WO2012072038A1 - 一种确定上下行配置的方法、系统和设备 - Google Patents

一种确定上下行配置的方法、系统和设备 Download PDF

Info

Publication number
WO2012072038A1
WO2012072038A1 PCT/CN2011/083356 CN2011083356W WO2012072038A1 WO 2012072038 A1 WO2012072038 A1 WO 2012072038A1 CN 2011083356 W CN2011083356 W CN 2011083356W WO 2012072038 A1 WO2012072038 A1 WO 2012072038A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
uplink
base station
downlink configuration
rsrp value
Prior art date
Application number
PCT/CN2011/083356
Other languages
English (en)
French (fr)
Inventor
潘学明
孙韶辉
肖国军
秦飞
沈祖康
丁昱
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP11844914.9A priority Critical patent/EP2648444B1/en
Priority to US13/991,154 priority patent/US9554288B2/en
Publication of WO2012072038A1 publication Critical patent/WO2012072038A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • a time division duplex (TDD) mode refers to that the uplink and downlink use the same working frequency band to transmit uplink and downlink signals at different time intervals.
  • GP guard interval
  • the FDD (Frequency Division Duplex) mode refers to the use of different working bands on the uplink and downlink. It can be performed on different frequency carriers at the same time.
  • the uplink and downlink signals are transmitted with a guard bandwidth (GB) between the uplink and the downlink.
  • a radio frame has a length of 10 ms, and includes 10 subframes of a special subframe and a regular subframe. Each subframe is Lms.
  • the special subframe is divided into three sub-frames: DwPTS (Downlink Pilot Slot) is used to transmit PSS (Primary Synchronized Signal), PDCCH (Physical Downlink Control Channel), PHICH ( Physical HARQ Indication Channel, physical hybrid automatic request retransmission indication channel), PCFICH (Physical Control Format Indication Channel), PDSCH (Physical Downlink Shared Channel), etc.; GP is used for downlink UpPTS (Uplink Pilot Slot) is used to transmit SRS (Sounding Reference Signal), PRACH (Physical Random Access Channel), etc. .
  • the regular subframe includes an uplink subframe and a downlink subframe, and is used for transmitting uplink/downlink control signaling, service data, and the like.
  • subframes 1 and 6 In a radio frame, you can configure two special subframes (in subframes 1 and 6) or a special subframe (in subframe 1).
  • Subframe 0 and subframe 5 and DwPTS subframes in special subframes are always used for downlink transmission.
  • Subframe 2 and UpPTS subframes in special subframes are always used for uplink transmission.
  • Other subframes can be configured as needed. For uplink transmission or downlink transmission.
  • the uplink and downlink transmissions use the same frequency resource, and the uplink/downlink signals are transmitted on different subframes.
  • the division of uplink and downlink subframes is static or semi-static, and the usual practice is in the network. Planning process The ratio of the uplink and downlink subframes is determined according to the cell type and the approximate service ratio and remains unchanged. This is a relatively simple approach in the context of large coverage of macro cells, and is also more effective. With the development of technology, more and more low-power base stations such as Pico cell Home NodeBs are deployed to provide local small coverage. In such cells, the number of users is small, and users The service demand changes greatly, so the demand for the uplink and downlink services of the cell changes dynamically.
  • cross-slot interference may occur.
  • the two cells appear between: the base station-base station interference, and the femto base station directly receives the downlink signal of the Macro base station, which will be severe.
  • the embodiments of the present invention provide a method, a system, and a device for determining an uplink and downlink configuration, which are used to detect a interference to determine whether a cell can independently perform an uplink and downlink configuration.
  • the network side device determines a first RSRP value of the first cell receiving the second cell reference signal, where the second cell is a neighboring cell of the first cell;
  • the network side device determines, according to the first RSRP value, whether the first cell can perform uplink and downlink configuration autonomously.
  • a network side device for determining an uplink and downlink configuration provided by the embodiment of the present invention includes:
  • a first power determining module configured to determine a first RSRP value of the first cell receiving the second cell reference signal, where the second cell is a neighboring cell of the first cell;
  • the first configuration determining module is configured to determine, according to the first RSRP value, whether the first cell can perform uplink and downlink configuration autonomously.
  • the measuring module is configured to measure the downlink signal of the neighboring cell, obtain the first RSRP value, and report the value.
  • a system for determining an uplink and downlink configuration including a base station, includes: a network side device, configured to determine a first RSRP value of a first cell receiving a second cell reference signal, where the second The cell is a neighboring cell of the first cell, and determines, according to the first RSRP value, whether the first cell can perform uplink and downlink configuration autonomously.
  • the base station determines, according to the first RSRP value, whether the current cell can perform uplink and downlink configuration autonomously.
  • a second power determining module configured to determine a first RSRP value of the neighboring cell reference signal received by the local cell
  • the second configuration determining module is configured to determine, according to the first RSRP value, whether the current cell can perform uplink and downlink configuration autonomously.
  • FIG. 1A is a schematic diagram of a frame structure of a TD-LTE system
  • 1B is a schematic diagram of cross-slot interference
  • FIG. 2 is a schematic flowchart of a method for determining an uplink and downlink configuration in a centralized manner according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a system for determining an uplink and downlink configuration in a centralized manner according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a network side device for determining an uplink and downlink configuration in a centralized manner according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a base station for determining an uplink and downlink configuration in a centralized manner according to an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of a method for determining an uplink and downlink configuration by using a distributed embodiment according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a base station configured to determine an uplink and downlink configuration in a distributed manner according to an embodiment of the present invention.
  • the network side device determines, according to the first RSRP (Reference Signal Received Power) value of the second cell reference signal received by the first cell, whether the first ' ⁇ , the area can be autonomous The uplink/downlink configuration is performed; or the base station determines whether the local cell can perform the uplink and downlink configuration autonomously according to the first RSRP value of the neighboring cell reference signal received by the local cell.
  • RSRP Reference Signal Received Power
  • the cell By detecting the RSRP value, it is determined whether the cell can perform the uplink and downlink configuration independently, so that the dynamic uplink and downlink configuration can operate normally, and the interference between the adjacent cells can be reduced in the dynamic uplink and downlink configuration environment, thereby improving system efficiency.
  • the embodiments of the present invention can be applied to a TDD system (such as a TD-LTE system), and can also be applied to other systems that need to dynamically adjust uplink and downlink configurations of a subframe, such as a TD-SCDMA system and its subsequent evolution system, WiMAX ( Worldwide Interoperability for Microwave Access, 4 Wave Access Global Interoperability) systems and their subsequent evolution systems.
  • Step 201 The network side device determines, by the first device, the first RSRP value of the second cell reference signal, where the second cell It is the neighboring cell of the first cell.
  • Step 202 The network side device determines, according to the first RSRP value, whether the first cell can perform uplink and downlink configuration autonomously.
  • the centralized mode of the embodiment of the present invention is to set a centralized management node (ie, a network side device in the embodiment of the present invention) in a certain area, and is used for determining a level of interference between adjacent cells.
  • the centralized management node knows the geographical location of each cell under its jurisdiction and the neighbor relationship between each other, as well as the type of each base station, transmission power and the like.
  • the base station will measure the RSRP value of each neighboring cell (that is, receive the RSRP value of each neighboring cell reference signal), or the RSRP value and the Pathloss value to the centralized management node through the network interface, where the node pre-stores the interference
  • the strength threshold is determined by comparing the measurement result between the neighboring cells with the interference threshold to determine whether an unacceptable crossover interference is caused if different uplink and downlink configurations are configured between two adjacent cells.
  • the network side device may compare the first RSRP value with the power threshold corresponding to the first cell, and determine whether the first RSRP value is smaller than the corresponding power threshold. If yes, determine that the first cell can perform uplink and downlink configuration autonomously. It is determined that the first cell cannot perform the uplink and downlink configuration autonomously.
  • the network side device is known to have an adjacent relationship between the macro cell and a femto cell, and the macro cell reports that the RSRP strength of the reference signal for receiving the Femto cell is X dBm.
  • the network side device presets the allowable interference level of the Macro cell to be M dBm (this threshold is obtained through simulation evaluation or network measurement). If X ⁇ M, it is determined that the Macro cell can perform uplink and downlink configuration autonomously.
  • the power threshold corresponding to the cell here can be specified in the protocol in advance.
  • the power threshold can also be updated as needed.
  • the first RSRP value determined by the network side device is measured and reported by the base station to which the first cell belongs.
  • the base station establishes downlink synchronization with the neighboring cell, and measures downlink signals of the neighboring cells to obtain a first RSRP value. Specifically, when the base station is powered on, the base station first performs a cell search in the working frequency band of the current network, identifies one or more neighboring cell physical layer Cell IDs (cell identifiers), and establishes downlink synchronization with the identified neighboring cells. Then, the downlink signal of the identified neighboring cell is measured, and the first RSRP value of the neighboring cell reference signal is determined, and the determined first RSRP value is reported to the network side device.
  • cell IDs cell identifiers
  • the cell identifier and the corresponding first RSRP value may be reported and reported; or may be reported in a preset order; or may be reported according to other agreed manners, as long as the network side device can distinguish which RSRP value corresponds to which neighbor. Community.
  • the method further includes:
  • the network side device determines that the second cell receives the second RSRP value of the first cell reference signal.
  • the network side device determines, according to the first RSRP value and the second RSRP value, whether the first cell can perform uplink and downlink autonomously. Configuration.
  • the network side device compares the first RSRP value with the power threshold corresponding to the first cell, and compares the second RSRP value with the power threshold corresponding to the second cell, and determines whether the RSRP values of the two cells are smaller than the corresponding The power threshold, if yes, determines that the first cell can perform the uplink and downlink configuration autonomously, otherwise it determines that the first cell cannot perform the uplink and downlink configuration autonomously. If yes, it can also be determined that the second cell can perform the uplink and downlink configuration autonomously, otherwise it is determined that the second cell cannot perform the uplink and downlink configuration autonomously.
  • each base station reports the detected RSRP information of the neighboring base station, and the network side device knows that the relationship between the Macro cell and a femto cell is adjacent, and the transmit power of the Macro cell is 46 dBm, and the femto cell transmit power is 20dBm, the Femto cell RSRP strength detected by the macro cell is X dBm, and the femto cell reports that the RSRP intensity of the Macro cell is Y dBm.
  • the network side device presets the maximum interference level of the macro cell to be M dBm, and the femto cell allows the interference level to be N dBm. After the network side device obtains the measurement information, when ⁇ and ⁇ , it is determined that different uplink and downlink configurations can be configured between the two cells.
  • the power threshold corresponding to the cell here can be specified in the protocol in advance.
  • the power threshold can also be updated as needed.
  • the network side device determines the second RSRP value in two ways:
  • the first RSRP value is reported by the base station to which the second cell belongs.
  • the network side device receives the second RSRP value measured and reported by the base station to which the second cell belongs.
  • the manner in which the base station to which the second cell belongs determines the second RSRP value is the same as the manner in which the base station to which the first cell belongs determines the first RSRP value, and details are not described herein again.
  • the network side device receives the Pathloss value between the first cell and the second cell reported by the base station, and determines the second RSRP according to the transmit power value of the first cell and the Pathloss value between the first cell and the second cell. value.
  • the base station to which the first cell belongs reports the Pathloss value between the first cell and the second cell; after receiving the Pathloss value between the first cell and the second cell, the network side device transmits the transmit power of the first cell.
  • Value and Pathloss The value is poor and the value obtained is taken as the second RSRP value.
  • the base station obtains the uplink and downlink subframe allocation information of the neighboring cell and the CRS (Cell-specific Reference Signal) transmit power information of the neighboring cell (such as a Macro cell or a Pico cell) through the network interface.
  • the X2 interface knows the above information; the Femto cell can learn the above information through the S1 interface, and then the base station subtracts the CRS transmission power information of the corresponding neighboring cell according to the first RSRP, and obtains a Pathloss value between the local cell and the neighboring cell.
  • the specific use mode 1 or mode 2 can be set in the protocol, or can be notified by the upper layer.
  • step 202 the method further includes:
  • the network side device After determining that the first cell can perform the uplink and downlink configuration autonomously, the network side device notifies the first cell to perform uplink and downlink configuration autonomously, and further can notify each cell adjacent to the first cell;
  • the network side device After determining that the first cell cannot perform the uplink and downlink configuration autonomously, the network side device notifies the first cell to the unified uplink and downlink configuration information, and further can notify each cell adjacent to the first cell.
  • the base station sets the uplink and downlink configuration according to the notification of the network side device, establishes the local cell, and starts providing communication services to the UE.
  • the network side device in the embodiment of the present invention may be a high-level device, such as an RNC (Radio Link Control) device; or may be another network-side device or a virtual device or a logical node; or a new network-side device.
  • the base station in the embodiment of the present invention may be a macro base station, a micro base station, a home base station, or the like.
  • the embodiment of the present invention further provides a system for centrally determining an uplink and downlink configuration, a network side device for centrally determining an uplink and downlink configuration, and a base station for centrally determining an uplink and downlink configuration.
  • the principle of the device to solve the problem is similar to the method for determining the uplink and downlink configuration in a centralized manner. Therefore, the implementation of these devices can be referred to the implementation of the method, and the repeated description will not be repeated.
  • the system for determining the uplink and downlink configuration in a centralized manner includes: a network side device 10 and a base station 20.
  • the network side device 10 is configured to determine, by the first cell, a first RSRP value of the second cell reference signal, where the second cell is a neighboring cell of the first cell, and determining, according to the first RSRP value, whether the first cell can perform autonomously Line configuration.
  • the network side device 10 may compare the first RSRP value with the power threshold corresponding to the first cell, and determine whether the first RSRP value is smaller than the corresponding power threshold. If yes, determine that the first cell can perform uplink and downlink configuration autonomously. Otherwise, it is determined that the first cell cannot perform the uplink and downlink configuration autonomously.
  • the power threshold corresponding to the cell here can be specified in the protocol in advance.
  • the power threshold can also be updated as needed.
  • the first RSRP value determined by the network side device 10 is measured and reported by the base station 20 to which the first cell belongs. Specifically, the base station 20 establishes downlink synchronization with the neighboring cell, and measures downlink signals of the neighboring cells to obtain a first RSRP value.
  • the cell search is first performed in the working frequency band of the current network, and one or more neighboring cell physical layer Cell IDs are identified, and downlink synchronization is established with the identified neighboring cells, and then the pair is identified.
  • the downlink signal of the neighboring cell is measured, and the first RSRP value of the neighboring cell reference signal is determined, and the determined first RSRP value is reported to the network side device 10.
  • the network side device 10 determines that the second cell receives the second RSRP value of the first cell reference signal.
  • the network side device 10 determines the first cell according to the first RSRP value and the second RSRP value. Whether it is possible to perform uplink and downlink configuration autonomously.
  • the network side device 10 compares the first RSRP value with the power threshold corresponding to the first cell, and compares the second RSRP value with the power threshold corresponding to the second cell, and determines whether the RSRP values of the two cells are both smaller than Corresponding power threshold, if yes, determining that the first cell can perform uplink and downlink configuration autonomously, otherwise determining that the first cell cannot perform uplink and downlink configuration autonomously. If yes, it can also be determined that the second cell can perform the uplink and downlink configuration autonomously, otherwise it is determined that the second cell cannot perform the uplink and downlink configuration autonomously.
  • the power threshold corresponding to the cell here can be specified in the protocol in advance.
  • the power threshold can also be updated as needed.
  • the first RSRP value is reported by the base station 20 to which the second cell belongs.
  • the network side device 10 receives the second RSRP value measured and reported by the base station 20 to which the second cell belongs.
  • the RSRP values are the same in the same manner and are not described here.
  • the network side device 10 receives the Pathloss value between the first cell and the second cell reported by the base station 20, and determines the first according to the transmit power value of the first cell and the Pathloss value between the first cell and the second cell. Two RSRP values.
  • the base station 20 to which the first cell belongs reports the Pathloss value between the first cell and the second cell; after receiving the Pathloss value between the first cell and the second cell, the network side device 10 The transmit power value is different from the Pathloss value, and the obtained value is used as the second RSRP value.
  • the base station 20 learns the uplink and downlink subframe allocation information of the neighboring cell and the CRS transmission power information of the neighboring cell through the network interface (for example, the Macro cell or the Pico cell, the information can be obtained through the X2 interface; the Femto cell can pass The S1 interface learns the above information. Then, the base station 20 subtracts the CRS transmission power information of the corresponding neighboring cell according to the first RSRP, and obtains a Pathloss value between the local cell and the neighboring cell.
  • the network interface for example, the Macro cell or the Pico cell, the information can be obtained through the X2 interface; the Femto cell can pass The S1 interface learns the above information. Then, the base station 20 subtracts the CRS transmission power information of the corresponding neighboring cell according to the first RSRP, and obtains a Pathloss value between the local cell and the neighboring cell.
  • the specific use mode 1 or mode 2 can be set in the protocol, or can be notified by the upper layer.
  • the network side device 10 After determining that the first cell can perform uplink and downlink configuration autonomously, the network side device 10 notifies the first cell to perform autonomously.
  • the uplink and downlink configuration may further notify each cell adjacent to the first cell;
  • the network side device 10 After determining that the first cell cannot perform the uplink and downlink configuration autonomously, the network side device 10 notifies the first cell of the unified uplink and downlink configuration information, and further can notify each cell adjacent to the first cell.
  • the network side device 10 of the embodiment of the present invention may be a high-level device, such as an RNC device; or another network-side device; or a new network-side device.
  • the network side device that determines the uplink and downlink configuration in a centralized manner includes: a first power determining module 100 and a first configuration determining module 110.
  • the first power determining module 100 is configured to determine, by the first cell, a first RSRP value of the second cell reference signal, where the second cell is a neighboring cell of the first cell.
  • the first configuration determining module 110 is configured to determine, according to the first RSRP value, whether the first cell can perform uplink and downlink configuration autonomously.
  • the first power determining module 100 may further determine that the second cell receives the second RSRP value of the first cell reference signal, and determine, according to the first RSRP value and the second RSRP value, whether the first cell can perform uplink and downlink configuration autonomously. .
  • the first power determining module 100 receives the first RSRP value measured and reported by the base station.
  • the first power determining module 100 may receive a Pathloss value between the first cell and the second cell reported by the base station, and determine the second according to the transmit power value of the first cell and the Pathloss value between the first cell and the second cell. RSRP value.
  • the first RSRP value is compared with the power threshold corresponding to the first cell, the first RSRP value is compared with the power threshold corresponding to the first cell, and the first RSRP value is determined to be smaller than the corresponding one.
  • the power threshold if yes, determines that the first cell can perform the uplink and downlink configuration autonomously, otherwise it determines that the first cell cannot perform the uplink and downlink configuration autonomously.
  • the first configuration determining module 110 compares the first RSRP value with a power threshold corresponding to the first cell, and The second RSRP value is compared with the power threshold corresponding to the second cell, and the RSRP value of the two cells is determined to be smaller than the corresponding power threshold. If yes, it is determined that the first cell can perform uplink and downlink configuration autonomously, otherwise the first cell cannot be determined. Independently perform uplink and downlink configuration.
  • the first configuration determining module 110 determines that the first cell can perform the uplink and downlink configuration autonomously, the first cell is notified to perform the uplink and downlink configuration autonomously, and further, each cell adjacent to the first cell may be notified; After the cell cannot perform the uplink and downlink configuration autonomously, the unified uplink and downlink configuration information is notified to the first cell, and further, each cell adjacent to the first cell may be notified.
  • the cell that is covered by the base station that determines the uplink and downlink configuration is a first cell, and the base station includes: an establishing module 210 and a measuring module 220.
  • the establishing module 210 is configured to establish downlink synchronization with the second cell.
  • the measuring module 220 is configured to measure the downlink signal of the second cell, obtain a first RSRP value, and report the value.
  • the base station of the embodiment of the present invention may further include: a Pathloss value determining module 230.
  • the Pathloss value determining module 230 is configured to determine a Pathloss value between the first cell and the second cell according to the transmit power value of the second cell and the first RSRP value.
  • the establishing module 210 establishes downlink synchronization with the second cell when the system is powered on.
  • the Pathloss value determining module 230 acquires the transmit power value of the second cell through the X2 interface or the S1 interface.
  • the method for determining the uplink and downlink configuration by using the distributed method includes the following steps: Step 601: The base station determines a first RSRP value of the reference signal of the neighboring cell received by the local cell.
  • Step 602 The base station determines, according to the first RSRP value, whether the current cell can perform uplink and downlink configuration autonomously.
  • the distributed embodiment of the present invention pre-sets the interference level values that the own cell (which may also include the neighboring cell) can be allowed in each base station, and then each base station independently determines.
  • the base station compares the first RSRP value with the power threshold corresponding to the local cell, and determines whether the first RSRP value is smaller than the corresponding power threshold. If yes, it is determined that the local cell can perform uplink and downlink configuration autonomously, otherwise determining that the cell cannot be autonomous. Perform uplink and downlink configuration.
  • the Macro base station detects that the RSRP strength of the macro cell receiving the Femto cell reference signal is X dBm.
  • the Macro base station presets the allowable interference level of the Macro cell to be M dBm (this threshold is obtained through simulation evaluation or network measurement). If X ⁇ M, it is determined that the Macro cell can perform uplink and downlink configuration autonomously.
  • the power threshold corresponding to the cell here can be specified in the protocol in advance.
  • the power threshold can also be updated as needed.
  • step 601 the base station establishes downlink synchronization with the neighboring cell, and measures downlink signals of the neighboring cells to obtain a first RSRP value.
  • the base station when the base station is powered on, the base station first performs a cell search in the working frequency band of the current network, identifies one or more neighboring cell physical layer Cell IDs, and establishes downlink synchronization with the identified neighboring cells, and then identifies the The downlink signal of the neighboring cell is measured, and the first RSRP value of the neighboring cell reference signal is determined, and the determined first RSRP value is reported to the network side device. If there are multiple neighboring cells, there will be a first RSRP value for each neighboring cell.
  • the cell ID and the corresponding first RSRP value can be bound to the next 4 ⁇ ; or can be reported in a preset order; or reported according to other agreed modes, as long as the network side device can distinguish the RSRP value. Which neighboring cell corresponds to.
  • the method further includes:
  • the base station determines the second RSRP value of the neighboring cell receiving the reference signal of the local cell.
  • the base station determines whether the cell can perform the uplink and downlink configuration independently according to the first RSRP value and the second RSRP value.
  • the base station compares the first RSRP value with a power threshold corresponding to the local cell, and the second RSRP The value is compared with the power threshold corresponding to the neighboring cell, and the RSRP value of the two cells is determined to be less than the corresponding power threshold. If yes, it is determined that the cell can perform the uplink and downlink configuration autonomously, otherwise it is determined that the cell cannot perform the uplink and downlink configuration autonomously. .
  • the Macro base station detects that the RSRP strength of the Femto cell received by the Macro cell is X dBm, and the RSRP strength of the Femto cell receiving macro cell determined by the Macro base station is Y dBm.
  • the Macro base station presets that the allowable interference level of the Macro cell is M dBm, and the allowable interference level of the femto cell is N dBm.
  • the centralized decision can be performed on the uplink and downlink.
  • the power threshold corresponding to the cell here can be specified in the protocol in advance.
  • the power threshold can also be updated as needed.
  • Manner 1 The base station obtains the second RSRP value through the X2 interface or the S1 interface.
  • the base station may obtain the second RSRP value from the base station to which the neighboring cell belongs through the X2 interface or the S1 interface.
  • the second RSRP may be obtained from the centralized network side device in the embodiment of the present invention through the X2 interface or the S1 interface. value.
  • Manner 2 The base station determines a Pathloss value between the local cell and the neighboring cell according to the transmit power value of the neighboring cell and the first RSRP value, according to the transmit power value of the local cell, and the determined between the local cell and the neighboring cell.
  • the Pathloss value determines the second RSRP value.
  • the base station obtains the uplink and downlink subframe allocation information of the neighboring cell and the CRS transmission power information of the neighboring cell through the network interface (such as a Macro cell or a Pico cell, and can obtain the above information through the X2 interface; the Femto cell can pass the S The 1 interface learns the above information. Then, the base station subtracts the CRS transmit power information of the corresponding neighboring cell according to the first RSRP, and obtains a Pathloss value between the local cell and the neighboring cell.
  • the network interface such as a Macro cell or a Pico cell
  • the specific use mode 1 or mode 2 can be set in the protocol, or can be notified by the upper layer.
  • step 602 the method further includes:
  • the base station After determining that the cell can perform the uplink and downlink configuration autonomously, the base station performs the uplink and downlink configuration autonomously;
  • the base station After determining that the cell cannot perform the uplink and downlink configuration autonomously, the base station performs uplink and downlink configuration according to the configuration information.
  • the uplink and downlink configuration performed by the base station according to the configuration information includes, but is not limited to, one of the following modes:
  • the base station performs the uplink and downlink configuration according to the default configuration information; the base station performs the uplink and downlink configuration according to the unified configuration information sent by the network side; the base station performs the uplink and downlink configuration according to the configuration information of the neighboring area with the interference (that is, the neighboring area with the interference) Same uplink and downlink configuration).
  • the base station sets the uplink and downlink configuration according to the determination result, establishes the local cell, and starts providing communication services to the UE.
  • the base station in the embodiment of the present invention may be a macro base station, a micro base station, a home base station, or the like.
  • the embodiment of the present invention further provides a base station that uses the distributed determination of the uplink and downlink configuration. Since the principle of the base station solving the problem is similar to the method for determining the uplink and downlink configuration by using the distributed, the implementation of the base station may be See the implementation of the method, and the repetition will not be repeated. As shown in FIG. 7, the base station in the embodiment of the present invention for determining the uplink and downlink configuration includes: a second power determining module 300 and a second configuration determining module 310.
  • the second power determining module 300 is configured to determine a first RSRP value of the neighboring cell reference signal received by the local cell.
  • the second configuration determination module 310 And determining, according to the first RSRP value, whether the cell can perform uplink and downlink configuration autonomously.
  • the second power determining module 300 establishes downlink synchronization with the neighboring cell, and measures the downlink signal of the neighboring cell to obtain a first RSRP value.
  • the second power determining module 300 establishes downlink synchronization with the neighboring cell when the device is powered on.
  • the second power determining module 300 determines that the neighboring cell receives the second RSRP value of the local cell reference signal.
  • the second configuration determining module 310 determines, according to the first RSRP value and the second RSRP value, whether the local cell can be autonomous. Perform uplink and downlink configuration.
  • the second power determining module 300 determines a Pathloss value between the local cell and the neighboring cell according to the transmit power value of the neighboring cell and the first RSRP value, according to the transmit power value of the local cell, and the determined local cell and The Pathloss value between the neighboring cells determines a second RSRP value; or obtains a second RSRP value through an X2 interface or an S1 interface.
  • the second power determining module 310 acquires the transmit power value of the neighboring cell through the X2 interface or the S1 interface. If the first RSRP value is compared with the power threshold corresponding to the current cell, the second RSRP value is compared with the corresponding power. The threshold, if yes, determines that the cell can perform the uplink and downlink configuration autonomously, otherwise it is determined that the cell cannot perform the uplink and downlink configuration autonomously.
  • the second configuration determining module 310 compares the first RSRP value with the power threshold corresponding to the local cell, and compares the second RSRP value.
  • the power thresholds of the neighboring cells are compared to determine whether the RSRP values of the two cells are smaller than the corresponding power threshold. If yes, it is determined that the cell can perform the uplink and downlink configuration autonomously, otherwise it is determined that the cell cannot perform the uplink and downlink configuration autonomously.
  • the second configuration determining module 310 performs the uplink and downlink configuration autonomously after determining that the cell can perform the uplink and downlink configuration autonomously. After determining that the cell cannot perform the uplink and downlink configuration, the uplink and downlink configuration is performed according to the configuration information.
  • the second configuration determining module 310 performs uplink and downlink configuration according to the configuration information, including but not limited to one of the following manners:
  • Centralized and distributed can be arranged in one network at the same time, and you can choose to use centralized or distributed as needed; you can also use centralized and distributed at the same time. That is to say, the base stations configured in the network can be included in the centralized mode.
  • the function of the base station may also include the functions of the base station in the distributed network, and may also include the functions of the base station in the centralized and distributed manners; no matter what method is used, a centralized network side device function may be configured in the network.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present invention can be embodied in the form of a computer program product embodied on one or more computer-usable storage interfaces (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code.
  • computer-usable storage interfaces including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • the cell By detecting the RSRP value, it is determined whether the cell can perform the uplink and downlink configuration independently, so that the dynamic uplink and downlink configuration can operate normally, and the interference between the adjacent cells can be reduced in the dynamic uplink and downlink configuration environment, thereby improving system efficiency.

Description

一种确定上下行配置的方法、 系统和设备 本申请要求在 2011年 12月 02日提交中国专利局、 申请号为 201010570409.9、 发明名称为
"一种确定上下行配置的方法、 系统和设备" 的中国专利申请的优先权, 其全部内容通过引用 结合在本申请中。 技术领域 本发明涉及无线通信技术领域, 特别涉及一种确定上下行配置的方法、 系统和设备。 背景技术 对于蜂窝系统釆用的基本的双工方式, TDD ( Time division duplex, 时分双工)模式 是指上下行链路使用同一个工作频带, 在不同的时间间隔上进行上下行信号的传输, 上下 行之间有保护间隔 ( Guard Period, GP ); FDD ( Frequency division duplex, 频分双工)模 式则指上下行链路使用不同的工作频带, 可以在同一个时刻在不同的频率载波上进行上下 行信号的传输, 上下行之间有保护带宽 (Guard Band, GB )。
LTE ( Long Term Evolution,长期演进) TDD系统的帧结构稍复杂一些,如图 1A所示, 一个无线帧长度为 10ms, 包含特殊子帧和常规子帧两类共 10个子帧, 每个子帧为 lms。 特殊子帧分为 3个子帧: DwPTS( Downlink Pilot Slot, 下行导频时隙)用于传输 PSS( Primary Synchronized Signal, 主同步信号)、 PDCCH ( Physical Downlink Control Channel, 物理下 行控制信道)、 PHICH ( Physical HARQ Indication Channel, 物理混合自动请求重传指示信 道)、 PCFICH( Physical Control Format Indication Channel,物理控制格式指示信道)、 PDSCH ( Physical Downlink Shared Channel, 物理下行链路共享信道)等; GP用于下行和上行之 间的保护间隔); UpPTS( Uplink Pilot Slot, 上行导频时隙)用于传输 SRS( Sounding Reference Signal, 探测用参考信号)、 PRACH ( Physical Random Access Channel, 物理随机接入信道) 等。 常规子帧包括上行子帧和下行子帧, 用于传输上行 /下行控制信令和业务数据等。 其中 在一个无线帧中, 可以配置两个特殊子帧 (位于子帧 1和 6), 也可以配置一个特殊子帧 (位 于子帧 1)。 子帧 0和子帧 5以及特殊子帧中的 DwPTS子帧总是用作下行传输, 子帧 2以 及特殊子帧中的 UpPTS子帧总是用于上行传输,其他子帧可以依据需要配置为用作上行传 输或者下行传输。
TDD 系统中上行和下行传输使用相同的频率资源, 在不同的子帧上传输上行 /下行信 号。 在常见的 TDD系统中, 包括 3G的 TD-SCDMA (时分同步码分多址) 系统和 4G的 TD-LTE 系统, 上行和下行子帧的划分是静态或半静态的, 通常的做法是在网络规划过程 中根据小区类型和大致的业务比例确定上下行子帧比例划分并保持不变。 这在宏小区大覆 盖的背景下是较为筒单的做法,并且也较为有效。而随着技术发展,越来越多的微小区( Pico cell ) 家庭基站(Home NodeB )等低功率基站被部署用于提供局部的小覆盖, 在这类小区 中, 用户数量较少, 且用户业务需求变化较大, 因此小区的上下行业务比例需求存在动态 改变的情况。
为了适应这种动态的业务需求比例变化,一些研究者开始考虑对 TDD系统进行优化, 引入更为动态的上下行配置方案, 期望能够适应业务比例的变化, 提高系统效率。 比如在 一个 TDD网络中, 宏小区釆用上下行较为对称的比例 (DL:UL=3:2 ), 部分 femto cell (毫 微微小区)由于用户下载需求较多,配置为下行为主的比例( DL:UL=4: 1 ), 另一部分 femto cell由于用户上传需求较多, 配置为上行为主的比例 (DL:UL=2:3 )。
如果相邻的小区配置了不同的上下行比例, 则可能出现交叉时隙千扰。 在图 1B 中, 宏小区在发送下行信号的时隙上, femto cell用于上行信号接收, 则两小区之间出现: 基站 -基站千扰, femto基站直接接收到 Macro基站的下行信号, 将严重影响 femto基 站接收 L-UE ( Local UE, 本地 UE )上行信号的盾量。
上述千扰将严重影响到整个网络的性能, 而现有技术中并没有针对这种千扰问题的解 决方案。 发明内容 本发明实施例提供一种确定上下行配置的方法、 系统和设备, 用以对千扰进行检测, 从而确定小区是否能够独立进行上下行配置。
本发明实施例提供的一种确定上下行配置的方法, 包括:
网络侧设备确定第一小区接收第二小区参考信号的第一 RSRP值, 其中所述第二小区 是第一小区的邻小区;
所述网络侧设备根据第一 RSRP值, 确定第一小区是否能够自主进行上下行配置。 本发明实施例提供的一种确定上下行配置的网络侧设备, 包括:
第一功率确定模块, 用于确定第一小区接收第二小区参考信号的第一 RSRP值, 其中 所述第二小区是第一小区的邻小区;
第一配置确定模块, 用于根据第一 RSRP值, 确定第一小区是否能够自主进行上下行 配置。
本发明实施例提供的一种基站, 包括:
建立模块, 用于与相邻小区建立下行同步;
测量模块, 用于对相邻小区的下行信号进行测量, 得到第一 RSRP值, 并上报。 本发明实施例提供的一种确定上下行配置的系统, 包括基站, 该系统还包括: 网络侧设备, 用于确定第一小区接收第二小区参考信号的第一 RSRP值, 其中所述第 二小区是第一小区的邻小区, 根据第一 RSRP值, 确定第一小区是否能够自主进行上下行 配置。
本发明实施例提供的另一种确定上下行配置的方法, 包括:
基站确定本小区接收邻小区参考信号第一 RSRP值;
所述基站根据第一 RSRP值, 确定本小区是否能够自主进行上下行配置。
本发明实施例提供的另一种确定上下行配置的基站, 包括:
第二功率确定模块, 用于确定本小区接收邻小区参考信号第一 RSRP值;
第二配置确定模块, 用于根据第一 RSRP值, 确定本小区是否能够自主进行上下行配 置。
由于通过检测 RSRP值, 判定小区是否能够独立进行上下行配置, 使得动态的上下行 配置能够正常运行, 并且在动态的上下行配置环境中能够减小邻区之间的千扰, 提高系统 效率。 附图说明 图 1A为 TD-LTE系统帧结构示意图;
图 1B为交叉时隙千扰示意图;
图 2为本发明实施例釆用集中式确定上下行配置的方法流程示意图;
图 3为本发明实施例釆用集中式确定上下行配置的系统示意图;
图 4为本发明实施例釆用集中式确定上下行配置的网络侧设备结构示意图; 图 5为本发明实施例釆用集中式确定上下行配置的基站结构示意图;
图 6为本发明实施例釆用分布式确定上下行配置的方法流程示意图;
图 7为本发明实施例釆用分布式确定上下行配置的基站结构示意图。 具体实施方式 本发明实施例网络侧设备根据第一小区接收相邻的第二小区参考信号的第一 RSRP ( Reference signal received power, 参考信号接收功率)值, 确定第一'』、区是否能够自主进 行上下行配置; 或基站根据本小区接收邻小区参考信号的第一 RSRP值, 确定本小区是否 能够自主进行上下行配置。 由于通过检测 RSRP值, 判定小区是否能够独立进行上下行配 置, 使得动态的上下行配置能够正常运行, 并且在动态的上下行配置环境中能够减小邻区 之间的千扰, 提高系统效率。 其中, 本发明实施例能够应用于 TDD系统中 (比如 TD-LTE系统), 也可以应用于其 他需要动态调整子帧上下行配置的系统中, 例如 TD-SCDMA 系统及其后续演进系统, WiMAX ( Worldwide Interoperability for Microwave Access, 4 波存取全球互通 ) 系统及其 后续演进系统等。
在下面的说明过程中, 先从网络侧和终端侧的配合实施进行说明, 最后分别从网络侧 与终端侧的实施进行说明, 但这并不意味着二者必须配合实施, 实际上, 当网络侧与终端 侧分开实施时, 也解决了分别在网络侧、 终端侧所存在的问题, 只是二者结合使用时, 会 获得更好的技术效果。
下面结合说明书附图对本发明实施例作进一步详细描述。
如图 2所示, 本发明实施例釆用集中式确定上下行配置的方法包括下列步骤: 步骤 201、 网络侧设备确定第一小区接收第二小区参考信号的第一 RSRP值, 其中第 二小区是第一小区的邻小区。
步骤 202、 网络侧设备根据第一 RSRP值, 确定第一小区是否能够自主进行上下行配 置。
本发明实施例集中式是在一定区域内设置集中管理节点 (即本发明实施例的网络侧设 备), 用于判决相邻小区之间的千扰水平。 该集中管理节点已知其管辖的各个小区的地理 位置和相互之间的相邻关系, 以及各个基站的类型, 发射功率等信息。 基站将测量到的各 个相邻小区的 RSRP值(即接收各个邻区参考信号的 RSRP值), 或者 RSRP值和 Pathloss (路径损耗)值通过网络接口发送给集中管理节点, 该节点处预存千扰强度门限值, 通过 对相邻小区之间测量结果与千扰门限值的比较判定两个相邻小区之间如果配置不同的上 下行配置, 是否会导致不可接受的交叉千扰。
其中, 网络侧设备可以将第一 RSRP值与第一小区对应的功率阈值进行比较, 判断第 一 RSRP值是否小于对应的功率阈值,如果是,则确定第一小区能够自主进行上下行配置, 否则确定第一小区不能自主进行上下行配置。
比如图 1B所示,网络侧设备已知 Macro cell和一个 femto cell之间是相邻关系, Macro cell上报检测到接收 Femto cell参考信号的 RSRP强度为 X dBm。网络侧设备预设了 Macro cell可允许的千扰水平值为 M dBm (该门限通过仿真评估或者网络实测得到),如果 X < M, 则确定 Macro cell能够自主进行上下行配置。
这里小区对应的功率阈值可以预先在协议中规定。 根据需要还可以对功率阈值进行更 新。
步骤 201中, 网络侧设备确定的第一 RSRP值是第一小区所属的基站测量并上报的。 在实施中, 基站与相邻小区建立下行同步, 并对相邻小区的下行信号进行测量, 得到 第一 RSRP值。 具体的, 基站在开机时首先在当前网络的工作频段内进行小区搜索, 识别出一个或一 个以上的相邻小区物理层 Cell ID (小区标识), 并与识别出的相邻小区建立下行同步, 然 后对识别出的相邻小区的下行信号进行测量, 确定本小区接收相邻小区参考信号的第一 RSRP值, 将确定的第一 RSRP值上报给网络侧设备。 如果有多个相邻小区, 则针对每个 相邻小区都会有一个第一 RSRP值。 在上报时可以将小区标识和对应的第一 RSRP值绑定 上报; 也可以按照预先设定的顺序上报; 还可以根据其他约定方式上报, 只要保证网络侧 设备能够区分出 RSRP值对应哪个相邻小区。
较佳的, 步骤 202之前还包括:
网络侧设备确定第二小区接收第一小区参考信号的第二 RSRP值; 相应的, 步骤 202 中, 网络侧设备根据第一 RSRP值和第二 RSRP值, 确定第一小区是否能够自主进行上下 行配置。
具体的, 网络侧设备将第一 RSRP值与第一小区对应的功率阈值进行比较, 以及将第 二 RSRP值与第二小区对应的功率阈值进行比较, 判断两个小区的 RSRP值是否都小于对 应的功率阈值, 如果是, 则确定第一小区能够自主进行上下行配置, 否则确定第一小区不 能自主进行上下行配置。 如果是, 同时还可以确定第二小区能够自主进行上下行配置, 否 则确定第二小区不能自主进行上下行配置。
比如图 1B所示,各个基站上报检测到的相邻基站 RSRP信息, 网络侧设备已知 Macro cell和一个 femto cell之间是相邻关系, 并获知 Macro cell发射功率为 46dBm, femto cell 发射功率为 20dBm, Macro cell上报检测到的 Femto cell RSRP强度为 X dBm, femto cell 上报检测到 Macro cell的 RSRP强度为 Y dBm。 网络侧设备预设了 Macro cell可允许的千 扰水平值为 M dBm, femto cell可允许的千扰水平值为 N dBm。 网络侧设备得到测量信息 后, 当 < 且丫<^^时集中判决两小区之间可以配置不同的上下行配置。
这里小区对应的功率阈值可以预先在协议中规定。 根据需要还可以对功率阈值进行更 新。
其中, 网络侧设备确定第二 RSRP值的方式有两种:
方式一、 第二小区所属的基站上报第二 RSRP值; 相应的, 网络侧设备接收第二小区 所属的基站测量并上报的第二 RSRP值。
第二小区所属的基站确定第二 RSRP值的方式与第一小区所属的基站确定第一 RSRP 值的方式相同, 在此不再赘述。
方式二、 网络侧设备接收基站上报的第一小区和第二小区之间的 Pathloss值, 根据第 一小区的发射功率值, 以及第一小区和第二小区之间的 Pathloss值, 确定第二 RSRP值。
具体的, 第一小区所属的基站上报第一小区和第二小区之间的 Pathloss值; 网络侧设 备在收到第一小区和第二小区之间的 Pathloss值后, 将第一小区的发射功率值与 Pathloss 值做差, 得到的值作为第二 RSRP值。
在实施中, 基站通过网络接口获知相邻小区的上下行子帧分配信息以及相邻小区的 CRS (Cell-specific Reference Signal, 小区特定参考信号)发射功率信息 (比如 Macro cell或 者 Pico cell,可以通过 X2接口获知如上信息; Femto cell,可以通过 S1接口获知如上信息), 然后基站根据第一 RSRP与对应相邻小区的 CRS发射功率信息相减,得到本小区与相邻小 区之间的 Pathloss值。
具体釆用方式一还是方式二可以在协议中设定, 也可以由高层通知。
步骤 202之后还包括:
在确定第一小区能够自主进行上下行配置后, 网络侧设备通知第一小区自主进行上下 行配置, 进一步还可以通知与第一小区相邻的每个小区;
在确定第一小区不能自主进行上下行配置后, 网络侧设备将统一的上下行配置信息通 知第一小区, 进一步还可以通知与第一小区相邻的每个小区。
基站根据网络侧设备的通知对上下行配置进行设定, 并建立本小区, 开始向 UE提供 通信服务。
其中, 本发明实施例的网络侧设备可以是高层设备, 比如 RNC ( Radio Link Control, 无线链路控制)设备; 还可以是其他网络侧设备或虚拟设备或逻辑节点; 或新的网络侧设 备。 本发明实施例的基站可以是宏基站, 微基站、 家庭基站等。
基于同一发明构思, 本发明实施例中还提供了釆用集中式确定上下行配置的系统、 釆 用集中式确定上下行配置的网络侧设备和釆用集中式确定上下行配置的基站, 由于这些设 备解决问题的原理与釆用集中式确定上下行配置的方法相似, 因此这些设备的实施可以参 见方法的实施, 重复之处不再赘述。
如图 3 所示, 本发明实施例釆用集中式确定上下行配置的系统包括: 网络侧设备 10 和基站 20.。
网络侧设备 10, 用于确定第一小区接收第二小区参考信号的第一 RSRP值, 其中第二 小区是第一小区的邻小区, 根据第一 RSRP值, 确定第一小区是否能够自主进行上下行配 置。
其中, 网络侧设备 10可以将第一 RSRP值与第一小区对应的功率阈值进行比较,判断 第一 RSRP值是否小于对应的功率阈值, 如果是, 则确定第一小区能够自主进行上下行配 置, 否则确定第一小区不能自主进行上下行配置。
这里小区对应的功率阈值可以预先在协议中规定。 根据需要还可以对功率阈值进行更 新。
在实施中, 网络侧设备 10确定的第一 RSRP值是第一小区所属的基站 20测量并上报 的。 具体的, 基站 20 与相邻小区建立下行同步, 并对相邻小区的下行信号进行测量, 得 到第一 RSRP值。
比如, 基站 20在开机时首先在当前网络的工作频段内进行小区搜索, 识别出一个或 一个以上的相邻小区物理层 Cell ID, 并与识别出的相邻小区建立下行同步, 然后对识别出 的相邻小区的下行信号进行测量, 确定本小区接收相邻小区参考信号的第一 RSRP值, 将 确定的第一 RSRP值上报给网络侧设备 10。
较佳的,网络侧设备 10确定第二小区接收第一小区参考信号的第二 RSRP值;相应的, 步骤 202中, 网络侧设备 10根据第一 RSRP值和第二 RSRP值,确定第一小区是否能够自 主进行上下行配置。
具体的, 网络侧设备 10将第一 RSRP值与第一小区对应的功率阈值进行比较, 以及将 第二 RSRP值与第二小区对应的功率阈值进行比较, 判断两个小区的 RSRP值是否都小于 对应的功率阈值, 如果是, 则确定第一小区能够自主进行上下行配置, 否则确定第一小区 不能自主进行上下行配置。 如果是, 同时还可以确定第二小区能够自主进行上下行配置, 否则确定第二小区不能自主进行上下行配置。
这里小区对应的功率阈值可以预先在协议中规定。 根据需要还可以对功率阈值进行更 新。
其中, 网络侧设备 10确定第二 RSRP值的方式有两种:
方式一、 第二小区所属的基站 20上报第二 RSRP值; 相应的, 网络侧设备 10接收第 二小区所属的基站 20测量并上报的第二 RSRP值。
第二小区所属的基站 20确定第二 RSRP值的方式与第一小区所属的基站 20确定第一
RSRP值的方式相同, 在此不再赘述。
方式二、 网络侧设备 10接收基站 20上报的第一小区和第二小区之间的 Pathloss值, 根据第一小区的发射功率值,以及第一小区和第二小区之间的 Pathloss值,确定第二 RSRP 值。
具体的, 第一小区所属的基站 20上报第一小区和第二小区之间的 Pathloss值; 网络侧 设备 10 在收到第一小区和第二小区之间的 Pathloss值后, 将第一小区的发射功率值与 Pathloss值做差, 得到的值作为第二 RSRP值。
在实施中, 基站 20通过网络接口获知相邻小区的上下行子帧分配信息以及相邻小区 的 CRS发射功率信息 (比如 Macro cell或者 Pico cell, 可以通过 X2接口获知如上信息; Femto cell, 可以通过 S1接口获知如上信息), 然后基站 20根据第一 RSRP与对应相邻小 区的 CRS发射功率信息相减, 得到本小区与相邻小区之间的 Pathloss值。
具体釆用方式一还是方式二可以在协议中设定, 也可以由高层通知。
在确定第一小区能够自主进行上下行配置后, 网络侧设备 10通知第一小区自主进行 上下行配置, 进一步还可以通知与第一小区相邻的每个小区;
在确定第一小区不能自主进行上下行配置后, 网络侧设备 10将统一的上下行配置信 息通知第一小区, 进一步还可以通知与第一小区相邻的每个小区。
其中, 本发明实施例的网络侧设备 10可以是高层设备, 比如 RNC设备; 还可以是其 他网络侧设备; 或新的网络侧设备。
如图 4所示, 本发明实施例釆用集中式确定上下行配置的网络侧设备包括: 第一功率 确定模块 100和第一配置确定模块 110。
第一功率确定模块 100, 用于确定第一小区接收第二小区参考信号的第一 RSRP值, 其中第二小区是第一小区的邻小区。
第一配置确定模块 110, 用于根据第一 RSRP值, 确定第一小区是否能够自主进行上 下行配置。
较佳的, 第一功率确定模块 100 还可以确定第二小区接收第一小区参考信号的第二 RSRP值, 根据第一 RSRP值和第二 RSRP值, 确定第一小区是否能够自主进行上下行配 置。
其中, 第一功率确定模块 100接收基站测量并上报的第一 RSRP值。
第一功率确定模块 100可以接收基站上报的第一小区和第二小区之间的 Pathloss值, 根据第一小区的发射功率值,以及第一小区和第二小区之间的 Pathloss值,确定第二 RSRP 值。
如果只根据第一 RSRP值确定第一小区是否可以自主进行上下行配置, 则第一配置确 定模块 110将第一 RSRP值与第一小区对应的功率阈值进行比较, 判断第一 RSRP值是否 小于对应的功率阈值, 如果是, 则确定第一小区能够自主进行上下行配置, 否则确定第一 小区不能自主进行上下行配置。
如果只根据第一 RSRP值和第二 RSRP值确定第一小区是否可以自主进行上下行配置, 则第一配置确定模块 110将第一 RSRP值与第一小区对应的功率阈值进行比较, 以及将第 二 RSRP值与第二小区对应的功率阈值进行比较, 判断两个小区的 RSRP值是否都小于对 应的功率阈值, 如果是, 则确定第一小区能够自主进行上下行配置, 否则确定第一小区不 能自主进行上下行配置。
其中, 第一配置确定模块 110在确定第一小区能够自主进行上下行配置后, 通知第一 小区自主进行上下行配置, 进一步还可以通知与第一小区相邻的每个小区; 在确定第一小 区不能自主进行上下行配置后, 将统一的上下行配置信息通知第一小区, 进一步还可以通 知与第一小区相邻的每个小区。
如图 5所示, 本发明实施例釆用集中式确定上下行配置的基站覆盖的小区包括第一小 区, 该基站包括: 建立模块 210和测量模块 220。 建立模块 210, 用于与第二小区建立下行同步。
测量模块 220, 用于对第二小区的下行信号进行测量, 得到第一 RSRP值, 并上报。 其中, 本发明实施例的基站还可以进一步包括: Pathloss值确定模块 230。
Pathloss值确定模块 230, 用于根据第二小区的发射功率值和第一 RSRP值, 确定第一 小区和第二小区之间的 Pathloss值。
其中, 建立模块 210在开机时与第二小区建立下行同步。
Pathloss值确定模块 230通过 X2接口或 S1接口获取第二小区的发射功率值。
如图 6所示, 本发明实施例釆用分布式确定上下行配置的方法包括下列步骤: 步骤 601、 基站确定本小区接收邻小区参考信号第一 RSRP值。
步骤 602、 基站根据第一 RSRP值, 确定本小区是否能够自主进行上下行配置。
本发明实施例分布式是在各个基站中预先设定本小区 (还可以包括邻小区)可以允许 的千扰水平值, 然后各个基站独立进行判断。
其中, 基站将第一 RSRP值与本小区对应的功率阈值进行比较, 判断第一 RSRP值是 否小于对应的功率阈值, 如果是, 则确定本小区能够自主进行上下行配置, 否则确定本小 区不能自主进行上下行配置。
比如图 1B所示, Macro基站检测到 Macro cell接收 Femto cell参考信号的 RSRP强度 为 X dBm。 Macro基站预设了 Macro cell可允许的千扰水平值为 M dBm (该门限通过仿真 评估或者网络实测得到), 如果 X < M, 则确定 Macro cell能够自主进行上下行配置。
这里小区对应的功率阈值可以预先在协议中规定。 根据需要还可以对功率阈值进行更 新。
步骤 601中, 基站与相邻小区建立下行同步, 并对相邻小区的下行信号进行测量, 得 到第一 RSRP值。
具体的, 基站在开机时首先在当前网络的工作频段内进行小区搜索, 识别出一个或一 个以上的相邻小区物理层 Cell ID, 并与识别出的相邻小区建立下行同步, 然后对识别出的 相邻小区的下行信号进行测量, 确定本小区接收相邻小区参考信号的第一 RSRP值, 将确 定的第一 RSRP值上报给网络侧设备。 如果有多个相邻小区, 则针对每个相邻小区都会有 一个第一 RSRP值。 在上 4艮时可以将小区标识和对应的第一 RSRP值绑定上 4艮; 也可以按 照预先设定的顺序上报; 还可以根据其他约定方式上报, 只要保证网络侧设备能够区分出 RSRP值对应哪个相邻小区。
较佳的, 步骤 602之前还包括:
基站确定邻小区接收本小区参考信号的第二 RSRP值; 相应的, 步骤 602中, 基站根 据第一 RSRP值和第二 RSRP值, 确定本小区是否能够自主进行上下行配置。
具体的, 基站将第一 RSRP值与本小区对应的功率阈值进行比较, 以及将第二 RSRP 值与邻小区对应的功率阈值进行比较, 判断两个小区的 RSRP值是否都小于对应的功率阈 值, 如果是, 则确定与小区能够自主进行上下行配置, 否则确定与小区不能自主进行上下 行配置。
比如图 1B所示, Macro基站检测到 Macro cell接收 Femto cell的 RSRP强度为 X dBm, Macro基站确定的 Femto cell接收 Macro cell的 RSRP强度为 Y dBm。 Macro基站预设了 Macro cell可允许的千扰水平值为 M dBm, femto cell可允许的千扰水平值为 N dBm, 当
X<M且 Y<N时集中判决可以自行进行上下行配置。
这里小区对应的功率阈值可以预先在协议中规定。 根据需要还可以对功率阈值进行更 新。
其中, 基站确定第二 RSRP值的方式有两种:
方式一、 基站通过 X2接口或 S 1接口获取第二 RSRP值。
比如基站可以通过 X2接口或 S 1接口, 从相邻小区所属的基站处获取第二 RSRP值; 也可以通过 X2接口或 S 1接口从本发明实施例集中式的网络侧设备处获取第二 RSRP值。
方式二、 基站根据邻小区的发射功率值和第一 RSRP值, 确定本小区和该邻小区之间 的 Pathloss值, 根据本小区的发射功率值, 以及确定的本小区和该邻小区之间的 Pathloss 值, 确定第二 RSRP值。
在实施中, 基站通过网络接口获知相邻小区的上下行子帧分配信息以及相邻小区的 CRS发射功率信息(比如 Macro cell或者 Pico cell ,可以通过 X2接口获知如上信息; Femto cell , 可以通过 S 1接口获知如上信息), 然后基站根据第一 RSRP与对应相邻小区的 CRS 发射功率信息相减, 得到本小区与相邻小区之间的 Pathloss值。
具体釆用方式一还是方式二可以在协议中设定, 也可以由高层通知。
步骤 602之后还包括:
在确定本小区能够自主进行上下行配置后, 基站自主进行上下行配置;
在确定本小区不能自主进行上下行配置后, 基站根据配置信息进行上下行配置。
基站根据配置信息进行上下行配置包括但不限于下列方式中的一种:
基站根据默认配置信息进行上下行配置; 基站根据网络侧下发的统一配置信息进行上 下行配置; 基站根据存在千扰的邻区的配置信息进行上下行配置(即与存在千扰的邻区进 行相同的上下行配置)。
基站根据判定结果对上下行配置进行设定, 并建立本小区, 开始向 UE提供通信服务。 其中, 本发明实施例的基站可以是宏基站, 微基站、 家庭基站等。
基于同一发明构思, 本发明实施例中还提供了釆用分布式确定上下行配置的基站, 由 于该基站解决问题的原理与釆用分布式确定上下行配置的方法相似, 因此该基站的实施可 以参见方法的实施, 重复之处不再赘述。 如图 7所示, 本发明实施例釆用分布式确定上下行配置的基站包括: 第二功率确定模 块 300和第二配置确定模块 310。
第二功率确定模块 300, 用于确定本小区接收邻小区参考信号第一 RSRP值。
第二配置确定模块 310。, 用于根据第一 RSRP值, 确定本小区是否能够自主进行上下 行配置。
其中, 第二功率确定模块 300与邻小区建立下行同步, 并对邻小区的下行信号进行测 量, 得到第一 RSRP值。
具体的, 第二功率确定模块 300在开机时与邻小区建立下行同步。
在实施中, 第二功率确定模块 300确定邻小区接收本小区参考信号的第二 RSRP值; 相应的, 第二配置确定模块 310根据第一 RSRP值和第二 RSRP值, 确定本小区是否能够 自主进行上下行配置。
较佳的, 第二功率确定模块 300根据邻小区的发射功率值和第一 RSRP值, 确定本小 区和该邻小区之间的 Pathloss值, 根据本小区的发射功率值, 以及确定的本小区和该邻小 区之间的 Pathloss值, 确定第二 RSRP值; 或通过 X2接口或 S1接口获取第二 RSRP值。
其中, 第二功率确定模块 310通过 X2接口或 S1接口获取相邻小区的发射功率值。 如果只根据第一 RSRP值确定第一小区是否可以自主进行上下行配置, 第二配置确定 模块 310将第一 RSRP值与本小区对应的功率阈值进行比较, 判断第一 RSRP值是否小于 对应的功率阈值, 如果是, 则确定本小区能够自主进行上下行配置, 否则确定本小区不能 自主进行上下行配置。
如果根据第一 RSRP值和第二 RSRP值确定第一小区是否可以自主进行上下行配置, 第二配置确定模块 310 将第一 RSRP值与本小区对应的功率阈值进行比较, 以及将第二 RSRP值与邻小区对应的功率阈值进行比较, 判断两个小区的 RSRP值是否都小于对应的 功率阈值, 如果是, 则确定与小区能够自主进行上下行配置, 否则确定与小区不能自主进 行上下行配置。
其中, 第二配置确定模块 310在确定本小区能够自主进行上下行配置后, 自主进行上 下行配置; 在确定本小区不能自主进行上下行配置后, 根据配置信息进行上下行配置。
第二配置确定模块 310根据配置信息进行上下行配置包括但不限于下列方式中的一 种:
根据默认配置信息进行上下行配置; 根据网络侧下发的统一配置信息进行上下行配 置; 根据存在千扰的邻区的配置信息进行上下行配置(即与存在千扰的邻区进行相同的上 下行配置)。
集中式和分布式可以同时布置在一个网络中, 根据需要可以选择使用集中式或分布 式; 还可以同时使用集中式和分布式。 也就是说, 网络中配置的基站既可以包括集中式中 基站的功能, 也可以包括分布式中基站的功能, 还可以同时包括集中式和分布式中基站的 功能; 不管釆用什么方式, 都可以在网络中配置一个具有集中式的网络侧设备功能的实体 设备或虚拟设备或逻辑节点。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算机程序产 品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实 施例的形式。 而且, 本发明可釆用在一个或多个其中包含有计算机可用程序代码的计算机 可用存储介盾 (包括但不限于磁盘存储器、 CD-ROM、 光学存储器等)上实施的计算机程 序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产品的流程图 和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 /或方框图中的每一流 程和 /或方框、 以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机 程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器 以产生一个机器, 使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品, 该指令装置实现在流程图一个流程或多个流程和 /或方框图一个方框或多个 方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理, 从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和 /或方框图一个 方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了基本创造性概 念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权利要求意欲解释为包括优选 实施例以及落入本发明范围的所有变更和修改。
由于通过检测 RSRP值, 判定小区是否能够独立进行上下行配置, 使得动态的上下行 配置能够正常运行, 并且在动态的上下行配置环境中能够减小邻区之间的千扰, 提高系统 效率。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和 范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。
显然, 本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实 施例的精神和范围。 这样, 倘若本发明实施例的这些修改和变型属于本发明权利要求及其 等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 莉 要 求
1、 一种确定上下行配置的方法, 其特征在于, 该方法包括:
网络侧设备确定第一小区接收第二小区参考信号的第一参考信号接收功率 RSRP值, 其中所述第二小区是第一小区的邻小区;
所述网络侧设备根据第一 RSRP值, 确定第一小区是否能够自主进行上下行配置。
2、 如权利要求 1 所述的方法, 其特征在于, 所述网络侧设备确定第一小区是否能够 自主进行上下行配置之前还包括:
所述网络侧设备确定第二小区接收第一小区参考信号的第二 RSRP值;
所述网络侧设备确定第一小区是否能够自主进行上下行配置包括:
所述网络侧设备根据第一 RSRP值和第二 RSRP值, 确定第一小区是否能够自主进行 上下行配置。
3、如权利要求 1或 2所述的方法, 其特征在于, 所述网络侧设备确定第一 RSRP值之 前还包括:
所述网络侧设备接收基站测量并上报的第一 RSRP值。
4、 如权利要求 3 所述的方法, 其特征在于, 当所述基站为第一小区的归属基站时, 所述基站根据下列步骤确定第一 RSRP值:
所述基站与第二小区建立下行同步, 并对第二小区的下行信号进行测量, 得到第一 RSRP值。
5、如权利要求 2所述的方法, 其特征在于, 所述网络侧设备确定第二 RSRP值之前还 包括:
所述网络侧设备接收基站上报的第一小区和第二小区之间的路径损耗 Pathloss值; 所述网络侧设备确定第二 RSRP值包括:
所述网络侧设备根据第一小区的发射功率值,以及第一小区和第二小区之间的 Pathloss 值, 确定第二 RSRP值。
6、 如权利要求 5 所述的方法, 其特征在于, 当所述基站为第一小区的归属基站时, 所述基站根据下列步骤确定第一小区和第二小区之间的 Pathloss值:
所述基站与第二小区建立下行同步, 并对第二小区的下行信号进行测量, 得到第一 RSRP值;
所述基站根据第二小区的发射功率值和第一 RSRP值, 确定第一小区和第二小区之间 的 Pathloss值。
7、 如权利要求 4或 6所述方法, 其特征在于, 所述基站在开机时与第二小区建立下 行同步。
8、 如权利要求 5所述的方法, 其特征在于, 所述基站通过 X2接口或 S1接口获取第 二小区的发射功率值。
9、 如权利要求 1 所述的方法, 其特征在于, 所述网络侧设备确定第一小区是否能够 自主进行上下行配置包括:
所述网络侧设备将第一 RSRP值与第一小区对应的功率阈值进行比较,判断第一 RSRP 值是否小于对应的功率阈值, 如果是, 则确定第一小区能够自主进行上下行配置, 否则确 定第一小区不能自主进行上下行配置。
10、 如权利要求 2所述的方法, 其特征在于, 所述网络侧设备确定第一小区是否能够 自主进行上下行配置包括:
所述网络侧设备将第一 RSRP值与第一小区对应的功率阈值进行比较, 以及将第二
RSRP值与第二小区对应的功率阈值进行比较, 判断两个小区的 RSRP值是否都小于对应 的功率阈值, 如果是, 则确定第一小区能够自主进行上下行配置, 否则确定第一小区不能 自主进行上下行配置。
11、 如权利要求 1、 2、 9或 10所述的方法, 其特征在于, 所述网络侧设备确定第一小 区是否能够自主进行上下行配置之后还包括:
在确定第一小区能够自主进行上下行配置后, 所述网络侧设备通知第一小区自主进行 上下行配置;
在确定第一小区不能自主进行上下行配置后, 所述网络侧设备将统一的上下行配置信 息通知第一小区。
12、 一种确定上下行配置的网络侧设备, 其特征在于, 该网络侧设备包括: 第一功率确定模块, 用于确定第一小区接收第二小区参考信号的第一 RSRP值, 其中 所述第二小区是第一小区的邻小区;
第一配置确定模块, 用于根据第一 RSRP值, 确定第一小区是否能够自主进行上下行 配置。
13、 如权利要求 12所述的网络侧设备, 其特征在于, 所述第一功率确定模块还用于: 确定第二小区接收第一小区参考信号的第二 RSRP值 ,根据第一 RSRP值和第二 RSRP 值, 确定第一小区是否能够自主进行上下行配置。
14、 如权利要求 12或 13所述的网络侧设备, 其特征在于, 所述第一功率确定模块还 用于:
接收基站测量并上 4艮的第一 RSRP值。
15、 如权利要求 13所述的网络侧设备, 其特征在于, 所述第一功率确定模块还用于: 接收基站上报的第一小区和第二小区之间的 Pathloss值,根据第一小区的发射功率值, 以及第一小区和第二小区之间的 Pathloss值, 确定第二 RSRP值。
16、 如权利要求 12 所述的网络侧设备, 其特征在于, 所述第一配置确定模块具体用 于:
将第一 RSRP值与第一小区对应的功率阈值进行比较, 判断第一 RSRP值是否小于对 应的功率阈值, 如果是, 则确定第一小区能够自主进行上下行配置, 否则确定第一小区不 能自主进行上下行配置。
17、 如权利要求 13 所述的网络侧设备, 其特征在于, 所述第一配置确定模块具体用 于:
将第一 RSRP值与第一小区对应的功率阈值进行比较, 以及将第二 RSRP值与第二小 区对应的功率阈值进行比较, 判断两个小区的 RSRP值是否都 、于对应的功率阈值, 如果 是, 则确定第一小区能够自主进行上下行配置, 否则确定第一小区不能自主进行上下行配 置。
18、 如权利要求 12、 13、 16或 17所述的网络侧设备, 其特征在于, 所述第一配置确 定模块还用于:
在确定第一小区能够自主进行上下行配置后, 通知第一小区自主进行上下行配置; 在确定第一小区不能自主进行上下行配置后, 将统一的上下行配置信息通知第一小 区。
19、 一种基站, 其特征在于, 该基站覆盖的小区包括第一小区, 该基站包括: 建立模块, 用于与第二小区建立下行同步, 第二小区与第一小区为邻小区; 测量模块, 用于对第二小区的下行信号进行测量, 得到第一 RSRP值, 并上报。
20、 如权利要求 19所述的基站, 其特征在于, 所述基站还包括:
Pathloss值确定模块, 用于根据第二小区的发射功率值和第一 RSRP值, 确定第一小 区和第二小区之间的 Pathloss值。
21、 如权利要求 19或 20所述基站, 其特征在于, 所述建立模块在开机时与第二小区 建立下行同步。
22、 如权利要求 20所述的基站, 其特征在于, 所述 Pathloss值确定模块通过 X2接口 或 S1接口获取第二小区的发射功率值。
23、 一种确定上下行配置的系统, 包括基站, 其特征在于, 该系统还包括: 网络侧设备, 用于确定第一小区接收第二小区参考信号的第一 RSRP值, 其中所述第 二小区是第一小区的邻小区, 根据第一 RSRP值, 确定第一小区是否能够自主进行上下行 配置。
24、 如权利要求 23所述的系统, 其特征在于, 所述网络侧设备还用于:
确定第二小区接收第一小区参考信号的第二 RSRP值 ,根据第一 RSRP值和第二 RSRP 值, 确定第一小区是否能够自主进行上下行配置。
25、 如权利要求 23或 24所述的系统, 其特征在于, 所述基站用于:
与第二小区建立下行同步, 并对第二小区的下行信号进行测量, 得到第一 RSRP值并 向网络侧设备上报。
26、 如权利要求 24所述的系统, 其特征在于, 所述网络侧设备还用于:
接收基站上报的第一小区和第二小区之间的 Pathloss值,根据第一小区的发射功率值, 以及第一小区和第二小区之间的 Pathloss值, 确定第二 RSRP值。
27、 如权利要求 24所述的系统, 其特征在于, 所述基站用于:
与相邻小区建立下行同步, 并对相邻小区的下行信号进行测量, 得到第一 RSRP值, 根据第二小区的发射功率值和第一 RSRP值,确定第一小区和第二小区之间的 Pathloss值。
28、 一种确定上下行配置的方法, 其特征在于, 该方法包括:
基站确定本小区接收邻小区参考信号第一 RSRP值;
所述基站根据第一 RSRP值, 确定本小区是否能够自主进行上下行配置。
29、 如权利要求 28所述的方法, 其特征在于, 所述基站确定第一 RSRP值包括: 所述基站与邻小区建立下行同步, 并对邻小区的下行信号进行测量, 得到第一 RSRP 值。
30、 如权利要求 29 所述方法, 其特征在于, 所述基站在开机时与邻小区建立下行同 步。
31、 如权利要求 28 所述的方法, 其特征在于, 所述基站确定本小区是否能够自主进 行上下行配置之前还包括:
所述基站确定邻小区接收本小区参考信号的第二 RSRP值;
所述基站确定本小区是否能够自主进行上下行配置包括:
所述基站根据第一 RSRP值和第二 RSRP值, 确定本小区是否能够自主进行上下行配 置。
32、 如权利要求 31所述的方法, 其特征在于, 所述基站确定第二 RSRP值包括: 所述基站根据邻小区的发射功率值和第一 RSRP值, 确定本小区和该邻小区之间的
Pathloss值;
所述基站根据本小区的发射功率值,以及确定的本小区和该邻小区之间的 Pathloss值, 确定第二 RSRP值。
33、如权利要求 31所述的方法,其特征在于,所述网络侧设备确定第二 RSRP值包括: 所述基站通过 X2接口或 S 1接口获取第二 RSRP值。
34、 如权利要求 32所述的方法, 其特征在于, 所述基站通过 X2接口或 S1接口获取 相邻小区的发射功率值。
35、 如权利要求 28 所述的方法, 其特征在于, 所述基站确定本小区是否能够自主进 行上下行配置包括:
所述基站将第一 RSRP值与本小区对应的功率阈值进行比较, 判断第一 RSRP值是否 小于对应的功率阈值, 如果是, 则确定本小区能够自主进行上下行配置, 否则确定本小区 不能自主进行上下行配置。
36、 如权利要求 31 所述的方法, 其特征在于, 所述基站确定本小区是否能够自主进 行上下行配置包括:
所述基站将第一 RSRP值与本小区对应的功率阈值进行比较, 以及将第二 RSRP值与 邻小区对应的功率阈值进行比较, 判断两个小区的 RSRP值是否都 、于对应的功率阈值, 如果是, 则确定与小区能够自主进行上下行配置, 否则确定与小区不能自主进行上下行配 置。
37、 如权利要求 28 ~ 36任一所述的方法, 其特征在于, 所述基站确定本小区是否能 够自主进行上下行配置之后还包括:
在确定本小区能够自主进行上下行配置后, 所述基站自主进行上下行配置; 在确定本小区不能自主进行上下行配置后, 所述基站根据配置信息进行上下行配置。
38、 如权利要求 37 所述的方法, 其特征在于, 所述基站根据配置信息进行上下行配 置包括:
所述基站根据默认配置信息进行上下行配置, 或根据网络侧下发的统一配置信息进行 上下行配置, 或根据存在千扰的邻区的配置信息进行上下行配置。
39、 一种确定上下行配置的基站, 其特征在于, 该基站包括:
第二功率确定模块, 用于确定本小区接收邻小区参考信号第一 RSRP值;
第二配置确定模块, 用于根据第一 RSRP值, 确定本小区是否能够自主进行上下行配 置。
40、 如权利要求 39所述的基站, 其特征在于, 所述第二功率确定模块具体用于: 与邻小区建立下行同步, 并对邻小区的下行信号进行测量, 得到第一 RSRP值。
41、 如权利要求 40 所述基站, 其特征在于, 所述第二功率确定模块在开机时与邻小 区建立下行同步。
42、 如权利要求 39所述的基站, 其特征在于, 所述第二功率确定模块还用于: 确定邻小区接收本小区参考信号的第二 RSRP值;
所述第二配置确定模块还用于:
根据第一 RSRP值和第二 RSRP值, 确定本小区是否能够自主进行上下行配置。
43、 如权利要求 42所述的基站, 其特征在于, 所述第二功率确定模块具体用于: 根据邻小区的发射功率值和第一 RSRP值,确定本小区和该邻小区之间的 Pathloss值, 根据本小区的发射功率值, 以及确定的本小区和该邻小区之间的 Pathloss值, 确定第二 RSRP值。
44、 如权利要求 42所述的基站, 其特征在于, 所述第二功率确定模块具体用于: 通过 X2接口或 S1接口获取第二 RSRP值。
45、 如权利要求 43所述的基站, 其特征在于, 所述第二功率确定模块具体用于: 通过 X2接口或 S1接口获取相邻小区的发射功率值。
46、 如权利要求 39所述的基站, 其特征在于, 所述第二配置确定模块具体用于: 将第一 RSRP值与本小区对应的功率阈值进行比较, 判断第一 RSRP值是否小于对应 的功率阈值, 如果是, 则确定本小区能够自主进行上下行配置, 否则确定本小区不能自主 进行上下行配置。
47、 如权利要求 42所述的基站, 其特征在于, 所述第二配置确定模块具体用于: 将第一 RSRP值与本小区对应的功率阈值进行比较, 以及将第二 RSRP值与邻小区对 应的功率阈值进行比较, 判断两个小区的 RSRP值是否都 、于对应的功率阈值, 如果是, 则确定与小区能够自主进行上下行配置, 否则确定与小区不能自主进行上下行配置。
48、 如权利要求 39 ~ 47任一所述的基站, 其特征在于, 所述第二配置确定模块还用 于:
在确定本小区能够自主进行上下行配置后, 自主进行上下行配置; 在确定本小区不能 自主进行上下行配置后, 根据配置信息进行上下行配置。
49、 如权利要求 48所述的基站, 其特征在于, 所述第二配置确定模块还用于: 根据默认配置信息进行上下行配置, 或根据网络侧下发的统一配置信息进行上下行配 置, 或根据存在千扰的邻区的配置信息进行上下行配置。
PCT/CN2011/083356 2010-12-02 2011-12-02 一种确定上下行配置的方法、系统和设备 WO2012072038A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11844914.9A EP2648444B1 (en) 2010-12-02 2011-12-02 Method, system, and device for confirming uplink-downlink configuration
US13/991,154 US9554288B2 (en) 2010-12-02 2011-12-02 Method, system, and device for confirming uplink-downlink configuration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010570409.9 2010-12-02
CN201010570409.9A CN102036295B (zh) 2010-12-02 2010-12-02 一种确定上下行配置的方法、系统和设备

Publications (1)

Publication Number Publication Date
WO2012072038A1 true WO2012072038A1 (zh) 2012-06-07

Family

ID=43888448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083356 WO2012072038A1 (zh) 2010-12-02 2011-12-02 一种确定上下行配置的方法、系统和设备

Country Status (4)

Country Link
US (1) US9554288B2 (zh)
EP (1) EP2648444B1 (zh)
CN (1) CN102036295B (zh)
WO (1) WO2012072038A1 (zh)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036295B (zh) 2010-12-02 2014-04-16 大唐移动通信设备有限公司 一种确定上下行配置的方法、系统和设备
CN102036296B (zh) 2010-12-02 2016-08-03 大唐移动通信设备有限公司 一种确定上下行配置的方法、系统和设备
CN102781109B (zh) * 2011-05-12 2015-09-30 华为技术有限公司 无线网络配置方法、装置和系统
CN102917462B (zh) * 2011-08-05 2015-04-15 普天信息技术研究院有限公司 一种异构网中干扰协调的方法
CN105792277B (zh) * 2011-09-26 2019-06-28 华为技术有限公司 干扰控制方法和设备
CN103139881B (zh) * 2011-11-29 2016-03-02 中国移动通信集团上海有限公司 一种家庭基站的功率调整方法、设备及家庭基站
US9119120B2 (en) * 2012-01-23 2015-08-25 Intel Corporation Network assisted user association and offloading techniques for integrated multi-rat heterogeneous networks
CN103298115B (zh) * 2012-02-27 2015-10-14 电信科学技术研究院 一种基站及进行tdd基站上下行子帧配置的方法
US9066367B2 (en) * 2012-03-29 2015-06-23 Intel Mobile Communications GmbH Macro-femto inter-cell interference mitigation
US9635653B2 (en) 2012-04-26 2017-04-25 Nokia Solutions And Networks Oy Switching between downlink and uplink
CN103379520B (zh) * 2012-04-26 2016-02-17 电信科学技术研究院 一种进行干扰控制的方法和设备
KR101882669B1 (ko) * 2012-05-11 2018-07-30 노키아 솔루션스 앤드 네트웍스 오와이 이종 네트워크에서 업링크-다운링크 간섭을 완화시키는 방법
US20130301423A1 (en) * 2012-05-11 2013-11-14 Alexander Sirotkin Method, system and apparatus of time-division-duplex (tdd) uplink-downlink (ul-dl) interference management
CN103517281A (zh) * 2012-06-20 2014-01-15 电信科学技术研究院 干扰信息的反馈及干扰控制方法和装置
CN104066093B (zh) 2013-03-18 2018-03-23 财团法人工业技术研究院 无线通信系统的干扰管理方法、锚点设备、基站及其系统
CN103281768B (zh) * 2013-06-14 2016-05-04 大唐移动通信设备有限公司 一种crs功率的确定方法和设备
US9420584B2 (en) 2014-09-17 2016-08-16 Telefonaktiebolaget Lm Ericsson (Publ) Uplink sounding reference signals for machine type communications (MTC) user equipment (UE)
CN104639476B (zh) * 2014-10-31 2018-01-23 上海华为技术有限公司 抑制td‑lte交叉时隙干扰的方法和上行基站
CN106572485A (zh) * 2015-10-13 2017-04-19 中国电信股份有限公司 用于邻频干扰检测与优化的方法和小基站
CN106856612B (zh) * 2015-12-09 2020-03-03 中国联合网络通信集团有限公司 一种多点协同通信方法及基站
WO2017107199A1 (zh) * 2015-12-25 2017-06-29 华为技术有限公司 通信方法、装置和系统
CN107241811A (zh) * 2016-03-29 2017-10-10 富士通株式会社 用于通信系统的调度装置、方法及基站
US20170332335A1 (en) * 2016-05-13 2017-11-16 Huawei Technologies Co., Ltd. System and method of configurable sequence usage for transmission reception points
CN109314974A (zh) * 2016-06-29 2019-02-05 华为技术有限公司 频谱处理方法及装置
WO2018120172A1 (zh) * 2016-12-30 2018-07-05 华为技术有限公司 用于传输信号的方法和网络设备
US10474469B2 (en) * 2017-04-12 2019-11-12 Arm Limited Apparatus and method for determining a recovery point from which to resume instruction execution following handling of an unexpected change in instruction flow
CN109150450B (zh) * 2017-06-16 2021-04-20 华为技术有限公司 一种信号传输的方法、设备和系统
CN109391973B (zh) * 2017-08-14 2022-06-07 中国移动通信有限公司研究院 一种交叉链路干扰测量方法、设备和计算机可读存储介质
CN110545561B (zh) * 2018-05-29 2022-04-26 中兴通讯股份有限公司 一种干扰处理的方法、装置、系统及存储介质
CN108934030B (zh) * 2018-07-19 2021-08-03 中信科移动通信技术股份有限公司 一种避免iab基站交叉干扰的方法
KR20200042774A (ko) * 2018-10-16 2020-04-24 삼성전자주식회사 무선랜 시스템에서 공간 재사용 제어 방법 및 장치
CN112205052A (zh) * 2019-10-15 2021-01-08 深圳市大疆创新科技有限公司 通信方法、设备及移动终端

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562835A (zh) * 2008-04-17 2009-10-21 中兴通讯股份有限公司 一种终端在分层异构分布式基站间的切换方法
US20090312008A1 (en) * 2008-01-31 2009-12-17 Telefonaktiebolaget L M Ericsson (Publ) Detection of Time Division Duplex Downlink/Uplink Configuration
CN101697628A (zh) * 2009-10-23 2010-04-21 北京邮电大学 一种宏蜂窝和家庭基站混合网络中下行链路动态资源分配的方法
CN101754377A (zh) * 2008-12-04 2010-06-23 中兴通讯股份有限公司 一种小区上下行子帧自适应配置方法
CN101808381A (zh) * 2010-03-24 2010-08-18 中兴通讯股份有限公司 一种切换判决的方法及装置
CN102036295A (zh) * 2010-12-02 2011-04-27 大唐移动通信设备有限公司 一种确定上下行配置的方法、系统和设备

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4150239B2 (ja) * 2002-10-03 2008-09-17 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム、基地局、移動局、及びセル制御方法
US7684408B2 (en) * 2003-09-30 2010-03-23 Mitsubishi Denki Kabushiki Kaisha Communication mode control method, mobile communication system, base station control apparatus, base station, and mobile communication terminal
CN1816198A (zh) * 2005-01-31 2006-08-09 西门子(中国)有限公司 时分-同步码分多址接入系统中降低小区间干扰的方法
KR100753369B1 (ko) * 2006-08-30 2007-08-30 주식회사 팬택 이동통신 시스템의 셀간 간섭을 저감하는 방법
WO2008069117A1 (ja) * 2006-12-05 2008-06-12 Nec Corporation セルラシステム、通信路品質測定方法、基地局および移動局
BRPI0622239A2 (pt) * 2006-12-20 2011-12-27 Ericsson Telefon Ab L M mÉtodo e sistema para uma rede de telecomunicaÇço màvel para selecionar uma modalidade de antena a ser usada para comunicaÇço entre uma rede de raio e um terminal màvel operando na modalidade de recepÇço descontÍnua
WO2008105311A1 (ja) * 2007-02-28 2008-09-04 Ntt Docomo, Inc. 移動通信システムにおけるユーザ装置、基地局装置及び通信制御方法
US8891489B2 (en) * 2007-03-19 2014-11-18 Qualcomm Incorporated Handover mechanism that exploits uplink channel quality of a target cell
US8705438B2 (en) * 2007-07-10 2014-04-22 Qualcomm Incorporated Methods and apparatus for selecting and/or using a communications band for peer to peer signaling
US20090017838A1 (en) * 2007-07-10 2009-01-15 Qualcomm Incorporated Methods and apparatus for selecting a communications band based on location information
CN102739602B (zh) * 2007-08-14 2016-03-16 株式会社Ntt都科摩 接收装置和数据取得方法
EP2183929B1 (en) * 2007-09-05 2011-07-06 Telefonaktiebolaget LM Ericsson (publ) Cell reselection based on use of relative thresholds in a mobile telecommunication system
CN103648166B (zh) * 2007-12-17 2017-01-18 Tcl通讯科技控股有限公司 移动通信系统
CN101557604B (zh) * 2008-04-11 2012-09-05 中兴通讯股份有限公司 邻小区指示信息的获取方法及无线接入网系统
US20100054237A1 (en) * 2008-09-04 2010-03-04 Motorola, Inc. Synchronization for femto-cell base stations
US8886205B2 (en) * 2009-03-02 2014-11-11 Qualcomm Incorporated Timing adjustment for synchronous operation in a wireless network
JP5205330B2 (ja) * 2009-04-27 2013-06-05 株式会社日立製作所 無線通信システムおよび無線通信方法ならびに基地局装置
US9210586B2 (en) * 2009-05-08 2015-12-08 Qualcomm Incorporated Method and apparatus for generating and exchanging information for coverage optimization in wireless networks
PT3282744T (pt) * 2009-10-29 2021-04-27 Nokia Solutions & Networks Oy Monitorização de desempenho de rede melhorada

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090312008A1 (en) * 2008-01-31 2009-12-17 Telefonaktiebolaget L M Ericsson (Publ) Detection of Time Division Duplex Downlink/Uplink Configuration
CN101562835A (zh) * 2008-04-17 2009-10-21 中兴通讯股份有限公司 一种终端在分层异构分布式基站间的切换方法
CN101754377A (zh) * 2008-12-04 2010-06-23 中兴通讯股份有限公司 一种小区上下行子帧自适应配置方法
CN101697628A (zh) * 2009-10-23 2010-04-21 北京邮电大学 一种宏蜂窝和家庭基站混合网络中下行链路动态资源分配的方法
CN101808381A (zh) * 2010-03-24 2010-08-18 中兴通讯股份有限公司 一种切换判决的方法及装置
CN102036295A (zh) * 2010-12-02 2011-04-27 大唐移动通信设备有限公司 一种确定上下行配置的方法、系统和设备

Also Published As

Publication number Publication date
US20140003288A1 (en) 2014-01-02
CN102036295A (zh) 2011-04-27
US9554288B2 (en) 2017-01-24
EP2648444A1 (en) 2013-10-09
EP2648444B1 (en) 2018-07-25
EP2648444A4 (en) 2017-04-19
CN102036295B (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
WO2012072038A1 (zh) 一种确定上下行配置的方法、系统和设备
CN113765548B (zh) 用于小区和波束移动性的波束集合
JP2022137119A (ja) 無線通信システム、基地局、通信端末
WO2012072005A1 (zh) 一种确定上下行配置的方法、系统和设备
JP6359815B2 (ja) ユーザ端末、無線基地局及び異周波測定方法
KR101902406B1 (ko) 무선 접속 시스템에서 셀 측정 방법 및 이를 위한 장치
TW201822570A (zh) 毫米波(mmw)中的二步隨機存取通道(rach)程序
CN104244412B (zh) 无线通信设备、无线通信方法以及基站
WO2012083814A1 (zh) 一种传输信息和配置子帧的方法、系统及设备
CN109923843B (zh) 新无线电中的循环前缀管理
WO2013127324A1 (zh) 一种基站及进行tdd基站上下行子帧配置的方法
JP2017527204A (ja) 通信システムにおける測定の強化のための方法及び装置
WO2012139441A1 (zh) 一种进行干扰协调的方法、系统和设备
WO2013159598A1 (zh) 一种进行干扰控制的方法和设备
KR20160119816A (ko) 동적 TDD UL/DL 구성 가능 셀들 및/또는 CoMP 셀들로의 핸드오버
US9877351B2 (en) Mobile communication system, user terminal, and base station
JPWO2018062458A1 (ja) ユーザ端末及び無線通信方法
EP3909349B1 (en) Integrated access and backhaul distributed unit soft resources
WO2012130139A1 (zh) 子帧配置信息通知和子帧配置的方法、系统及设备
JP2015023541A (ja) 無線基地局、ユーザ端末及び無線通信方法
US20160165560A1 (en) Radio base station, user terminal and radio communication method
KR20150007753A (ko) 무선 셀룰라 통신 시스템에서 기지국 간 단말의 단말 대 단말 발견 신호 전송 방법 및 장치
CN105580411A (zh) 基站、用户终端以及无线通信方法
CN103281789A (zh) 一种确定上下行配置的方法、系统和设备
WO2014044177A1 (zh) 一种时隙分配信息的通知、接收的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011844914

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13991154

Country of ref document: US