走査電極群へ第2の下り傾斜波形電圧を印加する初期化期間と、第1の走査電極群において発光するべき放電セルに書込みパルスを印加する書込み動作と第2の走査電極群において発光するべき放電セルに書込みパルスを印加する書込み動作との間に第3の下り傾斜波形電圧を走査電極に印加する書込み期間と、輝度重みに応じた数の維持パルスを表示電極対に印加する維持期間とを有するサブフィールドを1フィールドに含む。そして、調整期間の長さを、直前のサブフィールドの維持期間に発生する維持パルスの数に応じて変更する。 The present invention provides a panel including a plurality of discharge cells each having a display electrode pair composed of a scan electrode and a sustain electrode and a data electrode, and a plurality of scan electrodes each including a first scan electrode group and a second scan electrode group. This is a method for driving a panel that is divided into scan electrode groups. In this driving method, after the adjustment period for maintaining the display electrode pair and the data electrode at the base potential, the first downward ramp waveform voltage is applied to the first scan electrode group and the second scan electrode group is supplied with the second scan electrode group. Initialization period in which a downward ramp waveform voltage is applied, an address operation in which an address pulse is applied to a discharge cell to emit light in the first scan electrode group, and an address pulse is applied to a discharge cell to emit light in the second scan electrode group One field is a subfield having an address period in which the third downward ramp waveform voltage is applied to the scan electrodes and an sustain period in which the number of sustain pulses corresponding to the luminance weight is applied to the display electrode pair during the address operation. Included. Then, the length of the adjustment period is changed according to the number of sustain pulses generated in the sustain period of the immediately preceding subfield.
 これにより、高精細度化された大画面のパネルを駆動する際にも安定した書込み動作を行い、品質の高い画像をパネルに表示することが可能となる。 This makes it possible to perform a stable writing operation even when driving a high-definition large-screen panel and display a high-quality image on the panel.
 また、本発明パネルの駆動方法では、第1の下り傾斜波形電圧の最低電圧と第3の下り傾斜波形電圧の最低電圧との差を、調整期間の長さが長いサブフィールドと調整期間の長さが短いサブフィールドとで変更することが望ましい。 Further, in the driving method of the panel of the present invention, the difference between the lowest voltage of the first falling ramp waveform voltage and the lowest voltage of the third falling ramp waveform voltage is calculated by subtracting the length of the adjustment period from the subfield having a longer adjustment period. It is desirable to change with a short subfield.
 また、本発明パネルの駆動方法では、調整期間の長さが短いサブフィールドでは、調整期間の長さが長いサブフィールドよりも、第3の下り傾斜波形電圧の最低電圧を低くすることが望ましい。 In the panel driving method of the present invention, it is desirable to lower the minimum voltage of the third downward ramp waveform voltage in the subfield having a short adjustment period than in the subfield having a long adjustment period.
 また、本発明は、走査電極および維持電極からなる表示電極対とデータ電極とを有する放電セルを複数備えたパネルを、書込み期間と、輝度重みに応じた数の維持パルスを表示電極対に印加する維持期間とを有する複数のサブフィールドで1フィールドを構成し、走査電極を第1の走査電極群と第2の走査電極群とを含む複数の走査電極群に分けて駆動するパネルの駆動方法である。この駆動方法では、第1種サブフィールドと第2種サブフィールドとを1フィールド内に設ける。第1種サブフィールドは、放電セルに放電が発生する電圧まで上昇する上り傾斜波形電圧と負の電圧に向かって下降する下り傾斜波形電圧とを印加する走査電極と、放電セルに放電が発生しない電圧と下り傾斜波形電圧とを印加する走査電極とが存在する初期化期間を有するサブフィールドである。第2種サブフィールドは、直前のサブフィールドで書込み放電を発生した放電セルだけに放電が発生する電圧まで下降する第1の下り傾斜波形電圧を走査電極に印加する初期化期間を有するサブフィールドである。第1種サブフィールドの初期化期間では、走査電極に下り傾斜波形電圧を印加する期間はデータ電極に第1の電圧を印加する。第2種サブフィールドの初期化期間では、走査電極に第1の下り傾斜波形電圧を印加する期間はデータ電極に第1の電圧よりも高い第2の電圧を印加する。そして、1フィールドの最終サブフィールドを除くサブフィールドでは、維持期間における最後の維持パルスの発生後に、ベース電位から維持パルスの電圧未満に設定された所定電圧まで上昇する上り傾斜波形電圧を走査電極に印加する。第2種サブフィールドにおいては、表示電極対およびデータ電極をベース電位に維持する調整期間を前記初期化期間の直前に設ける。そして、第2種サブフィールドの初期化期間では、第1の走査電極群へ第1の下り傾斜波形電圧を印加するとともに第2の走査電極群へ第2の下り傾斜波形電圧を印加する。第2種サブフィールドの書込み期間では、第1の走査電極群において発光するべき放電セルに書込みパルスを印加する書込み動作と第2の走査電極群において発光するべき放電セルに書込みパルスを印加する書込み動作との間に第3の下り傾斜波形電圧を走査電極に印加する。そして、調整期間の長さを、直前のサブフィールドの維持期間に発生する維持パルスの数に応じて変更する。 In addition, the present invention applies a panel having a plurality of discharge cells each having a display electrode pair consisting of a scan electrode and a sustain electrode and a data electrode, and applies a number of sustain pulses corresponding to the address period and luminance weight to the display electrode pair. And driving the panel by dividing the scan electrodes into a plurality of scan electrode groups including a first scan electrode group and a second scan electrode group, wherein one field is composed of a plurality of subfields having a sustain period. It is. In this driving method, the first type subfield and the second type subfield are provided in one field. The first type subfield includes a scan electrode that applies an upward ramp waveform voltage that rises to a voltage at which discharge occurs in the discharge cell and a downward ramp waveform voltage that decreases toward a negative voltage, and no discharge occurs in the discharge cell. This is a subfield having an initialization period in which a scan electrode to which a voltage and a falling ramp waveform voltage are applied exists. The second type subfield is a subfield having an initializing period in which a first downward ramp waveform voltage that drops to a voltage at which discharge occurs only in the discharge cells that have generated address discharge in the immediately preceding subfield is applied to the scan electrodes. is there. In the initialization period of the first type subfield, the first voltage is applied to the data electrode during the period in which the downward ramp waveform voltage is applied to the scan electrode. In the initialization period of the second type subfield, a second voltage higher than the first voltage is applied to the data electrode during the period in which the first downward ramp waveform voltage is applied to the scan electrode. In the subfields other than the last subfield of one field, the rising ramp waveform voltage that rises from the base potential to a predetermined voltage set lower than the sustain pulse voltage after the generation of the last sustain pulse in the sustain period is applied to the scan electrodes. Apply. In the second type subfield, an adjustment period for maintaining the display electrode pair and the data electrode at the base potential is provided immediately before the initialization period. In the initialization period of the second type subfield, the first downward ramp waveform voltage is applied to the first scan electrode group and the second downward ramp waveform voltage is applied to the second scan electrode group. In the address period of the second type subfield, an address operation that applies an address pulse to the discharge cells that should emit light in the first scan electrode group and an address that applies an address pulse to the discharge cells that should emit light in the second scan electrode group A third downward ramp waveform voltage is applied to the scan electrode during the operation. Then, the length of the adjustment period is changed according to the number of sustain pulses generated in the sustain period of the immediately preceding subfield.
 これにより、高精細度化された大画面のパネルを駆動する際にも安定した書込み動作を行い、品質の高い画像をパネルに表示することが可能となる。また、黒の輝度を低減し、コントラストの高い画像をパネルに表示することが可能となる。 This makes it possible to perform a stable writing operation even when driving a high-definition large-screen panel and display a high-quality image on the panel. In addition, it is possible to reduce the luminance of black and display an image with high contrast on the panel.
 また、本発明のパネルの駆動方法においては、第1の下り傾斜波形電圧の最低電圧と第3の下り傾斜波形電圧の最低電圧との差を、調整期間の長さが長いサブフィールドと調整期間の長さが短いサブフィールドとで変更することが望ましい。 Further, in the panel driving method of the present invention, the difference between the lowest voltage of the first falling ramp waveform voltage and the lowest voltage of the third falling ramp waveform voltage is calculated by subtracting the length of the adjustment period from the subfield and the adjustment period. It is desirable to change the subfield with a short length.
 また、本発明のパネルの駆動方法においては、調整期間の長さが短いサブフィールドでは、調整期間の長さが長いサブフィールドよりも、第3の下り傾斜波形電圧の最低電圧を低くしてもよい。 Further, in the panel driving method of the present invention, in the subfield having a short adjustment period, the lowest voltage of the third downward ramp waveform voltage can be set lower than in the subfield having a long adjustment period. Good.
 また、本発明のパネルの駆動方法においては、第1の下り傾斜波形電圧の最低電圧を、第1種サブフィールドの下り傾斜波形電圧の最低電圧よりも高い電圧にして、第1の下り傾斜波形電圧を発生してもよい。 In the panel driving method of the present invention, the lowest voltage of the first descending ramp waveform voltage is set to a voltage higher than the lowest voltage of the descending ramp waveform voltage of the first type subfield, and the first descending ramp waveform is set. A voltage may be generated.
 また、本発明のパネルの駆動方法においては、第1種サブフィールドの下り傾斜波形電圧を走査電極に印加する期間は維持電極に正の電圧を印加し、第1の下り傾斜波形電圧を走査電極に印加する期間は上記の正の電圧よりも高い電圧を維持電極に印加してもよい。 In the panel driving method of the present invention, a positive voltage is applied to the sustain electrode during the period in which the down-gradient waveform voltage of the first type subfield is applied to the scan electrode, and the first down-gradient waveform voltage is applied to the scan electrode. A voltage higher than the positive voltage may be applied to the sustain electrode during the period applied to the sustain electrode.
 また本発明は、走査電極および維持電極からなる表示電極対とデータ電極とを有する放電セルを複数備えたパネルと、走査電極を第1の走査電極群と第2の走査電極群とを含む複数の走査電極群に分けてパネルを駆動する駆動回路とを備えたプラズマディスプレイ装置である。このプラズマディスプレイ装置において、駆動回路は、表示電極対およびデータ電極をベース電位に維持する調整期間の後、第1の走査電極群へ第1の下り傾斜波形電圧を印加するとともに第2の走査電極群へ第2の下り傾斜波形電圧を印加する初期化期間と、第1の走査電極群において発光するべき放電セルに書込みパルスを印加する書込み動作と第2の走査電極群において発光するべき放電セルに書込みパルスを印加する書込み動作との間に第3の下り傾斜波形電圧を走査電極に印加する書込み期間と、輝度重みに応じた数の維持パルスを表示電極対に印加する維持期間とを有するサブフィールドを1フィールドに含んでパネルを駆動する。そして、駆動回路は、調整期間の長さを、直前のサブフィールドの維持期間に発生する維持パルスの数に応じて変更する。 The present invention also provides a panel including a plurality of discharge cells each having a display electrode pair composed of a scan electrode and a sustain electrode and a data electrode, and a plurality of scan electrodes including a first scan electrode group and a second scan electrode group. And a driving circuit for driving the panel divided into the scanning electrode groups. In this plasma display device, the drive circuit applies the first downward ramp waveform voltage to the first scan electrode group and the second scan electrode after the adjustment period for maintaining the display electrode pair and the data electrode at the base potential. An initializing period in which a second downward ramp waveform voltage is applied to the group, an address operation in which an address pulse is applied to the discharge cells to emit light in the first scan electrode group, and a discharge cell to emit light in the second scan electrode group A write period in which a third downward ramp waveform voltage is applied to the scan electrodes between the write operation for applying the write pulses to the scan electrodes, and a sustain period in which the number of sustain pulses corresponding to the luminance weight is applied to the display electrode pairs The panel is driven by including subfields in one field. Then, the driving circuit changes the length of the adjustment period according to the number of sustain pulses generated in the sustain period of the immediately preceding subfield.
 これにより、高精細度化された大画面のパネルを駆動する際にも安定した書込み動作を行い、品質の高い画像をパネルに表示することが可能となる。 This makes it possible to perform a stable writing operation even when driving a high-definition large-screen panel and display a high-quality image on the panel.
 また、本発明のプラズマディスプレイ装置において、駆動回路は、第1の下り傾斜波形電圧の最低電圧と第3の下り傾斜波形電圧の最低電圧との差を、調整期間の長さが長いサブフィールドと調整期間の長さが短いサブフィールドとで変更することが望ましい。 In the plasma display device of the present invention, the driving circuit may calculate the difference between the lowest voltage of the first falling ramp waveform voltage and the lowest voltage of the third falling ramp waveform voltage as a subfield having a long adjustment period. It is desirable to change the subfield with a short adjustment period.
 また、本発明のプラズマディスプレイ装置において、駆動回路は、調整期間の長さが短いサブフィールドでは、調整期間の長さが長いサブフィールドよりも、第3の下り傾斜波形電圧の最低電圧を低くしてもよい。 In the plasma display device of the present invention, the drive circuit lowers the minimum voltage of the third downward ramp waveform voltage in the subfield having a short adjustment period compared to the subfield having a long adjustment period. May be.
 また、本発明は、走査電極および維持電極からなる表示電極対とデータ電極とを有する放電セルを複数備えたパネルと、書込み期間と、輝度重みに応じた数の維持パルスを表示電極対に印加する維持期間とを有する複数のサブフィールドで1フィールドを構成し、走査電極を第1の走査電極群と第2の走査電極群とを含む複数の走査電極群に分けてパネルを駆動する駆動回路とを備えたプラズマディスプレイ装置である。このプラズマディスプレイ装置において、駆動回路は、第1種サブフィールドと第2種サブフィールドとを1フィールド内に設けてパネルを駆動する。第1種サブフィールドは、放電セルに放電が発生する電圧まで上昇する上り傾斜波形電圧と、負の電圧に向かって下降する下り傾斜波形電圧とを印加する走査電極と、放電セルに放電が発生しない電圧と下り傾斜波形電圧とを印加する走査電極とが存在する初期化期間を有する。第2種サブフィールドは、直前のサブフィールドで書込み放電を発生した放電セルだけに放電が発生する電圧まで下降する第1の下り傾斜波形電圧を走査電極に印加する初期化期間を有する。第1種サブフィールドの初期化期間において、走査電極に下り傾斜波形電圧を印加する期間はデータ電極に第1の電圧を印加する。第2種サブフィールドの初期化期間において、走査電極に第1の下り傾斜波形電圧を印加する期間はデータ電極に第1の電圧よりも高い第2の電圧を印加する。第2種サブフィールドにおいては、表示電極対およびデータ電極をベース電位に維持する調整期間を初期化期間の直前に設ける。そして、第2種サブフィールドの前記初期化期間では、第1の走査電極群へ第1の下り傾斜波形電圧を印加するとともに第2の走査電極群へ第2の下り傾斜波形電圧を印加する。第2種サブフィールドの書込み期間では、初期化期間と、第1の走査電極群において発光するべき放電セルに書込みパルスを印加する書込み動作と第2の走査電極群において発光するべき放電セルに書込みパルスを印加する書込み動作との間に第3の下り傾斜波形電圧を走査電極に印加する。 In addition, the present invention applies a panel having a plurality of discharge cells each having a display electrode pair consisting of a scan electrode and a sustain electrode and a data electrode, and a number of sustain pulses corresponding to the address period and luminance weight to the display electrode pair. Drive circuit for driving a panel by forming one field with a plurality of subfields having a sustain period and dividing the scan electrodes into a plurality of scan electrode groups including a first scan electrode group and a second scan electrode group Is a plasma display device. In this plasma display device, the drive circuit drives the panel by providing the first type subfield and the second type subfield in one field. The first type subfield includes a scan electrode that applies an upward ramp waveform voltage that rises to a voltage at which discharge occurs in the discharge cell, and a downward ramp waveform voltage that decreases toward a negative voltage, and discharge occurs in the discharge cell. And an initializing period in which there are scan electrodes to which the voltage to be applied and the downward ramp waveform voltage are applied. The second type subfield has an initializing period in which a first falling ramp waveform voltage that drops to a voltage at which only the discharge cells that have generated address discharge in the immediately preceding subfield are discharged is applied to the scan electrodes. In the initialization period of the first type subfield, the first voltage is applied to the data electrode during the period in which the downward ramp waveform voltage is applied to the scan electrode. In the initialization period of the second type subfield, a second voltage higher than the first voltage is applied to the data electrode during a period in which the first downward ramp waveform voltage is applied to the scan electrode. In the second type subfield, an adjustment period for maintaining the display electrode pair and the data electrode at the base potential is provided immediately before the initialization period. In the initialization period of the second type subfield, the first downward ramp waveform voltage is applied to the first scan electrode group and the second downward ramp waveform voltage is applied to the second scan electrode group. In the address period of the second type subfield, an initialization period, an address operation in which an address pulse is applied to the discharge cells to emit light in the first scan electrode group, and an address to the discharge cells to emit light in the second scan electrode group A third downward ramp waveform voltage is applied to the scan electrode during the write operation in which a pulse is applied.
 そして、駆動回路は、調整期間の長さを、直前のサブフィールドの維持期間に発生する維持パルスの数に応じて変更する。 Then, the drive circuit changes the length of the adjustment period according to the number of sustain pulses generated in the last subfield sustain period.
 これにより、高精細度化された大画面のパネルを駆動する際にも安定した書込み動作を行い、品質の高い画像をパネルに表示することが可能となる。また、黒の輝度を低減し、コントラストの高い画像をパネルに表示することが可能となる。 This makes it possible to perform a stable writing operation even when driving a high-definition large-screen panel and display a high-quality image on the panel. In addition, it is possible to reduce the luminance of black and display an image with high contrast on the panel.
図1は、本発明の実施の形態1におけるプラズマディスプレイ装置に用いるパネルの構造を示す分解斜視図である。FIG. 1 is an exploded perspective view showing a structure of a panel used in the plasma display device in accordance with the first exemplary embodiment of the present invention. 図2は、本発明の実施の形態1におけるプラズマディスプレイ装置に用いるパネルの電極配列図である。FIG. 2 is an electrode array diagram of the panel used in the plasma display device in accordance with the first exemplary embodiment of the present invention. 図3は、本発明の実施の形態1におけるプラズマディスプレイ装置に用いるパネルの走査電極群の区分けの一例を示す概略図である。FIG. 3 is a schematic diagram showing an example of the division of the scan electrode group of the panel used in the plasma display device in accordance with the first exemplary embodiment of the present invention. 図4は、本発明の実施の形態1におけるプラズマディスプレイ装置に用いるパネルの各電極に印加する1相駆動動作時の駆動電圧波形を示す図である。FIG. 4 is a diagram showing a driving voltage waveform in a one-phase driving operation applied to each electrode of the panel used in the plasma display device in the first exemplary embodiment of the present invention. 図5は、本発明の実施の形態1におけるプラズマディスプレイ装置に用いるパネルの各電極に印加する2相駆動動作時の駆動電圧波形を示す図である。FIG. 5 is a diagram showing a driving voltage waveform in a two-phase driving operation applied to each electrode of the panel used in the plasma display device in the first exemplary embodiment of the present invention. 図6は、本発明の実施の形態1におけるプラズマディスプレイ装置に用いるパネルの各電極に印加する2相駆動動作時の駆動電圧波形を示す図である。FIG. 6 is a diagram showing a driving voltage waveform in a two-phase driving operation applied to each electrode of the panel used in the plasma display device in the first exemplary embodiment of the present invention. 図7は、本発明の実施の形態1における駆動電圧波形のパラメータの一例を示す図である。FIG. 7 is a diagram illustrating an example of parameters of the drive voltage waveform in the first embodiment of the present invention. 図8は、本発明の実施の形態1における調整期間TSFと電圧Vsetとの関係を示す図である。FIG. 8 is a diagram showing a relationship between the adjustment period TSF and the voltage Vset in the first embodiment of the present invention. 図9は、本発明の実施の形態1における調整期間TSFと電圧Vsetとの関係の一例を示す図である。FIG. 9 is a diagram showing an example of the relationship between the adjustment period TSF and the voltage Vset in the first embodiment of the present invention. 図10は、本発明の実施の形態1における調整期間TSFと電圧Vsetとの関係の他の例を示す図である。FIG. 10 is a diagram showing another example of the relationship between the adjustment period TSF and the voltage Vset in the first embodiment of the present invention. 図11は、本発明の実施の形態1における電圧Vrと電圧Vsとの電圧差と電圧Vset2との関係を示す図である。FIG. 11 is a diagram showing the relationship between the voltage difference between the voltage Vr and the voltage Vs and the voltage Vset2 in the first embodiment of the present invention. 図12は、本発明の実施の形態1におけるプラズマディスプレイ装置の回路ブロック図である。FIG. 12 is a circuit block diagram of the plasma display device in accordance with the first exemplary embodiment of the present invention. 図13は、本発明の実施の形態1におけるプラズマディスプレイ装置の走査電極駆動回路の構成を概略的に示す回路図である。FIG. 13 is a circuit diagram schematically showing a configuration of a scan electrode driving circuit of the plasma display device in accordance with the first exemplary embodiment of the present invention. 図14は、本発明の実施の形態1におけるプラズマディスプレイ装置の維持電極駆動回路の構成を概略的に示す回路図である。FIG. 14 is a circuit diagram schematically showing a configuration of a sustain electrode driving circuit of the plasma display device in accordance with the first exemplary embodiment of the present invention. 図15は、本発明の実施の形態1におけるプラズマディスプレイ装置のデータ電極駆動回路の構成を概略的に示す回路図である。FIG. 15 is a circuit diagram schematically showing a configuration of a data electrode driving circuit of the plasma display device in accordance with the first exemplary embodiment of the present invention. 図16は、本発明の実施の形態1における走査パルス発生回路の回路図である。FIG. 16 is a circuit diagram of the scan pulse generating circuit according to the first embodiment of the present invention. 図17は、本発明の実施の形態1における走査電極駆動回路の走査ICと走査電極との接続の様子を示す概略図である。FIG. 17 is a schematic diagram illustrating a connection state between the scan IC and the scan electrode of the scan electrode driving circuit according to the first embodiment of the present invention. 図18は、本発明の実施の形態1における制御信号OC1、制御信号OC2と走査ICの動作状態との対応関係を説明するための図である。FIG. 18 is a diagram for explaining a correspondence relationship between the control signals OC1 and OC2 and the operation state of the scan IC in the first embodiment of the present invention. 図19は、本発明の一実施の形態における走査電極駆動回路の動作の一例を説明するためのタイミングチャートである。FIG. 19 is a timing chart for explaining an example of the operation of the scan electrode driving circuit in one embodiment of the present invention. 図20は、本発明の実施の形態1における2相駆動動作を行うときに安定した書込み放電を発生するために必要な走査パルス電圧(振幅)と書込み動作の順番との関係を概略的に示す図である。FIG. 20 schematically shows the relationship between the scan pulse voltage (amplitude) necessary to generate a stable address discharge and the order of address operations when performing the two-phase drive operation in the first embodiment of the present invention. FIG. 図21は、本発明の実施の形態2におけるプラズマディスプレイ装置に用いるパネルの各電極に印加する1相駆動動作時の駆動電圧波形を示す図である。FIG. 21 is a diagram showing a driving voltage waveform during a one-phase driving operation applied to each electrode of the panel used in the plasma display device in accordance with the second exemplary embodiment of the present invention. 図22は、本発明の実施の形態2におけるプラズマディスプレイ装置に用いるパネル10の各電極に印加する2相駆動動作時の駆動電圧波形を示す図である。FIG. 22 is a diagram showing a drive voltage waveform during a two-phase drive operation applied to each electrode of panel 10 used in the plasma display device in accordance with the second exemplary embodiment of the present invention. 図23は、本発明の実施の形態2において強制初期化波形を印加する走査電極とフィールドとの関係を概略的に示す図である。FIG. 23 is a diagram schematically showing a relationship between a scan electrode to which a forced initialization waveform is applied and a field in the second embodiment of the present invention. 図24は、本発明の実施の形態2におけるプラズマディスプレイ装置の駆動回路の動作を説明するためのタイミングチャートである。FIG. 24 is a timing chart for explaining the operation of the driving circuit of the plasma display device in accordance with the second exemplary embodiment of the present invention. 図25は、本発明の実施の形態における走査電極に印加する下り傾斜波形電圧の波形形状の他の例を示す波形図である。FIG. 25 is a waveform diagram showing another example of the waveform shape of the downward ramp waveform voltage applied to the scan electrode in the embodiment of the present invention.
 以下、本発明の実施の形態におけるプラズマディスプレイ装置について、図面を用いて説明する。 Hereinafter, a plasma display device according to an embodiment of the present invention will be described with reference to the drawings.
 (実施の形態1)
 図1は、本発明の実施の形態1におけるプラズマディスプレイ装置に用いるパネル10の構造を示す分解斜視図である。
(Embodiment 1)
FIG. 1 is an exploded perspective view showing the structure of panel 10 used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
 ガラス製の前面基板21上には、走査電極22と維持電極23とからなる表示電極対24が複数形成されている。そして、走査電極22と維持電極23とを覆うように誘電体層25が形成され、その誘電体層25上に保護層26が形成されている。 A plurality of display electrode pairs 24 each including a scanning electrode 22 and a sustaining electrode 23 are formed on a glass front substrate 21. A dielectric layer 25 is formed so as to cover the scan electrode 22 and the sustain electrode 23, and a protective layer 26 is formed on the dielectric layer 25.
 保護層26は、放電セルにおける放電を発生しやすくするために、電子放出性能の高い材料である酸化マグネシウム(MgO)を主成分とする材料で形成されている。 The protective layer 26 is formed of a material mainly composed of magnesium oxide (MgO), which is a material having high electron emission performance, in order to easily generate discharge in the discharge cell.
 保護層26は、一つの層で構成されていてもよく、あるいは複数の層で構成されていてもよい。また、層の上に粒子が存在する構成であってもよい。 The protective layer 26 may be composed of a single layer or may be composed of a plurality of layers. Moreover, the structure which particle | grains exist on a layer may be sufficient.
 背面基板31上にはデータ電極32が複数形成され、データ電極32を覆うように誘電体層33が形成され、さらにその上に井桁状の隔壁34が形成されている。そして、隔壁34の側面および誘電体層33上には赤色(R)、緑色(G)および青色(B)の各色に発光する蛍光体層35が設けられている。 A plurality of data electrodes 32 are formed on the rear substrate 31, a dielectric layer 33 is formed so as to cover the data electrodes 32, and a grid-like partition wall 34 is formed thereon. A phosphor layer 35 that emits light of each color of red (R), green (G), and blue (B) is provided on the side surface of the partition wall 34 and on the dielectric layer 33.
 これら前面基板21と背面基板31とを、微小な放電空間を挟んで表示電極対24とデータ電極32とが交差するように対向配置し、前面基板21と背面基板31との間隙に放電空間を設ける。そして、その外周部をガラスフリット等の封着材によって封着する。そして、その内部の放電空間には、例えばネオン(Ne)とキセノン(Xe)の混合ガスを放電ガスとして封入する。 The front substrate 21 and the rear substrate 31 are arranged to face each other so that the display electrode pair 24 and the data electrode 32 intersect each other with a minute discharge space interposed therebetween, and a discharge space is formed in the gap between the front substrate 21 and the rear substrate 31. Provide. And the outer peripheral part is sealed with sealing materials, such as glass frit. Then, for example, a mixed gas of neon (Ne) and xenon (Xe) is sealed in the discharge space inside as a discharge gas.
 放電空間は隔壁34によって複数の区画に仕切られており、表示電極対24とデータ電極32とが交差する部分に、画素を構成する放電セルが形成される。そして、これらの放電セルを放電、発光(点灯)することにより、パネル10にカラーの画像が表示される。 The discharge space is divided into a plurality of sections by partition walls 34, and discharge cells constituting pixels are formed at the intersections of the display electrode pairs 24 and the data electrodes 32. A color image is displayed on the panel 10 by discharging and emitting (lighting) these discharge cells.
 なお、パネル10においては、表示電極対24が延伸する方向に配列された連続する3つの放電セル、すなわち、赤色(R)に発光する放電セルと、緑色(G)に発光する放電セルと、青色(B)に発光する放電セルとの3つの放電セルで1つの画素が構成される。 In the panel 10, three continuous discharge cells arranged in the extending direction of the display electrode pair 24, that is, discharge cells that emit red (R), and discharge cells that emit green (G), One pixel is composed of three discharge cells, ie, discharge cells emitting blue (B).
 なお、パネル10の構造は上述したものに限られるわけではなく、例えばストライプ状の隔壁を備えたものであってもよい。また、放電ガスの混合比率は、例えばキセノン分圧を10%にしてもよいが、放電セルにおける発光効率を向上するためにキセノン分圧をさらに上げてもよく、その他の混合比率であってもよい。 Note that the structure of the panel 10 is not limited to the above-described structure, and may be, for example, provided with a stripe-shaped partition wall. The mixing ratio of the discharge gas may be, for example, a xenon partial pressure of 10%, but the xenon partial pressure may be further increased in order to improve the light emission efficiency in the discharge cell. Good.
 図2は、本発明の実施の形態1におけるプラズマディスプレイ装置に用いるパネル10の電極配列図である。 FIG. 2 is an electrode array diagram of panel 10 used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
 パネル10には、水平方向(行方向、ライン方向)に延長されたn本の走査電極SC1~走査電極SCn(図1の走査電極22)およびn本の維持電極SU1~維持電極SUn(図1の維持電極23)が配列され、垂直方向(列方向)に延長されたm本のデータ電極D1~データ電極Dm(図1のデータ電極32)が配列されている。 The panel 10 includes n scan electrodes SC1 to SCn (scan electrode 22 in FIG. 1) extended in the horizontal direction (row direction and line direction) and n sustain electrodes SU1 to SUn (FIG. 1). Are arranged, and m data electrodes D1 to Dm (data electrode 32 in FIG. 1) extending in the vertical direction (column direction) are arranged.
 そして、1対の走査電極SCi(i=1~n)および維持電極SUiと1つのデータ電極Dj(j=1~m)とが交差した領域に放電セルが1つ形成される。すなわち、1対の表示電極対24上には、m個の放電セルが形成され、m/3個の画素が形成される。そして、放電セルは放電空間内にm×n個形成され、m×n個の放電セルが形成された領域がパネル10の画像表示領域となる。例えば、画素数が1920×1080個のパネルでは、m=1920×3となり、n=1080となる。なお、本実施の形態においては、n=1080とするが、本発明は何らこの数値に限定されるものではない。 Then, one discharge cell is formed in a region where one pair of scan electrode SCi (i = 1 to n) and sustain electrode SUi intersects with one data electrode Dj (j = 1 to m). That is, m discharge cells are formed on one display electrode pair 24, and m / 3 pixels are formed. Then, m × n discharge cells are formed in the discharge space, and an area where m × n discharge cells are formed becomes an image display area of the panel 10. For example, in a panel having 1920 × 1080 pixels, m = 1920 × 3 and n = 1080. In the present embodiment, n = 1080, but the present invention is not limited to this value.
 次に、本実施の形態におけるプラズマディスプレイ装置のパネル10の駆動方法について説明する。なお、本実施の形態におけるプラズマディスプレイ装置は、サブフィールド法によって階調表示を行う。サブフィールド法では、1フィールドを時間軸上で複数のサブフィールドに分割し、各サブフィールドに輝度重みをそれぞれ設定する。それぞれのサブフィールドは初期化期間、書込み期間および維持期間を有する。そして、サブフィールド毎に各放電セルの発光・非発光を制御することによってパネル10に画像を表示する。 Next, a method for driving the panel 10 of the plasma display apparatus according to the present embodiment will be described. Note that the plasma display device in this embodiment performs gradation display by a subfield method. In the subfield method, one field is divided into a plurality of subfields on the time axis, and a luminance weight is set for each subfield. Each subfield has an initialization period, an address period, and a sustain period. An image is displayed on the panel 10 by controlling light emission / non-light emission of each discharge cell for each subfield.
 輝度重みとは、各サブフィールドで表示する輝度の大きさの比を表すものであり、各サブフィールドでは輝度重みに応じた数の維持パルスを維持期間に発生する。したがって、例えば、輝度重み「8」のサブフィールドは、輝度重み「1」のサブフィールドの約8倍の輝度で発光し、輝度重み「2」のサブフィールドの約4倍の輝度で発光する。したがって、画像信号に応じた組合せで各サブフィールドを選択的に発光させることによって様々な階調を表示し、画像を表示することができる。 The luminance weight represents a ratio of the luminance magnitudes displayed in each subfield, and the number of sustain pulses corresponding to the luminance weight is generated in the sustain period in each subfield. Therefore, for example, the subfield with the luminance weight “8” emits light with a luminance about eight times that of the subfield with the luminance weight “1”, and emits light with about four times the luminance of the subfield with the luminance weight “2”. Therefore, various gradations can be displayed and images can be displayed by selectively causing each subfield to emit light in a combination according to the image signal.
 本実施の形態では、1フィールドを8のサブフィールド(サブフィールドSF1、サブフィールドSF2、・・・、サブフィールドSF8)に分割し、時間的に後のサブフィールドほど輝度重みが大きくなるように、各サブフィールドはそれぞれ、(1、2、4、8、16、32、64、128)の輝度重みを有する例を説明する。 In the present embodiment, one field is divided into 8 subfields (subfield SF1, subfield SF2,..., Subfield SF8), and the luminance weight increases in the subfield later in time. An example will be described in which each subfield has a luminance weight of (1, 2, 4, 8, 16, 32, 64, 128).
 本実施の形態では、この構成により、赤の画像信号(R信号)、緑の画像信号(G信号)、青の画像信号(B信号)をそれぞれ0から255までの256階調で表示することができる。 In this embodiment, with this configuration, a red image signal (R signal), a green image signal (G signal), and a blue image signal (B signal) are displayed in 256 gradations from 0 to 255, respectively. Can do.
 初期化期間では初期化放電を発生し、続く書込み放電に必要な壁電荷を各電極上に形成する初期化動作を行う。このときの初期化動作には、全ての放電セルに初期化放電を発生する全セル初期化動作と、直前のサブフィールドの維持期間で維持放電を発生した放電セルに対して選択的に初期化放電を発生する選択初期化動作とがある。 In the initialization period, an initialization discharge is generated, and an initialization operation is performed to form wall charges necessary for the subsequent address discharge on each electrode. The initializing operation at this time includes all-cell initializing operation in which initializing discharge is generated in all discharge cells, and selective initializing with respect to the discharge cells that have generated sustain discharge in the sustain period of the immediately preceding subfield. There is a selective initialization operation that generates a discharge.
 書込み期間では、発光するべき放電セルで選択的に書込み放電を発生し、維持放電に必要な壁電荷を形成する書込み動作を行う。 In the address period, an address operation is performed in which an address discharge is selectively generated in the discharge cells to emit light to form wall charges necessary for the sustain discharge.
 そして、維持期間では、維持パルスを表示電極対24に交互に印加し、書込み放電を発生した放電セルで維持放電を発生してその放電セルを発光する維持動作を行う。 In the sustain period, a sustain pulse is alternately applied to the display electrode pair 24, and a sustain operation is performed in the discharge cell in which the address discharge is generated to emit light from the discharge cell.
 なお、本実施の形態では、複数のサブフィールドのうち、1つのサブフィールドの初期化期間においては全セル初期化動作を行い、他のサブフィールドの初期化期間においては選択初期化動作を行う。以下、全セル初期化動作を行うサブフィールドを「全セル初期化サブフィールド」と呼称し、選択初期化動作を行うサブフィールドを「選択初期化サブフィールド」と呼称する。 In the present embodiment, among the plurality of subfields, the all-cell initialization operation is performed in the initialization period of one subfield, and the selective initialization operation is performed in the initialization period of the other subfield. Hereinafter, the subfield that performs the all-cell initializing operation is referred to as “all-cell initializing subfield”, and the subfield that performs the selective initializing operation is referred to as “selective initializing subfield”.
 本実施の形態では、サブフィールドSF1の初期化期間では全セル初期化動作を行い、サブフィールドSF2からサブフィールドSF8の初期化期間では選択初期化動作を行う例を説明する。これにより、画像の表示に関係のない発光はサブフィールドSF1における全セル初期化動作の放電にともなう発光のみとなる。したがって、維持放電を発生しない黒表示領域の輝度である黒輝度は全セル初期化動作における微弱発光だけとなり、パネル10にコントラストの高い画像を表示することが可能となる。 In the present embodiment, an example will be described in which the all-cell initializing operation is performed in the initializing period of the subfield SF1, and the selective initializing operation is performed in the initializing periods of the subfield SF2 to the subfield SF8. Thereby, the light emission not related to the image display is only the light emission due to the discharge of the all-cell initializing operation in the subfield SF1. Therefore, the black luminance, which is the luminance of the black display region where no sustain discharge occurs, is only weak light emission in the all-cell initialization operation, and an image with high contrast can be displayed on the panel 10.
 また、各サブフィールドの維持期間においては、それぞれのサブフィールドの輝度重みに所定の比例定数を乗じた数の維持パルスを表示電極対24のそれぞれに印加する。この比例定数が輝度倍率である。 In the sustain period of each subfield, the number of sustain pulses obtained by multiplying the luminance weight of each subfield by a predetermined proportional constant is applied to each display electrode pair 24. This proportionality constant is the luminance magnification.
 したがって、例えば、輝度倍率が2倍のとき、輝度重み「2」のサブフィールドの維持期間では、走査電極22と維持電極23とにそれぞれ4回ずつ維持パルスを印加する。そのため、その維持期間で発生する維持パルスの数は8となる。 Therefore, for example, when the luminance magnification is double, the sustain pulse is applied to the scan electrode 22 and the sustain electrode 23 four times in the sustain period of the subfield having the luminance weight “2”. Therefore, the number of sustain pulses generated in the sustain period is 8.
 しかし、本実施の形態は、1フィールドを構成するサブフィールドの数や各サブフィールドの輝度重みが上記の値に限定されるものではない。また、画像信号等にもとづいてサブフィールド構成を切換える構成であってもよい。 However, in the present embodiment, the number of subfields constituting one field and the luminance weight of each subfield are not limited to the above values. Moreover, the structure which switches a subfield structure based on an image signal etc. may be sufficient.
 次に、本実施の形態における走査電極群について説明する。 Next, the scan electrode group in the present embodiment will be described.
 図3は、本発明の実施の形態1におけるプラズマディスプレイ装置に用いるパネル10の走査電極群の区分けの一例を示す概略図である。 FIG. 3 is a schematic diagram showing an example of the division of the scan electrode group of panel 10 used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
 本実施の形態におけるプラズマディスプレイ装置は、複数の走査電極駆動IC(以下、「走査IC95」と呼称する)を備え、複数の走査IC95用いて走査電極SC1~走査電極SCnを駆動する。なお、走査IC95の詳細については後述する。 The plasma display device in the present embodiment includes a plurality of scan electrode driving ICs (hereinafter referred to as “scan IC 95”), and drives the scan electrodes SC1 to SCn using the plurality of scan ICs 95. Details of the scan IC 95 will be described later.
 1つの走査IC95は複数の走査電極22に接続され、1つの走査IC95が複数の走査電極22を駆動する。以下、本実施の形態では、パネル10が1080本の走査電極22(走査電極SC1~走査電極SC1080)を備え、1つの走査IC95が90本の走査電極22を駆動する例を説明する。したがって、本実施の形態に示すプラズマディスプレイ装置は12個の走査IC95(走査IC95(1)~走査IC95(12))を有する。 One scan IC 95 is connected to the plurality of scan electrodes 22, and one scan IC 95 drives the plurality of scan electrodes 22. Hereinafter, in the present embodiment, an example will be described in which panel 10 includes 1080 scan electrodes 22 (scan electrode SC1 to scan electrode SC1080), and one scan IC 95 drives 90 scan electrodes 22. Therefore, the plasma display device described in this embodiment includes 12 scan ICs 95 (scan IC 95 (1) to scan IC 95 (12)).
 そして、本実施の形態では、走査IC95を2つの群に分けて駆動し、第1の走査IC群(本実施の形態では、走査IC95(1)から走査IC95(6)まで)と、第2の走査IC群(本実施の形態では、走査IC95(7)から走査IC95(12)まで)とで異なる制御信号を入力している。 In this embodiment, the scan IC 95 is driven in two groups, and the first scan IC group (in this embodiment, from the scan IC 95 (1) to the scan IC 95 (6)), the second IC Different control signals are input to the scan IC groups (in this embodiment, from scan IC 95 (7) to scan IC 95 (12)).
 なお、図3には、パネル10と走査IC95との接続の様子を簡略的に示している。図3において、表示電極対24は、図2と同様に、図面における左右方向(パネル10の長辺に平行な方向)に延長して配列されている。パネル10内において点線で区切られた領域は、1つの走査IC95により駆動される複数(本実施の形態では、90本)の走査電極22が配置された領域を表す。そして、走査IC95の出力端子は、一般に用いられているフレキシブル配線板77により走査電極SC1~走査電極SCnのそれぞれに接続されている。 Note that FIG. 3 simply shows the connection between the panel 10 and the scan IC 95. In FIG. 3, the display electrode pairs 24 are arranged extending in the left-right direction in the drawing (direction parallel to the long side of the panel 10), as in FIG. A region separated by a dotted line in the panel 10 represents a region where a plurality of (in this embodiment, 90) scanning electrodes 22 driven by one scanning IC 95 are arranged. The output terminal of the scan IC 95 is connected to each of the scan electrodes SC1 to SCn by a generally used flexible wiring board 77.
 本実施の形態におけるプラズマディスプレイ装置は、図3に破線で示すように、パネル10の表示領域を2つの領域に分ける。そして、1つの領域に含まれる複数の走査電極を1つの走査電極群とする。すなわち、走査電極SC1~走査電極SCnを、第1の走査電極群と第2の走査電極群との2つの走査電極群に分けて、パネル10の駆動を行う。以下、この駆動方法を「2相駆動」と呼称する。 The plasma display device according to the present embodiment divides the display area of panel 10 into two areas as indicated by broken lines in FIG. A plurality of scan electrodes included in one region is defined as one scan electrode group. That is, scan electrode SC1 to scan electrode SCn are divided into two scan electrode groups, a first scan electrode group and a second scan electrode group, and panel 10 is driven. Hereinafter, this driving method is referred to as “two-phase driving”.
 本実施の形態では、例えば、走査電極数n=1080であれば、走査電極SC1~走査電極SC540を第1の走査電極群とし、走査電極SC541~走査電極SC1080を第2の走査電極群として2相駆動を行う。 In the present embodiment, for example, when the number of scan electrodes n = 1080, scan electrode SC1 to scan electrode SC540 are set as the first scan electrode group, and scan electrode SC541 to scan electrode SC1080 are set as the second scan electrode group. Perform phase drive.
 なお、以下、第1の走査電極群により構成される放電セルを「第1の放電セル群」とする。また、第2の走査電極群により構成される放電セルを「第2の放電セル群」とする。図3においては、破線で囲まれた2つの領域が、第1の放電セル群と第2の放電セル群である。 Hereinafter, a discharge cell constituted by the first scan electrode group is referred to as a “first discharge cell group”. A discharge cell constituted by the second scan electrode group is referred to as a “second discharge cell group”. In FIG. 3, two regions surrounded by a broken line are a first discharge cell group and a second discharge cell group.
 例えば、1つの走査IC95に接続される走査電極数が90本であれば、まず、走査電極SC1から走査電極SC90までを第1の走査IC95(1)に接続する。次に、走査電極SC91から走査電極SC180までを第2の走査IC95(2)に接続する。このようにして、走査電極を90本ずつ走査IC95に接続する。 For example, if the number of scan electrodes connected to one scan IC 95 is 90, first, the scan electrode SC1 to the scan electrode SC90 are connected to the first scan IC 95 (1). Next, scan electrode SC91 to scan electrode SC180 are connected to second scan IC 95 (2). In this way, 90 scanning electrodes are connected to the scanning IC 95 at a time.
 そして、走査電極SC1~走査電極SC540に接続された走査IC95(1)~走査IC95(6)を第1の走査IC群とし、走査電極SC541~走査電極SC1080に接続された走査IC95(7)~走査IC95(12)を第2の走査IC群とする。 Scan ICs 95 (1) to 95 (6) connected to scan electrodes SC 1 to SC 540 are set as a first scan IC group, and scan ICs 95 (7) to 95 (7) to 7 are connected to scan electrode SC 541 to scan electrode SC 1080. The scan IC 95 (12) is a second scan IC group.
 なお、本実施の形態では、1フィールドを構成する複数のサブフィールドを、2相駆動を行うサブフィールドと2相駆動を行わないサブフィールドとに分けて、パネル10を駆動する。そして、2相駆動を行うサブフィールドでは、第1の走査IC群と第2の走査IC群とで異なる初期化波形を発生する。以下、2相駆動ではない駆動を「1相駆動」と呼称する。 In the present embodiment, panel 10 is driven by dividing a plurality of subfields constituting one field into subfields that perform two-phase driving and subfields that do not perform two-phase driving. In the sub-field that performs the two-phase driving, different initialization waveforms are generated in the first scan IC group and the second scan IC group. Hereinafter, driving that is not two-phase driving is referred to as “one-phase driving”.
 本実施の形態におけるプラズマディスプレイ装置は、サブフィールドSF1およびサブフィールドSF2では1相駆動を行い、他のサブフィールド(例えば、サブフィールドSF3からサブフィールドSF8)では2相駆動を行う。 The plasma display device in the present embodiment performs one-phase driving in subfield SF1 and subfield SF2, and performs two-phase driving in other subfields (for example, subfield SF3 to subfield SF8).
 以下、まず、1相駆動の駆動電圧波形を説明し、次に、2相駆動の駆動電圧波形を説明する。 Hereinafter, first, the driving voltage waveform of the one-phase driving will be described, and next, the driving voltage waveform of the two-phase driving will be described.
 図4は、本発明の実施の形態1におけるプラズマディスプレイ装置に用いるパネル10の各電極に印加する1相駆動動作時の駆動電圧波形を示す図である。 FIG. 4 is a diagram showing a driving voltage waveform during a one-phase driving operation applied to each electrode of panel 10 used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
 図4には、書込み期間において最初に書込み動作を行う走査電極SC1、書込み期間において最後に書込み動作を行う走査電極SCn、維持電極SU1~維持電極SUn、およびデータ電極D1~データ電極Dmのそれぞれに印加する駆動電圧波形を示す。 FIG. 4 shows scan electrode SC1 that performs the address operation first in the address period, scan electrode SCn that performs the address operation last in the address period, sustain electrode SU1 to sustain electrode SUn, and data electrode D1 to data electrode Dm. The drive voltage waveform to be applied is shown.
 また、図4には、初期化期間に走査電極SC1~走査電極SCnに印加する駆動電圧の波形形状が異なる2つのサブフィールドの駆動電圧波形を示す。この2つのサブフィールドとは、全セル初期化サブフィールドであるサブフィールドSF1と、選択初期化サブフィールドであるサブフィールドSF2である。 FIG. 4 shows driving voltage waveforms of two subfields having different driving voltage waveform shapes applied to scan electrode SC1 through scan electrode SCn during the initialization period. These two subfields are a subfield SF1 which is an all-cell initializing subfield and a subfield SF2 which is a selective initializing subfield.
 なお、他のサブフィールドにおける駆動電圧波形は、維持期間における維持パルスの発生数が異なる以外はサブフィールドSF2の駆動電圧波形とほぼ同様である。また、以下における走査電極SCi、維持電極SUi、データ電極Dkは、各電極の中から画像データ(サブフィールド毎の点灯・非点灯を示すデータ)にもとづき選択された電極を表す。 Note that the drive voltage waveforms in the other subfields are substantially the same as the drive voltage waveforms in the subfield SF2 except that the number of sustain pulses generated in the sustain period is different. Further, scan electrode SCi, sustain electrode SUi, and data electrode Dk in the following represent electrodes selected from the electrodes based on image data (data indicating lighting / non-lighting for each subfield).
 まず、全セル初期化サブフィールドであるサブフィールドSF1について説明する。 First, the subfield SF1, which is an all-cell initialization subfield, will be described.
 サブフィールドSF1の初期化期間前半部では、データ電極D1~データ電極Dm、維持電極SU1~維持電極SUnには、それぞれ電圧0(V)を印加する。走査電極SC1~走査電極SCnには、電圧Vi1を印加する。電圧Vi1は、維持電極SU1~維持電極SUnに対して放電開始電圧未満の電圧に設定する。 In the first half of the initialization period of subfield SF1, voltage 0 (V) is applied to data electrode D1 through data electrode Dm and sustain electrode SU1 through sustain electrode SUn. Voltage Vi1 is applied to scan electrode SC1 through scan electrode SCn. Voltage Vi1 is set to a voltage lower than the discharge start voltage with respect to sustain electrode SU1 through sustain electrode SUn.
 さらに、走査電極SC1~走査電極SCnに、電圧Vi1から電圧Vi2に向かって緩やかに上昇する傾斜波形電圧を印加する。以下、この傾斜波形電圧を、「上りランプ電圧L1」と呼称する。また、電圧Vi2は、維持電極SU1~維持電極SUnに対して放電開始電圧を超える電圧に設定する。なお、この上りランプ電圧L1の勾配の一例として、約1.3V/μsecという数値を挙げることができる。 Further, a ramp waveform voltage that gently rises from voltage Vi1 to voltage Vi2 is applied to scan electrode SC1 through scan electrode SCn. Hereinafter, this ramp waveform voltage is referred to as “up-ramp voltage L1”. Voltage Vi2 is set to a voltage exceeding the discharge start voltage with respect to sustain electrode SU1 through sustain electrode SUn. An example of the gradient of the up-ramp voltage L1 is a numerical value of about 1.3 V / μsec.
 この上りランプ電圧L1が上昇する間に、走査電極SC1~走査電極SCnと維持電極SU1~維持電極SUnとの間、および走査電極SC1~走査電極SCnとデータ電極D1~データ電極Dmとの間に、それぞれ微弱な初期化放電が持続して発生する。そして、走査電極SC1~走査電極SCn上に負の壁電圧が蓄積され、データ電極D1~データ電極Dm上および維持電極SU1~維持電極SUn上には正の壁電圧が蓄積される。さらに、それ以降の放電の発生を助けるプライミング粒子も発生する。 While the rising ramp voltage L1 rises, between scan electrode SC1 through scan electrode SCn and sustain electrode SU1 through sustain electrode SUn, and between scan electrode SC1 through scan electrode SCn and data electrode D1 through data electrode Dm. In each case, a weak initializing discharge is continuously generated. Negative wall voltage is accumulated on scan electrode SC1 through scan electrode SCn, and positive wall voltage is accumulated on data electrode D1 through data electrode Dm and sustain electrode SU1 through sustain electrode SUn. In addition, priming particles that help generate subsequent discharge are also generated.
 この電極上の壁電圧とは、電極を覆う誘電体層上、保護層上、蛍光体層上等に蓄積された壁電荷により生じる電圧を表す。 The wall voltage on the electrode represents a voltage generated by wall charges accumulated on the dielectric layer covering the electrode, the protective layer, the phosphor layer, and the like.
 初期化期間後半部では、維持電極SU1~維持電極SUnには正の電圧Veを印加し、データ電極D1~データ電極Dmには第1の電圧として電圧0(V)を印加する。走査電極SC1~走査電極SCnには、電圧Vi3から負の電圧Vi4に向かって緩やかに下降する第1の下り傾斜波形電圧を印加する。 In the latter half of the initialization period, positive voltage Ve is applied to sustain electrode SU1 through sustain electrode SUn, and voltage 0 (V) is applied as the first voltage to data electrode D1 through data electrode Dm. Scan electrode SC1 through scan electrode SCn are applied with a first downward ramp waveform voltage that gently decreases from voltage Vi3 toward negative voltage Vi4.
 以下、この第1の下り傾斜波形電圧を「下りランプ電圧L2」と呼称する。電圧Vi3は、維持電極SU1~維持電極SUnに対して放電開始電圧未満となる電圧に設定し、電圧Vi4は放電開始電圧を超える電圧に設定する。なお、この下りランプ電圧L2の勾配の一例として、例えば、約-2.5V/μsecという数値を挙げることができる。また、電圧Vi4は後述する走査パルスを発生するときの負の電圧Vaに電圧Vset2を重畳した電圧に等しい。 Hereinafter, this first downward ramp waveform voltage is referred to as “down-ramp voltage L2”. Voltage Vi3 is set to a voltage lower than the discharge start voltage with respect to sustain electrode SU1 through sustain electrode SUn, and voltage Vi4 is set to a voltage exceeding the discharge start voltage. An example of the gradient of the down-ramp voltage L2 is a numerical value of about −2.5 V / μsec. Further, the voltage Vi4 is equal to a voltage obtained by superimposing the voltage Vset2 on the negative voltage Va when a scanning pulse described later is generated.
 走査電極SC1~走査電極SCnに下りランプ電圧L2を印加する間に、走査電極SC1~走査電極SCnと維持電極SU1~維持電極SUnとの間、および走査電極SC1~走査電極SCnとデータ電極D1~データ電極Dmとの間に、それぞれ微弱な初期化放電が発生する。 While applying the down-ramp voltage L2 to scan electrode SC1 through scan electrode SCn, scan electrode SC1 through scan electrode SCn and sustain electrode SU1 through sustain electrode SUn, and scan electrode SC1 through scan electrode SCn and data electrode D1 through A weak initializing discharge is generated between each data electrode Dm.
 そして、走査電極SC1~走査電極SCn上の負の壁電圧および維持電極SU1~維持電極SUn上の正の壁電圧が弱められ、データ電極D1~データ電極Dm上の正の壁電圧は書込み動作に適した値に調整される。さらに、それ以降の放電の発生を助けるプライミング粒子も発生する。このプライミング粒子は、続く書込み期間において書込み放電の放電遅れ時間を短くする働きを有する。放電遅れ時間とは、放電セルに印加する電圧が放電開始電圧を超えてから、実際に放電が発生するまでの時間のことである。 Then, the negative wall voltage on scan electrode SC1 through scan electrode SCn and the positive wall voltage on sustain electrode SU1 through sustain electrode SUn are weakened, and the positive wall voltage on data electrode D1 through data electrode Dm is used for the write operation. It is adjusted to a suitable value. In addition, priming particles that help generate subsequent discharge are also generated. The priming particles have a function of shortening the discharge delay time of the address discharge in the subsequent address period. The discharge delay time is the time from when the voltage applied to the discharge cell exceeds the discharge start voltage until the actual discharge occurs.
 以上により、全ての放電セルで初期化放電を発生する全セル初期化動作が終了する。 Thus, the all-cell initializing operation for generating the initializing discharge in all the discharge cells is completed.
 以下、全セル初期化動作を行う期間を「全セル初期化期間」と記す。また、全セル初期化動作を行うために発生する駆動電圧波形を「全セル初期化波形」と記す。 Hereinafter, the period for performing the all-cell initialization operation is referred to as “all-cell initialization period”. The drive voltage waveform generated for performing the all-cell initialization operation is referred to as “all-cell initialization waveform”.
 続く書込み期間では、走査電極SC1~走査電極SCnには、電圧Vaの走査パルスを順次印加する。データ電極D1~データ電極Dmには、発光するべき放電セルに対応するデータ電極Dkに正の電圧Vdの書込みパルスを印加する。こうして、各放電セルに選択的に書込み放電を発生する。 In the subsequent address period, a scan pulse of voltage Va is sequentially applied to scan electrode SC1 through scan electrode SCn. An address pulse of a positive voltage Vd is applied to data electrode D1 to data electrode Dm to data electrode Dk corresponding to the discharge cell to emit light. Thus, an address discharge is selectively generated in each discharge cell.
 具体的には、初期化期間後半部に引き続き、データ電極D1~データ電極Dmには電圧0(V)を、維持電極SU1~維持電極SUnには電圧Veを印加し、走査電極SC1~走査電極SCnに電圧Vcを印加する。 Specifically, following the latter half of the initialization period, voltage 0 (V) is applied to data electrode D1 to data electrode Dm, voltage Ve is applied to sustain electrode SU1 to sustain electrode SUn, and scan electrode SC1 to scan electrode are applied. A voltage Vc is applied to SCn.
 次に、最初に書込み動作を行う1行目の走査電極SC1に負の電圧Vaの走査パルスを印加する。それとともに、データ電極D1~データ電極Dmのうちの1行目において発光するべき放電セルのデータ電極Dkに正の電圧Vdの書込みパルスを印加する。このときデータ電極Dkと走査電極SC1との交差部の電圧差は、外部印加電圧の差(電圧Vd-電圧Va)にデータ電極Dk上の壁電圧と走査電極SC1上の壁電圧との差が加算されたものとなる。これによりデータ電極Dkと走査電極SC1との電圧差が放電開始電圧を超え、データ電極Dkと走査電極SC1との間に放電が発生する。 Next, a scan pulse of the negative voltage Va is applied to the scan electrode SC1 in the first row where the address operation is performed first. At the same time, an address pulse of a positive voltage Vd is applied to the data electrode Dk of the discharge cell that should emit light in the first row of the data electrodes D1 to Dm. At this time, the voltage difference at the intersection between the data electrode Dk and the scan electrode SC1 is the difference between the wall voltage on the data electrode Dk and the wall voltage on the scan electrode SC1 due to the difference between the externally applied voltages (voltage Vd−voltage Va). It will be added. As a result, the voltage difference between data electrode Dk and scan electrode SC1 exceeds the discharge start voltage, and a discharge is generated between data electrode Dk and scan electrode SC1.
 また、維持電極SU1~維持電極SUnに電圧Veを印加しているため、維持電極SU1と走査電極SC1との電圧差は、外部印加電圧の差である(電圧Ve-電圧Va)に維持電極SU1上の壁電圧と走査電極SC1上の壁電圧との差が加算されたものとなる。このとき、電圧Veを、放電開始電圧をやや下回る程度の電圧値に設定することで、維持電極SU1と走査電極SC1との間を、放電には至らないが放電が発生しやすい状態とすることができる。 Since voltage Ve is applied to sustain electrode SU1 through sustain electrode SUn, the voltage difference between sustain electrode SU1 and scan electrode SC1 is the difference between the externally applied voltages (voltage Ve−voltage Va), and sustain electrode SU1. The difference between the upper wall voltage and the wall voltage on the scan electrode SC1 is added. At this time, by setting the voltage Ve to a voltage value that is slightly lower than the discharge start voltage, the sustain electrode SU1 and the scan electrode SC1 are not easily discharged but are likely to be discharged. Can do.
 これにより、データ電極Dkと走査電極SC1との間に発生する放電に誘発されて、データ電極Dkと交差する領域にある維持電極SU1と走査電極SC1との間に放電が発生する。こうして、発光するべき放電セルに書込み放電が発生し、走査電極SC1上に正の壁電圧が蓄積され、維持電極SU1上に負の壁電圧が蓄積され、データ電極Dk上にも負の壁電圧が蓄積される。 Thus, a discharge is generated between the sustain electrode SU1 and the scan electrode SC1 in a region intersecting the data electrode Dk, induced by a discharge generated between the data electrode Dk and the scan electrode SC1. Thus, an address discharge is generated in the discharge cell to emit light, a positive wall voltage is accumulated on scan electrode SC1, a negative wall voltage is accumulated on sustain electrode SU1, and a negative wall voltage is also accumulated on data electrode Dk. Is accumulated.
 このようにして、1行目において、発光するべき放電セルで書込み放電を発生して各電極上に壁電圧を蓄積する書込み動作を行う。一方、書込みパルスを印加しなかったデータ電極32と走査電極SC1との交差部の電圧は放電開始電圧を超えないので、書込み放電は発生しない。 In this way, in the first row, an address operation is performed in which an address discharge is generated in the discharge cells to emit light and wall voltage is accumulated on each electrode. On the other hand, the voltage at the intersection between the data electrode 32 and the scan electrode SC1 to which the address pulse is not applied does not exceed the discharge start voltage, so the address discharge does not occur.
 次に、2番目に書込み動作を行う走査電極SC2に走査パルスを印加するとともに、2番目に書込み動作を行う行の発光するべき放電セルに対応するデータ電極Dkに書込みパルスを印加する。走査パルスと書込みパルスとが同時に印加された放電セルでは書込み放電が発生し、書込み動作が行われる。 Next, a scan pulse is applied to the scan electrode SC2 that performs the second address operation, and an address pulse is applied to the data electrode Dk that corresponds to the discharge cell that should emit light in the second row that performs the address operation. In the discharge cells to which the scan pulse and the address pulse are simultaneously applied, an address discharge is generated and an address operation is performed.
 以上の書込み動作をn行目の放電セルに至るまで順次行い、書込み期間が終了する。このようにして、書込み期間では、発光するべき放電セルに選択的に書込み放電を発生し、その放電セルに、続く維持期間において維持放電を発生するために必要な壁電荷を形成する。 The above address operation is sequentially performed until the discharge cell in the n-th row, and the address period ends. In this manner, in the address period, address discharge is selectively generated in the discharge cells to emit light, and wall charges necessary for generating sustain discharge in the subsequent sustain period are formed in the discharge cells.
 続く維持期間では、データ電極D1~データ電極Dmに電圧0(V)を印加する。そして、維持電極SU1~維持電極SUnに電圧0(V)を印加するとともに走査電極SC1~走査電極SCnに正の電圧Vsの維持パルスを印加する。書込み放電を発生した放電セルでは、走査電極SCiと維持電極SUiとの電圧差が、維持パルスの電圧Vsに走査電極SCi上の壁電圧と維持電極SUi上の壁電圧との差が加算されたものとなる。 In the subsequent sustain period, voltage 0 (V) is applied to data electrode D1 to data electrode Dm. Then, voltage 0 (V) is applied to sustain electrode SU1 through sustain electrode SUn, and a sustain pulse of positive voltage Vs is applied to scan electrode SC1 through scan electrode SCn. In the discharge cell in which the address discharge has occurred, the voltage difference between scan electrode SCi and sustain electrode SUi is the difference between the wall voltage on scan electrode SCi and the wall voltage on sustain electrode SUi added to sustain pulse voltage Vs. It will be a thing.
 これにより、走査電極SCiと維持電極SUiとの電圧差が放電開始電圧を超え、走査電極SCiと維持電極SUiとの間に維持放電が発生する。そして、この放電により発生した紫外線により蛍光体層35が発光する。また、この放電により、走査電極SCi上に負の壁電圧が蓄積され、維持電極SUi上に正の壁電圧が蓄積される。さらに、データ電極Dk上にも正の壁電圧が蓄積される。書込み期間において書込み放電が発生しなかった放電セルでは維持放電は発生せず、初期化期間の終了時における壁電圧が保たれる。 Thereby, the voltage difference between scan electrode SCi and sustain electrode SUi exceeds the discharge start voltage, and a sustain discharge occurs between scan electrode SCi and sustain electrode SUi. And the fluorescent substance layer 35 light-emits with the ultraviolet-ray which generate | occur | produced by this discharge. Further, due to this discharge, a negative wall voltage is accumulated on scan electrode SCi, and a positive wall voltage is accumulated on sustain electrode SUi. Furthermore, a positive wall voltage is also accumulated on the data electrode Dk. In the discharge cells in which no address discharge has occurred in the address period, no sustain discharge occurs, and the wall voltage at the end of the initialization period is maintained.
 続いて、走査電極SC1~走査電極SCnには電圧0(V)を印加し、維持電極SU1~維持電極SUnには電圧Vsの維持パルスを印加する。直前に維持放電を発生した放電セルでは、維持電極SUiと走査電極SCiとの電圧差が放電開始電圧を超える。これにより、再び維持電極SUiと走査電極SCiとの間に維持放電が発生し、維持電極SUi上に負の壁電圧が蓄積され、走査電極SCi上に正の壁電圧が蓄積される。 Subsequently, voltage 0 (V) is applied to scan electrode SC1 through scan electrode SCn, and a sustain pulse of voltage Vs is applied to sustain electrode SU1 through sustain electrode SUn. In a discharge cell that has generated a sustain discharge immediately before, the voltage difference between sustain electrode SUi and scan electrode SCi exceeds the discharge start voltage. As a result, a sustain discharge is generated again between sustain electrode SUi and scan electrode SCi, a negative wall voltage is accumulated on sustain electrode SUi, and a positive wall voltage is accumulated on scan electrode SCi.
 以降同様に、走査電極SC1~走査電極SCnと維持電極SU1~維持電極SUnとに、輝度重みに所定の輝度倍率を乗じた数の維持パルスを交互に印加する。こうすることで、書込み期間において書込み放電を発生した放電セルで維持放電が継続して発生する。 Thereafter, similarly, sustain pulses of the number obtained by multiplying the luminance weight by a predetermined luminance magnification are alternately applied to scan electrode SC1 through scan electrode SCn and sustain electrode SU1 through sustain electrode SUn. By doing so, sustain discharge is continuously generated in the discharge cells that have generated address discharge in the address period.
 そして、維持期間において全ての維持パルスを発生した後に、すなわち、維持期間における最後の維持パルスの発生後に、維持電極SU1~維持電極SUnおよびデータ電極D1~データ電極Dmには電圧0(V)を印加したまま、走査電極SC1~走査電極SCnには、ベース電位であり放電開始電圧未満となる電圧0(V)から、所定電圧である電圧Vrまで緩やかに上昇する上り傾斜波形電圧を印加する。以下、この上り傾斜波形電圧を「上り消去ランプ電圧L3」と呼称する。 After all sustain pulses are generated in the sustain period, that is, after the last sustain pulse is generated in the sustain period, voltage 0 (V) is applied to sustain electrode SU1 through sustain electrode SUn and data electrode D1 through data electrode Dm. While being applied, an upward ramp waveform voltage that gradually rises from voltage 0 (V), which is the base potential and less than the discharge start voltage, to voltage Vr, which is a predetermined voltage, is applied to scan electrode SC1 through scan electrode SCn. Hereinafter, this upward ramp waveform voltage is referred to as “upward erasing ramp voltage L3”.
 これにより、維持放電を発生した放電セルにおいて、微弱な放電を持続して発生し、データ電極Dk上の正の壁電圧を残したまま、走査電極SCiおよび維持電極SUi上の壁電圧の一部または全部を消去する。 As a result, a weak discharge is continuously generated in the discharge cell in which the sustain discharge is generated, and a part of the wall voltage on the scan electrode SCi and the sustain electrode SUi is left while the positive wall voltage on the data electrode Dk remains. Or erase everything.
 具体的には、維持電極SU1~維持電極SUnおよびデータ電極D1~データ電極Dmには電圧0(V)を印加したまま、電圧0(V)から電圧Vrに向かって上昇する上り消去ランプ電圧L3を、上りランプ電圧L1よりも急峻な勾配で発生し、走査電極SC1~走査電極SCnに印加する。この勾配は、例えば、約5V/μsecである。電圧Vrを放電開始電圧を超える電圧に設定することで、維持放電を発生した放電セルの維持電極SUiと走査電極SCiとの間で、微弱な放電が発生する。 Specifically, ascending erase ramp voltage L3 rising from voltage 0 (V) toward voltage Vr while voltage 0 (V) is applied to sustain electrode SU1 through sustain electrode SUn and data electrode D1 through data electrode Dm. Is generated with a steeper slope than the up-ramp voltage L1, and is applied to scan electrode SC1 through scan electrode SCn. This gradient is, for example, about 5 V / μsec. By setting the voltage Vr to a voltage exceeding the discharge start voltage, a weak discharge is generated between the sustain electrode SUi and the scan electrode SCi of the discharge cell that has generated the sustain discharge.
 そして、この微弱な放電は、走査電極SC1~走査電極SCnへの印加電圧が放電開始電圧を超えて上昇する期間、持続して発生する。そして、上昇する電圧があらかじめ定めた電圧Vrに到達したら、走査電極SC1~走査電極SCnへの印加電圧を電圧0(V)まで下降する。 The weak discharge is continuously generated during a period in which the voltage applied to scan electrode SC1 through scan electrode SCn rises above the discharge start voltage. When the increasing voltage reaches predetermined voltage Vr, the voltage applied to scan electrode SC1 through scan electrode SCn is decreased to voltage 0 (V).
 なお、本実施の形態では、電圧Vrを維持パルスの電圧Vsよりも低い電圧に設定している。その理由については後述する。 In this embodiment, the voltage Vr is set to a voltage lower than the sustain pulse voltage Vs. The reason will be described later.
 この微弱な放電で発生した荷電粒子は、維持電極SUiと走査電極SCiとの間の電圧差を緩和するように、維持電極SUi上および走査電極SCi上に壁電荷となって蓄積される。これにより、走査電極SC1~走査電極SCnと維持電極SU1~維持電極SUnとの間の壁電圧は、走査電極SCiに印加した電圧と放電開始電圧の差、例えば(電圧Vr-放電開始電圧)の程度まで弱められる。すなわち、上り消去ランプ電圧L3により発生する放電は、消去放電として働く。 The charged particles generated by this weak discharge are accumulated as wall charges on the sustain electrode SUi and the scan electrode SCi so as to reduce the voltage difference between the sustain electrode SUi and the scan electrode SCi. Thereby, the wall voltage between scan electrode SC1 through scan electrode SCn and sustain electrode SU1 through sustain electrode SUn is the difference between the voltage applied to scan electrode SCi and the discharge start voltage, for example, (voltage Vr−discharge start voltage). It is weakened to the extent. That is, the discharge generated by the ascending erasing ramp voltage L3 works as an erasing discharge.
 その後、走査電極SC1~走査電極SCnを電圧0(V)に戻し、維持期間における維持動作が終了する。 Thereafter, scan electrode SC1 to scan electrode SCn are returned to voltage 0 (V), and the sustain operation in the sustain period ends.
 サブフィールドSF2の初期化期間では、データ電極D1~データ電極Dmには、第1の電圧である電圧0(V)を印加する。また、維持電極SU1~維持電極SUnには、電圧Veを印加する。そして、走査電極SC1~走査電極SCnには、放電開始電圧未満となる電圧Vi3’(例えば、ベース電位である電圧0(V))から放電開始電圧を超える負の電圧Vi4に向かって緩やかに下降する第1の下り傾斜波形電圧を印加する。 In the initializing period of the subfield SF2, the voltage 0 (V) that is the first voltage is applied to the data electrodes D1 to Dm. In addition, voltage Ve is applied to sustain electrode SU1 through sustain electrode SUn. Scan electrode SC1 through scan electrode SCn gradually decrease from voltage Vi3 ′ (eg, voltage 0 (V), which is the base potential), which is less than the discharge start voltage, to negative voltage Vi4 that exceeds the discharge start voltage. A first downward ramp waveform voltage is applied.
 以下、第1の下り傾斜波形電圧を「下りランプ電圧L4」と呼称する。この下りランプ電圧L4の勾配は下りランプ電圧L2の勾配と同じであってもよく、その一例として、例えば、約-2.5V/μsecという数値を挙げることができる。 Hereinafter, the first downward ramp waveform voltage is referred to as “down-ramp voltage L4”. The slope of the down-ramp voltage L4 may be the same as the slope of the down-ramp voltage L2, and an example thereof is a numerical value of about −2.5 V / μsec.
 これにより、直前のサブフィールド(図4では、サブフィールドSF1)の維持期間で維持放電を発生した放電セルでは、微弱な初期化放電が発生する。そして、走査電極SCi上および維持電極SUi上の壁電圧が弱められ、データ電極Dk上の壁電圧も書込み動作に適した値に調整される。 As a result, a weak initializing discharge is generated in the discharge cell that has generated the sustain discharge in the sustain period of the immediately preceding subfield (subfield SF1 in FIG. 4). Then, the wall voltage on scan electrode SCi and sustain electrode SUi is weakened, and the wall voltage on data electrode Dk is also adjusted to a value suitable for the write operation.
 一方、直前のサブフィールドの維持期間で維持放電を発生しなかった放電セルでは、初期化放電は発生せず、直前のサブフィールドの初期化期間終了時における壁電荷が保たれる。このようにしてサブフィールドSF2における初期化動作が完了する。 On the other hand, in the discharge cells that did not generate the sustain discharge in the sustain period of the immediately preceding subfield, the initialization discharge does not occur, and the wall charge at the end of the immediately preceding subfield initialization period is maintained. In this way, the initialization operation in the subfield SF2 is completed.
 このように、サブフィールドSF2における初期化動作は、直前のサブフィールドの書込み期間で書込み放電を発生し維持期間で維持放電を発生した放電セルだけに初期化放電を発生する選択初期化動作となる。 As described above, the initializing operation in subfield SF2 is a selective initializing operation in which initializing discharge is generated only in the discharge cells in which the address discharge is generated in the address period of the immediately preceding subfield and the sustain discharge is generated in the sustain period. .
 以下、選択初期化動作を行う期間を選択初期化期間と記す。また、選択初期化動作を行うために発生する駆動電圧波形を「選択初期化波形」と記す。 Hereinafter, the period for performing the selective initialization operation is referred to as the selective initialization period. A drive voltage waveform generated for performing the selective initialization operation is referred to as a “selective initialization waveform”.
 サブフィールドSF2の書込み期間および維持期間では、維持パルスの発生数を除き、各電極に対してサブフィールドSF1の書込み期間および維持期間と同様の駆動電圧波形を印加する。 In the address period and sustain period of the subfield SF2, the same drive voltage waveform as that in the address period and sustain period of the subfield SF1 is applied to each electrode, except for the number of sustain pulses.
 以上が、本実施の形態において、画像を表示する際にパネル10の各電極に印加する1相駆動動作時の駆動電圧波形の概要である。 The above is the outline of the driving voltage waveform during the one-phase driving operation applied to each electrode of the panel 10 when displaying an image in the present embodiment.
 本実施の形態では、サブフィールドSF1とサブフィールドSF2では、1相駆動動作を行う。そして、サブフィールドSF3からサブフィールドSF8では、2相駆動動作を行う。 In the present embodiment, a one-phase driving operation is performed in the subfield SF1 and the subfield SF2. In subfield SF3 to subfield SF8, a two-phase driving operation is performed.
 次に、本実施の形態における2相駆動動作時の駆動電圧波形を説明する。 Next, driving voltage waveforms during the two-phase driving operation in the present embodiment will be described.
 図5は、本発明の実施の形態1におけるプラズマディスプレイ装置に用いるパネル10の各電極に印加する2相駆動動作時の駆動電圧波形を示す図である。 FIG. 5 is a diagram showing a driving voltage waveform during a two-phase driving operation applied to each electrode of panel 10 used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
 なお、図5には、書込み期間の最初に書込み動作を行う走査電極22であり第1の走査電極群に属する走査電極SC1、第1の走査電極群のうち最後に書込み動作を行う走査電極22である走査電極SCn/2(例えば、走査電極SC540)、第2の走査電極群のうち最初に書込み動作を行う走査電極22である走査電極SCn/2+1(例えば、走査電極SC541)、書込み期間の最後に書込み動作を行う走査電極22であり第2の走査電極群に属する走査電極SCn(例えば、走査電極SC1080)、維持電極SU1~維持電極SUn、およびデータ電極D1~データ電極Dmのそれぞれに印加する駆動電圧波形を示す。 In FIG. 5, the scan electrode 22 that performs the address operation at the beginning of the address period, the scan electrode SC1 that belongs to the first scan electrode group, and the scan electrode 22 that performs the address operation at the end of the first scan electrode group. Scan electrode SCn / 2 (for example, scan electrode SC540), scan electrode SCn / 2 + 1 (for example, scan electrode SC541) that is the scan electrode 22 that performs the address operation first in the second scan electrode group, and the address period Finally, scan electrode 22 that performs an address operation is applied to each of scan electrode SCn (for example, scan electrode SC1080) belonging to the second scan electrode group, sustain electrode SU1 through sustain electrode SUn, and data electrode D1 through data electrode Dm. The drive voltage waveform to be shown is shown.
 なお、本実施の形態において、サブフィールドSF3からサブフィールドSF8は選択初期化サブフィールドである。 In the present embodiment, subfield SF3 to subfield SF8 are selective initialization subfields.
 サブフィールドSF3の初期化期間では、まず、調整期間TSFを発生する。 In the initialization period of the subfield SF3, an adjustment period TSF is first generated.
 この調整期間TSFでは、放電セルに放電が発生しない電圧を各電極に印加する。すなわち、調整期間TSFの間は、表示電極対24およびデータ電極32をベース電位に維持する。したがって、調整期間TSFの間は、データ電極D1~データ電極Dm、維持電極SU1~維持電極SUn、走査電極SC1~走査電極SCnにそれぞれベース電位である電圧0(V)を印加する。 In this adjustment period TSF, a voltage at which no discharge occurs in the discharge cell is applied to each electrode. That is, during the adjustment period TSF, the display electrode pair 24 and the data electrode 32 are maintained at the base potential. Therefore, during the adjustment period TSF, voltage 0 (V), which is the base potential, is applied to data electrode D1 to data electrode Dm, sustain electrode SU1 to sustain electrode SUn, and scan electrode SC1 to scan electrode SCn.
 調整期間TSFの後、維持電極SU1~維持電極SUnには正の電圧Veを印加し、データ電極D1~データ電極Dmには電圧0(V)を印加する。 After adjustment period TSF, positive voltage Ve is applied to sustain electrode SU1 through sustain electrode SUn, and voltage 0 (V) is applied to data electrode D1 through data electrode Dm.
 ここで、本実施の形態では、第1の走査電極群に属する走査電極SC1~走査電極SCn/2と、第2の走査電極群に属する走査電極SCn/2+1~走査電極SCnとに、互いに異なる波形形状の初期化波形を印加する。具体的には、下り傾斜波形電圧の最低電圧である到達電位が第1の走査電極群と第2の走査電極群で互いに異なる下り傾斜波形電圧を発生し、それを各走査電極に印加する。 In this embodiment, scan electrode SC1 to scan electrode SCn / 2 belonging to the first scan electrode group and scan electrode SCn / 2 + 1 to scan electrode SCn belonging to the second scan electrode group are different from each other. Apply an initialization waveform of waveform shape. Specifically, the first and second scan electrode groups generate different down-slope waveform voltages having the lowest potential of the down-slope waveform voltage, and apply them to the scan electrodes.
 第1の走査電極群に属する走査電極SC1~走査電極SCn/2には、選択初期化波形として説明した下りランプ電圧L4と同じ波形形状の駆動電圧波形を印加する。したがって、以下、この駆動電圧波形も、「第1の下り傾斜波形電圧」と呼称する。すなわち、この第1の下り傾斜波形電圧(下りランプ電圧L4)は、維持電極SU1~維持電極SUn/2に対して放電開始電圧未満となる電圧Vi3’から放電開始電圧を超える負の電圧Vi4、すなわち、電圧Va+電圧Vset2まで下降する傾斜波形電圧である。 The drive voltage waveform having the same waveform as the down-ramp voltage L4 described as the selective initialization waveform is applied to scan electrode SC1 to scan electrode SCn / 2 belonging to the first scan electrode group. Therefore, hereinafter, this drive voltage waveform is also referred to as “first downward ramp waveform voltage”. That is, the first downward ramp waveform voltage (down-ramp voltage L4) is a negative voltage Vi4 that exceeds the discharge start voltage from voltage Vi3 ′ that is less than the discharge start voltage with respect to sustain electrode SU1 to sustain electrode SUn / 2. That is, it is a ramp waveform voltage that drops to voltage Va + voltage Vset2.
 これにより、第1の走査電極群上に形成される第1の放電セル群に関しては、サブフィールドSF2の初期化期間と同様に、直前のサブフィールド(図5では、サブフィールドSF2)の維持期間で維持放電を発生した放電セルだけに微弱な初期化放電が発生する。 As a result, for the first discharge cell group formed on the first scan electrode group, the sustain period of the immediately preceding subfield (subfield SF2 in FIG. 5) is similar to the initialization period of subfield SF2. A weak initializing discharge is generated only in the discharge cells that have generated the sustain discharge.
 第2の走査電極群に属する走査電極SCn/2+1~走査電極SCnには、電圧Vi3’から負の電圧(Va+Vset5)に向かって緩やかに下降する第2の下り傾斜波形電圧(以下、「下りランプ電圧L8」と呼称する)を印加する。このとき、電圧Vset5を電圧Vset2よりも高い電圧に設定する。本実施の形態では、例えば、電圧Vset2を25(V)とし、電圧Vset5を70(V)とする。 For scan electrode SCn / 2 + 1 to scan electrode SCn belonging to the second scan electrode group, a second down-slope waveform voltage (hereinafter referred to as “down-ramp”) that gently falls from voltage Vi3 ′ toward negative voltage (Va + Vset5). (Referred to as voltage L8 "). At this time, the voltage Vset5 is set to a voltage higher than the voltage Vset2. In the present embodiment, for example, the voltage Vset2 is set to 25 (V), and the voltage Vset5 is set to 70 (V).
 このように、本実施の形態では、第2の走査電極群に印加する下りランプ電圧L8の最低電圧を第1の走査電極群に印加する下りランプ電圧L4の最低低電圧Vi4よりも高い電圧とする。したがって、第1の走査電極群に印加する下りランプ電圧L4が電圧(Va+Vset2)まで下降するのに対して、第2の走査電極群に印加する下りランプ電圧L8は電圧(Va+Vset2)よりも高い電圧(Va+Vset5)までしか下降しない。 Thus, in this embodiment, the lowest voltage of the down-ramp voltage L8 applied to the second scan electrode group is higher than the lowest low voltage Vi4 of the down-ramp voltage L4 applied to the first scan electrode group. To do. Accordingly, the down-ramp voltage L4 applied to the first scan electrode group drops to the voltage (Va + Vset2), whereas the down-ramp voltage L8 applied to the second scan electrode group is higher than the voltage (Va + Vset2). It descends only to (Va + Vset5).
 これにより、第2の走査電極群上に形成される第2の放電セル群においては、ほとんど放電が発生しない。そのため、下りランプ電圧L8による初期化動作後、第2の放電セル群の各放電セルには、第1の放電セル群の各放電セルより多くの壁電荷が残存する。 Thereby, almost no discharge is generated in the second discharge cell group formed on the second scan electrode group. Therefore, after the initialization operation with the down-ramp voltage L8, more wall charges remain in each discharge cell of the second discharge cell group than in each discharge cell of the first discharge cell group.
 続く書込み期間では、サブフィールドSF1、サブフィールドSF2の書込み期間と同様に、維持電極SU1~維持電極SUnに電圧Veを、走査電極SC1~走査電極SCnに電圧Vc(Vc=Va+Vscn)を印加する。 In the subsequent address period, voltage Ve is applied to sustain electrode SU1 through sustain electrode SUn, and voltage Vc (Vc = Va + Vscn) is applied to scan electrode SC1 through scan electrode SCn, as in the address period in subfield SF1 and subfield SF2.
 そして、第1の走査電極群に属する走査電極SC1~走査電極SCn/2に対して、サブフィールドSF1、サブフィールドSF2の書込み期間と同様に、順次走査パルスを印加する。すなわち、発光するべき放電セルに書込みパルスを印加して書込み放電を発生する書込み動作を、1行目の放電セルからn/2行目の放電セルに至るまで順次行う。 Then, scan pulses are sequentially applied to scan electrode SC1 to scan electrode SCn / 2 belonging to the first scan electrode group, similarly to the address period of subfield SF1 and subfield SF2. That is, an address operation for generating an address discharge by applying an address pulse to the discharge cells to emit light is sequentially performed from the discharge cells in the first row to the discharge cells in the n / 2th row.
 こうして、第1の放電セル群における書込み動作を終了する。 Thus, the address operation in the first discharge cell group is completed.
 第1の走査電極群への書込み動作が終了した後は、第2の走査電極群への書込み動作を開始する前に、放電開始電圧未満となるベース電位である電圧0(V)から負の電圧(Va+Vset3)に向かって緩やかに下降する第3の下り傾斜波形電圧(以下、「下りランプ電圧L9」と呼称する)を第2の走査電極群に印加する。 After the address operation to the first scan electrode group is completed, before starting the address operation to the second scan electrode group, a negative voltage from the voltage 0 (V), which is a base potential lower than the discharge start voltage, is set. A third downward ramp waveform voltage (hereinafter referred to as “down-ramp voltage L9”) that gently falls toward the voltage (Va + Vset3) is applied to the second scan electrode group.
 本実施の形態では、電圧Vset3を電圧Vset2よりも低い電圧に設定する。例えば、電圧Vset2を25(V)とし、電圧Vset3を22(V)とする。これにより、下りランプ電圧L9は、下りランプ電圧L4よりも低い電圧まで(例えば、下りランプ電圧L4よりも3(V)低い電圧まで)下降する下り傾斜波形電圧となる。 In the present embodiment, the voltage Vset3 is set to a voltage lower than the voltage Vset2. For example, the voltage Vset2 is 25 (V) and the voltage Vset3 is 22 (V). As a result, the down-ramp voltage L9 becomes a down-slope waveform voltage that drops to a voltage lower than the down-ramp voltage L4 (for example, to a voltage 3 (V) lower than the down-ramp voltage L4).
 このように、本実施の形態では、第1の走査電極群への書込み動作が終了した後に、下りランプ電圧L4の最低電圧である電圧Vi4よりも低い電圧(Va+Vset3)まで下降する下りランプ電圧L9を第2の走査電極群に印加する。 Thus, in the present embodiment, after the address operation to the first scan electrode group is completed, the down-ramp voltage L9 drops to a voltage (Va + Vset3) lower than the voltage Vi4 that is the lowest voltage of the down-ramp voltage L4. Is applied to the second scan electrode group.
 上述したように、初期化期間において第2の走査電極群に印加した下りランプ電圧L8は、負の電圧(Va+Vset5)までしか下降していない。そのため、第2の放電セル群の各放電セルには、第1の放電セル群の各放電セルより多くの壁電荷が残存する。 As described above, the down-ramp voltage L8 applied to the second scan electrode group during the initialization period only drops to a negative voltage (Va + Vset5). Therefore, more wall charges remain in each discharge cell of the second discharge cell group than in each discharge cell of the first discharge cell group.
 そして、電圧Vset3を電圧Vset5よりも十分に低い電圧に設定することで、下りランプ電圧L9を下りランプ電圧L8よりも十分に低い電圧まで下降させることができる。これにより、第2の放電セル群の各放電セルにおいて、直前のサブフィールド(図5では、サブフィールドSF2)の維持期間で維持放電を発生した放電セルに初期化放電を発生することができる。本実施の形態では、例えば電圧Vset3を22Vに設定し、電圧Vset5を70(V)に設定して、下りランプ電圧L9を下りランプ電圧L8よりも十分に低い電圧まで下降させる。 Then, by setting the voltage Vset3 to a voltage sufficiently lower than the voltage Vset5, the downramp voltage L9 can be lowered to a voltage sufficiently lower than the downramp voltage L8. Thereby, in each discharge cell of the second discharge cell group, an initializing discharge can be generated in a discharge cell that has generated a sustain discharge in the sustain period of the immediately preceding subfield (subfield SF2 in FIG. 5). In the present embodiment, for example, the voltage Vset3 is set to 22V, the voltage Vset5 is set to 70 (V), and the down-ramp voltage L9 is lowered to a voltage sufficiently lower than the down-ramp voltage L8.
 したがって、第2の放電セル群の各放電セルにおいては、第2の走査電極群に属する走査電極SCn/2+1~走査電極SCnへの書込み動作を開始する直前に、初期化動作を行うことができる。 Therefore, in each discharge cell of the second discharge cell group, an initialization operation can be performed immediately before starting an address operation to scan electrode SCn / 2 + 1 to scan electrode SCn belonging to the second scan electrode group. .
 初期化放電で形成される壁電荷は、時間の経過とともに減少する。そのため、全ての走査電極22において書込み期間の直前の初期化期間においてのみ初期化動作を行う駆動方法(1相駆動)では、書込み期間における書込み動作の順番が遅い放電セルにおいて、書込み動作の順番が早い放電セルと比較して壁電荷がより多く減少し、書込み動作が不安定になるおそれがある。 The wall charge formed by the initialization discharge decreases with time. Therefore, in the drive method (one-phase drive) in which the initialization operation is performed only in the initialization period immediately before the address period in all the scan electrodes 22, the order of the address operation in the discharge cells in which the order of the address operation in the address period is slow. There is a risk that the wall charge is reduced more than in the early discharge cell, and the address operation becomes unstable.
 しかし、本実施の形態では、書込み期間において、第2の走査電極群で書込み動作を開始する直前に、第2の放電セル群に対して初期化動作を行う。したがって、第2の放電セル群においては、書込み動作を開始する直前に壁電荷を適正な状態にすることができる。したがって、書込み期間において書込み動作の順番が遅い第2の放電セル群に属する放電セルにおいても、書込み放電に必要な印加電圧を高くすることなく、安定した書込み動作を行うことが可能となる。 However, in the present embodiment, the initialization operation is performed on the second discharge cell group immediately before the address operation is started in the second scan electrode group in the address period. Therefore, in the second discharge cell group, the wall charges can be brought into an appropriate state immediately before the address operation is started. Accordingly, even in the discharge cells belonging to the second discharge cell group whose address operation is late in the address period, it is possible to perform a stable address operation without increasing the applied voltage necessary for the address discharge.
 なお、図5には、第2の走査電極群に下りランプ電圧L9を印加するのと同タイミングで、第1の走査電極群にも下りランプ電圧L9を印加する波形図を示している。これは、次のような理由による。 FIG. 5 shows a waveform diagram in which the down-ramp voltage L9 is applied to the first scan electrode group at the same timing as the down-ramp voltage L9 is applied to the second scan electrode group. This is due to the following reason.
 すでに書込み動作が終わっている第1の走査電極群上の各放電セルにおいては、続く維持動作まで不要な放電を発生しないことが望ましい。したがって、第2の走査電極群に下りランプ電圧L9を印加する期間は、第1の走査電極群には、放電が発生しない電圧、例えば電圧0(V)等を印加することが望ましい。 In each discharge cell on the first scan electrode group that has already finished the address operation, it is desirable not to generate unnecessary discharge until the subsequent sustain operation. Accordingly, it is desirable to apply a voltage at which no discharge occurs, for example, voltage 0 (V), to the first scan electrode group during the period in which the down-ramp voltage L9 is applied to the second scan electrode group.
 しかしながら、走査電極22を駆動する駆動回路の構成上、第2の走査電極群に下りランプ電圧L9を印加する期間に、第1の走査電極群に電圧0(V)を印加する、というような駆動電圧波形を発生することが困難なことがある。 However, due to the configuration of the drive circuit that drives the scan electrode 22, the voltage 0 (V) is applied to the first scan electrode group during the period in which the down-ramp voltage L9 is applied to the second scan electrode group. It may be difficult to generate a drive voltage waveform.
 一方、第1の放電セル群の各放電セルにおいては、初期化期間において電圧(Va+Vset2)まで下降する下りランプ電圧L4を第1の走査電極群(走査電極SC1~走査電極SCn/2)に印加し初期化動作を行う。そのため、書込み期間の途中で、電圧(Va+Vset2)よりも若干低い電圧(Va+Vset3)まで下降する下りランプ電圧L9を第1の走査電極群に印加しても、第1の放電セル群の各放電セルに初期化放電が再度発生する可能性は非常に低い。したがって、書込み期間の途中で、第1の走査電極群に下りランプ電圧L6を印加しても、何ら問題にはならない。 On the other hand, in each discharge cell of the first discharge cell group, a down-ramp voltage L4 that drops to the voltage (Va + Vset2) in the initialization period is applied to the first scan electrode group (scan electrode SC1 to scan electrode SCn / 2). Then perform the initialization operation. Therefore, even if the down-ramp voltage L9 that falls to a voltage (Va + Vset3) slightly lower than the voltage (Va + Vset2) is applied to the first scan electrode group in the middle of the address period, each discharge cell of the first discharge cell group It is very unlikely that initializing discharge will occur again. Therefore, even if the down-ramp voltage L6 is applied to the first scan electrode group during the address period, there is no problem.
 以上が、第1の走査電極群に下りランプ電圧L9を印加する波形図を図5に示した理由である。 The above is the reason why the waveform diagram for applying the down-ramp voltage L9 to the first scan electrode group is shown in FIG.
 第2の走査電極群に下りランプ電圧L9を印加した後は、第2の走査電極群に属する走査電極SCn/2+1~走査電極SCnに対して、上述と同様の手順で、順次走査パルスを印加する。 After applying the down-ramp voltage L9 to the second scan electrode group, scan pulses are sequentially applied to scan electrode SCn / 2 + 1 to scan electrode SCn belonging to the second scan electrode group in the same procedure as described above. To do.
 以上の書込み動作をn行目の放電セルに至るまで行い、第2の放電セル群における書込み動作が終了する。こうして、サブフィールドSF3における書込み期間が終了する。 The above address operation is performed up to the discharge cell in the nth row, and the address operation in the second discharge cell group is completed. Thus, the writing period in subfield SF3 is completed.
 なお、第2の走査電極群に下りランプ電圧L9を印加する期間は、データ電極D1~データ電極Dmに電圧0(V)を印加する。 Note that, during the period in which the down-ramp voltage L9 is applied to the second scan electrode group, the voltage 0 (V) is applied to the data electrodes D1 to Dm.
 サブフィールドSF3の維持期間では、維持パルスの発生数を除き、各電極に対してサブフィールドSF2の維持期間と同様の駆動電圧波形を印加する。また、サブフィールドSF4以降の各サブフィールドでは、維持パルスの発生数を除き、各電極に対してサブフィールドSF3とほぼ同様の駆動電圧波形を印加する。 In the sustain period of subfield SF3, the same drive voltage waveform as in the sustain period of subfield SF2 is applied to each electrode, except for the number of sustain pulses generated. In each subfield after subfield SF4, the drive voltage waveform substantially similar to that of subfield SF3 is applied to each electrode, except for the number of sustain pulses.
 ただし、サブフィールドSF3およびサブフィールドSF4と、サブフィールドSF5からサブフィールドSF8では、第1の走査電極群への書込み動作が終了した直後に第2の走査電極群の各走査電極22(走査電極SCn/2+1~走査電極SCn)に印加する第3の下り傾斜波形電圧の最低電圧を、若干変えている。 However, in subfield SF3 and subfield SF4, and in subfield SF5 to subfield SF8, each scan electrode 22 (scan electrode SCn) of the second scan electrode group immediately after the write operation to the first scan electrode group is completed. The minimum voltage of the third downward ramp waveform voltage applied to / 2 + 1 to scan electrode SCn) is slightly changed.
 図6は、本発明の実施の形態1におけるプラズマディスプレイ装置に用いるパネル10の各電極に印加する2相駆動動作時の駆動電圧波形を示す図である。 FIG. 6 is a diagram showing drive voltage waveforms during a two-phase drive operation applied to each electrode of panel 10 used in the plasma display device in accordance with the first exemplary embodiment of the present invention.
 サブフィールドSF3およびサブフィールドSF4では、図5に示したように、第1の走査電極群への書込み動作が終了した直後に、第3の下り傾斜波形電圧として、電圧Va+電圧Vset3まで下降する下りランプ電圧L9を第2の走査電極群に属する走査電極SCn/2+1~走査電極SCnに印加する。しかし、サブフィールドSF5からサブフィールドSF8では、図6に示すように、第1の走査電極群への書込み動作が終了した直後に、第3の下り傾斜波形電圧として、放電開始電圧未満となるベース電位である電圧0(V)から電圧Va+電圧Vset4まで下降する下りランプ電圧L10を第2の走査電極群の各走査電極22に属する走査電極SCn/2+1~走査電極SCnに印加する。 In the subfield SF3 and the subfield SF4, as shown in FIG. 5, immediately after the write operation to the first scan electrode group is completed, the voltage drops to the voltage Va + voltage Vset3 as the third downward ramp waveform voltage. The ramp voltage L9 is applied to scan electrode SCn / 2 + 1 to scan electrode SCn belonging to the second scan electrode group. However, in the subfield SF5 to the subfield SF8, as shown in FIG. 6, immediately after the address operation to the first scan electrode group is completed, the base that becomes less than the discharge start voltage as the third downward ramp waveform voltage is obtained. A down-ramp voltage L10 that drops from voltage 0 (V) as a potential to voltage Va + voltage Vset4 is applied to scan electrode SCn / 2 + 1 to scan electrode SCn belonging to each scan electrode 22 of the second scan electrode group.
 本実施の形態では、電圧Vset4を電圧Vset2よりも低く、電圧Vset3よりも高い電圧に設定する。例えば、電圧Vset2を25(V)とし、電圧Vset3を22(V)とし、電圧Vset4を23(V)とする。これにより、下りランプ電圧L9は、下りランプ電圧L4よりも、例えば3(V)低い電圧まで下降する第3の下り傾斜波形電圧となる。また、下りランプ電圧L10は、下りランプ電圧L4よりも、例えば2(V)低い電圧まで下降する第3の下り傾斜波形電圧となる。 In the present embodiment, the voltage Vset4 is set to a voltage lower than the voltage Vset2 and higher than the voltage Vset3. For example, the voltage Vset2 is 25 (V), the voltage Vset3 is 22 (V), and the voltage Vset4 is 23 (V). As a result, the down-ramp voltage L9 becomes a third down-slope waveform voltage that drops to a voltage that is, for example, 3 (V) lower than the down-ramp voltage L4. The down-ramp voltage L10 is a third down-slope waveform voltage that drops to a voltage that is 2 (V) lower than the down-ramp voltage L4, for example.
 以上が、本実施の形態において、画像を表示する際にパネル10の各電極に印加する2相駆動動作時の駆動電圧波形の概要である。 The above is the outline of the driving voltage waveform during the two-phase driving operation applied to each electrode of the panel 10 when displaying an image in the present embodiment.
 なお、本実施の形態において各電極に印加する電圧の大きさは、例えば、電圧Vi1=150(V)、電圧Vi2=350(V)、電圧Vi3=215(V)、電圧Vi3’=0(V)、電圧Vi4=-175(V)、電圧Vc=-50(V)、電圧Va=-200(V)、電圧Vs=215(V)、電圧Vr=200(V)、電圧Ve=170(V)、電圧Vd=60(V)、Vset2=25(V)、Vset3=22(V)、Vset4=23(V)、Vset5=70(V)である。ただし、これらの電圧値は、実施の形態における一例を挙げたものに過ぎない。各電圧値は上述した値に限定されるものではなく、パネル10の特性やプラズマディスプレイ装置の仕様等に合わせて、適宜最適な値に設定することが望ましい。 In this embodiment, for example, voltages Vi1 = 150 (V), voltage Vi2 = 350 (V), voltage Vi3 = 215 (V), and voltage Vi3 ′ = 0 ( V), voltage Vi4 = −175 (V), voltage Vc = −50 (V), voltage Va = −200 (V), voltage Vs = 215 (V), voltage Vr = 200 (V), voltage Ve = 170 (V), voltage Vd = 60 (V), Vset2 = 25 (V), Vset3 = 22 (V), Vset4 = 23 (V), Vset5 = 70 (V). However, these voltage values are only examples in the embodiment. Each voltage value is not limited to the value described above, and it is desirable to set the voltage value to an optimal value as appropriate in accordance with the characteristics of the panel 10 and the specifications of the plasma display device.
 次に、本実施の形態における調整期間TSFについて説明する。 Next, the adjustment period TSF in the present embodiment will be described.
 図7は、本発明の実施の形態1における駆動電圧波形のパラメータの一例を示す図である。 FIG. 7 is a diagram showing an example of parameters of the driving voltage waveform in the first embodiment of the present invention.
 図7には、各サブフィールドにおける調整期間TSFの長さ、2相駆動の有無、電圧Vset2-電圧Vset3または電圧Vset2-電圧Vset4の電圧値を示す。また、図7に示す「○」は、そのサブフィールドで2相駆動を行うことを表す。 FIG. 7 shows the length of the adjustment period TSF in each subfield, the presence / absence of two-phase driving, and the voltage value of voltage Vset2-voltage Vset3 or voltage Vset2-voltage Vset4. Further, “◯” shown in FIG. 7 indicates that two-phase driving is performed in the subfield.
 本実施の形態では、図7に示すように、サブフィールドSF1、サブフィールドSF2では、図4に駆動電圧波形を示した1相駆動を行う。そして、サブフィールドSF3からサブフィールドSF8では、図5または図6に駆動電圧波形を示した2相駆動を行う。 In this embodiment, as shown in FIG. 7, in the subfield SF1 and the subfield SF2, the one-phase driving whose drive voltage waveform is shown in FIG. 4 is performed. Then, in the subfield SF3 to the subfield SF8, two-phase driving whose driving voltage waveform is shown in FIG. 5 or FIG. 6 is performed.
 本実施の形態では、2相駆動を行うサブフィールドにおいて、調整期間TSFを、直前のサブフィールドの維持期間に発生する維持パルスの数に応じて設定する。 In this embodiment, the adjustment period TSF is set in accordance with the number of sustain pulses generated in the sustain period of the immediately preceding subfield in the subfield that performs two-phase driving.
 例えば、サブフィールドSF1からサブフィールドSF8の各サブフィールドの輝度重みが(1、2、4、8、16、32、64、128)であるとする。このときは、図7に一例を示すように、サブフィールドSF3、サブフィールドSF4では、調整期間TSFを50μsecに設定する。サブフィールドSF5では、調整期間TSFを100μsecに設定する。サブフィールドSF6では、調整期間TSFを200μsecに設定する。サブフィールドSF7では、調整期間TSFを300μsecに設定する。また、サブフィールドSF8では、調整期間TSFを400μsecに設定する。 For example, assume that the luminance weight of each subfield of subfield SF1 to subfield SF8 is (1, 2, 4, 8, 16, 32, 64, 128). At this time, as shown in an example in FIG. 7, the adjustment period TSF is set to 50 μsec in the subfield SF3 and the subfield SF4. In subfield SF5, adjustment period TSF is set to 100 μsec. In subfield SF6, adjustment period TSF is set to 200 μsec. In subfield SF7, adjustment period TSF is set to 300 μsec. In the subfield SF8, the adjustment period TSF is set to 400 μsec.
 このように、本実施の形態では、直前のサブフィールドの維持期間に発生する維持パルスの数が多いほど、調整期間TSFを長くする。これは次のような理由による。 Thus, in the present embodiment, the adjustment period TSF is lengthened as the number of sustain pulses generated in the sustain period of the immediately preceding subfield increases. This is due to the following reason.
 直前のサブフィールドの維持期間で維持放電が発生した放電セルでは、維持放電によってプライミング粒子および壁電荷が発生する。このプライミング粒子および壁電荷の発生量は、維持期間で発生する維持パルスの数が多いほど、多くなる。 Priming particles and wall charges are generated by the sustain discharge in the discharge cell where the sustain discharge has occurred in the sustain period of the immediately preceding subfield. The amount of priming particles and wall charges generated increases as the number of sustain pulses generated in the sustain period increases.
 本実施の形態では、上述したように、維持放電で発生したプライミング粒子および壁電荷を、上り消去ランプ電圧L3による消去放電によって消去する。ただし、一部のプライミング粒子および壁電荷は消去されずに残留する。そして、維持期間に発生する維持パルスの数が多くなり、過剰にプライミング粒子および壁電荷が発生すると、上り消去ランプ電圧L3による消去放電では十分に消去できず、残留するプライミング粒子および壁電荷の量が増える。 In this embodiment, as described above, the priming particles and wall charges generated by the sustain discharge are erased by the erasing discharge with the ascending erasing ramp voltage L3. However, some priming particles and wall charges remain without being erased. If the number of sustain pulses generated in the sustain period increases and excessive priming particles and wall charges are generated, the erasing discharge with the ascending erasing ramp voltage L3 cannot sufficiently erase, and the amount of remaining priming particles and wall charges Will increase.
 そのような放電セルでは、選択初期化動作の際に強い初期化放電が発生し、放電セル内の壁電荷が過剰に調整される。その結果、そのような放電セルでは、書込み放電が発生しにくくなり、「書込み不良」が発生する可能性が高くなる。「書込み不良」とは、書込みパルスを印加する放電セルにおいて書込み放電が発生しない現象のことである。したがって、そのような放電セルでは、書込み放電を安定に発生するために必要な書込みパルスの振幅が増大する。 In such a discharge cell, a strong initializing discharge occurs during the selective initializing operation, and the wall charge in the discharge cell is excessively adjusted. As a result, in such a discharge cell, address discharge is less likely to occur, and the possibility of occurrence of “address failure” increases. “Writing failure” is a phenomenon in which address discharge does not occur in a discharge cell to which an address pulse is applied. Therefore, in such a discharge cell, the amplitude of the address pulse necessary for stably generating the address discharge increases.
 ただし、調整期間TSFを設けることで、そのような放電セルにおいて、書込み不良の発生を低減できることを本願発明者は実験により確認した。 However, the inventor of the present application confirmed by experiments that the occurrence of the write failure can be reduced in such a discharge cell by providing the adjustment period TSF.
 図8は、本発明の実施の形態1における調整期間TSFと電圧Vsetとの関係を示す図である。 FIG. 8 is a diagram showing the relationship between the adjustment period TSF and the voltage Vset in the first embodiment of the present invention.
 なお、図8では、選択初期化動作で発生する下り傾斜波形電圧の最低電圧と電圧Vaとの電圧差を「電圧Vset」と記している。図8では、横軸は調整期間TSFを表し、縦軸は電圧Vsetを表す。 In FIG. 8, the voltage difference between the lowest voltage of the downward ramp waveform voltage generated in the selective initialization operation and the voltage Va is denoted as “voltage Vset”. In FIG. 8, the horizontal axis represents the adjustment period TSF, and the vertical axis represents the voltage Vset.
 図8において、丸印でプロットされたグラフは、続く書込み期間において安定に書込み放電を発生できる電圧Vsetの上限を表す。電圧Vsetを、この上限を超える電圧に設定すると、続く書込み期間において、誤放電が発生する可能性が高くなる。この誤放電とは、書込みパルスを印加しない放電セル(走査パルスだけを印加する放電セル)においても書込み放電が発生する現象のことである。 8, the graph plotted with a circle represents the upper limit of the voltage Vset that can stably generate the address discharge in the subsequent address period. If the voltage Vset is set to a voltage exceeding this upper limit, there is a high possibility that erroneous discharge will occur in the subsequent address period. This erroneous discharge is a phenomenon in which an address discharge occurs even in a discharge cell to which an address pulse is not applied (a discharge cell to which only a scan pulse is applied).
 また、図8において、三角印でプロットされたグラフは、続く書込み期間において安定に書込み放電を発生できる電圧Vsetの下限を表す。電圧Vsetを、この下限未満の電圧に設定すると、続く書込み期間において書込み不良が発生する可能性が高くなる。 Further, in FIG. 8, the graph plotted with triangles represents the lower limit of the voltage Vset that can stably generate the address discharge in the subsequent address period. If the voltage Vset is set to a voltage lower than this lower limit, there is a high possibility that a write failure will occur in the subsequent write period.
 したがって、この下限が小さくなるほど、続く書込み期間において、書込み不良の発生を防止するために必要な書込みパルスの振幅は低減する。すなわち、この下限を小さくすれば、安定に書込み動作を行うために必要な書込みパルスの振幅を低減できる。 Therefore, the smaller the lower limit, the smaller the amplitude of the write pulse necessary for preventing the occurrence of write failure in the subsequent write period. That is, if this lower limit is made small, the amplitude of the write pulse necessary for performing a stable write operation can be reduced.
 そして、図8に示すように、調整期間TSFを長くするほど、続く書込み期間において安定に書込み放電を発生できる電圧Vsetは低減する。これは、プライミング粒子および壁電荷が時間の経過とともに減少するため、調整期間TSFを長くするほど調整期間TSFの間により多くのプライミング粒子および壁電荷が減少し、選択初期化動作の際に発生する初期化放電がより微弱になって、放電セル内の壁電荷がより適正に調整されるためと考えられる。 As shown in FIG. 8, as the adjustment period TSF is lengthened, the voltage Vset that can stably generate the address discharge in the subsequent address period decreases. This is because the priming particles and wall charges decrease with time, so that the longer the adjustment period TSF, the more priming particles and wall charges decrease during the adjustment period TSF, which occurs during the selective initialization operation. This is because the initializing discharge becomes weaker and the wall charges in the discharge cell are adjusted more appropriately.
 これらのことから、本実施の形態では、図7に示したように、直前のサブフィールドの維持期間に発生する維持パルスの数が多いほど、調整期間TSFを長くする。 Therefore, in the present embodiment, as shown in FIG. 7, the adjustment period TSF is lengthened as the number of sustain pulses generated in the sustain period of the immediately preceding subfield increases.
 そして、本実施の形態では、調整期間TSFの長さに応じて、初期化期間に発生する下り傾斜波形電圧(1相目下り傾斜波形電圧)の最低電圧と、書込み期間の途中で発生する下り傾斜波形電圧(2相目下り傾斜波形電圧)との電圧差を変更する。 In the present embodiment, the minimum voltage of the downward ramp waveform voltage (first phase downward ramp waveform voltage) generated in the initialization period and the downlink generated in the middle of the writing period according to the length of the adjustment period TSF. The voltage difference with the ramp waveform voltage (second phase descending ramp waveform voltage) is changed.
 図5、図6に示した例では、下りランプ電圧L4が1相目下り傾斜波形電圧であり、下りランプ電圧L9および下りランプ電圧L10が2相目下り傾斜波形電圧である。 5 and 6, the down-ramp voltage L4 is the first-phase down-slope waveform voltage, and the down-ramp voltage L9 and the down-ramp voltage L10 are the second-phase down-slope waveform voltage.
 図7に示した例では、調整期間TSFを50μsecに設定したサブフィールドSF3およびサブフィールドSF4では、1相目下り傾斜波形電圧の最低電圧と2相目下り傾斜波形電圧の最低電圧との差(図5に示した例では、電圧Vset2-電圧Vset3の電圧に相当する)が3(V)になるようにして1相目下り傾斜波形電圧および2相目下り傾斜波形電圧を発生する。 In the example shown in FIG. 7, in the subfield SF3 and subfield SF4 in which the adjustment period TSF is set to 50 μsec, the difference between the lowest voltage of the first-phase downward ramp waveform voltage and the lowest voltage of the second-phase downward ramp waveform voltage ( In the example shown in FIG. 5, the first-phase downward ramp waveform voltage and the second-phase downward ramp waveform voltage are generated such that the voltage Vset2-voltage Vset3) is 3 (V).
 図5に示した例では、例えば、電圧Vset2を25(V)にして下りランプ電圧L4を発生し、電圧Vset3を22(V)にして下りランプ電圧L9を発生する。 In the example shown in FIG. 5, for example, the voltage Vset2 is set to 25 (V) to generate the downward ramp voltage L4, and the voltage Vset3 is set to 22 (V) to generate the downward ramp voltage L9.
 また、図7に示した例では、調整期間TSFを100μsec以上に設定したサブフィールドSF5からサブフィールドSF8では、1相目下り傾斜波形電圧の最低電圧と2相目下り傾斜波形電圧の最低電圧との差(図6に示した例では、電圧Vset2-電圧Vset4の電圧に相当する)が2(V)になるようにして1相目下り傾斜波形電圧および2相目下り傾斜波形電圧を発生する。 In the example shown in FIG. 7, in the subfield SF5 to the subfield SF8 in which the adjustment period TSF is set to 100 μsec or more, the lowest voltage of the first-phase downward ramp waveform voltage and the lowest voltage of the second-phase downward ramp waveform voltage are The first-phase down-slope waveform voltage and the second-phase down-slope waveform voltage are generated so that the difference between them (corresponding to the voltage Vset2-voltage Vset4 in the example shown in FIG. 6) is 2 (V). .
 図6に示した例では、例えば、電圧Vset2を25(V)にして下りランプ電圧L4を発生し、電圧Vset4を23(V)にして下りランプ電圧L10を発生する。 In the example shown in FIG. 6, for example, the voltage Vset2 is set to 25 (V) to generate the down-ramp voltage L4, and the voltage Vset4 is set to 23 (V) to generate the down-ramp voltage L10.
 これは、本願発明者が、調整期間TSFの長さが短いときには、初期化期間に発生する下り傾斜波形電圧(1相目下り傾斜波形電圧)の最低電圧と、書込み期間の途中で発生する下り傾斜波形電圧(2相目下り傾斜波形電圧)との電圧差を、調整期間TSFの長さが長いときよりも大きくすることで、書込み動作をより安定に行えることを実験により確認したためである。 This is because, when the length of the adjustment period TSF is short, the inventor of the present application has the lowest voltage of the downward ramp waveform voltage (first phase downward ramp waveform voltage) generated during the initialization period and the downward shift generated during the writing period. This is because it has been confirmed by experiments that the writing operation can be performed more stably by increasing the voltage difference from the ramp waveform voltage (second phase descending ramp waveform voltage) than when the adjustment period TSF is long.
 図9は、本発明の実施の形態1における調整期間TSFと電圧Vsetとの関係の一例を示す図である。 FIG. 9 is a diagram showing an example of the relationship between the adjustment period TSF and the voltage Vset in the first embodiment of the present invention.
 図10は、本発明の実施の形態1における調整期間TSFと電圧Vsetとの関係の他の例を示す図である。 FIG. 10 is a diagram showing another example of the relationship between the adjustment period TSF and the voltage Vset in the first embodiment of the present invention.
 なお、図9、図10では、選択初期化動作で発生する1相目下り傾斜波形電圧の最低電圧と電圧Vaとの電圧差を電圧Vsetと記している。 In FIG. 9 and FIG. 10, the voltage difference between the lowest voltage of the first-phase downward ramp waveform voltage generated in the selective initialization operation and the voltage Va is denoted as voltage Vset.
 なお、図9、図10に結果を示す実験では、1フィールドを、サブフィールドSF1からサブフィールドSF8の8つのサブフィールドで構成し、サブフィールドSF1からサブフィールドSF8の各サブフィールドの輝度重みを(1、2、4、8、16、32、64、128)に設定した。 In the experiments whose results are shown in FIGS. 9 and 10, one field is composed of eight subfields from subfield SF1 to subfield SF8, and the luminance weight of each subfield from subfield SF1 to subfield SF8 is ( 1, 2, 4, 8, 16, 32, 64, 128).
 また、図10に結果を示す実験では、駆動電圧波形の各パラメータを図7に示した数値に設定した。また、図9に結果を示す実験では、駆動電圧波形の各パラメータを、サブフィールドSF3およびサブフィールドSF4においてVset-Vset3=2(V)に設定し、それ以外は、図7に示した数値に設定した。 Further, in the experiment whose result is shown in FIG. 10, each parameter of the drive voltage waveform is set to the numerical value shown in FIG. Further, in the experiment whose result is shown in FIG. 9, each parameter of the drive voltage waveform is set to Vset−Vset3 = 2 (V) in the subfield SF3 and the subfield SF4, and other parameters are set to the numerical values shown in FIG. Set.
 図9、図10において、丸印および実線でプロットされたグラフは、続く書込み期間において安定に書込み放電を発生できる1相目下り傾斜波形電圧における電圧Vsetの上限を表す。また、丸印および破線でプロットされたグラフは、続く書込み期間において安定に書込み放電を発生できる2相目下り傾斜波形電圧における電圧Vsetの上限を表す。また、三角印および実線でプロットされたグラフは、続く書込み期間において安定に書込み放電を発生できる1相目下り傾斜波形電圧における電圧Vsetの下限を表す。また、三角印および破線でプロットされたグラフは、続く書込み期間において安定に書込み放電を発生できる2相目下り傾斜波形電圧における電圧Vsetの下限を表す。 9 and 10, the graphs plotted with circles and solid lines represent the upper limit of the voltage Vset in the first-phase falling ramp waveform voltage that can stably generate the address discharge in the subsequent address period. The graph plotted with a circle and a broken line represents the upper limit of the voltage Vset in the second-phase downward ramp waveform voltage that can generate the address discharge stably in the subsequent address period. Also, the graph plotted with a triangle mark and a solid line represents the lower limit of the voltage Vset in the first-phase downward ramp waveform voltage that can generate the address discharge stably in the subsequent address period. The graph plotted with a triangle mark and a broken line represents the lower limit of the voltage Vset in the second-phase downward ramp waveform voltage that can generate the address discharge stably in the subsequent address period.
 電圧Vsetを、この上限を超える電圧に設定すると、続く書込み期間において誤放電が発生する可能性が高くなる。この誤放電とは、書込みパルスを印加しない放電セル(走査パルスだけを印加する放電セル)においても書込み放電が発生する現象のことである。 When the voltage Vset is set to a voltage exceeding this upper limit, there is a high possibility that erroneous discharge will occur in the subsequent address period. This erroneous discharge is a phenomenon in which an address discharge occurs even in a discharge cell to which an address pulse is not applied (a discharge cell to which only a scan pulse is applied).
 また、電圧Vsetを、この下限未満の電圧に設定すると、続く書込み期間において書込み不良が発生する可能性が高くなる。 Also, if the voltage Vset is set to a voltage lower than this lower limit, the possibility of a write failure occurring in the subsequent write period increases.
 したがって、この上限と下限との差(マージン)が大きいほど、続く書込み期間において安定に書込み動作を行うことができる。 Therefore, the larger the difference (margin) between the upper limit and the lower limit, the more stable the write operation can be performed in the subsequent write period.
 図9において、Vsetの上限の最も小さい値は、サブフィールドSF3における2相目下り傾斜波形電圧における電圧Vsetの上限であり、約85.5(V)である。また、Vsetの下限の最も大きい値は、サブフィールドSF4における1相目下り傾斜波形電圧における電圧Vsetの下限であり、約76(V)である。そして、それらの上限と下限との差は、約9.5(V)である。 In FIG. 9, the smallest value of the upper limit of Vset is the upper limit of the voltage Vset at the second-phase downward ramp waveform voltage in the subfield SF3, which is about 85.5 (V). The largest value of the lower limit of Vset is the lower limit of voltage Vset in the first-phase downward ramp waveform voltage in subfield SF4, which is about 76 (V). The difference between the upper limit and the lower limit is about 9.5 (V).
 一方、図10において、Vsetの上限の最も小さい値は、サブフィールドSF3における2相目下り傾斜波形電圧における電圧Vsetの上限であり、約86.5(V)である。また、Vsetの下限の最も大きい値は、サブフィールドSF4における1相目下り傾斜波形電圧における電圧Vsetの下限であり、約76(V)である。そして、それらの上限と下限との差は、約10.5(V)であり、図9に示した結果と比較して、約1(V)大きい。これは、電圧Vsetのマージンが拡大し、その分、書込み動作を安定に行えることを表している。 On the other hand, in FIG. 10, the smallest value of the upper limit of Vset is the upper limit of voltage Vset in the second-phase downward ramp waveform voltage in subfield SF3, which is about 86.5 (V). The largest value of the lower limit of Vset is the lower limit of voltage Vset in the first-phase downward ramp waveform voltage in subfield SF4, which is about 76 (V). The difference between the upper limit and the lower limit is about 10.5 (V), which is about 1 (V) larger than the result shown in FIG. This indicates that the margin of the voltage Vset is increased, and the write operation can be stably performed correspondingly.
 このように、調整期間TSFの長さが短いときには、初期化期間に発生する下り傾斜波形電圧(1相目下り傾斜波形電圧)の最低電圧と、書込み期間の途中で発生する下り傾斜波形電圧(2相目下り傾斜波形電圧)との電圧差を、調整期間TSFの長さが長いときよりも大きくすることで、電圧Vsetのマージンを大きくし、書込み動作をより安定に行えることが実験により確認された。 Thus, when the length of the adjustment period TSF is short, the minimum voltage of the downward ramp waveform voltage (first-phase downward ramp waveform voltage) generated during the initialization period and the downward ramp waveform voltage generated during the write period ( Experiments have confirmed that the voltage difference from the second-phase downward ramp waveform voltage) is larger than when the adjustment period TSF is long, so that the margin of the voltage Vset is increased and the writing operation can be performed more stably. It was.
 これは、調整期間TSFの長さが短くなることで、プライミング粒子および壁電荷の残存量が増えるためと考えられる。 This is thought to be because the remaining amount of priming particles and wall charges increases as the length of the adjustment period TSF becomes shorter.
 これらのことから、本実施の形態では、例えば、図5、図6に示すように、2相駆動を行うサブフィールドの初期化期間では、1相目下り傾斜波形電圧として、電圧0(V)から電圧Va+電圧Vset2まで下降する下りランプ電圧L4を発生する。また、調整期間TSFの長さが比較的短いサブフィールドの書込み期間では、2相目下り傾斜波形電圧として、電圧0(V)から電圧Va+電圧Vset3まで下降する下りランプ電圧L9を発生する。また、調整期間TSFの長さが比較的長いサブフィールドの書込み期間では、2相目下り傾斜波形電圧として、電圧0(V)から電圧Va+電圧Vset4まで下降する下りランプ電圧L10を発生する。 From these facts, in this embodiment, for example, as shown in FIGS. 5 and 6, in the initialization period of the subfield in which the two-phase drive is performed, the voltage 0 (V) is used as the first-phase downward ramp waveform voltage. The ramp-down voltage L4 that falls from the voltage Va to the voltage Vset2 is generated. Further, in the writing period of the subfield in which the length of the adjustment period TSF is relatively short, a down-ramp voltage L9 that falls from the voltage 0 (V) to the voltage Va + voltage Vset3 is generated as the second-phase down-slope waveform voltage. Further, in the address period of the subfield in which the length of the adjustment period TSF is relatively long, a down-ramp voltage L10 that falls from the voltage 0 (V) to the voltage Va + voltage Vset4 is generated as the second-phase downward ramp waveform voltage.
 そして、例えば図7に示すように、電圧Vset2-電圧Vset3が、電圧Vset2-電圧Vset4よりも大きくなるように、電圧Vset2、電圧Vset3、電圧Vset4の各電圧を設定する。 Then, as shown in FIG. 7, for example, the voltages Vset2, Vset3, and Vset4 are set so that the voltage Vset2-voltage Vset3 is larger than the voltage Vset2-voltage Vset4.
 なお、本実施の形態では、1相駆動を行うサブフィールドには調整期間TSFを設けない例を説明した。しかし、上述したように本実施の形態における調整期間TSFは、過剰に生成されたプライミング粒子および壁電荷を調整するために設けるものである。したがって、1相駆動を行うサブフィールドに調整期間TSFを設けてもかまわない。 In the present embodiment, the example in which the adjustment period TSF is not provided in the subfield that performs one-phase driving has been described. However, as described above, the adjustment period TSF in the present embodiment is provided to adjust excessively generated priming particles and wall charges. Therefore, an adjustment period TSF may be provided in a subfield that performs one-phase driving.
 次に、上り消去ランプ電圧L3の到達電位である電圧Vrを維持パルスの電圧Vsよりも低い電圧に設定する理由について説明する。 Next, the reason why the voltage Vr, which is the arrival potential of the ascending erasing ramp voltage L3, is set to a voltage lower than the sustain pulse voltage Vs will be described.
 図11は、本発明の実施の形態1における電圧Vrと電圧Vsとの電圧差と電圧Vset2との関係を示す図である。 FIG. 11 is a diagram showing the relationship between the voltage difference between the voltage Vr and the voltage Vs and the voltage Vset2 in the first embodiment of the present invention.
 図11において、横軸は電圧Vrと電圧Vsとの電圧差、すなわち電圧Vr-電圧Vsを表し、縦軸は電圧Vset2を表す。 11, the horizontal axis represents the voltage difference between the voltage Vr and the voltage Vs, that is, the voltage Vr−the voltage Vs, and the vertical axis represents the voltage Vset2.
 図11において、丸印でプロットされたグラフは、続く書込み期間において安定に書込み放電を発生できる電圧Vset2の上限を表す。電圧Vset2を、この上限を超える電圧に設定すると、続く書込み期間において誤放電が発生する可能性が高くなる。この誤放電とは、書込みパルスを印加しない放電セル(走査パルスだけを印加する放電セル)においても書込み放電が発生する現象のことである。 In FIG. 11, the graph plotted with a circle represents the upper limit of the voltage Vset2 that can stably generate the address discharge in the subsequent address period. If the voltage Vset2 is set to a voltage exceeding this upper limit, the possibility of erroneous discharge occurring in the subsequent address period increases. This erroneous discharge is a phenomenon in which an address discharge occurs even in a discharge cell to which an address pulse is not applied (a discharge cell to which only a scan pulse is applied).
 また、図11において、三角印でプロットされたグラフは、続く書込み期間において安定に書込み放電を発生できる電圧Vset2の下限を表す。電圧Vset2を、この下限未満の電圧に設定すると、続く書込み期間において書込み不良が発生する可能性が高くなる。 In FIG. 11, the graph plotted with triangles represents the lower limit of the voltage Vset2 at which address discharge can be stably generated in the subsequent address period. If the voltage Vset2 is set to a voltage lower than this lower limit, the possibility of a write failure occurring in the subsequent write period increases.
 したがって、この上限と下限との差が大きいほど、続く書込み期間において安定に書込み動作を行うことができる。 Therefore, the larger the difference between the upper limit and the lower limit, the more stable the write operation can be performed in the subsequent write period.
 なお、図11に示すグラフは、電圧Vs=215(V)、電圧Va=-200(V)に設定し、電圧Vrを電圧Vs+5(V)から電圧Vs-30(V)まで5(V)きざみで変化させながら、電圧Vset2を可変して放電の発生を確認するという手順で実験を行い、得られた結果を示したものである。 In the graph shown in FIG. 11, the voltage Vs = 215 (V) and the voltage Va = −200 (V) are set, and the voltage Vr is 5 (V) from the voltage Vs + 5 (V) to the voltage Vs−30 (V). An experiment is performed in the procedure of confirming the occurrence of discharge by changing the voltage Vset2 while changing the voltage step by step, and the obtained result is shown.
 そして、図11に示すように、電圧Vr-電圧Vsが電圧0(V)のとき、すなわち、電圧Vr=電圧Vsのときには、電圧Vset2の上限(約83.5(V))と下限(約76.5(V))との差は、約7(V)であった。 As shown in FIG. 11, when the voltage Vr−the voltage Vs is 0 (V), that is, when the voltage Vr = the voltage Vs, the upper limit (approximately 83.5 (V)) and the lower limit (approximately The difference from 76.5 (V)) was about 7 (V).
 また、電圧Vr-電圧Vsが-5(V)のとき、すなわち、電圧Vr=電圧Vs-5(V)のときには、電圧Vset2の上限(約84.1(V))と下限(約76(V))との差は、約8.1(V)であった。 When the voltage Vr−the voltage Vs is −5 (V), that is, when the voltage Vr = the voltage Vs−5 (V), the upper limit (about 84.1 (V)) and the lower limit (about 76 (V) of the voltage Vset2 are set. The difference from V)) was about 8.1 (V).
 また、電圧Vr-電圧Vsが-10(V)のとき、すなわち、電圧Vr=電圧Vs-10(V)のときには、電圧Vset2の上限(約85.2(V))と下限(約75.5(V))との差は、約9.7(V)であった。 When the voltage Vr−the voltage Vs is −10 (V), that is, when the voltage Vr = the voltage Vs−10 (V), the upper limit (about 85.2 (V)) and the lower limit (about 75.V.) of the voltage Vset2. The difference from 5 (V)) was about 9.7 (V).
 また、電圧Vr-電圧Vsが-15(V)のとき、すなわち、電圧Vr=電圧Vs-15(V)のときには、電圧Vset2の上限(約85.5(V))と下限(約74(V))との差は、約11.5(V)であった。 When the voltage Vr−the voltage Vs is −15 (V), that is, when the voltage Vr = the voltage Vs−15 (V), the upper limit (about 85.5 (V)) and the lower limit (about 74 (V) of the voltage Vset2 are set. The difference from V)) was about 11.5 (V).
 また、電圧Vr-電圧Vsが-20(V)のとき、すなわち、電圧Vr=電圧Vs-20(V)のときには、電圧Vset2の上限(約85.2(V))と下限(約73.5(V))との差は、約11.7(V)であった。 When the voltage Vr−the voltage Vs is −20 (V), that is, when the voltage Vr = the voltage Vs−20 (V), the upper limit (approximately 85.2 (V)) and the lower limit (approximately 73.V.) of the voltage Vset2. 5 (V)) was about 11.7 (V).
 また、電圧Vr-電圧Vsが-25(V)のとき、すなわち、電圧Vr=電圧Vs-25(V)のときには、電圧Vset2の上限(約85.5(V))と下限(約73(V))との差は、約12.5(V)であった。 When the voltage Vr−the voltage Vs is −25 (V), that is, when the voltage Vr = the voltage Vs−25 (V), the upper limit (about 85.5 (V)) and the lower limit (about 73 ( The difference from V)) was about 12.5 (V).
 また、電圧Vr-電圧Vsが-30(V)のとき、すなわち、電圧Vr=電圧Vs-30(V)のときには、電圧Vset2の上限(約85.4(V))と下限(約73(V))との差は、約12.4(V)であった。 When the voltage Vr−the voltage Vs is −30 (V), that is, when the voltage Vr = the voltage Vs−30 (V), the upper limit (about 85.4 (V)) and the lower limit (about 73 ( The difference from V)) was about 12.4 (V).
 このように、図11に示す結果から、電圧Vrを電圧Vsよりも低い電圧に設定することで、電圧Vrを電圧Vsに等しい電圧に設定するときよりも、続く書込み期間において安定に書込み放電を発生できる電圧Vset2の上限と下限との差を大きくし、書込み動作を安定化することができることが確認された。 Thus, from the result shown in FIG. 11, by setting the voltage Vr to a voltage lower than the voltage Vs, the address discharge can be stably performed in the subsequent address period, compared to when the voltage Vr is set to a voltage equal to the voltage Vs. It was confirmed that the write operation can be stabilized by increasing the difference between the upper limit and the lower limit of the voltage Vset2 that can be generated.
 これは、電圧Vrを電圧Vsよりも低い電圧に設定することで、電圧Vrを電圧Vsに等しい電圧に設定するときよりも、消去放電の持続時間が短縮されて維持放電で発生した壁電荷がより多く残存し、その結果、特に走査電極22と維持電極23との間に生じる放電がより安定化するようになるためと考えられる。 This is because, by setting the voltage Vr to a voltage lower than the voltage Vs, the duration of the erasing discharge is shortened and the wall charge generated by the sustain discharge is less than when the voltage Vr is set to a voltage equal to the voltage Vs. It is considered that a larger amount remains, and as a result, the discharge generated between the scan electrode 22 and the sustain electrode 23 becomes more stable.
 これらのことから、本実施の形態では、電圧Vrを、電圧Vsよりも低い電圧に設定するものとする。 Therefore, in this embodiment, the voltage Vr is set to a voltage lower than the voltage Vs.
 ただし、電圧Vr-電圧Vsが-35(V)以下のとき、すなわち、電圧Vrを電圧Vs-35(V)以下にすると、それに続く維持期間で、書込みパルスを印加しない放電セルにおいても維持放電が持続する可能性が高くなることが確認された。これは、電圧Vrを下げ過ぎることで消去放電が不足して壁電荷およびプライミング粒子の残存量が過大となるためと考えられる。 However, when the voltage Vr−the voltage Vs is −35 (V) or less, that is, when the voltage Vr is set to the voltage Vs−35 (V) or less, the sustain discharge is performed even in the discharge cell to which the address pulse is not applied in the subsequent sustain period. Has been confirmed to be more likely to persist. This is presumably because the erase discharge is insufficient due to the voltage Vr being lowered too much, and the remaining amount of wall charges and priming particles becomes excessive.
 このように、電圧Vrを低くし過ぎると、続く維持期間で誤放電が発生するおそれがあることが確認された。そこで、本実施の形態では、電圧Vrを、電圧Vsよりも低く、かつ、続く維持期間で誤放電が発生しない電圧に設定するものとする。 Thus, it has been confirmed that if the voltage Vr is too low, there is a risk of erroneous discharge occurring in the subsequent sustain period. Therefore, in the present embodiment, the voltage Vr is set to a voltage that is lower than the voltage Vs and does not cause erroneous discharge in the subsequent sustain period.
 具体的には、本実施の形態では、図11に示した特性にもとづき、電圧Vrを、電圧Vs-5(V)から電圧Vs-30(V)の範囲で設定するものとする。例えば、電圧Vs=215(V)、電圧Vr=200(V)に設定する。 Specifically, in this embodiment, the voltage Vr is set in the range of the voltage Vs-5 (V) to the voltage Vs-30 (V) based on the characteristics shown in FIG. For example, the voltage Vs = 215 (V) and the voltage Vr = 200 (V) are set.
 ただし、これらの電圧値は、実施の形態における一例に過ぎない。各電圧値は上述した値に限定されるものではなく、パネル10の特性やプラズマディスプレイ装置の仕様等に合わせて、適宜最適な値に設定することが望ましい。 However, these voltage values are only examples in the embodiment. Each voltage value is not limited to the value described above, and it is desirable to set the voltage value to an optimal value as appropriate in accordance with the characteristics of the panel 10 and the specifications of the plasma display device.
 次に、本実施の形態におけるプラズマディスプレイ装置の構成について説明する。なお、以下の説明においては、スイッチング素子を導通する動作を「オン」、遮断する動作を「オフ」と表記する。 Next, the configuration of the plasma display device in the present embodiment will be described. In the following description, the operation of conducting the switching element is represented as “on”, and the operation of shutting off is represented as “off”.
 図12は、本発明の実施の形態1におけるプラズマディスプレイ装置40の回路ブロック図である。 FIG. 12 is a circuit block diagram of plasma display device 40 in accordance with the first exemplary embodiment of the present invention.
 プラズマディスプレイ装置40は、パネル10とパネル10を駆動する駆動回路とを備える。駆動回路は、画像信号処理回路41、データ電極駆動回路42、走査電極駆動回路43、維持電極駆動回路44、タイミング発生回路45および各回路ブロックに必要な電源を供給する電源回路(図示せず)を備えている。 The plasma display device 40 includes a panel 10 and a drive circuit that drives the panel 10. The drive circuit includes an image signal processing circuit 41, a data electrode drive circuit 42, a scan electrode drive circuit 43, a sustain electrode drive circuit 44, a timing generation circuit 45, and a power supply circuit (not shown) that supplies necessary power to each circuit block. It has.
 画像信号処理回路41は、入力された画像信号にもとづき、各放電セルに階調値を割り当てる。そして、その階調値を、サブフィールド毎の発光・非発光を示す画像データに変換する。 The image signal processing circuit 41 assigns a gradation value to each discharge cell based on the input image signal. Then, the gradation value is converted into image data indicating light emission / non-light emission for each subfield.
 例えば、入力された画像信号sigがR信号、G信号、B信号を含むときには、そのR信号、G信号、B信号にもとづき、各放電セルにR、G、Bの各階調値(1フィールドで表現される階調値)を割り当てる。あるいは、入力された画像信号sigが輝度信号(Y信号)および彩度信号(C信号、またはR-Y信号およびB-Y信号、またはu信号およびv信号等)を含むときには、その輝度信号および彩度信号にもとづきR信号、G信号、B信号を算出し、その後、各放電セルにR、G、Bの各階調値を割り当てる。そして、各放電セルに割り当てたR、G、Bの階調値を、サブフィールド毎の発光・非発光を示す画像データに変換する。 For example, when the input image signal sig includes an R signal, a G signal, and a B signal, R, G, and B gradation values (in one field) are assigned to each discharge cell based on the R signal, the G signal, and the B signal. Assigned gradation value). Alternatively, when the input image signal sig includes a luminance signal (Y signal) and a saturation signal (C signal, RY signal and BY signal, or u signal and v signal), the luminance signal and R, G, and B signals are calculated based on the saturation signal, and thereafter, R, G, and B gradation values are assigned to the respective discharge cells. Then, the R, G, and B gradation values assigned to each discharge cell are converted into image data indicating light emission / non-light emission for each subfield.
 タイミング発生回路45は、水平同期信号および垂直同期信号にもとづき、各回路ブロックの動作を制御する各種のタイミング信号を発生する。そして、発生したタイミング信号をそれぞれの回路ブロック(画像信号処理回路41、データ電極駆動回路42、走査電極駆動回路43および維持電極駆動回路44等)へ供給する。 The timing generation circuit 45 generates various timing signals for controlling the operation of each circuit block based on the horizontal synchronization signal and the vertical synchronization signal. Then, the generated timing signal is supplied to each circuit block (image signal processing circuit 41, data electrode drive circuit 42, scan electrode drive circuit 43, sustain electrode drive circuit 44, etc.).
 走査電極駆動回路43は、初期化波形発生回路、維持パルス発生回路、走査パルス発生回路(図示せず)を有する。初期化波形発生回路は、初期化期間に走査電極SC1~走査電極SCnに印加する初期化波形を発生する。維持パルス発生回路は、維持期間に走査電極SC1~走査電極SCnに印加する維持パルスを発生する。走査パルス発生回路は、複数の走査電極駆動IC(走査IC)を備え、書込み期間に走査電極SC1~走査電極SCnに印加する走査パルスを発生する。そして、走査電極駆動回路43は、タイミング発生回路45から供給されるタイミング信号にもとづいて走査電極SC1~走査電極SCnをそれぞれ駆動する。 Scan electrode drive circuit 43 has an initialization waveform generation circuit, a sustain pulse generation circuit, and a scan pulse generation circuit (not shown). The initialization waveform generating circuit generates an initialization waveform to be applied to scan electrode SC1 through scan electrode SCn during the initialization period. The sustain pulse generation circuit generates a sustain pulse to be applied to scan electrode SC1 through scan electrode SCn during the sustain period. The scan pulse generating circuit includes a plurality of scan electrode driving ICs (scan ICs), and generates scan pulses to be applied to scan electrode SC1 through scan electrode SCn in the address period. Scan electrode driving circuit 43 drives scan electrode SC1 through scan electrode SCn based on the timing signal supplied from timing generation circuit 45, respectively.
 データ電極駆動回路42は、画像データを構成するサブフィールド毎のデータを、各データ電極D1~データ電極Dmに対応する書込みパルスに変換する。そして、タイミング発生回路45から供給されるタイミング信号にもとづいて、各データ電極D1~データ電極Dmに書込みパルスを印加する。 The data electrode drive circuit 42 converts the data for each subfield constituting the image data into address pulses corresponding to the data electrodes D1 to Dm. Then, based on the timing signal supplied from the timing generation circuit 45, an address pulse is applied to each of the data electrodes D1 to Dm.
 維持電極駆動回路44は、維持パルス発生回路および電圧Veを発生する回路を備え(図示せず)、タイミング発生回路45から供給されるタイミング信号にもとづいて維持電極SU1~維持電極SUnを駆動する。 Sustain electrode drive circuit 44 includes a sustain pulse generation circuit and a circuit for generating voltage Ve (not shown), and drives sustain electrode SU1 through sustain electrode SUn based on the timing signal supplied from timing generation circuit 45.
 図13は、本発明の実施の形態1におけるプラズマディスプレイ装置40の走査電極駆動回路43の構成を概略的に示す回路図である。 FIG. 13 is a circuit diagram schematically showing a configuration of scan electrode drive circuit 43 of plasma display device 40 in accordance with the first exemplary embodiment of the present invention.
 走査電極駆動回路43は、維持パルス発生回路50と、傾斜波形電圧発生回路60と、走査パルス発生回路70とを備えている。なお、各回路ブロックは、タイミング発生回路45から供給されるタイミング信号にもとづき動作するが、図13では、タイミング信号の経路の詳細は省略する。また、走査パルス発生回路70に入力される電圧を「基準電位A」と記す。 The scan electrode drive circuit 43 includes a sustain pulse generation circuit 50, a ramp waveform voltage generation circuit 60, and a scan pulse generation circuit 70. Each circuit block operates based on the timing signal supplied from the timing generation circuit 45, but details of the timing signal path are omitted in FIG. The voltage input to the scan pulse generation circuit 70 is referred to as “reference potential A”.
 維持パルス発生回路50は、電力回収回路51と、スイッチング素子Q55と、スイッチング素子Q56と、スイッチング素子Q59とを有する。電力回収回路51は、電力回収用のコンデンサC10、スイッチング素子Q11、スイッチング素子Q12、逆流防止用のダイオードDi11、ダイオードDi12、共振用のインダクタL11、インダクタL12を有する。 Sustain pulse generation circuit 50 includes power recovery circuit 51, switching element Q55, switching element Q56, and switching element Q59. The power recovery circuit 51 includes a power recovery capacitor C10, a switching element Q11, a switching element Q12, a backflow prevention diode Di11, a diode Di12, a resonance inductor L11, and an inductor L12.
 電力回収回路51は、パネル10に蓄えられた電力を、パネル10の電極間容量とインダクタL12とをLC共振させてパネル10から回収し、コンデンサC10に蓄える。そして、回収した電力を、パネル10の電極間容量とインダクタL11とをLC共振させてコンデンサC10からパネル10に再度供給し、走査電極SC1~走査電極SCnを駆動するときの電力として再利用する。 The power recovery circuit 51 recovers the power stored in the panel 10 from the panel 10 through LC resonance between the interelectrode capacitance of the panel 10 and the inductor L12, and stores it in the capacitor C10. The recovered power is LC-resonated between the interelectrode capacitance of the panel 10 and the inductor L11, supplied again from the capacitor C10 to the panel 10, and reused as power when driving the scan electrodes SC1 to SCn.
 スイッチング素子Q55は、走査電極SC1~走査電極SCnを電圧Vsにクランプし、スイッチング素子Q56は、走査電極SC1~走査電極SCnを電圧0(V)にクランプする。スイッチング素子Q59は分離スイッチであり、走査電極駆動回路43を構成するスイッチング素子の寄生ダイオード等を介して電流が逆流するのを防止する。 Switching element Q55 clamps scan electrode SC1 through scan electrode SCn to voltage Vs, and switching element Q56 clamps scan electrode SC1 through scan electrode SCn to voltage 0 (V). The switching element Q59 is a separation switch, and prevents a current from flowing back through a parasitic diode or the like of the switching element constituting the scan electrode driving circuit 43.
 このようにして、維持パルス発生回路50は、走査電極SC1~走査電極SCnに印加する電圧Vsの維持パルスを発生する。 Thus, sustain pulse generating circuit 50 generates a sustain pulse of voltage Vs applied to scan electrode SC1 through scan electrode SCn.
 走査パルス発生回路70は、スイッチング素子Q71H1~スイッチング素子Q71Hn、スイッチング素子Q71L1~スイッチング素子Q71Ln、スイッチング素子Q72、負の電圧Vaを発生する電源、電圧Vpを発生する電源E71を有する。そして、走査パルス発生回路70の基準電位Aに電圧Vpを重畳して電圧Vc(Vc=Va+Vp)を発生し、電圧Vaと電圧Vcとを切換えながら走査電極SC1~走査電極SCnに印加することで走査パルスを発生する。例えば、電圧Va=-200(V)であり、電圧Vp=150(V)であれば、電圧Vc=-50(V)となる。 Scan pulse generation circuit 70 includes switching element Q71H1 to switching element Q71Hn, switching element Q71L1 to switching element Q71Ln, switching element Q72, a power source that generates negative voltage Va, and a power source E71 that generates voltage Vp. Then, the voltage Vp (Vc = Va + Vp) is generated by superimposing the voltage Vp on the reference potential A of the scan pulse generation circuit 70, and is applied to scan electrode SC1 through scan electrode SCn while switching between voltage Va and voltage Vc. A scan pulse is generated. For example, if the voltage Va = −200 (V) and the voltage Vp = 150 (V), the voltage Vc = −50 (V).
 そして、走査パルス発生回路70は、走査電極SC1~走査電極SCnのそれぞれに、図4、図5、図6に示したタイミングで走査パルスを順次印加する。なお、走査パルス発生回路70は、維持期間では維持パルス発生回路50の出力電圧をそのまま出力する。すなわち、基準電位Aの電圧を走査電極SC1~走査電極SCnへ出力する。 Scan pulse generation circuit 70 sequentially applies scan pulses to scan electrode SC1 through scan electrode SCn at the timings shown in FIGS. Scan pulse generation circuit 70 outputs the output voltage of sustain pulse generation circuit 50 as it is during the sustain period. That is, the reference potential A is output to scan electrode SC1 through scan electrode SCn.
 傾斜波形電圧発生回路60は、ミラー積分回路61、ミラー積分回路62、ミラー積分回路63を備え、図4、図5、図6に示した傾斜波形電圧を発生する。 The ramp waveform voltage generation circuit 60 includes a Miller integration circuit 61, a Miller integration circuit 62, and a Miller integration circuit 63, and generates the ramp waveform voltages shown in FIGS.
 ミラー積分回路61は、トランジスタQ61とコンデンサC61と抵抗R61とを有する。そして、入力端子IN61に一定の電圧を印加する(入力端子IN61として図示される2つの丸の間に一定の電圧差を与える)ことにより、電圧Vtに向かって緩やかに上昇する上り傾斜波形電圧を発生する。 Miller integrating circuit 61 includes transistor Q61, capacitor C61, and resistor R61. Then, by applying a constant voltage to the input terminal IN61 (giving a constant voltage difference between two circles shown as the input terminal IN61), an upward ramp waveform voltage that gradually increases toward the voltage Vt is obtained. appear.
 なお、本実施の形態では、電圧Vi2は、電圧Vtに電圧Vpを重畳した電圧に等しくなるように設定する。すなわち、ミラー積分回路61を動作させているときは、スイッチング素子Q72およびスイッチング素子Q71L1~スイッチング素子Q71Lnをオフにし、スイッチング素子Q71H1~スイッチング素子Q71Hnをオンにして、ミラー積分回路61で発生した上り傾斜波形電圧に電源E71の電圧Vpを重畳することで上りランプ電圧L1を発生する。 In the present embodiment, the voltage Vi2 is set to be equal to a voltage obtained by superimposing the voltage Vp on the voltage Vt. That is, when Miller integrating circuit 61 is operated, switching element Q72 and switching elements Q71L1 to Q71Ln are turned off, switching elements Q71H1 to switching element Q71Hn are turned on, and the upward slope generated in Miller integrating circuit 61 The up-ramp voltage L1 is generated by superimposing the voltage Vp of the power source E71 on the waveform voltage.
 ミラー積分回路62は、トランジスタQ62とコンデンサC62と抵抗R62と逆流防止用のダイオードDi62とを有する。そして、入力端子IN62に一定の電圧を印加する(入力端子IN62として図示される2つの丸の間に一定の電圧差を与える)ことにより、電圧Vrに向かって緩やかに上昇する上り傾斜波形電圧(上り消去ランプ電圧L3)を発生する。 Miller integrating circuit 62 includes transistor Q62, capacitor C62, resistor R62, and diode Di62 for preventing backflow. Then, by applying a constant voltage to the input terminal IN62 (giving a constant voltage difference between two circles shown as the input terminal IN62), an up-slope waveform voltage that gradually rises toward the voltage Vr ( Ascending erasing ramp voltage L3) is generated.
 ミラー積分回路63は、トランジスタQ63とコンデンサC63と抵抗R63とを有する。そして、入力端子IN63に一定の電圧を印加する(入力端子IN63として図示される2つの丸の間に一定の電圧差を与える)ことにより、電圧Vi4に向かって緩やかに下降する下り傾斜波形電圧(下りランプ電圧L2、下りランプ電圧L4)を発生する。 Miller integrating circuit 63 includes transistor Q63, capacitor C63, and resistor R63. Then, by applying a constant voltage to the input terminal IN63 (giving a constant voltage difference between two circles shown as the input terminal IN63), a downward ramp waveform voltage (gradiently decreasing toward the voltage Vi4 ( Down-ramp voltage L2 and down-ramp voltage L4) are generated.
 なお、スイッチング素子Q69は分離スイッチであり、走査電極駆動回路43を構成するスイッチング素子の寄生ダイオード等を介して電流が逆流するのを防止する。 Note that the switching element Q69 is a separation switch, and prevents a current from flowing back through a parasitic diode or the like of the switching element constituting the scan electrode driving circuit 43.
 なお、これらのスイッチング素子およびトランジスタは、MOSFETやIGBT等の一般に知られた半導体素子を用いて構成することができる。また、これらのスイッチング素子およびトランジスタは、タイミング発生回路45で発生したそれぞれのスイッチング素子およびトランジスタに対応するタイミング信号により制御される。 Note that these switching elements and transistors can be configured using generally known semiconductor elements such as MOSFETs and IGBTs. These switching elements and transistors are controlled by timing signals corresponding to the respective switching elements and transistors generated by the timing generation circuit 45.
 図14は、本発明の実施の形態1におけるプラズマディスプレイ装置40の維持電極駆動回路44の構成を概略的に示す回路図である。 FIG. 14 is a circuit diagram schematically showing a configuration of sustain electrode drive circuit 44 of plasma display device 40 in accordance with the first exemplary embodiment of the present invention.
 維持電極駆動回路44は、維持パルス発生回路80と、一定電圧発生回路85とを備えている。なお、各回路ブロックは、タイミング発生回路45から供給されるタイミング信号にもとづき動作するが、図14では、タイミング信号の経路の詳細は省略する。 The sustain electrode driving circuit 44 includes a sustain pulse generating circuit 80 and a constant voltage generating circuit 85. Each circuit block operates based on the timing signal supplied from the timing generation circuit 45, but details of the timing signal path are omitted in FIG.
 維持パルス発生回路80は、電力回収回路81と、スイッチング素子Q83と、スイッチング素子Q84とを有する。電力回収回路81は、電力回収用のコンデンサC20、スイッチング素子Q21、スイッチング素子Q22、逆流防止用のダイオードDi21、ダイオードDi22、共振用のインダクタL21、インダクタL22を有する。 Sustain pulse generation circuit 80 includes a power recovery circuit 81, a switching element Q83, and a switching element Q84. The power recovery circuit 81 includes a power recovery capacitor C20, a switching element Q21, a switching element Q22, a backflow prevention diode Di21, a diode Di22, a resonance inductor L21, and an inductor L22.
 電力回収回路81は、パネル10に蓄えられた電力を、パネル10の電極間容量とインダクタL22とをLC共振させてパネル10から回収し、コンデンサC20に蓄える。そして、回収した電力を、パネル10の電極間容量とインダクタL21とをLC共振させてコンデンサC20からパネル10に再度供給し、維持電極SU1~維持電極SUnを駆動するときの電力として再利用する。 The power recovery circuit 81 recovers the power stored in the panel 10 from the panel 10 through LC resonance between the interelectrode capacitance of the panel 10 and the inductor L22, and stores it in the capacitor C20. Then, the recovered power is supplied to the panel 10 again from the capacitor C20 through LC resonance between the interelectrode capacitance of the panel 10 and the inductor L21, and reused as power when driving the sustain electrodes SU1 to SUn.
 スイッチング素子Q83は維持電極SU1~維持電極SUnを電圧Vsにクランプし、スイッチング素子Q84は維持電極SU1~維持電極SUnを電圧0(V)にクランプする。 Switching element Q83 clamps sustain electrode SU1 through sustain electrode SUn to voltage Vs, and switching element Q84 clamps sustain electrode SU1 through sustain electrode SUn to voltage 0 (V).
 このようにして、維持パルス発生回路80は、走査電極SC1~走査電極SCnに印加する電圧Vsの維持パルスを発生する。 Thus, sustain pulse generating circuit 80 generates a sustain pulse of voltage Vs applied to scan electrode SC1 through scan electrode SCn.
 一定電圧発生回路85は、スイッチング素子Q86、スイッチング素子Q87を有する。そして、維持電極SU1~維持電極SUnに電圧Veを印加する。 The constant voltage generation circuit 85 includes a switching element Q86 and a switching element Q87. Then, voltage Ve is applied to sustain electrode SU1 through sustain electrode SUn.
 なお、これらのスイッチング素子は、MOSFETやIGBT等の一般に知られた素子を用いて構成することができる。またこれらのスイッチング素子は、タイミング発生回路45で発生したそれぞれのスイッチング素子に対応するタイミング信号により制御される。 In addition, these switching elements can be configured using generally known elements such as MOSFETs and IGBTs. These switching elements are controlled by timing signals corresponding to the respective switching elements generated by the timing generation circuit 45.
 図15は、本発明の実施の形態1におけるプラズマディスプレイ装置40のデータ電極駆動回路42の構成を概略的に示す回路図である。 FIG. 15 is a circuit diagram schematically showing the configuration of the data electrode drive circuit 42 of the plasma display device 40 according to the first embodiment of the present invention.
 なお、データ電極駆動回路42は、画像信号処理回路41から供給される画像データおよびタイミング発生回路45から供給されるタイミング信号にもとづき動作するが、図15では、それらの信号の経路の詳細は省略する。 The data electrode drive circuit 42 operates based on the image data supplied from the image signal processing circuit 41 and the timing signal supplied from the timing generation circuit 45. In FIG. 15, details of the paths of these signals are omitted. To do.
 データ電極駆動回路42は、スイッチング素子Q91H1~スイッチング素子Q91Hm、スイッチング素子Q91L1~スイッチング素子Q91Lmを有する。そしてスイッチング素子Q91Ljをオンにすることでデータ電極Djに電圧0(V)を印加し、スイッチング素子Q91Hjをオンにすることでデータ電極Djに電圧Vdを印加する。 The data electrode driving circuit 42 has switching elements Q91H1 to Q91Hm and switching elements Q91L1 to Q91Lm. The voltage 0 (V) is applied to the data electrode Dj by turning on the switching element Q91Lj, and the voltage Vd is applied to the data electrode Dj by turning on the switching element Q91Hj.
 次に、走査パルス発生回路70の詳細について説明する。 Next, details of the scan pulse generation circuit 70 will be described.
 図16は、本発明の実施の形態1における走査パルス発生回路70の回路図である。 FIG. 16 is a circuit diagram of scan pulse generation circuit 70 in the first exemplary embodiment of the present invention.
 なお、以下の説明においては、スイッチング素子を導通させる動作を「オン」、遮断させる動作を「オフ」と表記し、スイッチング素子をオンさせる信号を「Hi」、オフさせる信号を「Lo」と表記する。なお、各回路ブロックは、タイミング発生回路45から供給されるタイミング信号にもとづき動作するが、図16では、タイミング信号の経路の詳細は省略する。 In the following description, the operation to turn on the switching element is expressed as “on”, the operation to turn off the switching element is expressed as “off”, the signal to turn on the switching element is expressed as “Hi”, and the signal to turn off is expressed as “Lo”. To do. Each circuit block operates based on the timing signal supplied from the timing generation circuit 45, but details of the timing signal path are omitted in FIG.
 走査パルス発生回路70は、複数の走査IC95と、スイッチング素子Q72と、ダイオードDi31およびコンデンサC31と、比較器CP1および比較器CP2と、スイッチング素子SW1と、スイッチング素子SW2と、スイッチング素子SW3と、オアゲートORと、アンドゲートAGとを備えている。 Scan pulse generating circuit 70 includes a plurality of scan ICs 95, switching element Q72, diode Di31 and capacitor C31, comparator CP1 and comparator CP2, switching element SW1, switching element SW2, switching element SW3, and OR gate. OR and AND gate AG are provided.
 複数の走査IC95(本実施の形態では、走査IC95(1)~走査IC95(12))は、走査電極SC1~走査電極SCnのそれぞれに走査パルスを出力する。 A plurality of scan ICs 95 (in this embodiment, scan IC 95 (1) to scan IC 95 (12)) output scan pulses to scan electrode SC1 to scan electrode SCn, respectively.
 スイッチング素子Q72は、書込み期間において基準電位Aを負の電圧Vaに接続する。 The switching element Q72 connects the reference potential A to the negative voltage Va in the writing period.
 ダイオードDi31およびコンデンサC31は、基準電位Aに電圧Vpを重畳した電圧を走査IC95の高電圧側(入力端子INb)に印加するための回路素子である。 The diode Di31 and the capacitor C31 are circuit elements for applying a voltage obtained by superimposing the voltage Vp on the reference potential A to the high voltage side (input terminal INb) of the scan IC 95.
 比較器CP1および比較器CP2は、2つの入力端子に入力される入力信号の大小を比較する。 The comparator CP1 and the comparator CP2 compare the magnitudes of the input signals input to the two input terminals.
 スイッチング素子SW1は、比較器CP1の一方の入力端子に電圧(Va+Vset2)を印加する。スイッチング素子SW2は、比較器CP1の一方の入力端子に電圧(Va+Vset3)を印加する。スイッチング素子SW3は、比較器CP1の一方の入力端子に電圧(Va+Vset4)を印加する。 Switching element SW1 applies a voltage (Va + Vset2) to one input terminal of comparator CP1. The switching element SW2 applies a voltage (Va + Vset3) to one input terminal of the comparator CP1. The switching element SW3 applies a voltage (Va + Vset4) to one input terminal of the comparator CP1.
 オアゲートORは、走査IC95(本実施の形態では、走査IC95(7))を制御するための制御信号SID(本実施の形態では、制御信号SID(1))と比較器CP2の出力信号CPOとの論理和演算を行う。 The OR gate OR includes a control signal SID (control signal SID (1) in the present embodiment) for controlling the scan IC 95 (scan IC 95 (7) in the present embodiment) and an output signal CPO of the comparator CP2. Perform the logical OR operation.
 アンドゲートAGは、走査IC95(本実施の形態では、走査IC95(1)~走査IC95(6))を制御するための第1の制御信号である制御信号OC1とオアゲートORの出力信号との論理積演算を行う。 The AND gate AG is a logic between a control signal OC1 which is a first control signal for controlling the scan IC 95 (in this embodiment, scan IC 95 (1) to scan IC 95 (6)) and an output signal of the OR gate OR. Perform product operation.
 なお、比較器CP1の他方の入力端子は基準電位Aに接続されている。また、比較器CP2の一方の入力端子は電圧(Va+Vset5)に、比較器CP2の他方の入力端子は基準電位Aに接続されている。 The other input terminal of the comparator CP1 is connected to the reference potential A. One input terminal of the comparator CP2 is connected to the voltage (Va + Vset5), and the other input terminal of the comparator CP2 is connected to the reference potential A.
 走査IC95は、低電圧側の入力端子である入力端子INaと高電圧側の入力端子である入力端子INbとの2つの入力端子と、各走査電極にそれぞれ接続する複数の出力端子とを有する。そして、走査IC95は、制御信号にもとづき、2つの入力端子に入力される電圧のいずれかを各出力端子から出力する。 The scan IC 95 has two input terminals, ie, an input terminal INa that is an input terminal on the low voltage side and an input terminal INb that is an input terminal on the high voltage side, and a plurality of output terminals respectively connected to the scan electrodes. Then, the scan IC 95 outputs one of the voltages input to the two input terminals from each output terminal based on the control signal.
 なお、本実施の形態においては、走査IC95を2つの群に分けて駆動し、第1の走査IC群(本実施の形態では、走査IC95(1)~走査IC95(6))と、第2の走査IC群(本実施の形態では、走査IC95(7)~走査IC95(12))とで異なる制御信号を入力している。 In this embodiment, the scan IC 95 is driven in two groups, and the first scan IC group (in this embodiment, scan IC 95 (1) to scan IC 95 (6)) and the second scan IC 95 are driven. Different control signals are input to the scan IC groups (scan IC 95 (7) to scan IC 95 (12) in this embodiment).
 第1の走査IC群に属する走査IC95(1)~走査IC95(6)には、制御信号として、書込み期間にタイミング発生回路45から出力される制御信号OC1、比較器CP1から出力される制御信号OC2が入力される。また、第1の走査IC群のうち最初に書込み動作を開始する走査IC95(1)には、書込み期間にタイミング発生回路45から出力される走査開始信号SIU(1)が入力される。 In the scan ICs 95 (1) to 95 (6) belonging to the first scan IC group, control signals OC1 output from the timing generation circuit 45 during the write period and control signals output from the comparator CP1 are used as control signals. OC2 is input. Further, the scan start signal SIU (1) output from the timing generation circuit 45 in the write period is input to the scan IC 95 (1) that starts the address operation first in the first scan IC group.
 第2の走査IC群に属する走査IC95(7)~走査IC95(12)には、制御信号として、アンドゲートAGから出力される第3の制御信号である制御信号OC1’、比較器CP1から出力される制御信号OC2が入力される。また、第2の走査IC群のうち最初に書込み動作を開始する走査IC95(7)には、書込み期間にタイミング発生回路45から出力される第2の制御信号である走査開始信号SID(1)が入力される。 The control signals OC1 ′, which are the third control signals output from the AND gate AG, are output from the comparator CP1 to the scan ICs 95 (7) to 95 (12) belonging to the second scan IC group. The control signal OC2 is input. Further, in the scan IC 95 (7) which starts the address operation first in the second scan IC group, the scan start signal SID (1) which is the second control signal output from the timing generation circuit 45 in the address period. Is entered.
 なお、制御信号OC2は全ての走査IC95(本実施の形態では、走査IC95(1)~走査IC95(12))に共通して入力される制御信号である。また、全ての走査IC95(本実施の形態では、走査IC95(1)~走査IC95(12))には、信号処理動作の同期をとるための同期信号であるクロック信号CLKが共通して入力される。 The control signal OC2 is a control signal input in common to all the scan ICs 95 (in this embodiment, the scan IC 95 (1) to the scan IC 95 (12)). In addition, a clock signal CLK that is a synchronization signal for synchronizing the signal processing operation is commonly input to all the scan ICs 95 (in this embodiment, the scan IC 95 (1) to the scan IC 95 (12)). The
 図17は、本発明の実施の形態1における走査電極駆動回路43の走査IC95と走査電極SC1~走査電極SCnとの接続の様子を示す概略図である。 FIG. 17 is a schematic diagram showing a connection state between scan IC 95 of scan electrode drive circuit 43 and scan electrode SC1 through scan electrode SCn in the first embodiment of the present invention.
 なお、図17では、走査IC95以外の回路は省略している。 In FIG. 17, circuits other than the scan IC 95 are omitted.
 走査パルス発生回路70は、n本の走査電極SC1~走査電極SCnのそれぞれに走査パルス電圧を印加するためのスイッチング素子Q71H1~スイッチング素子Q71Hnおよびスイッチング素子Q71L1~スイッチング素子Q71Lnを備えている。スイッチング素子Q71H1~スイッチング素子Q71Hn、スイッチング素子Q71L1~スイッチング素子Q71Lnは複数の出力毎にまとめられIC化されている。このICが走査IC95である。 Scan pulse generation circuit 70 includes switching elements Q71H1 to Q71Hn and switching elements Q71L1 to Q71Ln for applying a scan pulse voltage to each of n scan electrodes SC1 to SCn. Switching element Q71H1 to switching element Q71Hn and switching element Q71L1 to switching element Q71Ln are integrated into a plurality of ICs for each of a plurality of outputs. This IC is a scanning IC 95.
 なお、本実施の形態では、90出力分のスイッチング素子を1つのモノシリックICとして集積し、パネル10は1080本の走査電極を備えているものとする。すなわち、12個の走査IC95(1)~走査IC95(12)を用いて走査パルス発生回路70を構成し、n=1080本の走査電極SC1~走査電極SCnを駆動するものとする。このように多数のスイッチング素子QH1~スイッチング素子QHn、スイッチング素子QL1~スイッチング素子QLnをIC化することにより、プラズマディスプレイ装置40における部品点数を削減し、実装面積を低減することができる。ただし、本実施の形態に挙げた数値は単なる一例であり、本発明は何らこれらの数値に限定されるものではない。 In the present embodiment, switching elements for 90 outputs are integrated as one monolithic IC, and the panel 10 includes 1080 scanning electrodes. That is, the scan pulse generation circuit 70 is configured by using 12 scan ICs 95 (1) to 95 (12), and n = 1080 scan electrodes SC1 to SCn are driven. As described above, by making the large number of switching elements QH1 to QHn and switching elements QL1 to QLn into an IC, the number of parts in the plasma display device 40 can be reduced, and the mounting area can be reduced. However, the numerical values given in the present embodiment are merely examples, and the present invention is not limited to these numerical values.
 そして、書込み動作時には、まず、走査電極SC1~走査電極SC90に接続された走査IC95(1)を動作させる。その次に、走査電極SC91~走査電極SC180に接続された走査IC95(2)を動作させる。以降、走査IC95(3)から走査IC95(12)までを順次動作させる。 In the address operation, first, the scan IC 95 (1) connected to scan electrode SC1 through scan electrode SC90 is operated. Next, scan IC 95 (2) connected to scan electrode SC91 to scan electrode SC180 is operated. Thereafter, the scan IC 95 (3) to the scan IC 95 (12) are sequentially operated.
 なお、上述したように、本実施の形態においては、走査IC95を第1の走査IC群と第2の走査IC群とに分けて走査電極SC1~走査電極SCnを駆動する。そして、1フィールドには、第1の走査IC群に属する走査IC95(1)~走査IC95(6)に接続されている第1の走査電極群(本実施の形態では、走査電極SC1~走査電極SC540)と、第2の走査IC群に属する走査IC95(7)~走査IC95(12)に接続されている第2の走査電極群(本実施の形態では、走査電極SC541~走査電極SC1080)とで、波形形状が異なる初期化波形を印加するサブフィールドが含まれる。 As described above, in the present embodiment, scan IC 95 is divided into a first scan IC group and a second scan IC group, and scan electrodes SC1 to SCn are driven. In one field, a first scan electrode group (in this embodiment, scan electrode SC1 to scan electrode) connected to scan IC 95 (1) to scan IC 95 (6) belonging to the first scan IC group. SC540), a second scan electrode group (in this embodiment, scan electrode SC541 to scan electrode SC1080) connected to scan IC95 (7) to scan IC95 (12) belonging to the second scan IC group, Thus, subfields for applying initialization waveforms having different waveform shapes are included.
 次に、走査IC95の動作について説明する。 Next, the operation of the scanning IC 95 will be described.
 図18は、本発明の実施の形態1における制御信号OC1、制御信号OC2と走査IC95の動作状態との対応関係を説明するための図である。 FIG. 18 is a diagram for explaining a correspondence relationship between the control signals OC1 and OC2 and the operation state of the scan IC 95 according to the first embodiment of the present invention.
 なお、第2の走査IC群に関しては、制御信号OC1を制御信号OC1’に代えることで同様の動作状態になるものとする。 Note that the second scan IC group is assumed to be in the same operation state by replacing the control signal OC1 with the control signal OC1 '.
 図18に示すように、制御信号OC1、制御信号OC2がともにハイレベル(以下、「Hi」と記す)のとき、走査IC95は「All―Hi」の状態になる。「All―Hi」のとき、走査IC95は、走査IC95の出力端子の全てが高電圧側の入力端子INbと電気的に接続されるように、走査IC95の内部に備えられた全てのスイッチング素子が切換えられた状態となる。 As shown in FIG. 18, when both the control signal OC1 and the control signal OC2 are at a high level (hereinafter referred to as “Hi”), the scan IC 95 is in an “All-Hi” state. In the case of “All-Hi”, the scanning IC 95 includes all the switching elements provided in the scanning IC 95 so that all the output terminals of the scanning IC 95 are electrically connected to the input terminal INb on the high voltage side. It will be in the switched state.
 制御信号OC1が「Hi」、制御信号OC2がローレベル(以下、「Lo」と記す)のとき、走査IC95は、「All―Lo」の状態になる。「All―Lo」のとき、走査IC95は、走査IC95の出力端子の全てが低電圧側の入力端子INaと電気的に接続されるように、走査IC95の内部に備えられた全てのスイッチング素子が切換えられた状態となる。 When the control signal OC1 is “Hi” and the control signal OC2 is low level (hereinafter referred to as “Lo”), the scan IC 95 is in the “All-Lo” state. In the case of “All-Lo”, the scan IC 95 includes all the switching elements provided in the scan IC 95 such that all the output terminals of the scan IC 95 are electrically connected to the input terminal INa on the low voltage side. It will be in the switched state.
 例えば、維持パルス発生回路50を動作させているときは、制御信号OC1を「Hi」にし、制御信号OC2を「Lo」にすることで、走査IC95を「All―Lo」の状態にする。これにより、スイッチング素子Q71H1~スイッチング素子Q71Hnがオフになり、スイッチング素子Q71L1~スイッチング素子Q71Lnがオンになって、走査IC95からは基準電位Aが出力される。したがって、スイッチング素子Q71L1~スイッチング素子Q71Lnを経由して、各走査電極SC1~走査電極SCnに維持パルスを印加することができる。 For example, when the sustain pulse generating circuit 50 is operating, the control signal OC1 is set to “Hi”, and the control signal OC2 is set to “Lo”, thereby setting the scan IC 95 to the “All-Lo” state. As a result, switching elements Q71H1 to Q71Hn are turned off, switching elements Q71L1 to switching element Q71Ln are turned on, and reference potential A is output from scan IC 95. Therefore, a sustain pulse can be applied to each of scan electrode SC1 through scan electrode SCn via switching element Q71L1 through switching element Q71Ln.
 制御信号OC1、制御信号OC2がともに「Lo」のとき、走査IC95は、出力端子がハイインピーダンス(以下、「HiZ」と記す)の状態となる。この「HiZ」の状態では、走査IC95の各出力端子からは、走査IC95が「HiZ」の状態になった時点の出力電圧がそのまま保持されて出力される。 When both the control signal OC1 and the control signal OC2 are “Lo”, the scanning IC 95 is in a high impedance state (hereinafter referred to as “HiZ”). In this “HiZ” state, the output voltage at the time when the scan IC 95 is in the “HiZ” state is held and output from each output terminal of the scan IC 95 as it is.
 制御信号OC1が「Lo」、制御信号OC2が「Hi」のとき、走査IC95は、「DATA」状態となる。「DATA」状態のとき、走査IC95は、走査IC95に入力される走査開始信号にもとづきあらかじめ定められた一連の動作を行う状態となる。 When the control signal OC1 is “Lo” and the control signal OC2 is “Hi”, the scan IC 95 is in the “DATA” state. In the “DATA” state, the scan IC 95 enters a state in which a predetermined series of operations are performed based on a scan start signal input to the scan IC 95.
 具体的には、走査IC95に走査開始信号が入力されると(本実施の形態では、走査開始信号が「Hi」から「Lo」に変化すると)、まず最初に、走査IC95の最初の出力端子だけが低電圧側の入力端子INaと電気的に接続され、残りの全ての出力端子は高電圧側の入力端子INbと電気的に接続される。 Specifically, when a scan start signal is input to the scan IC 95 (in this embodiment, when the scan start signal changes from “Hi” to “Lo”), first, the first output terminal of the scan IC 95 Only the low voltage side input terminal INa is electrically connected, and all the remaining output terminals are electrically connected to the high voltage side input terminal INb.
 その状態が所定時間(例えば、1μsec)継続された後、次に、走査IC95の2番目の出力端子だけが低電圧側の入力端子INaと電気的に接続され、残りの全ての出力端子は高電圧側の入力端子INbと電気的に接続される。 After the state continues for a predetermined time (for example, 1 μsec), only the second output terminal of the scan IC 95 is electrically connected to the input terminal INa on the low voltage side, and all the remaining output terminals are high. It is electrically connected to the voltage side input terminal INb.
 そして、その状態が所定時間継続された後、続いて、走査IC95の3番目の出力端子だけが低電圧側の入力端子INaと電気的に接続される。 Then, after the state continues for a predetermined time, only the third output terminal of the scan IC 95 is electrically connected to the input terminal INa on the low voltage side.
 このようにして、走査IC95の各出力端子が、順番に、所定時間ずつ、低電圧側の入力端子INaと電気的に接続されていく。本実施の形態では、書込み期間に走査IC95をこの動作状態にして走査パルス電圧Vaを順次発生し、走査電極SC1~走査電極SCnの書込み動作を行う。 In this way, each output terminal of the scan IC 95 is electrically connected to the input terminal INa on the low voltage side in order for a predetermined time. In the present embodiment, the scan IC 95 is set to this operation state in the address period to sequentially generate the scan pulse voltage Va, and the address operation of the scan electrodes SC1 to SCn is performed.
 なお、本実施の形態では、第1の走査IC群に属する走査IC95に入力する走査開始信号を走査開始信号SIUとし、第2の走査IC群に属する走査IC95に入力する走査開始信号を走査開始信号SIDとしている。 In the present embodiment, the scan start signal input to the scan IC 95 belonging to the first scan IC group is used as the scan start signal SIU, and the scan start signal input to the scan IC 95 belonging to the second scan IC group is used as the scan start. The signal SID is used.
 なお、本実施の形態では、第1の走査IC群のうち最初に書込み動作を行う走査IC95(1)に用いる走査開始信号SIU(1)、および第2の走査IC群のうち最初に書込み動作を行う走査IC95(7)に用いる走査開始信号SID(1)をタイミング発生回路45で発生する。そして、残りの走査開始信号、すなわち、走査IC95(2)に用いる走査開始信号SIU(2)から走査IC95(6)に用いる走査開始信号SIU(6)までの各走査開始信号、および走査IC95(8)に用いる走査開始信号SID(2)から走査IC95(12)に用いる走査開始信号SID(6)までの各走査開始信号は、走査IC95で発生する。 In the present embodiment, the scan start signal SIU (1) used for the scan IC 95 (1) performing the address operation first in the first scan IC group and the address operation first in the second scan IC group. The timing generation circuit 45 generates a scan start signal SID (1) used for the scan IC 95 (7) that performs the above. The remaining scan start signals, that is, the scan start signals SIU (2) used for the scan IC 95 (2) to the scan start signals SIU (6) used for the scan IC 95 (6), and the scan IC 95 ( Each scan start signal from the scan start signal SID (2) used for 8) to the scan start signal SID (6) used for the scan IC 95 (12) is generated by the scan IC 95.
 例えば、走査IC95(1)は、走査IC95(1)に接続された全ての走査電極への書込み動作が終了した後、シフトレジスター等を使って走査開始信号SIU(1)を所定時間遅延させて作成した走査開始信号SIU(2)を出力し、次段の走査IC95(2)に供給する。走査IC95(2)は、同様に、走査開始信号SIU(2)を所定時間遅延させて作成した走査開始信号SIU(3)を次段の走査IC95(3)に供給する。以下、同様に、各走査IC95は、入力された走査開始信号を所定時間遅延させて新たな走査開始信号を作成し、次段の走査IC95に供給する。 For example, after the write operation to all the scan electrodes connected to the scan IC 95 (1) is completed, the scan IC 95 (1) delays the scan start signal SIU (1) by a predetermined time using a shift register or the like. The created scan start signal SIU (2) is output and supplied to the next-stage scan IC 95 (2). Similarly, the scan IC 95 (2) supplies the scan start signal SIU (3) created by delaying the scan start signal SIU (2) by a predetermined time to the next stage scan IC 95 (3). Thereafter, similarly, each scan IC 95 creates a new scan start signal by delaying the input scan start signal for a predetermined time, and supplies it to the next-stage scan IC 95.
 このような構成とすることで、走査開始信号SIU(2)~走査開始信号SIU(6)および走査開始信号SID(2)~走査開始信号SID(6)をタイミング発生回路45で発生しなくともよくなり、タイミング発生回路45と走査電極駆動回路43とを結ぶ制御信号のための配線の数を削減することができる。 With this configuration, the timing generation circuit 45 does not generate the scan start signal SIU (2) to the scan start signal SIU (6) and the scan start signal SID (2) to the scan start signal SID (6). As a result, the number of wiring lines for the control signal connecting the timing generation circuit 45 and the scan electrode drive circuit 43 can be reduced.
 また、本実施の形態では、1フィールドに、第1の走査IC群と第2の走査IC群とで異なる波形形状の初期化波形を発生するサブフィールドを有する。そのために、そのサブフィールドでは、第1の走査IC群に用いる制御信号OC1と第2の走査IC群に用いる制御信号OC1とで、制御のタイミングを変えている。 In this embodiment, one field has subfields that generate initialization waveforms having different waveform shapes in the first scan IC group and the second scan IC group. Therefore, in the subfield, the control timing is changed between the control signal OC1 used for the first scan IC group and the control signal OC1 used for the second scan IC group.
 そして、第1の走査IC群に用いる制御信号OC1は、タイミング発生回路45で発生する。第2の走査IC群に用いる制御信号OC1には、アンドゲートAGで発生した第3の制御信号(第1の走査IC群に用いる制御信号OC1と区別するために、本実施の形態では、「制御信号OC1’」と記す)を用いる。 The control signal OC1 used for the first scan IC group is generated by the timing generation circuit 45. The control signal OC1 used for the second scan IC group includes a third control signal generated by the AND gate AG (in order to distinguish it from the control signal OC1 used for the first scan IC group, “ Control signal OC1 ′ ”).
 さらに、制御信号OC2には、比較器CP1で発生した信号を用いる。 Further, a signal generated by the comparator CP1 is used as the control signal OC2.
 このように、本実施の形態では、制御信号OC1’および制御信号OC2を論理演算によって発生する。これにより、タイミング発生回路45で発生する制御信号の数をさらに削減し、タイミング発生回路45と走査電極駆動回路43とを結ぶ制御信号のための配線の数をさらに削減することができる。 Thus, in the present embodiment, the control signal OC1 'and the control signal OC2 are generated by a logical operation. Thereby, the number of control signals generated in the timing generation circuit 45 can be further reduced, and the number of wirings for the control signal connecting the timing generation circuit 45 and the scan electrode drive circuit 43 can be further reduced.
 なお、制御信号OC2を出力する比較器CP1は、図16に示すように、スイッチング素子SW1がオン、スイッチング素子SW2およびスイッチング素子SW3がオフのときには電圧(Va+Vset2)と基準電位Aとを比較する。スイッチング素子SW2がオン、スイッチング素子SW1およびスイッチング素子SW3がオフのときには電圧(Va+Vset3)と基準電位Aとを比較する。スイッチング素子SW3がオン、スイッチング素子SW1およびスイッチング素子SW2がオフのときには電圧(Va+Vset4)と基準電位Aとを比較する。 Note that the comparator CP1 that outputs the control signal OC2 compares the voltage (Va + Vset2) with the reference potential A when the switching element SW1 is on and the switching element SW2 and the switching element SW3 are off, as shown in FIG. When the switching element SW2 is on and the switching element SW1 and the switching element SW3 are off, the voltage (Va + Vset3) is compared with the reference potential A. When the switching element SW3 is on and the switching element SW1 and the switching element SW2 are off, the voltage (Va + Vset4) is compared with the reference potential A.
 そして、比較器CP1は、基準電位Aの方が高いときには「Lo」を出力し、それ以外では「Hi」を出力して、走査IC95(1)~走査IC95(12)に供給する。また、制御信号OC1’の発生に用いる信号CPOを出力する比較器CP2は、電圧(Va+Vset5)と基準電位Aとを比較し、基準電位Aの方が高いときには「Hi」を出力し、それ以外では「Lo」を出力する。 The comparator CP1 outputs “Lo” when the reference potential A is higher, and outputs “Hi” otherwise and supplies it to the scan IC 95 (1) to the scan IC 95 (12). The comparator CP2 that outputs the signal CPO used to generate the control signal OC1 ′ compares the voltage (Va + Vset5) with the reference potential A, and outputs “Hi” when the reference potential A is higher, otherwise Then, “Lo” is output.
 そして、走査IC95はこの制御信号OC2により、また第2の走査IC群においてはさらに制御信号OC1’および走査開始信号SID(1)も加えて、下降する傾斜波形電圧の最低電圧を、電圧値の異なる複数の電圧で切換えて発生することができる。なお、スイッチング素子SW1からスイッチング素子SW3のオン/オフは、タイミング発生回路45によって制御するものとする。 The scan IC 95 adds the control signal OC1 ′ and the scan start signal SID (1) in accordance with the control signal OC2, and further adds the control signal OC1 ′ and the scan start signal SID (1) in the second scan IC group. It can be generated by switching at different voltages. Note that the timing generation circuit 45 controls ON / OFF of the switching elements SW1 to SW3.
 次に、走査電極駆動回路43の動作と駆動電圧波形の発生について説明する。 Next, the operation of the scan electrode drive circuit 43 and the generation of the drive voltage waveform will be described.
 図19は、本発明の一実施の形態における走査電極駆動回路43の動作の一例を説明するためのタイミングチャートである。 FIG. 19 is a timing chart for explaining an example of the operation of scan electrode driving circuit 43 according to the embodiment of the present invention.
 なお、図19には、サブフィールドSF3における動作を主に示す。また、図19には、書込み期間の最初に書込み動作を行う走査電極SC1に印加される駆動電圧波形と、第2の走査電極群のうち最初に書込み動作を行う走査電極SCn/2+1(例えば、走査電極SC541)に印加される駆動電圧波形とを示す。合わせて、制御信号OC1、制御信号OC2、制御信号OC1’、比較器CP2の出力信号CPO、走査開始信号SIU(1)、走査開始信号SID(1)を示し、入力端子IN1、入力端子IN2への定電流供給状態を示す。 FIG. 19 mainly shows the operation in the subfield SF3. FIG. 19 also shows a drive voltage waveform applied to scan electrode SC1 that performs the address operation at the beginning of the address period, and scan electrode SCn / 2 + 1 that performs the address operation first in the second scan electrode group (for example, The drive voltage waveform applied to scan electrode SC541) is shown. In addition, the control signal OC1, the control signal OC2, the control signal OC1 ′, the output signal CPO of the comparator CP2, the scanning start signal SIU (1), and the scanning start signal SID (1) are shown, and are input to the input terminal IN1 and the input terminal IN2. The constant current supply state is shown.
 なお、本実施の形態において、走査IC95は、「DATA」状態のときに走査開始信号が「Hi」から「Lo」に変化することで、書込み動作を開始する。また、初期化期間の前半および維持期間はスイッチング素子Q69をオンにし、初期化期間の後半および書込み期間はスイッチング素子Q69をオフにする。 In this embodiment, the scan IC 95 starts the writing operation when the scan start signal changes from “Hi” to “Lo” in the “DATA” state. The switching element Q69 is turned on during the first half of the initialization period and the sustain period, and the switching element Q69 is turned off during the second half of the initialization period and the writing period.
 (初期化期間)
 初期化期間では、図示はしていないが、直前のサブフィールドの維持期間における動作が終了した時刻t1後の時刻t2以降、スイッチング素子Q72はオフに維持したまま、維持パルス発生回路50を用いて、基準電位Aを電圧0(V)にクランプする(スイッチング素子Q56をオンにする)。
(Initialization period)
Although not shown in the initialization period, the sustaining pulse generation circuit 50 is used while the switching element Q72 is kept off after the time t2 after the time t1 when the operation in the sustain period of the immediately preceding subfield ends. Then, the reference potential A is clamped to the voltage 0 (V) (switching element Q56 is turned on).
 そして、時刻t3で維持パルス発生回路50の全てのスイッチング素子をオフにして維持パルス発生回路50の出力をハイインピーダンスにし、スイッチング素子SW1をオンにし、スイッチング素子SW2、スイッチング素子SW3をオフにする。こうして、比較器CP1において、基準電位A(本実施の形態では、電圧0(V))と電圧(Va+Vset2)とが比較されるようにしておく。 At time t3, all the switching elements of sustain pulse generating circuit 50 are turned off, the output of sustain pulse generating circuit 50 is set to high impedance, switching element SW1 is turned on, and switching elements SW2 and SW3 are turned off. Thus, the reference potential A (voltage 0 (V) in the present embodiment) and the voltage (Va + Vset2) are compared in the comparator CP1.
 このとき、基準電位Aの方が電圧(Va+Vset2)よりも電位が高いので、比較器CP1から出力される制御信号OC2は、直前のサブフィールドの維持期間に引き続き「Lo」のままである。また、制御信号OC1も直前のサブフィールドの維持期間に引き続き「Hi」に維持したままにしておく。 At this time, since the reference potential A has a higher potential than the voltage (Va + Vset2), the control signal OC2 output from the comparator CP1 remains “Lo” following the sustain period of the immediately preceding subfield. Further, the control signal OC1 is also maintained at “Hi” after the sustain period of the immediately preceding subfield.
 したがって、制御信号OC1および制御信号OC1’が「Hi」、制御信号OC2が「Lo」なので、全ての走査IC95は「All―Lo」状態となる。これにより、全ての走査IC95の出力端子から基準電位Aが出力される。すなわち、全ての走査IC95の出力端子から、傾斜波形電圧発生回路60から出力される駆動電圧がそのまま出力される。 Therefore, since the control signal OC1 and the control signal OC1 'are “Hi” and the control signal OC2 is “Lo”, all the scan ICs 95 are in the “All-Lo” state. As a result, the reference potential A is output from the output terminals of all the scan ICs 95. That is, the drive voltage output from the ramp waveform voltage generation circuit 60 is output as it is from the output terminals of all the scan ICs 95.
 そして、下り傾斜波形電圧を発生するミラー積分回路63の入力端子IN63に所定の電圧を印加して、入力端子IN63を「Hi」にする。これにより、トランジスタQ63のドレイン電圧がランプ状に下降して基準電位Aの電位がランプ状に下降し、走査IC95の出力電圧もランプ状に下降し始める。 Then, a predetermined voltage is applied to the input terminal IN63 of the Miller integrating circuit 63 that generates the downward ramp waveform voltage, and the input terminal IN63 is set to “Hi”. As a result, the drain voltage of the transistor Q63 decreases in a ramp shape, the potential of the reference potential A decreases in a ramp shape, and the output voltage of the scan IC 95 also starts to decrease in a ramp shape.
 比較器CP1では、この基準電位Aにおける下りランプ波形と電圧(Va+Vset2)とが比較されている。したがって、比較器CP1から出力される制御信号OC2は、基準電位Aにおける下りランプ波形が電圧(Va+Vset2)以下となる時刻t5において「Lo」から「Hi」に切換わる。 In the comparator CP1, the down-ramp waveform at the reference potential A and the voltage (Va + Vset2) are compared. Therefore, the control signal OC2 output from the comparator CP1 switches from “Lo” to “Hi” at time t5 when the down-ramp waveform at the reference potential A becomes equal to or lower than the voltage (Va + Vset2).
 これにより、制御信号OC1、制御信号OC2はともに「Hi」となり、第1の走査IC群は「All―Hi」状態となる。したがって、第1の走査IC群は、入力端子INbに入力される電圧を出力する。すなわち、第1の走査IC群は、基準電位Aに電圧Vpが重畳された電圧を出力する。 Thereby, both the control signal OC1 and the control signal OC2 are set to “Hi”, and the first scan IC group is set to the “All-Hi” state. Therefore, the first scan IC group outputs a voltage input to the input terminal INb. That is, the first scan IC group outputs a voltage in which the voltage Vp is superimposed on the reference potential A.
 これにより、第1の走査電極群に属する走査電極SC1~走査電極SCn/2に印加される下りランプ波形は、到達電位が電圧(Va+Vset2)の下りランプ電圧L4となる。 As a result, the down-ramp waveform applied to scan electrode SC1 to scan electrode SCn / 2 belonging to the first scan electrode group becomes down-ramp voltage L4 with an ultimate potential of voltage (Va + Vset2).
 そして、本実施の形態においては、初期化期間開始直後に走査開始信号SID(1)を「Lo」にしておく。比較器CP2においては、基準電位Aと電圧(Va+Vset5)とが比較される。したがって、比較器CP2から出力される信号CPOは、基準電位Aが電圧(Va+Vset5)以下となる時刻t4で「Lo」となる。 In this embodiment, the scanning start signal SID (1) is set to “Lo” immediately after the initialization period starts. In the comparator CP2, the reference potential A is compared with the voltage (Va + Vset5). Therefore, the signal CPO output from the comparator CP2 becomes “Lo” at time t4 when the reference potential A becomes equal to or lower than the voltage (Va + Vset5).
 このとき、走査開始信号SID(1)は「Lo」なので、オアゲートORからは「Lo」が出力される。これによりアンドゲートAGから出力される制御信号OC1’は「Lo」となる。 At this time, since the scanning start signal SID (1) is “Lo”, “Lo” is output from the OR gate OR. As a result, the control signal OC1 'output from the AND gate AG becomes "Lo".
 これにより、制御信号OC1’、制御信号OC2ともに「Lo」となり、第2の走査IC群に属する走査IC95(7)~走査IC95(12)は「HiZ」状態となる。すなわち、走査IC95(7)~走査IC95(12)の出力電圧は、時刻t4時点の出力電圧がそのまま保持された電圧となる。 Thereby, both the control signal OC1 'and the control signal OC2 become "Lo", and the scan ICs 95 (7) to 95 (12) belonging to the second scan IC group are in the "HiZ" state. That is, the output voltages of scan IC 95 (7) to scan IC 95 (12) are voltages in which the output voltage at time t4 is held as it is.
 したがって、第2の走査電極群に属する走査電極SCn/2+1~走査電極SCnに印加される下りランプ波形は、到達電位が電圧(Va+Vset5)の下りランプ電圧L8となる。 Therefore, the down-ramp waveform applied to scan electrode SCn / 2 + 1 to scan electrode SCn belonging to the second scan electrode group is a down-ramp voltage L8 having an ultimate potential of voltage (Va + Vset5).
 そして、初期化期間が終了する時刻t6の前に、入力端子IN63に、例えば電圧0(V)を印加して、入力端子IN63を「Lo」にする。 Then, before time t6 when the initialization period ends, for example, a voltage of 0 (V) is applied to the input terminal IN63, and the input terminal IN63 is set to “Lo”.
 (書込み期間)
 書込み期間では、図示はしていないが、スイッチング素子Q72をオンにして、基準電位Aを負の電圧Vaに維持する。また、スイッチング素子SW2はオンにし、スイッチング素子SW1、スイッチング素子SW3はオフにする。これにより、比較器CP1において、基準電位Aと電圧(Va+Vset3)とが比較されるようにしておく。
(Writing period)
In the address period, although not shown, the switching element Q72 is turned on to maintain the reference potential A at the negative voltage Va. Further, the switching element SW2 is turned on, and the switching element SW1 and the switching element SW3 are turned off. As a result, the comparator CP1 compares the reference potential A with the voltage (Va + Vset3).
 このとき、基準電位Aは負の電圧Vaに等しく、基準電位Aの方が電圧(Va+Vset3)よりも電位が低いので、比較器CP1から出力される制御信号OC2は「Hi」となる。 At this time, since the reference potential A is equal to the negative voltage Va, and the reference potential A is lower in potential than the voltage (Va + Vset3), the control signal OC2 output from the comparator CP1 becomes “Hi”.
 また、時刻t6で制御信号OC1を「Lo」にする。したがって、アンドゲートAGから出力される制御信号OC1’も「Lo」となる。これにより、全ての走査IC95は「DATA」状態となる。すなわち、走査IC95は、走査開始信号により書込み動作を開始する状態となる。 Also, the control signal OC1 is set to “Lo” at time t6. Therefore, the control signal OC1 'output from the AND gate AG is also "Lo". As a result, all the scan ICs 95 are in the “DATA” state. That is, the scan IC 95 enters a state in which an address operation is started by a scan start signal.
 書込み期間の前半では、まず先に、第1の走査電極群に属する走査電極SC1~走査電極SCn/2に順次走査パルスを印加する。そのために、書込み期間開始直後の時刻t7において走査開始信号SIU(1)を所定の期間(例えば、クロック信号CLKの1周期分)「Lo」にする。 In the first half of the address period, first, scan pulses are sequentially applied to scan electrode SC1 to scan electrode SCn / 2 belonging to the first scan electrode group. For this purpose, the scanning start signal SIU (1) is set to “Lo” for a predetermined period (for example, one period of the clock signal CLK) at time t7 immediately after the start of the writing period.
 これにより、走査IC95(1)は書込み動作を開始する。したがって、走査電極SC1から順次走査パルスが印加される。 Thereby, the scanning IC 95 (1) starts the writing operation. Accordingly, scan pulses are sequentially applied from scan electrode SC1.
 走査IC95(1)からは、走査IC95(1)に接続された全ての走査電極22の書込み動作が終了するタイミングで走査開始信号SIU(2)が出力され、走査IC95(2)に供給される。これにより、走査IC95(2)は書込み動作を開始する。 A scan start signal SIU (2) is output from the scan IC 95 (1) at the timing when the write operation of all the scan electrodes 22 connected to the scan IC 95 (1) is completed, and is supplied to the scan IC 95 (2). . As a result, the scan IC 95 (2) starts an address operation.
 以降、各走査IC95は、入力された走査開始信号にもとづき書込み動作を開始するとともに新たな走査開始信号を発生して次段の走査IC95に供給する。こうして、第1の走査電極群に属する走査電極の書込み動作が順次行われる。 Thereafter, each scan IC 95 starts an address operation based on the input scan start signal, generates a new scan start signal, and supplies it to the next-stage scan IC 95. Thus, the write operation of the scan electrodes belonging to the first scan electrode group is sequentially performed.
 そして、走査電極SCn/2への走査パルスの印加が終了し第1の走査電極群に属する全ての走査電極への書込み動作が終了した後の時刻t8で、制御信号OC1を「Hi」にする。走査開始信号SID(1)は「Hi」に維持されたままなので、アンドゲートAGから出力される制御信号OC1’も「Hi」となる。 Then, at time t8 after the application of the scan pulse to the scan electrode SCn / 2 is completed and the write operation to all the scan electrodes belonging to the first scan electrode group is completed, the control signal OC1 is set to “Hi”. . Since the scanning start signal SID (1) is maintained at “Hi”, the control signal OC1 ′ output from the AND gate AG also becomes “Hi”.
 また、図示はしていないが、時刻t8でスイッチング素子Q72をオフにする。また、維持パルス発生回路50のクランプ回路のスイッチング素子Q56をオンにして、基準電位Aを電圧0(V)にする。 Although not shown, the switching element Q72 is turned off at time t8. Further, the switching element Q56 of the clamp circuit of the sustain pulse generating circuit 50 is turned on, and the reference potential A is set to voltage 0 (V).
 これにより、基準電位Aの方が電圧(Va+Vset3)よりも電位が高くなるので、比較器CP1から出力される制御信号OC2は「Lo」となる。すなわち、制御信号OC1、制御信号OC1’が「Hi」、制御信号OC2が「Lo」となって、全ての走査IC95は「All―Lo」状態となる。これにより、全ての走査IC95の出力端子から基準電位A(この時点では、電圧0(V))が出力される。 Thereby, since the reference potential A is higher in potential than the voltage (Va + Vset3), the control signal OC2 output from the comparator CP1 becomes “Lo”. That is, the control signal OC1, the control signal OC1 'are "Hi", the control signal OC2 is "Lo", and all the scan ICs 95 are in the "All-Lo" state. Accordingly, the reference potential A (voltage 0 (V) at this time) is output from the output terminals of all the scan ICs 95.
 その後の時刻t9で、下り傾斜波形電圧を発生するミラー積分回路63の入力端子IN63に所定の電圧を印加して、入力端子IN63を「Hi」にする。これにより、トランジスタQ63のドレイン電圧がランプ状に下降して基準電位Aの電位がランプ状に下降し、走査IC95の出力電圧も電圧0(V)からランプ状に下降し始める。 At a subsequent time t9, a predetermined voltage is applied to the input terminal IN63 of the Miller integrating circuit 63 that generates the downward ramp waveform voltage, and the input terminal IN63 is set to “Hi”. As a result, the drain voltage of the transistor Q63 decreases in a ramp shape, the potential of the reference potential A decreases in a ramp shape, and the output voltage of the scan IC 95 also starts to decrease in a ramp shape from the voltage 0 (V).
 比較器CP1では、この基準電位Aにおける下り傾斜波形電圧と電圧(Va+Vset3)とが比較されている。したがって、比較器CP1から出力される制御信号OC2は、基準電位Aにおける下り傾斜波形電圧が電圧(Va+Vset3)以下となる時刻t10において「Lo」から「Hi」に切換わる。 In the comparator CP1, the falling ramp waveform voltage at the reference potential A is compared with the voltage (Va + Vset3). Therefore, the control signal OC2 output from the comparator CP1 switches from “Lo” to “Hi” at time t10 when the downward ramp waveform voltage at the reference potential A becomes equal to or lower than the voltage (Va + Vset3).
 これにより、制御信号OC1、制御信号OC1’、制御信号OC2がともに「Hi」となり、全ての走査IC95は「All―Hi」状態となる。したがって、全ての走査IC95は入力端子INbに入力される電圧(基準電位Aに電圧Vpが重畳された電圧)を出力する。 As a result, the control signal OC1, the control signal OC1 ', and the control signal OC2 are all "Hi", and all the scan ICs 95 are in the "All-Hi" state. Accordingly, all the scan ICs 95 output a voltage input to the input terminal INb (a voltage obtained by superimposing the voltage Vp on the reference potential A).
 これにより、走査電極SC1~走査電極SCnに印加される下り傾斜波形電圧は、到達電位が電圧(Va+Vset3)の下りランプ電圧L9となる。 As a result, the downward ramp waveform voltage applied to scan electrode SC1 through scan electrode SCn becomes the down-ramp voltage L9 having an ultimate potential of voltage (Va + Vset3).
 そして、下りランプ電圧L9を発生した後の時刻t11で、入力端子IN63を「Lo」にする。 Then, at time t11 after generating the down-ramp voltage L9, the input terminal IN63 is set to “Lo”.
 以上のようにして、走査電極駆動回路43は、下りランプ電圧L9を発生する。そして、第2の走査電極群への書込み動作を開始する直前に、第2の放電セル群に初期化放電を発生する。 As described above, the scan electrode driving circuit 43 generates the down-ramp voltage L9. Then, immediately before the address operation to the second scan electrode group is started, an initializing discharge is generated in the second discharge cell group.
 また、時刻t11では、図示はしていないが、スイッチング素子Q72をオンにして基準電位Aを負の電圧Vaに維持する。したがって、基準電位Aの方が電圧(Va+Vset3)よりも電位が低くなり、比較器CP1から出力される制御信号OC2は「Hi」となる。 At time t11, although not shown, the switching element Q72 is turned on to maintain the reference potential A at the negative voltage Va. Therefore, the reference potential A is lower than the voltage (Va + Vset3), and the control signal OC2 output from the comparator CP1 is “Hi”.
 また、時刻t11では制御信号OC1を「Lo」にする。したがって、アンドゲートAGから出力される制御信号OC1’も「Lo」となる。これにより、全ての走査IC95は「DATA」状態となる。すなわち、全ての走査IC95は、走査開始信号により書込み動作を開始する状態となる。 At time t11, the control signal OC1 is set to “Lo”. Therefore, the control signal OC1 'output from the AND gate AG is also "Lo". As a result, all the scan ICs 95 are in the “DATA” state. That is, all the scan ICs 95 are in a state of starting an address operation by a scan start signal.
 書込み期間の後半では、第2の走査電極群に属する走査電極SCn/2+1~走査電極SCnに順次走査パルスを印加する。そのために、書込み期間の後半開始直後の時刻t12において走査開始信号SID(1)を所定の期間(例えば、クロック信号CLKの1周期分)「Lo」にする。これにより、走査IC95(7)は書込み動作を開始し、走査電極SCn/2+1から順次走査パルスが印加される。 In the second half of the address period, scan pulses are sequentially applied to scan electrode SCn / 2 + 1 to scan electrode SCn belonging to the second scan electrode group. For this purpose, the scanning start signal SID (1) is set to “Lo” for a predetermined period (for example, one cycle of the clock signal CLK) at time t12 immediately after the start of the second half of the writing period. As a result, the scan IC 95 (7) starts an address operation, and scan pulses are sequentially applied from the scan electrodes SCn / 2 + 1.
 以降、上述と同様の動作により、第2の走査電極群に属する走査電極の書込み動作が順次行われる。 Thereafter, the write operation of the scan electrodes belonging to the second scan electrode group is sequentially performed by the same operation as described above.
 (維持期間)
 そして、走査電極SCnへの走査パルスの印加が終了し第2の走査電極群に属する全ての走査電極への書込み動作が終了して書込み期間が終了した後の時刻t13で、制御信号OC1を「Hi」にする。走査開始信号SID(1)は「Hi」に維持されたままなので、アンドゲートAGから出力される制御信号OC1’も「Hi」となる。
(Maintenance period)
Then, at time t13 after the application of the scan pulse to the scan electrode SCn is finished and the write operation to all the scan electrodes belonging to the second scan electrode group is finished and the write period is finished, the control signal OC1 is changed to “ Hi ”. Since the scanning start signal SID (1) is maintained at “Hi”, the control signal OC1 ′ output from the AND gate AG also becomes “Hi”.
 また、図示はしていないが、時刻t13でスイッチング素子Q72をオフにする。また、維持パルス発生回路50のクランプ回路のスイッチング素子Q56をオンにして、基準電位Aを電圧0(V)にする。 Although not shown, the switching element Q72 is turned off at time t13. Further, the switching element Q56 of the clamp circuit of the sustain pulse generating circuit 50 is turned on, and the reference potential A is set to voltage 0 (V).
 これにより、基準電位Aの方が電圧(Va+Vset3)よりも電位が高くなり、比較器CP1から出力される制御信号OC2は「Lo」となる。 As a result, the reference potential A becomes higher than the voltage (Va + Vset3), and the control signal OC2 output from the comparator CP1 becomes “Lo”.
 したがって、制御信号OC1、制御信号OC1’が「Hi」であり、制御信号OC2が「Lo」となるので、全ての走査IC95は「All―Lo」状態となる。これにより、全ての走査IC95の出力端子からは基準電位A(本実施の形態では、電圧0(V))が出力される。 Therefore, since the control signal OC1 and the control signal OC1 'are “Hi” and the control signal OC2 is “Lo”, all the scan ICs 95 are in the “All-Lo” state. Thereby, the reference potential A (voltage 0 (V) in the present embodiment) is output from the output terminals of all the scan ICs 95.
 続いて、詳細は省略するが、維持パルス発生回路50の電力回収回路およびクランプ回路を交互に動作させ、あらかじめ定められた回数の維持パルスを発生する。そして、維持期間の最後に、上り消去ランプ電圧L3を発生する。こうして、維持期間が終了する。 Subsequently, although not described in detail, the power recovery circuit and the clamp circuit of the sustain pulse generating circuit 50 are alternately operated to generate a predetermined number of sustain pulses. Then, at the end of the sustain period, an upstream erase ramp voltage L3 is generated. Thus, the maintenance period ends.
 なお、図19には示さなかったが、下りランプ電圧L10を発生するときには、ミラー積分回路63が下り傾斜波形電圧を発生する間、スイッチング素子SW2に代えてスイッチング素子SW3をオンにすればよい。こうして、比較器CP1で、基準電位Aにおける下り傾斜波形電圧と電圧(Va+Vset4)とが比較されるようにすればよい。 Although not shown in FIG. 19, when generating the ramp-down voltage L10, the switching element SW3 may be turned on instead of the switching element SW2 while the Miller integrating circuit 63 generates the downward ramp waveform voltage. Thus, the comparator CP1 may compare the downward ramp waveform voltage at the reference potential A with the voltage (Va + Vset4).
 以上のようにして、走査電極駆動回路43は、初期化期間において、第1の走査電極群に属する走査電極SC1~走査電極SCn/2には、電圧0(V)から電圧(Va+Vset2)に向かって下降する下りランプ電圧L2を印加する。また、第2の走査電極群に属する走査電極SCn/2+1~走査電極SCnには、電圧0(V)から電圧(Va+Vset5)に向かって下降する下りランプ電圧L8を印加する。また、書込み期間では、第1の走査電極群および第2の走査電極群に属する走査電極SC1~走査電極SCnに、電圧0(V)から電圧(Va+Vset3)に向かって下降する下りランプ電圧L9、または、電圧0(V)から電圧(Va+Vset4)に向かって下降する下りランプ電圧L10を印加する。 As described above, scan electrode drive circuit 43 causes scan electrode SC1 to scan electrode SCn / 2 belonging to the first scan electrode group to go from voltage 0 (V) to voltage (Va + Vset2) during the initialization period. A downward ramp voltage L2 that falls is applied. Further, a down-ramp voltage L8 that decreases from voltage 0 (V) toward voltage (Va + Vset5) is applied to scan electrode SCn / 2 + 1 to scan electrode SCn belonging to the second scan electrode group. In the address period, the ramp-down voltage L9 that decreases from the voltage 0 (V) toward the voltage (Va + Vset3) is applied to the scan electrodes SC1 to SCn belonging to the first scan electrode group and the second scan electrode group. Alternatively, the down-ramp voltage L10 that decreases from the voltage 0 (V) toward the voltage (Va + Vset4) is applied.
 図20は、本発明の実施の形態1における2相駆動動作を行うときに安定した書込み放電を発生するために必要な走査パルス電圧(振幅)と書込み動作の順番との関係を概略的に示す図である。 FIG. 20 schematically shows the relationship between the scan pulse voltage (amplitude) necessary to generate a stable address discharge and the order of address operations when performing the two-phase drive operation in the first embodiment of the present invention. FIG.
 図20の上段に示す図は、2相駆動動作を行うときの、安定した書込み放電を発生するために必要な走査パルス電圧(振幅)と書込み動作の順番との関係を概略的に示す図である。この図では、横軸は走査電極SC1~走査電極SCnの書込み動作の順番を表し、縦軸は各放電セルにおいて安定した書込み放電を発生するために必要な走査パルス電圧(振幅)を表す。 The diagram shown in the upper part of FIG. 20 is a diagram schematically showing the relationship between the scan pulse voltage (amplitude) necessary for generating a stable address discharge and the order of address operations when performing a two-phase drive operation. is there. In this figure, the horizontal axis represents the order of the address operation of scan electrode SC1 to scan electrode SCn, and the vertical axis represents the scan pulse voltage (amplitude) necessary for generating a stable address discharge in each discharge cell.
 なお、図20の上段の図に破線で示す特性は、1相駆動動作時に安定した書込み放電を発生するために必要な走査パルス電圧(振幅)である。 The characteristic indicated by the broken line in the upper diagram of FIG. 20 is the scan pulse voltage (amplitude) necessary for generating a stable address discharge during the one-phase driving operation.
 また、図20の下段に示す図は、2相駆動動作を行うときに走査電極SC1~走査電極SCnに印加する駆動波形を示す図である。この図には、書込み期間の最初に書込み動作を行う走査電極22であり第1の走査電極群に属する走査電極SC1、書込み期間のほぼ中間時点で書込み動作を行う走査電極22であり第2の走査電極群に属する走査電極SCn/2+1、書込み期間の最後に書込み動作を行う走査電極22であり第2の走査電極群に属する走査電極SCnのそれぞれに印加する駆動電圧波形を示す。 20 is a diagram showing drive waveforms applied to scan electrode SC1 through scan electrode SCn when performing a two-phase drive operation. In this figure, the scan electrode 22 that performs the address operation at the beginning of the address period and the scan electrode SC1 that belongs to the first scan electrode group, and the scan electrode 22 that performs the address operation at approximately the midpoint of the address period and the second electrode Drive voltage waveforms applied to each of the scan electrode SCn / 2 + 1 belonging to the scan electrode group and the scan electrode 22 performing the address operation at the end of the address period and belonging to the second scan electrode group are shown.
 本実施の形態において2相駆動を行うサブフィールドでは、各走査電極群において書込み動作を開始する直前に、各放電セル群毎に下りランプ電圧による初期化動作を行う。 In the subfield in which two-phase driving is performed in the present embodiment, an initialization operation with a down-ramp voltage is performed for each discharge cell group immediately before the address operation is started in each scan electrode group.
 すなわち、第1の放電セル群の各放電セルにおいては、第1の走査電極群の各走査電極22における書込み動作を開始する直前に、下りランプ電圧L4による初期化動作を行う。第2の放電セル群の各放電セルにおいては、第2の走査電極群の各走査電極22における書込み動作を開始する直前に、下りランプ電圧L9(または、下りランプ電圧L10)による初期化動作を行う。 That is, in each discharge cell of the first discharge cell group, an initialization operation with the down-ramp voltage L4 is performed immediately before starting the address operation in each scan electrode 22 of the first scan electrode group. In each discharge cell of the second discharge cell group, an initialization operation using the down-ramp voltage L9 (or the down-ramp voltage L10) is performed immediately before starting the address operation in each scan electrode 22 of the second scan electrode group. Do.
 この初期化動作により放電セル内の壁電荷を適正な状態にすることができる。したがって、図20の上段の図に実線で示すように、安定した書込み放電を発生するために必要な走査パルス電圧(振幅)を、第2の放電セル群において低減することが可能となる。 This initialization operation can bring the wall charge in the discharge cell to an appropriate state. Therefore, as indicated by a solid line in the upper diagram of FIG. 20, the scan pulse voltage (amplitude) necessary for generating a stable address discharge can be reduced in the second discharge cell group.
 そして、書込み期間の最後に書込み動作を行う放電セルにおいて、安定した書込み放電を発生するために必要な走査パルス電圧(振幅)を、2相駆動動作時には、1相駆動動作時と比較して約20(V)低減できることが実験により確認された。 In the discharge cell that performs the address operation at the end of the address period, the scan pulse voltage (amplitude) necessary for generating a stable address discharge is approximately equal to that in the one-phase drive operation in the two-phase drive operation. It was confirmed by experiment that it could be reduced by 20 (V).
 このように、本実施の形態においては、書込み期間において第2の走査電極群への書込み動作を開始する前に下りランプ電圧による初期化動作を行う。このような2相駆動動作を行うことにより、安定した書込み放電を発生するために必要な走査パルス電圧(振幅)を低減することが可能となる。したがって、書込み放電が不安定になりやすい書込み動作の順番が遅い放電セルにおいても、安定な動作に必要な電圧が増加することを防止し、安定した書込み動作を行うことが可能となる。 As described above, in this embodiment, the initialization operation using the down-ramp voltage is performed before the address operation to the second scan electrode group is started in the address period. By performing such a two-phase driving operation, it is possible to reduce the scan pulse voltage (amplitude) necessary for generating a stable address discharge. Therefore, even in a discharge cell in which the address operation is likely to become unstable, the voltage required for stable operation is prevented from increasing and a stable address operation can be performed.
 以上示したように、本実施の形態では、直前のサブフィールドにおいて発生する維持パルスの数が多く、維持放電により生成されるプライミング粒子および壁電荷が過剰に残留する可能性が高いサブフィールドでは2相駆動を行う。これにより、書込み放電が不安定になりやすい書込み動作の順番が遅い放電セルにおいても、安定な動作に必要な電圧が増加することを防止し、安定した書込み動作を行うことが可能となる。 As described above, in the present embodiment, the number of sustain pulses generated in the immediately preceding subfield is large, and in the subfield where priming particles generated by the sustain discharge and the wall charge are likely to remain excessively, 2 Perform phase drive. As a result, even in a discharge cell in which the address operation is likely to become unstable, the voltage necessary for stable operation is prevented from increasing, and a stable address operation can be performed.
 また、本実施の形態では、調整期間TSFを、直前のサブフィールドの輝度重みに応じて設定する。すなわち、直前のサブフィールドで発生する維持パルスの数が多いほど、調整期間TSFを長くする。これにより、直前のサブフィールドにおいて発生する維持パルスの数が多く、維持放電により生成されるプライミング粒子および壁電荷が過剰に残留する可能性が高いサブフィールドにおいて書込み不良の発生を低減することができる。 In this embodiment, the adjustment period TSF is set according to the luminance weight of the immediately preceding subfield. That is, the adjustment period TSF is lengthened as the number of sustain pulses generated in the immediately preceding subfield increases. As a result, the number of sustain pulses generated in the immediately preceding subfield is large, and the occurrence of defective writing can be reduced in a subfield where priming particles and wall charges generated by the sustain discharge are likely to remain excessively. .
 また、本実施の形態では、調整期間TSFの長さに応じて、初期化期間に発生する下り傾斜波形電圧(1相目下り傾斜波形電圧)の最低電圧と、書込み期間の途中で発生する下り傾斜波形電圧(2相目下り傾斜波形電圧)との電圧差を変更する。調整期間TSFの長さが短いときには、1相目下り傾斜波形電圧の最低電圧と、2相目下り傾斜波形電圧との電圧差を、調整期間TSFの長さが長いときよりも大きくする。これにより、安定した書込み動作に必要な書込みパルスの振幅が増大することを防止し、安定に書込み放電を発生することが可能となる。 Further, in the present embodiment, the minimum voltage of the downward ramp waveform voltage (first phase downward ramp waveform voltage) generated in the initialization period and the downlink generated in the middle of the writing period according to the length of the adjustment period TSF. The voltage difference with the ramp waveform voltage (second phase descending ramp waveform voltage) is changed. When the length of the adjustment period TSF is short, the voltage difference between the lowest voltage of the first-phase downward ramp waveform voltage and the second-phase downward ramp waveform voltage is made larger than when the length of the adjustment period TSF is long. As a result, it is possible to prevent the amplitude of the address pulse required for stable address operation from increasing, and to generate address discharge stably.
 また、維持期間における最後の維持パルスの発生後に、維持電極SU1~維持電極SUnおよびデータ電極D1~データ電極Dmには電圧0(V)を印加したまま、走査電極SC1~走査電極SCnには、放電開始電圧未満となる電圧0(V)から、所定電圧である電圧Vrに向かって緩やかに上昇する上り傾斜波形電圧(上り消去ランプ電圧L3)を印加する。そして、電圧Vrを、電圧Vsよりも低く、かつ、続く書込み期間で誤放電が発生しない電圧に設定する。これにより、高精細度化された大画面のパネル10を駆動する際にも安定した書込み動作を行い、品質の高い画像をパネル10に表示することが可能となる。 Further, after generation of the last sustain pulse in the sustain period, voltage 0 (V) is applied to sustain electrode SU1 through sustain electrode SUn and data electrode D1 through data electrode Dm, and scan electrode SC1 through scan electrode SCn An ascending ramp waveform voltage (ascending erasing ramp voltage L3) that gently rises from a voltage 0 (V), which is less than the discharge start voltage, toward a voltage Vr that is a predetermined voltage is applied. Then, the voltage Vr is set to a voltage that is lower than the voltage Vs and does not cause erroneous discharge in the subsequent address period. This makes it possible to perform a stable writing operation even when driving the high-definition large-screen panel 10 and display a high-quality image on the panel 10.
 (実施の形態2)
 実施の形態1では、全セル初期化動作を行う回数を1フィールドに1回にしてパネル10を駆動する例を説明した。しかし、本発明は何らこの構成に限定されるものではない。例えば、全セル初期化動作を行う回数を複数フィールドに1回にしてパネル10を駆動する構成にも適用することが可能であり、その場合にも、上述と同様の効果を得ることができる。
(Embodiment 2)
In the first embodiment, the example in which the panel 10 is driven by setting the number of times of performing the all-cell initialization operation once per field has been described. However, the present invention is not limited to this configuration. For example, the present invention can also be applied to a configuration in which the panel 10 is driven with the number of all-cell initializing operations performed once for a plurality of fields. In this case, the same effect as described above can be obtained.
 全セル初期化動作を行う回数を複数フィールドに1回にする駆動方法では、1フィールドに1回全セル初期化動作を行う構成と比較して、全セル初期化動作にともなって発生する発光を低減することができ、黒輝度(維持放電を発生しない階調の輝度)を下げ、パネル10に表示される画像のコントラストを向上することができる。 In the driving method in which the number of times of performing the all-cell initialization operation is once in a plurality of fields, the light emission generated by the all-cell initialization operation is generated as compared with the configuration in which the all-cell initialization operation is performed once per field. It is possible to reduce the black luminance (the luminance of the gradation that does not generate the sustain discharge), and the contrast of the image displayed on the panel 10 can be improved.
 以下、全セル初期化動作を行う回数を3フィールドに1回にしてパネル10を駆動する例を説明する。 Hereinafter, an example will be described in which the panel 10 is driven with the number of times of performing the all-cell initialization operation being once every three fields.
 また、本実施の形態においても、実施の形態1と同様に、サブフィールドSF1およびサブフィールドSF2では1相駆動を行い、他のサブフィールド(サブフィールドSF3~サブフィールドSF8)では2相駆動を行う。以下、まず、1相駆動の駆動電圧波形を説明し、次に、2相駆動の駆動電圧波形を説明する。 Also in the present embodiment, as in the first embodiment, one-phase driving is performed in subfield SF1 and subfield SF2, and two-phase driving is performed in the other subfields (subfield SF3 to subfield SF8). . Hereinafter, first, a driving voltage waveform for one-phase driving will be described, and then, a driving voltage waveform for two-phase driving will be described.
 図21は、本発明の実施の形態2におけるプラズマディスプレイ装置に用いるパネル10の各電極に印加する1相駆動動作時の駆動電圧波形を示す図である。 FIG. 21 is a diagram showing a drive voltage waveform during a one-phase drive operation applied to each electrode of panel 10 used in the plasma display device in accordance with the second exemplary embodiment of the present invention.
 図21には、書込み期間において最初に書込み動作を行う走査電極SC1、書込み期間において2番目に書込み動作を行う走査電極SC2、維持電極SU1~維持電極SUn、およびデータ電極D1~データ電極Dmのそれぞれに印加する駆動電圧波形を示す。 FIG. 21 shows each of scan electrode SC1 that performs an address operation first in the address period, scan electrode SC2 that performs an address operation second in the address period, sustain electrode SU1 to sustain electrode SUn, and data electrode D1 to data electrode Dm. The drive voltage waveform applied to is shown.
 本実施の形態において、サブフィールドSF1は、強制初期化動作を行う放電セルと強制初期化動作を行わない放電セルとが存在する第1種サブフィールドである。また、サブフィールドSF2からサブフィールドSF8は、全ての放電セルで選択初期化動作を行う第2種サブフィールドである。 In the present embodiment, the subfield SF1 is a first type subfield in which there are discharge cells that perform the forced initialization operation and discharge cells that do not perform the forced initialization operation. Further, subfield SF2 to subfield SF8 are second type subfields for performing selective initialization operation in all discharge cells.
 強制初期化動作は、直前のサブフィールドにおける書込み放電(維持放電)の発生の有無にかかわらず放電セルで強制的に初期化放電を発生する初期化動作であり、実施の形態1で説明した全セル初期化動作と同じ初期化動作である。したがって、強制初期化動作で各電極に印加する駆動電圧波形は、全セル初期化期間において各電極に印加する全セル初期化波形に等しい。 The forced initializing operation is an initializing operation for forcibly generating an initializing discharge in a discharge cell regardless of the occurrence of address discharge (sustain discharge) in the immediately preceding subfield. This is the same initialization operation as the cell initialization operation. Therefore, the drive voltage waveform applied to each electrode in the forced initialization operation is equal to the all-cell initialization waveform applied to each electrode in the all-cell initialization period.
 なお、図21には、サブフィールドSF1の初期化期間において、走査電極SC1上に形成された放電セルでは強制初期化動作を行い、走査電極SC2上に形成された放電セルでは強制初期化動作を行わず選択初期化動作を行うときの駆動電圧波形を示す。 In FIG. 21, in the initializing period of subfield SF1, the discharge cell formed on scan electrode SC1 performs a forced initialization operation, and the discharge cell formed on scan electrode SC2 performs a forced initialization operation. The drive voltage waveform when performing the selective initialization operation without performing is shown.
 第1種サブフィールドであるサブフィールドSF1の初期化期間の前半部では、データ電極D1~データ電極Dmに電圧0(V)を印加し、維持電極SU1~SUnにも電圧0(V)を印加する。そして、強制初期化動作を行う走査電極SC1には、実施の形態1に示した全セル初期化波形と同様の波形形状の駆動電圧波形を印加する。 In the first half of the initializing period of the first type subfield SF1, the voltage 0 (V) is applied to the data electrodes D1 to Dm, and the voltage 0 (V) is also applied to the sustain electrodes SU1 to SUn. To do. Then, a drive voltage waveform having the same waveform shape as the all-cell initialization waveform shown in the first embodiment is applied to scan electrode SC1 that performs the forced initialization operation.
 これにより、走査電極SC1上に形成された放電セルにおいては、実施の形態1に示した全セル初期化動作と同様の初期化動作が行われ、直前のサブフィールドにおける書込み放電(維持放電)の発生の有無にかかわらず放電セルに初期化放電が発生する。 As a result, in the discharge cells formed on scan electrode SC1, the initialization operation similar to the all-cell initialization operation shown in the first embodiment is performed, and the address discharge (sustain discharge) in the immediately preceding subfield is performed. An initializing discharge is generated in the discharge cell regardless of whether or not it occurs.
 一方、強制初期化動作を行わない走査電極SC2には、電圧0(V)から、電圧Vi2よりも低い電圧Vi5まで緩やかに上昇する上り傾斜波形電圧(上りランプ電圧L5)を印加する。電圧Vi5を放電開始電圧未満の電圧に設定することで、走査電極SC2上に形成された放電セルでは、初期化放電は発生しない。 On the other hand, an up-slope waveform voltage (up-ramp voltage L5) that gently rises from voltage 0 (V) to voltage Vi5 lower than voltage Vi2 is applied to scan electrode SC2 that does not perform the forced initialization operation. By setting the voltage Vi5 to a voltage lower than the discharge start voltage, the initialization discharge is not generated in the discharge cells formed on the scan electrode SC2.
 このように、サブフィールドSF1の初期化期間の前半部では、強制初期化動作を行う走査電極22(例えば、走査電極SC1)には、直前のサブフィールドにおける書込み放電(維持放電)の発生の有無にかかわらず放電が発生する電圧Vi2に向かって緩やかに上昇する上り傾斜波形電圧(上りランプ電圧L1)を印加する。また、強制初期化動作を行わない走査電極22(例えば、走査電極SC2)には、電圧Vi2よりも低い電圧Vi5に向かって緩やかに上昇する上り傾斜波形電圧(上りランプ電圧L5)を印加する。 As described above, in the first half of the initialization period of the subfield SF1, the scan electrode 22 (for example, the scan electrode SC1) that performs the forced initialization operation has an occurrence of the address discharge (sustain discharge) in the immediately preceding subfield. Regardless, an upward ramp waveform voltage (up-ramp voltage L1) that gently rises toward the voltage Vi2 at which discharge occurs is applied. In addition, an up-slope waveform voltage (up-ramp voltage L5) that gently rises toward voltage Vi5 lower than voltage Vi2 is applied to scan electrode 22 (for example, scan electrode SC2) that does not perform the forced initialization operation.
 サブフィールドSF1の初期化期間の後半部では、実施の形態1に示した全セル初期化期間の後半部と同様の波形形状の駆動電圧波形を各電極に印加する。このとき、強制初期化動作を行う走査電極22に印加する駆動電圧波形と強制初期化動作を行わない走査電極22に印加する駆動電圧波形とは同じ波形形状である。 In the second half of the initialization period of the subfield SF1, a drive voltage waveform having the same waveform shape as that of the second half of the all-cell initialization period shown in the first embodiment is applied to each electrode. At this time, the drive voltage waveform applied to the scan electrode 22 that performs the forced initialization operation and the drive voltage waveform applied to the scan electrode 22 that does not perform the forced initialization operation have the same waveform shape.
 これにより、強制初期化動作を行った放電セル(例えば、走査電極SC1上に形成された放電セル)では、微弱な初期化放電が発生する。 As a result, a weak initialization discharge is generated in the discharge cell (for example, the discharge cell formed on the scan electrode SC1) that has been subjected to the forced initialization operation.
 一方、強制初期化動作を行わなかった放電セル(例えば、走査電極SC2上に形成された放電セル)では、直前のサブフィールド、すなわち、直前のフィールドの最終サブフィールド(例えば、サブフィールドSF8)で書込み放電(維持放電)を発生した放電セルだけに、微弱な初期化放電が発生する。直前のサブフィールドで書込み放電(維持放電)を発生しなかった放電セルでは初期化放電は発生せず、それ以前の壁電圧が保持される。 On the other hand, in a discharge cell that has not been subjected to the forced initialization operation (for example, a discharge cell formed on scan electrode SC2), in the immediately preceding subfield, that is, the last subfield of the immediately preceding field (for example, subfield SF8). A weak initialization discharge is generated only in the discharge cells that have generated the address discharge (sustain discharge). In the discharge cell that did not generate the address discharge (sustain discharge) in the immediately preceding subfield, the initialization discharge does not occur, and the previous wall voltage is maintained.
 したがって、強制初期化動作を行わない放電セルにおいて行う初期化動作は選択初期化動作となる。 Therefore, the initialization operation performed in the discharge cell that does not perform the forced initialization operation is the selective initialization operation.
 このように、第1種サブフィールド(サブフィールドSF1)では、初期化期間において、強制初期化動作を行う放電セルと選択初期化動作を行う放電セルとが混在する。 Thus, in the first type subfield (subfield SF1), the discharge cells that perform the forced initialization operation and the discharge cells that perform the selective initialization operation coexist in the initialization period.
 そして、強制初期化動作を行う放電セルの走査電極22には、全セル初期化波形と同じ波形形状の初期化波形を印加する。すなわち、強制初期化動作を行う放電セルの走査電極22には、上りランプ電圧L1と下りランプ電圧L2とを印加する。上りランプ電圧L1は、直前のサブフィールドにおける書込み放電(維持放電)の発生の有無にかかわらず放電セルに初期化放電が発生する電圧Vi2まで上昇する上り傾斜波形電圧である。下りランプ電圧L2は、放電が発生する電圧Vi4まで下降する下り傾斜波形電圧である。 Then, an initialization waveform having the same waveform shape as the all-cell initialization waveform is applied to the scan electrode 22 of the discharge cell that performs the forced initialization operation. That is, the up-ramp voltage L1 and the down-ramp voltage L2 are applied to the scan electrode 22 of the discharge cell that performs the forced initialization operation. The up-ramp voltage L1 is an up-slope waveform voltage that rises to a voltage Vi2 at which an initializing discharge is generated in the discharge cell regardless of whether an address discharge (sustain discharge) has occurred in the immediately preceding subfield. The down-ramp voltage L2 is a down-slope waveform voltage that drops to the voltage Vi4 at which discharge occurs.
 また、強制初期化動作を行わない放電セルの走査電極22には、上りランプ電圧L5と下りランプ電圧L2とを印加する。上りランプ電圧L5は、電圧Vi2よりも低く放電セルに初期化放電が発生しない電圧Vi5まで上昇する上り傾斜波形電圧である。下りランプ電圧L2は、電圧Vi4まで下降する下り傾斜波形電圧である。 Also, the up-ramp voltage L5 and the down-ramp voltage L2 are applied to the scan electrodes 22 of the discharge cells that do not perform the forced initialization operation. The up-ramp voltage L5 is an up-slope waveform voltage that is lower than the voltage Vi2 and rises to a voltage Vi5 that does not generate an initialization discharge in the discharge cell. The downward ramp voltage L2 is a downward ramp waveform voltage that decreases to the voltage Vi4.
 以下、強制初期化動作を行う期間を「強制初期化期間」と記す。また、強制初期化動作を行うために発生する駆動電圧波形を「強制初期化波形」と記す。 Hereinafter, the period during which forced initialization is performed is referred to as “forced initialization period”. A drive voltage waveform generated for performing the forced initialization operation is referred to as a “forced initialization waveform”.
 続くサブフィールドSF1の書込み期間および維持期間における動作は、実施の形態1と同じである。 The operation in the subsequent writing period and sustaining period of subfield SF1 is the same as in the first embodiment.
 すなわち、維持期間における最後の維持パルスの発生後に、維持電極SU1~維持電極SUnおよびデータ電極D1~データ電極Dmには電圧0(V)を印加したまま、走査電極SC1~走査電極SCnには、放電開始電圧未満となる電圧0(V)から、所定電圧である電圧Vrに向かって緩やかに上昇する上り傾斜波形電圧(上り消去ランプ電圧L3)を印加する。そして、電圧Vrを、電圧Vsよりも低く、かつ、続く書込み期間で誤放電が発生しない電圧に設定する。 That is, after generation of the last sustain pulse in the sustain period, voltage 0 (V) is applied to sustain electrode SU1 through sustain electrode SUn and data electrode D1 through data electrode Dm, and scan electrode SC1 through scan electrode SCn An ascending ramp waveform voltage (ascending erasing ramp voltage L3) that gently rises from a voltage 0 (V), which is less than the discharge start voltage, toward a voltage Vr that is a predetermined voltage is applied. Then, the voltage Vr is set to a voltage that is lower than the voltage Vs and does not cause erroneous discharge in the subsequent address period.
 続く選択初期化サブフィールドであるサブフィールドSF2は、初期化期間において全ての放電セルで選択初期化動作を行う第2種サブフィールドである。 Subfield SF2, which is a subsequent selective initialization subfield, is a second type subfield in which selective initialization operation is performed in all discharge cells in the initialization period.
 サブフィールドSF2の初期化期間(選択初期化期間)では、実施の形態1の選択初期化期間に示した駆動電圧波形と同じ波形形状の駆動電圧波形を各電極に印加してもよい。しかし、走査電極SC1~走査電極SCnに印加する下り傾斜波形電圧の最低電圧を、下りランプ電圧L2の最低電圧である電圧Vi4よりも高く設定してもよい。 In the initializing period (selective initializing period) of the subfield SF2, a driving voltage waveform having the same waveform shape as the driving voltage waveform shown in the selective initializing period of the first embodiment may be applied to each electrode. However, the minimum voltage of the downward ramp waveform voltage applied to scan electrode SC1 through scan electrode SCn may be set higher than voltage Vi4, which is the minimum voltage of down-ramp voltage L2.
 本実施の形態においては、選択初期化期間に、走査電極SC1~走査電極SCnに印加する下り傾斜波形電圧の最低電圧を、電圧Vi4よりも電圧値の高い電圧Vi6とし、電圧Vi3’から電圧Vi6まで下降する下り傾斜波形電圧(以下、「下りランプ電圧L6」と呼称する)を走査電極SC1~走査電極SCnに印加する例を説明する。 In the present embodiment, the minimum voltage of the downward ramp waveform voltage applied to scan electrode SC1 through scan electrode SCn in the selective initialization period is set to voltage Vi6 having a voltage value higher than voltage Vi4, and voltage Vi3 ′ to voltage Vi6. A description will be given of an example in which a downward ramp waveform voltage (hereinafter referred to as “down-ramp voltage L6”) that falls to the above is applied to scan electrode SC1 through scan electrode SCn.
 なお、この下り傾斜波形電圧は、実施の形態1に示した第1の下り傾斜波形電圧と同様の働きを有するので、この下り傾斜波形電圧(下りランプ電圧L6)も第1の下り傾斜波形電圧とする。 Since this down-slope waveform voltage has the same function as the first down-slope waveform voltage shown in the first embodiment, this down-slope waveform voltage (down-ramp voltage L6) is also the first down-slope waveform voltage. And
 サブフィールドSF2の初期化期間では、維持電極SU1~維持電極SUnには、電圧Veよりも電圧値の高い電圧Vhを印加する。走査電極SC1~走査電極SCnには、放電開始電圧未満となる電圧Vi3’(例えば、電圧0(V))から放電開始電圧を超える負の電圧Vi6に向かって緩やかに下降する下り傾斜波形電圧(下りランプ電圧L6)を印加する。 In the initialization period of subfield SF2, voltage Vh having a voltage value higher than voltage Ve is applied to sustain electrode SU1 through sustain electrode SUn. Scan electrode SC1 to scan electrode SCn have a downward ramp waveform voltage (gradiently decreasing from voltage Vi3 ′ (eg, voltage 0 (V)), which is less than the discharge start voltage, to negative voltage Vi6, which exceeds the discharge start voltage. A down-ramp voltage L6) is applied.
 この下りランプ電圧L6の勾配は下りランプ電圧L2の勾配と同じであってもよく、その一例として、例えば、約-2.5V/μsecという数値を挙げることができる。 The slope of the down-ramp voltage L6 may be the same as the slope of the down-ramp voltage L2, and an example thereof is a numerical value of about −2.5 V / μsec.
 また、電圧Vi6は、電圧Vaに電圧Vset6を重畳することで発生することができる。 The voltage Vi6 can be generated by superimposing the voltage Vset6 on the voltage Va.
 そして、走査電極SC1~走査電極SCnに下りランプ電圧L6を印加する期間は、データ電極D1~データ電極Dmに、第1の電圧(電圧0(V))よりも電圧値の高い第2の電圧(正の電圧Vg)を印加する。 During the period in which down-ramp voltage L6 is applied to scan electrode SC1 through scan electrode SCn, a second voltage having a voltage value higher than the first voltage (voltage 0 (V)) is applied to data electrode D1 through data electrode Dm. (Positive voltage Vg) is applied.
 下りランプ電圧L6の最低電圧である電圧Vi6は、上述したように、下りランプ電圧L2の最低電圧である電圧Vi4よりも高く、かつ直前のサブフィールドで書込み放電(維持放電)を発生した放電セルだけに放電が発生する電圧に設定する。このとき、電圧Vgと電圧Vi6との差分の電圧(放電セルに印加される電圧)が、電圧Vi4と同程度の電圧になるように電圧Vi6を設定することが望ましい。 As described above, the voltage Vi6 that is the lowest voltage of the down-ramp voltage L6 is higher than the voltage Vi4 that is the lowest voltage of the down-ramp voltage L2, and the discharge cell that has generated the address discharge (sustain discharge) in the immediately preceding subfield. Only the voltage at which discharge occurs is set. At this time, it is desirable to set the voltage Vi6 so that the voltage difference between the voltage Vg and the voltage Vi6 (the voltage applied to the discharge cell) is approximately the same as the voltage Vi4.
 続くサブフィールドSF2の書込み期間および維持期間における動作は、実施の形態1に示した駆動電圧波形と同じである。 The operation in the subsequent writing period and sustaining period of the subfield SF2 is the same as the driving voltage waveform shown in the first embodiment.
 すなわち、維持期間における最後の維持パルスの発生後に、維持電極SU1~維持電極SUnおよびデータ電極D1~データ電極Dmには電圧0(V)を印加したまま、走査電極SC1~走査電極SCnには、放電開始電圧未満となる電圧0(V)から、所定電圧である電圧Vrに向かって緩やかに上昇する上り傾斜波形電圧(上り消去ランプ電圧L3)を印加する。そして、電圧Vrを、電圧Vsよりも低く、かつ、続く書込み期間で誤放電が発生しない電圧に設定する。 That is, after generation of the last sustain pulse in the sustain period, voltage 0 (V) is applied to sustain electrode SU1 through sustain electrode SUn and data electrode D1 through data electrode Dm, and scan electrode SC1 through scan electrode SCn An ascending ramp waveform voltage (ascending erasing ramp voltage L3) that gently rises from a voltage 0 (V), which is less than the discharge start voltage, toward a voltage Vr that is a predetermined voltage is applied. Then, the voltage Vr is set to a voltage that is lower than the voltage Vs and does not cause erroneous discharge in the subsequent address period.
 以上が、本実施の形態において、画像を表示する際にパネル10の各電極に印加する1相駆動動作時の駆動電圧波形の概要である。 The above is the outline of the driving voltage waveform during the one-phase driving operation applied to each electrode of the panel 10 when displaying an image in the present embodiment.
 本実施の形態では、サブフィールドSF1とサブフィールドSF2では、1相駆動動作を行う。そして、サブフィールドSF3からサブフィールドSF8では、2相駆動動作を行う。 In the present embodiment, a one-phase driving operation is performed in the subfield SF1 and the subfield SF2. In subfield SF3 to subfield SF8, a two-phase driving operation is performed.
 次に、本実施の形態における2相駆動動作時の駆動電圧波形を説明する。 Next, driving voltage waveforms during the two-phase driving operation in the present embodiment will be described.
 図22は、本発明の実施の形態2におけるプラズマディスプレイ装置に用いるパネル10の各電極に印加する2相駆動動作時の駆動電圧波形を示す図である。 FIG. 22 is a diagram showing a driving voltage waveform during a two-phase driving operation applied to each electrode of the panel 10 used in the plasma display device in accordance with the second exemplary embodiment of the present invention.
 なお、図22には、書込み期間の最初に書込み動作を行う走査電極22であり第1の走査電極群に属する走査電極SC1、第1の走査電極群のうち最後に書込み動作を行う走査電極22である走査電極SCn/2(例えば、走査電極SC540)、第2の走査電極群のうち最初に書込み動作を行う走査電極22である走査電極SCn/2+1(例えば、走査電極SC541)、書込み期間の最後に書込み動作を行う走査電極22であり第2の走査電極群に属する走査電極SCn(例えば、走査電極SC1080)、維持電極SU1~維持電極SUn、およびデータ電極D1~データ電極Dmのそれぞれに印加する駆動電圧波形を示す。 In FIG. 22, the scan electrode 22 that performs the address operation at the beginning of the address period, the scan electrode SC1 that belongs to the first scan electrode group, and the scan electrode 22 that performs the address operation at the end of the first scan electrode group. Scan electrode SCn / 2 (for example, scan electrode SC540), scan electrode SCn / 2 + 1 (for example, scan electrode SC541) that is the scan electrode 22 that performs the address operation first in the second scan electrode group, and the address period Finally, scan electrode 22 that performs an address operation is applied to each of scan electrode SCn (for example, scan electrode SC1080) belonging to the second scan electrode group, sustain electrode SU1 through sustain electrode SUn, and data electrode D1 through data electrode Dm. The drive voltage waveform to be shown is shown.
 図22に示す2相駆動動作時の駆動電圧波形は、図5に示した2相駆動動作時の駆動電圧波形とほぼ等しい。ただし、下り初期化波形電圧の最低電圧および初期化動作時にデータ電極32および維持電極23に印加する電圧が、図5に示した2相駆動動作時の駆動電圧波形とは異なる。 The drive voltage waveform during the two-phase drive operation shown in FIG. 22 is substantially equal to the drive voltage waveform during the two-phase drive operation shown in FIG. However, the lowest voltage of the downward initialization waveform voltage and the voltage applied to the data electrode 32 and the sustain electrode 23 during the initialization operation are different from the drive voltage waveform during the two-phase drive operation shown in FIG.
 サブフィールドSF3、サブフィールドSF4の初期化期間において、第1の走査電極群に属する走査電極SC1~走査電極SCn/2には、選択初期化波形として説明した下りランプ電圧L6と同じ波形形状の駆動電圧波形を印加する。したがって、以下、この駆動電圧波形も、「第1の下り傾斜波形電圧」と呼称する。 In the initializing period of subfield SF3 and subfield SF4, scan electrode SC1 to scan electrode SCn / 2 belonging to the first scan electrode group has the same waveform shape as that of down-ramp voltage L6 described as the selective initializing waveform. Apply voltage waveform. Therefore, hereinafter, this drive voltage waveform is also referred to as “first downward ramp waveform voltage”.
 すなわち、この第1の下り傾斜波形電圧(下りランプ電圧L6)は、維持電極SU1~維持電極SUn/2に対して放電開始電圧未満となる電圧Vi3’から放電開始電圧を超える負の電圧Vi6、すなわち、電圧Va+電圧Vset6まで下降する傾斜波形電圧である。そして、この下りランプ電圧L6は1相目下り傾斜波形電圧である。 That is, the first downward ramp waveform voltage (down-ramp voltage L6) is a negative voltage Vi6 that exceeds the discharge start voltage from voltage Vi3 ′ that is less than the discharge start voltage with respect to sustain electrode SU1 to sustain electrode SUn / 2. That is, it is a ramp waveform voltage that drops to voltage Va + voltage Vset6. The down-ramp voltage L6 is a first-phase down-slope waveform voltage.
 第2の走査電極群に属する走査電極SCn/2+1~走査電極SCnには、電圧Vi3’から負の電圧(Va+Vset5)に向かって緩やかに下降する第2の下り傾斜波形電圧(下りランプ電圧L8)を印加する。 For scan electrode SCn / 2 + 1 to scan electrode SCn belonging to the second scan electrode group, a second down-gradient waveform voltage (down-ramp voltage L8) that gently falls from voltage Vi3 ′ toward negative voltage (Va + Vset5). Apply.
 そして、走査電極22に下り傾斜波形電圧を印加する期間は、サブフィールドSF2の初期化期間と同様に、維持電極SU1~維持電極SUnに、電圧Veよりも電圧値の高い電圧Vhを印加し、データ電極D1~データ電極Dmに、第1の電圧(電圧0(V))よりも電圧値の高い第2の電圧(正の電圧Vg)を印加する。 During the period in which the downward ramp waveform voltage is applied to scan electrode 22, voltage Vh having a voltage value higher than voltage Ve is applied to sustain electrode SU1 through sustain electrode SUn, similar to the initialization period of subfield SF2. A second voltage (positive voltage Vg) having a voltage value higher than that of the first voltage (voltage 0 (V)) is applied to the data electrodes D1 to Dm.
 第1の走査電極群への書込み動作が終了した後は、第2の走査電極群への書込み動作を開始する前に、第3の下り傾斜波形電圧を第2の走査電極群に印加する。第3の下り傾斜波形電圧は、放電開始電圧未満となるベース電位である電圧0(V)から負の電圧(Va+Vset7)に向かって緩やかに下降する下り傾斜波形電圧である。 After the write operation to the first scan electrode group is completed, the third downward ramp waveform voltage is applied to the second scan electrode group before the write operation to the second scan electrode group is started. The third downward ramp waveform voltage is a downward ramp waveform voltage that gradually falls from the voltage 0 (V), which is the base potential that is less than the discharge start voltage, toward the negative voltage (Va + Vset7).
 そして、本実施の形態では、第3の下り傾斜波形電圧を第2の走査電極群に印加するとき、同じ第3の下り傾斜波形電圧を第1の走査電極群にも印加する。この理由は、実施の形態1で説明した通りである。そして、この第3の下り傾斜波形電圧は2相目下り傾斜波形電圧である。 In this embodiment, when the third downward ramp waveform voltage is applied to the second scan electrode group, the same third downward ramp waveform voltage is also applied to the first scan electrode group. The reason is as described in the first embodiment. The third downward ramp waveform voltage is the second-phase downward ramp waveform voltage.
 図示はしないが、サブフィールドSF5からサブフィールドSF8の初期化期間では、サブフィールドSF3と同じ駆動電圧波形を発生する。また、サブフィールドSF5からサブフィールドSF8の書込み期間において、第1の走査電極群への書込み動作が終了した後は、第2の走査電極群への書込み動作を開始する前に、第3の下り傾斜波形電圧を第2の走査電極群に印加する。この第3の下り傾斜波形電圧は、放電開始電圧未満となるベース電位である電圧0(V)から負の電圧(Va+Vset8)に向かって緩やかに下降する下り傾斜波形電圧である。 Although not shown, the same drive voltage waveform as that of the subfield SF3 is generated in the initialization period of the subfield SF5 to the subfield SF8. In addition, in the address period from the subfield SF5 to the subfield SF8, after the address operation to the first scan electrode group is completed, before the address operation to the second scan electrode group is started, the third downlink A ramp waveform voltage is applied to the second scan electrode group. The third downward ramp waveform voltage is a downward ramp waveform voltage that gently falls from the voltage 0 (V), which is the base potential that is less than the discharge start voltage, toward the negative voltage (Va + Vset8).
 本実施の形態では、第3の下り傾斜波形電圧を第2の走査電極群に印加するとき、同じ第3の下り傾斜波形電圧を第1の走査電極群にも印加する。そして、この第3の下り傾斜波形電圧も2相目下り傾斜波形電圧である。 In the present embodiment, when the third downward ramp waveform voltage is applied to the second scan electrode group, the same third downward ramp waveform voltage is also applied to the first scan electrode group. The third downward ramp waveform voltage is also the second phase downward ramp waveform voltage.
 本実施の形態では、電圧Vset8を電圧Vset6よりも低く、電圧Vset7よりも高い電圧に設定する。例えば、電圧Vset6を80(V)とし、電圧Vset7を77(V)とし、電圧Vset8を78(V)とする。 In the present embodiment, the voltage Vset8 is set to a voltage lower than the voltage Vset6 and higher than the voltage Vset7. For example, the voltage Vset6 is 80 (V), the voltage Vset7 is 77 (V), and the voltage Vset8 is 78 (V).
 これにより、サブフィールドSF3、サブフィールドSF4の書込み期間に発生する2相目下り傾斜波形電圧は、下りランプ電圧L6よりも、例えば3(V)低い電圧まで下降する第3の下り傾斜波形電圧となる。 Thereby, the second-phase downward ramp waveform voltage generated in the writing period of the subfield SF3 and the subfield SF4 is the third downward ramp waveform voltage that drops to a voltage that is, for example, 3 (V) lower than the downward ramp voltage L6. Become.
 また、サブフィールドSF5からサブフィールドSF8の書込み期間に発生する2相目下り傾斜波形電圧は、下りランプ電圧L6よりも、例えば2(V)低い電圧まで下降する第3の下り傾斜波形電圧となる。 Further, the second-phase downward ramp waveform voltage generated in the writing period of subfield SF5 to subfield SF8 is the third downward ramp waveform voltage that drops to a voltage that is, for example, 2 (V) lower than the downward ramp voltage L6. .
 また、ここに説明した以外の各期間では、維持パルスの発生数を除き、各電極に対してサブフィールドSF2と同様の駆動電圧波形を印加する。 In each period other than those described here, a drive voltage waveform similar to that in the subfield SF2 is applied to each electrode except for the number of sustain pulses generated.
 なお、本実施の形態において各電極に印加する電圧の大きさは、例えば、電圧Vi1=150(V)、電圧Vi2=350(V)、電圧Vi3=215(V)、電圧Vi3’=0(V)、電圧Vi4=-175(V)、電圧Vi5=200(V)、電圧Vi6=-120(V)、電圧Vc=-50(V)、電圧Va=-200(V)、電圧Vs=215(V)、電圧Vr=200(V)、電圧Ve=170(V)、電圧Vd=55(V)、電圧Vh=215(V)、電圧Vg=55(V)、Vset2=25(V)、Vset5=70(V)、Vset6=80(V)、Vset7=77(V)、Vset8=78(V)である。ただし、これらの電圧値は、実施の形態における一例を挙げたものに過ぎない。各電圧値は上述した値に限定されるものではなく、パネル10の特性やプラズマディスプレイ装置の仕様等に合わせて、適宜最適な値に設定することが望ましい。 In this embodiment, for example, voltages Vi1 = 150 (V), voltage Vi2 = 350 (V), voltage Vi3 = 215 (V), and voltage Vi3 ′ = 0 ( V), voltage Vi4 = −175 (V), voltage Vi5 = 200 (V), voltage Vi6 = −120 (V), voltage Vc = −50 (V), voltage Va = −200 (V), voltage Vs = 215 (V), voltage Vr = 200 (V), voltage Ve = 170 (V), voltage Vd = 55 (V), voltage Vh = 215 (V), voltage Vg = 55 (V), Vset2 = 25 (V ), Vset5 = 70 (V), Vset6 = 80 (V), Vset7 = 77 (V), and Vset8 = 78 (V). However, these voltage values are only examples in the embodiment. Each voltage value is not limited to the value described above, and it is desirable to set the voltage value to an optimal value as appropriate in accordance with the characteristics of the panel 10 and the specifications of the plasma display device.
 次に、強制初期化波形を印加する走査電極22とフィールドとの関係について説明する。 Next, the relationship between the scan electrode 22 to which the forced initialization waveform is applied and the field will be described.
 本実施の形態においては、各フィールドのそれぞれに対して強制初期化波形を印加する走査電極22を以下の規則にもとづき設定する。 In the present embodiment, the scan electrode 22 that applies the forced initialization waveform to each field is set based on the following rules.
 すなわち、時間的に連続するNフィールド(Nは自然数)を1つのフィールド群とし、連続して配置されたN本の走査電極22を1つの走査電極群とする。例えば、時間的に連続する3つのフィールドを1つのフィールド群とし、連続して配置された3本の走査電極22を1つの走査電極群とする。 That is, N fields that are continuous in time (N is a natural number) are defined as one field group, and N scanning electrodes 22 that are continuously arranged are defined as one scan electrode group. For example, three fields that are temporally continuous are defined as one field group, and three consecutively arranged scan electrodes 22 are defined as one scan electrode group.
 そして、1つの走査電極群を構成する各走査電極22には、1つのフィールド群でそれぞれ1回ずつ強制初期化波形を印加する。 The forced initializing waveform is applied to each scan electrode 22 constituting one scan electrode group once for each field group.
 また、1つのフィールド群を構成するそれぞれのフィールドでは、1つのフィールドで、それぞれの走査電極群の1つの走査電極22だけに強制初期化波形を印加する。したがって、例えば、走査電極22の数が1080本であり、走査電極群の数が360であれば、1つのフィールドで強制初期化波形を印加する走査電極22の数は360本になる。そして、次のフィールドで他の360本の走査電極22に強制初期化波形を印加し、3つ目のフィールドで残りの360本の走査電極22に強制初期化波形を印加することになる。 In each field constituting one field group, a forced initializing waveform is applied only to one scan electrode 22 of each scan electrode group in one field group. Therefore, for example, if the number of scan electrodes 22 is 1080 and the number of scan electrode groups is 360, the number of scan electrodes 22 to which the forced initializing waveform is applied in one field is 360. Then, a forced initialization waveform is applied to the other 360 scan electrodes 22 in the next field, and a forced initialization waveform is applied to the remaining 360 scan electrodes 22 in the third field.
 そして、強制初期化波形を印加する走査電極22に隣接する走査電極22には、強制初期化波形を印加しないように、強制初期化波形を印加する走査電極22を設定する。 The scan electrode 22 to which the forced initialization waveform is applied is set so that the forced initialization waveform is not applied to the scan electrode 22 adjacent to the scan electrode 22 to which the forced initialization waveform is applied.
 図23は、本発明の実施の形態2において強制初期化波形を印加する走査電極22とフィールドとの関係を概略的に示す図である。 FIG. 23 is a diagram schematically showing the relationship between the scanning electrode 22 to which the forced initialization waveform is applied and the field in the second embodiment of the present invention.
 図23において、横方向のマスはフィールドを現し、縦方向のマスは走査電極22を表す。また、図23には、N=3の例、すなわち、時間的に連続する3つのフィールドで1つのフィールド群を構成し、配置的に連続する3本の走査電極22で1つの走査電極群を構成する例を示す。 23, a horizontal cell represents a field, and a vertical cell represents a scanning electrode 22. FIG. 23 shows an example where N = 3, that is, one field group is constituted by three temporally continuous fields, and one scanning electrode group is constituted by three consecutive scanning electrodes 22. An example of configuration will be shown.
 また、図23には、フィールドFj~フィールドFj+2、フィールドFj+3~フィールドFj+5、フィールドFj+6~フィールドFj+8、フィールドFj+9~フィールドFj+11、のそれぞれがフィールド群を構成し、走査電極SCi~走査電極SCi+2、走査電極SCi+3~走査電極SCi+5、走査電極SCi+6~走査電極SCi+8、のそれぞれが走査電極群を構成している例を示す。 In FIG. 23, field Fj to field Fj + 2, field Fj + 3 to field Fj + 5, field Fj + 6 to field Fj + 8, field Fj + 9 to field Fj + 11 constitute a field group, and each of scan electrode SCi to scan electrode SCi + 2 and scan electrode An example is shown in which each of SCi + 3 to scan electrode SCi + 5 and scan electrode SCi + 6 to scan electrode SCi + 8 constitutes a scan electrode group.
 また、図23において、「○」は、サブフィールドSF1の初期化期間において強制初期化動作を行うことを表す。すなわち、「○」は、サブフィールドSF1の初期化期間において、上りランプ電圧L1と下りランプ電圧L2とを有する強制初期化波形を走査電極22に印加することを表す。「×」は、サブフィールドSF1の初期化期間において強制初期化動作を行わないことを表す。すなわち、「×」は、サブフィールドSF1の初期化期間において、上りランプ電圧L5と下りランプ電圧L2とを有する初期化波形を走査電極22に印加することを表す。 In FIG. 23, “◯” indicates that the forced initialization operation is performed in the initialization period of the subfield SF1. That is, “◯” represents that a forced initializing waveform having the up-ramp voltage L1 and the down-ramp voltage L2 is applied to the scan electrode 22 in the initialization period of the subfield SF1. “X” represents that the forced initialization operation is not performed in the initialization period of the subfield SF1. That is, “x” represents that an initialization waveform having an up-ramp voltage L5 and a down-ramp voltage L2 is applied to the scan electrode 22 in the initialization period of the subfield SF1.
 図23から明らかなように、1つの走査電極群を構成する各走査電極22には、1つのフィールド群でそれぞれ1回ずつ強制初期化波形を印加している。 As is clear from FIG. 23, the forced initializing waveform is applied to each scan electrode 22 constituting one scan electrode group once for each field group.
 例えば、走査電極SCiには、フィールドFj、フィールドFj+3、フィールドFj+6、フィールドFj+9、・・・、のそれぞれで強制初期化波形を印加している。これは、他の走査電極22についても同様である。 For example, forcible initialization waveforms are applied to the scan electrode SCi in each of the field Fj, the field Fj + 3, the field Fj + 6, the field Fj + 9,. The same applies to the other scanning electrodes 22.
 これにより、毎フィールドに1回ずつ強制初期化動作を行う場合と比較して、強制初期化動作を行う回数が3分の1に低減される。したがって、強制初期化動作によって生じる発光の回数も3分の1となり、表示画像の黒輝度もその分だけ低減することができる。 This reduces the number of times that the forced initialization operation is performed to 1/3 compared to the case where the forced initialization operation is performed once for each field. Therefore, the number of times of light emission generated by the forced initialization operation is also reduced to one third, and the black luminance of the display image can be reduced accordingly.
 また、1つのフィールド群を構成するそれぞれのフィールドでは、1つのフィールドで、それぞれの走査電極群の1つの走査電極22だけに強制初期化波形を印加している。 Further, in each field constituting one field group, the forced initializing waveform is applied only to one scan electrode 22 of each scan electrode group in one field group.
 例えば、フィールドFjでは、走査電極SCi、走査電極SCi+3、走査電極SCi+6、・・・、に強制初期化波形を印加し、フィールドFj+1では、走査電極SCi+1、走査電極SCi+4、走査電極SCi+7、・・・、に強制初期化波形を印加し、フィールドFj+2では、走査電極SCi+2、走査電極SCi+5、走査電極SCi+8、・・・、に強制初期化波形を印加している。これは、他のフィールドについても同様である。 For example, in field Fj, a forced initialization waveform is applied to scan electrode SCi, scan electrode SCi + 3, scan electrode SCi + 6,..., And in field Fj + 1, scan electrode SCi + 1, scan electrode SCi + 4, scan electrode SCi + 7,. A forced initializing waveform is applied to scan electrode SCi + 2, scan electrode SCi + 5, scan electrode SCi + 8,... In field Fj + 2. The same applies to the other fields.
 これにより、強制初期化波形を印加する走査電極22を各フィールドに分散できるので、フリッカー(表示画像に表れるちらつきのこと)を低減することができる。 Thereby, since the scanning electrodes 22 to which the forced initialization waveform is applied can be dispersed in each field, flicker (flickering appearing in the display image) can be reduced.
 また、強制初期化波形を印加する走査電極22に隣接する走査電極22には、強制初期化波形を印加していない。 Further, no forced initialization waveform is applied to the scan electrode 22 adjacent to the scan electrode 22 to which the forced initialization waveform is applied.
 例えば、フィールドFjで、走査電極SCi+3には強制初期化波形を印加し、走査電極SCi+3に隣接する走査電極SCi+2および走査電極SCi+4には強制初期化波形を印加していない。これは、他の走査電極22についても同様である。 For example, in the field Fj, the forced initialization waveform is applied to the scan electrode SCi + 3, and the forced initialization waveform is not applied to the scan electrode SCi + 2 and the scan electrode SCi + 4 adjacent to the scan electrode SCi + 3. The same applies to the other scanning electrodes 22.
 これにより、強制初期化波形を印加する走査電極22の時間的連続性および空間的連続性を低減できるので、強制初期化動作にともなう発光を使用者に認識されにくくすることができる。 Thereby, since temporal continuity and spatial continuity of the scan electrode 22 to which the forced initialization waveform is applied can be reduced, it is possible to make it difficult for the user to recognize light emission due to the forced initialization operation.
 このように本実施の形態においては、放電セルのそれぞれにおいて、連続する複数のフィールドのうちの1つのフィールドだけで強制初期化動作を行う。これにより、強制初期化動作を行う回数を複数フィールドに1回とし、強制初期化動作にともなって発生する階調表示に関係しない発光を低減して黒輝度を低下し、コントラストの高い画像をパネル10に表示することができる。 As described above, in the present embodiment, in each discharge cell, the forced initialization operation is performed in only one of a plurality of consecutive fields. As a result, the number of times that the forced initialization operation is performed is set to once in a plurality of fields, light emission that is not related to the gradation display generated by the forced initialization operation is reduced, the black luminance is reduced, and an image with high contrast is displayed. 10 can be displayed.
 なお、強制初期化動作には、続く書込み期間において書込み放電を発生するために必要な壁電荷を放電セル内に蓄積する働きがある。さらに、放電遅れ時間を短くし書込み放電を安定に発生するために必要なプライミング粒子を発生する働きがある。 Note that the forced initialization operation has a function of accumulating wall charges necessary for generating an address discharge in the discharge cell in the subsequent address period. Furthermore, it has a function of generating priming particles necessary for shortening the discharge delay time and stably generating the address discharge.
 そのため、単に強制初期化動作の回数を低減すると、続く書込み期間において、書込みパルスを印加した放電セルで書込み放電が発生しない書込み不良が生じる可能性が高くなる。あるいは、書込み放電の放電遅れ時間が長くなりすぎて書込み動作が不安定になる等の可能性が高くなる。これにより、正常に画像を表示することができなくなるおそれがある。 Therefore, simply reducing the number of forced initialization operations increases the possibility that an address failure in which no address discharge occurs in the discharge cell to which the address pulse is applied will occur in the subsequent address period. Alternatively, there is a high possibility that the discharge delay time of the address discharge becomes too long and the address operation becomes unstable. As a result, it may not be possible to display an image normally.
 しかしながら、本実施の形態においては、選択初期化動作を行う第2種サブフィールド(例えば、サブフィールドSF2からサブフィールドSF8)の初期化期間において、データ電極D1~データ電極Dmに第1の電圧(電圧0(V))よりも高い第2の電圧(電圧Vg)を印加する。 However, in the present embodiment, in the initialization period of the second type subfield (for example, subfield SF2 to subfield SF8) in which the selective initializing operation is performed, the first voltage ( A second voltage (voltage Vg) higher than voltage 0 (V) is applied.
 さらに、走査電極SC1~走査電極SCnに印加する下り傾斜波形電圧(下りランプ電圧L6)の最低電圧(電圧Vi6)を、第1種サブフィールドであるサブフィールドSF1の初期化期間において走査電極SC1~走査電極SCnに印加する下り傾斜波形電圧(下りランプ電圧L2)の最低電圧(電圧Vi4)よりも高く設定する。 Further, the lowest voltage (voltage Vi6) of the downward ramp waveform voltage (down-ramp voltage L6) applied to scan electrode SC1 through scan electrode SCn is applied to scan electrode SC1 through scan electrode SC1 through sub-field SF1 as the first type subfield. It is set higher than the lowest voltage (voltage Vi4) of the downward ramp waveform voltage (down ramp voltage L2) applied to scan electrode SCn.
 これにより、強制初期化動作の回数を低減した本実施の形態における駆動方法においても、書込み放電を安定に発生することができる。これは、次のような理由による。 Thus, the address discharge can be stably generated even in the driving method according to the present embodiment in which the number of forced initialization operations is reduced. This is due to the following reason.
 まず、第1種サブフィールド(サブフィールドSF1)の初期化期間において、データ電極D1~データ電極Dmに正の電圧Vgを印加しない理由について説明する。 First, the reason why the positive voltage Vg is not applied to the data electrodes D1 to Dm in the initialization period of the first type subfield (subfield SF1) will be described.
 第1種サブフィールド(サブフィールドSF1)の初期化期間では強制初期化動作を行う放電セルが存在する。すなわち、初期化期間の前半部において、直前のサブフィールドにおける書込み放電(維持放電)の発生の有無にかかわらず放電が発生する電圧Vi2に向かって上昇する上り傾斜波形電圧(上りランプ電圧L1)を印加して強制的に初期化放電を発生する放電セルが存在する。 There are discharge cells that perform a forced initializing operation in the initializing period of the first type subfield (subfield SF1). That is, in the first half of the initialization period, the rising ramp waveform voltage (up-ramp voltage L1) rising toward the voltage Vi2 at which discharge occurs regardless of the occurrence of address discharge (sustain discharge) in the immediately preceding subfield. There is a discharge cell that forcibly generates an initializing discharge when applied.
 このような放電セルのデータ電極32上には、正極性の高い壁電圧が蓄積する。そして、データ電極32上に正極性の高い壁電圧が蓄積した放電セルに、さらに正の電圧Vgをデータ電極D1~データ電極Dmに印加すると、走査電極22とデータ電極32との間の電圧差が大きくなりすぎてしまい、初期化期間の後半部に強い放電が発生するおそれが高くなる。そして、初期化期間の後半部に強い放電が発生すると、その放電セルでは壁電荷およびプライミング粒子が過剰になり、続く書込み期間で誤放電を発生する確率が高くなる。 A wall voltage having a high positive polarity is accumulated on the data electrode 32 of such a discharge cell. When a positive voltage Vg is further applied to the data electrode D1 to the data electrode Dm to the discharge cell in which the wall voltage having a high positive polarity is accumulated on the data electrode 32, the voltage difference between the scan electrode 22 and the data electrode 32 is obtained. Becomes too large, and there is a high risk that strong discharge will occur in the latter half of the initialization period. When a strong discharge occurs in the latter half of the initialization period, wall charges and priming particles become excessive in the discharge cell, and the probability of generating an erroneous discharge in the subsequent address period increases.
 本実施の形態では、このような現象が発生しないように、強制初期化動作を行う放電セルが存在する第1種サブフィールド(サブフィールドSF1)の初期化期間では、データ電極32に正の電圧Vgを印加しない。 In the present embodiment, in order to prevent such a phenomenon from occurring, a positive voltage is applied to the data electrode 32 during the initialization period of the first type subfield (subfield SF1) in which there are discharge cells that perform the forced initialization operation. Vg is not applied.
 一方、強制初期化動作を行う回数を低減すると、各放電セルの壁電圧のばらつきが大きくなる可能性がある。 On the other hand, when the number of times of performing the forced initialization operation is reduced, there is a possibility that the variation of the wall voltage of each discharge cell becomes large.
 そして、データ電極32上の壁電圧が減少した放電セルでは、走査電極22とデータ電極32との間の放電が発生しにくくなり、初期化放電が発生しにくくなる。 In the discharge cell in which the wall voltage on the data electrode 32 is reduced, the discharge between the scan electrode 22 and the data electrode 32 is less likely to occur, and the initialization discharge is less likely to occur.
 しかしながら、本願発明者は、選択初期化動作を行う際にデータ電極D1~データ電極Dmに正の電圧を印加することで、選択初期化動作を行う放電セルで安定に初期化放電を発生し、データ電極Dk上の壁電圧を精度よくそろえることができることを実験的に確認した。これは、データ電極D1~データ電極Dmに正の電圧を印加することで、走査電極22とデータ電極32との間の放電が安定に発生しやすくなるためと思われる。 However, the inventor of the present application applies a positive voltage to the data electrode D1 to the data electrode Dm when performing the selective initialization operation, thereby stably generating the initialization discharge in the discharge cell performing the selective initialization operation. It was experimentally confirmed that the wall voltage on the data electrode Dk can be accurately adjusted. This is presumably because discharge between the scan electrode 22 and the data electrode 32 is likely to occur stably by applying a positive voltage to the data electrodes D1 to Dm.
 そこで、本実施の形態においては、選択初期化動作を行う第2種サブフィールド(サブフィールドSF2からサブフィールドSF8)の初期化期間において、データ電極D1~データ電極Dmに正の電圧Vgを印加するものとする。 Therefore, in the present embodiment, positive voltage Vg is applied to data electrode D1 to data electrode Dm in the initialization period of the second type subfield (subfield SF2 to subfield SF8) in which the selective initialization operation is performed. Shall.
 なお、放電セルに発生する初期化放電の放電強度を、下りランプ電圧L2によって発生する放電と同程度にするために、電圧Vi6と第2の電圧(電圧Vg)との電圧差が、電圧Vi4と第1の電圧(電圧0(V))との電圧差とほぼ等しくなるように各電圧を設定することが望ましい。これにより、強制初期化動作後の書込み期間における書込み放電と、選択初期化動作後の書込み期間における書込み放電とを、同程度の放電強度にすることができる。 In order to make the discharge intensity of the initialization discharge generated in the discharge cell to be approximately the same as the discharge generated by the down-ramp voltage L2, the voltage difference between the voltage Vi6 and the second voltage (voltage Vg) is the voltage Vi4. It is desirable to set each voltage so as to be substantially equal to the voltage difference between the first voltage (voltage 0 (V)). Thereby, the address discharge in the address period after the forced initializing operation and the address discharge in the address period after the selective initializing operation can be set to the same discharge intensity.
 なお、維持電極SU1~維持電極SUnに電圧Veよりも高い電圧Vhを印加するのは、電圧Vi6を電圧Vi4よりも高くすることで、走査電極22と維持電極23との間に放電が発生しにくくなることを防止するためである。 Note that the voltage Vh higher than the voltage Ve is applied to the sustain electrodes SU1 to SUn because the voltage Vi6 is set higher than the voltage Vi4, so that a discharge is generated between the scan electrode 22 and the sustain electrode 23. This is to prevent it from becoming difficult.
 本実施の形態では、このようにしてデータ電極Dk上の壁電圧を精度よく調整することにより、強制初期化動作の回数を削減しつつ書込み放電を安定に発生することを可能にしている。 In this embodiment, the wall voltage on the data electrode Dk is adjusted with high accuracy in this way, so that the address discharge can be stably generated while reducing the number of forced initialization operations.
 次に、本実施の形態における駆動電圧波形を発生する回路の、第1種サブフィールド(サブフィールドSF1)から第2種サブフィールド(サブフィールドSF2)にかけての動作について説明する。 Next, the operation from the first type subfield (subfield SF1) to the second type subfield (subfield SF2) of the circuit for generating the drive voltage waveform in the present embodiment will be described.
 なお、本実施の形態で用いる走査電極駆動回路、維持電極駆動回路、データ電極駆動回路は、実施の形態1で説明した走査電極駆動回路43、維持電極駆動回路44、データ電極駆動回路42と同じ構成であるので、各回路の構成については説明を省略する。 Note that the scan electrode drive circuit, the sustain electrode drive circuit, and the data electrode drive circuit used in the present embodiment are the same as the scan electrode drive circuit 43, the sustain electrode drive circuit 44, and the data electrode drive circuit 42 described in the first embodiment. Since it is a structure, description is abbreviate | omitted about the structure of each circuit.
 本実施の形態では、図21に示した駆動電圧波形において、電圧Vi1は電圧Vpに等しく、電圧Vi2は電圧(Vt+Vp)に等しく、電圧Vi3は電圧Vsに等しく、電圧Vcは電圧(Va+Vp)に等しいものとする。これは、図4に示した駆動電圧波形においても同様である。 In the present embodiment, in the drive voltage waveform shown in FIG. 21, the voltage Vi1 is equal to the voltage Vp, the voltage Vi2 is equal to the voltage (Vt + Vp), the voltage Vi3 is equal to the voltage Vs, and the voltage Vc is equal to the voltage (Va + Vp). It shall be equal. The same applies to the drive voltage waveform shown in FIG.
 また、図21に示した駆動電圧波形において、電圧Vi5は電圧Vtに等しく、電圧Vgは電圧Vdに等しく、電圧Vhは電圧Vsに等しいものとする。しかし、これらの電圧は上記した数値に限定されるものではなく、パネル10の特性やプラズマディスプレイ装置の仕様等に応じて適宜設定することが望ましい。 In the drive voltage waveform shown in FIG. 21, the voltage Vi5 is equal to the voltage Vt, the voltage Vg is equal to the voltage Vd, and the voltage Vh is equal to the voltage Vs. However, these voltages are not limited to the above-described numerical values, and are desirably set as appropriate according to the characteristics of the panel 10 and the specifications of the plasma display device.
 図24は、本発明の実施の形態2におけるプラズマディスプレイ装置の駆動回路の動作を説明するためのタイミングチャートである。 FIG. 24 is a timing chart for explaining the operation of the drive circuit of the plasma display device in accordance with the second exemplary embodiment of the present invention.
 なお、図24では、走査電極SC1~走査電極SCnのうち、強制初期化波形を印加する走査電極22を走査電極SCxで示し、強制初期化波形を印加しない走査電極22を走査電極SCyで示した。 In FIG. 24, among scan electrodes SC1 to SCn, scan electrode 22 to which a forced initialization waveform is applied is indicated by scan electrode SCx, and scan electrode 22 to which no forced initialization waveform is applied is indicated by scan electrode SCy. .
 また、図24では、スイッチング素子Q71H1~スイッチング素子Q71Hnのうち、走査電極SCxに対応するスイッチング素子をスイッチング素子Q71Hxで示し、走査電極SCyに対応するスイッチング素子をスイッチング素子Q71Hyで示した。同様にスイッチング素子Q71L1~スイッチング素子Q71Lnのうち、走査電極SCxに対応するスイッチング素子をスイッチング素子Q71Lxで示し、走査電極SCyに対応するスイッチング素子をスイッチング素子Q71Lyで示した。 In FIG. 24, among the switching elements Q71H1 to Q71Hn, the switching element corresponding to the scan electrode SCx is indicated by the switching element Q71Hx, and the switching element corresponding to the scan electrode SCy is indicated by the switching element Q71Hy. Similarly, among switching elements Q71L1 to Q71Ln, a switching element corresponding to scan electrode SCx is indicated by switching element Q71Lx, and a switching element corresponding to scan electrode SCy is indicated by switching element Q71Ly.
 サブフィールドSF1の初期化期間の前半部では、まず走査電極駆動回路43のスイッチング素子Q56をオンにして走査電極SCx、走査電極SCyに電圧0(V)を印加する。 In the first half of the initialization period of subfield SF1, first, switching element Q56 of scan electrode drive circuit 43 is turned on to apply voltage 0 (V) to scan electrode SCx and scan electrode SCy.
 次に、スイッチング素子Q56をオフにするとともに、強制初期化波形を印加する走査電極SCxに対しては、スイッチング素子Q71Lxをオフにし、スイッチング素子Q71Hxをオンにして、電圧Vpを印加する。一方、強制初期化動作を行わない走査電極SCyに対しては、電圧0(V)を印加したままとする。 Next, the switching element Q56 is turned off and the switching element Q71Lx is turned off, the switching element Q71Hx is turned on, and the voltage Vp is applied to the scan electrode SCx to which the forced initialization waveform is applied. On the other hand, voltage 0 (V) is kept applied to scan electrode SCy that does not perform the forced initialization operation.
 次に、ミラー積分回路61の入力端子IN61に一定の電圧を印加して、基準電位Aの電圧を電圧Vtまで緩やかに上昇させる。強制初期化波形を印加する走査電極SCxには、基準電位Aに電圧Vpを重畳した電圧が印加されるので、この走査電極SCxに、電圧Vpから電圧(Vt+Vp)まで緩やかに上昇する上り傾斜波形電圧(上りランプ電圧L1)を印加することができる。 Next, a constant voltage is applied to the input terminal IN61 of the Miller integrating circuit 61, and the voltage of the reference potential A is gradually raised to the voltage Vt. Since a voltage obtained by superimposing the voltage Vp on the reference potential A is applied to the scan electrode SCx to which the forced initializing waveform is applied, an upward ramp waveform that gradually rises from the voltage Vp to the voltage (Vt + Vp). A voltage (up-ramp voltage L1) can be applied.
 一方、強制初期化波形を印加しない走査電極SCyには基準電位Aが印加されるので、この走査電極SCyに、電圧0(V)から電圧Vtまで緩やかに上昇する上り傾斜波形電圧(上りランプ電圧L5)を印加することができる。 On the other hand, since reference potential A is applied to scan electrode SCy to which no forced initialization waveform is applied, an upward ramp waveform voltage (up-ramp voltage) that gradually rises from voltage 0 (V) to voltage Vt is applied to scan electrode SCy. L5) can be applied.
 続くサブフィールドSF1の初期化期間の後半部では、維持電極駆動回路44のスイッチング素子Q84をオフにし、スイッチング素子Q86およびスイッチング素子Q87をオンにして、維持電極SU1~維持電極SUnに電圧Veを印加する。 In the second half of the initializing period of subfield SF1 that follows, switching element Q84 of sustain electrode drive circuit 44 is turned off, switching element Q86 and switching element Q87 are turned on, and voltage Ve is applied to sustain electrode SU1 through sustain electrode SUn. To do.
 そして、走査電極駆動回路43のスイッチング素子Q71Hxをオフにし、スイッチング素子Q71Lxをオンにするとともに、スイッチング素子Q55およびスイッチング素子Q59をオンにして、走査電極SCx、走査電極SCyに電圧Vsを印加する。 Then, switching element Q71Hx of scan electrode drive circuit 43 is turned off, switching element Q71Lx is turned on, switching element Q55 and switching element Q59 are turned on, and voltage Vs is applied to scan electrode SCx and scan electrode SCy.
 その後、スイッチング素子Q69をオフにするとともにミラー積分回路63の入力端子IN63に一定の電圧を印加してミラー積分回路63を動作させ、走査電極SCx、走査電極SCyに電圧Vi3から電圧Vi4まで緩やかに下降する下り傾斜波形電圧(下りランプ電圧L2)を印加する。 Thereafter, the switching element Q69 is turned off and a constant voltage is applied to the input terminal IN63 of the Miller integrating circuit 63 to operate the Miller integrating circuit 63, so that the scanning electrode SCx and the scanning electrode SCy are gradually applied from the voltage Vi3 to the voltage Vi4. A descending ramp waveform voltage (down ramp voltage L2) is applied.
 サブフィールドSF1の書込み期間では、走査電極駆動回路43のミラー積分回路63のトランジスタQ63をオフにし、スイッチング素子Q72をオンにして、基準電位Aの電圧を電圧Vaにする。そして、スイッチング素子Q71Lxおよびスイッチング素子Q71Lyをオフにし、スイッチング素子Q71Hxおよびスイッチング素子Q71Hyをオンにして、走査電極SCxおよび走査電極SCyに電圧(Va+Vp)、すなわち電圧Vcを印加する。 In the address period of the subfield SF1, the transistor Q63 of the Miller integrating circuit 63 of the scan electrode driving circuit 43 is turned off, the switching element Q72 is turned on, and the voltage of the reference potential A is set to the voltage Va. Then, switching element Q71Lx and switching element Q71Ly are turned off, switching element Q71Hx and switching element Q71Hy are turned on, and voltage (Va + Vp), that is, voltage Vc is applied to scan electrode SCx and scan electrode SCy.
 次に、スイッチング素子Q71H1をオフにし、スイッチング素子Q71L1をオンにして、電圧Vcから電圧Vaに変位する走査パルスを走査電極SC1に印加する。 Next, switching element Q71H1 is turned off, switching element Q71L1 is turned on, and a scan pulse that is displaced from voltage Vc to voltage Va is applied to scan electrode SC1.
 また、データ電極駆動回路42のスイッチング素子Q91L1~スイッチング素子Q91Lmをオンにし、スイッチング素子Q91H1~スイッチング素子Q91Hmをオフにして、データ電極D1~データ電極Dmに電圧0(V)を印加する。 Further, switching element Q91L1 to switching element Q91Lm of data electrode drive circuit 42 are turned on, switching element Q91H1 to switching element Q91Hm are turned off, and voltage 0 (V) is applied to data electrode D1 to data electrode Dm.
 そして、走査電極SC1に走査パルスを印加するタイミングで、画像データにもとづき、書込みパルスを印加するデータ電極Djに対して、スイッチング素子Q91Ljをオフにし、スイッチング素子Q91Hjをオンにして、電圧0(V)から電圧Vdに変位する書込みパルスをデータ電極Djに印加する。 Then, at the timing of applying the scan pulse to the scan electrode SC1, the switching element Q91Lj is turned off and the switching element Q91Hj is turned on for the data electrode Dj to which the address pulse is applied based on the image data, and the voltage 0 (V ) Is applied to the data electrode Dj.
 一定の時間の後(1行目における書込み動作終了後)、スイッチング素子Q71H1をオンにし、スイッチング素子Q71L1をオフにして、走査電極SC1への印加電圧を電圧Vcに戻す。それと同時に、スイッチング素子Q91Ljをオンにし、スイッチング素子Q91Hjをオフにして、データ電極Djへの印加電圧を電圧0(V)に戻す。このようにして、走査電極SC1に走査パルスを印加し、データ電極Djに書込みパルスを印加する。 After a certain time (after completion of the write operation in the first row), the switching element Q71H1 is turned on, the switching element Q71L1 is turned off, and the voltage applied to the scan electrode SC1 is returned to the voltage Vc. At the same time, switching element Q91Lj is turned on, switching element Q91Hj is turned off, and the voltage applied to data electrode Dj is returned to voltage 0 (V). In this way, a scan pulse is applied to scan electrode SC1, and an address pulse is applied to data electrode Dj.
 引き続き、走査電極SC2に対して、上述と同様の動作を行い、走査電極SC2に走査パルスを印加し、データ電極Djに書込みパルスを印加する。 Subsequently, the same operation as described above is performed on the scan electrode SC2, a scan pulse is applied to the scan electrode SC2, and an address pulse is applied to the data electrode Dj.
 なお、図24には、走査電極SCxに走査パルスを印加し、その後、走査電極SCyに走査パルスを印加する例を示す。 FIG. 24 shows an example in which a scan pulse is applied to scan electrode SCx, and then a scan pulse is applied to scan electrode SCy.
 以下同様に、走査電極SCnに至るまで、走査パルスを順次走査電極22に印加し、書込みパルスをデータ電極Djに印加する。 Similarly, the scan pulse is sequentially applied to the scan electrode 22 and the address pulse is applied to the data electrode Dj until reaching the scan electrode SCn.
 その後、スイッチング素子Q72、スイッチング素子Q71Hx、スイッチング素子Q71Hyをそれぞれオフにし、スイッチング素子Q56、スイッチング素子Q69、スイッチング素子Q71Lx、スイッチング素子Q71Lyをそれぞれオンにして、走査電極SCx、走査電極SCyに電圧0(V)を印加する。こうして、書込み期間が終了する。 Thereafter, switching element Q72, switching element Q71Hx, and switching element Q71Hy are turned off, switching element Q56, switching element Q69, switching element Q71Lx, and switching element Q71Ly are turned on, respectively, and voltage 0 ( V) is applied. Thus, the writing period ends.
 サブフィールドSF1の維持期間では、走査電極駆動回路43の維持パルス発生回路50、および維持電極駆動回路44の維持パルス発生回路80を用いて、走査電極SC1~走査電極SCn、および維持電極SU1~維持電極SUnに、輝度重みに応じた数の維持パルスをそれぞれ印加する。 In sustain period of subfield SF1, scan electrode SC1 to scan electrode SCn and sustain electrode SU1 to sustain are maintained using sustain pulse generating circuit 50 of scan electrode driving circuit 43 and sustain pulse generating circuit 80 of sustain electrode driving circuit 44. The number of sustain pulses corresponding to the luminance weight is applied to each electrode SUn.
 そして、その維持期間における全ての維持パルスを発生した後に、走査電極駆動回路43のスイッチング素子Q56をオフにする。それとともに、ミラー積分回路62の入力端子IN62に一定の電圧を印加してミラー積分回路62を動作させ、走査電極SC1~走査電極SCnに、電圧Vrまで緩やかに上昇する上り傾斜波形電圧を印加する。なお、この電圧Vrは電圧Vsよりも低い電圧(例えば、電圧Vr=電圧Vs-15(V))である。 Then, after all the sustain pulses in the sustain period are generated, the switching element Q56 of the scan electrode drive circuit 43 is turned off. At the same time, a constant voltage is applied to input terminal IN62 of Miller integrating circuit 62 to operate Miller integrating circuit 62, and an upward ramp waveform voltage that gradually rises to voltage Vr is applied to scan electrode SC1 through scan electrode SCn. . The voltage Vr is a voltage lower than the voltage Vs (eg, voltage Vr = voltage Vs−15 (V)).
 サブフィールドSF2の初期化期間では、データ電極駆動回路42のスイッチング素子Q91L1~スイッチング素子Q91Lmをオフにし、スイッチング素子Q91H1~スイッチング素子Q91Hmをオンにして、データ電極D1~データ電極Dmに正の電圧Vd、すなわち、電圧Vgを印加する。 In the initialization period of subfield SF2, switching elements Q91L1 to Q91Lm of data electrode drive circuit 42 are turned off, switching elements Q91H1 to switching element Q91Hm are turned on, and positive voltage Vd is applied to data electrodes D1 to Dm. That is, the voltage Vg is applied.
 また、維持電極駆動回路44のスイッチング素子Q84をオフにし、スイッチング素子Q83をオンにして、維持電極SU1~維持電極SUnに電圧Vs、すなわち、電圧Vhを印加する。 Also, switching element Q84 of sustain electrode drive circuit 44 is turned off, switching element Q83 is turned on, and voltage Vs, that is, voltage Vh, is applied to sustain electrode SU1 through sustain electrode SUn.
 そして、走査電極駆動回路43のスイッチング素子Q71L1~スイッチング素子Q71Lnをオンにし、スイッチング素子Q71H1~スイッチング素子Q71Hnをオフにしたまま、ミラー積分回路63の入力端子IN63に一定の電圧を印加する。こうしてミラー積分回路63を動作させ、走査電極SC1~走査電極SCnに下り傾斜波形電圧を印加する。 Then, a constant voltage is applied to the input terminal IN63 of the Miller integrating circuit 63 while the switching elements Q71L1 to Q71Ln of the scan electrode driving circuit 43 are turned on and the switching elements Q71H1 to Q71Hn are turned off. Miller integrating circuit 63 is thus operated, and a downward ramp waveform voltage is applied to scan electrode SC1 through scan electrode SCn.
 走査電極SC1~走査電極SCnに印加する下り傾斜波形電圧が電圧Vi6に達したら、入力端子IN63に印加していた電圧を停止する。こうして、電圧Vi3’(電圧0(V))から電圧Vi6まで緩やかに下降する下り傾斜波形電圧(下りランプ電圧L6)を走査電極SC1~走査電極SCnに印加する。 When the downward ramp waveform voltage applied to scan electrode SC1 through scan electrode SCn reaches voltage Vi6, the voltage applied to input terminal IN63 is stopped. In this way, the downward ramp waveform voltage (down-ramp voltage L6) that gently decreases from voltage Vi3 '(voltage 0 (V)) to voltage Vi6 is applied to scan electrode SC1 through scan electrode SCn.
 続くサブフィールドSF2の書込み期間および維持期間の動作はサブフィールドSF1の書込み期間および維持期間と同様である。 The subsequent operations in the writing period and the sustaining period of the subfield SF2 are the same as those in the writing period and the sustaining period of the subfield SF1.
 このようにして、本実施の形態においては、データ電極駆動回路42、走査電極駆動回路43および維持電極駆動回路44を用いて、図21、図22に示した駆動電圧波形を発生し、データ電極D1~データ電極Dm、走査電極SC1~走査電極SCnおよび維持電極SU1~維持電極SUnのそれぞれに印加することができる。 Thus, in the present embodiment, the drive voltage waveforms shown in FIGS. 21 and 22 are generated using the data electrode drive circuit 42, the scan electrode drive circuit 43, and the sustain electrode drive circuit 44, and the data electrode D1 to data electrode Dm, scan electrode SC1 to scan electrode SCn, and sustain electrode SU1 to sustain electrode SUn can be applied to each.
 そして、第1種サブフィールドの初期化期間において走査電極22に下り傾斜波形電圧を印加するとともにデータ電極32に第1の電圧(電圧0(V))を印加する。また、第2種サブフィールドの初期化期間において走査電極に下り傾斜波形電圧を印加するとともにデータ電極に第1の電圧よりも高い第2の電圧(電圧Vg)を印加する。こうすることにより、強制初期化動作の回数を削減して黒輝度を抑えるとともに安定した書込み動作を行うことができる。 In the initializing period of the first type subfield, a downward ramp waveform voltage is applied to the scan electrode 22 and a first voltage (voltage 0 (V)) is applied to the data electrode 32. In addition, a downward ramp waveform voltage is applied to the scan electrode and a second voltage (voltage Vg) higher than the first voltage is applied to the data electrode in the initialization period of the second type subfield. By doing so, the number of forced initialization operations can be reduced to suppress black luminance, and a stable write operation can be performed.
 このように、本実施の形態では、強制初期化動作を行う回数を複数フィールドに1回にすることで、1フィールドに1回強制初期化動作を行う構成と比較して、強制初期化動作にともない発生する発光を減らすことができる。これにより、黒輝度(維持放電を発生しない階調の輝度)を下げ、パネル10に表示される画像のコントラストを向上することができる。 As described above, in the present embodiment, the forced initialization operation is performed once in a plurality of fields, so that the forced initialization operation is performed as compared with the configuration in which the forced initialization operation is performed once in one field. Accordingly, the emitted light can be reduced. As a result, the black luminance (the luminance of the gradation that does not generate the sustain discharge) can be lowered, and the contrast of the image displayed on the panel 10 can be improved.
 そして、実施の形態1と同様に、維持期間における最後の維持パルスの発生後に、維持電極SU1~維持電極SUnおよびデータ電極D1~データ電極Dmには電圧0(V)を印加したまま、走査電極SC1~走査電極SCnには、放電開始電圧未満となる電圧0(V)から、所定電圧である電圧Vrに向かって緩やかに上昇する上り傾斜波形電圧(上り消去ランプ電圧L3)を印加する。そして、電圧Vrを、電圧Vsよりも低く、かつ、続く書込み期間で誤放電が発生しない電圧に設定する。 Similarly to the first embodiment, after the last sustain pulse is generated in the sustain period, the scan electrode SU1 to sustain electrode SUn and the data electrode D1 to data electrode Dm are applied with the voltage 0 (V) while being applied with the scan electrode. An upward ramp waveform voltage (upward erasing ramp voltage L3) that gradually increases from voltage 0 (V), which is less than the discharge start voltage, toward voltage Vr, which is a predetermined voltage, is applied to SC1 through scan electrode SCn. Then, the voltage Vr is set to a voltage that is lower than the voltage Vs and does not cause erroneous discharge in the subsequent address period.
 これにより、高精細度化された大画面のパネル10を駆動する際にも安定した書込み動作を行い、品質の高い画像をパネル10に表示することが可能となる。 This makes it possible to perform a stable writing operation even when driving a large-screen panel 10 with high definition, and display a high-quality image on the panel 10.
 なお、本実施の形態では、各放電セルにおいて3フィールドに1回の割合で強制初期化動作を行う構成を説明したが、本発明は何らこの構成に限定されるものではない。強制初期化動作を行う回数をどのように設定するかは、パネル10の特性やプラズマディスプレイ装置の仕様、および、パネル10に表示する画像のコントラスト比の設定等に応じて適宜設定することが望ましい。 In the present embodiment, the configuration in which the forced initializing operation is performed once every 3 fields in each discharge cell has been described, but the present invention is not limited to this configuration. It is desirable to set the number of times of performing the forced initialization operation appropriately according to the characteristics of the panel 10, the specifications of the plasma display device, the setting of the contrast ratio of the image displayed on the panel 10, and the like. .
 なお、本実施の形態では、第1種サブフィールドの初期化期間の前半部において、強制初期化動作を行わない走査電極22に上りランプ電圧L5を印加する構成を説明したが、本発明は何らこの構成に限定されるものではない。第1種サブフィールドの初期化期間の前半部において、強制初期化動作を行わない走査電極22に印加する電圧は、その走査電極22上に形成された放電セルに放電が発生しない電圧であればよい。例えば、電圧0(V)の固定電圧などであってもよい。 In the present embodiment, the configuration in which the up-ramp voltage L5 is applied to the scan electrode 22 that does not perform the forced initialization operation in the first half of the initialization period of the first type subfield has been described. It is not limited to this configuration. In the first half of the initializing period of the first type subfield, the voltage applied to the scan electrode 22 that does not perform the forced initializing operation is a voltage that does not cause a discharge in the discharge cell formed on the scan electrode 22. Good. For example, it may be a fixed voltage of voltage 0 (V).
 なお、本実施の形態では、下り傾斜波形電圧を全て同じ勾配で発生する構成を説明したが、例えば、下り傾斜波形電圧を複数の期間に分け、各期間で勾配を変えて下り傾斜波形電圧を発生する構成としてもよい。 In the present embodiment, the configuration has been described in which all the downward ramp waveform voltages are generated with the same gradient.For example, the downward ramp waveform voltage is divided into a plurality of periods, and the gradient is changed in each period to generate the downward ramp waveform voltage. It may be configured to occur.
 図25は、本発明の実施の形態における走査電極22に印加する下り傾斜波形電圧の波形形状の他の例を示す波形図である。 FIG. 25 is a waveform diagram showing another example of the waveform shape of the downward ramp waveform voltage applied to the scan electrode 22 in the embodiment of the present invention.
 例えば、図25に示すように、初期化放電が発生するまでは比較的急峻な勾配(例えば、-8V/μsec)で下降し、その後、やや緩やかな勾配(例えば、-2.5V/μsec)で下降し、最後に、さらに緩やかな勾配(例えば、-1V/μsec)で下降して、下り傾斜波形電圧を発生する構成としてもよい。このような構成であっても、上述と同様の効果が得られることが確認された。また、この構成では、下り傾斜波形電圧を発生する期間を短縮できるという効果も得られる。 For example, as shown in FIG. 25, the voltage decreases at a relatively steep gradient (for example, −8 V / μsec) until the initialization discharge occurs, and then has a slightly gentle gradient (for example, −2.5 V / μsec). It is also possible to generate a downward ramp waveform voltage by descending at a lower slope and finally descending at a more gentle gradient (for example, -1 V / μsec). Even with such a configuration, it was confirmed that the same effect as described above was obtained. In addition, with this configuration, there is also an effect that the period for generating the downward ramp waveform voltage can be shortened.
 あるいは、図示はしないが、下り傾斜波形電圧を2つの期間に分け、各期間で勾配を変えて下り傾斜波形電圧を発生する構成としてもよい。 Alternatively, although not shown, the downward ramp waveform voltage may be divided into two periods, and the slope may be changed in each period to generate the downward ramp waveform voltage.
 なお、本実施の形態では、全てのサブフィールドで全セル初期化動作および選択初期化動作のいずれかを行う構成を説明した。しかし、例えば、パネル上の全ての放電セルに対して全セル初期化動作を一度も行わないフィールドを発生しながらパネルを駆動する構成であってもよい。そして、そのような場合であっても本実施の形態に示した構成を適用することは可能である。 In the present embodiment, the configuration in which either the all-cell initializing operation or the selective initializing operation is performed in all subfields has been described. However, for example, the panel may be driven while generating a field in which all cell initialization operations are not performed on all discharge cells on the panel. Even in such a case, the structure shown in this embodiment can be applied.
 なお、本実施の形態では、サブフィールドSF1およびサブフィールドSF2では1相駆動を行い、サブフィールドSF3からサブフィールドSF8では2相駆動を行う例を説明したが、本発明は何らこの構成に限定されるものではない。例えば、1フィールドを構成する全てのサブフィールドで2相駆動を行ってもよく、あるいは、サブフィールドSF1およびサブフィールドSF2で2相駆動を行い、他のサブフィールドで1相駆動を行うように構成してもよい。どのサブフィールドを1相駆動にし、どのサブフィールドを2相駆動にするかは、パネルの特性やプラズマディスプレイ装置の使用等に応じて最適に設定すればよい。また、そのような場合でも、本実施の形態に示した構成を適用することは可能である。 In this embodiment, an example in which one-phase driving is performed in subfield SF1 and subfield SF2 and two-phase driving is performed in subfield SF3 to subfield SF8 has been described, but the present invention is not limited to this configuration. It is not something. For example, two-phase driving may be performed in all subfields constituting one field, or two-phase driving is performed in subfield SF1 and subfield SF2, and one-phase driving is performed in other subfields. May be. Which subfield is to be driven in one phase and which subfield is to be driven in two phases may be optimally set according to the characteristics of the panel, the use of the plasma display device, and the like. Even in such a case, the structure shown in this embodiment can be applied.
 なお、本発明は1フィールドを構成するサブフィールドの数、強制初期化サブフィールドとするサブフィールド、各サブフィールドが有する輝度重み等が上述した数値に限定されるものではない。また、画像信号等にもとづいてサブフィールド構成を切換える構成であってもよい。 In the present invention, the number of subfields constituting one field, subfields to be forced initialization subfields, luminance weights of each subfield, and the like are not limited to the above-described numerical values. Moreover, the structure which switches a subfield structure based on an image signal etc. may be sufficient.
 なお、図4、図5、図6、図19、図21、図22に示した駆動電圧波形は本発明の実施の形態における一例を示したものに過ぎず、本発明は何らこの駆動電圧波形に限定されるものではない。 The drive voltage waveforms shown in FIGS. 4, 5, 6, 19, 21, and 22 are merely examples of the embodiment of the present invention, and the present invention is not limited to these drive voltage waveforms. It is not limited to.
 なお、図12、図13、図14、図15、図16、図17に示した駆動回路の構成は本発明の実施の形態における一例を示したものに過ぎず、本発明は何らこれらの回路構成に限定されるものではない。 The configuration of the drive circuit shown in FIGS. 12, 13, 14, 15, 16, and 17 is merely an example in the embodiment of the present invention, and the present invention is not limited to these circuits. The configuration is not limited.
 なお、本発明における実施の形態に示した各回路ブロックは、実施の形態に示した各動作を行う電気回路として構成されてもよく、あるいは、同様の動作をするようにプログラミングされたマイクロコンピュータ等を用いて構成されてもよい。 Note that each circuit block shown in the embodiment of the present invention may be configured as an electric circuit that performs each operation shown in the embodiment, or a microcomputer that is programmed to perform the same operation. May be used.
 なお、本発明における実施の形態では、1つのフィールドを8のサブフィールドで構成する例を説明した。しかし、本発明は1フィールドを構成するサブフィールドの数が何ら上記の数に限定されるものではない。例えば、サブフィールドの数をより多くすることで、パネル10に表示できる階調の数をさらに増加することができる。あるいは、サブフィールドの数をより少なくすることで、パネル10の駆動に要する時間を短縮することができる。 In the embodiment of the present invention, an example in which one field is composed of 8 subfields has been described. However, in the present invention, the number of subfields constituting one field is not limited to the above number. For example, by increasing the number of subfields, the number of gradations that can be displayed on the panel 10 can be further increased. Alternatively, the time required for driving panel 10 can be shortened by reducing the number of subfields.
 なお、本発明における実施の形態では、1画素を赤、緑、青の3色の放電セルで構成する例を説明したが、1画素を4色あるいはそれ以上の色の放電セルで構成するパネルにおいても、本発明における実施の形態に示した構成を適用することは可能であり、同様の効果を得ることができる。 In the embodiment of the present invention, an example in which one pixel is constituted by discharge cells of three colors of red, green, and blue has been described. However, a panel in which one pixel is constituted by discharge cells of four colors or more. However, it is possible to apply the configuration shown in the embodiment of the present invention, and the same effect can be obtained.
 なお、本発明の実施の形態において示した具体的な数値は、画面サイズが50インチ、表示電極対24の数が1024のパネル10の特性にもとづき設定したものであって、単に実施の形態における一例を示したものに過ぎない。本発明はこれらの数値に何ら限定されるものではなく、各数値はパネルの仕様やパネルの特性、およびプラズマディスプレイ装置の仕様等にあわせて最適に設定することが望ましい。また、これらの各数値は、上述した効果を得られる範囲でのばらつきを許容するものとする。また、1フィールドを構成するサブフィールドの数や各サブフィールドの輝度重み等も本発明における実施の形態に示した値に限定されるものではなく、また、画像信号等にもとづいてサブフィールド構成を切換える構成であってもよい。 The specific numerical values shown in the embodiment of the present invention are set based on the characteristics of the panel 10 having a screen size of 50 inches and the number of display electrode pairs 24 of 1024. It is just an example. The present invention is not limited to these numerical values, and each numerical value is desirably set optimally in accordance with panel specifications, panel characteristics, plasma display device specifications, and the like. Each of these numerical values is allowed to vary within a range where the above-described effect can be obtained. Also, the number of subfields constituting one field, the luminance weight of each subfield, etc. are not limited to the values shown in the embodiment of the present invention, and the subfield configuration is based on the image signal or the like. The structure to switch may be sufficient.
 本発明は、高精細度化された大画面のパネルを駆動する際にも安定した書込み動作を行うことができ、品質の高い画像をパネルに表示することが可能であり、パネルの駆動方法およびプラズマディスプレイ装置として有用である。 The present invention can perform a stable writing operation even when driving a high-definition large-screen panel, and can display a high-quality image on the panel. It is useful as a plasma display device.
 10  パネル
 21  前面基板
 22  走査電極
 23  維持電極
 24  表示電極対
 25,33  誘電体層
 26  保護層
 31  背面基板
 32  データ電極
 34  隔壁
 35  蛍光体層
 40  プラズマディスプレイ装置
 41  画像信号処理回路
 42  データ電極駆動回路
 43  走査電極駆動回路
 44  維持電極駆動回路
 45  タイミング発生回路
 50,80  維持パルス発生回路
 51,81  電力回収回路
 60  傾斜波形電圧発生回路
 61,62,63  ミラー積分回路
 70  走査パルス発生回路
 77  フレキシブル配線板
 85  一定電圧発生回路
 95  走査IC
 Di11,Di12,Di21,Di22,Di31,Di62  ダイオード
 L11,L12,L21,L22  インダクタ
 Q5,Q6,Q11,Q12,Q21,Q22,Q55,Q56,Q59,Q69,Q72,Q83,Q84,Q86,Q87,Q71H1~Q71Hn,Q71L1~Q71Ln,Q91H1~Q91Hm,Q91L1~Q91Lm,SW1,SW2,SW3  スイッチング素子
 CP1,CP2  比較器
 OR  オアゲート
 AG  アンドゲート
 C10,C20,C31,C61,C62,C63  コンデンサ
 R61,R62,R63,R9,R12,R13  抵抗
 Q61,Q62,Q63  トランジスタ
 IN1,IN2,IN61,IN62,IN63,INa,INb  入力端子
 E71  電源
 L1,L5  上りランプ電圧
 L2,L4,L6,L8,L9,L10  下りランプ電圧
 L3,L7  上り消去ランプ電圧
DESCRIPTION OF SYMBOLS 10 Panel 21 Front substrate 22 Scan electrode 23 Sustain electrode 24 Display electrode pair 25,33 Dielectric layer 26 Protective layer 31 Back substrate 32 Data electrode 34 Partition 35 Phosphor layer 40 Plasma display device 41 Image signal processing circuit 42 Data electrode drive circuit 43 Scan electrode drive circuit 44 Sustain electrode drive circuit 45 Timing generation circuit 50, 80 Sustain pulse generation circuit 51, 81 Power recovery circuit 60 Ramp waveform voltage generation circuit 61, 62, 63 Miller integration circuit 70 Scan pulse generation circuit 77 Flexible wiring board 85 Constant voltage generator 95 Scan IC
Di11, Di12, Di21, Di22, Di31, Di62 Diodes L11, L12, L21, L22 Inductors Q5, Q6, Q11, Q12, Q21, Q22, Q55, Q56, Q59, Q69, Q72, Q83, Q84, Q86, Q87, Q71H1 to Q71Hn, Q71L1 to Q71Ln, Q91H1 to Q91Hm, Q91L1 to Q91Lm, SW1, SW2, SW3 Switching element CP1, CP2 comparator OR OR gate AG AND gate C10, C20, C31, C61, C62, C63 capacitors R61, R62, R63 , R9, R12, R13 Resistors Q61, Q62, Q63 Transistors IN1, IN2, IN61, IN62, IN63, INa, INb Input terminals E71 Power supply L1, L5 Up-run Voltage L2, L4, L6, L8, L9, L10 down-ramp voltage L3, L7 erasing up-ramp voltage

Claims (12)

  1. 走査電極および維持電極からなる表示電極対とデータ電極とを有する放電セルを複数備えたプラズマディスプレイパネルを、前記走査電極を第1の走査電極群と第2の走査電極群とを含む複数の走査電極群に分けて駆動するプラズマディスプレイパネルの駆動方法であって、
    前記表示電極対および前記データ電極をベース電位に維持する調整期間の後、前記第1の走査電極群へ第1の下り傾斜波形電圧を印加するとともに前記第2の走査電極群へ第2の下り傾斜波形電圧を印加する初期化期間と、前記第1の走査電極群において発光するべき放電セルに書込みパルスを印加する書込み動作と前記第2の走査電極群において発光するべき放電セルに書込みパルスを印加する書込み動作との間に第3の下り傾斜波形電圧を前記走査電極に印加する書込み期間と、輝度重みに応じた数の維持パルスを前記表示電極対に印加する維持期間とを有するサブフィールドを1フィールドに含み、
    前記調整期間の長さを、直前のサブフィールドの維持期間に発生する維持パルスの数に応じて変更する
    ことを特徴とするプラズマディスプレイパネルの駆動方法。
    A plasma display panel having a plurality of discharge cells each having a display electrode pair consisting of a scan electrode and a sustain electrode and a data electrode, and a plurality of scans including the first scan electrode group and the second scan electrode group. A method of driving a plasma display panel that is driven by being divided into electrode groups,
    After an adjustment period for maintaining the display electrode pair and the data electrode at a base potential, a first downward ramp waveform voltage is applied to the first scan electrode group, and a second downward is applied to the second scan electrode group. An initialization period in which a ramp waveform voltage is applied, an address operation for applying an address pulse to the discharge cells to emit light in the first scan electrode group, and an address pulse to the discharge cells to emit light in the second scan electrode group A subfield having an address period in which a third downward ramp waveform voltage is applied to the scan electrodes between the address operation to be applied, and a sustain period in which a number of sustain pulses corresponding to luminance weights are applied to the display electrode pairs In one field,
    A method of driving a plasma display panel, wherein the length of the adjustment period is changed according to the number of sustain pulses generated in the sustain period of the immediately preceding subfield.
  2. 前記第1の下り傾斜波形電圧の最低電圧と前記第3の下り傾斜波形電圧の最低電圧との差を、前記調整期間の長さが長いサブフィールドと前記調整期間の長さが短いサブフィールドとで変更する
    ことを特徴とする請求項1に記載のプラズマディスプレイパネルの駆動方法。
    The difference between the lowest voltage of the first falling ramp waveform voltage and the lowest voltage of the third falling ramp waveform voltage is expressed as a subfield having a long adjustment period and a subfield having a short adjustment period. The method for driving a plasma display panel according to claim 1, wherein:
  3. 前記調整期間の長さが短いサブフィールドでは、前記調整期間の長さが長いサブフィールドよりも、前記第3の下り傾斜波形電圧の最低電圧を低くする
    ことを特徴とする請求項2に記載のプラズマディスプレイパネルの駆動方法。
    The minimum voltage of the third downward ramp waveform voltage is set lower in the subfield having a short adjustment period than in the subfield having a long adjustment period. Driving method of plasma display panel.
  4. 走査電極および維持電極からなる表示電極対とデータ電極とを有する放電セルを複数備えたプラズマディスプレイパネルを、書込み期間と、輝度重みに応じた数の維持パルスを前記表示電極対に印加する維持期間とを有する複数のサブフィールドで1フィールドを構成し、前記走査電極を第1の走査電極群と第2の走査電極群とを含む複数の走査電極群に分けて駆動するプラズマディスプレイパネルの駆動方法であって、
    第1種サブフィールドと、第2種サブフィールドとを1フィールド内に設け、
    前記第1種サブフィールドは、前記放電セルに放電が発生する電圧まで上昇する上り傾斜波形電圧と負の電圧に向かって下降する下り傾斜波形電圧とを印加する走査電極と、前記放電セルに放電が発生しない電圧と前記下り傾斜波形電圧とを印加する走査電極とが存在する初期化期間を有するサブフィールドであり、
    前記第2種サブフィールドは、直前のサブフィールドで書込み放電を発生した放電セルだけに放電が発生する電圧まで下降する第1の下り傾斜波形電圧を前記走査電極に印加する初期化期間を有するサブフィールドであり、
    前記第1種サブフィールドの初期化期間において前記走査電極に前記下り傾斜波形電圧を印加する期間は前記データ電極に第1の電圧を印加し、前記第2種サブフィールドの初期化期間において前記走査電極に前記第1の下り傾斜波形電圧を印加する期間は前記データ電極に前記第1の電圧よりも高い第2の電圧を印加し、
    1フィールドの最終サブフィールドを除くサブフィールドでは、最後の前記維持パルスの発生後に、ベース電位から前記維持パルスの電圧未満に設定された所定電圧まで上昇する上り傾斜波形電圧を前記走査電極に印加し、
    前記第2種サブフィールドにおいては、前記表示電極対および前記データ電極をベース電位に維持する調整期間を前記初期化期間の直前に設け、前記第2種サブフィールドの初期化期間では、前記第1の走査電極群へ前記第1の下り傾斜波形電圧を印加するとともに前記第2の走査電極群へ第2の下り傾斜波形電圧を印加し、前記第2種サブフィールドの書込み期間では、前記第1の走査電極群において発光するべき放電セルに書込みパルスを印加する書込み動作と前記第2の走査電極群において発光するべき放電セルに書込みパルスを印加する書込み動作との間に第3の下り傾斜波形電圧を前記走査電極に印加し、
    前記調整期間の長さを、直前のサブフィールドの維持期間に発生する維持パルスの数に応じて変更する
    ことを特徴とするプラズマディスプレイパネルの駆動方法。
    A plasma display panel having a plurality of discharge cells each having a display electrode pair consisting of a scan electrode and a sustain electrode and a data electrode, an address period, and a sustain period in which a number of sustain pulses corresponding to the luminance weight are applied to the display electrode pair A method for driving a plasma display panel in which one field is composed of a plurality of subfields, and the scan electrodes are divided into a plurality of scan electrode groups including a first scan electrode group and a second scan electrode group Because
    A first type subfield and a second type subfield are provided in one field,
    The first type subfield includes a scan electrode that applies an upward ramp waveform voltage that rises to a voltage at which discharge occurs in the discharge cell, and a downward ramp waveform voltage that decreases toward a negative voltage, and discharges the discharge cell. Is a subfield having an initialization period in which there is a voltage that does not occur and a scan electrode that applies the downward ramp waveform voltage,
    The second type subfield has an initialization period in which a first downward ramp waveform voltage that drops to a voltage at which a discharge is generated only in the discharge cell that has generated an address discharge in the immediately preceding subfield is applied to the scan electrode. Field,
    A first voltage is applied to the data electrode during a period in which the downward ramp waveform voltage is applied to the scan electrode in the initialization period of the first type subfield, and the scan is performed in the initialization period of the second type subfield. Applying a second voltage higher than the first voltage to the data electrode during a period of applying the first downward ramp waveform voltage to the electrode;
    In subfields other than the last subfield of one field, an up-gradient waveform voltage that rises from a base potential to a predetermined voltage set lower than the voltage of the sustain pulse after the last sustain pulse is generated is applied to the scan electrodes. ,
    In the second type subfield, an adjustment period for maintaining the display electrode pair and the data electrode at the base potential is provided immediately before the initialization period, and in the initialization period of the second type subfield, The first downward ramp waveform voltage is applied to the second scan electrode group and the second downward ramp waveform voltage is applied to the second scan electrode group. In the address period of the second type subfield, A third downward ramp waveform between the address operation for applying the address pulse to the discharge cells to emit light in the scan electrode group and the address operation for applying the address pulse to the discharge cells to emit light in the second scan electrode group Applying a voltage to the scan electrode;
    A method of driving a plasma display panel, wherein the length of the adjustment period is changed according to the number of sustain pulses generated in the sustain period of the immediately preceding subfield.
  5. 前記第1の下り傾斜波形電圧の最低電圧と前記第3の下り傾斜波形電圧の最低電圧との差を、前記調整期間の長さが長いサブフィールドと前記調整期間の長さが短いサブフィールドとで変更する
    ことを特徴とする請求項4に記載のプラズマディスプレイパネルの駆動方法。
    The difference between the lowest voltage of the first falling ramp waveform voltage and the lowest voltage of the third falling ramp waveform voltage is expressed as a subfield having a long adjustment period and a subfield having a short adjustment period. The method of driving a plasma display panel according to claim 4, wherein
  6. 前記調整期間の長さが短いサブフィールドでは、前記調整期間の長さが長いサブフィールドよりも、前記第3の下り傾斜波形電圧の最低電圧を低くする
    ことを特徴とする請求項5に記載のプラズマディスプレイパネルの駆動方法。
    The minimum voltage of the third downward ramp waveform voltage is set lower in a subfield having a shorter adjustment period than in a subfield having a longer adjustment period. Driving method of plasma display panel.
  7. 前記第1の下り傾斜波形電圧の最低電圧を、前記第1種サブフィールドの前記下り傾斜波形電圧の最低電圧よりも高い電圧にして、前記第1の下り傾斜波形電圧を発生する
    ことを特徴とする請求項4に記載のプラズマディスプレイパネルの駆動方法。
    The lowest voltage of the first downward ramp waveform voltage is set to be higher than the lowest voltage of the downward ramp waveform voltage of the first type subfield to generate the first downward ramp waveform voltage. The method for driving a plasma display panel according to claim 4.
  8. 前記第1種サブフィールドの前記下り傾斜波形電圧を前記走査電極に印加する期間は前記維持電極に正の電圧を印加し、前記第1の下り傾斜波形電圧を前記走査電極に印加する期間は前記正の電圧よりも高い電圧を前記維持電極に印加する
    ことを特徴とする請求項4に記載のプラズマディスプレイパネルの駆動方法。
    A positive voltage is applied to the sustain electrode during a period in which the downward ramp waveform voltage of the first type subfield is applied to the scan electrode, and a period during which the first downward ramp waveform voltage is applied to the scan electrode during the period The method of claim 4, wherein a voltage higher than a positive voltage is applied to the sustain electrode.
  9. 走査電極および維持電極からなる表示電極対とデータ電極とを有する放電セルを複数備えたプラズマディスプレイパネルと、
    前記走査電極を第1の走査電極群と第2の走査電極群とを含む複数の走査電極群に分けて前記プラズマディスプレイパネルを駆動する駆動回路とを備えたプラズマディスプレイ装置であって、
    前記駆動回路は、
    前記表示電極対および前記データ電極をベース電位に維持する調整期間の後、前記第1の走査電極群へ第1の下り傾斜波形電圧を印加するとともに前記第2の走査電極群へ第2の下り傾斜波形電圧を印加する初期化期間と、前記第1の走査電極群において発光するべき放電セルに書込みパルスを印加する書込み動作と前記第2の走査電極群において発光するべき放電セルに書込みパルスを印加する書込み動作との間に第3の下り傾斜波形電圧を前記走査電極に印加する書込み期間と、輝度重みに応じた数の維持パルスを前記表示電極対に印加する維持期間とを有するサブフィールドを1フィールドに含み、
    前記調整期間の長さを、直前のサブフィールドの維持期間に発生する維持パルスの数に応じて変更する
    ことを特徴とするプラズマディスプレイ装置。
    A plasma display panel comprising a plurality of discharge cells having a display electrode pair consisting of a scan electrode and a sustain electrode and a data electrode;
    A plasma display device comprising: a drive circuit for driving the plasma display panel by dividing the scan electrodes into a plurality of scan electrode groups including a first scan electrode group and a second scan electrode group;
    The drive circuit is
    After an adjustment period for maintaining the display electrode pair and the data electrode at a base potential, a first downward ramp waveform voltage is applied to the first scan electrode group, and a second downward is applied to the second scan electrode group. An initialization period in which a ramp waveform voltage is applied, an address operation for applying an address pulse to the discharge cells to emit light in the first scan electrode group, and an address pulse to the discharge cells to emit light in the second scan electrode group A subfield having an address period in which a third downward ramp waveform voltage is applied to the scan electrodes between the address operation to be applied, and a sustain period in which a number of sustain pulses corresponding to luminance weights are applied to the display electrode pairs In one field,
    The length of the adjustment period is changed in accordance with the number of sustain pulses generated in the sustain period of the immediately preceding subfield.
  10. 前記駆動回路は、
    前記第1の下り傾斜波形電圧の最低電圧と前記第3の下り傾斜波形電圧の最低電圧との差を、前記調整期間の長さが長いサブフィールドと前記調整期間の長さが短いサブフィールドとで変更する
    ことを特徴とする請求項9に記載のプラズマディスプレイ装置。
    The drive circuit is
    The difference between the lowest voltage of the first falling ramp waveform voltage and the lowest voltage of the third falling ramp waveform voltage is expressed as a subfield having a long adjustment period and a subfield having a short adjustment period. The plasma display device according to claim 9, wherein the plasma display device is changed as follows.
  11. 前記駆動回路は、
    前記調整期間の長さが短いサブフィールドでは、前記調整期間の長さが長いサブフィールドよりも、前記第3の下り傾斜波形電圧の最低電圧を低くする
    ことを特徴とする請求項10に記載のプラズマディスプレイ装置。
    The drive circuit is
    11. The minimum voltage of the third downward ramp waveform voltage is set lower in a subfield having a shorter adjustment period than in a subfield having a longer adjustment period. Plasma display device.
  12. 走査電極および維持電極からなる表示電極対とデータ電極とを有する放電セルを複数備えたプラズマディスプレイパネルと、
    書込み期間と、輝度重みに応じた数の維持パルスを前記表示電極対に印加する維持期間とを有する複数のサブフィールドで1フィールドを構成し、前記走査電極を第1の走査電極群と第2の走査電極群とを含む複数の走査電極群に分けて前記プラズマディスプレイパネルを駆動する駆動回路とを備えたプラズマディスプレイ装置であって、
    前記駆動回路は、
    第1種サブフィールドと第2種サブフィールドとを1フィールド内に設けて前記プラズマディスプレイパネルを駆動し、
    前記第1種サブフィールドは、前記放電セルに放電が発生する電圧まで上昇する上り傾斜波形電圧と、負の電圧に向かって下降する下り傾斜波形電圧とを印加する走査電極と、前記放電セルに放電が発生しない電圧と前記下り傾斜波形電圧とを印加する走査電極とが存在する初期化期間を有し、前記第2種サブフィールドは、直前のサブフィールドで書込み放電を発生した放電セルだけに放電が発生する電圧まで下降する第1の下り傾斜波形電圧を前記走査電極に印加する初期化期間を有し、
    前記第1種サブフィールドの初期化期間において前記走査電極に前記下り傾斜波形電圧を印加する期間は前記データ電極に第1の電圧を印加し、前記第2種サブフィールドの初期化期間において前記走査電極に前記第1の下り傾斜波形電圧を印加する期間は前記データ電極に前記第1の電圧よりも高い第2の電圧を印加し、
    前記第2種サブフィールドにおいては、前記表示電極対および前記データ電極をベース電位に維持する調整期間を前記初期化期間の直前に設け、前記第2種サブフィールドの初期化期間では、前記第1の走査電極群へ前記第1の下り傾斜波形電圧を印加するとともに前記第2の走査電極群へ第2の下り傾斜波形電圧を印加し、前記第2種サブフィールドの書込み期間では、前記第1の走査電極群において発光するべき放電セルに書込みパルスを印加する書込み動作と前記第2の走査電極群において発光するべき放電セルに書込みパルスを印加する書込み動作との間に第3の下り傾斜波形電圧を前記走査電極に印加し、
    前記調整期間の長さを、直前のサブフィールドの維持期間に発生する維持パルスの数に応じて変更する
    ことを特徴とするプラズマディスプレイ装置。
    A plasma display panel comprising a plurality of discharge cells having a display electrode pair consisting of a scan electrode and a sustain electrode and a data electrode;
    A plurality of subfields each having an address period and a sustain period in which a number of sustain pulses corresponding to luminance weights are applied to the display electrode pair constitute one field, and the scan electrodes are connected to the first scan electrode group and the second scan electrode group. And a driving circuit for driving the plasma display panel divided into a plurality of scanning electrode groups including the scanning electrode group,
    The drive circuit is
    A first type subfield and a second type subfield are provided in one field to drive the plasma display panel;
    The first type subfield includes a scan electrode that applies an upward ramp waveform voltage that rises to a voltage at which discharge occurs in the discharge cell, and a downward ramp waveform voltage that decreases toward a negative voltage, and the discharge cell. There is an initialization period in which there is a voltage at which no discharge occurs and a scan electrode to which the downward ramp waveform voltage is applied, and the second type subfield is only in the discharge cells that have generated an address discharge in the immediately preceding subfield. An initialization period in which a first downward ramp waveform voltage that drops to a voltage at which discharge occurs is applied to the scan electrode;
    A first voltage is applied to the data electrode during a period in which the downward ramp waveform voltage is applied to the scan electrode in the initialization period of the first type subfield, and the scan is performed in the initialization period of the second type subfield. Applying a second voltage higher than the first voltage to the data electrode during a period of applying the first downward ramp waveform voltage to the electrode;
    In the second type subfield, an adjustment period for maintaining the display electrode pair and the data electrode at the base potential is provided immediately before the initialization period, and in the initialization period of the second type subfield, The first downward ramp waveform voltage is applied to the second scan electrode group and the second downward ramp waveform voltage is applied to the second scan electrode group. In the address period of the second type subfield, A third downward ramp waveform between the address operation for applying the address pulse to the discharge cells to emit light in the scan electrode group and the address operation for applying the address pulse to the discharge cells to emit light in the second scan electrode group Applying a voltage to the scan electrode;
    The length of the adjustment period is changed in accordance with the number of sustain pulses generated in the sustain period of the immediately preceding subfield.
PCT/JP2012/000446 2011-01-28 2012-01-25 Plasma display panel drive method and plasma display device WO2012102033A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011016040 2011-01-28
JP2011-016040 2011-01-28

Publications (1)

Publication Number Publication Date
WO2012102033A1 true WO2012102033A1 (en) 2012-08-02

Family

ID=46580608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000446 WO2012102033A1 (en) 2011-01-28 2012-01-25 Plasma display panel drive method and plasma display device

Country Status (1)

Country Link
WO (1) WO2012102033A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003345291A (en) * 2002-05-24 2003-12-03 Matsushita Electric Ind Co Ltd Plasma display device
JP2004109838A (en) * 2002-09-20 2004-04-08 Nec Corp Driving method of ac type plasma display panel
WO2009019810A1 (en) * 2007-08-08 2009-02-12 Panasonic Corporation Plasma display panel driver, driving method, and plasma display device
WO2009031272A1 (en) * 2007-09-03 2009-03-12 Panasonic Corporation Plasma display panel driving apparatus, driving method and plasma display device
WO2009031273A1 (en) * 2007-09-03 2009-03-12 Panasonic Corporation Plasma display panel device and plasma display panel driving method
WO2009081510A1 (en) * 2007-12-25 2009-07-02 Panasonic Corporation Apparatus and method for driving plasma display panel, and plasma display device
WO2010116696A1 (en) * 2009-04-08 2010-10-14 パナソニック株式会社 Plasma display panel drive method and plasma display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003345291A (en) * 2002-05-24 2003-12-03 Matsushita Electric Ind Co Ltd Plasma display device
JP2004109838A (en) * 2002-09-20 2004-04-08 Nec Corp Driving method of ac type plasma display panel
WO2009019810A1 (en) * 2007-08-08 2009-02-12 Panasonic Corporation Plasma display panel driver, driving method, and plasma display device
WO2009031272A1 (en) * 2007-09-03 2009-03-12 Panasonic Corporation Plasma display panel driving apparatus, driving method and plasma display device
WO2009031273A1 (en) * 2007-09-03 2009-03-12 Panasonic Corporation Plasma display panel device and plasma display panel driving method
WO2009081510A1 (en) * 2007-12-25 2009-07-02 Panasonic Corporation Apparatus and method for driving plasma display panel, and plasma display device
WO2010116696A1 (en) * 2009-04-08 2010-10-14 パナソニック株式会社 Plasma display panel drive method and plasma display device

Similar Documents

Publication Publication Date Title
JP4655090B2 (en) Plasma display panel driving method and plasma display device
WO2010116696A1 (en) Plasma display panel drive method and plasma display device
JP5131241B2 (en) Driving method of plasma display panel
WO2010029665A1 (en) Plasma display device and method of driving plasma display panel
JP2009250995A (en) Plasma display device and driving method of plasma display panel
WO2010119636A1 (en) Method for driving plasma display panel and plasma display device
WO2012102033A1 (en) Plasma display panel drive method and plasma display device
WO2012090451A1 (en) Driving method for plasma display panel, and plasma display device
JP2010266651A (en) Method for driving plasma display panel, and the plasma display device
WO2010131466A1 (en) Method for driving plasma display panel and plasma display device
WO2012102032A1 (en) Plasma display panel drive method and plasma display device
WO2012102031A1 (en) Method for driving plasma display panel, and plasma display apparatus
WO2012073516A1 (en) Method of driving plasma display device and plasma display device
JP5263450B2 (en) Plasma display panel driving method and plasma display device
WO2010146861A1 (en) Driving method for plasma display panel, and plasma display device
WO2010119635A1 (en) Method for driving plasma display panel and plasma display device
WO2012102043A1 (en) Method for driving plasma display panel, and plasma display apparatus
WO2012035761A1 (en) Method for driving plasma display device, and plasma display device
JP2010107806A (en) Plasma display and method of driving the same
JP2010266652A (en) Method of driving plasma display panel, and plasma display device
JP2010266648A (en) Driving method of plasma display panel, and plasma display device
WO2011052219A1 (en) Plasma display panel driving method and plasma display device
JP2009236990A (en) Plasma display device and driving method of plasma display panel
WO2013046652A1 (en) Method for driving plasma display panel and plasma display device
WO2012017647A1 (en) Plasma display panel driving method and plasma display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12738879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12738879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP