WO2012071894A1 - 一种无源光网络及其保护倒换方法 - Google Patents

一种无源光网络及其保护倒换方法 Download PDF

Info

Publication number
WO2012071894A1
WO2012071894A1 PCT/CN2011/076772 CN2011076772W WO2012071894A1 WO 2012071894 A1 WO2012071894 A1 WO 2012071894A1 CN 2011076772 W CN2011076772 W CN 2011076772W WO 2012071894 A1 WO2012071894 A1 WO 2012071894A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical network
network unit
equalization delay
value
equalization
Prior art date
Application number
PCT/CN2011/076772
Other languages
English (en)
French (fr)
Inventor
张伟良
耿丹
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012071894A1 publication Critical patent/WO2012071894A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability

Definitions

  • the present invention relates to the field of communications, and in particular, to a Passive Optical Network (PON) and a protection switching method thereof.
  • PON Passive Optical Network
  • GPON Gigabit-Capable Passive Optical Network
  • PON Passive Optical Network
  • ODN optical Distribution Network
  • each ONU receives all the frames, and then obtains its own according to the ONU-ID, GEM-Port ID, and Allocation-ID. Frame.
  • each ONU should transmit uplink data in the time slot that the OLT arranges for itself. The distance between each ONU and the OLT is different.
  • the OLT needs to measure the ONU in the registration activation phase, and the ranging result is the equalization delay value of each ONU (The equalization delay (EqD) is sent to each ONU.
  • the ONU adjusts the clock of the transmitted data according to the equalization delay EqD sent by the OLT to implement uplink transmission synchronization.
  • OLT1 and OLT2 are connected to a splitter with an input port and an output port of 2: N.
  • the splitter is connected to each optical network unit (ONU) through a fiber in the downstream direction.
  • the path of the OLT1 to the ONU through the splitter is the main path, and the path of the OLT2 to the ONU through the splitter is the standby path.
  • the main path serves as a service path for the optical line terminal (OLT 1) and the optical network unit (ONU).
  • OLT 1 optical line terminal
  • ONU optical network unit
  • the ONU does not detect the optical signal of the OLT 1 in the main path, causing out-of-synchronization (signal loss LOS).
  • the LOF, Loss of Signal, or Loss of Frame alarms are entered into the pop-up state (06).
  • the initial state (01) is entered.
  • the alternate path is enabled to maintain communication between the optical network unit and the optical line terminal.
  • 0NU After 0NU detects the downlink optical signal of 0LT2, it eliminates the L0S/L0F alarm. After the frame is delimited and synchronized by the alternate path and 0LT2, the 0NU transitions from the initial state (01) to the standby state (02); 0NU receives the uplink sent by 0LT2.
  • the overhead parameter is transferred from the standby state (02) to the serial number state (03); wherein, the uplink overhead parameter includes: a preamble bit type; a delimiter parameter (Delimiter); and an ONU transmission optical power level parameter (used to indicate a 0NU transmission) Level of optical power) and other parameters.
  • 0LT2 needs to redistribute the ID of the 0NU managed by it, and send the ID of each 0NU after re-allocation to the corresponding ONU; 0NU receives the 0NU-ID information sent by 0LT2, and then transfers from the serial number status (03) to the measurement. From the state (04); 0NU receives the equalization delay (EqD) message sent by 0LT2, and then goes from the ranging state (04) to the running state (05); at this point, the alternate path between 0NU and 0LT2 is completely Established, 0NU and 0LT2 exchange information through this alternate path.
  • EqD equalization delay
  • the existing problems in the existing active/standby switchover process include:
  • each 0NU needs to complete the above series of state transitions, which will cause the 0LT to bear a large amount of message transmission work;
  • the prior art proposes an improved scheme for adjusting the equalization delay (EqD), and the OLT2 reads the equalization delay EqDl of an ONU in the main channel through the management control interface channel of the ONU, and measures The equalization delay EqD-2 of the ONU in the standby path is then calculated, and then the difference between the two equalization delays is calculated.
  • the OLT2 sends the difference of the equalization delay to all ONUs to update the EqD values of all ONUs.
  • the data read by the ONU management control interface channel is slow, and the user cannot meet the requirements for fast network recovery, and the existing GPON standard does not support the EQD value of the ONU transmitted through the ONU management control interface channel. So not all ONUs have this capability, so the improved solution is less suitable. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a Passive Optical Network (PON) and a protection switching method thereof, which are used to solve the problem that the existing technology has a slow recovery speed during the protection switching, and the process is complicated and applicable. Poor sex.
  • PON Passive Optical Network
  • protection switching method thereof which are used to solve the problem that the existing technology has a slow recovery speed during the protection switching, and the process is complicated and applicable. Poor sex.
  • the present invention provides a protection switching method in a passive optical network, including:
  • the optical network unit When the optical network unit (ONU) detects the loss of the downlink signal, or the downlink frame is lost, or the active/standby protection switching occurs, the equalization delay value saved by each is increased.
  • the method further includes:
  • the optical network unit After increasing the respective equalization delay values, the optical network unit sends uplink data in an uplink bandwidth allocated by the optical line terminal;
  • the optical line terminal After receiving the uplink data sent by the optical network unit, the optical line terminal obtains an equalization delay adjustment value by calculation, and sends the equalization delay adjustment value to all optical network units; Each optical network unit corrects its current equalization delay value according to the equalization delay adjustment value.
  • the step of obtaining the equalization delay adjustment value by the calculation includes: using the difference between the actual arrival time of the uplink frame of the optical network unit and the arrival time of the uplink frame of the optical network unit desired by the optical line terminal as the equalization delay adjustment value.
  • the step of modifying, by each optical network unit, the current equalization delay value according to the equalization delay adjustment value includes: each optical network unit subtracting the equalization delay adjustment value by using its current equalization delay value, and obtaining the difference The value is the equalization delay value corresponding to the alternate path.
  • each optical network unit increases its own delay constant D, D, which is a constant greater than zero, corresponding to the equalization delay value of the primary path.
  • the delay constant D is a value carried by each optical network unit itself, or a value that each optical network unit transmits to the optical network unit by an optical line terminal (OLT) during a registration activation process or during operation. value. , i « , , ' % , 5
  • the present invention also provides a passive optical network, including a primary optical line terminal configured in an active/standby mode, a standby optical line terminal, a splitter, and one or more optical network units, where
  • the optical network unit is configured to: when detecting a downlink signal loss, or a downlink frame loss, or an active/standby protection switching occurs, increasing the respective saved equalization delay values and uplinks allocated at the standby optical line terminal Sending uplink data within the bandwidth;
  • the standby optical line terminal is configured to: allocate an uplink bandwidth to the optical network unit, and, after receiving the uplink data sent by the optical network unit, obtain an equalization delay adjustment value by calculation, and send the obtained equalization delay adjustment value to the All optical network units;
  • the optical network unit is further configured to: correct respective current equalization delay values according to the equalization delay adjustment value.
  • the standby optical line terminal is configured to obtain an equalization delay adjustment value by using: a difference between an actual arrival time of an uplink frame of the optical network unit and an arrival time of an uplink frame of the desired optical network unit as the equalization delay adjustment value. ;
  • the optical network unit is configured to correct respective current equalization delay values by: each optical network unit subtracting the equalization delay adjustment value from its current equalization delay value, and using the obtained difference as The equalization delay value corresponding to the alternate path.
  • the optical network unit is configured to increase the respective saved equalization delay values by: each optical network unit increases its own delay delay value D, D corresponding to the equalization delay value of the primary path by a constant greater than zero. .
  • the ONU When the ONU detects the LOS/LOF or the protection switching occurs, the ONU increases its own equalization delay value, and after establishing communication with the OLT, the OLT calculates the equalization delay adjustment value, and uses the equalization under the command of the OLT.
  • the delay adjustment value updates its own EQD value of the equalization delay, which can achieve the goal of quickly establishing communication between the OLT and the ONU after the protection path is switched.
  • the ONU and the OLT can quickly resume communication, simplifying the switching process of the optical network unit in the protection mode. Reduce switching time. BRIEF abstract
  • Figure 1 shows the topology of a GPON system
  • Figure 2 is a schematic diagram of a passive optical network topology that protects the backbone fiber
  • FIG. 3 is a schematic diagram of a system for performing active/standby protection switching of a passive optical network in Embodiment 1;
  • FIG. 4 is a flowchart of a method for switching active/standby protection of a passive optical network in Embodiment 2.
  • the line terminal OLT1 reaches the path of the ONU through the optical splitter as the main path, and the path of the second optical line terminal OLT2 through the optical splitter to the ONU is the standby path.
  • the primary path is used as the service path of the optical line terminal OLT1 and the optical network unit ONU.
  • each ONU stores an equalization delay EqD, and the equalization delay corresponding to an ONU and OLT1 is called EqD1, and the ONU is based on
  • the equalization delay EqD1 sent by OLT1 adjusts the clock of the transmitted data to achieve uplink transmission. Lose synchronization.
  • the distance between OLT2 and each ONU may change after the switchover because the deployment positions of OLT1 and OLT2 are different (may be very close or may be far away).
  • the equalization delay EqDl saved by each ONU cannot be directly used to implement uplink transmission synchronization.
  • the optical network unit ONU detects a loss of signal or a frame loss (LOS or LOF), or immediately activates the alternate path to maintain the optical network unit and the optical line terminal.
  • the communication after detecting the downlink optical signal of the OLT2, actively adjusts the respective equalization delays, and each ONU adds a delay constant D (D > 0, preferably D > 250us) to the equalization delay EqD1 saved by itself.
  • the intermediate equalization delay EqD3 EqDl+D is obtained.
  • the ONU After the ONU establishes a connection with the OLT2, it transmits uplink data to the OLT2 with the intermediate equalization delay EqD3.
  • the OLT2 After receiving the uplink frame sent by the ONU, the OLT2 calculates the equalization delay adjustment value that the ONU needs to adjust.
  • AEqD: AEqD the actual arrival time of the ONU uplink frame - the expected arrival time of the ONU uplink frame.
  • the actual arrival time of the ONU uplink frame is the time required for the uplink frame sent by the ONU to the OLT2 according to the intermediate equalization delay EqD3 to reach the OLT2.
  • the expected arrival time of the ONU uplink frame is the time when the OLT2 expects the uplink frame sent by the ONU to reach the OLT2. That is, the expected uplink frame arrival time is a parameter that has been configured in OLT2.
  • the optical line terminal OLT1 reaches the path of the ONU through the optical splitter as the main path, and the path of the second optical line terminal OLT2 through the optical splitter to the ONU is the standby path.
  • the main path serves as a service path for the optical network unit and the optical line terminal.
  • the optical network unit ONU detects To signal loss or frame loss (LOS or LOF), or immediately enable the alternate path to maintain communication between the optical network unit and the optical line terminal, the ONU and the OLT use the pass signal after detecting the downstream optical signal of the OLT2.
  • LOS or LOF To signal loss or frame loss
  • the ONU and the OLT use the pass signal after detecting the downstream optical signal of the OLT2.
  • OLT2 allocates uplink bandwidth to each ONU
  • Each ONU is in the upstream bandwidth allocated to itself by OLT2, with an intermediate equalization delay EqD3
  • OLT2 sends uplink data.
  • OLT2 After receiving the uplink frame sent by each ONU, OLT2 calculates the equalization delay adjustment value ⁇ EqD that the ONU needs to adjust:
  • ⁇ EqD actual arrival time of ONU upstream frame - expected arrival time of ONU upstream frame.
  • the OLT2 sends the equalization delay adjustment value ⁇ EqD to all ONUs;
  • each ONU After receiving the AEqD value sent by OLT2, each ONU updates its EqD value again, that is, it is updated to the equalization delay value EqD2 corresponding to OLT2:
  • EqD2 intermediate equalization delay EqD3 - AEqD.
  • the uplink data is sent according to the updated equalization delay EqD2 to implement uplink data synchronization.
  • the protection switching method in the passive optical network of the present invention includes the following steps: Step 401: All ONUs automatically adjust the values of respective EqDs, and the value of each updated EqD of each ONU is equal to that before the ONU is updated.
  • Step 403 Each ONU follows the updated equalization in the uplink bandwidth allocated by the OLT2 to itself.
  • the delay EqDl+D sends uplink data to implement uplink data synchronization;
  • Step 404 After receiving the uplink frame sent by each ONU, the OLT2 calculates the equalization delay adjustment value AEqD that the ONU needs to adjust according to the following method, and sends the AEqD to all ONUs.
  • AEqD the actual arrival time of the ONU uplink frame _ the expected arrival time of the ONU uplink frame.
  • the actual arrival time of the ONU uplink frame is the time required for the uplink frame sent by the ONU to the OLT 2 according to the intermediate equalization delay EqD3 to reach the OLT2.
  • the expected arrival time of the ONU uplink frame is the time that the OLT2 expects the uplink frame sent by the ONU to reach the OLT2.
  • Step 405 After receiving the AEqD value sent by the OLT, each ONU updates its own equalization delay value, that is, the equalization delay value EqD2 corresponding to OLT2:
  • EqD2 EqDl+D - AEqD.
  • the uplink data is sent according to the updated equalization delay EqD2 to implement uplink data synchronization.
  • the equalization delay is actively adjusted by the ONU, and the equalization delay value is modified again during the interaction with the standby OLT2, which has the characteristics of simple and fast implementation, and can realize synchronous transmission after the active/standby switchover.
  • the increased delay constant D during active adjustment ensures that each ONU does not conflict with OLT2.
  • the present invention is applicable to GPON systems and next-generation PON systems based on GPON technology, such as XG PON systems.
  • the present invention can achieve the goal of quickly establishing communication between the OLT and the ONU after the protection path is switched.
  • the ONU and the OLT can quickly resume communication, simplify the switching process of the optical network unit in the protection mode, and reduce the switching time. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Abstract

本发明提供一种无源光网络中的保护倒换方法和无源光网络,所述方法包括:光网络单元在检测到下行信号丢失、或者下行帧丢失、或者主备保护倒换发生时,增大各自保存的均衡时延值。本发明可实现保护通路切换后OLT和ONU之间快速建立通信的目标,ONU和OLT可以快速恢复通信,简化了保护模式下光网络单元的切换流程,减少了切换时间。

Description

一种无源光网络及其保护倒换方法
技术领域
本发明涉及通信领域, 具体涉及一种无源光网络 ( Passive Optical Network , 简称 PON )及其保护倒换方法。
背景技术
吉比特无源光网络( Gigabit-Capable Passive Optical Network, 简称为 GPON )技术是无源光网络(PON )家族中一个重要的技术分支, 和其它 PON 技术类似, GPON也是一种釆用点到多点拓朴结构的无源光接入技术。 GPON 系统的拓朴结构如图 1所示, GPON系统由局侧的光线路终端 (Optical Line Terminal , 简称为 OLT ) 、 用户侧的光网络单元( Optical Network Unit , 简称 为 ONU )以及光分配网络( Optical Distribution Network, 简称为 ODN )组成, 通常釆用点到多点的网络结构。 光分配网络 ODN由单模光纤、 光分路器、 光 连接器等无源光器件组成,为 OLT和 ONU之间的物理连接提供光传输媒质。
在 GPON系统中, 下行方向 (由 OLT到 ONU的方向) 的数据传输釆用 广播方式, 每个 ONU分别接收所有的帧, 再根据 ONU-ID、 GEM-Port ID、 Allocation-ID来获取属于自己的帧。 对于上行方向 (从 ONU到 OLT的方向) 的数据传输, 由于各个 ONU需要共享传输媒质, 因此各个 ONU应该在 OLT 安排给自己的时隙内传输上行数据。 各个 ONU与 OLT之间的距离不同, 为 防止各个 ONU发送的上行数据同时到达 OLT, OLT需要对处于注册激活阶 段的 ONU进行测距, 并将测距结果即每个 ONU的均衡时延值 ( Equalization Delay, 简称 EqD )发送给各个 ONU, ONU根据 OLT发送的均衡时延 EqD 调节发送数据的时钟以实现上行传输同步。
在无源光网络的部署应用中, 有部分用户需要较高的安全性, 希望运营 商能够提供一种保障机制来确保其业务通路不中断, 或者次一级的要求是能 够在业务通路中断后快速恢复。 这就对承载用户业务运行的无源光网络提出 了保护通路和快速切换通路的要求。 ( OLT1和 OLT2 )均连接到一个输入端口与输出端口关系为 2: N的分光器, 此分光器下行方向分别通过光纤连接到各个光网络单元(ONU ) 。 OLT1 通 过分光器到达 ONU的通路为主用通路, OLT2通过分光器到达 ONU的通路 为备用通路。
主用通路作为光线路终端(OLT 1 )和光网络单元(ONU )的服务通路, 在主用通路发生中断后, ONU在主用通路检测不到 OLT 1的光信号,产生失 同步(信号丟失 LOS或者帧丟失 LOF, Loss of Signal或者 Loss of Frame )告 警后, 进入弹出状态 (06 ) , ONU处于弹出状态 (06 ) 的时间超过 T02定 时器设定的时长后, 进入初始状态(01 ) , 这时将启用备用通路保持光网络 单元和光线路终端间的通信。
0NU检测到 0LT2的下行光信号后, 消除 L0S/L0F告警, 通过备用通 路与 0LT2完成帧定界和同步后, 0NU从初始状态( 01 )转入待机状态( 02 ) ; 0NU接收 0LT2发送的上行开销参数后从待机状态 (02 )转入序列号状态 ( 03 ) ;其中,上行开销参数包括:前导码比特类型;定界符参数(Delimiter ) ; ONU发送光功率水平参数(用于指示 0NU发送光功率的级别) 以及其它参 数。
0LT2需对其管理的 0NU的 ID进行重新分配,并将重新分配后的各 0NU 的 ID发送至对应的 ONU; 0NU接收 0LT2发送的 0NU-ID信息后, 从序列 号状态 (03 ) 转入测距状态 (04 ) ; 0NU接收 0LT2 发送的均衡时延 ( Equalization Delay, 简称 EqD ) 消息后, 从测距状态 (04 )转入运行状态 ( 05 ) ; 至此, 0NU与 0LT2之间的备用通路完全建立, 0NU与 0LT2通 过此备用通路进行信息交互。
上述现有的主备倒换流程存在的问题包括:
( 1 )在从主用通路切换到备用通路的过程中, 每个 0NU均需完成上述 一系列的状态迁移, 这将使 0LT需负担大量的消息传送工作;
( 2 )在处理过程中,由于 0LT和 0NU之间通路的容量有限性,在 GP0N 网络的传输转换下行帧 ( GP0N Transmission Conversion , 简称 GTC ) 中没 有足够的容量存放物理层运行管理维护 ( Physical Layer Operation Administration and Maintenance , 简称 PLOAM )消息来支持 32个 ONU同时 完成前述的状态迁移过程, 因此大部分 ONU需要等待消息,这就延长了主备 倒换的切换时间, 影响了 ONU和 OLT快速恢复正常通信的效率, 使 ONU 和 OLT恢复正常工作基本耗时在 100毫秒量级以上, 不能满足用户对网络故 障快速恢复的要求。
针对上述问题, 现有技术提出一种调整均衡时延(Equalization Delay, 简 称 EqD ) 的改进方案, OLT2通过 ONU的管理控制接口通道读取一个 ONU 在主用通道时的均衡时延 EqDl , 并测量该 ONU在备用通路的均衡时延 EqD-2, 然后计算上述两个均衡时延的差值, OLT2将所述均衡时延的差值 发送给所有 ONU, 实现所有 ONU的 EqD值的更新。 上述方法中通过 ONU 管理控制接口通道读取数据的速度较慢, 不能满足用户对网络故障快速恢复 的要求, 并且现有的 GPON的标准并不支持通过 ONU管理控制接口通道传 递 ONU的 EqD值,所以不是所有的 ONU都具有这种能力, 因而该改进方案 适用性较差。 发明内容
本发明所要解决的技术问题在于, 提供一种无源光网络( Passive Optical Network, 简称 PON )及其保护倒换方法, 用于解决现有技术在保护倒换时 存在的恢复速度慢, 流程复杂, 适用性差的问题。
为了解决上述问题, 本发明提出了一种无源光网络中的保护倒换方法, 包括:
光网络单元(ONU )检测到下行信号丟失、 或者下行帧丟失、 或者主备 保护倒换发生时, 增大各自保存的均衡时延值。
所述方法还包括:
所述光网络单元在增大各自的均衡时延值后, 在光线路终端分配的上行 带宽内发送上行数据;
光线路终端接收到光网络单元发送的上行数据后, 通过计算获得均衡时 延调整值, 并将所述均衡时延调整值发送给所有的光网络单元; 以及 每个光网络单元根据均衡时延调整值修正自己当前的均衡时延值。
通过计算获得均衡时延调整值的步骤包括: 将光网络单元上行帧的实际 到达时间与光线路终端期望的光网络单元上行帧的到达时间之差, 作为所述 均衡时延调整值。
每个光网络单元根据均衡时延调整值修正自己当前的均衡时延值的步骤 包括:每个光网络单元利用自己当前的均衡时延值减去所述均衡时延调整值, 并将所得差值作为与备用通路对应的均衡时延值。
增大各自保存的均衡时延值的步骤包括: 每个光网络单元将自己对应于 主用通路的均衡时延值增加时延常数 D, D为大于零的常数。
所述时延常数 D是每个光网络单元自身携带的值, 或者是每个光网络单 元在注册激活过程或者在工作过程中由光线路终端 (OLT )发送给该光网络 单元的值。 值。 、 i « 、 、' % 、 5
本发明还提供一种无源光网络, 包括按主备保护方式配置的主用光线路 终端, 备用光线路终端, 分光器及一个或多个光网络单元, 其中,
所述光网络单元(ONU )设置成: 在检测到下行信号丟失、 或者下行帧 丟失、 或者主备保护倒换发生时, 增大各自保存的均衡时延值, 并在备用光 线路终端分配的上行带宽内发送上行数据;
备用光线路终端设置成: 为光网络单元分配上行带宽, 以及, 在接收到 光网络单元发送的上行数据后, 通过计算获得均衡时延调整值, 并将所获得 的均衡时延调整值发送给所有的光网络单元;
所述光网络单元还设置成: 根据均衡时延调整值修正各自当前的均衡时 延值。
所述备用光线路终端是设置成通过如下方式获得均衡时延调整值: 将光 网络单元上行帧的实际到达时间与期望的光网络单元上行帧的到达时间之差 作为所述均衡时延调整值; 所述光网络单元是设置成通过如下方式修正各自当前的均衡时延值: 每 个光网络单元利用自己当前的均衡时延值减去所述均衡时延调整值, 并将所 得差值作为与备用通路对应的均衡时延值。
所述光网络单元是设置成通过如下方式增大各自保存的均衡时延值: 每 个光网络单元将自己对应于主用通路的均衡时延值增加时延常数 D, D为大 于零的常数。
本发明通过 ONU在检测到 LOS/LOF或者保护倒换发生时, 增大自身的 均衡时延值, 并在与 OLT建立通信后, 由 OLT计算获得均衡时延调整值, 在 OLT的命令下利用均衡时延调整值更新自身的均衡时延 EqD值, 可实现 保护通路切换后 OLT和 ONU之间快速建立通信的目标, ONU和 OLT可以 快速恢复通信, 简化了保护模式下光网络单元的切换流程, 减少切换时间。 附图概述
图 1是 GPON系统的拓朴结构;
图 2 是保护主干光纤方式的无源光网络拓朴结构;
图 3 是实施例 1中无源光网络进行主备保护倒换的系统示意图; 图 4是实施例 2中无源光网络主备保护倒换方法的流程图。 本发明的较佳实施方式
为使本发明的目的、 技术方案和优点更加清楚, 以下结合附图对本发明 作进一步地详细说明。 线路终端 OLT1通过分光器到达 ONU的通路为主用通路,第二个光线路终端 OLT2 通过分光器到达 ONU 的通路为备用通路。 主用通路作为光线路终端 OLT1和光网络单元 ONU的服务通路, 为实现上行传输同步, 各个 ONU都 保存有均衡时延 EqD, 将某一个 ONU与 OLT1对应的均衡时延称为 EqDl , 该 ONU根据 OLT1发送的均衡时延 EqDl调节发送数据的时钟以实现上行传 输同步。
但在主用通路发生中断, 进行主备倒换切换为备用通路后, 由于 OLT1 和 OLT2的部署位置不同 (可能很近, 也可能很远) , 倒换后 OLT2与各个 ONU之间的距离可能发生改变, 导致各 ONU保存的均衡时延 EqDl不能直 接用于实现上行传输同步。 现有技术中, 要么需要重新执行测量步骤, 或者 利用管理控制接口通道读取均衡时延计算主备的差值, 来调整均衡延迟, 但 都存在过程复杂, 效率低及适用性差的缺陷。
本发明的主备倒换的方案中, 在主用通路发生中断后, 若光网络单元 ONU检测到信号丟失或者帧丟失(LOS或者 LOF ) , 或者立即启用了备用通 路保持光网络单元和光线路终端间的通信, 则在检测到 OLT2的下行光信号 后, 主动调整各自的均衡时延, 每个 ONU将自身保存的均衡时延 EqDl增加 一个时延常数 D( D >0,优选 D > 250us ) ,得到中间均衡时延 EqD3= EqDl+D。
ONU与 OLT2建立连接后, 以中间均衡时延 EqD3向 OLT2发送上行数据。
OLT2收到 ONU发送的上行帧后, 计算 ONU需要调整的均衡时延调整 值 AEqD: AEqD=ONU上行帧的实际到达时间 - ONU上行帧的期望到达时 间。其中,所述 ONU上行帧的实际到达时间,是 ONU按照中间均衡时延 EqD3 向 OLT2发送的上行帧到达 OLT2实际所需的时间。所述 ONU上行帧的期望 到达时间, 是 OLT2期望 ONU发送的上行帧到达 OLT2的时间。 即该期望的 上行帧到达时间是 OLT2中已配置的参数。
OLT2将所述均衡时延调整值 AEqD发送给所有的 ONU; 每个 ONU收 到 OLT2发送的 AEqD值后, 更新自己的 EqD的值, 即获得与 OLT2对应的 均衡时延值 EqD2: EqD2=中间均衡时延 EqD3 - AEqD 。 ONU再次收到 OLT2分配的上行带宽后,按照更新后的均衡时延 EqD2发送上行数据以实现 上行数据同步。
实施例一 光线路终端 OLT1通过分光器到达 ONU的通路为主用通路,第二个光线路终 端 OLT2通过分光器到达 ONU的通路为备用通路。主用通路作为光网络单元 和光线路终端的服务通路,在主用通路发生中断后,若光网络单元 ONU检测 到信号丟失或者帧丟失(LOS或者 LOF ) , 或者此时立即启用了备用通路保 持光网络单元和光线路终端间的通信,则 ONU在检测到 OLT2的下行光信号 后, ONU和 OLT釆用通过信令交互完成 ONU的均衡时延 ( EqD )值的更 新, 如图 3所示。
所述 ONU若检测到信号丟失或者帧丟失( LOS或者 LOF ) , 或者在启 用了备用通路后检测到 OLT2的下行光信号, 自动调整各自的 EqD 的值, 每 个 ONU将自己保存的均衡时延 EqDl增加一个时延常数 D ( D >0, 优选 D > 250us ) , 得到中间均衡时延 EqD3= EqDl+D;
OLT2给各个 ONU分配上行带宽;
各个 ONU在 OLT2给自己分配的上行带宽内, 以中间均衡时延 EqD3向
OLT2发送上行数据。
OLT2收到各 ONU发送的上行帧后, 计算 ONU需要调整的均衡时延调 整值△ EqD:
△ EqD=ONU上行帧的实际到达时间 - ONU上行帧的期望到达时间。
OLT2将所述均衡时延调整值△ EqD发送给所有的 ONU;
各个 ONU收到 OLT2发送的 AEqD值后, 再次更新自己的 EqD的值, 即更新为与 OLT2对应的均衡时延值 EqD2:
EqD2=中间均衡时延 EqD3 - AEqD 。
后续, 若 ONU再次收到 OLT2分配的上行带宽,按照更新后的均衡时延 EqD2发送上行数据以实现上行数据同步。
实施例二
如图 4所示, 本发明的无源光网络中的保护倒换方法, 包括如下步骤: 步骤 401 : 所有 ONU 自动调整各自的 EqD 的值, 每个 ONU更新后的 EqD 的值等于该 ONU更新前的值 EqDl加上时延常数 D ( D>0, 优选 D > 250us ) ;
步骤 403: 各 ONU在 OLT2给自己分配的上行带宽内按照更新后的均衡 时延 EqDl+D发送上行数据, 以实现上行数据同步;
步骤 404: OLT2收到各个 ONU发送的上行帧后,按照下述方法计算 ONU 需要调整的均衡时延调整值 AEqD, 并将所述 AEqD发送给所有的 ONU;
其中: AEqD=ONU上行帧的实际到达时间 _ ONU上行帧的期望到达时 间。 所述 ONU上行帧的实际到达时间 , 是 ONU按照中间均衡时延 EqD3向 OLT2发送的上行帧到达 OLT2实际所需的时间。 所述 ONU上行帧的期望到 达时间, 是 OLT2希望 ONU发送的上行帧到达 OLT2的时间。
步骤 405: 每个 ONU收到 OLT发送的 AEqD值后, 更新自己的均衡时 延值 , 即与 OLT2对应的均衡时延值 EqD2:
EqD2=EqDl+D - AEqD 。
后续, 若 ONU再收到 OLT分配的上行带宽后, 按照更新后的均衡时延 EqD2发送上行数据以实现上行数据同步。
本发明的技术方案,由于可由 ONU主动调整均衡时延,在与备用的 OLT2 交互过程中再次修正均衡时延值, 具有实现简单快速的特点, 可以快速实现 主备切换后的同步传输。 主动调整时增加的时延常数 D可保证各个 ONU到 达 OLT2不会冲突。 本发明可适用于 GPON系统和基于 GPON技术的下一代 PON系统, 如 XG PON系统。
以上所述仅为本发明的实施例而已, 并不用于限制本发明, 对于本领域 的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的权利要求 范围之内。
工业实用性
与现有技术相比, 本发明可实现保护通路切换后 OLT和 ONU之间快速 建立通信的目标, ONU和 OLT可以快速恢复通信, 简化了保护模式下光网 络单元的切换流程, 减少了切换时间。

Claims

权 利 要 求 书
1、 一种无源光网络中的保护倒换方法, 包括:
光网络单元在检测到下行信号丟失、 或者下行帧丟失、 或者主备保护倒 换发生时, 增大各自保存的均衡时延值。
2、 如权利要求 1所述的方法, 还包括:
所述光网络单元在增大各自的均衡时延值后, 在光线路终端分配的上行 带宽内发送上行数据;
光线路终端接收到所述光网络单元发送的上行数据后, 通过计算获得均 衡时延调整值, 并将所述均衡时延调整值发送给所有的光网络单元; 以及 每个光网络单元根据所述均衡时延调整值修正自己当前的均衡时延值。
3、 如权利要求 2所述的方法, 其中, 通过计算获得均衡时延调整值的步 骤包括:
将光网络单元上行帧的实际到达时间与光线路终端期望的所述光网络单 元上行帧的到达时间之差, 作为所述均衡时延调整值。
4、 如权利要求 2所述的方法, 其中, 每个光网络单元根据均衡时延调整 值修正自己当前的均衡时延值的步骤包括:
每个光网络单元利用自己当前的均衡时延值减去所述均衡时延调整值, 并将所得差值作为与备用通路对应的均衡时延值。
5、 如权利要求 1所述的方法, 其中,
增大各自保存的均衡时延值的步骤包括: 每个光网络单元将自己对应于 主用通路的均衡时延值增加时延常数 D, D为大于零的常数。
6、 如权利要求 5所述的方法, 其中,
所述时延常数 D是每个光网络单元自身携带的值, 或者是每个光网络单 元在注册激活过程或者在工作过程中由光线路终端发送给该光网络单元的 值。
7、 如权利要求 5所述的方法, 其中, 值。
8、 一种无源光网络, 包括按主备保护方式配置的主用光线路终端, 备用 光线路终端, 分光器及一个或多个光网络单元, 其中,
所述光网络单元设置成: 在检测到下行信号丟失、 或者下行帧丟失、 或 者主备保护倒换发生时, 增大各自保存的均衡时延值, 并在备用光线路终端 分配的上行带宽内发送上行数据;
所述备用光线路终端设置成: 为所述光网络单元分配上行带宽, 以及, 在接收到所述光网络单元发送的上行数据后,通过计算获得均衡时延调整值, 并将所获得的均衡时延调整值发送给所有的光网络单元;
所述光网络单元还设置成根据所述均衡时延调整值修正各自当前的均衡 时延值。
9、 如权利要求 8所述的无源光网络, 其中,
所述备用光线路终端是设置成通过如下方式获得均衡时延调整值: 将光 网络单元上行帧的实际到达时间与所期望的所述光网络单元上行帧的到达时 间之差作为所述均衡时延调整值;
所述光网络单元是设置成通过如下方式修正各自当前的均衡时延值: 每 个光网络单元利用自己当前的均衡时延值减去所述均衡时延调整值, 并将所 得差值作为与备用通路对应的均衡时延值。
10、 如权利要求 8所述的无源光网络, 其中,
所述光网络单元是设置成通过如下方式增大各自保存的均衡时延值: 每 个光网络单元将自己对应于主用通路的均衡时延值增加时延常数 D, D为大 于零的常数。
PCT/CN2011/076772 2010-12-02 2011-07-01 一种无源光网络及其保护倒换方法 WO2012071894A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010571023.XA CN102075238B (zh) 2010-12-02 2010-12-02 一种无源光网络及其保护倒换方法
CN201010571023.X 2010-12-02

Publications (1)

Publication Number Publication Date
WO2012071894A1 true WO2012071894A1 (zh) 2012-06-07

Family

ID=44033600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076772 WO2012071894A1 (zh) 2010-12-02 2011-07-01 一种无源光网络及其保护倒换方法

Country Status (2)

Country Link
CN (1) CN102075238B (zh)
WO (1) WO2012071894A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102075238B (zh) * 2010-12-02 2015-04-01 中兴通讯股份有限公司 一种无源光网络及其保护倒换方法
CN104125008A (zh) * 2014-07-30 2014-10-29 中国联合网络通信集团有限公司 保护支线的方法及装置
CN105338431A (zh) * 2014-08-08 2016-02-17 中兴通讯股份有限公司 硬件随机时延补偿实现方法及其装置
CN107241138B (zh) * 2016-03-28 2021-06-08 中兴通讯股份有限公司 Xg-pon系统及其通道倒换的重测距控制方法
CN108092709B (zh) * 2016-11-23 2022-07-12 中兴通讯股份有限公司 无源光网络中的保护倒换方法及光线路终端、光网络装置
CN106921430A (zh) * 2017-02-24 2017-07-04 烽火通信科技股份有限公司 无源光网络中type c光链路保护系统的实现方法及系统
WO2018184340A1 (zh) * 2017-04-05 2018-10-11 中兴通讯股份有限公司 一种无源光网络中拓扑确定、构建的方法及装置
CN109104646A (zh) * 2017-06-21 2018-12-28 中兴通讯股份有限公司 一种光网络单元注册方法及装置
CN109120365B (zh) * 2017-06-26 2021-05-28 中兴通讯股份有限公司 窗口漂移的处理方法及装置
CN107835047A (zh) * 2017-11-27 2018-03-23 上海市共进通信技术有限公司 基于LOS侦测实现ONU侧Type‑C光链路倒换保护的系统
CN109962733B (zh) * 2019-03-28 2020-10-16 烽火通信科技股份有限公司 一种发生告警后恢复网络同步信号的方法及系统
CN112584260B (zh) * 2019-09-30 2023-06-13 上海诺基亚贝尔股份有限公司 传输时间同步消息的方法、设备、装置和介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090154488A1 (en) * 2007-12-18 2009-06-18 Moshe Oron Methods and apparatus for service protected ranging in a pon
CN101547044A (zh) * 2008-03-27 2009-09-30 华为技术有限公司 降低主备光线路终端切换时延的方法、系统和中继器
CN101873166A (zh) * 2009-04-21 2010-10-27 中兴通讯股份有限公司 一种吉比特无源光网络系统的测距方法
CN102075238A (zh) * 2010-12-02 2011-05-25 中兴通讯股份有限公司 一种无源光网络及其保护倒换方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100630377B1 (ko) * 1999-12-20 2006-09-29 주식회사 케이티 수동광 분기망의 레인징 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090154488A1 (en) * 2007-12-18 2009-06-18 Moshe Oron Methods and apparatus for service protected ranging in a pon
CN101547044A (zh) * 2008-03-27 2009-09-30 华为技术有限公司 降低主备光线路终端切换时延的方法、系统和中继器
CN101873166A (zh) * 2009-04-21 2010-10-27 中兴通讯股份有限公司 一种吉比特无源光网络系统的测距方法
CN102075238A (zh) * 2010-12-02 2011-05-25 中兴通讯股份有限公司 一种无源光网络及其保护倒换方法

Also Published As

Publication number Publication date
CN102075238A (zh) 2011-05-25
CN102075238B (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
WO2012071894A1 (zh) 一种无源光网络及其保护倒换方法
US8095004B2 (en) Passive optical network system and operation method of the same
EP2728808B1 (en) Subscriber-side optical communication device, communication system, control device and power-saving control method
US9025949B2 (en) Equalization delay agnostic protection switching in protected passive optical networks
US8818201B2 (en) Optical communication
JP5705097B2 (ja) 受動光網システム、局側光伝送路終端装置
US8515276B2 (en) Method, device and system for optical network switching protection
US20110262133A1 (en) Time synchronization method and system for a passive optical network system
WO2010031326A1 (zh) 光网络系统数据链路切换方法、光线路终端及系统
EP2389738B1 (en) Methods and systems for dynamic equalization delay passive optical networks
EP2731287A1 (en) Method, system and device for switching wavelength of multi-wavelength passive optical network (pon)
WO2009124484A1 (zh) 一种光网络发送数据的方法、系统和设备
US20220264203A1 (en) Method for reducing uplink delay of passive optical network, and related device
JP2013229743A (ja) 光通信システム
JP2002271271A (ja) 再生中継方法及び再生中継装置
WO2011094990A1 (zh) 通路切换方法、系统及下行数据发送方法
WO2012097538A1 (zh) 一种实现全保护方式的方法及系统
JP2011217298A (ja) Ponシステムとその局側装置及び宅側装置、rttの補正方法
WO2013075507A1 (zh) 数据发送方法及系统
WO2011144110A2 (zh) 光网络系统的通信方法、系统及装置
WO2012136089A1 (zh) 一种无源光网络环路检测方法及系统
JP5640877B2 (ja) 通信システム、親局装置および通信回線切替方法
CN103248418A (zh) 一种基于无源光网络的主备通道切换方法及系统
WO2012071828A1 (zh) 一种全保护模式下无源光网络中的传输数据的方法及系统
WO2013082804A1 (zh) 光网络系统的数据通信方法、光线路终端以及光网络系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11844059

Country of ref document: EP

Kind code of ref document: A1