WO2012070741A1 - 로보트형 태양광 추적장치 - Google Patents

로보트형 태양광 추적장치 Download PDF

Info

Publication number
WO2012070741A1
WO2012070741A1 PCT/KR2011/005368 KR2011005368W WO2012070741A1 WO 2012070741 A1 WO2012070741 A1 WO 2012070741A1 KR 2011005368 W KR2011005368 W KR 2011005368W WO 2012070741 A1 WO2012070741 A1 WO 2012070741A1
Authority
WO
WIPO (PCT)
Prior art keywords
cam
cell module
solar cell
lift arm
cylindrical body
Prior art date
Application number
PCT/KR2011/005368
Other languages
English (en)
French (fr)
Inventor
박기주
장철수
남형도
서완용
Original Assignee
부시파워
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100118562A external-priority patent/KR101017083B1/ko
Priority claimed from KR1020110019783A external-priority patent/KR101031286B1/ko
Application filed by 부시파워 filed Critical 부시파워
Priority to CN201180056963.8A priority Critical patent/CN103380332B/zh
Priority to US13/989,395 priority patent/US20130240018A1/en
Priority to JP2013540879A priority patent/JP5771698B2/ja
Priority to EP11843323.4A priority patent/EP2645012A4/en
Publication of WO2012070741A1 publication Critical patent/WO2012070741A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/452Vertical primary axis
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/10Supporting structures directly fixed to the ground
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/13Transmissions
    • F24S2030/137Transmissions for deriving one movement from another one, e.g. for deriving elevation movement from azimuth movement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar tracking device, and more particularly, to a robot-type solar tracking device to reduce power consumption and improve the power generation efficiency of solar light.
  • Power generation technology that generates electricity using solar energy includes solar power generation that generates electricity by driving heat engines using solar heat, and photovoltaic power generation that generates electricity from solar cells using solar light.
  • the solar cell used for photovoltaic power generation includes a semiconductor compound device that converts sunlight directly into electricity.
  • These semiconductor compounds mainly include silicon (Si) and gallium arsenide (GaAs), and silicon is most used.
  • Dye-sensitized solar cells, CIGS solar cells, CdTe according to the type of semiconductor compound used in solar cells Various solar cells such as solar cells are currently being developed and used.
  • one group of such cells in series and parallel is referred to as a module, and fixing such modules to generate solar power is called a structure.
  • a structure There are fixed type, single axis type, double axis type, etc., and the generation efficiency is the highest for the double axis type that develops while tracking the sun.
  • it is necessary to drive a motor required for solar tracking it is not used much because of the need for a separate power source.
  • a tracked photovoltaic power generation system such as a biaxial type uses a sensor that can detect light, which is limited in the range of sensors that sense the position of the sun. It is impossible to track when the sun is out of range, expensive equipment, and rely heavily on the sensitivity of the sensor.
  • the present invention is to solve the problems as described above by adopting a cam (cam) type structure by rotating the solar cell module through a single motor rotation to enable the azimuth and altitude of the tracker to move simultaneously with low power consumption It is an object of the present invention to provide a robotic solar tracking device to improve the efficiency.
  • cam cam
  • the present invention is to provide a robot-type solar tracking device to improve the power generation efficiency by simultaneously tracking the azimuth and altitude of the solar light by adopting a cylindrical cam structure capable of controlling both axes with a single motor. There is this.
  • Robot type solar tracking device for achieving the above object is connected to the solar cell module and the rear surface of the solar cell module for generating solar light incident from the outside with electricity to the solar cell module
  • a cylindrical body having a rotating shaft rotating while supporting and a motor having a predetermined curvature cam formed on the lower side of the rotating shaft and having a cam having a predetermined curvature, and having a motor rotating therein by a timer operation in one direction therein;
  • a fixing means for supporting the cylindrical body and fixing it to the ground, wherein the rotating shaft is configured on one side of the cylindrical body and inserted into the cam to move along the curve of the cam according to the rotation of the motor.
  • a follower which is connected to the cam follower and moves up and down as the cam follower moves along the cam. Characterized in that it comprises a lift arm for adjusting the angle of the solar cell module.
  • the robot-type solar tracking device is a solar cell module for generating solar light incident from the outside, and the solar cell module is connected to the back of the solar cell
  • a cylindrical shaft having a rotating shaft that rotates while supporting the battery module, and a lower side of the rotating shaft and is formed in a groove shape having a predetermined depth on the surface, and has a main cam having a predetermined curvature, and which rotates by a timer operation in one direction therein.
  • Body and the auxiliary cam is made in the form of a groove of a predetermined depth on the surface of the cylindrical body has a certain curvature and the main cam and one side and the other side is connected to the main cam while having a certain distance
  • the cylindrical body It comprises a holding means for fixing to the ground with the support, wherein the rotating shaft is one side of the cylindrical body
  • a cam follower configured to be inserted into the main cam or auxiliary cam and moving along the curve of the cam according to the rotation of the motor, and connected with the cam follower and moved up and down when the cam follower moves along the main cam or auxiliary cam. It characterized in that it comprises a lift arm for adjusting the angle of the solar cell module while moving to.
  • Robot type solar tracking device has the following effects.
  • the solar cell module rotates at a constant speed as the lift arm moves up and down along the cam curve, and receives sunlight while maintaining an angle of 60 degrees in the morning and evening and 30 degrees during the day. This can improve the power generation efficiency.
  • control and driving unit for tracking the sun can be minimized to facilitate installation and troubleshooting compared to other products.
  • sunlight can be tracked according to the altitude and azimuth of the sun according to the season or region.
  • sunlight can be tracked according to the current altitude and azimuth through the solar synchronous tracking method in case of power failure and weather deterioration.
  • FIG. 1 is a front view showing a robot solar tracking device according to a first embodiment of the present invention
  • Figure 2 is a rear view showing a robot solar tracking device according to a first embodiment of the present invention
  • Figure 3 is a perspective view of the rotating shaft of Figure 1
  • FIG. 4 is a perspective view showing in detail the first pivot shaft and the first hinge coupling of FIG.
  • FIG. 5 is a perspective view showing in detail the second pivot shaft and the second hinge coupling of FIG.
  • Figure 6 is a graph measuring the change in the altitude and azimuth angle of the sun in the robot solar tracking device according to the present invention
  • 7 to 9 are diagrams showing angles of rotation of the rotating shaft according to the graph of FIG.
  • FIG. 10 is a front view showing a robot solar tracking device according to a second embodiment of the present invention.
  • FIG. 11 is a rear view showing a robot solar tracking device according to a second embodiment of the present invention.
  • FIG. 12 is a perspective view showing the rotation axis of FIG.
  • FIG. 13 is a perspective view illustrating in detail the first pivot shaft and the first hinge coupler of FIG. 12; FIG.
  • FIG. 14 is a perspective view illustrating in detail a second pivot shaft and a second hinge coupling part of FIG. 12;
  • FIG. 1 is a front view showing a robot solar tracking device according to a first embodiment of the present invention
  • Figure 2 is a rear view showing a robot solar tracking device according to a first embodiment of the present invention
  • Figure 3 It is a perspective view which shows the rotating shaft of FIG.
  • Robot type solar tracking device according to a first embodiment of the present invention, as shown in Figures 1 to 3, the solar cell module 110 for generating the solar light incident from the outside, and the solar cell
  • the rotating shaft 120 is connected to the rear surface of the module 110 and rotates while supporting the solar cell module 110, and the lower side of the rotating shaft 120 is made in the form of a groove of a predetermined depth on the surface of a constant curvature
  • the rotary shaft 120 is configured on one side of the cylindrical body 130 and inserted into the cam 131 of the cylindrical body 130 is the Cam follower 15 moving along cam 131 0) and the lift arm 160 connected to the cam follower 150 and adjusting the angle of the solar cell module 110 while moving up and down when the cam follower 150 moves along the cam 131. It is configured to include.
  • the rotation shaft 120 has the first rotation shaft 121 to support the solar cell module 110 so that the angle of the solar cell module 110 is changed in accordance with the vertical movement of the lift arm (160). .
  • a heat sink (not shown) is installed on the rear surface of the solar cell module 110 to release heat generated in the cell to release heat to the outside.
  • the solar cell module 110 is an array of four, the rotating shaft 120 is attached to the back of the four solar cell module 110 "H" for supporting each solar cell module 110
  • a fixing plate 122 having a shape, a reinforcing plate 123 attached to the rear surface of the fixing plate 122 to reinforce the fixing plate 122, the reinforcing plate 123 and the first rotating shaft 121.
  • One side of the lift arm 160 is connected to the cam follower 150 and the other side is connected to the reinforcing plate 123 configured on the rear surface of the solar cell module 110.
  • An end of the cam follower 150 is provided with a roller 151 inserted into the cam 131 of the cylindrical body 130 and moved along the cam 131.
  • the movable rail 164 configured at one side of the lift arm 160 has the fixed end 162 by the circular motion of the roller 151 when the roller 151 moves along the curve of the cam 131. Will move up and down along.
  • the motor configured in the cylindrical body 130 is composed of one, the motor is rotated by one rotation of the cam 131 curve formed according to the altitude and azimuth angle of the sun measured for 24 hours from sunrise to sunset It is programmed by a timer.
  • FIG. 4 is a perspective view illustrating in detail the first pivot shaft and the first hinge coupler of FIG. 3.
  • the first rotating shaft 121 is fixed to the reinforcing plate 163 through the first hinge coupling part 124 through the rotation shaft 120 on the upper portion of the cylindrical body 130.
  • the first pivot shaft 121 is inserted into the fixing part 133 coupled to the upper part of the rotation shaft 120 so that the fixing plate 122 can smoothly rotate in one direction when the lift arm 160 moves up and down. do.
  • the hollow shaft 134 is the cylindrical body 130 and the fixing part 133 so that the wire for transmitting electricity generated from the solar cell module 110 passes through the rotating shaft 120. Extends to.
  • FIG. 5 is a perspective view illustrating in detail the second pivot shaft and the second hinge coupling unit of FIG. 3.
  • the second pivot shaft 165 is configured on the other side of the lift arm 160 to form a second hinge coupler 166 according to the vertical movement of the lift arm 160.
  • the slide bar 167 is inserted to allow 167 to rotate left and right.
  • the slide bar 167 is inserted between the second pivotal shaft 165 to allow the lift arm 160 to move in the opposite direction, and both ends of the slide bar 167 are connected to the reinforcing plate 123.
  • Support means 168 is provided to be supported.
  • the second pivot shaft 165 and the second hinge coupler 166 are configured, but the present invention is not limited thereto, and the lift arm 160 directly contacts the rear surface of the solar cell module 110.
  • the solar cell module 110 may be appropriately rotated according to the altitude and azimuth angle of the sun.
  • Figure 6 is a graph measuring the change in the altitude and azimuth of the sun in the robot solar tracking device according to the present invention.
  • the solar tracking device configured as described above tracks the movement of the sun from sunrise to sunset and displays a change in azimuth and elevation angles, and then calculates an average value to calculate the cam 131 curve of the cylindrical body 130.
  • the solar cell module 110 tracks the sun by mechanically programming the altitude and azimuth angles so that the solar cell module 110 rotates along the cam 131 curve representing the change in the position of the sun.
  • the roller 151 of the cam follower 150 is moved along the cam 131 curve formed by the sun's azimuth and elevation angle changes on the surface of the cylindrical body 130 to track the sun's azimuth and lift arm 160. By tracking the altitude angle of the sun through it can maximize the power output produced through the solar cell module (110).
  • FIG. 7 to 9 are diagrams showing angles of rotation of the rotating shaft according to the graph of FIG. 6.
  • the rotation shaft 120 receives sunlight while maintaining an angle of about 60 degrees at 8 to 10 am and 3 to 5 pm, and in FIG. 8, the rotation shaft 120 is 10 to 11 am and 2 to 2 pm. At 3 o'clock, the solar light is incident while maintaining the angle between 30 and 60 degrees. In FIG. 9, the rotating shaft 120 receives the solar light while maintaining the angle of 30 degrees between 11 am and 2 pm.
  • roller 151 of the cam follower 150 rotates for 24 hours along the cam 131 curve, it can receive as much sunlight as possible from the sun while maintaining an angle of 30 degrees in the morning and evening and 60 degrees during the day. To make it work.
  • the rotation axis 120 moves up and down by the lift arm 160 connected to the cam follower 150 in accordance with the rotational movement of the cam follower 150 moving along the cam 131 curve. While keeping the solar light incident, the light collecting efficiency of the solar cell module 110 can be further improved.
  • FIG. 10 is a front view showing a robot solar tracking device according to a second embodiment of the present invention
  • FIG. 11 is a rear view showing a robot solar tracking device according to a second embodiment of the present invention. It is a perspective view which shows the rotating shaft of FIG.
  • Robot type solar tracking device according to a second embodiment of the present invention, as shown in Figure 10 to 12, the solar cell module 110 for generating the solar light incident from the outside, and the solar cell
  • the rotating shaft 120 is connected to the rear surface of the module 110 and rotates while supporting the solar cell module 110, and the lower side of the rotating shaft 120 is made in the form of a groove of a predetermined depth on the surface of a constant curvature
  • a cylindrical body 130 having a main cam 131 and including a motor (not shown) that rotates by a timer operation in one direction therein, and a groove having a predetermined depth on the surface of the cylindrical body 130.
  • the rotation shaft 120 is configured on one side of the cylindrical body 130 and inserted into the main cam 131 or the auxiliary cam 132 is the main cam (according to the rotation of the motor ( 131 or the cam follower 150 moving along the auxiliary cam 132 and the cam follower 150 are connected and the cam follower 150 moves along the main cam 131 or the auxiliary cam 132.
  • It is configured to include a lift arm 160 to adjust the angle of the solar cell module 110 while moving up and down.
  • the rotation shaft 120 has the first rotation shaft 121 to support the solar cell module 110 so that the angle of the solar cell module 110 is changed in accordance with the vertical movement of the lift arm (160). .
  • the main cam 131 and the auxiliary cam 132 is composed of two cams of the cylindrical body 130 in order to respond appropriately to the difference between the altitude and azimuth angle of the season or region, wherein the two cams Many more cams can also be configured.
  • the solar cell module 110 is a four in one array, the rotating shaft 120 is attached to the back of the four solar cell module 110 is fixed plate for supporting each solar cell module (110) ( 122, a reinforcing plate 123 attached to the rear surface of the fixing plate 122 to reinforce the fixing plate 122, and a first connecting the reinforcing plate 123 and the first rotating shaft 121 to each other. It is configured to include a hinge coupling portion 124.
  • One side of the lift arm 160 is connected to the cam follower 150 and the other side is connected to the reinforcing plate 123 configured on the rear surface of the solar cell module 110.
  • the roller 151 is inserted into the main cam 131 or the auxiliary cam 132 of the cylindrical body 130 and moves along the main cam 131 or the auxiliary cam 132 at the end of the cam follower 150. Is provided.
  • the moving rail 164 configured at one side of the lift arm 160 may be used for the circular motion of the roller 151 when the roller 151 moves along the curve of the main cam 131 or the auxiliary cam 132. By moving up and down along the fixed end 162.
  • the motor configured inside the cylindrical body 130 is composed of one, the motor curves the main cam 131 or the auxiliary cam 132 formed according to the altitude and azimuth of the sun measured for 24 hours from sunrise to sunset It is programmed by a timer to rotate one revolution for 24 hours.
  • the main cam 131 and the auxiliary cam 132 is formed through mechanical programming utilizing the cumulative average azimuth and elevation angle of the sun for 30 years provided by the Meteorological Administration. Therefore, a fixed program can minimize the malfunction by tracking sunlight according to the sun's altitude and azimuth.
  • an additional sensor such as an insolation sensor is installed to track sunlight.
  • accurate measurement is difficult due to shading, which causes malfunction.
  • the altitude of the sunlight is repeatedly repeated through mechanical programming as in the present invention. By tracking angles and azimuths, malfunctions can be minimized.
  • the spare battery is a rechargeable battery to supply power to the motor in an emergency such as a power failure.
  • the robot-type solar tracking device is programmed to automatically track the position according to the azimuth and altitude angle of the current sun when the robot restarts after a power failure.
  • the solar tracking device is configured to automatically track the position according to the current altitude and azimuth angle of the sun because the solar tracking device is interlocked with the GPS when the power is restarted after an emergency due to an accident during operation.
  • FIG. 13 is a perspective view illustrating in detail the first pivot shaft and the first hinge coupler of FIG. 12.
  • the first pivot shaft 121 is fixed to the reinforcing plate 163 through the first hinge coupling part 124 through the rotation shaft 120 on the upper portion of the cylindrical body 130.
  • the first pivot shaft 121 is inserted into the fixing part 133 coupled to the upper part of the rotation shaft 120 so that the fixing plate 122 can smoothly rotate in one direction when the lift arm 160 moves up and down. do.
  • the hollow shaft 134 is the cylindrical body 130 and the fixing part 133 so that the wire for transmitting electricity generated from the solar cell module 110 passes through the rotating shaft 120. Extends to.
  • the support member 138 is configured to be adjustable in length.
  • the support member 138 is configured to vary in length when the cam follower 150 moves along the main cam 131 or the auxiliary cam 132 of the cylindrical body 130.
  • FIG. 14 is a perspective view illustrating in detail a second pivot shaft and a second hinge coupling part of FIG. 12.
  • the second pivot shaft 165 is configured on the other side of the lift arm 160 to form a second hinge coupler 166 according to the vertical movement of the lift arm 160.
  • the slide bar 167 is inserted to allow 167 to rotate left and right.
  • the slide bar 167 is inserted between the second pivotal shaft 165 to allow the lift arm 160 to move in the opposite direction, and both ends of the slide bar 167 are connected to the reinforcing plate 123.
  • Support means 168 is provided to be supported.
  • the second pivot shaft 165 and the second hinge coupler 166 are configured, but the present invention is not limited thereto, and the lift arm 160 directly contacts the rear surface of the solar cell module 110.
  • the solar cell module 110 may be appropriately rotated according to the altitude and azimuth angle of the sun.
  • the solar tracking device configured as described above tracks the movement of the sun from sunrise to sunset, displays a graph of changes in azimuth and altitude, and then obtains an average value to obtain the average value.
  • the cam 132 curve is formed in the surface of the cylindrical body 130, and the solar cell module 110 rotates along the curve of the main cam 131 or the auxiliary cam 132 representing the change in the position of the sun.
  • the azimuth is mechanically programmed to track the sun.
  • the roller 151 of the cam follower 150 is moved along the curve of the main cam 131 or the auxiliary cam 132 formed by the change of the azimuth and elevation angles of the sun on the surface of the cylindrical body 130 to adjust the azimuth of the sun. Tracking and tracking the altitude angle of the sun through the lift arm 160 can maximize the amount of power produced through the solar cell module (110).
  • the present invention adopts a cam type structure to rotate the solar cell module through a single motor rotation to simultaneously move the azimuth and altitude of the tracker with low power consumption, thereby improving power generation efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 소비 전력을 줄임과 동시에 태양광의 발전 효율을 향상시키도록 로보트형 태양광 추적장치에 관한 것으로서, 외부로부터 입사되는 태양광을 전기로 발생시키기 위한 태양전지모듈과, 상기 태양전지모듈의 배면에 연결되어 상기 태양전지모듈을 지지하면서 회전하는 회전축과, 상기 회전축의 하측에 구성되고 표면에 소정깊이의 홈 형태로 제작되어 일정한 곡률의 캠을 갖으며 내부에 일방향으로 타이머 동작에 의해 회전하는 모터를 내장하는 원통형 바디와, 상기 원통형 바디를 지지함과 함께 지면에 고정하는 고정수단을 포함하여 구성되고, 상기 회전축은 상기 원통형 바디의 일측에 구성되고 상기 캠에 삽입되어 상기 모터의 회전에 따라 상기 캠의 곡선을 따라 이동하는 캠팔로워와, 상기 캠팔로워와 연결되고 상기 캠팔로워가 상기 캠을 따라 이동할 때 상하로 이동하면서 상기 태양전지모듈의 각도를 조절하는 리프트암을 포함하여 구성되는 것을 특징으로 한다.

Description

로보트형 태양광 추적장치
본 발명은 태양광 추적장치에 관한 것으로, 특히 소비 전력을 줄임과 동시에 태양광의 발전 효율을 향상시키도록 로보트형 태양광 추적장치에 관한 것이다.
현재 석유, 석탄과 같은 화석연료가 고갈되어감에 따라 대체에너지의 개발이 진행되고 있는데, 특히 태양에너지를 활용하는 기술 개발이 활발하게 이루어지고 있는 실정이다.
태양에너지를 활용하여 전기를 생산하는 발전기술로는 태양열을 이용하여 열기관을 구동시켜 전기를 발생시키는 태양열 발전, 태양광을 이용하여 태양전지로부터 전기를 발생시키는 태양광발전 등이 있다.
여기서, 태양광발전에 사용되는 태양전지는 태양광을 직접 전기로 변환시키는 반도체화합물 소자를 포함한다.
이러한 반도체 화합물들은 주로 실리콘(Si)과 갈륨아세나이드(GaAs)을 포함하며, 실리콘이 가장 많이 활용되고 있는데, 태양전지에 사용되는 반도체 화합물의 종류에 따라 염료감응형 태양전지, CIGS 태양전지, CdTe 태양전지 등의 다양한 태양전지가 현재 개발되어 사용되고 있다.
일반적으로 상기와 같은 셀들을 직병렬로 모아놓은 하나의 군을 모듈이라 하며, 태양광 발번을 위해 상기와 같은 모듈들을 고정하는 것을 구조물이라고 한다. 구조물에는 고정형, 단축형, 양축형 등이 있으며 발전효율은 태양을 추적하며 발전하는 양축형이 가장 높다. 하지만, 태양추적에 필요한 모터를 구동해야 하므로 별도의 전원이 필요하다는 단점으로 많이 사용되고 있지 않다.
또한, 양축형과 같은 추적식 태양광 발전 시스템에는 빛을 감지할 수 있는 센서를 사용하는 방식을 사용하고 있는데, 이는 태양의 위치를 센싱하는 센서의 범위가 한정되어 있어 장시간 구름에 가릴 경우 센서의 범위 밖에 태양이 위치할 때 추적이 불가능하며 설비비용이 고가이고 센서의 감도에 크게 의지한다는 단점이 있다.
본 발명은 상기와 같은 문제를 해결하기 위한 것으로 캠(cam) 타입 구조를 채택하여 하나의 모터 회전을 통해 태양전지모듈을 회전시킴으로써 낮은 소비전력으로 트래커의 방위각과 고도각을 동시에 움직일 수 있도록 하여 발전 효율을 향상시키도록 한 로보트형 태양광 추적장치를 제공하는데 그 목적이 있다.
또한, 본 발명은 단일 모터로 양축 제어가 가능한 원통형 캠(cam) 구조를 채택하여 태양광의 방위각과 고도각을 동시에 추적하여 발전 효율을 향상시키도록 한 로보트형 태양광 추적장치를 제공하는데 또 다른 목적이 있다.
상기와 같은 목적을 달성하기 위한 본 발명에 의한 로보트형 태양광 추적장치는 외부로부터 입사되는 태양광을 전기로 발생시키기 위한 태양전지모듈과, 상기 태양전지모듈의 배면에 연결되어 상기 태양전지모듈을 지지하면서 회전하는 회전축과, 상기 회전축의 하측에 구성되고 표면에 소정깊이의 홈 형태로 제작되어 일정한 곡률의 캠을 갖으며 내부에 일방향으로 타이머 동작에 의해 회전하는 모터를 내장하는 원통형 바디와, 상기 원통형 바디를 지지함과 함께 지면에 고정하는 고정수단을 포함하여 구성되고, 상기 회전축은 상기 원통형 바디의 일측에 구성되고 상기 캠에 삽입되어 상기 모터의 회전에 따라 상기 캠의 곡선을 따라 이동하는 캠팔로워와, 상기 캠팔로워와 연결되고 상기 캠팔로워가 상기 캠을 따라 이동할 때 상하로 이동하면서 상기 태양전지모듈의 각도를 조절하는 리프트암을 포함하여 구성되는 것을 특징으로 한다.
또한, 상기와 같은 목적을 달성하기 위한 다른 실시예에 의한 로보트형 태양광 추적장치는 외부로부터 입사되는 태양광을 전기로 발생시키기 위한 태양전지모듈과, 상기 태양전지모듈의 배면에 연결되어 상기 태양전지모듈을 지지하면서 회전하는 회전축과, 상기 회전축의 하측에 구성되고 표면에 소정깊이의 홈 형태로 제작되어 일정한 곡률의 메인 캠을 갖으며 내부에 일방향으로 타이머 동작에 의해 회전하는 모터를 내장하는 원통형 바디와, 상기 원통형 바디의 표면에 소정깊이의 홈 형태로 제작되어 일정한 곡률을 갖고 상기 메인 캠과 일부가 일정한 간격을 갖으면서 상기 메인 캠에 일측과 타측이 연결되는 보조 캠과, 상기 원통형 바디를 지지함과 함께 지면에 고정하는 고정수단을 포함하여 구성되고, 상기 회전축은 상기 원통형 바디의 일측에 구성되고 상기 메인 캠 또는 보조 캠에 삽입되어 상기 모터의 회전에 따라 상기 캠의 곡선을 따라 이동하는 캠팔로워와, 상기 캠팔로워와 연결되고 상기 캠팔로워가 상기 메인 캠 또는 보조 캠을 따라 이동할 때 상하로 이동하면서 상기 태양전지모듈의 각도를 조절하는 리프트암을 포함하여 구성되는 것을 특징으로 한다.
본 발명에 의한 로보트형 태양광 추적장치는 다음과 같은 효과가 있다.
첫째, 모터가 일정한 속도로 회전하면서 캠 곡선을 따라 리프트암의 상하 이동에 의해 태양전지모듈이 일정한 속도로 회전하면서 아침, 저녁에는 각도 60도, 낮에는 30도의 각도를 유지하면서 태양광을 입사받음으로써 발전효율을 향상시킬 수 있다.
둘째, 태양의 고도 및 방위각의 변화를 캠 곡선을 통해 기계적으로 프로그램화함으로써 다른 제어 기능 없이도 태양의 변화를 추적하여 최대의 발전효율을 얻을 수 있다.
셋째, 단일 모터만을 사용하여 양축 회전이 가능하게 함으로써 15W정도의 저전력으로 태양광을 추적할 수 있다.
넷째, 24시간 동안 캠 곡선을 따라 360도 회전함으로써 제어가 쉽고 모터의 방향성을 제어하지 않기 때문에 전력 소모를 줄일 수 있다.
다섯째, 태양을 추적하기 위한 제어 및 구동부를 최소화하여 다른 제품에 비해 설치 및 고장 수리를 용이하게 실시할 수 있다.
여섯째, 강풍 및 눈, 비, 흐린 날씨에는 태양추적을 하지 않는 모드를 구성함으로써, 모터로 인한 소비전력이 없다.
일곱째, 기상청의 30년 누적 평균 방위각, 고도각 데이터를 활용하여 원통형 캠에 기계적 프로그램을 입력함으로써 단일 모터로 양축 제어를 통해 태양광을 추적할 수 있다.
여덟째, 원통형 캠을 2단계 이상으로 구성함으로써 계절이나 지역에 따라 태양의 고도각과 방위각에 맞게 태양광을 추적할 수 있다.
아홉째, 정전 및 기상 악화시 태양광 동기 추적방식을 통해 현재 태양광의 고도각과 방위각에 맞게 태양광을 추적할 수 있다.
도 1은 본 발명의 제 1 실시예에 의한 로보트형 태양광 추적장치를 나타낸 정면도
도 2는 본 발명의 제 1 실시예에 의한 로보트형 태양광 추적장치를 나타낸 배면도
도 3은 도 1의 회전축을 나타낸 사시도
도 4는 도 3의 제 1 회동축과 제 1 힌지 결합부를 구체적으로 나타낸 사시도
도 5는 도 3의 제 2 회동축과 제 2 힌지 결합부를 구체적으로 나타낸 사시도
도 6은 본 발명에 의한 로보트형 태양광 추적장치에서 태양의 고도 및 방위각의 변화를 측정한 그래프
도 7 내지 도 9는 도 6의 그래프에 따라 회전축이 회전하는 각도를 나타낸 도면
도 10은 본 발명의 제 2 실시예에 의한 로보트형 태양광 추적장치를 나타낸 정면도
도 11은 본 발명의 제 2 실시예에 의한 로보트형 태양광 추적장치를 나타낸 배면도
도 12는 도 10의 회전축을 나타낸 사시도
도 13은 도 12의 제 1 회동축과 제 1 힌지 결합부를 구체적으로 나타낸 사시도
도 14는 도 12의 제 2 회동축과 제 2 힌지 결합부를 구체적으로 나타낸 사시도
이하, 첨부된 도면을 참고하여 본 발명에 의한 로보트형 태양광 추적장치를 보다 상세히 설명하면 다음과 같다.
도 1은 본 발명의 제 1 실시예에 의한 로보트형 태양광 추적장치를 나타낸 정면도이고, 도 2는 본 발명의 제 1 실시예에 의한 로보트형 태양광 추적장치를 나타낸 배면도이며, 도 3은 도 1의 회전축을 나타낸 사시도이다.
본 발명의 제 1 실시예에 의한 로보트형 태양광 추적장치는 도 1 내지 도 3에 도시한 바와 같이, 외부로부터 입사되는 태양광을 전기로 발생시키기 위한 태양전지모듈(110)과, 상기 태양전지모듈(110)의 배면에 연결되어 상기 태양전지모듈(110)을 지지하면서 회전하는 회전축(120)과, 상기 회전축(120)의 하측에 구성되고 표면에 소정깊이의 홈 형태로 제작되어 일정한 곡률의 캠(cam)(131)을 갖으며 내부에 일방향으로 타이머 동작에 의해 회전하는 모터(도시되지 않음)를 내장하는 원통형 바디(130)와, 상기 원통형 바디(130)를 지지함과 함께 지면에 고정하는 고정수단(140)을 포함하여 구성되고, 상기 회전축(120)은 상기 원통형 바디(130)의 일측에 구성되고 상기 원통형 바디(130)의 캠(131)에 삽입되어 상기 모터의 회전에 따라 상기 캠(131)을 따라 이동하는 캠팔로워(150)와, 상기 캠팔로워(150)와 연결되고 상기 캠팔로워(150)가 상기 캠(131)을 따라 이동할 때 상하로 이동하면서 상기 태양전지모듈(110)의 각도를 조절하는 리프트암(160)을 포함하여 구성되어 있다.
여기서, 상기 회전축(120)은 상기 리프트암(160)의 상하 이동에 따라 상기 태양전지모듈(110)의 각도가 바뀌도록 제 1 회동축(121)을 갖고 상기 태양전지모듈(110)을 지지한다.
상기 태양광을 집광하는 태양전지모듈(110)의 셀 부분에서 많은 열이 발생하게 되는데, 집광된 광으로 인해 열의 온도는 수백도에 달하게 되고, 이러한 열은 태양전지모듈(110)의 효율을 떨어뜨려 상기 셀에 발생된 열을 방출하기 위해 상기 태양전지모듈(110)의 배면에 방열판(도시되지 않음)을 설치하여 외부로 열을 방출하고 있다.
상기 태양전지모듈(110)은 4개를 하나의 어레이로 하고 있고, 상기 회전축(120)은 4개의 태양전지모듈(110)의 배면에 부착되어 각 태양전지모듈(110)을 지지하는 "H" 형상의 고정 플레이트(122)와, 상기 고정 플레이트(122)의 배면에 부착되어 상기 고정 플레이트(122)를 보강하는 보강 플레이트(123)와, 상기 보강 플레이트(123)와 상기 제 1 회전축(121)을 연결하는 제 1 힌지 결합부(124)를 포함하여 구성되어 있다.
상기 리프트암(160)을 지지하기 위해 상기 리프트암(160)의 일측에는 상기 제 1 회동축(121)을 감싸면서 상기 리프트암(160)이 상하 이동할 때 상기 리프트암(160)을 지지하는 리프트암 지지부(161)와, 상기 리프트암(160)의 일측에 구성되어 상기 리프트암(160)이 상하 이동할 때 슬라이딩되는 고정단(162)과, 상기 리프트암 지지부(161)에 상기 고정단(162)을 고정하기 위한 고정 브라켓(163)과, 상기 고정단(162)과 대응되게 구성되어 상기 고정단(162)을 따라 상기 리프트암(160)이 상하 이동하는 이동레일(164)을 포함하여 구성되어 있다.
상기 리프트암(160)의 일측은 상기 캠팔로워(150)와 연결되고 타측은 상기 태양전지모듈(110)의 배면에 구성된 상기 보강 플레이트(123)에 연결된다.
이때 상기 리프트암(160)의 타측이 상기 보강 플레이트(123)와 연결될 때 그 사이에는 상기 리프트암(160)의 상하 이동에 따라 회동되는 제 2 회동축(165)이 구성되어 제 2 힌지 결합부(166)를 구성하고 있다.
상기 캠팔로워(150)의 끝단에는 상기 원통형 바디(130)의 캠(131)에 삽입되어 상기 캠(131)을 따라 이동하는 롤러(151)가 구비되어 있다.
따라서 상기 리프트암(160)의 일측에 구성된 이동레일(164)은 상기 롤러(151)가 상기 캠(131)의 곡선을 따라 이동할 때 상기 롤러(151)의 원 운동에 의해 상기 고정단(162)을 따라 상하로 이동하게 된다.
이때 상기 원통형 바디(130) 내부에 구성된 모터는 하나로 이루어져 있는데, 상기 모터는 일출부터 일몰까지 24시간 동안 측정된 태양의 고도각 및 방위각에 따라 형성된 캠(131) 곡선을 24시간 동안 1회전 회전할 수 있도록 타이머로 인하여 프로그램되어 있다.
도 4는 도 3의 제 1 회동축과 제 1 힌지 결합부를 구체적으로 나타낸 사시도이다.
도 4에 도시한 바와 같이, 원통형 바디(130)의 상부에는 회전축(120)을 통해 제 1 회동축(121)이 제 1 힌지 결합부(124)를 통해 보강 플레이트(163)에 고정되어 있다. 여기서, 상기 제 1 회동축(121)은 상기 회전축(120) 상부에 결합되는 고정부(133)에 삽입되어 리프트암(160)의 상하 이동시 고정 플레이트(122)가 원활하게 일방향으로 회전할 수 있도록 한다.
한편, 상기 회전축(120)의 내부에는 상기 태양전지모듈(110)로부터 발생된 전기를 전달하기 위한 전선이 통과할 수 있도록 중공축(134)이 상기 원통형 바디(130) 및 상기 고정부(133)까지 연장되어 있다.
도 5는 도 3의 제 2 회동축과 제 2 힌지 결합부를 구체적으로 나타낸 사시도이다.
도 5에 도시한 바와 같이, 제 2 회동축(165)은 리프트암(160)의 타측에 구성되어 상기 리프트암(160)의 상하 이동에 따라 제 2 힌지 결합부(166)를 구성하는 슬라이드바(167)가 좌우로 회전 동작할 수 있도록 상기 슬라이드바(167)를 삽입하고 있다.
상기 슬라이드바(167)는 상기 리프트암(160)이 죄우로 이동할 수 있도록 상기 제 2 회동축(165) 사이에 삽입된 상태에서, 상기 슬라이드바(167)의 양단은 상기 보강 플레이트(123)와 지지되도록 지지수단(168)을 구비하고 있다.
한편, 본 발명의 실시예에서는 제 2 회동축(165)과 제 2 힌지 결합부(166)를 구성하고 있지만, 이에 한정하지 않고 상기 리프트암(160)이 직접 태양전지모듈(110)의 배면에 연결된 상태에서 상기 태양전지모듈(110)을 태양의 고도각 및 방위각에 따라 적절하게 회전시킬 수도 있다.
도 6은 본 발명에 의한 로보트형 태양광 추적장치에서 태양의 고도 및 방위각의 변화를 측정한 그래프이다.
도 6에 도시한 바와 같이, 태양의 고도에 따른 방위각의 변화는 시간에 따라 변화함을 알 수가 있다.
따라서 24시간 동안 즉, 일출부터 일몰까지의 태양 이동을 추적하여 방위각과 고도각의 변화를 시간대별로 측정하고, 측정된 결과를 그래프로 표시한 후 평균 값을 산출하여 캠 곡선을 구하게 된다.
상기와 같이 구성된 본 발명에 의한 태양광 추적장치는 일출부터 일몰까지의 태양 이동을 추적하여 방위각과 고도각의 변화를 그래프로 표시한 후 평균값을 구하여 캠(131) 곡선을 원통형 바디(130)의 표면내에 구성하고, 상기 태양전지모듈(110)이 태양의 위치 변화를 그대로 표현한 캠(131) 곡선을 따라 회전하도록 고도각과 방위각을 기계적으로 프로그램화하여 태양을 추적하고 있다.
상기 원통형 바디(130)의 표면에 태양의 방위각과 고도각 변화에 의해 형성된 캠(131) 곡선을 따라 캠팔로워(150)의 롤러(151)를 이동시켜 태양의 방위각을 추적하고 리프트암(160)을 통해 태양의 고도각을 추적하여 상기 태양전지모듈(110)을 통해 생산되는 전력 생산량을 극대화시킬 수 있다.
도 7 내지 도 9는 도 6의 그래프에 따라 회전축이 회전하는 각도를 나타낸 도면이다.
도 7에서 회전축(120)은 오전 8~10시 및 오후 3~5시에 약 60도의 각도를 유지하면서 태양광을 입사받고, 도 8에서 회전축(120)은 오전 10~11시 및 오후 2~3시에는 30~60도 사이의 각도를 유지하면서 태양광을 입사받으며, 도 9에서 회전축(120)은 오전 11시 ~ 오후 2시에는 30도의 각도를 유지하면서 태양광을 입사받고 있다.
즉, 캠(131) 곡선을 따라 캠팔로워(150)의 롤러(151)가 24시간 회전하면서 아침, 저녁에는 각도 30, 낮에는 60도 정도의 각도를 유지하면서 태양으로부터 최대한 많은 태양광을 받을 수 있도록 하고 있다.
따라서 회전축(120)이 캠(131) 곡선을 따라 이동하는 캠팔로워(150)의 회전 이동에 따라 캠팔로워(150)에 연결된 리프트암(160)의 상하 이동에 의해 시간대별로 태양과 최적의 각도를 유지하면서 태양광을 입사받아 태양전지모듈(110)의 집광 효율을 한층더 향상시킬 수 있다.
도 10은 본 발명의 제 2 실시예에 의한 로보트형 태양광 추적장치를 나타낸 정면도이고, 도 11은 본 발명의 제 2 실시예에 의한 로보트형 태양광 추적장치를 나타낸 배면도이며, 도 12는 도 10의 회전축을 나타낸 사시도이다.
본 발명의 제 2 실시예에 의한 로보트형 태양광 추적장치는 도 10 내지 도 12에 도시한 바와 같이, 외부로부터 입사되는 태양광을 전기로 발생시키기 위한 태양전지모듈(110)과, 상기 태양전지모듈(110)의 배면에 연결되어 상기 태양전지모듈(110)을 지지하면서 회전하는 회전축(120)과, 상기 회전축(120)의 하측에 구성되고 표면에 소정깊이의 홈 형태로 제작되어 일정한 곡률의 메인 캠(cam)(131)을 갖으며 내부에 일방향으로 타이머 동작에 의해 회전하는 모터(도시되지 않음)를 내장하는 원통형 바디(130)와, 상기 원통형 바디(130)의 표면에 소정깊이의 홈 형태로 제작되어 일정한 곡률을 갖고 상기 메인 캠(131)과 일부가 일정한 간격을 갖으면서 상기 메인 캠(131)의 일측과 연결되는 보조 캠(132)과, 상기 원통형 바디(130)를 지지함과 함께 지면에 고정하는 고정수단(140)을 포함하여 구성되고, 상기 회전축(120)은 상기 원통형 바디(130)의 일측에 구성되고 상기 메인 캠(131) 또는 보조 캠(132)에 삽입되어 상기 모터의 회전에 따라 상기 메인 캠(131) 또는 보조 캠(132)을 따라 이동하는 캠팔로워(150)와, 상기 캠팔로워(150)와 연결되고 상기 캠팔로워(150)가 상기 메인 캠(131) 또는 보조 캠(132)을 따라 이동할 때 상하로 이동하면서 상기 태양전지모듈(110)의 각도를 조절하는 리프트암(160)을 포함하여 구성되어 있다.
여기서, 상기 회전축(120)은 상기 리프트암(160)의 상하 이동에 따라 상기 태양전지모듈(110)의 각도가 바뀌도록 제 1 회동축(121)을 갖고 상기 태양전지모듈(110)을 지지한다.
상기 메인 캠(131)과 보조 캠(132)은 계절 또는 지역의 고도각과 방위각 차이가 발생할 경우에 적절하게 대응하기 위해 상기 원통형 바디(130)의 두 개의 캠을 구성하고 있는데, 이때 두 개의 캠보다 많은 그 이상의 캠도 구성할 수 있다.
상기 태양전지모듈(110)은 4개를 하나의 어레이로 하고 있고, 상기 회전축(120)은 4개의 태양전지모듈(110)의 배면에 부착되어 각 태양전지모듈(110)을 지지하는 고정 플레이트(122)와, 상기 고정 플레이트(122)의 배면에 부착되어 상기 고정 플레이트(122)를 보강하는 보강 플레이트(123)와, 상기 보강 플레이트(123)와 상기 제 1 회전축(121)을 연결하는 제 1 힌지 결합부(124)를 포함하여 구성되어 있다.
상기 리프트암(160)을 지지하기 위해 상기 리프트암(160)의 일측에는 상기 제 1 회동축(121)을 감싸면서 상기 리프트암(160)이 상하 이동할 때 상기 리프트암(160)을 지지하는 리프트암 지지부(161)와, 상기 리프트암(160)의 일측에 구성되어 상기 리프트암(160)이 상하 이동할 때 슬라이딩되는 고정단(162)과, 상기 리프트암 지지부(161)에 상기 고정단(162)을 고정하기 위한 고정 브라켓(163)과, 상기 고정단(162)과 대응되게 구성되어 상기 고정단(162)을 따라 상기 리프트암(160)이 상하 이동하는 이동레일(164)을 포함하여 구성되어 있다.
상기 리프트암(160)의 일측은 상기 캠팔로워(150)와 연결되고 타측은 상기 태양전지모듈(110)의 배면에 구성된 상기 보강 플레이트(123)에 연결된다.
이때 상기 리프트암(160)의 타측이 상기 보강 플레이트(123)와 연결될 때 그 사이에는 상기 리프트암(160)의 상하 이동에 따라 회동되는 제 2 회동축(165)이 구성되어 제 2 힌지 결합부(166)를 구성하고 있다.
상기 캠팔로워(150)의 끝단에는 상기 원통형 바디(130)의 메인 캠(131) 또는 보조 캠(132)에 삽입되어 상기 메인 캠(131) 또는 보조 캠(132)을 따라 이동하는 롤러(151)가 구비되어 있다.
따라서 상기 리프트암(160)의 일측에 구성된 이동레일(164)은 상기 롤러(151)가 상기 메인 캠(131) 또는 보조 캠(132)의 곡선을 따라 이동할 때 상기 롤러(151)의 원 운동에 의해 상기 고정단(162)을 따라 상하로 이동하게 된다.
이때 상기 원통형 바디(130) 내부에 구성된 모터는 하나로 이루어져 있는데, 상기 모터는 일출부터 일몰까지 24시간 동안 측정된 태양의 고도각 및 방위각에 따라 형성된 메인 캠(131) 또는 보조 캠(132) 곡선을 24시간 동안 1회전 회전할 수 있도록 타이머로 인하여 프로그램되어 있다.
한편, 상기 메인 캠(131)과 보조 캠(132)은 기상청에서 제공되는 30년간 태양의 누적 평균 방위각 및 고도각을 활용하여 기계적 프로그래밍을 통해 형성한다. 따라서 고정된 프로그램을 통해 태양의 고도각과 방위각에 따라 태양광을 추적함으로써 오작동을 최소화할 수 있다.
즉, 일반적인 태양광 추적을 위해서는 일사량 센서와 같은 추가 센서를 설치하여 태양광을 추적하게 되는데, 이때 음영 등에 의해 정확한 측정이 어려워 오작동이 발생하게 되지만 본 발명과 같이 기계적 프로그래밍을 통해 반복적으로 태양광의 고도각과 방위각을 추적하여 오작동을 최소화할 수가 있다.
뿐만 아니라, 모터를 구동하기 위한 전원은 외부에서 공급되고 이때 소비전력이 8W이므로 전력 소모를 줄일 수가 있음과 더불어 비상시에 모터의 동작을 위해 예비 밧데리(도시되지 않음)를 연결하여 사용할 수 있다. 이때 상기 예비 밧데리는 충전식 밧데리로서 정전과 같은 비상시에 상기 모터에 전원을 공급하게 된다.
본 발명의 제 2 실시예에 의한 로보트형 태양광 추적장치는 정전 후 재가동시 현재 태양의 방위각 및 고도각에 맞게 자동으로 위치를 추적할 수 있도록 프로그램되어 있다.
즉, 태양광 추적장치가 동작 중에 사고 등으로 비상시 정전되어 수리 후 재가동을 할 때 GPS와 연동되게 하므로 현재 태양의 고도각과 방위각에 맞게 자동으로 위치를 추적할 수 있도록 구성되어 있다.
도 13은 도 12의 제 1 회동축과 제 1 힌지 결합부를 구체적으로 나타낸 사시도이다.
도 13에 도시한 바와 같이, 원통형 바디(130)의 상부에는 회전축(120)을 통해 제 1 회동축(121)이 제 1 힌지 결합부(124)를 통해 보강 플레이트(163)에 고정되어 있다. 여기서, 상기 제 1 회동축(121)은 상기 회전축(120) 상부에 결합되는 고정부(133)에 삽입되어 리프트암(160)의 상하 이동시 고정 플레이트(122)가 원활하게 일방향으로 회전할 수 있도록 한다.
한편, 상기 회전축(120)의 내부에는 상기 태양전지모듈(110)로부터 발생된 전기를 전달하기 위한 전선이 통과할 수 있도록 중공축(134)이 상기 원통형 바디(130) 및 상기 고정부(133)까지 연장되어 있다.
상기 원통형 바디(130)의 상부 양측에는 태양전지모듈(110)의 배면까지 연장되면서 길이 조절이 가능하게 구성되는 지지부재(138)가 구성되어 있다. 상기 지지부재(138)는 상기 원통형 바디(130)의 메인 캠(131) 또는 보조 캠(132)을 따라 캠팔라워(150)이 이동할 때 길이가 가변되도록 구성되어 있다.
도 14는 도 12의 제 2 회동축과 제 2 힌지 결합부를 구체적으로 나타낸 사시도이다.
도 14에 도시한 바와 같이, 제 2 회동축(165)은 리프트암(160)의 타측에 구성되어 상기 리프트암(160)의 상하 이동에 따라 제 2 힌지 결합부(166)를 구성하는 슬라이드바(167)가 좌우로 회전 동작할 수 있도록 상기 슬라이드바(167)를 삽입하고 있다.
상기 슬라이드바(167)는 상기 리프트암(160)이 죄우로 이동할 수 있도록 상기 제 2 회동축(165) 사이에 삽입된 상태에서, 상기 슬라이드바(167)의 양단은 상기 보강 플레이트(123)와 지지되도록 지지수단(168)을 구비하고 있다.
한편, 본 발명의 실시예에서는 제 2 회동축(165)과 제 2 힌지 결합부(166)를 구성하고 있지만, 이에 한정하지 않고 상기 리프트암(160)이 직접 태양전지모듈(110)의 배면에 연결된 상태에서 상기 태양전지모듈(110)을 태양의 고도각 및 방위각에 따라 적절하게 회전시킬 수도 있다.
상기와 같이 구성된 본 발명의 제 2 실시예에 의한 태양광 추적장치는 일출부터 일몰까지의 태양 이동을 추적하여 방위각과 고도각의 변화를 그래프로 표시한 후 평균값을 구하여 메인 캠(131) 또는 보조 캠(132) 곡선을 원통형 바디(130)의 표면내에 구성하고, 상기 태양전지모듈(110)이 태양의 위치 변화를 그대로 표현한 메인 캠(131) 또는 보조 캠(132) 곡선을 따라 회전하도록 고도각과 방위각을 기계적으로 프로그램화하여 태양을 추적하고 있다.
상기 원통형 바디(130)의 표면에 태양의 방위각과 고도각 변화에 의해 형성된 메인 캠(131) 또는 보조 캠(132) 곡선을 따라 캠팔로워(150)의 롤러(151)를 이동시켜 태양의 방위각을 추적하고 리프트암(160)을 통해 태양의 고도각을 추적하여 상기 태양전지모듈(110)을 통해 생산되는 전력 생산량을 극대화시킬 수 있다.
한편, 이상에서 설명한 본 발명은 상술한 실시 예 및 첨부된 도면에 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 종래의 지식을 가진 자에게 있어 명백할 것이다.
본 발명은 캠(cam) 타입 구조를 채택하여 하나의 모터 회전을 통해 태양전지모듈을 회전시킴으로써 낮은 소비전력으로 트래커의 방위각과 고도각을 동시에 움직일 수 있도록 하여 발전 효율을 향상시킬 수 있다.

Claims (10)

  1. 외부로부터 입사되는 태양광을 전기로 발생시키기 위한 태양전지모듈과,
    상기 태양전지모듈의 배면에 연결되어 상기 태양전지모듈을 지지하면서 회전하는 회전축과,
    상기 회전축의 하측에 구성되고 표면에 소정깊이의 홈 형태로 제작되어 일정한 곡률의 캠을 갖으며 내부에 일방향으로 타이머 동작에 의해 회전하는 모터를 내장하는 원통형 바디와,
    상기 원통형 바디를 지지함과 함께 지면에 고정하는 고정수단을 포함하여 구성되고, 상기 회전축은
    상기 원통형 바디의 일측에 구성되고 상기 캠에 삽입되어 상기 모터의 회전에 따라 상기 캠의 곡선을 따라 이동하는 캠팔로워와,
    상기 캠팔로워와 연결되고 상기 캠팔로워가 상기 캠을 따라 이동할 때 상하로 이동하면서 상기 태양전지모듈의 각도를 조절하는 리프트암을 포함하여 구성되는 것을 특징으로 하는 로보트형 태양광 추적장치.
  2. 제 1 항에 있어서, 상기 회전축은 상기 리프트암의 상하 이동에 따라 상기 태양전지모듈의 각도가 바뀌도록 제 1 회동축을 갖고 상기 태양전지모듈을 지지하는 것을 특징으로 하는 로보트형 태양광 추적장치.
  3. 제 2 항에 있어서, 상기 리프트암을 지지하기 위해 상기 리프트암의 일측에는 상기 제 1 회동축을 감싸면서 상기 리프트암이 상하 이동할 때 상기 리프트암을 지지하는 리프트암 지지부와,
    상기 리프트암의 일측에 구성되어 상기 리프트암이 상하 이동할 때 슬라이딩되는 고정단과,
    상기 리프트암 지지부에 상기 고정단을 고정하기 위한 고정 브라켓과,
    상기 고정단과 대응되게 구성되어 상기 고정단을 따라 상기 리프트암이 상하 이동하는 이동레일을 포함하여 구성되는 것을 특징으로 하는 로보트형 태양광 추적장치.
  4. 제 1 항에 있어서, 상기 회전축은 다수의 태양전지모듈 배면에 부착되어 각 태양전지모듈을 지지하는 고정 플레이트와,
    상기 고정 플레이트의 배면에 부착되어 상기 고정 플레이트를 보강하는 보강 플레이트와,
    상기 보강 플레이트와 상기 제 1 회전축을 연결하는 제 1 힌지 결합부를 포함하여 구성되는 것을 특징으로 하는 태양광 추적장치.
  5. 제 4 항에 있어서, 상기 리프트암의 일측은 상기 캠팔로워와 연결되고 타측은 상기 태양전지모듈의 배면에 구성된 상기 보강 플레이트에 연결되고, 상기 리프트암의 타측이 상기 보강 플레이트와 연결될 때 그 사이에는 상기 리프트암의 상하 이동에 따라 회동되는 제 2 회동축이 구성되어 제 2 힌지 결합부를 구성하고 있는 것을 특징으로 하는 로보트형 태양광 추적장치.
  6. 제 1 항에 있어서, 상기 캠팔로워의 끝단에는 상기 원통형 바디의 캠에 삽입되어 상기 캠을 따라 이동하는 롤러가 구비되어 있는 것을 특징으로 하는 로보트형 태양광 추적장치.
  7. 외부로부터 입사되는 태양광을 전기로 발생시키기 위한 태양전지모듈과,
    상기 태양전지모듈의 배면에 연결되어 상기 태양전지모듈을 지지하면서 회전하는 회전축과,
    상기 회전축의 하측에 구성되고 표면에 소정깊이의 홈 형태로 제작되어 일정한 곡률의 메인 캠을 갖으며 내부에 일방향으로 타이머 동작에 의해 회전하는 모터를 내장하는 원통형 바디와,
    상기 원통형 바디의 표면에 소정깊이의 홈 형태로 제작되어 일정한 곡률을 갖고 상기 메인 캠과 일부가 일정한 간격을 갖으면서 상기 메인 캠에 일측과 타측이 연결되는 보조 캠과,
    상기 원통형 바디를 지지함과 함께 지면에 고정하는 고정수단을 포함하여 구성되고,
    상기 회전축은 상기 원통형 바디의 일측에 구성되고 상기 메인 캠 또는 보조 캠에 삽입되어 상기 모터의 회전에 따라 상기 캠의 곡선을 따라 이동하는 캠팔로워와, 상기 캠팔로워와 연결되고 상기 캠팔로워가 상기 메인 캠 또는 보조 캠을 따라 이동할 때 상하로 이동하면서 상기 태양전지모듈의 각도를 조절하는 리프트암을 포함하여 구성되어 있는 것을 특징으로 하는 로보트형 태양광 추적장치.
  8. 제 7 항에 있어서, 상기 모터는 외부에서 공급되는 전원 또는 예비 밧데리를 통해 구동되는 것을 특징으로 하는 로보트형 태양광 추적장치.
  9. 제 7 항에 있어서, 상기 모터는 GPS 연동 타이머 동작에 의해 현재 태양이 고도각과 방위각에 일치하도록 태양광을 추적하는 것을 특징으로 하는 로보트형 태양광 추적장치.
  10. 제 7 항에 있어서, 상기 캠팔로워의 끝단에는 상기 원통형 바디의 메인 캠 또는 보조 캠에 삽입되어 상기 메인 캠 또는 보조 캠을 따라 이동하는 롤러를 구비한 것을 특징으로 하는 로보트형 태양광 추적장치.
PCT/KR2011/005368 2010-11-26 2011-07-21 로보트형 태양광 추적장치 WO2012070741A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180056963.8A CN103380332B (zh) 2010-11-26 2011-07-21 机器人阳光跟踪设备
US13/989,395 US20130240018A1 (en) 2010-11-26 2011-07-21 Robotic sunlight tracking apparatus
JP2013540879A JP5771698B2 (ja) 2010-11-26 2011-07-21 ロボット型太陽光追尾装置
EP11843323.4A EP2645012A4 (en) 2010-11-26 2011-07-21 Robot-type solar tracking apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020100118562A KR101017083B1 (ko) 2010-11-26 2010-11-26 로보트형 태양광 추적장치
KR10-2010-0118562 2010-11-26
KR10-2011-0019783 2011-03-07
KR1020110019783A KR101031286B1 (ko) 2011-03-07 2011-03-07 로보트형 태양광 추적장치

Publications (1)

Publication Number Publication Date
WO2012070741A1 true WO2012070741A1 (ko) 2012-05-31

Family

ID=46146061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005368 WO2012070741A1 (ko) 2010-11-26 2011-07-21 로보트형 태양광 추적장치

Country Status (5)

Country Link
US (1) US20130240018A1 (ko)
EP (1) EP2645012A4 (ko)
JP (1) JP5771698B2 (ko)
CN (1) CN103380332B (ko)
WO (1) WO2012070741A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086430A (ja) * 2012-10-19 2014-05-12 Arufakusu Kk 複数のソーラーパネルの設置構造

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101895238B (zh) * 2010-08-16 2012-06-27 成都钟顺科技发展有限公司 一种太阳跟踪装置
ITRN20130045A1 (it) * 2013-11-13 2015-05-14 Debbio Paolo Del Dispositivo fotovoltaico e procedimento di generazione di corrente elettrica fotovoltaica
CN103956963B (zh) * 2014-05-05 2019-06-04 许润柱 太阳能和风能发电组合装置
JP2016144299A (ja) * 2015-02-02 2016-08-08 パーカー・ハネフィン日本株式会社 蓄電池モジュールを用いた電力備蓄システム
US9831819B2 (en) 2015-03-24 2017-11-28 Kirk-Rudy, Inc. Solar tracking panel mount
CN105099351A (zh) * 2015-07-23 2015-11-25 合肥吉源电子有限公司 一种太阳能电池板调节装置
ITUB20152630A1 (it) * 2015-07-31 2017-01-31 Sandro Lucchetta Inseguitore solare biassiale a regolazione meccanica per dispositivi di conversione dell'energia solare
CN105607656A (zh) * 2016-03-14 2016-05-25 中国计量学院 可移动装置上的太阳能双轴追踪系统
KR101662826B1 (ko) * 2016-04-27 2016-10-05 (주)영창에너지 경사각도 가변형 태양광 발전장치
MA39705B1 (fr) * 2017-01-20 2019-01-31 Radouan Ajdid Systeme rotatif de poursuite de l'elevation du soleil - application: energie solaire photovoltaique
CN106602988B (zh) * 2017-02-18 2018-07-03 南京东送电力科技有限公司 一种基于物联网的自动化光伏发电装置
BR102017005506A2 (pt) * 2017-03-17 2017-09-19 Azevedo Borba Alexandre Hybrid device for generating electric power clean
TWI625930B (zh) * 2017-03-23 2018-06-01 群光電能科技股份有限公司 漂浮式太陽能板架設機構
US11056996B2 (en) * 2018-03-06 2021-07-06 Utah State University Mechanical solar tracker for energy and shade
CN108462451B (zh) * 2018-03-21 2024-01-12 华北水利水电大学 太阳能光伏窗式全自动调整架
CN108571789A (zh) * 2018-04-19 2018-09-25 王金龙 一种光伏储能冷冻装置
KR101960225B1 (ko) * 2018-10-12 2019-03-19 김도훈 태양광 추적장치
ES1249610Y (es) * 2020-05-05 2020-10-13 Niasa Neff Y Asoc S A Seguidor solar
CN111464122B (zh) * 2020-05-18 2021-05-25 嵊州市万智网络科技有限公司 一种不遮光的格栅式太阳能光伏板
CN113965155B (zh) * 2021-10-28 2024-02-20 中晖新能源(广东)有限公司 一种基于光伏发电板的太阳追踪装置
CN114157225A (zh) * 2021-12-08 2022-03-08 滁州学院 一种光伏太阳能板自适应调整装置及其实现方法
CN117885579B (zh) * 2024-03-15 2024-05-28 富士达电动车(江苏)有限公司 电动车及充电装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990040874U (ko) * 1998-05-11 1999-12-06 박세진 방향변위기구를 갖는 태양열 집열장치
KR200382126Y1 (ko) * 2005-01-27 2005-04-19 주식회사 솔캄 태양광 추적장치
JP2005268671A (ja) * 2004-03-22 2005-09-29 Hiji Denki:Kk 追尾型ソ−ラパネル稼動装置
KR100939928B1 (ko) * 2009-07-22 2010-02-04 에버테크노 주식회사 광전지 트랙커

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4546756A (en) * 1981-12-14 1985-10-15 G&G Solar, Inc. Tracking system
DE4240541A1 (ko) * 1991-12-03 1993-07-29 Alexander Berger
WO1994028360A1 (de) * 1993-06-01 1994-12-08 Alexander Berger Sonnennachführung
JP3906191B2 (ja) * 2003-07-18 2007-04-18 信一郎 柏崎 太陽光発電装置用太陽追尾装置
DE102005014320A1 (de) * 2005-03-30 2006-10-12 Gümpelein, Manuela Nachführeinrichtung für eine Photovoltaikanlage
DE102005042478A1 (de) * 2005-08-30 2007-03-01 Karl Neff Nachführsystem für Solaranlagen
JP2008066632A (ja) * 2006-09-11 2008-03-21 Hoei Denken Kk ソーラーパネルの仰角追尾機構

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990040874U (ko) * 1998-05-11 1999-12-06 박세진 방향변위기구를 갖는 태양열 집열장치
JP2005268671A (ja) * 2004-03-22 2005-09-29 Hiji Denki:Kk 追尾型ソ−ラパネル稼動装置
KR200382126Y1 (ko) * 2005-01-27 2005-04-19 주식회사 솔캄 태양광 추적장치
KR100939928B1 (ko) * 2009-07-22 2010-02-04 에버테크노 주식회사 광전지 트랙커

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086430A (ja) * 2012-10-19 2014-05-12 Arufakusu Kk 複数のソーラーパネルの設置構造

Also Published As

Publication number Publication date
CN103380332A (zh) 2013-10-30
JP2014504445A (ja) 2014-02-20
CN103380332B (zh) 2015-10-07
JP5771698B2 (ja) 2015-09-02
EP2645012A4 (en) 2017-05-31
EP2645012A1 (en) 2013-10-02
US20130240018A1 (en) 2013-09-19

Similar Documents

Publication Publication Date Title
WO2012070741A1 (ko) 로보트형 태양광 추적장치
CN101588147B (zh) 太阳能收集系统
WO2012165697A1 (ko) 태양 전지 모듈 지지 어셈블리
WO2013162179A1 (ko) 태양광 발전용 추적장치
KR100779036B1 (ko) 추적식 태양광 발전 시스템
KR20090029587A (ko) 태양광 발전장치
WO2012073705A1 (ja) 太陽光発電装置
WO2013157752A1 (ko) 태양광 발전용 추적장치
KR20080102885A (ko) 음영방지기능을 갖춘 태양광 모듈의 태양광 추적 장치 및 그 제어방법
KR101031286B1 (ko) 로보트형 태양광 추적장치
KR20090010531A (ko) 위치정보기반 태양광 추적발전장치
KR101017083B1 (ko) 로보트형 태양광 추적장치
WO2016125938A1 (ko) 태양광 감지장치 및 이를 갖는 태양광 트랙커
WO2012163063A1 (zh) 基于反射聚光器的太阳能风能一体发电单元及其系统
KR20110120838A (ko) 비엘디씨 모터와 모터 드라이브를 이용한 태양광 추적장치
CN105159326A (zh) 双轴一体自跟踪聚焦太阳能装置
CN201039038Y (zh) 用于光伏发电的自适应对日跟踪装置
CN2692591Y (zh) 一种具有自动跟踪功能的太阳能发电器
CN114020049B (zh) 一种单轴追踪式光伏系统
RU171448U1 (ru) Устройство для автоматической ориентации солнечной батареи
CN211606460U (zh) 一种可自动调节角度的光伏发电装置
KR100959952B1 (ko) 일축방식의 대면적 태양광발전 추적장치
CN101267172A (zh) 一种用于光伏发电的自适应对日跟踪装置
CN209805750U (zh) 一种压差采集比较的智能向光装置
WO2012091475A2 (ko) 태양광 추적 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843323

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013540879

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13989395

Country of ref document: US

Ref document number: 2011843323

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE