WO2012072434A1 - Verfahren zur ermittlung der leerlaufspannung einer batterie, batterie mit einem modul zur ermittlung der leerlaufspannung sowie ein kraftfahrzeug mit einer entsprechenden batterie - Google Patents

Verfahren zur ermittlung der leerlaufspannung einer batterie, batterie mit einem modul zur ermittlung der leerlaufspannung sowie ein kraftfahrzeug mit einer entsprechenden batterie Download PDF

Info

Publication number
WO2012072434A1
WO2012072434A1 PCT/EP2011/070522 EP2011070522W WO2012072434A1 WO 2012072434 A1 WO2012072434 A1 WO 2012072434A1 EP 2011070522 W EP2011070522 W EP 2011070522W WO 2012072434 A1 WO2012072434 A1 WO 2012072434A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
open circuit
circuit voltage
voltage
cell
Prior art date
Application number
PCT/EP2011/070522
Other languages
English (en)
French (fr)
Inventor
Andre Boehm
Stefan Wickert
Original Assignee
Sb Limotive Company Ltd.
Sb Limotive Germany Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sb Limotive Company Ltd., Sb Limotive Germany Gmbh filed Critical Sb Limotive Company Ltd.
Priority to CN201180057539.5A priority Critical patent/CN103314303B/zh
Priority to US13/990,507 priority patent/US20130314042A1/en
Publication of WO2012072434A1 publication Critical patent/WO2012072434A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a method for determining the
  • OCV Open circuit voltage
  • batteries or battery packs are used in lithium-ion or nickel-metal hydride technology, which consist of a large number of series-connected electrochemical cells.
  • BMS battery management system
  • the voltage of each individual cell together with the battery current and the battery temperature is measured by the battery management system and a state estimation with respect to the state of charge (SOC) and the state of health (SOH).
  • Observer structure that observes the real system battery through a model and determines the state of the real system by adapting the model parameters.
  • the core of this observer structure is a model of an electrochemical cell.
  • the battery voltage is calculated from the summand open circuit voltage and the voltage drop across the complex impedance of the cell.
  • the exact knowledge of the open circuit voltage is necessary. This can be determined in advance for the installed cell type in the laboratory, whereby on the basis of these values, a table is formed, which determines the dependence of the open circuit voltage of
  • Battery management system of a vehicle reliably to detect the changing open-circuit voltage in the real system.
  • a method for determining the open-circuit voltage of a battery, in which the aging-dependent no-load voltage of the battery installed in the vehicle or a characteristic curve of the open-circuit voltage (OCV characteristic) is determined in a simple manner within the scope of the method. This is achieved by determining the open circuit voltage during the charging process of the battery. Unlike the state of the art where the
  • Open circuit voltage over the life of the battery is considered constant, the invention provides to determine the changing open circuit voltage during operation of the battery in the vehicle.
  • the characteristic curve of the open circuit voltage stored in a battery management system is adapted in dependence on the open circuit voltage determined during the charging process.
  • a preferred embodiment provides that also stored in the battery management system OCV table as a function of during the charging process certain open circuit voltage is redetermined. This can advantageously be corrected any existing model errors.
  • the battery is at least one electrochemical cell, but preferably a battery having a plurality of electrochemical cells, wherein the electrochemical cells are connected in series.
  • the battery is a lithium-ion battery.
  • electrochemical cells is determined. By subtracting the voltage drop from the cell voltage, the open circuit voltage is determined.
  • Open circuit voltage used in a battery management system cell model is used. Among other things, the temperature, cell current, state of charge or the like are detected or determined by the battery management system. With the aid of the values thus detected or determined, the voltage drop at the impedance of at least part of the electrochemical cells, but preferably of all electrochemical cells, is calculated by the cell model. The open circuit voltage is then determined by subtracting the voltage drop from the measured cell voltage.
  • An alternative preferred embodiment provides to carry out the charge with changing charging current. It proves to be advantageous if the charging current changes continuously. This has the particular advantage that the impedance can be determined very accurately. It proves to be further advantageous if low charging currents are used, since then the voltage drop at the impedance is low. Alternatively, it may be provided to determine the open circuit voltage at non-continuous charge.
  • Another preferred embodiment of the invention provides that the changes of the OCV characteristic is subjected to a filtering.
  • this filter algorithm z. B. eliminates disturbances in the voltage measurement, so that z. B. short-term disturbances have no negative impact on the determination of the open circuit voltage. It proves to be particularly advantageous when determining the
  • Open circuit voltage is passed through the entire state of charge of the battery, that is, when the Leelaufschreib is determined during charging from the empty battery to the fully charged battery.
  • Open circuit voltage only when evaluating a partial cycle of the charging process is also feasible.
  • the OCV characteristic is then adapted using suitable filters.
  • Another aspect of the invention relates to a battery having a module for determining the open circuit voltage of a battery, wherein the module is set up such that a method for determining the open circuit voltage of a
  • Battery is executable, wherein the open circuit voltage is determined during the charging of the battery.
  • the battery is preferably a lithium-ion battery or the battery comprises electrochemical cells which are designed as lithium-ion battery cells.
  • Another aspect of the invention relates to a motor vehicle having an electric drive motor for driving the motor vehicle and a battery connected or connectable to the electric drive motor according to the invention aspect described in the preceding paragraph.
  • the battery is not limited to such use, but may be used in other electrical systems.
  • the invention provides a method for determining the open circuit voltage during charging of the battery pack for an electric or
  • Hybrid vehicle By the method according to the invention can advantageously Even an aging battery can be observed exactly in their performance and behavioral parameters
  • Figure 1 is a schematic representation of a control engineering
  • Figure 2 is a schematic representation of a cell model according to the prior art.
  • FIG. 3 shows a charge curve recorded according to the invention
  • a battery management system For monitoring the battery, a battery management system is provided, which observes the battery 110 by means of a control-technical observer structure 100 through a cell model 120 and determines the state of the real system by adapting the model parameters.
  • FIG. 1 illustrates such an observer structure 100.
  • the observer structure 100 observes the real system battery 110 through a cell model 120 and updates the state of the real system by adapting the model parameters. Core of the employed in the observer structure 100
  • Observer 130 is a cell model 120, which in principle has the structure shown in Figure 2.
  • the cell model 120 estimates the cell model 120
  • Electric vehicles and so-called plug-in hybrids are charged by external or internal chargers at a power outlet in order to provide the necessary electrical energy in the next driving cycle can.
  • a continuous charge is usually made with constant charging power or constant charging current. This is exploited by the invention.
  • the voltage drop U imp 230 determined over the cell impedance. Since temperature Tssatt 150, cell current Ißatt 140 and state of charge SOCocv 180 of the cell are already detected by the battery management system, the voltage drop U imp 230 at the cell impedance can be calculated by the cell model 120 and subtracted from the measured cell voltage Ußatt 160. This allows the OCV characteristic curve directly during charging
  • the OCV characteristic 300 obtained during the charge is used to adapt the OCV characteristic stored and used in the battery management system.
  • the OCV table of the battery management system can be recalculated using the OCV characteristic 300 obtained during the charge.
  • the OCV table is thus measured in this embodiment during operation in the vehicle.
  • the OCV table is thus newly determined taking into account any errors of the cell model 120.
  • the impedance determination is advantageous and possible with high precision.
  • Low charging currents - and thus long charging times - are also advantageous here, since the voltage drop U imp 230 across the impedance in this case is low. Long charging times will be the rule because of the low power output of household sockets, so that these advantages in the use of the invention in a variety of
  • Charge state range - starting from an empty battery - is traversed.
  • suitable filtering it is also readily possible to use only partial cycles of the charging process for adaptation of the respective region of the OCV characteristic curve 300.
  • the invention is not limited in its embodiment to the above-mentioned preferred embodiments. Rather, a number of variants is conceivable, which makes use of the inventive method, the battery according to the invention and the motor vehicle according to the invention even with fundamentally different types of use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Ermittlung der Leerlaufspannung (Open Circuit Voltage - OCV) einer Batterie, eine Batterie mit einem Modul zur Ermittlung der Leerlaufspannung sowie ein Kraftfahrzeug mit einer entsprechenden Batterie, welche insbesondere einsetzbar sind, um die alterungsabhängige Leerlaufspannung von in einem Fahrzeug verbauten Batteriepacks zu ermitteln. Hierfür wird vorgeschlagen, die Leerlaufspannung während des Ladevorgangs der Batterie (110) zu bestimmen. Ferner werden eine Batterie (110) mit einem Modul zur Ermittlung der Leerlaufspannung einer Batterie (110) und ein Fahrzeug mit einer solchen Batterie (110) vorgeschlagen.

Description

Beschreibung Titel
Verfahren zur Ermittlung der Leerlaufspannung einer Batterie, Batterie mit einem Modul zur Ermittlung der Leerlaufspannung sowie ein Kraftfahrzeug mit einer entsprechenden Batterie
Die vorliegende Erfindung betrifft ein Verfahren zur Ermittlung der
Leerlaufspannung (Open Circuit Voltage - OCV) einer Batterie, eine Batterie mit einem Modul zur Ermittlung der Leerlaufspannung sowie ein Kraftfahrzeug mit einer entsprechenden Batterie, welche insbesondere einsetzbar sind, um die alterungsabhängige Leerlaufspannung von in einem Fahrzeug verbauten Batteriepacks zu ermitteln.
Stand der Technik
In Hybrid- und Elektrofahrzeugen werden Batterien bzw. Batteriepacks in Lithium-Ionen- oder Nickel-Metallhydrid-Technologie eingesetzt, die aus einer großen Anzahl in Serie geschalteter elektrochemischer Zellen bestehen.
Zur Überwachung der Batterie ist ein Batteriemanagementsystem (BMS) vorgesehen, das neben einer Sicherheitsüberwachung eine möglichst hohe Lebensdauer gewährleisten soll.
Dazu wird die Spannung jeder einzelnen Zelle zusammen mit dem Batteriestrom und der Batterietemperatur durch das Batteriemanagementsystem gemessen und eine Zustandsschätzung hinsichtlich des Ladezustands (State of Charge - SOC) und des Alterungszustandes (State of Health - SOH) vorgenommen.
Dies geschieht nach dem Stand der Technik, wie beispielsweise in der
DE 10 2008 041 300 A1 , mit Hilfe einer regelungstechnischen Beobachterstruktur, die das reale System Batterie durch ein Modell beobachtet und durch Adaption der Modellparameter den Zustand des realen Systems ermittelt. Kern dieser Beobachterstruktur ist ein Modell einer elektrochemischen Zelle. Hierbei wird die Batteriespannung aus den Summanden Leerlaufspannung und dem Spannungsabfall an der komplexen Impedanz der Zelle berechnet. Neben einem hochwertigen Modell für die Zellimpedanz ist dabei die genaue Kenntnis der Leerlaufspannung notwendig. Diese kann für den verbauten Zelltyp vorab im Labor punktuell ermittelt werden, wobei anhand dieser Werte eine Tabelle gebildet wird, die die Abhängigkeit der Leerlaufspannung vom
Ladezustand beschreibt, so dass der Ladezustand bestimmt werden kann. Diese so genannte OCV-Tabelle wird also zuvor im Labor ermittelt.
Aufgrund von Alterung kann es aber dazu kommen, dass die Leerlaufspannung sich strukturell ändert, wenn beispielsweise Anode und Kathode der Zelle unterschiedlich stark altern. Daher ist es nicht möglich, mittels des
Batteriemanagementsystems eines Fahrzeuges verlässlich die sich ändernde Leerlaufspannung im realen System zu erfassen.
Offenbarung der Erfindung
Erfindungsgemäß wird ein Verfahren zur Ermittlung der Leerlaufspannung einer Batterie bereitgestellt, bei dem im Rahmen des Verfahrens in einfacher Weise die alterungsabhängige Leerlaufspannung der im Fahrzeug verbauten Batterie bzw. eine Kennlinie der Leerlaufspannung (OCV-Kennlinie) bestimmt wird. Dies wird dadurch erreicht, dass die Leerlaufspannung während des Ladevorgangs der Batterie bestimmt wird. Im Gegensatz zum Stand der Technik, wo die
Leerlaufspannung über die Lebensdauer der Batterie als konstant angesehen wird, sieht die Erfindung vor, die sich ändernde Leerlaufspannung während des Betriebs der Batterie im Fahrzeug zu bestimmen.
Als vorteilhaft erweist es sich, wenn die in einem Batteriemanagementsystem abgelegte Kennlinie der Leerlaufspannung in Abhängigkeit der während des Ladevorgangs bestimmten Leerlaufspannung adaptiert wird. Eine bevorzugte Ausführungsform sieht vor, dass auch die im Batteriemanagementsystem abgelegte OCV-Tabelle in Abhängigkeit der während des Ladevorgangs bestimmten Leerlaufspannung neu bestimmt wird. Dadurch können vorteilhaft eventuell vorhandene Modellfehler korrigiert werden.
Bei der Batterie handelt es sich um zumindest eine elektrochemische Zelle, vorzugsweise jedoch eine Batterie mit einer Vielzahl von elektrochemischen Zellen, wobei die elektrochemischen Zellen in Serie geschaltet sind.
Vorzugsweise handelt es sich bei der Batterie um eine Lithium-Ionen-Batterie.
In einer bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass die Zellspannung und der Spannungsabfall an der Impedanz von zumindest einem Teil der elektrochemischen Zellen, vorzugsweise aber von allen
elektrochemischen Zellen, ermittelt wird. Indem der Spannungsabfall von der Zellspannung subtrahiert wird, wird die Leerlaufspannung bestimmt.
Als besonders vorteilhaft erweist es sich, wenn bei der Bestimmung der
Leerlaufspannung ein in einem Batteriemanagementsystem genutztes Zellmodell verwendet wird. Durch das Batteriemanagementsystem werden unter anderem Temperatur, Zellstrom, Ladezustand oder dergleichen erfasst oder ermittelt. Mit Hilfe der so erfassten bzw. ermittelten Werte wird der Spannungsabfall an der Impedanz von zumindest einem Teil der elektrochemischen Zellen, vorzugsweise aber von allen elektrochemischen Zellen, durch das Zellmodell berechnet. Die Leerlaufspannung wird dann durch Subtraktion des Spannungsabfalls von der gemessenen Zellspannung bestimmt.
In einer weiteren bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass eine kontinuierliche Ladung erfolgt, das heißt, dass während des
Ladevorgangs die Ladeleistung und/oder der Ladestrom konstant gehalten werden. Eine alternative bevorzugte Ausführungsform sieht vor, die Ladung mit sich veränderndem Ladestrom durchzuführen. Als vorteilhaft erweist es sich, wenn sich der Ladestrom kontinuierlich ändert. Das hat insbesondere den Vorteil, dass dabei die Impedanz besonders exakt bestimmt werden kann. Dabei erweist es sich weiter als vorteilhaft, wenn niedrige Ladeströme genutzt werden, da dann der Spannungsabfall an der Impedanz gering ist. Alternativ kann vorgesehen sein, die Leerlaufspannung bei nicht-kontinuierlicher Ladung zu bestimmen.
Eine andere bevorzugte Ausführungsform der Erfindung sieht vor, dass die Veränderungen der OCV-Kennlinie einer Filterung unterworfen wird. Durch diesen Filteralgorithmus werden z. B. Störungen bei der Spannungsmessung eliminiert, so dass z. B. kurzzeitige Störungen keinen negativen Einfluss auf die Bestimmung der Leerlaufspannung haben. Als besonders vorteilhaft erweist es sich, wenn zur Bestimmung der
Leerlaufspannung der gesamte Ladezustandsbereich der Batterie durchlaufen wird, das heißt, wenn die Leelaufspannung beim Laden von der leeren Batterie bis zur voll geladenen Batterie bestimmt wird. Eine Bestimmung der
Leerlaufspannung nur bei Auswertung eines Teilzyklus des Ladevorgangs ist allerdings auch durchführbar. Die OCV-Kennlinie wird dann unter Verwendung geeigneter Filter adaptiert.
Ein weiterer Aspekt der Erfindung betrifft eine Batterie mit einem Modul zur Ermittlung der Leerlaufspannung einer Batterie, wobei das Modul derart eingerichtet ist, dass ein Verfahren zur Ermittlung der Leerlaufspannung einer
Batterie ausführbar ist, wobei die Leerlaufspannung während des Ladevorgangs der Batterie bestimmt wird. Vorzugsweise handelt es sich bei der Batterie um eine Lithium-Ionen-Batterie oder die Batterie umfasst elektrochemische Zellen, die als Lithium-Ionen-Batteriezellen ausgebildet sind.
Ein anderer Aspekt der Erfindung betrifft ein Kraftfahrzeug mit einem elektrischen Antriebsmotor zum Antreiben des Kraftfahrzeugs und einer mit dem elektrischen Antriebsmotor verbundenen oder verbindbaren Batterie gemäß dem im voranstehenden Absatz beschriebenen Erfindungsaspekt.
Die Batterie ist jedoch nicht auf einen solchen Einsatzzweck eingeschränkt, sondern kann auch in anderen elektrischen Systemen eingesetzt werden.
Durch die Erfindung wird ein Verfahren zur Verfügung gestellt zur Ermittlung der Leerlaufspannung während der Ladung des Batteriepacks für ein Elektro- oder
Hybridfahrzeug. Durch das erfindungsgemäße Verfahren kann vorteilhafterweise auch eine alternde Batterie exakt in ihren Leistungs- und Verhaltensparametern beobachtet werden
Durch das erfindungsgemäße Verfahren kann vorteilhafterweise eine verlässliche Bestimmung der OCV im Fahrzeug erfolgen, wodurch sich eine erhöhte Präzision bei der Bestimmung der alterungsabhängigen Leistungsdaten ergibt.
Weitere Vorteile sind eine verbesserte Lebensdauervorhersage, eine exaktere Bestimmung des Ladezustandes, eine präzise Bestimmung der real verfügbaren gealterten Kapazität, ein geringer Rechenaufwand und Ressourcenbedarf sowie eine extreme Wirtschaftlichkeit, da kein zusätzlich Aufwand an Hardware besteht.
Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben und in der Beschreibung beschrieben.
Zeichnungen
Ausführungsbeispiele der Erfindung werden anhand der Zeichnungen und der nachfolgenden Beschreibung näher erläutert. Es zeigen:
Figur 1 eine schematische Darstellung einer regelungstechnischen
Beobachterstruktur zur Zustandsschätzung einer Batterie nach dem Stand der Technik,
Figur 2 eine schematische Darstellung eines Zellmodells nach dem Stand der Technik, und
Figur 3 eine erfindungsgemäß aufgezeichnete Ladungskurve und eine
OCV-Kennlinie.
Ausführungsformen der Erfindung
Zur Überwachung der Batterie ist ein Batteriemanagementsystem vorgesehen, das mit Hilfe einer regelungstechnischen Beobachterstruktur 100 die Batterie 110 durch ein Zellmodell 120 beobachtet und durch Adaption der Modellparameter den Zustand des realen Systems ermittelt. In Figur 1 ist eine solche Beobachterstruktur 100 veranschaulicht. Durch die Beobachterstruktur 100 wird das reale System Batterie 110 durch ein Zellmodell 120 beobachtet und durch Adaption der Modellparameter der Zustand des realen Systems nachgeführt. Kern des in der Beobachterstruktur 100 eingesetzten
Beobachters 130 ist ein Zellmodell 120, welches prinzipiell die in Figur 2 dargestellte Struktur aufweist.
In einer beispielhaften Ausführungsform eines solchen Beobachters 130 wird zur Schätzung des Ladezustands 180 und zur Überwachung des Alterungszustands
190 das reale System Batterie 1 10 durch ein Zellmodell 120 beobachtet, wobei der Batteriestrom I Batt 140, die Batterietemperatur Tßatt 150, die Batteriespannung Ußatt 160 und eine durch das Zellmodell 120 ermittelte Modellspannung UMOd 170 ausgewertet werden. Durch Adaption der Modellparameter wird der Zustand des realen Systems nachgeführt. Kern des in der Beobachterstruktur 100
eingesetzten Beobachters 130 ist ein Zellmodell 120, welches prinzipiell die in Figur 2 dargestellte Struktur aufweist. Das Zellmodell 120 schätzt die
Ruhespannung Uocv 220 unter Last. Dazu wird der Batteriestrom Ißatt 140 ausgewertet und zusätzlich der Spannungsabfall Uimp 230 an der
Batterieimpedanz von der gemessenen Zellspannung Ußatt 160 abgezogen, um zur internen Spannung U, zu gelangen, welche bei einem idealen Zellmodell 120 der Ruhespannung Uocv 220 entspricht. Aus der so ermittelten Ruhespannung Uocv 220 wird mit Hilfe einer OCV-Tabelle der aktuelle Ladezustand SOCocv 180 geschätzt.
Elektrofahrzeuge sowie so genannte Plug-In-Hybride werden durch externe oder interne Ladegeräte an einer Steckdose aufgeladen, um im nächsten Fahrzyklus die notwendige elektrische Energie bereitstellen zu können. Dabei wird in der Regel mit konstanter Ladeleistung oder konstantem Ladestrom eine kontinuierliche Ladung vorgenommen. Das wird durch die Erfindung ausgenutzt. In einer beispielhaften Ausführungsform der Erfindung wird mit Hilfe des in Figur 2 veranschaulichten Zellmodells 120, welches in einem
Batteriemanagementsystem bereits nach dem Stand der Technik zur Verfügung steht, der Spannungsabfall Uimp 230 über der Zellimpedanz ermittelt. Da Temperatur Tßatt 150, Zellstrom Ißatt 140 und Ladezustand SOCocv 180 der Zelle bereits durch das Batteriemanagementsystem erfasst bzw. ermittelt werden, kann der Spannungsabfall Uimp 230 an der Zellimpedanz durch das Zellmodell 120 berechnet und von der gemessenen Zellspannung Ußatt 160 subtrahiert werden. Dadurch kann direkt während der Ladung die OCV-Kennlinie
300 aufgezeichnet werden (vgl. Figur 3). Die während der Ladung gewonnene OCV-Kennlinie 300 wird zur Adaption der im Batteriemanagementsystem abgelegten und genutzten OCV-Kennlinie genutzt. Darüber hinaus kann auch die OCV-Tabelle des Batteriemanagementsystems mit Hilfe der während der Ladung gewonnenen OCV-Kennlinie 300 neu berechnet werden. Die OCV-Tabelle wird somit in diesem Ausführungsbeispiel während des Betriebs im Fahrzeug vermessen. Bei dem erfindungsgemäßen Verfahren wird die OCV-Tabelle somit unter Berücksichtigung eventueller Fehler des Zellmodells 120 neu ermittelt. Bei stetigem, sich langsam ändernden Ladestrom ist die Impedanzbestimmung vorteilhaft und mit hoher Präzision möglich. Niedrige Ladeströme - und damit lange Ladezeiten - sind hierbei ebenfalls vorteilhaft, da der Spannungsabfall Uimp 230 über der Impedanz in diesem Fall gering ist. Lange Ladezeiten werden aufgrund der geringen Leistungsabgabe von Haushaltssteckdosen der Regelfall sein, so dass diese Vorteile beim Einsatz der Erfindung in einer Vielzahl von
Anwendungen zum Tragen kommen.
Es ist allerdings daneben ebenso gut möglich, die OCV-Kennlinie 300 bei einer nicht-kontinuierlichen Ladung zu adaptieren.
In einer weiteren beispielhaften Ausführungsform der Erfindung ist vorgesehen, einen Algorithmus zur Filterung der Veränderung der OCV-Kennlinie 300 anzuwenden. Mit Hilfe dieses Algorithmus werden beispielsweise kurzzeitige Störungen der Spannungsmessung eliminiert, so dass sich diese Störungen nicht negativ auf die Bestimmung der OCV-Kennlinie 300 auswirken.
Als besonders vorteilhaft erweist es sich, wenn der gesamte
Ladezustandsbereich - ausgehend von einer leeren Batterie - durchfahren wird. Durch geeignete Filterung ist es aber auch ohne weiteres möglich, nur Teilzyklen des Ladevorgangs zur Adaption des jeweiligen Bereichs der OCV-Kennlinie 300 zu nutzen. Die Erfindung beschränkt sich in ihrer Ausführungsform nicht auf die vorstehend angegebenen bevorzugten Ausführungsbeispiele. Vielmehr ist eine Anzahl von Varianten denkbar, die von dem erfindungsgemäßen Verfahren, der erfindungsgemäßen Batterie und dem erfindungsgemäßen Kraftfahrzeug auch bei grundsätzlich anders gearteten Ausführungen Gebrauch macht.

Claims

Ansprüche
1. Verfahren zur Ermittlung der Leerlaufspannung einer Batterie (1 10), dadurch gekennzeichnet, dass die Leerlaufspannung während des Ladevorgangs der Batterie (1 10) bestimmt wird.
2. Verfahren nach Anspruch 1 , wobei die Batterie (1 10) mindestens eine
elektrochemische Zelle umfasst und der Spannungsabfall (230) an der Impedanz zumindest eines Teils der elektrochemischen Zellen ermittelt und zur Ermittlung der Leerlaufspannung der Spannungsabfall (230) von der Zellspannung (160) subtrahiert wird.
3. Verfahren nach Anspruch 1 oder 2, wobei zur Ermittlung des
Spannungsabfalls (230) ein Zellmodell eines Batteriemanagementsystems genutzt wird.
4. Verfahren nach einem der voranstehenden Ansprüche, wobei in
Abhängigkeit der bestimmten Leerlaufspannung die in dem
Batteriemanagementsystem genutzte Kennlinie der Leerlaufspannung und/oder eine OCV-Tabelle adaptiert werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, wobei während des
Ladevorgangs der Ladestrom konstant gehalten wird.
6. Verfahren nach einem der Ansprüche 1 bis 4, wobei sich der Ladestrom
während des Ladevorgangs ändert.
7. Verfahren nach einem der voranstehenden Ansprüche, wobei Störungen der Messung des Spannungsabfalls (230) und/oder der Zellspannung (160) herausgefiltert werden.
8. Verfahren nach einem der voranstehenden Ansprüche, wobei die
Bestimmung der Leerlaufspannung über den gesamten
Ladezustandsbereich der Batterie (1 10) erfolgt.
9. Batterie (1 10) mit einem Modul zur Ermittlung der Leerlaufspannung einer Batterie (1 10), wobei das Modul derart eingerichtet ist, dass ein Verfahren zur Ermittlung der Leerlaufspannung einer Batterie gemäß einem der Ansprüche 1 bis 8 ausführbar ist.
10. Kraftfahrzeug mit einem elektrischen Antriebsmotor zum Antreiben des Kraftfahrzeugs und einer mit dem elektrischen Antriebsmotor verbundenen oder verbindbaren Batterie (110) gemäß Anspruch 9.
PCT/EP2011/070522 2010-11-30 2011-11-21 Verfahren zur ermittlung der leerlaufspannung einer batterie, batterie mit einem modul zur ermittlung der leerlaufspannung sowie ein kraftfahrzeug mit einer entsprechenden batterie WO2012072434A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180057539.5A CN103314303B (zh) 2010-11-30 2011-11-21 用于测定蓄电池的开路电压的方法、具有用于测定开路电压的模块的蓄电池以及具有相应的蓄电池的机动车
US13/990,507 US20130314042A1 (en) 2010-11-30 2011-11-21 Method for Ascertaining the Open Circuit Voltage of a Battery, Battery with a Module for Ascertaining the Open Circuit Voltage and a Motor Vehicle Having a Corresponding Battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010062187.0 2010-11-30
DE102010062187A DE102010062187A1 (de) 2010-11-30 2010-11-30 Verfahren zur Ermittlung der Leerlaufspannung einer Batterie, Batterie mit einem Modul zur Ermittlung der Leerlaufspannung sowie ein Kraftfahrzeug mit einer entsprechenden Batterie

Publications (1)

Publication Number Publication Date
WO2012072434A1 true WO2012072434A1 (de) 2012-06-07

Family

ID=44993584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/070522 WO2012072434A1 (de) 2010-11-30 2011-11-21 Verfahren zur ermittlung der leerlaufspannung einer batterie, batterie mit einem modul zur ermittlung der leerlaufspannung sowie ein kraftfahrzeug mit einer entsprechenden batterie

Country Status (4)

Country Link
US (1) US20130314042A1 (de)
CN (1) CN103314303B (de)
DE (1) DE102010062187A1 (de)
WO (1) WO2012072434A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733383B (zh) * 2020-03-19 2021-07-11 新普科技股份有限公司 電池老化評估方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6440377B2 (ja) * 2014-05-12 2018-12-19 古河電気工業株式会社 二次電池状態検出装置および二次電池状態検出方法
DE102015001050A1 (de) * 2015-01-29 2016-08-04 Man Truck & Bus Ag Verfahren und Vorrichtung zur Steuerung und/oder Regelung mindestens eines einen Alterungszustand eines elektrischen Energiespeichers beeinflussenden Betriebsparameters des elektrischen Energiespeichers
US9676288B2 (en) 2015-03-20 2017-06-13 Ford Global Technologies, Llc Battery open-circuit voltage measurement using reverse current pulse
US20160276843A1 (en) 2015-03-20 2016-09-22 Ford Global Technologies, Llc Battery Charge Strategy Using Discharge Cycle
US9728995B2 (en) 2015-04-08 2017-08-08 Intel Corporation Systems, methods and devices for adaptable battery charging
CN107923949B (zh) * 2016-01-28 2021-07-09 松下知识产权经营株式会社 管理装置以及蓄电系统
DE102016014617A1 (de) 2016-12-08 2017-07-20 Daimler Ag Verfahren zum Betrieb einer Batterie
JP6825544B2 (ja) * 2017-11-29 2021-02-03 トヨタ自動車株式会社 電動車両
JP7106362B2 (ja) * 2018-06-15 2022-07-26 大和製罐株式会社 蓄電池の充放電曲線推定装置および充放電曲線推定方法
CN112969929A (zh) * 2018-10-26 2021-06-15 日本汽车能源株式会社 电池控制装置
EP3751299B1 (de) 2019-06-11 2023-08-09 Volvo Car Corporation Detektion latenter fehler in einer zelle eines energiespeichersystems
CN113447827A (zh) * 2020-03-24 2021-09-28 新普科技股份有限公司 电池老化评估方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0762593A2 (de) * 1995-08-25 1997-03-12 Rayovac Corporation Batteriemanagementschaltung und Verfahren zur Steuerung des Ladens und Entladens von in der Schaltung eingebauten verbundenen aufladbaren elektrochemischen Zellen
US20020000788A1 (en) * 1997-09-30 2002-01-03 Kim Ostergaard Method and apparatus for charging a rechargeable battery
JP2005106615A (ja) * 2003-09-30 2005-04-21 Honda Motor Co Ltd 蓄電装置の開路電圧検出装置および残容量検出装置
US20080191667A1 (en) * 2007-02-12 2008-08-14 Fyrestorm, Inc. Method for charging a battery using a constant current adapted to provide a constant rate of change of open circuit battery voltage
DE102008041300A1 (de) 2008-08-18 2010-02-25 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ermitteln des Ladezustands eines Akkumulators
US20100090651A1 (en) * 2008-10-10 2010-04-15 Deeya Energy Technologies, Inc. Method and apparatus for determining state of charge of a battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7626362B2 (en) * 2005-09-30 2009-12-01 International Components Corporation Rapid charge lithium ion battery charger
JP2009031220A (ja) * 2007-07-30 2009-02-12 Mitsumi Electric Co Ltd 電池状態検知方法及び電池状態検知装置
FR2938071B1 (fr) * 2008-10-30 2010-12-31 Commissariat Energie Atomique Procede de determination de l'etat de charge d'une batterie en phase de charge ou de decharge
CN101599651B (zh) * 2009-06-30 2011-12-14 聊城大学 通用型快速智能充电器及充电方法
US20110234167A1 (en) * 2010-03-24 2011-09-29 Chin-Hsing Kao Method of Predicting Remaining Capacity and Run-time of a Battery Device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0762593A2 (de) * 1995-08-25 1997-03-12 Rayovac Corporation Batteriemanagementschaltung und Verfahren zur Steuerung des Ladens und Entladens von in der Schaltung eingebauten verbundenen aufladbaren elektrochemischen Zellen
US20020000788A1 (en) * 1997-09-30 2002-01-03 Kim Ostergaard Method and apparatus for charging a rechargeable battery
JP2005106615A (ja) * 2003-09-30 2005-04-21 Honda Motor Co Ltd 蓄電装置の開路電圧検出装置および残容量検出装置
US20080191667A1 (en) * 2007-02-12 2008-08-14 Fyrestorm, Inc. Method for charging a battery using a constant current adapted to provide a constant rate of change of open circuit battery voltage
DE102008041300A1 (de) 2008-08-18 2010-02-25 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ermitteln des Ladezustands eines Akkumulators
US20100090651A1 (en) * 2008-10-10 2010-04-15 Deeya Energy Technologies, Inc. Method and apparatus for determining state of charge of a battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733383B (zh) * 2020-03-19 2021-07-11 新普科技股份有限公司 電池老化評估方法

Also Published As

Publication number Publication date
CN103314303B (zh) 2016-06-29
US20130314042A1 (en) 2013-11-28
DE102010062187A1 (de) 2012-05-31
CN103314303A (zh) 2013-09-18

Similar Documents

Publication Publication Date Title
WO2012072434A1 (de) Verfahren zur ermittlung der leerlaufspannung einer batterie, batterie mit einem modul zur ermittlung der leerlaufspannung sowie ein kraftfahrzeug mit einer entsprechenden batterie
DE102011054778B4 (de) Algorithmus zur Bestimmung der Kapazität einer Batterie während des Batteriebetriebs
EP2419990B1 (de) Erweiterte batteriediagnose bei traktionsbatterien
DE102013103923A1 (de) Modellierungsänderungen in der Ladezustandsleerlaufspannungskurve unter Verwendung von Regressionsparametern in einem physikalischen Reduced-Order-Model
DE102014221547A1 (de) Verfahren zur Überwachung des Ladezustands einer Batterie
DE102012010486B4 (de) Verfahren und Vorrichtung zum Feststellen der tatsächlichen Kapazität einer Batterie
DE102015203461A1 (de) System und verfahren zur beurteilung des gesundheitszustands anhand von batteriemodellparametern
DE102014213493A1 (de) Batterieüberladungs-Überwachungssystem und -Verfahren
DE102011089962A1 (de) Verfahren zur Temperaturregelung von mindestens einem Batterieelement, Batterie sowie Kraftfahrzeug mit einer solchen Batterie
DE102014200619A1 (de) Verfahren zum Ladezustandsausgleich einer Batterie
EP2944009B1 (de) Verfahren und vorrichtung zum erhöhen der verfügbaren kapazität in einem batteriestrang durch angleichen der zell-ladungsmengen, batteriemanagementsystem, batterie und batterieladegerät
DE102014219889A1 (de) Fahrzeug und Verfahren zum Steuern einer Batterie in einem Fahrzeug
DE102020211534A1 (de) Verfahren zum Ermitteln eines Ladezustands eines Batteriesystems, Batteriesystem
DE102014200678A1 (de) Verfahren zum Betreiben einer Batterie
DE102011116970A1 (de) Optimierung von Parametern elektrischer Komponenten in Modellen von Energiespeichersystemen
EP2856189B1 (de) Verfahren und vorrichtung zum feststellen der tatsächlichen kapazität einer batterie
DE102011087761B4 (de) Verfahren zur Bestimmung eines Alterungszustands einer Batterieanordnung
DE102013214817A1 (de) Verfahren zur Diagnose eines Zustands einer Batterie
DE102014221549B4 (de) Verfahren zur Überwachung des Ladezustands einer Batterie
DE102012207673A1 (de) Verfahren zum Betrieb einer Batterie unter Berücksichtigung der Selbstentladung sowie Batteriemanagementsystem zur Ausführung des Verfahrens
DE102012012765A1 (de) Verfahren und Vorrichtung zum Laden eines elektrischen Energiespeichers
DE102010039915A1 (de) Verfahren zur Schätzung des Ladezustands von Batterien, Batterie mit einem Mittel zur Ladezustandsschätzung sowie ein Kraftfahrzeug mit einer entsprechenden Batterie
DE112019003484T5 (de) Sekundärbatterieparameter-Schätzungsvorrichtung, Sekundärbatterieparameter-Schätzungsverfahren und Programm
WO2014166666A1 (de) VERFAHREN UND VORRICHTUNG ZUM BESTIMMEN EINER ZUSTANDSGRÖßE EINER BATTERIEZELLE
DE202016105619U1 (de) Intelligenter Akkumulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11784684

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13990507

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11784684

Country of ref document: EP

Kind code of ref document: A1