WO2011099329A1 - Objective lens of optical pickup device and optical pickup device - Google Patents

Objective lens of optical pickup device and optical pickup device Download PDF

Info

Publication number
WO2011099329A1
WO2011099329A1 PCT/JP2011/050704 JP2011050704W WO2011099329A1 WO 2011099329 A1 WO2011099329 A1 WO 2011099329A1 JP 2011050704 W JP2011050704 W JP 2011050704W WO 2011099329 A1 WO2011099329 A1 WO 2011099329A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
objective lens
optical disc
light source
face
Prior art date
Application number
PCT/JP2011/050704
Other languages
French (fr)
Japanese (ja)
Inventor
野村 英司
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2011553780A priority Critical patent/JPWO2011099329A1/en
Publication of WO2011099329A1 publication Critical patent/WO2011099329A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses

Definitions

  • the present invention relates to an objective lens of an optical pickup device and an optical pickup device, and more particularly to an objective lens having an NA of 0.6 or more and an optical pickup device using the objective lens.
  • a high-density optical disk system capable of recording and / or reproducing information (hereinafter, “recording and / or reproduction” is referred to as “recording / reproduction”) using a blue-violet semiconductor laser having a wavelength of about 400 nm is known.
  • Patent Document 1 An objective lens used in a BD optical pickup device is disclosed in Patent Document 1, for example.
  • the optical disc side is irradiated with the inspection light on the optical disc side end surface which is a smooth surface, and the reflected light is detected.
  • the posture of the objective lens is adjusted.
  • the end face of the objective lens may be provided on both the light source side and the optical disc side, and the objective lens is made of a transparent material.
  • the end face on the optical disc side In addition to the reflected light from the light source, the reflected light from the light source side end face is also detected at the same time, which makes it difficult to adjust the posture of the objective lens.
  • the problem is particularly noticeable in a BD objective lens having a NA of 0.8 or more, but may also occur in a DVD objective lens having a NA of around 0.65.
  • the present invention has been made in view of the problems of the prior art, and by making it possible to accurately detect the posture of an objective lens, particularly a high NA objective lens, the ease of assembly can be improved.
  • An object is to provide an objective lens and an optical pickup device using the objective lens.
  • the objective lens according to claim 1 includes a light source that emits a light beam having a wavelength ⁇ (390 nm ⁇ ⁇ ⁇ 680 nm), and an objective lens that focuses the light beam on an information recording surface of an optical disc,
  • a light source that emits a light beam having a wavelength ⁇ (390 nm ⁇ ⁇ ⁇ 680 nm)
  • an objective lens that focuses the light beam on an information recording surface of an optical disc
  • the objective lens is a single lens, and the image side numerical aperture (NA) is 0.6 or more
  • the objective lens is formed on the light source side optical surface and the optical disc side optical surface through which a light beam condensed on the information recording surface of the optical disc passes, and outside the light source side optical surface, and has a surface roughness Ra of 10 nm or less.
  • (1) It is characterized by satisfying.
  • represents an angle formed by the end surface on the optical disc side and a surface orthogonal to the optical axis of the optical surface on the optical disc side, and ⁇ is formed on a surface orthogonal to the optical axis of the light source side optical surface. Represents a corner.
  • the average value of ⁇ values on the entire optical disk side end surface of the objective lens and the average value of ⁇ values on the entire light source side end surface Are ⁇ and ⁇ , respectively.
  • the auto collimator when determining the attitude of the objective lens based on the end face on the optical disc side using the auto collimator installed on the optical disc side, uses the spot image on the optical disc side end face and the spot image on the light source side end face. Appears.
  • the end face on the optical disk side and the end face on the light source side satisfy the relationship of the conditional expression (1), the directions of the reflected light from the end face on the optical disk side and the reflected light from the end face on the light source side are different.
  • the size of the spot image by the reflected light from the optical disc side end surface and the size of the spot image by the reflected light from the light source side end surface can be made different.
  • the surface roughness Ra is a parameter defined by JIS and represents the average value of the absolute value deviation from the average line. Both the surface roughness Ra of the light source side end surface and the optical disc side optical surface are preferably 1 nm or more and 5 nm or less.
  • the objective lens according to claim 2 is the following conditional expression (2) in the invention according to claim 1,
  • the spot image due to the reflected light from the end surface on the optical disc side of the inspection light irradiated from the auto collimator installed on the optical disc side is the spot image due to the reflected light from the end surface on the side far from the auto collimator. Therefore, it is easy to determine the posture of the objective lens based on the end face on the optical disc side.
  • the amount of reflected light from the end surface on the optical disc side of the inspection light is larger than the amount of reflected light from the end surface on the light source side, so the light intensity of the spot image due to the reflected light from the end surface on the optical disc side Becomes higher, and posture determination can be made easier.
  • the objective lens described in claim 3 is characterized in that, in the invention described in claim 1 or 2, the optical disc side end surface is substantially orthogonal to the optical axis of the optical disc side optical surface.
  • the state that the optical disc side end surface is substantially orthogonal to the optical axis of the optical disc side optical surface means a state where
  • is less than 3 minutes, the spot image on the autocollimator is smaller and the light intensity is higher, so that it is easier to determine the posture of the objective lens based on the end face on the optical disc side.
  • the objective lens according to claim 4 is the objective lens according to any one of claims 1 to 3, wherein the following conditional expression (3):
  • does not exceed 1 degree.
  • the objective lens according to claim 5 is the objective lens according to any one of claims 1 to 4, wherein the image side numerical aperture (NA) of the objective lens is 0.8 or more, and the following conditional expressions (4), (5) , 390 nm ⁇ ⁇ ⁇ 420 nm (4) 0.8 ⁇ d / f ⁇ 1.3 (5) It is characterized by satisfying.
  • d represents the thickness (mm) of the objective lens on the optical axis
  • f represents the focal length (mm) of the objective lens in the light flux with wavelength ⁇ .
  • the objective lens satisfying the conditional expression (5) is an objective lens having a relatively small axial thickness as an objective lens having a high NA of 0.8 or more, and therefore, the flange thickness tends to be thin, and as a result, the optical disc. Since the thickness between the side end face and the light source side end face is also reduced, the problem of unnecessary reflected light becomes larger. Even in such a case where the problem becomes large, since the problem can be solved in the present invention, the effect of the invention becomes more remarkable.
  • the objective lens described in claim 6 is characterized in that, in the invention described in any one of claims 1 to 5, the objective lens is formed of a glass material.
  • the objective lens according to claim 7 is characterized in that, in the invention according to any one of claims 1 to 5, the objective lens is formed of a plastic material.
  • An objective lens according to an eighth aspect is the invention according to any one of the first to seventh aspects, wherein the following conditional expression (12),
  • An optical pickup device includes the objective lens according to any one of the first to eighth aspects.
  • the optical pickup device has at least one light source (first light source).
  • first light source a plurality of types of light sources may be provided so as to support a plurality of types of optical disks.
  • the optical pickup device of the present invention has a condensing optical system for condensing at least the first light flux from the first light source on the information recording surface of the first optical disc.
  • the condensing optical system condenses the second light beam on the information recording surface of the second optical disk, and the third light beam on the information recording surface of the third optical disk. You may make it condense.
  • the optical pickup device of the present invention includes a light receiving element that receives at least a reflected light beam from the information recording surface of the first optical disc.
  • the light receiving element receives a reflected light beam from the information recording surface of the second optical disk and receives a reflected light beam from the information recording surface of the third optical disk. Also good.
  • the first optical disc has a protective substrate having a thickness t1 and an information recording surface.
  • the second optical disc has a protective substrate having a thickness t2 (t1 ⁇ t2) and an information recording surface.
  • the third optical disc has a protective substrate having a thickness t3 (t2 ⁇ t3) and an information recording surface.
  • the first optical disc is preferably a BD
  • the second optical disc is a DVD
  • the third optical disc is preferably a CD, but is not limited thereto.
  • the first optical disk may have a plurality of information recording surfaces stacked in the thickness direction.
  • the second optical disc and the third optical disc may also have a plurality of information recording surfaces.
  • BD means that information is recorded / reproduced by a light beam having a wavelength of about 390 to 420 nm and an objective lens having an NA of about 0.8 to 0.9, and the thickness of the protective substrate is 0.05 to 0.00.
  • It is a generic term for a BD series optical disc of about 125 mm, and includes a BD having only a single information recording surface, a BD having two or more information recording surfaces, and the like.
  • DVD is a general term for DVD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.60 to 0.67 and the thickness of the protective substrate is about 0.6 mm.
  • CD is a general term for CD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.45 to 0.51 and the thickness of the protective substrate is about 1.2 mm.
  • CD-ROM, CD-Audio, CD-Video, CD-R, CD-RW and the like As for the recording density, the recording density of BD is the highest, followed by the order of DVD and CD.
  • the thicknesses t1, t2, and t3 of the protective substrate it is preferable to satisfy the following conditional expressions (6), (7), and (8), but is not limited thereto.
  • the thickness of the protective substrate referred to here is the thickness of the protective substrate provided on the surface of the optical disk. That is, the thickness of the protective substrate from the optical disc surface to the information recording surface closest to the surface.
  • the first light source, the second light source, and the third light source are preferably laser light sources.
  • the laser light source a semiconductor laser, a silicon laser, or the like can be preferably used.
  • the wavelength ⁇ 3 ( ⁇ 3> ⁇ 2) is defined by the following conditional expressions (9), (10), 1.5 ⁇ ⁇ 1 ⁇ 2 ⁇ 1.7 ⁇ ⁇ 1 (9) 1.8 ⁇ ⁇ 1 ⁇ 3 ⁇ 2.0 ⁇ ⁇ 1 (10) It is preferable to satisfy.
  • the first wavelength ⁇ 1 of the first light source is preferably 350 nm or more and 440 nm or less, more preferably
  • the second wavelength ⁇ 2 of the second light source is preferably 570 nm or more and 680 nm or less, more preferably 630 nm or more and 670 nm or less
  • the third wavelength ⁇ 3 of the third light source is preferable. Is 750 nm or more and 880 nm or less, more preferably 760 nm or more and 820 nm or less.
  • the first light source, the second light source, and the third light source may be unitized.
  • the unitization means that the first light source and the second light source are fixedly housed in one package, for example.
  • a light receiving element to be described later may be packaged.
  • a photodetector such as a photodiode is preferably used.
  • Light reflected on the information recording surface of the optical disc enters the light receiving element, and a read signal of information recorded on each optical disc is obtained using the output signal. Furthermore, it detects the change in the light amount due to the spot shape change and position change on the light receiving element, performs focus detection and track detection, and based on this detection, the objective lens can be moved for focusing and tracking I can do it.
  • the light receiving element may comprise a plurality of photodetectors.
  • the light receiving element may have a main photodetector and a sub photodetector.
  • two sub photodetectors are provided on both sides of a photodetector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub photodetectors. It is good also as a simple light receiving element.
  • the light receiving element may have a plurality of light receiving elements corresponding to the respective light sources.
  • the condensing optical system of the optical pickup device may have a coupling lens and an objective lens.
  • the coupling lens is a lens group that is disposed between the objective lens and the light source and changes the divergence angle of the light beam.
  • the objective lens refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing a light beam emitted from the light source onto the information recording surface of the optical disk.
  • the objective lens is a single glass lens or a single plastic lens.
  • the objective lens may be composed of only a refractive surface or may have an optical path difference providing structure.
  • the hybrid lens which provided the optical path difference providing structure with the photocurable resin, UV curable resin, or thermosetting resin etc. on the glass lens may be sufficient.
  • the objective lens preferably has a refractive surface that is aspheric.
  • the base surface on which the optical path difference providing structure is provided is preferably an aspherical surface.
  • the objective lens is a glass lens
  • a glass material having a glass transition point Tg of 500 ° C. or lower more preferably 400 ° C. or lower.
  • a glass material having a glass transition point Tg of 500 ° C. or lower molding at a relatively low temperature is possible, so that the life of the mold can be extended.
  • Examples of such a glass material having a low glass transition point Tg include K-PG325 and K-PG375 (both product names) manufactured by Sumita Optical Glass Co., Ltd.
  • a physical property value that is important when a glass lens is molded and manufactured is a linear expansion coefficient ⁇ . Even if a material having a Tg of 400 ° C. or lower is selected, the temperature difference from room temperature is still large compared to the resin material. When lens molding is performed using a glass material having a large linear expansion coefficient ⁇ , cracks are likely to occur when the temperature is lowered.
  • the linear expansion coefficient ⁇ of the glass material is preferably 200 ( ⁇ 10 ⁇ 7 / K) or less, and more preferably 120 ( ⁇ 10 ⁇ 7 / K) or less.
  • the specific gravity of the glass lens is generally larger than that of the resin lens, if the objective lens is a glass lens, the mass is increased and a load is imposed on the actuator that drives the objective lens. Therefore, when the objective lens is a glass lens, it is preferable to use a glass material having a small specific gravity.
  • the specific gravity is preferably 4.0 or less, more preferably the specific gravity is 3.0 or less.
  • the Abbe number of the material constituting the objective lens is preferably 50 or more.
  • the objective lens includes a light source side optical surface through which a light beam condensed on the information recording surface of the optical disc passes, an optical disc side optical surface, a light source side end surface disposed outside the light source side optical surface, and an optical disc side optical surface. It has at least an optical disc side end surface arranged outside. Moreover, what has a flange part around the objective lens may be used.
  • the flange portion is a portion that is disposed around the optical surface and is used for attaching an objective lens to the optical pickup device.
  • the light source side end surface and the optical disc side end surface are not parallel to each other.
  • the light source side end surface and the flange portion may be flush with each other, or the light source side end surface may be shifted in the optical axis direction with respect to the flange portion as shown in FIG.
  • NA1 The numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the first optical disc is NA1, and the numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the second optical disc.
  • NA2 NA1> NA2
  • NA3 NA2> NA3
  • NA1 is preferably 0.75 or more and 0.9 or less, and more preferably 0.8 or more and 0.9 or less.
  • NA1 is preferably 0.85.
  • NA2 is preferably 0.55 or more and 0.7 or less.
  • NA2 is preferably 0.60 or 0.65.
  • NA3 is preferably 0.4 or more and 0.55 or less.
  • NA3 is preferably 0.45 or 0.53.
  • the objective lens satisfies the following conditional expression (5).
  • the objective lens satisfying the formula (5) is often small in diameter, and the range in which the inspection light for positioning is irradiated becomes narrow and the thickness between the end faces becomes thin, so that the problem of unnecessary light reflection becomes larger.
  • the present invention is effective.
  • d represents the thickness (mm) on the optical axis of the objective lens
  • f represents the focal length (mm) of the objective lens in the first light flux.
  • f is 1.0 mm or more and 1.8 mm or less.
  • the working distance of the objective lens when using the first optical disk is preferably 0.15 mm or more and 1.0 mm or less.
  • the objective lens has a flange portion around the optical surface, and when the minimum thickness of the flange portion is t (mm), the following conditional expression (11), 5.0 ⁇ d / t ⁇ 8.0 (11) If the objective lens posture is determined based on the optical disc side end surface, the flange is relatively thin so that the light beam incident on the optical disc side end surface is transmitted and reflected by the light source side end surface. The negative effect is likely to increase. Therefore, the problem of the present invention becomes larger, but even in such a case, the objective lens of the present invention can solve the problem.
  • the objective lens of the present invention can solve the problem.
  • the objective lens of the present invention can solve the problem.
  • An optical information recording / reproducing apparatus includes an optical disc drive apparatus having the above-described optical pickup apparatus.
  • the optical disk drive apparatus can hold an optical disk mounted from the optical information recording / reproducing apparatus main body containing the optical pickup apparatus or the like. There are a system in which only the tray is taken out, and a system in which the optical disc drive apparatus main body in which the optical pickup device is stored is taken out to the outside.
  • the optical information recording / reproducing apparatus using each method described above is generally equipped with the following components, but is not limited thereto.
  • An optical pickup device housed in a housing or the like, a drive source of an optical pickup device such as a seek motor that moves the optical pickup device together with the housing toward the inner periphery or outer periphery of the optical disc, and the optical pickup device housing the inner periphery or outer periphery of the optical disc include a transfer means of an optical pickup device having a guide rail or the like that guides toward the head, a spindle motor that rotates the optical disk, and the like.
  • the former method is provided with a tray that can be held in a state in which an optical disk is mounted and a loading mechanism for sliding the tray, and the latter method has no tray and loading mechanism. It is preferable that each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
  • an objective lens capable of improving the ease of assembly and an optical pickup device using the objective lens by making it possible to accurately detect the posture of the objective lens.
  • FIG. 1 It is a figure which shows schematically the structure of optical pick-up apparatus PU1 of this Embodiment which can record / reproduce information appropriately with respect to BD which is an optical disk. It is sectional drawing which shows the objective lens OBJ of this Embodiment. It is a figure which shows the state at the time of attaching the objective lens OBJ to optical pick-up apparatus PU1. It is sectional drawing which shows the objective lens OBJ concerning the modification of this Embodiment. It is a figure which shows the spot image in the autocollimator used when detecting the attitude
  • FIG. 1 is a diagram schematically showing a configuration of an optical pickup apparatus PU1 of the present embodiment that can appropriately record / reproduce information with respect to a BD that is an optical disk.
  • Such an optical pickup device PU1 can be mounted on an optical information recording / reproducing device.
  • the present invention is not limited to the present embodiment.
  • the optical pickup device PU1 emits an objective lens OBJ, an actuator AC that moves the objective lens OBJ in a focusing direction and a tracking direction, a ⁇ / 4 wavelength plate QWP, a coupling CL, a polarizing prism PBS, and a laser beam (light beam) of 405 nm. It has a light receiving element PD that receives a reflected light beam from the information recording surface RL1 of the semiconductor laser LD, sensor lenses SL, and BD.
  • the objective lens OBJ is a single ball made of glass or plastic.
  • the objective lens OBJ has the following formula: 0.8 ⁇ d / f ⁇ 1.3 (5) Meet.
  • d represents the thickness (mm) of the objective lens on the optical axis
  • f represents the focal length (mm) of the objective lens in the light flux with wavelength ⁇ .
  • the linearly polarized light is converted into circularly polarized light by QWP, the diameter of the light beam is regulated by a diaphragm (not shown), and becomes a spot formed on the information recording surface RL1 through the protective substrate PL1 by the objective lens OBJ.
  • the reflected light beam modulated by the information pits on the information recording surface RL1 passes through the objective lens OBJ and the diaphragm again, and then is converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP, and passes through the coupling lens CL. After being reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL.
  • the information recorded on the information recording surface RL1 can be read by focusing or tracking the objective lens OBJ by the actuator AC using the output signal of the light receiving element PD.
  • FIG. 2 is a cross-sectional view showing the objective lens OBJ of the present embodiment, and the alternate long and short dash line indicates the light beam L that passes through the outermost edge of the effective diameter. That is, the positions where the light beam L intersects the light source side optical surface OB11a and the optical disc side optical surface OB21a are effective diameters. Note that the light source side optical surface OB11a and the optical disc side optical surface OB21a are extended to the outside of the effective diameter (range indicated by hatching) in consideration of a case where a misalignment between an aperture (not shown) and the objective lens OBJ occurs.
  • the objective lens OBJ has a circular light source side optical surface OB11a including the optical axis X11 around the optical axis X11 of the light source side optical surface, followed by an annular light source side end surface region (also referred to as a light source side end surface).
  • OB11b a ring-shaped light source side transition region OB11c following it, a light source side flange end surface OB11d of the annular flange portion OBF, a circumferential surface OB11e of the flange portion OBF orthogonal thereto, and a disk side optical surface
  • an optical disc side flange end surface OB21d of the flange portion that follows.
  • the light source side optical surface OB11a is on the light source side
  • the optical disc side optical surface OB21a is on the optical disc side.
  • the optical disc side end surface region OB21b has an inclination ⁇ of less than 3 minutes with respect to the surface T21 orthogonal to the optical axis X21 of the optical disc side optical surface OB21a, whereas the light source side end surface region OB11b has the light source side optical surface.
  • the inclination ⁇ of the OB11a with respect to the plane T11 orthogonal to the optical axis X11 is inclined to be 3 minutes (0.05 degrees) or more.
  • the optical axes X21 and X11 are not necessarily coaxial.
  • the optical disc side end surface region OB21b and the light source side end surface region OB11b are mirror surfaces like the optical surface, and the surface roughness is Ra 10 nm or less.
  • FIG. 4 is a cross-sectional view showing an objective lens OBJ according to a modification of the present embodiment.
  • the objective lens has no light source side transition region OB11c, light source side flange end surface OB11d, optical disc side transition region OB21c, and optical disc side flange end surface OB21d as in the embodiment shown in FIG.
  • Various types of lenses are also included in the present invention.
  • FIG. 3 is a diagram showing a state when the objective lens OBJ is assembled to the optical pickup device PU1.
  • the inspection light DL is emitted from an autocollimator DET that is arranged on the optical disk side of the objective lens OBJ and is set to match the optical axis of the optical pickup device PU1
  • the inspection light DL is irradiated onto the optical disk side end face region OB21b.
  • a part of the irradiated inspection light DL is reflected by the optical disc side end face region OB21b as indicated by a solid line and detected by the autocollimator DET.
  • the remaining inspection light DL incident on the optical disc side end surface region OB21b is transmitted through the objective lens OBJ as indicated by a dotted line, and partially reflected by the light source side end surface region OB11b.
  • the reflected light is also detected by the autocollimator DET.
  • a spot image on the autocollimator DET by reflected light from the light source side end surface region OB11b and the optical disc side end surface region OB21b is as shown in FIG.
  • the optical disc side end surface region OB21b has an inclination ⁇ of less than 3 minutes with respect to the optical axis X21 of the optical surface on the optical disc side, that is, substantially orthogonal, and therefore enters the autocollimator DET with substantially parallel light.
  • the spot image S2 on the collimator DET is small and the light intensity is high.
  • the spot image S1 in the autocollimator DET Becomes larger and the light intensity is lower. Therefore, the spot image S2 and the spot image S1 can be clearly identified on the autocollimator DET.
  • the posture of the objective lens OBJ is adjusted based on the optical disc side end surface region OB21b.
  • the posture of the objective lens is adjusted so as to be at the position S.
  • the spot image S1 by the light source side end surface region OB11b is large and the light intensity is low, it does not affect the posture adjustment of the objective lens.
  • the objective lens OBJ is bonded to the holder HL of the actuator AC.
  • FIG. 3 shows a method of adjusting the posture of the objective lens using a part of the optical disc side end surface region OB21b
  • the present invention is not limited to this.
  • the entire optical disc side end surface region OB21b is used.
  • a method of adjusting the posture of the objective lens may be used.
  • the present invention is not limited to the embodiments described in the specification, and other embodiments and modifications are apparent to those skilled in the art from the embodiments and ideas described in the present specification. It is. The description and examples are for illustrative purposes only, and the scope of the invention is indicated by the following claims.
  • the light source side end surface region OB11b and the optical disc side end surface region OB21b are inclined outward, but may be inclined inward.

Abstract

Disclosed are an objective lens offering great ease in attachment, by facilitating highly precise detection of the attitude of the optical lens, and an optical pickup device employing same. The optical lens comprises a light source-side optical face and an optical disc-side optical face wherethrough light beams that collect upon an information recording face of the optical disc pass; a light source-side end face that is formed upon the exterior of the light source-side optical face and that has surface roughness (Ra) of 10nm or less; and an optical disc-side end face that is formed upon the exterior of the optical disc-side optical face and that has surface roughness (Ra) of 10nm or less. The optical lens satisfies the following formula (1): |α| ≠ |β| (1) Wherein α represents an angle formed by the optical disc-side end face and a face orthogonal to the optical axis of the optical disc-side optical face, and β represents an angle formed by the light source-side end face and a face orthogonal to the optical axis of the light source-side optical face.

Description

光ピックアップ装置の対物レンズ及び光ピックアップ装置Objective lens of optical pickup device and optical pickup device
 本発明は、光ピックアップ装置の対物レンズ、及び、光ピックアップ装置に関し、特にNA0.6以上の対物レンズと、それを用いる光ピックアップ装置に関する。 The present invention relates to an objective lens of an optical pickup device and an optical pickup device, and more particularly to an objective lens having an NA of 0.6 or more and an optical pickup device using the objective lens.
 波長400nm程度の青紫色半導体レーザを用いて、情報の記録及び/又は再生(以下、「記録及び/又は再生」を「記録/再生」と記載する)を行うことができる高密度光ディスクシステムが知られており、その一例であるNA0.85、光源波長405nmの仕様で情報の記録/再生を行う光ディスク、いわゆるBlu-ray Disc(以下、BDという)では、DVD(NA0.6、光源波長650nm、記憶容量4.7GB)と同じ大きさである直径12cmの光ディスクに対して、1層あたり25GBの情報の記録が可能である。 A high-density optical disk system capable of recording and / or reproducing information (hereinafter, “recording and / or reproduction” is referred to as “recording / reproduction”) using a blue-violet semiconductor laser having a wavelength of about 400 nm is known. As an example, an optical disc that records and reproduces information with specifications of NA 0.85 and light source wavelength 405 nm, so-called Blu-ray Disc (hereinafter referred to as BD), DVD (NA 0.6, light source wavelength 650 nm, Information of 25 GB per layer can be recorded on an optical disk having a diameter of 12 cm which is the same size as the storage capacity 4.7 GB.
 BD用光ピックアップ装置に用いる対物レンズは、例えば特許文献1に開示されている。 An objective lens used in a BD optical pickup device is disclosed in Patent Document 1, for example.
特開2001-324673号公報JP 2001-324673 A
 高NAの対物レンズを光ピックアップ装置に組み付ける際には、対物レンズの姿勢決めを精度良く行わないとコマ収差等が発生し、光ピックアップ装置の性能悪化を招く。このため、対物レンズを光ピックアップ装置に組み付ける際には、多くの場合、対物レンズの姿勢決めの基準となり滑面である光ディスク側端面に光ディスク側から検査光を照射し、その反射光を検出することで、対物レンズの姿勢を調整している。ところが、対物レンズの端面は光源側と光ディスク側の両方に設けられる場合があり、さらに対物レンズが透明な素材でできていることから、例えば、光ディスク側から検査光を照射したとき、光ディスク側端面からの反射光のほか、光源側端面からの反射光も同時に検出することとなり、これにより対物レンズの姿勢調整が困難になるという問題がある。また、当該問題は、NA0.8以上のBD用対物レンズにおいて特に顕著であるが、NA0.65近傍のDVD用対物レンズにおいても生じ得る問題であった。 When assembling a high NA objective lens into an optical pickup device, coma aberration or the like may occur if the orientation of the objective lens is not determined accurately, resulting in deterioration of the performance of the optical pickup device. For this reason, when assembling the objective lens into the optical pickup device, in many cases, the optical disc side is irradiated with the inspection light on the optical disc side end surface which is a smooth surface, and the reflected light is detected. Thus, the posture of the objective lens is adjusted. However, the end face of the objective lens may be provided on both the light source side and the optical disc side, and the objective lens is made of a transparent material. For example, when the inspection light is irradiated from the optical disc side, the end face on the optical disc side In addition to the reflected light from the light source, the reflected light from the light source side end face is also detected at the same time, which makes it difficult to adjust the posture of the objective lens. The problem is particularly noticeable in a BD objective lens having a NA of 0.8 or more, but may also occur in a DVD objective lens having a NA of around 0.65.
 本発明は、かかる従来技術の問題点に鑑みてなされたものであり、対物レンズ、特に、高NAの対物レンズの姿勢を精度良く検出できるようにすることで、組み付け容易性を高めることができる対物レンズ、及び、それを用いた光ピックアップ装置を提供することを目的とする。 The present invention has been made in view of the problems of the prior art, and by making it possible to accurately detect the posture of an objective lens, particularly a high NA objective lens, the ease of assembly can be improved. An object is to provide an objective lens and an optical pickup device using the objective lens.
 請求項1に記載の対物レンズは、波長λ(390nm≦λ≦680nm)の光束を射出する光源と、前記光束を光ディスクの情報記録面上に集光させるための対物レンズと、を有し、前記光源から射出された光束を前記対物レンズにより前記光ディスクの情報記録面に集光することによって情報の記録及び/または再生を行う光ピックアップ装置の対物レンズにおいて、
 前記対物レンズは単玉であって、像側開口数(NA)は0.6以上であり、
 前記対物レンズは、前記光ディスクの情報記録面に集光する光束が通過する光源側光学面及び光ディスク側光学面と、前記光源側光学面の外側に形成され、面粗さRaが10nm以下である光源側端面と、前記光ディスク側光学面の外側に形成され、面粗さRaが10nm以下である光ディスク側端面とを有し、
 以下の条件式(1)、
 |α|≠|β|     (1)
を満たすことを特徴とする。但し、αは前記光ディスク側端面と前記光ディスク側光学面の光軸に直交する面とのなす角を表し、βは前記光源側端面と前記光源側光学面の光軸に直交する面とのなす角を表す。なお、αの値やβの値が、同じ対物レンズの端面の位置によって変化する場合は、対物レンズの光ディスク側端面全体におけるαの値の平均値及び光源側端面全体におけるβの値の平均値を、それぞれα、βとする。
The objective lens according to claim 1 includes a light source that emits a light beam having a wavelength λ (390 nm ≦ λ ≦ 680 nm), and an objective lens that focuses the light beam on an information recording surface of an optical disc, In an objective lens of an optical pickup device that records and / or reproduces information by condensing a light beam emitted from the light source onto an information recording surface of the optical disc by the objective lens,
The objective lens is a single lens, and the image side numerical aperture (NA) is 0.6 or more,
The objective lens is formed on the light source side optical surface and the optical disc side optical surface through which a light beam condensed on the information recording surface of the optical disc passes, and outside the light source side optical surface, and has a surface roughness Ra of 10 nm or less. A light source side end surface and an optical disc side end surface formed outside the optical disc side optical surface and having a surface roughness Ra of 10 nm or less;
The following conditional expression (1),
| Α | ≠ | β | (1)
It is characterized by satisfying. Here, α represents an angle formed by the end surface on the optical disc side and a surface orthogonal to the optical axis of the optical surface on the optical disc side, and β is formed on a surface orthogonal to the optical axis of the light source side optical surface. Represents a corner. If the values of α and β vary depending on the position of the end surface of the same objective lens, the average value of α values on the entire optical disk side end surface of the objective lens and the average value of β values on the entire light source side end surface Are α and β, respectively.
 本発明によれば、光ディスク側に設置したオートコリメータを用いて光ディスク側端面に基づいた対物レンズの姿勢決めを実施する際に、オートコリメータでは光ディスク側端面によるスポット像と、光源側端面によるスポット像が現れる。光ディスク側端面と光源側端面が条件式(1)の関係を満たすことで、光ディスク側端面からの反射光と光源側端面からの反射光の方向が異なることになる。これにより、オートコリメータでは、光ディスク側端面からの反射光によるスポット像と、光源側端面からの反射光によるスポット像の大きさを異ならせることができる。これにより、光ディスク側端面からの反射光によるスポット像と光源側端面からの反射光のスポット像を明確に識別できるようになり、一方の反射光のみのスポット像に基づいた対物レンズの姿勢決めを行うことが容易となる。 According to the present invention, when determining the attitude of the objective lens based on the end face on the optical disc side using the auto collimator installed on the optical disc side, the auto collimator uses the spot image on the optical disc side end face and the spot image on the light source side end face. Appears. When the end face on the optical disk side and the end face on the light source side satisfy the relationship of the conditional expression (1), the directions of the reflected light from the end face on the optical disk side and the reflected light from the end face on the light source side are different. Thereby, in the autocollimator, the size of the spot image by the reflected light from the optical disc side end surface and the size of the spot image by the reflected light from the light source side end surface can be made different. This makes it possible to clearly identify the spot image of the reflected light from the end face of the optical disc and the spot image of the reflected light from the end face of the light source, and determine the posture of the objective lens based on the spot image of only one reflected light. Easy to do.
 例えば|α|<|β|の場合には、オートコリメータから遠い側の端面、すなわち光源側端面からの反射光によるスポット像と比較して、オートコリメータから近い側の端面、すなわち光ディスク側端面からの反射光によるスポット像は小さく、光強度も高くなるため、光ディスク側端面に基づいた対物レンズの姿勢決めを行うことが容易となる。 For example, in the case of | α | <| β |, compared with a spot image by reflected light from the end surface far from the autocollimator, that is, the light source side end surface, from the end surface closer to the autocollimator, that is, from the end surface on the optical disc side Since the spot image due to the reflected light is small and the light intensity is high, it becomes easy to determine the posture of the objective lens based on the end face on the optical disc side.
 また、|α|>|β|の場合には、オートコリメータから近い側の端面、すなわち光ディスク側端面からの反射光によるスポット像と比較して、オートコリメータから遠い側の端面、すなわち光源側端面からの反射光によるスポット像は小さく、光強度も高くなるため、光源側端面に基づいた対物レンズの姿勢決めを行うことが容易となる。なお、多くの場合、光ディスク側端面に基づいた対物レンズの姿勢決めを行うため、|α|<|β|の方が好ましい。 In the case of | α |> | β |, the end face closer to the autocollimator than the end face closer to the autocollimator, that is, the end face far from the autocollimator, that is, the end face on the light source side. Since the spot image due to the reflected light from the light source is small and the light intensity is high, it is easy to determine the posture of the objective lens based on the end surface on the light source side. In many cases, | α | <| β | is preferable because the posture of the objective lens is determined based on the end surface on the optical disc side.
 なお、面粗さRaはJISによって規定されているパラメータで、平均線からの絶対値偏差の平均値を表す。なお、光源側端面と光ディスク側光学面の面粗さRaは共に1nm以上、5nm以下であることが好ましい。 The surface roughness Ra is a parameter defined by JIS and represents the average value of the absolute value deviation from the average line. Both the surface roughness Ra of the light source side end surface and the optical disc side optical surface are preferably 1 nm or more and 5 nm or less.
 請求項2に記載の対物レンズは、請求項1に記載の発明において、以下の条件式(2)、
 |α|<|β|     (2)
を満たすことを特徴とする。
The objective lens according to claim 2 is the following conditional expression (2) in the invention according to claim 1,
| Α | <| β | (2)
It is characterized by satisfying.
 上記構成により、光ディスク側に設置されたオートコリメータから照射された検査光の光ディスク側端面からの反射光によるスポット像は、オートコリメータから遠い側の端面である光源側端面からの反射光によるスポット像よりも小さく、光強度も高くなるため、光ディスク側端面に基づいた対物レンズの姿勢決めが容易となる。 With the above configuration, the spot image due to the reflected light from the end surface on the optical disc side of the inspection light irradiated from the auto collimator installed on the optical disc side is the spot image due to the reflected light from the end surface on the side far from the auto collimator. Therefore, it is easy to determine the posture of the objective lens based on the end face on the optical disc side.
 さらに、オートコリメータが光ディスク側に設置されている場合、検査光の光ディスク側端面からの反射光量は光源側端面からの反射光量より多くなるため、光ディスク側端面からの反射光によるスポット像の光強度がより高くなり、姿勢決めをより容易にすることができる。 Furthermore, when the autocollimator is installed on the optical disc side, the amount of reflected light from the end surface on the optical disc side of the inspection light is larger than the amount of reflected light from the end surface on the light source side, so the light intensity of the spot image due to the reflected light from the end surface on the optical disc side Becomes higher, and posture determination can be made easier.
 請求項3に記載の対物レンズは、請求項1又は2に記載の発明において、前記光ディスク側端面は、前記光ディスク側光学面の光軸に対して略直交していることを特徴とする。 The objective lens described in claim 3 is characterized in that, in the invention described in claim 1 or 2, the optical disc side end surface is substantially orthogonal to the optical axis of the optical disc side optical surface.
 前記光ディスク側端面は、前記光ディスク側光学面の光軸に対して略直交しているという状態は、|α|が3分(3′)未満である状態をいう。|α|が3分未満の場合、オートコリメータでのスポット像は、より小さく、かつ、光強度も高くなるため、前記光ディスク側端面に基づいた対物レンズの姿勢決めがより容易となる。 The state that the optical disc side end surface is substantially orthogonal to the optical axis of the optical disc side optical surface means a state where | α | is less than 3 minutes (3 ′). When | α | is less than 3 minutes, the spot image on the autocollimator is smaller and the light intensity is higher, so that it is easier to determine the posture of the objective lens based on the end face on the optical disc side.
 請求項4に記載の対物レンズは、請求項1~3のいずれか1項に記載の発明において、以下の条件式(3)、
 |β|≧3′     (3)
を満たすことを特徴とする。
The objective lens according to claim 4 is the objective lens according to any one of claims 1 to 3, wherein the following conditional expression (3):
| Β | ≧ 3 ′ (3)
It is characterized by satisfying.
 好ましくは、以下の条件式(3′)、
 |β|≧5′     (3′)
を満たすことである。
Preferably, the following conditional expression (3 ′),
| Β | ≧ 5 ′ (3 ′)
Is to satisfy.
 なお、|β|の上限は、1度を超えないことが好ましい。 In addition, it is preferable that the upper limit of | β | does not exceed 1 degree.
 請求項5に記載の対物レンズは、請求項1~4に記載の発明において、対物レンズの像側開口数(NA)は0.8以上であり、以下の条件式(4)、(5)、
 390nm≦λ≦420nm     (4)
 0.8≦d/f≦1.3       (5)
を満たすことを特徴とする。但し、dは、対物レンズの光軸上の厚さ(mm)を表し、fは、波長λの光束における対物レンズの焦点距離(mm)を表す。
The objective lens according to claim 5 is the objective lens according to any one of claims 1 to 4, wherein the image side numerical aperture (NA) of the objective lens is 0.8 or more, and the following conditional expressions (4), (5) ,
390 nm ≦ λ ≦ 420 nm (4)
0.8 ≦ d / f ≦ 1.3 (5)
It is characterized by satisfying. Here, d represents the thickness (mm) of the objective lens on the optical axis, and f represents the focal length (mm) of the objective lens in the light flux with wavelength λ.
 上記条件式(5)を満たす対物レンズは、NA0.8以上という高NAの対物レンズとしては比較的軸上厚が薄めの対物レンズであり、そのためフランジ厚も薄くなりがちであり、結果として光ディスク側端面と光源側端面との間の厚さも薄くなるため、不要な反射光の問題がより大きなものとなる。そのように課題が大きくなる場合であっても、本発明においては、当該課題を解決できるため、より発明の効果が顕著なものとなる。 The objective lens satisfying the conditional expression (5) is an objective lens having a relatively small axial thickness as an objective lens having a high NA of 0.8 or more, and therefore, the flange thickness tends to be thin, and as a result, the optical disc. Since the thickness between the side end face and the light source side end face is also reduced, the problem of unnecessary reflected light becomes larger. Even in such a case where the problem becomes large, since the problem can be solved in the present invention, the effect of the invention becomes more remarkable.
 請求項6に記載の対物レンズは、請求項1~5のいずれかに記載の発明において、前記対物レンズは、ガラス素材から形成されていることを特徴とする。 The objective lens described in claim 6 is characterized in that, in the invention described in any one of claims 1 to 5, the objective lens is formed of a glass material.
 請求項7に記載の対物レンズは、請求項1~5のいずれかに記載の発明において、前記対物レンズは、プラスチック素材から形成されていることを特徴とする。 The objective lens according to claim 7 is characterized in that, in the invention according to any one of claims 1 to 5, the objective lens is formed of a plastic material.
 請求項8に記載の対物レンズは、請求項1~7のいずれかに記載の発明において、以下の条件式(12)、
 ||α|-|β||>0.3′     (12)
を満たすことを特徴とする。
An objective lens according to an eighth aspect is the invention according to any one of the first to seventh aspects, wherein the following conditional expression (12),
|| α |-| β ||> 0.3 '(12)
It is characterized by satisfying.
 上記条件式(12)を満たすことにより、光源側端面と光ディスク側端面とでの、オートコリメータでのスポット像の差がより明確に表れるため、光ディスク側端面に基づいた対物レンズの姿勢決めがより容易となる。 By satisfying the conditional expression (12), the difference in the spot image in the autocollimator between the end surface on the light source side and the end surface on the optical disk side is more clearly shown. It becomes easy.
 請求項9に記載の光ピックアップ装置は、請求項1~8のいずれかに記載の対物レンズを有することを特徴とする。 An optical pickup device according to a ninth aspect includes the objective lens according to any one of the first to eighth aspects.
 本発明に係る光ピックアップ装置は、少なくとも1つの光源(第1光源)を有する。勿論、複数種類の光ディスクに対応できるように、複数種類の光源を有していてもよい。さらに、本発明の光ピックアップ装置は、少なくとも第1光源からの第1光束を第1光ディスクの情報記録面上に集光させるための集光光学系を有する。複数種類の光ディスクに対応可能な光ピックアップ装置においては、集光光学系が、第2光束を第2光ディスクの情報記録面上に集光させ、第3光束を第3光ディスクの情報記録面上に集光するようにしてもよい。また、本発明の光ピックアップ装置は、少なくとも第1光ディスクの情報記録面からの反射光束を受光する受光素子を有する。複数種類の光ディスクに対応可能な光ピックアップ装置においては、受光素子が、第2光ディスクの情報記録面からの反射光束を受光し、第3光ディスクの情報記録面からの反射光束を受光するようにしてもよい。 The optical pickup device according to the present invention has at least one light source (first light source). Of course, a plurality of types of light sources may be provided so as to support a plurality of types of optical disks. Furthermore, the optical pickup device of the present invention has a condensing optical system for condensing at least the first light flux from the first light source on the information recording surface of the first optical disc. In the optical pickup apparatus that can handle a plurality of types of optical disks, the condensing optical system condenses the second light beam on the information recording surface of the second optical disk, and the third light beam on the information recording surface of the third optical disk. You may make it condense. The optical pickup device of the present invention includes a light receiving element that receives at least a reflected light beam from the information recording surface of the first optical disc. In an optical pickup device that can handle a plurality of types of optical disks, the light receiving element receives a reflected light beam from the information recording surface of the second optical disk and receives a reflected light beam from the information recording surface of the third optical disk. Also good.
 第1光ディスクは、厚さがt1の保護基板と情報記録面とを有する。第2光ディスクは厚さがt2(t1<t2)の保護基板と情報記録面とを有する。第3光ディスクは、厚さがt3(t2<t3)の保護基板と情報記録面とを有する。第1光ディスクがBDであり、第2光ディスクがDVDであり、第3光ディスクがCDであることが好ましいが、これに限られるものではない。 The first optical disc has a protective substrate having a thickness t1 and an information recording surface. The second optical disc has a protective substrate having a thickness t2 (t1 <t2) and an information recording surface. The third optical disc has a protective substrate having a thickness t3 (t2 <t3) and an information recording surface. The first optical disc is preferably a BD, the second optical disc is a DVD, and the third optical disc is preferably a CD, but is not limited thereto.
 第1光ディスクは、厚み方向に重ねて複数の情報記録面を有していてもよい。また、第2光ディスクや第3光ディスクも複数の情報記録面を有していてもよい。 The first optical disk may have a plurality of information recording surfaces stacked in the thickness direction. The second optical disc and the third optical disc may also have a plurality of information recording surfaces.
 本明細書において、BDとは、波長390~420nm程度の光束、NA0.8~0.9程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.05~0.125mm程度であるBD系列光ディスクの総称であり、単一の情報記録面のみ有するBDや、2層以上の情報記録面を有するBD等を含むものである。更に、本明細書においては、DVDとは、NA0.60~0.67程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.6mm程度であるDVD系列光ディスクの総称であり、DVD-ROM、DVD-Video、DVD-Audio、DVD-RAM、DVD-R、DVD-RW、DVD+R、DVD+RW等を含む。また、本明細書においては、CDとは、NA0.45~0.51程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが1.2mm程度であるCD系列光ディスクの総称であり、CD-ROM、CD-Audio、CD-Video、CD-R、CD-RW等を含む。尚、記録密度については、BDの記録密度が最も高く、次いでDVD、CDの順に低くなる。 In this specification, BD means that information is recorded / reproduced by a light beam having a wavelength of about 390 to 420 nm and an objective lens having an NA of about 0.8 to 0.9, and the thickness of the protective substrate is 0.05 to 0.00. It is a generic term for a BD series optical disc of about 125 mm, and includes a BD having only a single information recording surface, a BD having two or more information recording surfaces, and the like. Further, in this specification, DVD is a general term for DVD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.60 to 0.67 and the thickness of the protective substrate is about 0.6 mm. Including DVD-ROM, DVD-Video, DVD-Audio, DVD-RAM, DVD-R, DVD-RW, DVD + R, DVD + RW, and the like. In this specification, CD is a general term for CD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.45 to 0.51 and the thickness of the protective substrate is about 1.2 mm. Including CD-ROM, CD-Audio, CD-Video, CD-R, CD-RW and the like. As for the recording density, the recording density of BD is the highest, followed by the order of DVD and CD.
 なお、保護基板の厚さt1、t2、t3に関しては、以下の条件式(6)、(7)、(8)を満たすことが好ましいが、これに限られない。 In addition, regarding the thicknesses t1, t2, and t3 of the protective substrate, it is preferable to satisfy the following conditional expressions (6), (7), and (8), but is not limited thereto.
 0.050mm≦t1≦0.125mm   (6)
   0.5mm≦t2≦0.7mm     (7)
   1.0mm≦t3≦1.3mm     (8)
 尚、ここで言う、保護基板の厚さとは、光ディスク表面に設けられた保護基板の厚さのことである。即ち、光ディスク表面から、表面に最も近い情報記録面までの保護基板の厚さのことをいう。
0.050 mm ≦ t1 ≦ 0.125 mm (6)
0.5mm ≦ t2 ≦ 0.7mm (7)
1.0mm ≦ t3 ≦ 1.3mm (8)
The thickness of the protective substrate referred to here is the thickness of the protective substrate provided on the surface of the optical disk. That is, the thickness of the protective substrate from the optical disc surface to the information recording surface closest to the surface.
 本明細書において、第1光源、第2光源、第3光源は、好ましくはレーザ光源である。レーザ光源としては、好ましくは半導体レーザ、シリコンレーザ等を用いることが出来る。第1光源から射出される第1光束の第1波長λ1、第2光源から射出される第2光束の第2波長λ2(λ2>λ1)、第3光源から射出される第3光束の第3波長λ3(λ3>λ2)は以下の条件式(9)、(10)、
 1.5×λ1<λ2<1.7×λ1     (9)
 1.8×λ1<λ3<2.0×λ1    (10)
を満たすことが好ましい。
In the present specification, the first light source, the second light source, and the third light source are preferably laser light sources. As the laser light source, a semiconductor laser, a silicon laser, or the like can be preferably used. The first wavelength λ1 of the first light flux emitted from the first light source, the second wavelength λ2 of the second light flux emitted from the second light source (λ2> λ1), and the third of the third light flux emitted from the third light source. The wavelength λ3 (λ3> λ2) is defined by the following conditional expressions (9), (10),
1.5 × λ1 <λ2 <1.7 × λ1 (9)
1.8 × λ1 <λ3 <2.0 × λ1 (10)
It is preferable to satisfy.
 また、第1光ディスク、第2光ディスク、第3光ディスクとして、それぞれ、BD、DVD、及び、CDが用いられる場合、第1光源の第1波長λ1は好ましくは、350nm以上、440nm以下、より好ましくは、390nm以上、420nm以下であって、第2光源の第2波長λ2は好ましくは570nm以上、680nm以下、より好ましくは、630nm以上、670nm以下であって、第3光源の第3波長λ3は好ましくは、750nm以上、880nm以下、より好ましくは、760nm以上、820nm以下である。 Further, when BD, DVD, and CD are used as the first optical disc, the second optical disc, and the third optical disc, respectively, the first wavelength λ1 of the first light source is preferably 350 nm or more and 440 nm or less, more preferably The second wavelength λ2 of the second light source is preferably 570 nm or more and 680 nm or less, more preferably 630 nm or more and 670 nm or less, and the third wavelength λ3 of the third light source is preferable. Is 750 nm or more and 880 nm or less, more preferably 760 nm or more and 820 nm or less.
 また、第1光源、第2光源、第3光源のうち少なくとも2つの光源をユニット化してもよい。ユニット化とは、例えば第1光源と第2光源とが1パッケージに固定収納されているようなものをいう。また、光源に加えて、後述する受光素子を1パッケージ化してもよい。 Also, at least two of the first light source, the second light source, and the third light source may be unitized. The unitization means that the first light source and the second light source are fixedly housed in one package, for example. In addition to the light source, a light receiving element to be described later may be packaged.
 受光素子としては、フォトダイオードなどの光検出器が好ましく用いられる。光ディスクの情報記録面上で反射した光が受光素子へ入射し、その出力信号を用いて、各光ディスクに記録された情報の読み取り信号が得られる。さらに、受光素子上のスポットの形状変化、位置変化による光量変化を検出して、合焦検出やトラック検出を行い、この検出に基づいて、合焦、トラッキングのために対物レンズを移動させることが出来る。受光素子は、複数の光検出器からなっていてもよい。受光素子は、メインの光検出器とサブの光検出器を有していてもよい。例えば、情報の記録再生に用いられるメイン光を受光する光検出器の両脇に2つのサブの光検出器を設け、当該2つのサブの光検出器によってトラッキング調整用のサブ光を受光するような受光素子としてもよい。また、受光素子は各光源に対応した複数の受光素子を有していてもよい。 As the light receiving element, a photodetector such as a photodiode is preferably used. Light reflected on the information recording surface of the optical disc enters the light receiving element, and a read signal of information recorded on each optical disc is obtained using the output signal. Furthermore, it detects the change in the light amount due to the spot shape change and position change on the light receiving element, performs focus detection and track detection, and based on this detection, the objective lens can be moved for focusing and tracking I can do it. The light receiving element may comprise a plurality of photodetectors. The light receiving element may have a main photodetector and a sub photodetector. For example, two sub photodetectors are provided on both sides of a photodetector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub photodetectors. It is good also as a simple light receiving element. The light receiving element may have a plurality of light receiving elements corresponding to the respective light sources.
 光ピックアップ装置の集光光学系は、カップリングレンズと対物レンズを有してもよい。カップリングレンズとは、対物レンズと光源の間に配置され、光束の発散角を変えるレンズ群のことをいう。 The condensing optical system of the optical pickup device may have a coupling lens and an objective lens. The coupling lens is a lens group that is disposed between the objective lens and the light source and changes the divergence angle of the light beam.
 本明細書において、対物レンズとは、光ピックアップ装置において光ディスクに対向する位置に配置され、光源から射出された光束を光ディスクの情報記録面上に集光する機能を有する光学系を指す。対物レンズは、単玉のガラス製、又は、単玉のプラスチック製レンズである。対物レンズは屈折面のみからなっていてもよいし、光路差付与構造を有していてもよい。尚、ガラスレンズの上に光硬化性樹脂、UV硬化性樹脂、又は熱硬化性樹脂などで光路差付与構造を設けたハイブリッドレンズであってもよい。また、対物レンズは、屈折面が非球面であることが好ましい。また、対物レンズは、光路差付与構造が設けられるベース面が非球面であることが好ましい。 In this specification, the objective lens refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing a light beam emitted from the light source onto the information recording surface of the optical disk. The objective lens is a single glass lens or a single plastic lens. The objective lens may be composed of only a refractive surface or may have an optical path difference providing structure. In addition, the hybrid lens which provided the optical path difference providing structure with the photocurable resin, UV curable resin, or thermosetting resin etc. on the glass lens may be sufficient. The objective lens preferably has a refractive surface that is aspheric. In the objective lens, the base surface on which the optical path difference providing structure is provided is preferably an aspherical surface.
 また、対物レンズをガラスレンズとする場合は、ガラス転移点Tgが500℃以下、更に好ましくは400℃以下であるガラス材料を使用することが好ましい。ガラス転移点Tgが500℃以下であるガラス材料を使用することにより、比較的低温での成形が可能となるので、金型の寿命を延ばすことが出来る。このようなガラス転移点Tgが低いガラス材料としては、例えば(株)住田光学ガラス製のK-PG325や、K-PG375(共に製品名)がある。 When the objective lens is a glass lens, it is preferable to use a glass material having a glass transition point Tg of 500 ° C. or lower, more preferably 400 ° C. or lower. By using a glass material having a glass transition point Tg of 500 ° C. or lower, molding at a relatively low temperature is possible, so that the life of the mold can be extended. Examples of such a glass material having a low glass transition point Tg include K-PG325 and K-PG375 (both product names) manufactured by Sumita Optical Glass Co., Ltd.
 加えて,ガラスレンズを成形して製作する際に重要となる物性値が線膨張係数αである。仮にTgが400℃以下の材料を選んだとしても、樹脂材料と比較して室温との温度差は依然大きい。線膨張係数αが大きい硝材を用いてレンズ成形を行った場合、降温時に割れが発生しやすくなる。硝材の線膨張係数αは、200(×10-7/K)以下にあることが好ましく、更に120(×10-7/K)以下であればより好ましい。 In addition, a physical property value that is important when a glass lens is molded and manufactured is a linear expansion coefficient α. Even if a material having a Tg of 400 ° C. or lower is selected, the temperature difference from room temperature is still large compared to the resin material. When lens molding is performed using a glass material having a large linear expansion coefficient α, cracks are likely to occur when the temperature is lowered. The linear expansion coefficient α of the glass material is preferably 200 (× 10 −7 / K) or less, and more preferably 120 (× 10 −7 / K) or less.
 ところで、ガラスレンズは一般的に樹脂レンズよりも比重が大きいため、対物レンズをガラスレンズとすると、質量が大きくなり対物レンズを駆動するアクチュエータに負担がかかる。そのため、対物レンズをガラスレンズとする場合には、比重が小さいガラス材料を使用するのが好ましい。具体的には、比重が4.0以下であるのが好ましく、更に好ましくは比重が3.0以下であるものである。 By the way, since the specific gravity of the glass lens is generally larger than that of the resin lens, if the objective lens is a glass lens, the mass is increased and a load is imposed on the actuator that drives the objective lens. Therefore, when the objective lens is a glass lens, it is preferable to use a glass material having a small specific gravity. Specifically, the specific gravity is preferably 4.0 or less, more preferably the specific gravity is 3.0 or less.
 また、対物レンズを構成する材料のアッベ数は、50以上であることが好ましい。 Further, the Abbe number of the material constituting the objective lens is preferably 50 or more.
 対物レンズは、光ディスクの情報記録面に集光する光束が通過する光源側光学面、及び、光ディスク側光学面と、光源側光学面の外側に配置された光源側端面と、光ディスク側光学面の外側に配置された光ディスク側端面と少なくとも有する。また、対物レンズの周囲にフランジ部を有するものでも良い。フランジ部とは、光学面の周囲に配置され、光ピックアップ装置に対物レンズを取り付けるために用いられる部位をいう。光源側端面と光ディスク側端面とは互いに平行ではない。なお、光源側端面とフランジ部とは面一でもよいし、図2に示されるように光源側端面がフランジ部に対して光軸方向にシフトした形状となっていてもよい。 The objective lens includes a light source side optical surface through which a light beam condensed on the information recording surface of the optical disc passes, an optical disc side optical surface, a light source side end surface disposed outside the light source side optical surface, and an optical disc side optical surface. It has at least an optical disc side end surface arranged outside. Moreover, what has a flange part around the objective lens may be used. The flange portion is a portion that is disposed around the optical surface and is used for attaching an objective lens to the optical pickup device. The light source side end surface and the optical disc side end surface are not parallel to each other. The light source side end surface and the flange portion may be flush with each other, or the light source side end surface may be shifted in the optical axis direction with respect to the flange portion as shown in FIG.
 第1光ディスクに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA1とし、第2光ディスクに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA2(NA1>NA2)とし、第3光ディスクに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA3(NA2>NA3)とする。NA1は、0.75以上、0.9以下であることが好ましく、より好ましくは、0.8以上、0.9以下である。特にNA1は0.85であることが好ましい。NA2は、0.55以上、0.7以下であることが好ましい。特にNA2は0.60又は0.65であることが好ましい。また、NA3は、0.4以上、0.55以下であることが好ましい。特にNA3は0.45又は0.53であることが好ましい。 The numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the first optical disc is NA1, and the numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the second optical disc. Is NA2 (NA1> NA2), and the image-side numerical aperture of the objective lens necessary for reproducing / recording information on the third optical disk is NA3 (NA2> NA3). NA1 is preferably 0.75 or more and 0.9 or less, and more preferably 0.8 or more and 0.9 or less. In particular, NA1 is preferably 0.85. NA2 is preferably 0.55 or more and 0.7 or less. In particular, NA2 is preferably 0.60 or 0.65. NA3 is preferably 0.4 or more and 0.55 or less. In particular, NA3 is preferably 0.45 or 0.53.
 また、対物レンズは、以下の条件式(5)を満たすことが好ましい。(5)式を満たす対物レンズは小径であることが多く、位置決め用の検査光が照射される範囲が狭くなると共に端面同士の厚さが薄くなり、不要光の反射の問題がより大きくなるため、特に本発明の効果がある。 Moreover, it is preferable that the objective lens satisfies the following conditional expression (5). The objective lens satisfying the formula (5) is often small in diameter, and the range in which the inspection light for positioning is irradiated becomes narrow and the thickness between the end faces becomes thin, so that the problem of unnecessary light reflection becomes larger. In particular, the present invention is effective.
 0.8≦d/f≦1.3     (5)
 但し、dは、対物レンズの光軸上の厚さ(mm)を表し、fは、第1光束における対物レンズの焦点距離(mm)を表す。なお、fは、1.0mm以上、1.8mm以下であることが好ましい。
0.8 ≦ d / f ≦ 1.3 (5)
However, d represents the thickness (mm) on the optical axis of the objective lens, and f represents the focal length (mm) of the objective lens in the first light flux. In addition, it is preferable that f is 1.0 mm or more and 1.8 mm or less.
 以下の条件式(5′)、
 0.8≦d/f<1.1     (5′)
においては、端面同士の厚さがより薄くなるため、問題がより大きくなる。したがって、より一層の本発明の効果がある。
The following conditional expression (5 ′),
0.8 ≦ d / f <1.1 (5 ′)
In this case, the problem becomes more serious because the thickness between the end faces becomes thinner. Therefore, there is a further effect of the present invention.
 BDのような短波長、高NAの光ディスクに対応する対物レンズの場合、対物レンズの焦点距離に対する光軸上の厚さの比が大きくなりすぎると、対物レンズに対して軸外光束が入射した際に非点収差が発生しやすくなったり、作動距離(ワーキングディスタンス)が確保出来なくなるという課題が生じる。一方、対物レンズの焦点距離に対する光軸上の厚さの比が小さくなりすぎると、面シフト感度が大きくなるという課題が生じる。条件式(5)を満たすことにより非点収差の発生や面シフト感度を抑制することが可能となる。 In the case of an objective lens corresponding to an optical disk with a short wavelength and high NA such as BD, if the ratio of the thickness on the optical axis to the focal length of the objective lens becomes too large, an off-axis light beam enters the objective lens. In some cases, astigmatism easily occurs, and a working distance (working distance) cannot be secured. On the other hand, if the ratio of the thickness on the optical axis to the focal length of the objective lens becomes too small, there arises a problem that the surface shift sensitivity increases. By satisfying conditional expression (5), it is possible to suppress the generation of astigmatism and the surface shift sensitivity.
 また、第1光ディスクを用いる際の対物レンズの作動距離は、0.15mm以上、1.0mm以下であることが好ましい。 Also, the working distance of the objective lens when using the first optical disk is preferably 0.15 mm or more and 1.0 mm or less.
 また、対物レンズは光学面の周囲にフランジ部を有し、フランジ部の最小肉厚をt(mm)としたときに、以下の条件式(11)、
 5.0<d/t≦8.0   (11)
を満たす場合であって、光ディスク側端面に基づいた対物レンズの姿勢決めを行おうとする場合、フランジの厚さが比較的薄いため、光ディスク側端面に入射した光束が透過し、光源側端面で反射する悪影響が大きくなりやすくなる。従って、本発明の課題がより大きなものとなるが、そのような場合であっても、本発明の対物レンズは当該課題を解決できる。
Further, the objective lens has a flange portion around the optical surface, and when the minimum thickness of the flange portion is t (mm), the following conditional expression (11),
5.0 <d / t ≦ 8.0 (11)
If the objective lens posture is determined based on the optical disc side end surface, the flange is relatively thin so that the light beam incident on the optical disc side end surface is transmitted and reflected by the light source side end surface. The negative effect is likely to increase. Therefore, the problem of the present invention becomes larger, but even in such a case, the objective lens of the present invention can solve the problem.
 更に、光源側光学面の有効径Φが、2.7mm以下のようなスリム型の光ピックアップ装置に適した対物レンズにおいても、フランジの厚さが比較的薄いため、上述と同様の課題が生じるが、やはりそのような場合であっても、本発明の対物レンズは当該課題を解決できる。 Further, even in an objective lens suitable for a slim type optical pickup device in which the effective diameter Φ of the light source side optical surface is 2.7 mm or less, the same problem as described above arises because the flange is relatively thin. However, even in such a case, the objective lens of the present invention can solve the problem.
 また、光源側端面がフランジの外周部まで存在している対物レンズや、光源側端面の面積が光ディスク側端面の面積よりも大きな対物レンズにおいては、光源側端面が大きいため、上述の課題がやはり大きなものとなる。そのような場合であっても、本発明の対物レンズは当該課題を解決できる。 Moreover, in the objective lens in which the end surface on the light source side exists up to the outer peripheral portion of the flange and the objective lens in which the area of the end surface on the light source side is larger than the area of the end surface on the optical disk side, the above-mentioned problem is still caused. It will be big. Even in such a case, the objective lens of the present invention can solve the problem.
 本発明に係る光情報記録再生装置は、上述の光ピックアップ装置を有する光ディスクドライブ装置を有する。 An optical information recording / reproducing apparatus according to the present invention includes an optical disc drive apparatus having the above-described optical pickup apparatus.
 ここで、光情報記録再生装置に装備される光ディスクドライブ装置に関して説明すると、光ディスクドライブ装置には、光ピックアップ装置等を収納している光情報記録再生装置本体から光ディスクを搭載した状態で保持可能なトレイのみが外部に取り出される方式と、光ピックアップ装置等が収納されている光ディスクドライブ装置本体ごと、外部に取り出される方式とがある。 Here, the optical disk drive apparatus provided in the optical information recording / reproducing apparatus will be described. The optical disk drive apparatus can hold an optical disk mounted from the optical information recording / reproducing apparatus main body containing the optical pickup apparatus or the like. There are a system in which only the tray is taken out, and a system in which the optical disc drive apparatus main body in which the optical pickup device is stored is taken out to the outside.
 上述した各方式を用いる光情報記録再生装置には、概ね、次の構成部材が装備されているがこれに限られるものではない。ハウジング等に収納された光ピックアップ装置、光ピックアップ装置をハウジングごと光ディスクの内周あるいは外周に向けて移動させるシークモータ等の光ピックアップ装置の駆動源、光ピックアップ装置のハウジングを光ディスクの内周あるいは外周に向けてガイドするガイドレールなどを有した光ピックアップ装置の移送手段及び、光ディスクの回転駆動を行うスピンドルモータ等である。 The optical information recording / reproducing apparatus using each method described above is generally equipped with the following components, but is not limited thereto. An optical pickup device housed in a housing or the like, a drive source of an optical pickup device such as a seek motor that moves the optical pickup device together with the housing toward the inner periphery or outer periphery of the optical disc, and the optical pickup device housing the inner periphery or outer periphery of the optical disc These include a transfer means of an optical pickup device having a guide rail or the like that guides toward the head, a spindle motor that rotates the optical disk, and the like.
 前者の方式には、これら各構成部材の他に、光ディスクを搭載した状態で保持可能なトレイおよびトレイを摺動させるためのローディング機構等が設けられ、後者の方式にはトレイおよびローディング機構がなく、各構成部材が外部に引き出し可能なシャーシに相当するドロワーに設けられていることが好ましい。 In addition to these components, the former method is provided with a tray that can be held in a state in which an optical disk is mounted and a loading mechanism for sliding the tray, and the latter method has no tray and loading mechanism. It is preferable that each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
 本発明によれば、対物レンズの姿勢を精度良く検出できるようにすることで、組み付け容易性を高めることができる対物レンズ、及び、それを用いた光ピックアップ装置を提供することができる。 According to the present invention, it is possible to provide an objective lens capable of improving the ease of assembly and an optical pickup device using the objective lens by making it possible to accurately detect the posture of the objective lens.
光ディスクであるBDに対して適切に情報の記録/再生を行うことができる本実施の形態の光ピックアップ装置PU1の構成を概略的に示す図である。It is a figure which shows schematically the structure of optical pick-up apparatus PU1 of this Embodiment which can record / reproduce information appropriately with respect to BD which is an optical disk. 本実施の形態の対物レンズOBJを示す断面図である。It is sectional drawing which shows the objective lens OBJ of this Embodiment. 対物レンズOBJを光ピックアップ装置PU1に組み付ける際の状態を示す図である。It is a figure which shows the state at the time of attaching the objective lens OBJ to optical pick-up apparatus PU1. 本実施の形態の変形例にかかる対物レンズOBJを示す断面図である。It is sectional drawing which shows the objective lens OBJ concerning the modification of this Embodiment. 対物レンズの姿勢を検出するときに使用するオートコリメータでのスポット像を示す図である。It is a figure which shows the spot image in the autocollimator used when detecting the attitude | position of an objective lens.
 以下、本発明の実施の形態を、図面を参照して説明する。図1は、光ディスクであるBDに対して適切に情報の記録/再生を行うことができる本実施の形態の光ピックアップ装置PU1の構成を概略的に示す図である。かかる光ピックアップ装置PU1は、光情報記録再生装置に搭載できる。なお、本発明は、本実施の形態に限られるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram schematically showing a configuration of an optical pickup apparatus PU1 of the present embodiment that can appropriately record / reproduce information with respect to a BD that is an optical disk. Such an optical pickup device PU1 can be mounted on an optical information recording / reproducing device. The present invention is not limited to the present embodiment.
 光ピックアップ装置PU1は、対物レンズOBJ、対物レンズOBJをフォーカシング方向及びトラッキング方向に移動させるアクチュエータAC、λ/4波長板QWP、カップリングCL、偏光プリズムPBS、405nmのレーザ光束(光束)を射出する半導体レーザLD、センサ用レンズSL、BDの情報記録面RL1からの反射光束を受光する受光素子PDを有する。尚、本実施の形態では、対物レンズOBJはガラス製又はプラスチック製の単玉である。又、対物レンズOBJは、以下の式、
 0.8≦d/f≦1.3     (5)
を満たす。但し、dは、対物レンズの光軸上の厚さ(mm)を表し、fは、波長λの光束における対物レンズの焦点距離(mm)を表す。
The optical pickup device PU1 emits an objective lens OBJ, an actuator AC that moves the objective lens OBJ in a focusing direction and a tracking direction, a λ / 4 wavelength plate QWP, a coupling CL, a polarizing prism PBS, and a laser beam (light beam) of 405 nm. It has a light receiving element PD that receives a reflected light beam from the information recording surface RL1 of the semiconductor laser LD, sensor lenses SL, and BD. In the present embodiment, the objective lens OBJ is a single ball made of glass or plastic. In addition, the objective lens OBJ has the following formula:
0.8 ≦ d / f ≦ 1.3 (5)
Meet. Here, d represents the thickness (mm) of the objective lens on the optical axis, and f represents the focal length (mm) of the objective lens in the light flux with wavelength λ.
 まず、BDの第1の情報記録面RL1に対して記録/再生を行う場合について説明する。青紫色半導体レーザLDから射出された光束(例えば、λ=405nm)の発散光束は、偏光プリズムPBSを透過し、カップリングレンズCLを通過して略平行光束とされた後、λ/4波長板QWPにより直線偏光から円偏光に変換され、図示しない絞りによりその光束径が規制され、対物レンズOBJにより保護基板PL1を介して、情報記録面RL1上に形成されるスポットとなる。 First, a case where recording / reproduction is performed on the first information recording surface RL1 of the BD will be described. A divergent light beam emitted from the blue-violet semiconductor laser LD (for example, λ = 405 nm) is transmitted through the polarization prism PBS and passed through the coupling lens CL to be a substantially parallel light beam. The linearly polarized light is converted into circularly polarized light by QWP, the diameter of the light beam is regulated by a diaphragm (not shown), and becomes a spot formed on the information recording surface RL1 through the protective substrate PL1 by the objective lens OBJ.
 情報記録面RL1上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、カップリングレンズCLを通過して収束光束とされ、偏光プリズムPBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、アクチュエータACにより対物レンズOBJをフォーカシングやトラッキングさせることで、情報記録面RL1に記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the information recording surface RL1 passes through the objective lens OBJ and the diaphragm again, and then is converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP, and passes through the coupling lens CL. After being reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. The information recorded on the information recording surface RL1 can be read by focusing or tracking the objective lens OBJ by the actuator AC using the output signal of the light receiving element PD.
 図2は、本実施の形態の対物レンズOBJを示す断面図であり、一点鎖線は有効径の最外縁を通過する光束Lを示している。即ち、光束Lが光源側光学面OB11a、光ディスク側光学面OB21aと交差する位置が、それぞれ有効径となる。尚、不図示の絞りと対物レンズOBJとの芯ズレが生じた場合等を考慮し、有効径外(ハッチングで示す範囲)まで光源側光学面OB11a、光ディスク側光学面OB21aを延長している。 FIG. 2 is a cross-sectional view showing the objective lens OBJ of the present embodiment, and the alternate long and short dash line indicates the light beam L that passes through the outermost edge of the effective diameter. That is, the positions where the light beam L intersects the light source side optical surface OB11a and the optical disc side optical surface OB21a are effective diameters. Note that the light source side optical surface OB11a and the optical disc side optical surface OB21a are extended to the outside of the effective diameter (range indicated by hatching) in consideration of a case where a misalignment between an aperture (not shown) and the objective lens OBJ occurs.
 図2において、対物レンズOBJは、光源側光学面の光軸X11を中心として、光軸X11を含む円形の光源側光学面OB11aと、それに続く輪帯状の光源側端面領域(光源側端面ともいう)OB11bと、それに続く輪帯状の光源側遷移領域OB11cと、それに続く環状のフランジ部OBFの光源側フランジ端面OB11dと、それに直交するフランジ部OBFの周面OB11eと、更に、ディスク側光学面の光軸X21を中心として、光軸X21を含む円形の光ディスク側光学面OB21aと、それに続く輪帯状の光ディスク側端面領域(光ディスク側端面ともいう)OB21bと、それに続く輪帯状の光ディスク側遷移領域OB21cと、それに続くフランジ部の光ディスク側フランジ端面OB21dとを有している。尚、不図示の光ピックアップ装置に組み付けたとき、光源側光学面OB11aが光源側になり、光ディスク側光学面OB21aが光ディスク側になる。 In FIG. 2, the objective lens OBJ has a circular light source side optical surface OB11a including the optical axis X11 around the optical axis X11 of the light source side optical surface, followed by an annular light source side end surface region (also referred to as a light source side end surface). ) OB11b, a ring-shaped light source side transition region OB11c following it, a light source side flange end surface OB11d of the annular flange portion OBF, a circumferential surface OB11e of the flange portion OBF orthogonal thereto, and a disk side optical surface A circular optical disc-side optical surface OB21a including the optical axis X21, an annular optical disc-side end surface region (also referred to as an optical disc-side end surface) OB21b, and a subsequent annular optical disc-side transition region OB21c centered on the optical axis X21. And an optical disc side flange end surface OB21d of the flange portion that follows. When assembled in an optical pickup device (not shown), the light source side optical surface OB11a is on the light source side, and the optical disc side optical surface OB21a is on the optical disc side.
 本実施の形態によれば、光ディスク側端面領域OB21bは、光ディスク側光学面OB21aの光軸X21に直交する面T21に対する傾きαが3分未満なのに対して、光源側端面領域OB11bは光源側光学面OB11aの光軸X11に直交する面T11に対する傾きβが3分(0.05度)以上となるよう傾いている。光軸X21、X11は必ずしも同軸とは限らない。また、光ディスク側端面領域OB21bと光源側端面領域OB11bは光学面と同様に鏡面となっており、その面粗さはRa10nm以下である。 According to the present embodiment, the optical disc side end surface region OB21b has an inclination α of less than 3 minutes with respect to the surface T21 orthogonal to the optical axis X21 of the optical disc side optical surface OB21a, whereas the light source side end surface region OB11b has the light source side optical surface. The inclination β of the OB11a with respect to the plane T11 orthogonal to the optical axis X11 is inclined to be 3 minutes (0.05 degrees) or more. The optical axes X21 and X11 are not necessarily coaxial. The optical disc side end surface region OB21b and the light source side end surface region OB11b are mirror surfaces like the optical surface, and the surface roughness is Ra 10 nm or less.
 図4は、本実施の形態の変形例にかかる対物レンズOBJを示す断面図である。図4に示す変形例では、図2に示す実施の形態に対して光源側遷移領域OB11c、光源側フランジ端面OB11d、光ディスク側遷移領域OB21c、光ディスク側フランジ端面OB21dがない対物レンズであり、このようなタイプのレンズも本発明に含まれる。 FIG. 4 is a cross-sectional view showing an objective lens OBJ according to a modification of the present embodiment. In the modification shown in FIG. 4, the objective lens has no light source side transition region OB11c, light source side flange end surface OB11d, optical disc side transition region OB21c, and optical disc side flange end surface OB21d as in the embodiment shown in FIG. Various types of lenses are also included in the present invention.
 図3は、対物レンズOBJを光ピックアップ装置PU1に組み付ける際の状態を示す図である。対物レンズOBJの光ディスク側に配置し、光ピックアップ装置PU1の光軸に合うように設定されたオートコリメータDETから検査光DLを射出すると、かかる検査光DLは光ディスク側端面領域OB21bに照射される。照射された検査光DLの一部は実線で示すように光ディスク側端面領域OB21bで反射して、オートコリメータDETで検出される。光ディスク側端面領域OB21bに入射した残りの検査光DLは、点線で示すように対物レンズOBJを透過して、光源側端面領域OB11bで一部が反射し、その反射光もオートコリメータDETで検出される。 FIG. 3 is a diagram showing a state when the objective lens OBJ is assembled to the optical pickup device PU1. When the inspection light DL is emitted from an autocollimator DET that is arranged on the optical disk side of the objective lens OBJ and is set to match the optical axis of the optical pickup device PU1, the inspection light DL is irradiated onto the optical disk side end face region OB21b. A part of the irradiated inspection light DL is reflected by the optical disc side end face region OB21b as indicated by a solid line and detected by the autocollimator DET. The remaining inspection light DL incident on the optical disc side end surface region OB21b is transmitted through the objective lens OBJ as indicated by a dotted line, and partially reflected by the light source side end surface region OB11b. The reflected light is also detected by the autocollimator DET. The
 光源側端面領域OB11bと光ディスク側端面領域OB21bからの反射光によるオートコリメータDETでのスポット像は、図5に示すようになる。光ディスク側端面領域OB21bは光ディスク側光学面の光軸X21に対して傾きαが3分未満であり、即ち略直交しているため、オートコリメータDETには略平行光で入射し、その結果、オートコリメータDETでのスポット像S2は小さくなり、光強度が高い。一方、光源側端面領域OB11bは光源側光学面の光軸X11に対する傾きβが3分以上傾いているため、オートコリメータDETには発散光で入射し、その結果、オートコリメータDETでのスポット像S1は大きくなり、光強度も低い。従って、オートコリメータDET上、スポット像S2とスポット像S1とは明確に識別できる。光ディスク側端面領域OB21bに基づいて対物レンズOBJの姿勢を調整するが、その具体的な方法としては、光ディスク側端面領域OB21bによるスポット像S2が光ピックアップ装置PU1の光軸と一致する対物レンズの姿勢位置Sになるように対物レンズの姿勢を調整する。このとき、光源側端面領域OB11bによるスポット像S1は大きく、光強度も低いため、対物レンズの姿勢調整に影響を及ぼさない。対物レンズOBJの傾きを調整した後、対物レンズOBJはアクチュエータACのホルダHLに接着される。 A spot image on the autocollimator DET by reflected light from the light source side end surface region OB11b and the optical disc side end surface region OB21b is as shown in FIG. The optical disc side end surface region OB21b has an inclination α of less than 3 minutes with respect to the optical axis X21 of the optical surface on the optical disc side, that is, substantially orthogonal, and therefore enters the autocollimator DET with substantially parallel light. The spot image S2 on the collimator DET is small and the light intensity is high. On the other hand, in the light source side end face region OB11b, since the inclination β of the light source side optical surface with respect to the optical axis X11 is inclined by 3 minutes or more, it enters the autocollimator DET with divergent light, and as a result, the spot image S1 in the autocollimator DET. Becomes larger and the light intensity is lower. Therefore, the spot image S2 and the spot image S1 can be clearly identified on the autocollimator DET. The posture of the objective lens OBJ is adjusted based on the optical disc side end surface region OB21b. As a specific method, the posture of the objective lens in which the spot image S2 by the optical disc side end surface region OB21b coincides with the optical axis of the optical pickup device PU1. The posture of the objective lens is adjusted so as to be at the position S. At this time, since the spot image S1 by the light source side end surface region OB11b is large and the light intensity is low, it does not affect the posture adjustment of the objective lens. After adjusting the inclination of the objective lens OBJ, the objective lens OBJ is bonded to the holder HL of the actuator AC.
 なお、図3では光ディスク側端面領域OB21bの一部を利用して対物レンズの姿勢を調整する方法であるがこれに限るものではなく、例えば、輪帯状の光ディスク側端面領域OB21b全体を利用して対物レンズの姿勢を調整する方法でもよい。 Although FIG. 3 shows a method of adjusting the posture of the objective lens using a part of the optical disc side end surface region OB21b, the present invention is not limited to this. For example, the entire optical disc side end surface region OB21b is used. A method of adjusting the posture of the objective lens may be used.
 本発明は、明細書に記載の実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施例や思想から本分野の当業者にとって明らかである。明細書の記載及び実施例は、あくまでも例証を目的としており、本発明の範囲は後述するクレームによって示されている。例えば、上述の実施の形態では、光源側端面領域OB11bと光ディスク側端面領域OB21bは外向きに傾いているが内向きに傾いていても良い。 The present invention is not limited to the embodiments described in the specification, and other embodiments and modifications are apparent to those skilled in the art from the embodiments and ideas described in the present specification. It is. The description and examples are for illustrative purposes only, and the scope of the invention is indicated by the following claims. For example, in the above-described embodiment, the light source side end surface region OB11b and the optical disc side end surface region OB21b are inclined outward, but may be inclined inward.
 AC アクチュエータ
 CL カップリングレンズ
 DET オートコリメータ
 DL 検査光
 HL ホルダ
 LD 半導体レーザ
 PBS 偏光プリズム
 PD 受光素子
 PL1 保護基板
 PU1 光ピックアップ装置
 QWP λ/4波長板
 RL1 情報記録面
 SL センサ用レンズ
 OB11a 光源側光学面
 OB11b 光源側端面領域
 OB11c 光源側遷移領域
 OB11d 光源側フランジ部
 OB11e フランジ部側面
 OB21a 光ディスク側光学面
 OB21b 光ディスク側端面領域
 OB21c 光ディスク側遷移領域
 OB21d 光ディスク側フランジ部
 OBJ 対物レンズ
 OBF フランジ部
 X11 光源側光学面の光軸
 X21 ディスク側光学面の光軸
 T11 光源側光学面の光軸に直交する面
 T21 光ディスク側光学面の光軸に直交する面
 α ディスク側端面領域OB21bと光ディスク側光学面の光軸に直交する面T21とのなす角
 β 光源側端面領域OB11bと光源側光学面の光軸に直交する面T11とのなす角
 S1 光源側端面領域OB11bによるオートコリメータDETでのスポット像
 S2 光ディスク側端面領域OB21bによるオートコリメータDETでのスポット像
 S 光ピックアップ装置PU1の光軸と一致する対物レンズの姿勢位置
AC actuator CL coupling lens DET autocollimator DL inspection light HL holder LD semiconductor laser PBS polarizing prism PD light receiving element PL1 protective substrate PU1 optical pickup device QWP λ / 4 wavelength plate RL1 information recording surface SL sensor lens OB11a light source side optical surface OB11b Light source side end surface region OB11c Light source side transition region OB11d Light source side flange portion OB11e Flange portion side surface OB21a Optical disc side optical surface OB21b Optical disc side end surface region OB21c Optical disc side transition region OB21d Optical disc side flange portion OBJ Objective lens OBF Flange portion X11 Light source side optical surface Optical axis X21 Optical axis of disc optical surface T11 Surface orthogonal to optical axis of light source optical surface T21 Surface orthogonal to optical axis of optical disc side α disc Angle formed by the side end surface region OB21b and a surface T21 orthogonal to the optical axis of the optical disc side optical surface β Angle formed by the light source side end surface region OB11b and the surface T11 orthogonal to the optical axis of the light source side optical surface S1 Light source side end surface region OB11b Spot image on autocollimator DET by S2 Spot image on autocollimator DET by optical disk side end surface region OB21b S Attitude position of objective lens coincident with optical axis of optical pickup device PU1

Claims (9)

  1.  波長λ(390nm≦λ≦680nm)の光束を射出する光源と、前記光束を光ディスクの情報記録面上に集光させるための対物レンズと、を有し、前記光源から射出された光束を前記対物レンズにより前記光ディスクの情報記録面に集光することによって情報の記録及び/または再生を行う光ピックアップ装置の対物レンズにおいて、
     前記対物レンズは単玉であって、像側開口数(NA)は0.6以上であり、
     前記対物レンズは、前記光ディスクの情報記録面に集光する光束が通過する光源側光学面及び光ディスク側光学面と、前記光源側光学面の外側に形成され、面粗さRaが10nm以下である光源側端面と、前記光ディスク側光学面の外側に形成され、面粗さRaが10nm以下である光ディスク側端面と、を有し、
     以下の条件式(1)を満たすことを特徴とする対物レンズ。
     |α|≠|β|   (1)
     但し、αは前記光ディスク側端面と前記光ディスク側光学面の光軸に直交する面とのなす角を表し、βは前記光源側端面と前記光源側光学面の光軸に直交する面とのなす角を表す。
    A light source that emits a light beam having a wavelength λ (390 nm ≦ λ ≦ 680 nm), and an objective lens that focuses the light beam on an information recording surface of an optical disc, and the light beam emitted from the light source is In an objective lens of an optical pickup device that records and / or reproduces information by condensing on an information recording surface of the optical disc by a lens,
    The objective lens is a single lens, and the image side numerical aperture (NA) is 0.6 or more,
    The objective lens is formed on the light source side optical surface and the optical disc side optical surface through which a light beam condensed on the information recording surface of the optical disc passes, and outside the light source side optical surface, and has a surface roughness Ra of 10 nm or less. A light source side end surface and an optical disc side end surface formed on the outer side of the optical disc side optical surface and having a surface roughness Ra of 10 nm or less,
    An objective lens that satisfies the following conditional expression (1):
    | Α | ≠ | β | (1)
    Here, α represents an angle formed by the end surface on the optical disc side and a surface orthogonal to the optical axis of the optical surface on the optical disc side, and β is formed on a surface orthogonal to the optical axis of the light source side optical surface. Represents a corner.
  2.  以下の条件式(2)を満たすことを特徴とする請求項1に記載の対物レンズ。
     |α|<|β|   (2)
    The objective lens according to claim 1, wherein the following conditional expression (2) is satisfied.
    | Α | <| β | (2)
  3.  前記光ディスク側端面は、前記光ディスク側光学面の光軸に対して略直交していることを特徴とする請求項1又は2に記載の対物レンズ。 3. The objective lens according to claim 1, wherein the optical disc side end surface is substantially orthogonal to the optical axis of the optical disc side optical surface.
  4.  以下の条件式(3)を満たすことを特徴とする請求項1~3のいずれか1項に記載の対物レンズ。
     |β|≧ 3′   (3)
    The objective lens according to any one of claims 1 to 3, wherein the following conditional expression (3) is satisfied.
    | Β | ≧ 3 ′ (3)
  5.  対物レンズの像側開口数(NA)は0.8以上であり、以下の条件式(4)、(5)を満たすことを特徴とする請求項1~4のいずれか1項に記載の対物レンズ。
     390nm≦λ≦420nm  (4)
     0.8≦d/f≦1.3    (5)
     但し、dは、対物レンズの光軸上の厚さ(mm)を表し、fは、波長λの光束における対物レンズの焦点距離(mm)を表す。
    The objective according to any one of claims 1 to 4, wherein an image-side numerical aperture (NA) of the objective lens is 0.8 or more and satisfies the following conditional expressions (4) and (5): lens.
    390 nm ≦ λ ≦ 420 nm (4)
    0.8 ≦ d / f ≦ 1.3 (5)
    Here, d represents the thickness (mm) of the objective lens on the optical axis, and f represents the focal length (mm) of the objective lens in the light flux with wavelength λ.
  6.  前記対物レンズは、ガラス素材から形成されていることを特徴とする請求項1~5のいずれか1項に記載の対物レンズ。 6. The objective lens according to claim 1, wherein the objective lens is made of a glass material.
  7.  前記対物レンズは、プラスチック素材から形成されていることを特徴とする請求項1~5のいずれか1項に記載の対物レンズ。 6. The objective lens according to claim 1, wherein the objective lens is made of a plastic material.
  8.  以下の条件式(12)を満たすことを特徴とする請求項1~7のいずれか1項に記載の対物レンズ。
    ||α|-|β||>0.3′    (12)
    The objective lens according to claim 1, wherein the following conditional expression (12) is satisfied.
    || α |-| β ||> 0.3 '(12)
  9.  請求項1~8のいずれかに記載の対物レンズを有することを特徴とする光ピックアップ装置。 An optical pickup device comprising the objective lens according to any one of claims 1 to 8.
PCT/JP2011/050704 2010-02-12 2011-01-18 Objective lens of optical pickup device and optical pickup device WO2011099329A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011553780A JPWO2011099329A1 (en) 2010-02-12 2011-01-18 Objective lens of optical pickup device and optical pickup device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010029121 2010-02-12
JP2010-029121 2010-02-12

Publications (1)

Publication Number Publication Date
WO2011099329A1 true WO2011099329A1 (en) 2011-08-18

Family

ID=44367615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050704 WO2011099329A1 (en) 2010-02-12 2011-01-18 Objective lens of optical pickup device and optical pickup device

Country Status (2)

Country Link
JP (1) JPWO2011099329A1 (en)
WO (1) WO2011099329A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10506918B2 (en) 2011-02-16 2019-12-17 The General Hospital Corporation Optical coupler for an endoscope
US10548467B2 (en) 2015-06-02 2020-02-04 GI Scientific, LLC Conductive optical element
US10642020B2 (en) 2014-09-23 2020-05-05 Scott Miller Optical coupler for optical imaging visualization device
US10856724B2 (en) 2015-07-21 2020-12-08 GI Scientific, LLC Endoscope accessory with angularly adjustable exit portal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069612A1 (en) * 2005-12-14 2007-06-21 Matsushita Electric Industrial Co., Ltd. Optical head and optical information device
JP2007311006A (en) * 2006-05-22 2007-11-29 Sanyo Electric Co Ltd Objective lens and method for manufacturing optical pickup device
JP2010027183A (en) * 2008-07-24 2010-02-04 Hoya Corp Objective lens for optical information recording and reproducing device and optical information recording and reproducing device
JP2010040117A (en) * 2008-08-06 2010-02-18 Hitachi Maxell Ltd Optical element for pickup in optical recording/reading

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069612A1 (en) * 2005-12-14 2007-06-21 Matsushita Electric Industrial Co., Ltd. Optical head and optical information device
JP2007311006A (en) * 2006-05-22 2007-11-29 Sanyo Electric Co Ltd Objective lens and method for manufacturing optical pickup device
JP2010027183A (en) * 2008-07-24 2010-02-04 Hoya Corp Objective lens for optical information recording and reproducing device and optical information recording and reproducing device
JP2010040117A (en) * 2008-08-06 2010-02-18 Hitachi Maxell Ltd Optical element for pickup in optical recording/reading

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10506918B2 (en) 2011-02-16 2019-12-17 The General Hospital Corporation Optical coupler for an endoscope
US11428922B2 (en) 2014-09-23 2022-08-30 Scott Miller Optical coupler for optical imaging visualization device
US11782257B2 (en) 2014-09-23 2023-10-10 Scott Miller Optical imaging device
US10989912B2 (en) 2014-09-23 2021-04-27 Scott Miller Optical coupler for optical imaging visualization device
US10642020B2 (en) 2014-09-23 2020-05-05 Scott Miller Optical coupler for optical imaging visualization device
AU2020203506B2 (en) * 2014-09-23 2021-06-03 Scott Miller Optical coupler for optical imaging visualization device
EP3197337B1 (en) * 2014-09-23 2021-08-18 Scott Miller Optical coupler for optical imaging visualization device
AU2021225192B2 (en) * 2014-09-23 2023-08-03 Scott Miller Optical coupler for optical imaging visualization device
US11666208B2 (en) 2015-06-02 2023-06-06 GI Scientific, LLC Conductive optical element
US10548467B2 (en) 2015-06-02 2020-02-04 GI Scientific, LLC Conductive optical element
US11019984B2 (en) 2015-07-21 2021-06-01 GI Scientific, LLC Endoscope accessory with angularly adjustable exit portal
US11253137B2 (en) 2015-07-21 2022-02-22 GI Scientific, LLC Endoscope accessory with locking elements
US10856724B2 (en) 2015-07-21 2020-12-08 GI Scientific, LLC Endoscope accessory with angularly adjustable exit portal
US11882999B2 (en) 2015-07-21 2024-01-30 GI Scientific, LLC Coupler device for an endoscope
US11910999B2 (en) 2015-07-21 2024-02-27 GI Scientific, LLC Endoscope accessory with locking elements

Also Published As

Publication number Publication date
JPWO2011099329A1 (en) 2013-06-13

Similar Documents

Publication Publication Date Title
WO2010044355A1 (en) Objective lens and optical pickup device
WO2011099329A1 (en) Objective lens of optical pickup device and optical pickup device
JPWO2007010770A1 (en) Optical pickup device and optical information recording medium recording / reproducing device
JP2010157315A (en) Aspheric lens and optical pickup adopting the same as objective lens
JP4193915B2 (en) Optical pickup device and objective optical element for optical pickup device
JP5083621B2 (en) Objective lens and optical pickup device
JP2009037719A (en) Optical pickup device and objective optical element
JP5713248B2 (en) Objective lens for optical pickup device and optical pickup device
JP2013206496A (en) Optical pickup device and objective
WO2011052469A1 (en) Light pickup device
JPWO2010004858A1 (en) Objective lens and optical pickup device
JP2011243268A (en) Objective lens for optical pickup device, and optical pickup device
JP2011165288A (en) Objective lens of optical pickup and optical pickup
JPWO2008120594A1 (en) Lens unit for optical pickup device and optical pickup device
JP5441014B2 (en) Objective lens for optical pickup device and optical pickup device
JP5582421B2 (en) Optical pickup device and optical information recording / reproducing device
WO2011122275A1 (en) Optical pickup device and coupling lens for the optical pickup device
WO2012070438A1 (en) Objective lens for optical pickup device and optical pickup device
JP2006236472A (en) Lens drive device and optical pickup device
JPWO2008111364A1 (en) Optical element for optical pickup device and optical pickup device
WO2013077071A1 (en) Objective lens for optical pickup device, optical pickup device, and optical information recording/reproduction device
JP2009217866A (en) Optical pickup device and objective optical element
JP2005293708A (en) Optical pickup apparatus
JP2009015951A (en) Correction element for optical pickup device, objective optical element unit, and optical pickup device
JP2011210314A (en) Objective lens for optical pickup device, optical pickup device, and optical information recording and reproducing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11742078

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011553780

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11742078

Country of ref document: EP

Kind code of ref document: A1