WO2012070438A1 - Objective lens for optical pickup device and optical pickup device - Google Patents

Objective lens for optical pickup device and optical pickup device Download PDF

Info

Publication number
WO2012070438A1
WO2012070438A1 PCT/JP2011/076360 JP2011076360W WO2012070438A1 WO 2012070438 A1 WO2012070438 A1 WO 2012070438A1 JP 2011076360 W JP2011076360 W JP 2011076360W WO 2012070438 A1 WO2012070438 A1 WO 2012070438A1
Authority
WO
WIPO (PCT)
Prior art keywords
objective lens
optical
lens
optical disc
information recording
Prior art date
Application number
PCT/JP2011/076360
Other languages
French (fr)
Japanese (ja)
Inventor
立山清乃
忍 菅
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012545695A priority Critical patent/JPWO2012070438A1/en
Publication of WO2012070438A1 publication Critical patent/WO2012070438A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13922Means for controlling the beam wavefront, e.g. for correction of aberration passive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers

Definitions

  • the present invention relates to an objective lens for an optical pickup device and an optical pickup device capable of recording and / or reproducing information with respect to an optical disk having three or more information recording surfaces in the thickness direction.
  • a high-density optical disk system capable of recording and / or reproducing information (hereinafter, “recording and / or reproduction” is referred to as “recording / reproduction”) using a blue-violet semiconductor laser having a wavelength of about 400 nm is known.
  • Information of 25 GB per layer can be recorded on an optical disk having a diameter of 12 cm which is the same size as a capacity of 4.7 GB.
  • a BD having a two-layer information recording surface has recently been developed and is already on the market.
  • the magnification is changed by moving a coupling lens including two lenses arranged between a light source and an objective lens in the optical axis direction, for example, two layers (or four layers, etc.).
  • a coupling lens including two lenses arranged between a light source and an objective lens in the optical axis direction for example, two layers (or four layers, etc.).
  • an optical pickup device that can select any one of information recording surfaces and collect a light beam with suppressed aberration.
  • the optical surface of the objective lens is a region through which the light beam from the light source passes so that it can be collected.
  • the margin is set to be slightly larger than the effective diameter in order to guarantee the performance.
  • a predetermined value is determined for the margin by experience, simulation, or the like.
  • the present inventor has found that an objective lens for an optical disk having an information recording surface of three or more layers may not be able to form a good condensing spot with a margin that is conventionally considered appropriate. . The reason will be described.
  • FIG. 1 is a schematic diagram of a condensing optical system of an optical pickup device capable of selecting / recording / reproducing information by selecting an information recording surface of an optical disc OD having three or more layers of information recording surfaces.
  • the objective lens OBJ has a higher-order spherical surface when the focused spot is formed on the information recording surface RL3 having the thickest substrate thickness and when the focused spot is formed on the information recording surface RL1 having the smallest substrate thickness.
  • the design center disk thickness is set so that the aberration becomes small in a balanced manner. That is, if the design center disk thickness is too thin, the higher-order spherical aberration at the time of condensing the information recording surface RL3 having the largest substrate thickness becomes too large.
  • the design center disk thickness means the substrate thickness of the information recording surface on which an appropriate focused spot is formed when a parallel light beam is incident on the objective lens.
  • the coupling lens CL is moved to change the divergence angle or the convergence angle of the light beam incident on the objective lens OBJ. Then, when the information recording surface RL3 having the thickest substrate is condensed, as shown by the dotted line in FIG. 1, a divergent light beam needs to be incident on the objective lens OBJ. On the other hand, at the time of condensing the information recording surface RL1 having the thinnest substrate thickness, as shown by a one-dot chain line in FIG. When the convergent light beam is incident, there is no particular problem.
  • the surface S2 on the optical disk side of the objective lens OBJ has an area where the light beam is emitted further outside the effective diameter.
  • the surface S1 of the light source of the objective lens OBJ has the same problem although not as much as the surface S2.
  • a BD having an information recording surface of three or more layers in a relatively thin optical pickup device called a so-called slim type that is mounted on the back of a notebook PC or a thin television.
  • a slim type optical pickup device an objective lens having a short focal length is frequently used, and the divergence angle of light incident on the objective lens at the time of information recording surface recording / reproduction having such a thick substrate as the objective lens. Therefore, there is a strong tendency that a region where light is emitted on the surface S2 on the optical disc side is widened.
  • Patent Document 2 it is described that an optimum preform diameter r with respect to R of the concave surface of the mold is specified in mold press molding.
  • the effective diameter and optical surface diameter of the surface S2 on the optical disk side are described, but since the substrate thickness is 0.1 mm or 0.0875 mm, the single-layer disk or 2 Obviously, it is not intended to be used for an optical disk having three or more layers, and naturally the problem of the spread of the emission area on the surface S2 side when diverging light is incident is considered. I can say no.
  • the present invention has been made in consideration of the above-mentioned problems, and is for an optical pickup device capable of recording / reproducing information with respect to an optical disc having a multilayer information recording surface while being compact and low in cost.
  • An objective lens and an optical pickup device are provided.
  • the objective lens for an optical pickup device records and / or reproduces information by selecting any information recording surface in an optical disk having three or more information recording surfaces in the thickness direction. Therefore, a light source that emits a light beam having a wavelength ⁇ 1 (390 nm ⁇ 1 ⁇ 415 nm), an objective lens that collects the light beam on an information recording surface of an optical disc, and the light source and the objective lens are disposed.
  • TMIN Transparent substrate thickness of the optical disk in which third-order spherical aberration
  • TMIN the smallest transparent substrate thickness among the transparent substrate thicknesses on the optical disc
  • TMAX the largest transparent substrate thickness among the transparent substrate thicknesses on the optical disc
  • A2 Optical surface diameter on the optical disc side of the objective lens B2: Effective diameter of the objective lens on the optical disk side
  • the objective lens satisfying the expression (1) by satisfying the expression (2), it is possible to suppress the occurrence of higher-order spherical aberration when condensing on all information recording surfaces. Further, by satisfying the expression (3), even if divergent light is incident on the objective lens, the possibility that the light beam is vignetted on the side surface of the optical disk is reduced, and the spot diameter can be maintained.
  • an objective lens having a focal length f satisfying the expression (1) is suitable for a so-called slim type optical pickup device.
  • f is 0.9 mm or more.
  • T exceeds TMAX ⁇ 0.86, when converging on the information recording surface having the thinnest substrate thickness, the convergence angle of the convergent light beam incident on the objective lens is reduced. In the case of this coupling lens, it must be moved largely to the light source side.
  • the slim type pickup does not have enough space around the light source for compactness, and if the coupling lens moves greatly, there is a possibility of causing interference with other parts.
  • T when T is equal to or greater than the lower limit of the expression (2), it is possible to suppress the occurrence of higher-order spherical aberration even when the light beam is condensed on the information recording surface with the thickest substrate thickness.
  • the value is equal to or less than the upper limit of the expression (2), it is possible to suppress the occurrence of high-order spherical aberration even when the light beam is condensed on the information recording surface having the thinnest substrate.
  • the coupling lens does not come too close to the light source even when the light beam is condensed on the information recording surface with the thickest substrate, and is suitable for a slim type optical pickup device.
  • equation (3) if A2 / B2 falls below the lower limit, the light beam emitted from the optical disk side surface of the objective lens passes outside the optical surface due to problems in the processing accuracy of the objective lens and assembly errors in the pickup.
  • the demand for NA increases and the required NA cannot be satisfied. In particular, when a light beam is incident obliquely with respect to the optical axis, such a problem may occur remarkably.
  • A2 / B2 exceeds the upper limit of the expression (3), the outer diameter of the objective lens becomes too large to be used particularly in a slim type optical pickup device. The space of the end surface provided around the surface cannot be secured, and it becomes difficult to check using the reflected light from the end surface when the objective lens is attached to the optical pickup device.
  • the optical pickup device is characterized in that, in the invention according to claim 1, the objective lens is made of glass. If the objective lens is made of glass, it has excellent heat resistance and light resistance. In particular, aberrations that occur when the temperature changes are reduced, and there is no need to perform magnification correction due to temperature changes. Therefore, the amount of movement of the coupling lens can be reduced, and the enlargement of the emission area on the side surface of the optical disk can be suppressed.
  • the optical pickup device according to the first or second aspect, wherein the following expression is satisfied. 1.15 ⁇ A2 / B2 ⁇ 1.3 (5A)
  • A2 / B2 By making A2 / B2 larger than the lower limit of the formula (5A), it is possible to secure a sufficient optical surface diameter with respect to the effective diameter in the glass objective lens, and to guarantee the performance within the effective diameter.
  • A2 / B2 smaller than the upper limit of the formula (5A)
  • the outer diameter of the objective lens can be reduced while securing a wider end face.
  • the glass objective lens can reduce the amount of movement of the coupling lens as much as it is not necessary to perform magnification correction due to temperature change, so that the emission area on the optical surface on the optical disk side can be kept small. Therefore, the upper limit can be kept small as in the equation (5A).
  • the “optical surface” of the objective lens is a surface having an optical function of condensing a light beam, and generally refers to a region inside the end surface.
  • the “end surface” of the objective lens is generally a surface orthogonal to the optical axis.
  • the optical surface and the end surface may be in contact with each other, but a small boundary portion may be provided between them.
  • the “effective diameter” of an objective lens is an area in an optical surface through which a light beam used for recording / reproduction passes when a parallel light beam is incident on the objective lens. , An area in the optical plane through which the parallel light flux that has passed through the inside of the aperture limiting element passes. Therefore, the “effective diameter on the light source side” is the inner diameter of the stop.
  • the optical pickup device is characterized in that, in the invention according to claim 1, the objective lens is made of plastic.
  • the objective lens made of plastic it can be made light and inexpensive.
  • the workability of the diffractive structure is excellent, and BD, DVD, and CD can be interchanged using diffraction.
  • An optical pickup device according to a fifth aspect of the invention according to the fourth aspect of the invention satisfies the following expression. 1.2 ⁇ A2 / B2 ⁇ 1.4 (3 ')
  • A2 / B2 By making A2 / B2 larger than the lower limit of the expression (3 ′), it is possible to secure a more sufficient optical surface diameter with respect to the effective diameter and to guarantee the performance within the effective diameter.
  • A2 / B2 smaller than the upper limit of the expression (3 '), the outer diameter of the objective lens can be reduced while securing a wider end face.
  • the objective lens is made of plastic, the refractive index change due to temperature change tends to be larger than that of glass.Therefore, when focusing on the information recording surface with the thickest substrate at a high temperature, the divergence angle is larger. A large divergent light beam needs to be incident. Therefore, when the objective lens is made of plastic, it is desirable to satisfy the expression (3 ′).
  • An optical pickup device is characterized in that, in the invention according to any one of the first to fifth aspects, the following expression is satisfied.
  • A1 Optical surface diameter on the light source side of the objective lens
  • B1 Effective diameter of the objective lens on the light source side
  • the optical surface on the light source side of the objective lens is closer to the diaphragm than the optical surface on the optical disk side, the influence at the time of incidence of the convergent light beam or divergent light beam is small, and it can be said that the A1 / B1 involvement is relatively small.
  • a better objective lens can be obtained by designing the optical surface on the light source side together with the design of the optical surface on the optical disc side. More specifically, by setting A1 / B1 to be equal to or greater than the lower limit of the expression (4), it is possible to secure a further sufficient optical surface diameter with respect to the effective diameter and to guarantee the performance within the effective diameter.
  • the outer diameter of the objective lens can be reduced.
  • the optical surface on the light source side has a large expected angle of the surface and is often difficult to mold. However, this makes it possible to reduce the expected angle and improve manufacturability.
  • An optical pickup device includes the objective lens according to any one of the first to sixth aspects and a coupling lens, and the optical disk is moved by moving the coupling lens in an optical axis direction. One of the information recording surfaces is selected.
  • the optical pickup device has at least one light source (first light source).
  • first light source a plurality of types of light sources may be provided so as to support a plurality of types of optical disks.
  • the optical pickup device of the present invention has a condensing optical system for condensing at least the first light flux from the first light source on the information recording surface of the first optical disc.
  • the condensing optical system condenses the second light beam on the information recording surface of the second optical disk, and the third light beam on the information recording surface of the third optical disk. You may make it condense.
  • the optical pickup device of the present invention includes a light receiving element that receives at least a reflected light beam from the information recording surface of the first optical disc.
  • the light receiving element receives a reflected light beam from the information recording surface of the second optical disk and receives a reflected light beam from the information recording surface of the third optical disk. Also good.
  • the first optical disc has a protective substrate having a thickness t1 and an information recording surface.
  • the second optical disc has a protective substrate having a thickness t2 (t1 ⁇ t2) and an information recording surface.
  • the third optical disc has a protective substrate having a thickness t3 (t2 ⁇ t3) and an information recording surface.
  • the first optical disc is preferably a BD
  • the second optical disc is a DVD
  • the third optical disc is preferably a CD, but is not limited thereto.
  • the first optical disc has three or more information recording surfaces stacked in the thickness direction. Of course, you may have four or more information recording surfaces.
  • the second optical disc and the third optical disc may also have a plurality of information recording surfaces.
  • BD means that information is recorded / reproduced by a light beam having a wavelength of about 390 to 415 nm and an objective lens having an NA of about 0.8 to 0.9, and the thickness of the protective substrate is 0.05 to 0.00 mm.
  • the optical pickup device of the present invention has at least three layers. It is preferable to be able to cope with a BD having the above information recording surface.
  • DVD is a general term for DVD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.60 to 0.67 and the thickness of the protective substrate is about 0.6 mm.
  • CD is a general term for CD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.45 to 0.51 and the thickness of the protective substrate is about 1.2 mm.
  • the recording density of BD is the highest, followed by the order of DVD and CD.
  • the thickness of the protective substrate referred to here is the thickness of the protective substrate provided on the surface of the optical disk. That is, the thickness of the protective substrate from the optical disc surface to the information recording surface closest to the surface.
  • the first light source, the second light source, and the third light source are preferably laser light sources.
  • the laser light source a semiconductor laser, a silicon laser, or the like can be preferably used.
  • the wavelength ⁇ 3 ( ⁇ 3> ⁇ 2) preferably satisfies the following conditional expressions (8) and (9). 1.5 ⁇ ⁇ 1 ⁇ 2 ⁇ 1.7 ⁇ ⁇ 1 (8) 1.8 ⁇ ⁇ 1 ⁇ 3 ⁇ 2.0 ⁇ ⁇ 1 (9)
  • the first wavelength ⁇ 1 of the first light source is preferably 350 nm or more and 440 nm or less, more preferably 390 nm.
  • the second wavelength ⁇ 2 of the second light source is preferably 570 nm or more and 680 nm or less, more preferably 630 nm or more and 670 nm or less, and the third wavelength ⁇ 3 of the third light source is preferably 415 nm or less. It is 750 nm or more and 880 nm or less, More preferably, it is 760 nm or more and 820 nm or less.
  • the first light source, the second light source, and the third light source may be unitized.
  • the unitization means that the first light source and the second light source are fixedly housed in one package, for example.
  • a light receiving element to be described later may be packaged.
  • a photodetector such as a photodiode is preferably used.
  • Light reflected on the information recording surface of the optical disc enters the light receiving element, and a read signal of information recorded on each optical disc is obtained using the output signal. Furthermore, it detects the change in the light amount due to the spot shape change and position change on the light receiving element, performs focus detection and track detection, and based on this detection, the objective lens can be moved for focusing and tracking I can do it.
  • the light receiving element may comprise a plurality of photodetectors.
  • the light receiving element may have a main photodetector and a sub photodetector.
  • two sub photodetectors are provided on both sides of a photodetector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub photodetectors.
  • a light receiving element may be used.
  • the light receiving element may have a plurality of light receiving elements corresponding to the respective light sources.
  • the condensing optical system has a coupling lens and an objective lens.
  • the coupling lens is a lens that is arranged between the objective lens and the light source and changes the divergence angle of the light beam.
  • the coupling lens may be composed of a single positive lens or may have a positive lens and a negative lens.
  • the positive lens has at least one positive lens.
  • the positive lens may be a single positive lens or may have a plurality of lenses.
  • the negative lens has at least one negative lens.
  • the negative lens may be a single negative lens or a plurality of lenses.
  • the positive lens and the negative lens may be arranged in the order of the negative lens and the positive lens from the light source side, or may be arranged in the order of the positive lens and the negative lens from the light source side.
  • the coupling lens (a negative lens or a positive lens when a positive lens and a negative lens are provided) can be moved in the optical axis direction. ing. For example, when recording and / or reproducing on one information recording surface of the first optical disc and then recording and / or reproducing on another information recording surface of the first optical disc, the coupling lens moves in the optical axis direction. Then, by changing the divergence of the light beam and changing the magnification of the objective lens, the spherical aberration generated at the time of focus jump to a different information recording surface of the first optical disc is corrected.
  • the objective lens refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing a light beam emitted from the light source onto the information recording surface of the optical disk.
  • the objective lens is a single lens.
  • the objective optical element may be a glass lens, a plastic lens, or a hybrid lens in which a diffractive structure or the like is provided on a glass lens with a photocurable resin or the like.
  • the objective optical element preferably has a refractive surface that is aspheric. Further, when the objective lens is provided with an optical path difference providing structure, the base surface is preferably an aspherical surface.
  • the objective lens is a glass lens, it is not necessary to move the coupling lens to correct spherical aberration caused by temperature changes, so the amount of movement of the coupling lens can be reduced, and the optical pickup device can be downsized. This is preferable because it is possible.
  • the objective lens is a glass lens
  • a glass material having a glass transition point Tg of 500 ° C. or lower more preferably 400 ° C. or lower.
  • a glass material having a glass transition point Tg of 500 ° C. or lower molding at a relatively low temperature is possible, so that the life of the mold can be extended.
  • Examples of such a glass material having a low glass transition point Tg include K-PG325 and K-PG375 (both product names) manufactured by Sumita Optical Glass Co., Ltd.
  • the specific gravity of the glass lens is generally larger than that of the resin lens, if the objective lens is a glass lens, the weight increases and a load is imposed on the actuator that drives the objective lens. Therefore, when the objective lens is a glass lens, it is preferable to use a glass material having a small specific gravity.
  • the specific gravity is preferably 4.0 or less, more preferably the specific gravity is 3.0 or less.
  • one of the important physical properties when molding and manufacturing a glass lens is the linear expansion coefficient ⁇ . Even if a material having a Tg of 400 ° C. or lower is selected, the temperature difference from room temperature is still larger than that of a plastic material. When lens molding is performed using a glass material having a large linear expansion coefficient ⁇ , cracks are likely to occur when the temperature is lowered.
  • the linear expansion coefficient ⁇ of the glass material is preferably 200 (10E-7 / K) or less, more preferably 120 or less.
  • the objective lens is a plastic lens
  • an alicyclic hydrocarbon polymer material such as a cyclic olefin resin material.
  • the resin material has a refractive index within a range of 1.54 to 1.60 at a temperature of 25 ° C. with respect to a wavelength of 405 nm, and a wavelength of 405 nm associated with a temperature change within a temperature range of ⁇ 5 ° C. to 70 ° C.
  • the refractive index change rate dN / dT (° C. ⁇ 1 ) is -20 ⁇ 10 ⁇ 5 to ⁇ 5 ⁇ 10 ⁇ 5 (more preferably ⁇ 10 ⁇ 10 ⁇ 5 to ⁇ 8 ⁇ 10 ⁇ 5 ). It is more preferable to use a certain resin material.
  • the coupling lens is preferably a plastic lens.
  • cycloolefin resin is preferably used.
  • ZEONEX manufactured by Nippon Zeon Co., Ltd. APEL manufactured by Mitsui Chemicals, Inc.
  • TOPAS® ADVANCED® POLYMERS manufactured by TOPAS, JSR manufactured by ARTON, etc. are preferable examples. Can be mentioned.
  • the Abbe number of the material constituting the objective lens is preferably 50 or more.
  • the objective lens satisfies the following formula. f ⁇ 1.8mm (1) TMIN ⁇ 1.2 ⁇ T ⁇ TMAX ⁇ 0.86 and TMIN ⁇ 1.2 ⁇ TMAX ⁇ 0.86 (2) 1.1 ⁇ A2 / B2 ⁇ 1.6 (3)
  • f Focal length of objective lens with respect to luminous flux
  • T Thickness of transparent substrate of optical disk satisfying third-order spherical aberration
  • TMAX the largest transparent substrate thickness among the transparent substrate thicknesses on the optical disc
  • A2 Optical surface diameter on the optical disc side of the objective lens B2: Effective diameter of the objective lens on the optical disc side
  • NA1 The numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the first optical disc is NA1, and the numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the second optical disc.
  • NA2 NA1> NA2
  • NA3 NA2> NA3
  • NA1 is preferably 0.75 or more and 0.9 or less, and more preferably 0.8 or more and 0.9 or less.
  • NA1 is preferably 0.85.
  • NA2 is preferably 0.55 or more and 0.7 or less.
  • NA2 is preferably 0.60 or 0.65.
  • NA3 is preferably 0.4 or more and 0.55 or less.
  • NA3 is preferably 0.45 or 0.53.
  • an objective lens satisfy
  • d represents the thickness (mm) on the optical axis of the objective lens
  • f represents the focal length of the objective lens in the first light flux. Note that f is preferably 0.9 mm or more and 1.8 mm or less.
  • the working distance of the objective lens when using the first optical disk is preferably 0.15 mm or more and 1.0 mm or less.
  • An optical information recording / reproducing apparatus includes an optical disc drive apparatus having the above-described optical pickup apparatus.
  • the optical disk drive apparatus can hold an optical disk mounted from the optical information recording / reproducing apparatus main body containing the optical pickup apparatus or the like. There are a system in which only the tray is taken out, and a system in which the optical disc drive apparatus main body in which the optical pickup device is stored is taken out to the outside.
  • the optical information recording / reproducing apparatus using each method described above is generally equipped with the following components, but is not limited thereto.
  • An optical pickup device housed in a housing or the like, a drive source of an optical pickup device such as a seek motor that moves the optical pickup device together with the housing toward the inner periphery or outer periphery of the optical disc, and the optical pickup device housing the inner periphery or outer periphery of the optical disc include a transfer means of an optical pickup device having a guide rail or the like that guides toward the head, a spindle motor that rotates the optical disk, and the like.
  • the former method is provided with a tray that can be held in a state in which an optical disk is mounted and a loading mechanism for sliding the tray, and the latter method has no tray and loading mechanism. It is preferable that each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
  • an optical pickup device and a coupling lens that are capable of recording / reproducing information with respect to an optical disc having a multilayer information recording surface while being compact and low in cost.
  • FIG. 2 shows that information is appropriately recorded on a BD that is an optical disc having three information recording surfaces RL1 to RL3 in the thickness direction (referred to as RL1, RL2, and RL3 in order of increasing distance from the light incident surface of the optical disc).
  • FIG. 2 is a diagram schematically showing a configuration of an optical pickup device PU1 of the present embodiment that can perform reproduction.
  • the present invention is not limited to the present embodiment. For example, FIG.
  • the objective lens OBJ is made compatible with BD / DVD / CD, or the objective lens for DVD / CD is separately arranged, so that the BD / DVD is used.
  • An optical pickup device compatible with CD can be used.
  • the optical pickup device PU1 moves the objective lens OBJ, the objective lens OBJ in the focusing direction and the tracking direction, and tilts in the radial direction and / or tangential direction of the optical disc, the aperture AP, and the ⁇ / 4 wavelength plate QWP, rising mirror MR, coupling CL having positive lens L2 having positive refractive power and negative lens L3 having negative refractive power, uniaxial actuator AC1 for moving only positive lens L2 in the optical axis direction, polarizing prism A PBS, a semiconductor laser LD that emits a laser beam (beam) of 405 nm, a sensor lens SL, and a light receiving element PD that receives reflected beams from the information recording surfaces RL1 to RL3 of the BD.
  • a semiconductor laser LD that emits a laser beam (beam) of 405 nm
  • a sensor lens SL and a light receiving element PD that receives reflected beams from the information recording surfaces RL1 to RL
  • the coupling lens CL is disposed between the polarizing prism PBS and the ⁇ / 4 wavelength plate QWP.
  • the semiconductor laser LD is arranged in the order of the negative lens L3 and the positive lens L2.
  • the semiconductor laser LD may be arranged in the order of the positive lens L2 and the negative lens L3.
  • the positive lens L2 is movable in the optical axis direction, and the negative lens L3 is fixed to the optical pickup device.
  • a single objective lens OBJ has an optical surface OP1 formed on a light source side surface S1, and an end surface EP1 formed around the optical surface OP1.
  • the objective lens OBJ has an optical surface OP2 formed on the surface S2 on the optical disc side, and an end surface EP2 formed around the optical surface OP2.
  • the end surface EP2 is orthogonal to the optical axis X, and when the objective lens OBJ is assembled to the optical pickup device PU1, the inspection light is irradiated from the inspection device (not shown) toward the end surface EP2, and the reflected light thereof. Positioning is performed by receiving light. There may be a case where a flange is further provided outside the end faces EP1 and EP2.
  • the objective lens OBJ satisfies the following formula. f ⁇ 1.8mm (1) TMIN ⁇ 1.2 ⁇ T ⁇ TMAX ⁇ 0.86 and TMIN ⁇ 1.2 ⁇ TMAX ⁇ 0.86 (2) 1.1 ⁇ A2 / B2 ⁇ 1.6 (3) 1.0 ⁇ A1 / B1 ⁇ 1.1 (4)
  • f Focal length of the objective lens OBJ with respect to the luminous flux
  • T Transparent substrate thickness of the optical disk with third-order spherical aberration
  • TMIN the smallest transparent substrate thickness of the transparent substrate thickness in the optical disk (here, the substrate thickness of the information recording surface RL1)
  • TMAX The maximum transparent substrate thickness among the transparent substrate thicknesses in the optical disk (here, the substrate thickness of the information recording surface RL3)
  • the positive lens L2 of the coupling lens CL is moved to the position of the alternate long and short dash line by the uniaxial actuator AC1.
  • the reflected light beam modulated by the information pits on the first information recording surface RL1 is transmitted again through the objective lens OBJ and the aperture AP, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP.
  • the light is reflected by MR, passes through the positive lens L2 and the negative lens L3 of the collimating lens CL, becomes a convergent light beam, is reflected by the polarizing prism PBS, and then converges on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the first information recording surface RL1 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
  • the positive lens L2 of the coupling lens CL is moved to the position of the solid line by the uniaxial actuator AC1.
  • the spot is formed on the second information recording surface RL2 through the transparent substrate PL2 having the second thickness (thicker than the first thickness) as shown by the solid line.
  • the reflected light beam modulated by the information pits on the second information recording surface RL2 is again transmitted through the objective lens OBJ and the aperture AP, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP.
  • the light is reflected by MR, passes through the positive lens L2 and the negative lens L3 of the collimating lens CL, becomes a convergent light beam, is reflected by the polarizing prism PBS, and then converges on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the second information recording surface RL2 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
  • the positive lens L2 of the coupling lens CL is moved to the dotted line position by the uniaxial actuator AC1.
  • the spot is formed on the third information recording surface RL3 by the OBJ through the transparent substrate PL3 having a third thickness (thicker than the second thickness) as indicated by a dotted line.
  • the reflected light beam modulated by the information pits on the third information recording surface RL3 is again transmitted through the objective lens OBJ and the diaphragm, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP, and the rising mirror MR , And passes through the positive lens L2 and the negative lens L3 of the collimator lens CL to be a convergent light beam. After being reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the third information recording surface RL3 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
  • the design wavelength is 405 nm
  • ri in the following table is the radius of curvature
  • d is the position in the optical axis direction between the surfaces
  • n is the refractive index of each surface at the design wavelength of 405 nm.
  • a power of 10 for example, 2.5 ⁇ 10 ⁇ 3
  • E for example, 2.5 ⁇ E-3
  • the optical surface of the objective lens is formed as an aspherical surface that is axisymmetric about the optical axis, each of which is defined by a mathematical formula obtained by substituting the coefficient shown in Table 1 into Formula 1.
  • X (h) is an axis in the optical axis direction (the light traveling direction is positive)
  • is a conical coefficient
  • a i is an aspheric coefficient
  • h is a height from the optical axis
  • r is a paraxial curvature. Radius.
  • the following examples are objective lenses for BD having four layers of information recording surfaces, and the transparent substrate thickness of each layer is 0.535 mm, 0.07 mm, 0.0875 mm, and 0.1 mm. Since Examples 1 to 3 have a smaller T than Examples 4 to 6, light is incident to the outside of the effective diameter when recording and reproducing the thickest layer. In addition, in Examples 1 to 3, since a plastic material is used, when the temperature changes (high temperature), the refractive index decreases, so that the light beam enters more outward. The optical surface diameter of Examples 1 to 3 is set to be larger than that of Examples 4 to 6 so that the light beam is not kicked.
  • Example 1 shows lens data of Examples 1 to 3.
  • Example 2 since the effective diameter is equal to the optical surface diameter on the optical surface on the light source side, the lens surface has a diaphragm function.
  • Example 2 shows lens data of Examples 4 to 6.
  • the value of A2 / B2 is changed in Examples 4-6.
  • Example 4 since the effective diameter is equal to the optical surface diameter on the optical surface on the light source side, the lens surface has a diaphragm function.
  • FIG. 3 is a graph showing the values of the above-described embodiment, with the horizontal axis representing the focal length and the vertical axis representing the ratio of (effective diameter / optical surface diameter).
  • OBJ Objective lens PU1 Optical pickup device LD Blue-violet semiconductor laser AC1 1-axis actuator AC2 3-axis actuator AP Aperture PBS Polarizing prism CL Coupling lens L2 Positive lens L3 Negative lens MR Rising mirror PL1 First transparent substrate PL2 Second transparent Substrate PL3 Third transparent substrate RL1 First information recording surface RL2 Second information recording surface RL3 Third information recording surface QWP ⁇ / 4 wavelength plate

Abstract

Provided are an optical pickup device and a coupling lens with which it is possible to carry out recording and playing of information on an optical disc having multi-layered information recording faces while being both compact and inexpensive. Given an objective lens such as satisfies formula (1), satisfying formula (2) allows alleviating an occurrence of high-order spherical aberration in all information recording faces when concentrating light. Furthermore, satisfying formula (3) reduces a risk that a beam will be limited at a lateral face of an optical disc, allowing maintaining a spot diameter even when a divergent beam enters the objective lens. F ≤ 1.8mm (1); TMIN*1.2 ≤ T ≤ TMAX*0.86 and TMIN*1.2 < TMAX*0.86 (2); 1.1 ≤ A2/B2 ≤ 1.6 (3); where f is the focal length of the objective lens with respect to the beam; T is the transparent substrate thickness of the optical disc such that third-order spherical aberration |SA3| ≤ 0.05λrms upon parallel beam entry; TMIN is the minimum transparent substrate thickness among the transparent substrate thicknesses of the optical disc; TMAX is the maximum transparent substrate thickness among the transparent substrate thicknesses of the optical disc; A2 is the optical surface diameter of the optical disc-side of the objective lens; and B2 is the effective diameter of the optical disc-side of the objective lens.

Description

光ピックアップ装置用の対物レンズ及び光ピックアップ装置Objective lens for optical pickup device and optical pickup device
 本発明は、厚さ方向に3層以上の情報記録面を有する光ディスクに対して情報の記録及び/又は再生を行える光ピックアップ装置用の対物レンズ及び光ピックアップ装置に関する。 The present invention relates to an objective lens for an optical pickup device and an optical pickup device capable of recording and / or reproducing information with respect to an optical disk having three or more information recording surfaces in the thickness direction.
 波長400nm程度の青紫色半導体レーザを用いて、情報の記録及び/又は再生(以下、「記録及び/又は再生」を「記録/再生」と記載する)を行うことができる高密度光ディスクシステムが知られており、その一例であるNA0.85、光源波長405nmの仕様で情報記録/再生を行う光ディスク、いわゆるBlu-ray Disc(以下、BDという)では、DVD(NA0.6、光源波長650nm、記憶容量4.7GB)と同じ大きさである直径12cmの光ディスクに対して、1層あたり25GBの情報の記録が可能である。 A high-density optical disk system capable of recording and / or reproducing information (hereinafter, “recording and / or reproduction” is referred to as “recording / reproduction”) using a blue-violet semiconductor laser having a wavelength of about 400 nm is known. As an example, an optical disc that records and reproduces information with specifications of NA 0.85 and light source wavelength 405 nm, so-called Blu-rayraDisc (hereinafter referred to as BD), DVD (NA 0.6, light source wavelength 650 nm, storage) Information of 25 GB per layer can be recorded on an optical disk having a diameter of 12 cm which is the same size as a capacity of 4.7 GB.
 ところで、1層の情報記録面を有するBDに対し、近年では2層の情報記録面を有するBDも開発され、既に市販されている。ここで特許文献1には、光源と対物レンズとの間に配置した2枚レンズを含むカップリングレンズを光軸方向に移動させることで倍率を変更し、例えば2層(又は4層等)の情報記録面のいずれかを選択して、収差を抑えた光束を集光させることができる光ピックアップ装置が開示されている。 Incidentally, in contrast to a BD having a one-layer information recording surface, a BD having a two-layer information recording surface has recently been developed and is already on the market. Here, in Patent Document 1, the magnification is changed by moving a coupling lens including two lenses arranged between a light source and an objective lens in the optical axis direction, for example, two layers (or four layers, etc.). There has been disclosed an optical pickup device that can select any one of information recording surfaces and collect a light beam with suppressed aberration.
特開2005-129204号公報JP 2005-129204 A 特開2004-335080号公報JP 2004-335080 A
 ところで、対物レンズの光学面は、光源からの光束が集光可能に通過する領域であり、その径は、取り付け時に生じる絞り-対物レンズ間の中心ずれや軸外光束が入射した場合でも有効径内の性能を保証するため、マージンを持たせて有効径より若干大きく設定されるのが一般的であるところ、かかるマージンについては経験やシミュレーション等により、所定の値が定まっていた。ところが本発明者は、3層以上の情報記録面を有する光ディスク用の対物レンズにおいては、従来から適切であるとされていたマージンでは、良好な集光スポットを形成できない恐れがあることを見出した。その理由について説明する。 By the way, the optical surface of the objective lens is a region through which the light beam from the light source passes so that it can be collected. In general, the margin is set to be slightly larger than the effective diameter in order to guarantee the performance. However, a predetermined value is determined for the margin by experience, simulation, or the like. However, the present inventor has found that an objective lens for an optical disk having an information recording surface of three or more layers may not be able to form a good condensing spot with a margin that is conventionally considered appropriate. . The reason will be described.
 図1は、3層以上の情報記録面を有する光ディスクODの情報記録面を選択して情報の記録/再生を行える光ピックアップ装置の集光光学系の概略図である。ここで対物レンズOBJは、最も基板厚が厚い情報記録面RL3に集光スポットを形成したときと、最も基板厚が薄い情報記録面RL1に集光スポットを形成したときとで、その高次球面収差がバランス良く小さくなるように、設計中心ディスク厚が設定される。つまり、設計中心ディスク厚が薄すぎると、最も基板厚が厚い情報記録面RL3の集光時における高次球面収差が大きくなり過ぎ、設計中心ディスク厚が厚すぎると、最も基板厚が薄い情報記録面RL1の集光時における高次球面収差が大きくなり過ぎるので、そのバランスをとるようにして設計中心ディスク厚が決定されるのである。ここで、設計中心ディスク厚とは、対物レンズに平行光束を入射させたとき、適切な集光スポットが形成される情報記録面の基板厚さをいう。 FIG. 1 is a schematic diagram of a condensing optical system of an optical pickup device capable of selecting / recording / reproducing information by selecting an information recording surface of an optical disc OD having three or more layers of information recording surfaces. Here, the objective lens OBJ has a higher-order spherical surface when the focused spot is formed on the information recording surface RL3 having the thickest substrate thickness and when the focused spot is formed on the information recording surface RL1 having the smallest substrate thickness. The design center disk thickness is set so that the aberration becomes small in a balanced manner. That is, if the design center disk thickness is too thin, the higher-order spherical aberration at the time of condensing the information recording surface RL3 having the largest substrate thickness becomes too large. If the design center disk thickness is too thick, the information recording with the smallest substrate thickness is performed. Since the higher-order spherical aberration at the time of condensing on the surface RL1 becomes too large, the design center disk thickness is determined so as to balance it. Here, the design center disk thickness means the substrate thickness of the information recording surface on which an appropriate focused spot is formed when a parallel light beam is incident on the objective lens.
 ところで、各情報記録面を選択する際には、カップリングレンズCLを移動させ、対物レンズOBJに入射する光束の発散角又は収束角を変化させることが行われる。すると、最も基板厚が厚い情報記録面RL3の集光時には、図1の点線で示すように、対物レンズOBJには発散光束を入射させる必要がある。これに対し、最も基板厚が薄い情報記録面RL1の集光時には、図1の一点鎖線で示すように、対物レンズOBJには収束光束を入射させる必要がある。収束光束が入射する場合は、特に大きな問題はないが、発散光束が入射する場合、対物レンズOBJの光ディスク側の面S2では、有効径より更に外側に光束が出射する領域が広がることとなる。又、対物レンズOBJの光源の面S1でも、面S2ほどではないが同様の問題が生じるのである。 Incidentally, when each information recording surface is selected, the coupling lens CL is moved to change the divergence angle or the convergence angle of the light beam incident on the objective lens OBJ. Then, when the information recording surface RL3 having the thickest substrate is condensed, as shown by the dotted line in FIG. 1, a divergent light beam needs to be incident on the objective lens OBJ. On the other hand, at the time of condensing the information recording surface RL1 having the thinnest substrate thickness, as shown by a one-dot chain line in FIG. When the convergent light beam is incident, there is no particular problem. However, when the divergent light beam is incident, the surface S2 on the optical disk side of the objective lens OBJ has an area where the light beam is emitted further outside the effective diameter. In addition, the surface S1 of the light source of the objective lens OBJ has the same problem although not as much as the surface S2.
 特に最近では、ノート型PCや薄型テレビの背面等に搭載される、いわゆるスリムタイプと呼ばれる比較的薄めの光ピックアップ装置において、3層以上の情報記録面を有するBDを使用したいという強い要請があるが、このようなスリムタイプの光ピックアップ装置では、焦点距離が短い対物レンズが多用されており、このような対物レンズほど基板厚が厚い情報記録面記録/再生時に、対物レンズに入射する光の発散角度が大きくなるため、光ディスク側の面S2で光が出射する領域が広がる傾向が強くなる。 In particular, recently, there is a strong demand to use a BD having an information recording surface of three or more layers in a relatively thin optical pickup device called a so-called slim type that is mounted on the back of a notebook PC or a thin television. In such a slim type optical pickup device, an objective lens having a short focal length is frequently used, and the divergence angle of light incident on the objective lens at the time of information recording surface recording / reproduction having such a thick substrate as the objective lens. Therefore, there is a strong tendency that a region where light is emitted on the surface S2 on the optical disc side is widened.
 尚、特許文献2においては、モールドプレス成形する際における、金型凹面のRに対する最適プリフォーム径rを規定することが記載されている。ここで、特許文献2の実施例の全てにおいて、光ディスク側の面S2の有効径と光学面径が記載されているが、基板厚が0.1mm又は0.0875mmであることから、単層ディスク又は2層ディスク用途であることは明らかであり、従って3層以上の光ディスクに用いることを想定しておらず、当然に、発散光入射時の面S2側での出射領域の広がりの問題は考慮されていないといえる。 In Patent Document 2, it is described that an optimum preform diameter r with respect to R of the concave surface of the mold is specified in mold press molding. Here, in all of the examples of Patent Document 2, the effective diameter and optical surface diameter of the surface S2 on the optical disk side are described, but since the substrate thickness is 0.1 mm or 0.0875 mm, the single-layer disk or 2 Obviously, it is not intended to be used for an optical disk having three or more layers, and naturally the problem of the spread of the emission area on the surface S2 side when diverging light is incident is considered. I can say no.
 本発明は、上述の問題を考慮してなされたものであり、コンパクト且つ低コストでありながら、多層の情報記録面を有する光ディスクに対して情報の記録/再生を行うことができる光ピックアップ装置用の対物レンズ及び光ピックアップ装置を提供することを目的とする。 The present invention has been made in consideration of the above-mentioned problems, and is for an optical pickup device capable of recording / reproducing information with respect to an optical disc having a multilayer information recording surface while being compact and low in cost. An objective lens and an optical pickup device are provided.
 請求項1に記載の光ピックアップ装置用の対物レンズは、厚さ方向に3層以上の情報記録面を有する光ディスクにおけるいずれかの情報記録面を選択して、情報の記録及び/または再生を行うために、波長λ1(390nm<λ1<415nm)の光束を出射する光源と、前記光束を光ディスクの情報記録面上に集光させるための対物レンズと、前記光源と前記対物レンズとの間に配置されたカップリングレンズとを有する光ピックアップ装置用の対物レンズであって、
 前記対物レンズは単玉であり、以下の式を満たすことを特徴とする対物レンズ。
 f≦1.8mm   (1)
 TMIN×1.2≦T≦TMAX×0.86 且つ TMIN×1.2<TMAX×0.86   (2)
 1.1 ≦ A2/B2 ≦ 1.6   (3)
但し、
f:前記光束に対する前記対物レンズの焦点距離
T:平行光入射時に3次球面収差|SA3|≦0.05λrmsとなる光ディスクの透明基板厚 
TMIN:光ディスクにおける透明基板厚のうち最小の透明基板厚
TMAX:光ディスクにおける透明基板厚のうち最大の透明基板厚 
A2:前記対物レンズにおける光ディスク側の光学面径
B2:前記対物レンズにおける光ディスク側の有効径
The objective lens for an optical pickup device according to claim 1 records and / or reproduces information by selecting any information recording surface in an optical disk having three or more information recording surfaces in the thickness direction. Therefore, a light source that emits a light beam having a wavelength λ1 (390 nm <λ1 <415 nm), an objective lens that collects the light beam on an information recording surface of an optical disc, and the light source and the objective lens are disposed. An objective lens for an optical pickup device having a coupled lens,
The objective lens is a single lens and satisfies the following expression.
f ≦ 1.8mm (1)
TMIN × 1.2 ≦ T ≦ TMAX × 0.86 and TMIN × 1.2 <TMAX × 0.86 (2)
1.1 ≤ A2 / B2 ≤ 1.6 (3)
However,
f: Focal length of the objective lens with respect to the luminous flux T: Transparent substrate thickness of the optical disk in which third-order spherical aberration | SA3 | ≦ 0.05λrms when parallel light is incident
TMIN: the smallest transparent substrate thickness among the transparent substrate thicknesses on the optical disc TMAX: the largest transparent substrate thickness among the transparent substrate thicknesses on the optical disc
A2: Optical surface diameter on the optical disc side of the objective lens
B2: Effective diameter of the objective lens on the optical disk side
 本発明によれば、(1)式を満たすような対物レンズにおいて、(2)式を満たすことで、全ての情報記録面における集光時に高次球面収差の発生を抑えることができる。更に(3)式を満たすことで、対物レンズに発散光が入射しても、光束が光ディスク側面でケラレる恐れが少なくなり、スポット径を維持することができる。 According to the present invention, in the objective lens satisfying the expression (1), by satisfying the expression (2), it is possible to suppress the occurrence of higher-order spherical aberration when condensing on all information recording surfaces. Further, by satisfying the expression (3), even if divergent light is incident on the objective lens, the possibility that the light beam is vignetted on the side surface of the optical disk is reduced, and the spot diameter can be maintained.
 より具体的に説明すると、(1)式を満たすような焦点距離fを有する対物レンズは、いわゆるスリムタイプの光ピックアップ装置に好適である。尚、fは、0.9mm以上であることが好ましい。更に、(2)式において、TがTMAX×0.86を超えた場合、最も基板厚が薄い情報記録面に集光する際に、対物レンズに入射する収束光束の収束角を小さくさせるため、単一のカップリングレンズの場合には、大きく光源側に移動させなくてはならない。スリムタイプのピックアップではコンパクト化を図るため光源周りにスペースの余裕がなく、カップリングレンズが大きく移動すると他部品との干渉を招く恐れがある。一方、TがTMIN×1.2を下回ると、最も基板厚が厚い情報記録面に集光する際に、対物レンズに入射する発散光束の発散角が大きくなりすぎて、トラッキング時のコマ収差が増大すると共に、低次球面収差は補正されても高次球面収差が残留するため、光学特性の劣化を招くこととなる。 More specifically, an objective lens having a focal length f satisfying the expression (1) is suitable for a so-called slim type optical pickup device. In addition, it is preferable that f is 0.9 mm or more. Further, in the formula (2), when T exceeds TMAX × 0.86, when converging on the information recording surface having the thinnest substrate thickness, the convergence angle of the convergent light beam incident on the objective lens is reduced. In the case of this coupling lens, it must be moved largely to the light source side. The slim type pickup does not have enough space around the light source for compactness, and if the coupling lens moves greatly, there is a possibility of causing interference with other parts. On the other hand, when T is less than TMIN × 1.2, when condensing on the information recording surface with the thickest substrate thickness, the divergence angle of the divergent light beam incident on the objective lens becomes too large, and coma aberration during tracking increases. At the same time, even if the low-order spherical aberration is corrected, the high-order spherical aberration remains, which leads to deterioration of the optical characteristics.
 つまり、本発明のように、Tが(2)式の下限以上であると、最も基板厚が厚い情報記録面に光束を集光させる際にも高次球面収差の発生を抑えることができ、(2)式の上限以下であると、最も基板厚の薄い情報記録面に光束を集光させる際にも高次球面収差の発生を抑えることができるのである。また(2)式を満たすことで最も基板厚が厚い情報記録面に光束を集光させる際にもカップリングレンズが光源に近づきすぎず、スリムタイプの光ピックアップ装置に好適である。 That is, as in the present invention, when T is equal to or greater than the lower limit of the expression (2), it is possible to suppress the occurrence of higher-order spherical aberration even when the light beam is condensed on the information recording surface with the thickest substrate thickness. When the value is equal to or less than the upper limit of the expression (2), it is possible to suppress the occurrence of high-order spherical aberration even when the light beam is condensed on the information recording surface having the thinnest substrate. Further, when the expression (2) is satisfied, the coupling lens does not come too close to the light source even when the light beam is condensed on the information recording surface with the thickest substrate, and is suitable for a slim type optical pickup device.
 又、(3)式において、A2/B2が下限を下回ると、対物レンズの加工精度やピックアップへの組み付け誤差の問題から、対物レンズの光ディスク側の面から出射する光束が、光学面外を通過する恐れが高まり、要求されたNAを満足することができない。特に光軸に対して斜めに光束が入射した場合には、かかる問題が顕著に生じる恐れがある。一方、A2/B2が(3)式の上限を上回ると、対物レンズの外径が大きくなりすぎて特にスリムタイプの光ピックアップ装置に用いることが困難となり、外径が一定であれば対物レンズの光学面の周囲に設けた端面のスペースを確保することできず、対物レンズを光ピックアップ装置に取り付ける際に端面からの反射光を利用して確認することが困難となってしまう。 In equation (3), if A2 / B2 falls below the lower limit, the light beam emitted from the optical disk side surface of the objective lens passes outside the optical surface due to problems in the processing accuracy of the objective lens and assembly errors in the pickup. The demand for NA increases and the required NA cannot be satisfied. In particular, when a light beam is incident obliquely with respect to the optical axis, such a problem may occur remarkably. On the other hand, if A2 / B2 exceeds the upper limit of the expression (3), the outer diameter of the objective lens becomes too large to be used particularly in a slim type optical pickup device. The space of the end surface provided around the surface cannot be secured, and it becomes difficult to check using the reflected light from the end surface when the objective lens is attached to the optical pickup device.
 つまり、Tを(2)式の上限以下にすることにより発散角を抑え、且つA2/B2を(3)式の下限以上にすることで、基板厚が異なる3つ以上の情報記録面のいずれにも、情報を記録/再生可能なように精度良く集光させることができるにも関わらず、光ディスク側の面での光線のケラレを抑制しつつ、対物レンズの外径を小さく抑えることができるのである。一方、A2/B2を(3)式の上限以下にすることで、対物レンズの光学面の周囲に設けた端面のスペースを確保することできるため、それにより光ピックアップ装置の組み立て時に、対物レンズを精度よく取り付けることができるのである。 In other words, by setting T to be equal to or less than the upper limit of the equation (2), the divergence angle is suppressed, and by setting A2 / B2 to be equal to or greater than the lower limit of the equation (3), In addition, the outer diameter of the objective lens can be reduced while suppressing the vignetting of light on the surface on the optical disc side, although the information can be collected with high precision so that information can be recorded / reproduced. It is. On the other hand, by setting A2 / B2 to be equal to or less than the upper limit of the expression (3), it is possible to secure the space of the end surface provided around the optical surface of the objective lens. It can be attached with high accuracy.
 請求項2に記載の光ピックアップ装置は、請求項1に記載の発明において、前記対物レンズはガラス製であることを特徴とする。対物レンズをガラス製とすれば、耐熱性、耐光性に優れる。特に温度変化時に発生する収差が小さくなり、温度変化による倍率補正を行う必要がない。そのため、カップリングレンズの移動量を減らすことができ、又、光ディスク側面での出射領域の拡大を抑制することができる。 The optical pickup device according to claim 2 is characterized in that, in the invention according to claim 1, the objective lens is made of glass. If the objective lens is made of glass, it has excellent heat resistance and light resistance. In particular, aberrations that occur when the temperature changes are reduced, and there is no need to perform magnification correction due to temperature changes. Therefore, the amount of movement of the coupling lens can be reduced, and the enlargement of the emission area on the side surface of the optical disk can be suppressed.
 請求項3に記載の光ピックアップ装置は、請求項1又は2に記載の発明において、以下の式を満たすことを特徴とする。
 1.15 < A2/B2 < 1.3   (5A)
According to a third aspect of the present invention, there is provided the optical pickup device according to the first or second aspect, wherein the following expression is satisfied.
1.15 <A2 / B2 <1.3 (5A)
 A2/B2を(5A)式の下限より大きくすることで、ガラス製の対物レンズにおいて、有効径に対して更に十分な光学面径を確保でき、有効径内の性能を保証することができる。一方、A2/B2を(5A)式の上限より小さくすることで、更に広い端面を確保しつつ、対物レンズの外径も小さくすることができる。上述したように、ガラス製の対物レンズは、温度変化による倍率補正を行う必要がない分、カップリングレンズの移動量を減らすことができるため、光ディスク側の光学面での出射領域を小さく抑えることができるため、(5A)式のように上限が小さく抑えられる。 By making A2 / B2 larger than the lower limit of the formula (5A), it is possible to secure a sufficient optical surface diameter with respect to the effective diameter in the glass objective lens, and to guarantee the performance within the effective diameter. On the other hand, by making A2 / B2 smaller than the upper limit of the formula (5A), the outer diameter of the objective lens can be reduced while securing a wider end face. As described above, the glass objective lens can reduce the amount of movement of the coupling lens as much as it is not necessary to perform magnification correction due to temperature change, so that the emission area on the optical surface on the optical disk side can be kept small. Therefore, the upper limit can be kept small as in the equation (5A).
 本明細書にて、対物レンズの「光学面」とは、光束を集光させる光学機能を有する面であって、一般的には端面の内側の領域をいう。対物レンズの「端面」とは、一般的には光軸に直交した面であり、対物レンズを光ピックアップ装置に組み付ける際に、検査装置から光束を出射して、端面からの反射光を用いて位置決めを行うために用いられることが多い。光学面と端面とは接していて良いが、間に小さい境界部を設けても良い。対物レンズの「有効径」とは、対物レンズに平行光束が入射した場合に、記録/再生に使用する光束が通過する光学面内の領域であって、絞りや絞り機能を有する素子(面絞り、開口制限素子)の内側を通過した平行光束が通過する光学面内の領域をいう。よって、「光源側の有効径」は、絞りの内径である。 In this specification, the “optical surface” of the objective lens is a surface having an optical function of condensing a light beam, and generally refers to a region inside the end surface. The “end surface” of the objective lens is generally a surface orthogonal to the optical axis. When the objective lens is assembled to the optical pickup device, the light beam is emitted from the inspection device and the reflected light from the end surface is used. Often used for positioning. The optical surface and the end surface may be in contact with each other, but a small boundary portion may be provided between them. The “effective diameter” of an objective lens is an area in an optical surface through which a light beam used for recording / reproduction passes when a parallel light beam is incident on the objective lens. , An area in the optical plane through which the parallel light flux that has passed through the inside of the aperture limiting element passes. Therefore, the “effective diameter on the light source side” is the inner diameter of the stop.
 請求項4に記載の光ピックアップ装置は、請求項1に記載の発明において、前記対物レンズはプラスチック製であることを特徴とする。対物レンズをプラスチック製とすることで、軽量・安価なものとできる。回折構造の加工性に優れ、回折を利用してBD,DVD,CDの互換を行うことが可能となる。 The optical pickup device according to claim 4 is characterized in that, in the invention according to claim 1, the objective lens is made of plastic. By making the objective lens made of plastic, it can be made light and inexpensive. The workability of the diffractive structure is excellent, and BD, DVD, and CD can be interchanged using diffraction.
 請求項5に記載の光ピックアップ装置は、請求項4に記載の発明において、以下の式を満たすことを特徴とする。
 1.2 < A2/B2 < 1.4   (3’)
An optical pickup device according to a fifth aspect of the invention according to the fourth aspect of the invention satisfies the following expression.
1.2 <A2 / B2 <1.4 (3 ')
 A2/B2を(3’)式の下限より大きくすることで、有効径に対して更に十分な光学面径を確保でき、有効径内の性能を保証することができる。一方、A2/B2を(3’)式の上限より小さくすることで、更に広い端面を確保しつつ、対物レンズの外径も小さくすることができる。対物レンズをプラスチック製とした場合、ガラスと比べると温度変化による屈折率変化が大きくなりがちであるので、高温状態で、最も基板厚が厚い情報記録面に集光する際に、より発散角の大きな発散光束を入射させる必要が生じる。そこで、対物レンズにプラスチック製とする場合には、(3’)式を満たすことが望ましい。 By making A2 / B2 larger than the lower limit of the expression (3 ′), it is possible to secure a more sufficient optical surface diameter with respect to the effective diameter and to guarantee the performance within the effective diameter. On the other hand, by making A2 / B2 smaller than the upper limit of the expression (3 '), the outer diameter of the objective lens can be reduced while securing a wider end face. When the objective lens is made of plastic, the refractive index change due to temperature change tends to be larger than that of glass.Therefore, when focusing on the information recording surface with the thickest substrate at a high temperature, the divergence angle is larger. A large divergent light beam needs to be incident. Therefore, when the objective lens is made of plastic, it is desirable to satisfy the expression (3 ′).
 請求項6に記載の光ピックアップ装置は、請求項1乃至5のいずれかに記載の発明において、以下の式を満たすことを特徴とする。
 1.0 ≦ A1/B1 ≦ 1.1   (4)
但し、
A1:前記対物レンズにおける光源側の光学面径
B1:前記対物レンズにおける光源側の有効径
An optical pickup device according to a sixth aspect of the invention is characterized in that, in the invention according to any one of the first to fifth aspects, the following expression is satisfied.
1.0 ≤ A1 / B1 ≤ 1.1 (4)
However,
A1: Optical surface diameter on the light source side of the objective lens
B1: Effective diameter of the objective lens on the light source side
 対物レンズの光源側の光学面については、光ディスク側の光学面に比べて絞りに近いことから、収束光束や発散光束入射時の影響が小さく、A1/B1の関与は比較的小さいといえる。しかしながら、光ディスク側の光学面の設計と合わせて、光源側の光学面を設計することで、より優れた対物レンズを得ることができる。より具体的には、A1/B1を(4)式の下限以上とすることで、有効径に対して更に十分な光学面径を確保でき、有効径内の性能を保証することができる。A1/B1を(4)式の上限以下にすることで対物レンズの外径を小さくすることができる。また高NAの対物レンズにおいて、光源側の光学面は面の見込み角が大きく成形が困難であることが多いが、これにより見込み角を小さくすることができ、製造容易性を向上できる。 Since the optical surface on the light source side of the objective lens is closer to the diaphragm than the optical surface on the optical disk side, the influence at the time of incidence of the convergent light beam or divergent light beam is small, and it can be said that the A1 / B1 involvement is relatively small. However, a better objective lens can be obtained by designing the optical surface on the light source side together with the design of the optical surface on the optical disc side. More specifically, by setting A1 / B1 to be equal to or greater than the lower limit of the expression (4), it is possible to secure a further sufficient optical surface diameter with respect to the effective diameter and to guarantee the performance within the effective diameter. By setting A1 / B1 to be equal to or less than the upper limit of the formula (4), the outer diameter of the objective lens can be reduced. In an objective lens having a high NA, the optical surface on the light source side has a large expected angle of the surface and is often difficult to mold. However, this makes it possible to reduce the expected angle and improve manufacturability.
 請求項7に記載の光ピックアップ装置は、請求項1乃至6のいずれかに記載の対物レンズと、カップリングレンズとを有し、前記カップリングレンズを光軸方向に移動させることで、前記光ディスクにおけるいずれかの情報記録面を選択するようになっていることを特徴とする。 An optical pickup device according to a seventh aspect includes the objective lens according to any one of the first to sixth aspects and a coupling lens, and the optical disk is moved by moving the coupling lens in an optical axis direction. One of the information recording surfaces is selected.
 本発明に係る光ピックアップ装置は、少なくとも1つの光源(第1光源)を有する。勿論、複数種類の光ディスクに対応できるように、複数種類の光源を有していてもよい。さらに、本発明の光ピックアップ装置は、少なくとも第1光源からの第1光束を第1光ディスクの情報記録面上に集光させるための集光光学系を有する。複数種類の光ディスクに対応可能な光ピックアップ装置においては、集光光学系が、第2光束を第2光ディスクの情報記録面上に集光させ、第3光束を第3光ディスクの情報記録面上に集光するようにしてもよい。また、本発明の光ピックアップ装置は、少なくとも第1光ディスクの情報記録面からの反射光束を受光する受光素子を有する。複数種類の光ディスクに対応可能な光ピックアップ装置においては、受光素子が、第2光ディスクの情報記録面からの反射光束を受光し、第3光ディスクの情報記録面からの反射光束を受光するようにしてもよい。 The optical pickup device according to the present invention has at least one light source (first light source). Of course, a plurality of types of light sources may be provided so as to support a plurality of types of optical disks. Furthermore, the optical pickup device of the present invention has a condensing optical system for condensing at least the first light flux from the first light source on the information recording surface of the first optical disc. In the optical pickup apparatus that can handle a plurality of types of optical disks, the condensing optical system condenses the second light beam on the information recording surface of the second optical disk, and the third light beam on the information recording surface of the third optical disk. You may make it condense. The optical pickup device of the present invention includes a light receiving element that receives at least a reflected light beam from the information recording surface of the first optical disc. In an optical pickup device that can handle a plurality of types of optical disks, the light receiving element receives a reflected light beam from the information recording surface of the second optical disk and receives a reflected light beam from the information recording surface of the third optical disk. Also good.
 第1光ディスクは、厚さがt1の保護基板と情報記録面とを有する。第2光ディスクは厚さがt2(t1<t2)の保護基板と情報記録面とを有する。第3光ディスクは、厚さがt3(t2<t3)の保護基板と情報記録面とを有する。第1光ディスクがBDであり、第2光ディスクがDVDであり、第3光ディスクがCDであることが好ましいが、これに限られるものではない。 The first optical disc has a protective substrate having a thickness t1 and an information recording surface. The second optical disc has a protective substrate having a thickness t2 (t1 <t2) and an information recording surface. The third optical disc has a protective substrate having a thickness t3 (t2 <t3) and an information recording surface. The first optical disc is preferably a BD, the second optical disc is a DVD, and the third optical disc is preferably a CD, but is not limited thereto.
 第1光ディスクは、厚み方向に重ねて3つ以上の情報記録面を有するものである。当然、4つ以上の情報記録面を有していてもよい。また、第2光ディスクや第3光ディスクも複数の情報記録面を有していてもよい。 The first optical disc has three or more information recording surfaces stacked in the thickness direction. Of course, you may have four or more information recording surfaces. The second optical disc and the third optical disc may also have a plurality of information recording surfaces.
 本明細書において、BDとは、波長390~415nm程度の光束、NA0.8~0.9程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.05~0.125mm程度であるBD系列光ディスクの総称であり、単一の情報記録面のみ有するBDや、3層以上の情報記録面を有するBD等を含むものであるが、本発明の光ピックアップ装置は、少なくとも3層以上の情報記録面を有するBDに対応可能であることが好ましい。更に、本明細書においては、DVDとは、NA0.60~0.67程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.6mm程度であるDVD系列光ディスクの総称であり、DVD-ROM、DVD-Video、DVD- Audio、DVD-RAM、DVD-R、DVD-RW、DVD+R、DVD+RW等を含む。また、本明細書においては、CDとは、NA0.45~0.51程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが1.2mm 程度であるCD系列光ディスクの総称であり、CD-ROM、CD-Audio、CD-Video、CD-R、CD-RW等を含む。尚、記録密度については、BDの記録密度が最も高く、次いでDVD、CDの順に低くなる。 In this specification, BD means that information is recorded / reproduced by a light beam having a wavelength of about 390 to 415 nm and an objective lens having an NA of about 0.8 to 0.9, and the thickness of the protective substrate is 0.05 to 0.00 mm. A general term for BD series optical discs of about 125 mm, including a BD having only a single information recording surface, a BD having three or more information recording surfaces, etc. The optical pickup device of the present invention has at least three layers. It is preferable to be able to cope with a BD having the above information recording surface. Further, in this specification, DVD is a general term for DVD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.60 to 0.67 and the thickness of the protective substrate is about 0.6 mm. Including DVD-ROM, DVD-Video, DVD- Audio, DVD-RAM, DVD-R, DVD-RW, DVD + R, DVD + RW, and the like. In this specification, CD is a general term for CD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.45 to 0.51 and the thickness of the protective substrate is about 1.2 mm. Including CD-ROM, CD-Audio, CD-Video, CD-R, CD-RW and the like. As for the recording density, the recording density of BD is the highest, followed by the order of DVD and CD.
 なお、保護基板の厚さt1、t2、t3に関しては、以下の条件式(5)、(6)、(7)を満たすことが好ましいが、これに限られない。尚、ここで言う、保護基板の厚さとは、光ディスク表面に設けられた保護基板の厚さのことである。即ち、光ディスク表面から、表面に最も近い情報記録面までの保護基板の厚さのことをいう。 In addition, regarding the thicknesses t1, t2, and t3 of the protective substrate, it is preferable to satisfy the following conditional expressions (5), (6), and (7), but is not limited thereto. The thickness of the protective substrate referred to here is the thickness of the protective substrate provided on the surface of the optical disk. That is, the thickness of the protective substrate from the optical disc surface to the information recording surface closest to the surface.
 0.050mm ≦ t1 ≦ 0.125mm   (5)
 0.5mm ≦ t2 ≦ 0.7mm    (6)
 1.0mm ≦ t3 ≦ 1.3mm   (7)
0.050 mm ≤ t1 ≤ 0.125 mm (5)
0.5mm ≤ t2 ≤ 0.7mm (6)
1.0 mm ≤ t3 ≤ 1.3 mm (7)
 本明細書において、第1光源、第2光源、第3光源は、好ましくはレーザ光源である。レーザ光源としては、好ましくは半導体レーザ、シリコンレーザ等を用いることが出来る。第1光源から出射される第1光束の第1波長λ1、第2光源から出射される第2光束の第2波長λ2(λ2>λ1)、第3光源から出射される第3光束の第3波長λ3(λ3>λ2)は以下の条件式(8)、(9)を満たすことが好ましい。
 1.5・λ1 < λ2 < 1.7・λ1   (8)
 1.8・λ1 < λ3 < 2.0・λ1   (9)
In the present specification, the first light source, the second light source, and the third light source are preferably laser light sources. As the laser light source, a semiconductor laser, a silicon laser, or the like can be preferably used. The first wavelength λ1 of the first light beam emitted from the first light source, the second wavelength λ2 (λ2> λ1) of the second light beam emitted from the second light source, and the third of the third light beam emitted from the third light source. The wavelength λ3 (λ3> λ2) preferably satisfies the following conditional expressions (8) and (9).
1.5 · λ1 <λ2 <1.7 · λ1 (8)
1.8 · λ1 <λ3 <2.0 · λ1 (9)
 また、第1光ディスク、第2光ディスク、第3光ディスクとして、それぞれ、BD、DVD及びCDが用いられる場合、第1光源の第1波長λ1は好ましくは、350nm以上、440nm以下、より好ましくは、390nm以上、415nm以下であって、第2光源の第2波長λ2は好ましくは570nm以上、680nm以下、より好ましくは、630nm以上、670nm以下であって、第3光源の第3波長λ3は好ましくは、750nm以上、880nm以下、より好ましくは、760nm以上、820nm以下である。 When BD, DVD, and CD are used as the first optical disc, the second optical disc, and the third optical disc, respectively, the first wavelength λ1 of the first light source is preferably 350 nm or more and 440 nm or less, more preferably 390 nm. The second wavelength λ2 of the second light source is preferably 570 nm or more and 680 nm or less, more preferably 630 nm or more and 670 nm or less, and the third wavelength λ3 of the third light source is preferably 415 nm or less. It is 750 nm or more and 880 nm or less, More preferably, it is 760 nm or more and 820 nm or less.
 また、第1光源、第2光源、第3光源のうち少なくとも2つの光源をユニット化してもよい。ユニット化とは、例えば第1光源と第2光源とが1パッケージに固定収納されているようなものをいう。また、光源に加えて、後述する受光素子を1パッケージ化してもよい。 Also, at least two of the first light source, the second light source, and the third light source may be unitized. The unitization means that the first light source and the second light source are fixedly housed in one package, for example. In addition to the light source, a light receiving element to be described later may be packaged.
 受光素子としては、フォトダイオードなどの光検出器が好ましく用いられる。光ディスクの情報記録面上で反射した光が受光素子へ入射し、その出力信号を用いて、各光ディスクに記録された情報の読み取り信号が得られる。さらに、受光素子上のスポットの形状変化、位置変化による光量変化を検出して、合焦検出やトラック検出を行い、この検出に基づいて、合焦、トラッキングのために対物レンズを移動させることが出来る。受光素子は、複数の光検出器からなっていてもよい。受光素子は、メインの光検出器とサブの光検出器を有していてもよい。例えば、情報の記録再生に用いられるメイン光を受光する光検出器の両脇に2つのサブの光検出器を設け、当該2つのサブの光検出器によってトラッキング調整用のサブ光を受光するような受光素子としてもよい。また、受光素子は各光源に対応した複数の受光素子を有していてもよい。 As the light receiving element, a photodetector such as a photodiode is preferably used. Light reflected on the information recording surface of the optical disc enters the light receiving element, and a read signal of information recorded on each optical disc is obtained using the output signal. Furthermore, it detects the change in the light amount due to the spot shape change and position change on the light receiving element, performs focus detection and track detection, and based on this detection, the objective lens can be moved for focusing and tracking I can do it. The light receiving element may comprise a plurality of photodetectors. The light receiving element may have a main photodetector and a sub photodetector. For example, two sub photodetectors are provided on both sides of a photodetector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub photodetectors. A light receiving element may be used. The light receiving element may have a plurality of light receiving elements corresponding to the respective light sources.
 集光光学系は、カップリングレンズと対物レンズを有する。カップリングレンズとは、対物レンズと光源の間に配置され、光束の発散角を変えるレンズのことをいう。カップリングレンズは、1枚の正レンズから構成されていても良く、正レンズと負レンズとを有していても良い。複数からなるレンズを有する場合、正レンズは少なくとも1枚の正レンズを有する。正レンズは、正レンズ1枚のみでもよいし、複数のレンズを有していてもよい。負レンズは少なくとも1枚の負レンズを有する。負レンズは、負レンズ1枚のみでもよいし、複数のレンズを有していてもよい。また、正レンズと負レンズの配置は、光源側から負レンズ、正レンズの順に配置されていても良いし、光源側から正レンズ、負レンズの順に配置されていても良い。 The condensing optical system has a coupling lens and an objective lens. The coupling lens is a lens that is arranged between the objective lens and the light source and changes the divergence angle of the light beam. The coupling lens may be composed of a single positive lens or may have a positive lens and a negative lens. In the case of having a plurality of lenses, the positive lens has at least one positive lens. The positive lens may be a single positive lens or may have a plurality of lenses. The negative lens has at least one negative lens. The negative lens may be a single negative lens or a plurality of lenses. The positive lens and the negative lens may be arranged in the order of the negative lens and the positive lens from the light source side, or may be arranged in the order of the positive lens and the negative lens from the light source side.
 第1光ディスクの選択された情報記録面において発生する球面収差を補正するために、カップリングレンズ(正レンズと負レンズとを有する場合は負レンズ又は正レンズ)は光軸方向に移動可能となっている。例えば、第1光ディスクのある情報記録面の記録及び/又は再生を行い、次に、第1光ディスクの他の情報記録面の記録及び/又は再生を行う場合、カップリングレンズが光軸方向に移動し、光束の発散度を変化させ、対物レンズの倍率を変化させることにより、第1光ディスクの異なる情報記録面へのフォーカスジャンプ時に発生する球面収差を補正する。 In order to correct the spherical aberration generated on the selected information recording surface of the first optical disc, the coupling lens (a negative lens or a positive lens when a positive lens and a negative lens are provided) can be moved in the optical axis direction. ing. For example, when recording and / or reproducing on one information recording surface of the first optical disc and then recording and / or reproducing on another information recording surface of the first optical disc, the coupling lens moves in the optical axis direction. Then, by changing the divergence of the light beam and changing the magnification of the objective lens, the spherical aberration generated at the time of focus jump to a different information recording surface of the first optical disc is corrected.
 本明細書において、対物レンズとは、光ピックアップ装置において光ディスクに対向する位置に配置され、光源から射出された光束を光ディスクの情報記録面上に集光する機能を有する光学系を指す。対物レンズは、単玉のレンズである。また、対物光学素子は、ガラスレンズであってもプラスチックレンズであっても、又は、ガラスレンズの上に光硬化性樹脂などで回折構造などを設けたハイブリッドレンズであってもよい。また、対物光学素子は、屈折面が非球面であることが好ましい。また、対物レンズは、光路差付与構造が設けられる場合、そのベース面が非球面であることが好ましい。 In this specification, the objective lens refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing a light beam emitted from the light source onto the information recording surface of the optical disk. The objective lens is a single lens. The objective optical element may be a glass lens, a plastic lens, or a hybrid lens in which a diffractive structure or the like is provided on a glass lens with a photocurable resin or the like. The objective optical element preferably has a refractive surface that is aspheric. Further, when the objective lens is provided with an optical path difference providing structure, the base surface is preferably an aspherical surface.
 対物レンズがガラスレンズであると、温度変化によって発生する球面収差を補正するためにカップリングレンズを移動させる必要がないため、カップリングレンズの移動量を減らすことができ、光ピックアップ装置を小型化できるため好ましい。 If the objective lens is a glass lens, it is not necessary to move the coupling lens to correct spherical aberration caused by temperature changes, so the amount of movement of the coupling lens can be reduced, and the optical pickup device can be downsized. This is preferable because it is possible.
 また、対物レンズをガラスレンズとする場合は、ガラス転移点Tgが500℃以下、更に好ましくは400℃以下であるガラス材料を使用することが好ましい。ガラス転移点Tgが500℃以下であるガラス材料を使用することにより、比較的低温での成形が可能となるので、金型の寿命を延ばすことが出来る。このようなガラス転移点Tgが低いガラス材料としては、例えば(株)住田光学ガラス製のK-PG325や、K-PG375(共に製品名) がある。 When the objective lens is a glass lens, it is preferable to use a glass material having a glass transition point Tg of 500 ° C. or lower, more preferably 400 ° C. or lower. By using a glass material having a glass transition point Tg of 500 ° C. or lower, molding at a relatively low temperature is possible, so that the life of the mold can be extended. Examples of such a glass material having a low glass transition point Tg include K-PG325 and K-PG375 (both product names) manufactured by Sumita Optical Glass Co., Ltd.
 ところで、ガラスレンズは一般的に樹脂レンズよりも比重が大きいため、対物レンズをガラスレンズとすると、重量が大きくなり対物レンズを駆動するアクチュエータに負担がかかる。そのため、対物レンズをガラスレンズとする場合には、比重が小さいガラス材料を使用するのが好ましい。具体的には、比重が4.0以下であるのが好ましく、更に好ましくは比重が3.0以下であるものである。 By the way, since the specific gravity of the glass lens is generally larger than that of the resin lens, if the objective lens is a glass lens, the weight increases and a load is imposed on the actuator that drives the objective lens. Therefore, when the objective lens is a glass lens, it is preferable to use a glass material having a small specific gravity. Specifically, the specific gravity is preferably 4.0 or less, more preferably the specific gravity is 3.0 or less.
 加えて、ガラスレンズを成形して製作する際に重要となる物性値の一つが線膨張係数αである。仮にTgが400℃以下の材料を選んだとしても、プラスチック材料と比較して室温との温度差は依然大きい。線膨張係数αが大きい硝材を用いてレンズ成形を行った場合、降温時に割れが発生しやすくなる。硝材の線膨張係数αは、200(10E-7/K)以下にあることが好ましく、更に好ましくは120以下であることが好ましい。 In addition, one of the important physical properties when molding and manufacturing a glass lens is the linear expansion coefficient α. Even if a material having a Tg of 400 ° C. or lower is selected, the temperature difference from room temperature is still larger than that of a plastic material. When lens molding is performed using a glass material having a large linear expansion coefficient α, cracks are likely to occur when the temperature is lowered. The linear expansion coefficient α of the glass material is preferably 200 (10E-7 / K) or less, more preferably 120 or less.
 また、対物レンズをプラスチックレンズとする場合は、環状オレフィン系の樹脂材料等の脂環式炭化水素系重合体材料を使用するのが好ましい。また、当該樹脂材料は、波長405nmに対する温度25℃ での屈折率が1.54乃至1.60の範囲内であって、-5℃から70℃の温度範囲内での温度変化に伴う波長405nmに対する屈折率変化率dN/dT(℃ -1) が-20×10-5乃至-5×10-5(より好ましくは、-10×10-5乃至-8×10-5)の範囲内である樹脂材料を使用するのがより好ましい。また、対物レンズをプラスチックレンズとする場合、カップリングレンズもプラスチックレンズとすることが好ましい。 When the objective lens is a plastic lens, it is preferable to use an alicyclic hydrocarbon polymer material such as a cyclic olefin resin material. The resin material has a refractive index within a range of 1.54 to 1.60 at a temperature of 25 ° C. with respect to a wavelength of 405 nm, and a wavelength of 405 nm associated with a temperature change within a temperature range of −5 ° C. to 70 ° C. The refractive index change rate dN / dT (° C. −1 ) is -20 × 10 −5 to −5 × 10 −5 (more preferably −10 × 10 −5 to −8 × 10 −5 ). It is more preferable to use a certain resin material. When the objective lens is a plastic lens, the coupling lens is preferably a plastic lens.
 プラスチックとしては、シクロオレフィン樹脂が好適に用いられ、具体的には、日本ゼオン社製のZEONEXや、三井化学社製のAPEL、TOPAS ADVANCED POLYMERS社製のTOPAS、JSR社製ARTONなどが好ましい例として挙げられる。 As the plastic, cycloolefin resin is preferably used. Specifically, ZEONEX manufactured by Nippon Zeon Co., Ltd., APEL manufactured by Mitsui Chemicals, Inc., TOPAS® ADVANCED® POLYMERS manufactured by TOPAS, JSR manufactured by ARTON, etc. are preferable examples. Can be mentioned.
 また、対物レンズを構成する材料のアッベ数は、50以上であることが好ましい。 Further, the Abbe number of the material constituting the objective lens is preferably 50 or more.
 対物レンズは、以下の式を満たす。
 f≦1.8mm   (1)
 TMIN×1.2≦T≦TMAX×0.86 且つ TMIN×1.2<TMAX×0.86   (2)
 1.1 ≦ A2/B2 ≦ 1.6   (3)
但し、
f:光束に対する対物レンズの焦点距離
T:平行光入射時に3次球面収差|SA3|≦0.05λrmsとなる光ディスクの透明基板厚(設計中心ディスク厚ともいう) 
TMIN:光ディスクにおける透明基板厚のうち最小の透明基板厚
TMAX:光ディスクにおける透明基板厚のうち最大の透明基板厚 
A2:対物レンズにおける光ディスク側の光学面径
B2:対物レンズにおける光ディスク側の有効径
The objective lens satisfies the following formula.
f ≦ 1.8mm (1)
TMIN × 1.2 ≦ T ≦ TMAX × 0.86 and TMIN × 1.2 <TMAX × 0.86 (2)
1.1 ≤ A2 / B2 ≤ 1.6 (3)
However,
f: Focal length of objective lens with respect to luminous flux T: Thickness of transparent substrate of optical disk satisfying third-order spherical aberration | SA3 | ≦ 0.05λrms when parallel light is incident (also referred to as design center disk thickness)
TMIN: the smallest transparent substrate thickness among the transparent substrate thicknesses on the optical disc TMAX: the largest transparent substrate thickness among the transparent substrate thicknesses on the optical disc
A2: Optical surface diameter on the optical disc side of the objective lens
B2: Effective diameter of the objective lens on the optical disc side
 更に、対物レンズがガラス製であるときは、以下の式を満たすと好ましい。
 1.15 ≦ A2/B2 ≦ 1.25   (3’)
Furthermore, when the objective lens is made of glass, it is preferable that the following expression is satisfied.
1.15 ≤ A2 / B2 ≤ 1.25 (3 ')
 一方で、対物レンズがプラスチック製であるときは、以下の式を満たすと好ましい。
 1.2 < A2/B2 < 1.4   (3’)
On the other hand, when the objective lens is made of plastic, it is preferable that the following expression is satisfied.
1.2 <A2 / B2 <1.4 (3 ')
 更に、以下の式を満たすと好ましい。
 1.0 ≦ A1/B1 ≦ 1.1   (4)
但し、
A1:対物レンズにおける光源側の光学面径
B1:対物レンズにおける光源側の有効径
Furthermore, it is preferable that the following formula is satisfied.
1.0 ≤ A1 / B1 ≤ 1.1 (4)
However,
A1: Optical surface diameter on the light source side of the objective lens
B1: Effective diameter on the light source side of the objective lens
 第1光ディスクに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA1とし、第2光ディスクに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA2(NA1>NA2)とし、第3光ディスクに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA3(NA2>NA3)とする。NA1は、0.75以上、0.9以下であることが好ましく、より好ましくは、0.8以上、0.9以下である。特にNA1は0.85であることが好ましい。NA2は、0.55以上、0.7以下であることが好ましい。特にNA2は0.60又は0.65であることが好ましい。また、NA3は、0.4以上、0.55以下であることが好ましい。特にNA3は0.45又は0.53であることが好ましい。 The numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the first optical disc is NA1, and the numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the second optical disc. Is NA2 (NA1> NA2), and the image-side numerical aperture of the objective lens necessary for reproducing / recording information on the third optical disk is NA3 (NA2> NA3). NA1 is preferably 0.75 or more and 0.9 or less, and more preferably 0.8 or more and 0.9 or less. In particular, NA1 is preferably 0.85. NA2 is preferably 0.55 or more and 0.7 or less. In particular, NA2 is preferably 0.60 or 0.65. NA3 is preferably 0.4 or more and 0.55 or less. In particular, NA3 is preferably 0.45 or 0.53.
 また、対物レンズは、以下の条件式(10)を満たすことが好ましい。
 0.9≦d/f≦1.5   (10)
 但し、dは、対物レンズの光軸上の厚さ(mm)を表し、fは、第1光束における対物レンズの焦点距離を表す。なお、fは、0.9mm以上、1.8mm以下となることが好ましい。
Moreover, it is preferable that an objective lens satisfy | fills the following conditional expression (10).
0.9 ≦ d / f ≦ 1.5 (10)
Here, d represents the thickness (mm) on the optical axis of the objective lens, and f represents the focal length of the objective lens in the first light flux. Note that f is preferably 0.9 mm or more and 1.8 mm or less.
 BDのような短波長、高NAの光ディスクに対応する対物レンズの場合、対物レンズの焦点距離に対する光軸上の厚さの比が大きくなりすぎると、対物レンズに対して軸外光束が入射した際に非点収差が発生しやすくなったり、作動距離が確保出来なくなるという課題が生じる。一方、対物レンズの焦点距離に対する光軸上の厚さの比が小さくなりすぎると、面シフト感度が大きくなるという課題が生じる。条件式(10)を満たすことにより非点収差の発生や面シフト感度を抑制することが可能となる。 In the case of an objective lens corresponding to an optical disk with a short wavelength and high NA such as BD, if the ratio of the thickness on the optical axis to the focal length of the objective lens becomes too large, an off-axis light beam enters the objective lens. In this case, astigmatism tends to occur, and a working distance cannot be secured. On the other hand, if the ratio of the thickness on the optical axis to the focal length of the objective lens becomes too small, there arises a problem that the surface shift sensitivity increases. By satisfying conditional expression (10), it is possible to suppress the generation of astigmatism and the surface shift sensitivity.
 また、第1光ディスクを用いる際の対物レンズの作動距離は、0.15mm以上、1.0mm以下であることが好ましい。 Also, the working distance of the objective lens when using the first optical disk is preferably 0.15 mm or more and 1.0 mm or less.
 本発明に係る光情報記録再生装置は、上述の光ピックアップ装置を有する光ディスクドライブ装置を有する。 An optical information recording / reproducing apparatus according to the present invention includes an optical disc drive apparatus having the above-described optical pickup apparatus.
 ここで、光情報記録再生装置に装備される光ディスクドライブ装置に関して説明すると、光ディスクドライブ装置には、光ピックアップ装置等を収納している光情報記録再生装置本体から光ディスクを搭載した状態で保持可能なトレイのみが外部に取り出される方式と、光ピックアップ装置等が収納されている光ディスクドライブ装置本体ごと、外部に取り出される方式とがある。 Here, the optical disk drive apparatus provided in the optical information recording / reproducing apparatus will be described. The optical disk drive apparatus can hold an optical disk mounted from the optical information recording / reproducing apparatus main body containing the optical pickup apparatus or the like. There are a system in which only the tray is taken out, and a system in which the optical disc drive apparatus main body in which the optical pickup device is stored is taken out to the outside.
 上述した各方式を用いる光情報記録再生装置には、概ね、次の構成部材が装備されているがこれに限られるものではない。ハウジング等に収納された光ピックアップ装置、光ピックアップ装置をハウジングごと光ディスクの内周あるいは外周に向けて移動させるシークモータ等の光ピックアップ装置の駆動源、光ピックアップ装置のハウジングを光ディスクの内周あるいは外周に向けてガイドするガイドレールなどを有した光ピックアップ装置の移送手段及び、光ディスクの回転駆動を行うスピンドルモータ等である。 The optical information recording / reproducing apparatus using each method described above is generally equipped with the following components, but is not limited thereto. An optical pickup device housed in a housing or the like, a drive source of an optical pickup device such as a seek motor that moves the optical pickup device together with the housing toward the inner periphery or outer periphery of the optical disc, and the optical pickup device housing the inner periphery or outer periphery of the optical disc These include a transfer means of an optical pickup device having a guide rail or the like that guides toward the head, a spindle motor that rotates the optical disk, and the like.
 前者の方式には、これら各構成部材の他に、光ディスクを搭載した状態で保持可能なトレイおよびトレイを摺動させるためのローディング機構等が設けられ、後者の方式にはトレイおよびローディング機構がなく、各構成部材が外部に引き出し可能なシャーシに相当するドロワーに設けられていることが好ましい。 In addition to these components, the former method is provided with a tray that can be held in a state in which an optical disk is mounted and a loading mechanism for sliding the tray, and the latter method has no tray and loading mechanism. It is preferable that each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
 本発明によれば、コンパクト且つ低コストでありながら、多層の情報記録面を有する光ディスクに対して情報の記録/再生を行うことができる光ピックアップ装置及びカップリングレンズを提供することができる。 According to the present invention, it is possible to provide an optical pickup device and a coupling lens that are capable of recording / reproducing information with respect to an optical disc having a multilayer information recording surface while being compact and low in cost.
本発明を説明するための集光光学系の概略図である。It is the schematic of the condensing optical system for demonstrating this invention. 光ピックアップ装置PU1の構成を概略的に示す図である。It is a figure which shows schematically the structure of optical pick-up apparatus PU1. 横軸に焦点距離をとり、縦軸に(有効径/光学面径)の比をとって、上記実施例の値を参考例と共に示す図である。It is a figure which shows the value of the said Example with a reference example, taking a focal distance on a horizontal axis and taking ratio of (effective diameter / optical surface diameter) on a vertical axis | shaft.
 以下、本発明の実施の形態を、図面を参照して説明する。図2は、厚さ方向に3つの情報記録面RL1~RL3(光ディスクの光束入射面からの距離が小さい順にRL1、RL2、RL3とする)を有する光ディスクであるBDに対して適切に情報の記録/再生を行うことができる本実施の形態の光ピックアップ装置PU1の構成を概略的に示す図である。かかる光ピックアップ装置PU1は、高さH=8mm以下のスリムタイプの光ピックアップ装置(点線で外形を概略的に示す)である。なお、本発明は、本実施の形態に限られるものではない。例えば、図2ではBD専用の光ピックアップ装置を示しているが、対物レンズOBJをBD/DVD/CD互換用としたり、或いはDVD/CD用の対物レンズを別個に配置することで、BD/DVD/CD互換用の光ピックアップ装置とすることもできる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 2 shows that information is appropriately recorded on a BD that is an optical disc having three information recording surfaces RL1 to RL3 in the thickness direction (referred to as RL1, RL2, and RL3 in order of increasing distance from the light incident surface of the optical disc). FIG. 2 is a diagram schematically showing a configuration of an optical pickup device PU1 of the present embodiment that can perform reproduction. Such an optical pickup device PU1 is a slim type optical pickup device having a height H = 8 mm or less (outline is schematically shown by a dotted line). The present invention is not limited to the present embodiment. For example, FIG. 2 shows a BD-dedicated optical pickup device, but the objective lens OBJ is made compatible with BD / DVD / CD, or the objective lens for DVD / CD is separately arranged, so that the BD / DVD is used. / An optical pickup device compatible with CD can be used.
 光ピックアップ装置PU1は、対物レンズOBJ、対物レンズOBJをフォーカシング方向及びトラッキング方向に移動させ、光ディスクのラジアル方向、及び/または、タンジェンシャル方向に傾ける3軸アクチュエータAC2、絞りAP、λ/4波長板QWP、立ち上げミラーMR、正の屈折力を有する正レンズL2と負の屈折力を有する負レンズL3とを有するカップリングCL、正レンズL2のみ光軸方向に移動させる1軸アクチュエータAC1、偏光プリズムPBS、405nmのレーザ光束(光束)を射出する半導体レーザLD、センサ用レンズSL、BDの情報記録面RL1~RL3からの反射光束を受光する受光素子PDを有する。 The optical pickup device PU1 moves the objective lens OBJ, the objective lens OBJ in the focusing direction and the tracking direction, and tilts in the radial direction and / or tangential direction of the optical disc, the aperture AP, and the λ / 4 wavelength plate QWP, rising mirror MR, coupling CL having positive lens L2 having positive refractive power and negative lens L3 having negative refractive power, uniaxial actuator AC1 for moving only positive lens L2 in the optical axis direction, polarizing prism A PBS, a semiconductor laser LD that emits a laser beam (beam) of 405 nm, a sensor lens SL, and a light receiving element PD that receives reflected beams from the information recording surfaces RL1 to RL3 of the BD.
 本実施の形態においては、カップリングレンズCLは、偏光プリズムPBSとλ/4波長板QWPとの間に配置されている。半導体レーザLDから、負レンズL3、正レンズL2の順で配置されているが、半導体レーザLDから、正レンズL2、負レンズL3の順で配置しても良い。又、正レンズL2が光軸方向に移動可能となっており、負レンズL3は光ピックアップ装置に固定されている。 In the present embodiment, the coupling lens CL is disposed between the polarizing prism PBS and the λ / 4 wavelength plate QWP. The semiconductor laser LD is arranged in the order of the negative lens L3 and the positive lens L2. However, the semiconductor laser LD may be arranged in the order of the positive lens L2 and the negative lens L3. The positive lens L2 is movable in the optical axis direction, and the negative lens L3 is fixed to the optical pickup device.
 図1を参照して、単玉である対物レンズOBJは、光源側の面S1に光学面OP1を形成し、その周囲に端面EP1を形成している。又、対物レンズOBJは、光ディスク側の面S2に光学面OP2を形成し、その周囲に端面EP2を形成している。端面EP2は、光軸Xに対して直交しており、光ピックアップ装置PU1に対して対物レンズOBJを組み付ける際に、不図示の検査装置から端面EP2に向かって検査光を照射し、その反射光を受光することで、位置決めを行うようになっている。端面EP1,EP2の外側に更にフランジを設ける場合もある。 Referring to FIG. 1, a single objective lens OBJ has an optical surface OP1 formed on a light source side surface S1, and an end surface EP1 formed around the optical surface OP1. The objective lens OBJ has an optical surface OP2 formed on the surface S2 on the optical disc side, and an end surface EP2 formed around the optical surface OP2. The end surface EP2 is orthogonal to the optical axis X, and when the objective lens OBJ is assembled to the optical pickup device PU1, the inspection light is irradiated from the inspection device (not shown) toward the end surface EP2, and the reflected light thereof. Positioning is performed by receiving light. There may be a case where a flange is further provided outside the end faces EP1 and EP2.
 対物レンズOBJは、以下の式を満たす。
 f≦1.8mm   (1)
 TMIN×1.2≦T≦TMAX×0.86 且つ TMIN×1.2<TMAX×0.86   (2)
 1.1 ≦ A2/B2 ≦ 1.6   (3)
 1.0 ≦ A1/B1 ≦ 1.1   (4)
但し、
f:光束に対する対物レンズOBJの焦点距離
T:平行光入射時に3次球面収差|SA3|≦0.05λrmsとなる光ディスクの透明基板厚 
TMIN:光ディスクにおける透明基板厚のうち最小の透明基板厚(ここでは情報記録面RL1の基板厚)
TMAX:光ディスクにおける透明基板厚のうち最大の透明基板厚(ここでは情報記録面RL3の基板厚) 
A2:対物レンズOBJにおける光ディスク側の光学面径
B2:対物レンズOBJにおける光ディスク側の有効径
A1:対物レンズOBJにおける光源側の光学面径
B1:対物レンズOBJにおける光源側の有効径=絞りAPの内径
The objective lens OBJ satisfies the following formula.
f ≦ 1.8mm (1)
TMIN × 1.2 ≦ T ≦ TMAX × 0.86 and TMIN × 1.2 <TMAX × 0.86 (2)
1.1 ≤ A2 / B2 ≤ 1.6 (3)
1.0 ≤ A1 / B1 ≤ 1.1 (4)
However,
f: Focal length of the objective lens OBJ with respect to the luminous flux T: Transparent substrate thickness of the optical disk with third-order spherical aberration | SA3 | ≦ 0.05λrms when parallel light is incident
TMIN: the smallest transparent substrate thickness of the transparent substrate thickness in the optical disk (here, the substrate thickness of the information recording surface RL1)
TMAX: The maximum transparent substrate thickness among the transparent substrate thicknesses in the optical disk (here, the substrate thickness of the information recording surface RL3)
A2: Optical surface diameter on the optical disc side in the objective lens OBJ
B2: Effective diameter on the optical disc side in the objective lens OBJ
A1: Optical surface diameter on the light source side in the objective lens OBJ
B1: Effective diameter on the light source side of the objective lens OBJ = inner diameter of the aperture AP
 まず、BDの第1の情報記録面RL1に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCLの正レンズL2は、1軸アクチュエータAC1により一点鎖線の位置に移動させられる。ここで、青紫色半導体レーザLDから射出された光束(λ1=405nm)の発散光束は、偏光プリズムPBSを透過し、コリメートレンズCLの負レンズL3を通過して発散角が増大され、更に正レンズL2を通過して弱い収束光束とされた後、立ち上げミラーMRで反射され、λ/4波長板QWPにより直線偏光から円偏光に変換され、絞りAPによりその光束径が規制され、対物レンズOBJによって第1の厚さの透明基板PL1を介して、一点鎖線で示すように第1の情報記録面RL1上に形成されるスポットとなる。 First, a case where recording / reproduction is performed on the first information recording surface RL1 of the BD will be described. In such a case, the positive lens L2 of the coupling lens CL is moved to the position of the alternate long and short dash line by the uniaxial actuator AC1. Here, the divergent beam of the beam (λ1 = 405 nm) emitted from the blue-violet semiconductor laser LD is transmitted through the polarizing prism PBS, passes through the negative lens L3 of the collimator lens CL, and the divergence angle is increased. After passing through L2 to be a weakly convergent light beam, it is reflected by the rising mirror MR, converted from linearly polarized light to circularly polarized light by the λ / 4 wave plate QWP, the diameter of the light beam is regulated by the stop AP, and the objective lens OBJ As a result, a spot is formed on the first information recording surface RL1 through the transparent substrate PL1 having the first thickness, as indicated by a one-dot chain line.
 第1の情報記録面RL1上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りAPを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、立ち上げミラーMRで反射され、コリメートレンズCLの正レンズL2及び負レンズL3を通過して収束光束とされ、偏光プリズムPBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第1の情報記録面RL1に記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the first information recording surface RL1 is transmitted again through the objective lens OBJ and the aperture AP, and then converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP. The light is reflected by MR, passes through the positive lens L2 and the negative lens L3 of the collimating lens CL, becomes a convergent light beam, is reflected by the polarizing prism PBS, and then converges on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the first information recording surface RL1 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
 次に、BDの第2の情報記録面RL2に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCLの正レンズL2は、1軸アクチュエータAC1により実線の位置に移動させられる。ここで、青紫色半導体レーザLDから射出された光束(λ1=405nm)の発散光束は、偏光プリズムPBSを透過し、コリメートレンズCLの負レンズL3を通過して発散角が増大され、更に正レンズL2を通過して略平行光束とされた後、立ち上げミラーMRで反射され、λ/4波長板QWPにより直線偏光から円偏光に変換され、絞りAPによりその光束径が規制され、対物レンズOBJによって第2の厚さ(第1の厚さより厚い)の透明基板PL2を介して、実線で示すように第2の情報記録面RL2上に形成されるスポットとなる。 Next, a case where recording / reproduction is performed on the second information recording surface RL2 of the BD will be described. In such a case, the positive lens L2 of the coupling lens CL is moved to the position of the solid line by the uniaxial actuator AC1. Here, the divergent beam of the beam (λ1 = 405 nm) emitted from the blue-violet semiconductor laser LD is transmitted through the polarizing prism PBS, passes through the negative lens L3 of the collimator lens CL, and the divergence angle is increased. After passing through L2 to be a substantially parallel light beam, it is reflected by the rising mirror MR, converted from linearly polarized light to circularly polarized light by the λ / 4 wave plate QWP, the light beam diameter is regulated by the stop AP, and the objective lens OBJ As a result, the spot is formed on the second information recording surface RL2 through the transparent substrate PL2 having the second thickness (thicker than the first thickness) as shown by the solid line.
 第2の情報記録面RL2上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りAPを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、立ち上げミラーMRで反射され、コリメートレンズCLの正レンズL2及び負レンズL3を通過して収束光束とされ、偏光プリズムPBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第2の情報記録面RL2に記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the second information recording surface RL2 is again transmitted through the objective lens OBJ and the aperture AP, and then converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP. The light is reflected by MR, passes through the positive lens L2 and the negative lens L3 of the collimating lens CL, becomes a convergent light beam, is reflected by the polarizing prism PBS, and then converges on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the second information recording surface RL2 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
 次に、BDの第3の情報記録面RL3に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCLの正レンズL2は、1軸アクチュエータAC1により点線の位置に移動させられる。ここで、青紫色半導体レーザLDから射出された光束(λ1=405nm)の発散光束は、偏光プリズムPBSを透過し、コリメートレンズCLの負レンズL3を通過して発散角が増大され、更に正レンズL2を通過して弱い発散光束とされた後、立ち上げミラーMRで反射され、λ/4波長板QWPにより直線偏光から円偏光に変換され、図示しない絞りによりその光束径が規制され、対物レンズOBJによって第3の厚さ(第2の厚さより厚い)の透明基板PL3を介して、点線で示すように第3の情報記録面RL3上に形成されるスポットとなる。 Next, a case where recording / reproduction is performed on the third information recording surface RL3 of the BD will be described. In such a case, the positive lens L2 of the coupling lens CL is moved to the dotted line position by the uniaxial actuator AC1. Here, the divergent beam of the beam (λ1 = 405 nm) emitted from the blue-violet semiconductor laser LD is transmitted through the polarizing prism PBS, passes through the negative lens L3 of the collimator lens CL, and the divergence angle is increased. After passing through L2 to be a weak divergent light beam, it is reflected by the rising mirror MR, converted from linearly polarized light to circularly polarized light by the λ / 4 wave plate QWP, and the light beam diameter is regulated by a diaphragm (not shown). The spot is formed on the third information recording surface RL3 by the OBJ through the transparent substrate PL3 having a third thickness (thicker than the second thickness) as indicated by a dotted line.
 第3の情報記録面RL3上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、立ち上げミラーMRで反射され、コリメートレンズCLの正レンズL2及び負レンズL3を通過して収束光束とされ、偏光プリズムPBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第3の情報記録面RL3に記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the third information recording surface RL3 is again transmitted through the objective lens OBJ and the diaphragm, and then converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP, and the rising mirror MR , And passes through the positive lens L2 and the negative lens L3 of the collimator lens CL to be a convergent light beam. After being reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the third information recording surface RL3 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
(実施例)
 次に、上述の実施の形態に用いることができるカップリングレンズと対物レンズの実施例について以下に説明する。ここで、設計波長は405nm、以下の表中のriは曲率半径、dは面間の光軸方向の位置、nは設計波長405nmにおける各面の屈折率を表している。尚、これ以降(表のレンズデータ含む)において、10のべき乗数(例えば、2.5×10-3)を、E(例えば、2.5×E-3)を用いて表すものとする。対物レンズの光学面は、それぞれ数1式に表に示す係数を代入した数式で規定される、光軸の周りに軸対称な非球面に形成されている。
(Example)
Next, examples of coupling lenses and objective lenses that can be used in the above-described embodiment will be described below. Here, the design wavelength is 405 nm, ri in the following table is the radius of curvature, d is the position in the optical axis direction between the surfaces, and n is the refractive index of each surface at the design wavelength of 405 nm. In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −3 ) is expressed by using E (for example, 2.5 × E-3). The optical surface of the objective lens is formed as an aspherical surface that is axisymmetric about the optical axis, each of which is defined by a mathematical formula obtained by substituting the coefficient shown in Table 1 into Formula 1.

 ここで、X(h)は光軸方向の軸(光の進行方向を正とする)、κは円錐係数、Aiは非球面係数、hは光軸からの高さ、rは近軸曲率半径である。 Here, X (h) is an axis in the optical axis direction (the light traveling direction is positive), κ is a conical coefficient, A i is an aspheric coefficient, h is a height from the optical axis, and r is a paraxial curvature. Radius.
 以下の実施例は、4層の情報記録面を有するBD用の対物レンズであり、各層の透明基板厚は、0.535mm,0.07mm,0.0875mm,0.1mmである。実施例1~3は実施例4~6に比べてTが小さいため、最も厚い層の記録・再生時に有効径より一層外側まで光が入射する。加えて実施例1~3においてはプラスチック材料を使用するため、温度変化(高温)時には屈折率が小さくなることでより外側に光線が入射する。その光線が蹴られないよう、実施例1~3の光学面径は実施例4~6に比べてA2/B2を大きめに設定している。 The following examples are objective lenses for BD having four layers of information recording surfaces, and the transparent substrate thickness of each layer is 0.535 mm, 0.07 mm, 0.0875 mm, and 0.1 mm. Since Examples 1 to 3 have a smaller T than Examples 4 to 6, light is incident to the outside of the effective diameter when recording and reproducing the thickest layer. In addition, in Examples 1 to 3, since a plastic material is used, when the temperature changes (high temperature), the refractive index decreases, so that the light beam enters more outward. The optical surface diameter of Examples 1 to 3 is set to be larger than that of Examples 4 to 6 so that the light beam is not kicked.
(実施例1~3)
 表1に実施例1~3のレンズデータを示す。本実施例の対物レンズは、焦点距離f=1.14mmであり、またプラスチック製であり、表1の非球面係数を数1式に代入して得られる非球面を有するが、A1/B1、A2/B2の値を実施例1~3で変えている。尚、実施例2については、光源側の光学面において有効径=光学面径となっているため、レンズ面に絞り機能を有する。
(Examples 1 to 3)
Table 1 shows lens data of Examples 1 to 3. The objective lens of the present example has a focal length f = 1.14 mm, is made of plastic, and has an aspheric surface obtained by substituting the aspheric coefficient in Table 1 into Equation 1, but A1 / B1, The value of A2 / B2 is changed in Examples 1 to 3. In Example 2, since the effective diameter is equal to the optical surface diameter on the optical surface on the light source side, the lens surface has a diaphragm function.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例4~6)
 表2に実施例4~6のレンズデータを示す。本実施例の対物レンズは、焦点距離f=1.14mmであり、またガラス製であり、表2の非球面係数を数1式に代入して得られる非球面を有するが、A1/B1、A2/B2の値を実施例4~6で変えている。尚、実施例4については、光源側の光学面において有効径=光学面径となっているため、レンズ面に絞り機能を有する。
(Examples 4 to 6)
Table 2 shows lens data of Examples 4 to 6. The objective lens of this example has a focal length f = 1.14 mm, is made of glass, and has an aspherical surface obtained by substituting the aspherical coefficient in Table 2 into equation (1). The value of A2 / B2 is changed in Examples 4-6. In Example 4, since the effective diameter is equal to the optical surface diameter on the optical surface on the light source side, the lens surface has a diaphragm function.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 各実施例について、条件式(2)~(4)に相当する数値をまとめて表3に示す。図3は、横軸に焦点距離をとり、縦軸に(有効径/光学面径)の比をとって、上記実施例の値を示す図である。 Table 3 summarizes numerical values corresponding to conditional expressions (2) to (4) for each example. FIG. 3 is a graph showing the values of the above-described embodiment, with the horizontal axis representing the focal length and the vertical axis representing the ratio of (effective diameter / optical surface diameter).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明は、明細書に記載の実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施例や思想から本分野の当業者にとって明らかである。明細書の記載及び実施例は、あくまでも例証を目的としており、本発明の範囲は後述するクレームによって示されている。 The present invention is not limited to the embodiments described in the specification, and other embodiments and modifications are apparent to those skilled in the art from the embodiments and ideas described in the present specification. It is. The description and examples are for illustrative purposes only, and the scope of the invention is indicated by the following claims.
OBJ     対物レンズ
PU1     光ピックアップ装置
LD      青紫色半導体レーザ
AC1     1軸アクチュエータ
AC2     3軸アクチュエータ
AP      絞り
PBS     偏光プリズム
CL      カップリングレンズ
L2      正レンズ
L3      負レンズ
MR      立ち上げミラー
PL1     第1の透明基板
PL2     第2の透明基板
PL3     第3の透明基板
RL1     第1の情報記録面
RL2     第2の情報記録面
RL3     第3の情報記録面
QWP     λ/4波長板
OBJ Objective lens PU1 Optical pickup device LD Blue-violet semiconductor laser AC1 1-axis actuator AC2 3-axis actuator AP Aperture PBS Polarizing prism CL Coupling lens L2 Positive lens L3 Negative lens MR Rising mirror PL1 First transparent substrate PL2 Second transparent Substrate PL3 Third transparent substrate RL1 First information recording surface RL2 Second information recording surface RL3 Third information recording surface QWP λ / 4 wavelength plate

Claims (7)

  1.  厚さ方向に3層以上の情報記録面を有する光ディスクにおけるいずれかの情報記録面を選択して、情報の記録及び/または再生を行うために、波長λ1(390nm<λ1<415nm)の光束を出射する光源と、前記光束を光ディスクの情報記録面上に集光させるための対物レンズと、前記光源と前記対物レンズとの間に配置されたカップリングレンズとを有する光ピックアップ装置用の対物レンズであって、
     前記対物レンズは単玉であり、以下の式を満たすことを特徴とする対物レンズ。
     f≦1.8mm   (1)
     TMIN×1.2≦T≦TMAX×0.86 且つ TMIN×1.2<TMAX×0.86   (2)
     1.1 ≦ A2/B2 ≦ 1.6   (3)
    但し、
    f:前記光束に対する前記対物レンズの焦点距離
    T:平行光入射時に3次球面収差|SA3|≦0.05λrmsとなる光ディスクの透明基板厚 
    TMIN:光ディスクにおける透明基板厚のうち最小の透明基板厚
    TMAX:光ディスクにおける透明基板厚のうち最大の透明基板厚 
    A2:前記対物レンズにおける光ディスク側の光学面径
    B2:前記対物レンズにおける光ディスク側の有効径
    In order to record and / or reproduce information by selecting any information recording surface in an optical disc having three or more information recording surfaces in the thickness direction, a light beam having a wavelength λ1 (390 nm <λ1 <415 nm) is used. An objective lens for an optical pickup device, comprising: an emitted light source; an objective lens for condensing the luminous flux on an information recording surface of an optical disc; and a coupling lens disposed between the light source and the objective lens Because
    The objective lens is a single lens and satisfies the following expression.
    f ≦ 1.8mm (1)
    TMIN × 1.2 ≦ T ≦ TMAX × 0.86 and TMIN × 1.2 <TMAX × 0.86 (2)
    1.1 ≤ A2 / B2 ≤ 1.6 (3)
    However,
    f: Focal length of the objective lens with respect to the luminous flux T: Transparent substrate thickness of the optical disk in which third-order spherical aberration | SA3 | ≦ 0.05λrms when parallel light is incident
    TMIN: the smallest transparent substrate thickness among the transparent substrate thicknesses on the optical disc TMAX: the largest transparent substrate thickness among the transparent substrate thicknesses on the optical disc
    A2: Optical surface diameter on the optical disc side of the objective lens
    B2: Effective diameter of the objective lens on the optical disk side
  2.  前記対物レンズはガラス製であることを特徴とする請求項1に記載の対物レンズ。 The objective lens according to claim 1, wherein the objective lens is made of glass.
  3.  以下の式を満たすことを特徴とする請求項2に記載の対物レンズ。
     1.15 < A2/B2 < 1.3   (5A)
    The objective lens according to claim 2, wherein the following expression is satisfied.
    1.15 <A2 / B2 <1.3 (5A)
  4.  前記対物レンズはプラスチック製であることを特徴とする請求項1に記載の対物レンズ。 The objective lens according to claim 1, wherein the objective lens is made of plastic.
  5.  以下の式を満たすことを特徴とする請求項4に記載の対物レンズ。
     1.2 < A2/B2 < 1.4   (3’)
    The objective lens according to claim 4, wherein the following expression is satisfied.
    1.2 <A2 / B2 <1.4 (3 ')
  6.  以下の式を満たすことを特徴とする請求項1乃至5のいずれか1項に記載の対物レンズ。
     1.0 ≦ A1/B1 ≦ 1.1   (4)
    但し、
    A1:前記対物レンズにおける光源側の光学面径
    B1:前記対物レンズにおける光源側の有効径
    The objective lens according to claim 1, wherein the following expression is satisfied.
    1.0 ≤ A1 / B1 ≤ 1.1 (4)
    However,
    A1: Optical surface diameter on the light source side of the objective lens
    B1: Effective diameter of the objective lens on the light source side
  7.  請求項1乃至6のいずれか1項に記載の対物レンズと、カップリングレンズとを有し、前記カップリングレンズを光軸方向に移動させることで、前記光ディスクにおけるいずれかの情報記録面を選択するようになっていることを特徴とする光ピックアップ装置。 The objective lens according to claim 1, and a coupling lens, wherein the information recording surface of the optical disc is selected by moving the coupling lens in the optical axis direction. An optical pickup device characterized by that.
PCT/JP2011/076360 2010-11-26 2011-11-16 Objective lens for optical pickup device and optical pickup device WO2012070438A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012545695A JPWO2012070438A1 (en) 2010-11-26 2011-11-16 Objective lens for optical pickup device and optical pickup device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-263529 2010-11-26
JP2010263529 2010-11-26

Publications (1)

Publication Number Publication Date
WO2012070438A1 true WO2012070438A1 (en) 2012-05-31

Family

ID=46145784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076360 WO2012070438A1 (en) 2010-11-26 2011-11-16 Objective lens for optical pickup device and optical pickup device

Country Status (2)

Country Link
JP (1) JPWO2012070438A1 (en)
WO (1) WO2012070438A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103087A (en) * 2002-09-06 2004-04-02 Sanyo Electric Co Ltd Optical pickup device
JP2004335080A (en) * 2003-04-14 2004-11-25 Hoya Corp Objective lens and its manufacturing method
JP2010238276A (en) * 2009-03-30 2010-10-21 Konica Minolta Opto Inc Optical pickup device and objective lens unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103087A (en) * 2002-09-06 2004-04-02 Sanyo Electric Co Ltd Optical pickup device
JP2004335080A (en) * 2003-04-14 2004-11-25 Hoya Corp Objective lens and its manufacturing method
JP2010238276A (en) * 2009-03-30 2010-10-21 Konica Minolta Opto Inc Optical pickup device and objective lens unit

Also Published As

Publication number Publication date
JPWO2012070438A1 (en) 2014-05-19

Similar Documents

Publication Publication Date Title
WO2010044355A1 (en) Objective lens and optical pickup device
JP5013117B2 (en) Optical pickup device and objective optical element for optical pickup device
WO2011099329A1 (en) Objective lens of optical pickup device and optical pickup device
JP5152524B2 (en) Optical pickup device and objective lens unit
JP5713248B2 (en) Objective lens for optical pickup device and optical pickup device
JP2009037717A (en) Objective optical element and optical pickup device
JP2013206496A (en) Optical pickup device and objective
WO2010004858A1 (en) Objective lens and optical pickup device
WO2012070438A1 (en) Objective lens for optical pickup device and optical pickup device
WO2011052469A1 (en) Light pickup device
WO2011122275A1 (en) Optical pickup device and coupling lens for the optical pickup device
JP5582421B2 (en) Optical pickup device and optical information recording / reproducing device
JP5441014B2 (en) Objective lens for optical pickup device and optical pickup device
JP2011108358A (en) Optical pickup device and recording device, and reproducing device
JPWO2008120594A1 (en) Lens unit for optical pickup device and optical pickup device
JP2010097664A (en) Objective lens
JP2005293770A (en) Optical pickup device
WO2011065276A1 (en) Objective lens for light pickup device-use and light pickup device
WO2011099317A1 (en) Optical pickup device
WO2013077071A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information recording/reproduction device
WO2011078022A1 (en) Objective lens for optical pickup device and optical pickup device
JP2012164401A (en) Objective lens, optical pickup device, and adjustment method therefor
WO2012147606A1 (en) Optical pickup device objective lens, optical pickup device, and optical information recorder/player device
JP2011165288A (en) Objective lens of optical pickup and optical pickup
JP2011243268A (en) Objective lens for optical pickup device, and optical pickup device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842625

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012545695

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11842625

Country of ref document: EP

Kind code of ref document: A1