WO2011122275A1 - Optical pickup device and coupling lens for the optical pickup device - Google Patents

Optical pickup device and coupling lens for the optical pickup device Download PDF

Info

Publication number
WO2011122275A1
WO2011122275A1 PCT/JP2011/055477 JP2011055477W WO2011122275A1 WO 2011122275 A1 WO2011122275 A1 WO 2011122275A1 JP 2011055477 W JP2011055477 W JP 2011055477W WO 2011122275 A1 WO2011122275 A1 WO 2011122275A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
information recording
pickup device
optical
coupling
Prior art date
Application number
PCT/JP2011/055477
Other languages
French (fr)
Japanese (ja)
Inventor
清乃 立山
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012508180A priority Critical patent/JPWO2011122275A1/en
Publication of WO2011122275A1 publication Critical patent/WO2011122275A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1376Collimator lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/24Optical objectives specially designed for the purposes specified below for reproducing or copying at short object distances
    • G02B13/26Optical objectives specially designed for the purposes specified below for reproducing or copying at short object distances for reproducing with unit magnification
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B2007/13727Compound lenses, i.e. two or more lenses co-operating to perform a function, e.g. compound objective lens including a solid immersion lens, positive and negative lenses either bonded together or with adjustable spacing

Definitions

  • the present invention relates to an optical pickup device capable of recording and / or reproducing information with respect to an optical disc having three or more information recording surfaces in the thickness direction, and a coupling lens used therefor.
  • a high-density optical disk system capable of recording and / or reproducing information (hereinafter, “recording and / or reproduction” is referred to as “recording / reproduction”) using a blue-violet semiconductor laser having a wavelength of about 400 nm.
  • a BD having a two-layer information recording surface has recently been developed and is already on the market.
  • the magnification is changed by moving a coupling lens including two lenses arranged between a light source and an objective lens in the optical axis direction, for example, two layers (or four layers, etc.).
  • a coupling lens including two lenses arranged between a light source and an objective lens in the optical axis direction for example, two layers (or four layers, etc.).
  • an optical pickup device that can select any one of information recording surfaces and collect a light beam with suppressed aberration.
  • a BD having an information recording surface of three layers or more has been developed.
  • an optical pickup device capable of recording / reproducing information with respect to a BD having an information recording surface of three layers or more.
  • a relatively thick type called a so-called half-height mounted on a stationary recorder or the like has no significant problem because a relatively large moving space for the coupling lens can be secured.
  • a so-called slim type mounted on the back of a notebook PC or thin television.
  • such a slim type optical pickup device has a problem that a sufficient space for moving the coupling lens cannot be secured.
  • the coupling lens disclosed in Patent Document 1 it is suitably used for a half-height type optical pickup device.
  • the focal length f exceeds 15 mm, and any of information recording surfaces of three or more layers in a BD is used.
  • the lens movement amount becomes too large to be mounted on a slim type optical pickup device.
  • the coupling lens disclosed in Patent Document 2 can be mounted on a slim type optical pickup device.
  • the focal length f of the coupling lens exceeds 15 mm, and is essentially three or more layers. It is not intended to use a BD having an information recording surface. This is because the coupling lens disclosed in Patent Document 2 has a small amount of spherical aberration with respect to the amount of movement, and therefore the amount of lens movement becomes too large when recording or reproducing information recording surfaces of three or more layers on a BD. This is because it is difficult to mount on a slim type optical pickup device.
  • the present invention has been made in consideration of the above problems, and an optical pickup device capable of recording / reproducing information on / from an optical disc having a multilayer information recording surface while being compact and low in cost. It is an object to provide a coupling lens.
  • the optical pickup device is an optical pickup device that selects and records information and / or reproduces information by selecting any information recording surface in an optical disk having three or more information recording surfaces in the thickness direction.
  • a light source that emits a light beam having a wavelength ⁇ 1 (390 nm ⁇ 1 ⁇ 415 nm)
  • an objective lens for condensing the light beam on an information recording surface of an optical disc and a cup disposed between the light source and the objective lens
  • a ring lens The coupling lens includes a positive lens having a positive refractive power and a negative lens having a negative refractive power, and only one of the positive lens and the negative lens is movable in the optical axis direction.
  • the thickness difference ⁇ T between the thinnest information recording surface and the thickest information recording surface from the incident side surface of the optical disc to the information recording surface satisfies the equation (1), Further, it is necessary for condensing the light flux having the wavelength ⁇ 1 so that information can be recorded and / or reproduced on the information recording surface having the thinnest protective substrate thickness and the information recording surface having the thickest protective substrate thickness.
  • the movement amount L in the optical axis direction of the one lens satisfies the formula (2)
  • the focal length f of the coupling lens when the one lens is moved to a position where a parallel light beam is emitted from the coupling lens toward the objective lens satisfies the expression (3). 0.04 (mm) ⁇ ⁇ T ⁇ 0.05 (mm) (1) 0.5 (mm) ⁇ L ⁇ 2.0 (mm) (2) 9 (mm) ⁇ f ⁇ 15 (mm) (3) It is characterized by that.
  • the coupling lens includes a positive lens having a positive refractive power and a negative lens having a negative refractive power, and only one of the positive lens and the negative lens is in the optical axis direction. Since the movement distance can be reduced and the load on the actuator can be reduced, for example, a compact optical pickup device suitable for a slim type can be provided.
  • L is below the lower limit of the expression (2)
  • the moving sensitivity of the one lens to be moved ratio of the amount of spherical aberration generated with respect to the moving distance
  • An optical pickup device is the invention according to the first aspect, wherein the following equation (2 ′): 0.5 (mm) ⁇ L ⁇ 1.5 (mm) (2 ') It is characterized by satisfying.
  • the value By setting the value to the upper limit of the expression (2 ′) or less, it is possible to provide a pickup device that is suitable when a space for other members is required.
  • the optical pickup device is characterized in that, in the invention according to claim 1 or 2, the light source, the negative lens, and the positive lens are arranged in this order.
  • the effective diameter can be reduced compared to the case where the negative lens is disposed on the optical disk side, so that the weight can be reduced, and the burden on the actuator when moving the negative lens is reduced. Can be reduced.
  • An optical pickup device is the optical pickup device according to any one of the first to third aspects, wherein the negative lens is movable in an optical axis direction, and a power ratio between the negative lens and the positive lens.
  • the negative lens is movable in an optical axis direction, and a power ratio between the negative lens and the positive lens.
  • the negative lens is thinner and lighter than the positive lens, it is possible to reduce the burden on the actuator that moves the negative lens. In such a case, satisfying the expression (4) is preferable because the expression (2) is satisfied.
  • the optical pickup device is the optical pickup device according to any one of claims 1 to 3, wherein the positive lens is movable in an optical axis direction, and a power ratio between the negative lens and the positive lens.
  • P1 power of the negative lens
  • P2 power of the positive lens
  • a polarizing beam splitter or the like is generally arranged between the light source and the coupling lens, and the moving space is limited. Therefore, the moving space is reduced by arranging the positive lens on the optical disc side. Can be secured. In such a case, satisfying the expression (5) is preferable because the expression (2) is satisfied.
  • the coupling lens of the optical pickup device performs recording and / or reproduction of information by selecting one of the information recording surfaces in an optical disc having three or more information recording surfaces in the thickness direction.
  • An optical pickup device comprising: a light source that emits a light beam having a wavelength ⁇ 1 (390 nm ⁇ 1 ⁇ 415 nm); an objective lens that collects the light beam on an information recording surface of an optical disc; the light source and the objective lens;
  • a coupling lens of an optical pickup device having a coupling lens disposed between The coupling lens includes a positive lens having a positive refractive power and a negative lens having a negative refractive power, and only one of the positive lens and the negative lens is movable in the optical axis direction.
  • the thickness difference ⁇ T between the thinnest information recording surface and the thickest information recording surface from the incident side surface of the optical disc to the information recording surface satisfies the equation (1), Further, it is necessary for condensing the light flux having the wavelength ⁇ 1 so that information can be recorded and / or reproduced on the information recording surface having the thinnest protective substrate thickness and the information recording surface having the thickest protective substrate thickness.
  • the movement amount L in the optical axis direction of the one lens satisfies the formula (2)
  • the focal length f of the coupling lens when the one lens is moved to a position where a parallel light beam is emitted from the coupling lens toward the objective lens satisfies the expression (3). 0.04 (mm) ⁇ ⁇ T ⁇ 0.05 (mm) (1) 0.5 (mm) ⁇ L ⁇ 2.0 (mm) (2) 9 (mm) ⁇ f ⁇ 15 (mm) (3) It is characterized by that.
  • a coupling lens of an optical pickup device is the invention according to the sixth aspect, wherein the following expression (2 ′): 0.5 (mm) ⁇ L ⁇ 1.5 (mm) (2 ') It is characterized by satisfying.
  • the coupling lens of the optical pickup device according to claim 8 is characterized in that, in the invention according to claim 6 or 7, the negative lens and the positive lens are arranged in this order from the light source.
  • the coupling lens of the optical pickup device is the invention according to any one of claims 6 to 8, wherein the negative lens is movable in an optical axis direction, and the negative lens and the positive lens are movable.
  • the power ratio of the lens is given by equation (4) ⁇ 1.3 ⁇ P2 / P1 ⁇ ⁇ 0.9 (4)
  • P1 power of the negative lens
  • P2 power of the positive lens
  • a coupling lens of an optical pickup device is the invention according to any one of the sixth to eighth aspects, wherein the positive lens is movable in the optical axis direction, and the negative lens and the positive lens
  • the power ratio of the lens is given by equation (5) -8.0 ⁇ P2 / P1 ⁇ ⁇ 1.25 (5)
  • P1 power of the negative lens
  • P2 power of the positive lens
  • focus jump when performing an operation of changing an information recording surface on which information is to be recorded and / or reproduced from one information recording surface to another information recording surface (hereinafter referred to as “focus jump” in this specification).
  • the power of the lens moved in the optical axis direction is increased (that is, in the optical axis direction). It is conceivable to shorten the focal length of the lens that is moved to (1). This is because the amount of movement of the lens moved in the optical axis direction decreases as the power of the lens increases (that is, as the focal length of the lens decreases).
  • the coupling lens has a group configuration
  • the focal length of the lens moved in the optical axis direction that is, equal to the focal length of the coupling lens
  • the spot condensed by the objective lens becomes elliptical. Therefore, there is a possibility that the recording and / or reproduction of information on the BD may be hindered. The reason for this will be described below.
  • the coupling lens has a two-group configuration including a positive lens and a negative lens, and the positive lens or the negative lens is moved in the optical axis direction.
  • the coupling lens is a two-group thin lens system composed of a positive lens and a negative lens, and the positive lens is moved along the optical axis direction during focus jump.
  • the positive lens power is P2
  • the positive lens focal length is f P
  • the negative lens power is P1
  • the negative lens focal length is f N
  • the distance between the positive lens and the negative lens is D
  • the entire coupling lens system The power P C and the focal length f of the entire coupling lens system are expressed by the following equation (6):
  • P C P2 + P1-D ⁇ P2 ⁇ P1
  • the system magnification M is about -0.1.
  • the focal length f of the entire coupling lens system cannot be extremely shortened.
  • the distance between the objective lens and the BD (also referred to as a working distance) is not too short, and in order to reduce the thickness of the optical pickup device, optimal range of the focal length f O of the lens naturally determined.
  • the focal length range of the entire system needs to be a certain predetermined range, and the movement of the coupling lens required at the time of focus jump Considering only the amount, the focal length f of the entire coupling lens system cannot be reduced excessively. Therefore, in the present invention, the focal length f is limited to a range satisfying the expression (3).
  • the power P2 of the positive lens is increased, and the negative lens power P1 is absolute so that the focal length f of the entire coupling lens system does not become too short. It is preferable to increase the value (see formula (6)).
  • the optical pickup device of the present invention it is possible to reduce both the amount of movement of the lens required at the time of focus jump and the symmetry of the light amount distribution taken in by the coupling lens.
  • the optical path length from the light source to the objective lens is suppressed, and the optical pickup device can be reduced in size and size. Cost can be reduced.
  • a lens that is movable in the optical axis direction may be referred to as a “movable lens”.
  • “movement amount of the coupling lens” is used in the same meaning as “movement amount of the movable lens”.
  • the state in which a parallel light beam is incident on the objective lens means that the position of the movable lens of the coupling lens is optimized so that the light beam emitted from the coupling lens and directed to the objective lens becomes a parallel light beam. It is synonymous with that.
  • the optical pickup device has at least one light source (first light source).
  • first light source a plurality of types of light sources may be provided so as to support a plurality of types of optical disks.
  • the optical pickup device of the present invention has a condensing optical system for condensing at least the first light flux from the first light source on the information recording surface of the first optical disc.
  • the condensing optical system condenses the second light beam on the information recording surface of the second optical disk, and the third light beam on the information recording surface of the third optical disk. You may make it condense.
  • the optical pickup device of the present invention includes a light receiving element that receives at least a reflected light beam from the information recording surface of the first optical disc.
  • the light receiving element receives a reflected light beam from the information recording surface of the second optical disk and receives a reflected light beam from the information recording surface of the third optical disk. Also good.
  • the first optical disc has a protective substrate having a thickness t1 and an information recording surface.
  • the second optical disc has a protective substrate having a thickness t2 (t1 ⁇ t2) and an information recording surface.
  • the third optical disc has a protective substrate having a thickness t3 (t2 ⁇ t3) and an information recording surface.
  • the first optical disc is preferably a BD
  • the second optical disc is a DVD
  • the third optical disc is preferably a CD, but is not limited thereto.
  • the first optical disc has three or more information recording surfaces stacked in the thickness direction. Of course, you may have four or more information recording surfaces.
  • the second optical disc and the third optical disc may also have a plurality of information recording surfaces.
  • BD means that information is recorded / reproduced by a light beam having a wavelength of about 390 to 415 nm and an objective lens having an NA of about 0.8 to 0.9, and the thickness of the protective substrate is 0.05 to 0.00 mm.
  • the optical pickup device of the present invention has at least three layers. It is possible to deal with a BD having the above information recording surface.
  • DVD is a general term for DVD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.60 to 0.67 and the thickness of the protective substrate is about 0.6 mm.
  • CD is a general term for CD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.45 to 0.51 and the thickness of the protective substrate is about 1.2 mm.
  • CD-ROM, CD-Audio, CD-Video, CD-R, CD-RW and the like As for the recording density, the recording density of BD is the highest, followed by the order of DVD and CD.
  • the thicknesses t1, t2, and t3 of the protective substrate it is preferable to satisfy the following conditional expressions (8), (9), and (10), but is not limited thereto.
  • the thickness of the protective substrate referred to here is the thickness of the protective substrate provided on the surface of the optical disk. That is, the thickness of the protective substrate from the optical disc surface to the information recording surface closest to the surface.
  • the first light source, the second light source, and the third light source are preferably laser light sources.
  • the laser light source a semiconductor laser, a silicon laser, or the like can be preferably used.
  • the wavelength ⁇ 3 ( ⁇ 3> ⁇ 2) preferably satisfies the following conditional expressions (11) and (12).
  • the first wavelength ⁇ 1 of the first light source is preferably 350 nm or more and 440 nm or less, more preferably 390 nm.
  • the second wavelength ⁇ 2 of the second light source is preferably 570 nm or more and 680 nm or less, more preferably 630 nm or more and 670 nm or less, and the third wavelength ⁇ 3 of the third light source is preferably 415 nm or less. It is 750 nm or more and 880 nm or less, More preferably, it is 760 nm or more and 820 nm or less.
  • the first light source, the second light source, and the third light source may be unitized.
  • the unitization means that the first light source and the second light source are fixedly housed in one package, for example.
  • a light receiving element to be described later may be packaged.
  • a photodetector such as a photodiode is preferably used.
  • Light reflected on the information recording surface of the optical disc enters the light receiving element, and a read signal of information recorded on each optical disc is obtained using the output signal. Furthermore, it detects the change in the light amount due to the spot shape change and position change on the light receiving element, performs focus detection and track detection, and based on this detection, the objective lens can be moved for focusing and tracking I can do it.
  • the light receiving element may comprise a plurality of photodetectors.
  • the light receiving element may have a main photodetector and a sub photodetector.
  • two sub photodetectors are provided on both sides of a photodetector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub photodetectors. It is good also as a simple light receiving element.
  • the light receiving element may have a plurality of light receiving elements corresponding to the respective light sources.
  • the condensing optical system has a coupling lens and an objective lens.
  • the coupling lens is a lens that is arranged between the objective lens and the light source and changes the divergence angle of the light beam.
  • the coupling lens has a positive lens and a negative lens.
  • the positive lens has at least one positive lens.
  • the positive lens may be a single positive lens or may have a plurality of lenses.
  • the negative lens has at least one negative lens.
  • the negative lens may be a single negative lens or a plurality of lenses.
  • An example of a preferable coupling lens is a combination of one positive lens and one negative lens.
  • the positive lens and the negative lens may be arranged in the order of the negative lens and the positive lens from the light source side, or may be arranged in the order of the positive lens and the negative lens from the light source side.
  • the optimum example of the coupling lens in the optical pickup device of the present invention is a combination of one positive lens and one negative lens, and is arranged in order of the negative lens and the positive lens from the light source side. .
  • the negative lens or the positive lens can be moved in the optical axis direction.
  • a negative lens or a positive lens of the coupling lens Moves in the direction of the optical axis, changes the divergence of the light beam, and changes the magnification of the objective lens, thereby correcting the spherical aberration that occurs at the time of focus jump to a different information recording surface of the first optical disc.
  • FIG. 1 is a diagram showing the results of studies conducted by the present inventors.
  • an optical disc having a surface
  • the maximum spherical aberration difference A that occurs when an optimum focused spot is formed on each information recording surface that is the maximum distance, and the maximum that occurs when the environmental temperature changes by ⁇ 30 ° C.
  • the maximum spherical aberration C that occurs when the wavelength of the light source changes by ⁇ 5 nm. This is represented by the bar graph of FIG.
  • Such spherical aberration can be corrected by moving the coupling lens in the optical axis direction and changing the magnification of the objective lens.
  • the total amount of spherical aberration is the amount of movement of the coupling lens. It is equivalent to.
  • the amount of spherical aberration is obtained regardless of whether the optical surface is an aspherical refractive surface or a diffractive surface. Is about 410 to 430 m ⁇ rms, and it can be said that the amount of movement of the coupling lens is relatively small.
  • the total amount of spherical aberration is 680 m ⁇ rms in an objective lens having an aspherical refractive surface. The amount of movement is required to be about 1.5 times that required when an optical disc having two information recording surfaces is used. Furthermore, as shown in FIG.
  • the objective lens is made of glass and the optical surface is an aspherical refracting surface
  • the objective lens is made of glass and the optical surface is a diffractive surface that corrects spherical aberration that occurs when the wavelength varies, in addition to spherical aberration B caused by environmental temperature changes, spherical aberration C caused by wavelength fluctuations of the light source due to the function of the diffractive surface.
  • the amount of movement of the coupling lens is smaller (corresponding to the correction amount of the spherical aberration of 500 m ⁇ rms in FIG. 1C).
  • the amount of movement of the coupling lens when the optical disk having two information recording surfaces is used is smaller than that of the coupling lens when the optical disk having four information recording surfaces is used. Since the amount of movement is still about twice, further ingenuity is required to suppress the amount of movement of the coupling lens. The same applies to the amount of movement of the coupling lens when using an optical disc having three information recording surfaces or five or more information recording surfaces.
  • an optical disc having two information recording surfaces an information recording surface having a smaller distance from the light beam incident surface of the optical disc is RL1, an information recording surface having a larger distance from the light beam incident surface of the optical disc is RL2
  • optical disk having four information recording surfaces (assuming that the information recording surface having the smallest distance from the light beam incident surface of the optical disk is RL1, and the information recording surface having the largest distance from the light beam incident surface of the optical disk is RL4), An optical disk was assumed in which the distance from the light beam incident surface of the optical disk to RL1 was 50 ⁇ m and the distance from the light beam incident surface of the optical disk to RL4 was 100 ⁇ m.
  • 2 is a cross-sectional view of a coupling lens CL1 including only a positive lens (one in the figure) L1, and a coupling lens CL2 including a positive lens (one in the figure) L2 and a negative lens (one in the figure) L3. It is.
  • the focal length of the coupling lens CL1 is equal to the combined focal length of the coupling lens CL2, which is f. Therefore, the focal length f2 of the positive lens L2 of the coupling lens CL2 is shorter than the focal length f of the positive lens L1 of the coupling lens CL1.
  • the amount of movement of the coupling lens CL1)> (the amount of movement of the coupling lens CL2). That is, the amount of movement required is smaller when the positive lens L2 of the coupling lens CL2 of the positive lens and the negative lens is moved than when the coupling lens CL1 of the single lens is moved.
  • the objective lens refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing a light beam emitted from the light source onto the information recording surface of the optical disk.
  • the objective lens is preferably a single lens, but may be formed of a plurality of optical elements.
  • the objective optical element may be a glass lens, a plastic lens, or a hybrid lens in which a diffractive structure or the like is provided on a glass lens with a photocurable resin or the like.
  • the objective optical element preferably has a refractive surface that is aspheric. Further, when the objective lens is provided with an optical path difference providing structure, the base surface is preferably an aspherical surface.
  • the objective lens is a glass lens, as described with reference to FIG. 1, it is not necessary to move the coupling lens in order to correct the spherical aberration caused by the temperature change. This is preferable because it can be reduced and the optical pickup device can be downsized.
  • the objective lens is a glass lens
  • a glass material having a glass transition point Tg of 500 ° C. or lower more preferably 400 ° C. or lower.
  • a glass material having a glass transition point Tg of 500 ° C. or lower molding at a relatively low temperature is possible, so that the life of the mold can be extended.
  • Examples of such a glass material having a low glass transition point Tg include K-PG325 and K-PG375 (both product names) manufactured by Sumita Optical Glass Co., Ltd.
  • the specific gravity of the glass lens is generally larger than that of the resin lens, if the objective lens is a glass lens, the mass is increased and a load is imposed on the actuator that drives the objective lens. Therefore, when the objective lens is a glass lens, it is preferable to use a glass material having a small specific gravity.
  • the specific gravity is preferably 4.0 or less, more preferably the specific gravity is 3.0 or less.
  • the linear expansion coefficient ⁇ is preferably 200 (10 ⁇ 7 / K) or less, more preferably 120 (10 ⁇ 7 / K) or less.
  • the objective lens is a plastic lens
  • an alicyclic hydrocarbon polymer material such as a cyclic olefin resin material.
  • the resin material has a refractive index of 1.54 to 1.60 at a temperature of 25 ° C. with respect to a wavelength of 405 nm, and a wavelength of 405 nm according to a temperature change within a temperature range of ⁇ 5 ° C. to 70 ° C.
  • the coupling lens is preferably a plastic lens.
  • cycloolefin resin is preferably used.
  • ZEONEX manufactured by Nippon Zeon, APEL manufactured by Mitsui Chemicals, TOPAS ADVANCED, TOPAS manufactured by POLYMERS, ARTON manufactured by JSR, etc. are preferable examples. Can be mentioned.
  • the Abbe number of the material constituting the objective lens is preferably 50 or more.
  • NA1 The numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the first optical disc is NA1, and the numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the second optical disc.
  • NA2 NA1> NA2
  • NA3 NA2> NA3
  • NA1 is preferably 0.75 or more and 0.9 or less, and more preferably 0.8 or more and 0.9 or less.
  • NA1 is preferably 0.85.
  • NA2 is preferably 0.55 or more and 0.7 or less.
  • NA2 is preferably 0.60 or 0.65.
  • NA3 is preferably 0.4 or more and 0.55 or less.
  • NA3 is preferably 0.45 or 0.53.
  • the objective lens satisfies the following conditional expression (13).
  • d represents the thickness (mm) on the optical axis of the objective lens
  • f O represents the focal length of the objective lens in the first light flux.
  • f O is, 1.0 mm or more, it is preferable that a 1.8mm or less.
  • the working distance of the objective lens when using the first optical disk is preferably 0.15 mm or more and 1.0 mm or less.
  • An optical information recording / reproducing apparatus includes an optical disc drive apparatus having the above-described optical pickup apparatus.
  • the optical disk drive apparatus can hold an optical disk mounted from the optical information recording / reproducing apparatus main body containing the optical pickup apparatus or the like. There are a system in which only the tray is taken out, and a system in which the optical disc drive apparatus main body in which the optical pickup device is stored is taken out to the outside.
  • the optical information recording / reproducing apparatus using each method described above is generally equipped with the following components, but is not limited thereto.
  • An optical pickup device housed in a housing or the like, a drive source of an optical pickup device such as a seek motor that moves the optical pickup device together with the housing toward the inner periphery or outer periphery of the optical disc, and the optical pickup device housing the inner periphery or outer periphery of the optical disc include a transfer means of an optical pickup device having a guide rail or the like that guides toward the head, a spindle motor that rotates the optical disk, and the like.
  • the former method is provided with a tray that can be held in a state in which an optical disk is mounted and a loading mechanism for sliding the tray, and the latter method has no tray and loading mechanism. It is preferable that each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
  • an optical pickup device and a coupling lens that are capable of recording / reproducing information with respect to an optical disc having a multilayer information recording surface while being compact and low in cost.
  • FIG. 3 shows that information is appropriately recorded on a BD that is an optical disc having three information recording surfaces RL1 to RL3 (referred to as RL1, RL2, and RL3 in ascending order of the distance from the light incident surface of the optical disc) in the thickness direction.
  • FIG. 2 is a diagram schematically showing a configuration of an optical pickup device PU1 of the present embodiment that can perform reproduction.
  • the present invention is not limited to the present embodiment.
  • FIG. 3 shows a BD-dedicated optical pickup device.
  • the objective lens OBJ is used for BD / DVD / CD compatibility, or a DVD / CD objective lens is separately provided, so that the BD / DVD is used.
  • An optical pickup device compatible with CD can be used.
  • the optical pickup device PU1 moves the objective lens OBJ, the objective lens OBJ in the focusing direction and the tracking direction, and tilts in the radial direction and / or tangential direction of the optical disc, the ⁇ / 4 wavelength plate QWP, Raising mirror MR, coupling CL having positive lens L2 having positive refractive power and negative lens L3 having negative refractive power, uniaxial actuator AC1 for moving only positive lens L2 in the optical axis direction, polarizing prism PBS, 405 nm And a light receiving element PD that receives reflected light beams from the information recording surfaces RL1 to RL3 of the semiconductor laser LD, the sensor lens SL, and the BD.
  • the coupling lens CL is disposed between the polarizing prism PBS and the ⁇ / 4 wavelength plate QWP.
  • the semiconductor laser LD is arranged in the order of the negative lens L3 and the positive lens L2.
  • the semiconductor laser LD may be arranged in the order of the positive lens L2 and the negative lens L3.
  • the negative lens L3 is movable in the optical axis direction, and the positive lens L2 is fixed to the optical pickup device.
  • the thickness difference ⁇ T between the information recording surface with the smallest protective substrate thickness from the incident side surface of the BD to the information recording surface satisfies the formula (1)
  • the thickness of the protective substrate is The amount of movement L in the optical axis direction of the negative lens for converging the light flux having the wavelength ⁇ 1 with respect to the thinnest information recording surface and the thickest information recording surface satisfies the equation (2).
  • the focal length f of the coupling lens CL when the negative lens is moved to a position where the parallel light beam is emitted from the coupling lens CL satisfies the expression (3).
  • the lens L2 After passing through the lens L2 to be a weakly convergent light beam, it is reflected by the rising mirror MR, converted from linearly polarized light to circularly polarized light by the ⁇ / 4 wavelength plate QWP, and its light beam diameter is regulated by a diaphragm (not shown). It becomes a spot formed on the first information recording surface RL1 by the lens OBJ through the transparent substrate PL1 having the first thickness as shown by the solid line.
  • the reflected light beam modulated by the information pits on the first information recording surface RL1 is again transmitted through the objective lens OBJ and the diaphragm, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wave plate QWP, and is raised to the rising mirror MR. , And passes through the positive lens L2 and the negative lens L3 of the coupling lens CL to form a convergent light beam. After being reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the first information recording surface RL1 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
  • the positive lens L2 of the coupling lens CL is moved to the position of the alternate long and short dash line by the uniaxial actuator AC1.
  • the lens L2 After passing through the lens L2 and made into a substantially parallel light beam, it is reflected by the rising mirror MR, converted from linearly polarized light to circularly polarized light by the ⁇ / 4 wave plate QWP, and the light beam diameter is regulated by a diaphragm (not shown). It becomes a spot formed on the second information recording surface RL2 by the lens OBJ via the transparent substrate PL2 having the second thickness (thicker than the first thickness), as indicated by a one-dot chain line.
  • the reflected light beam modulated by the information pits on the second information recording surface RL2 is again transmitted through the objective lens OBJ and the stop, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP, and the rising mirror MR , And passes through the positive lens L2 and the negative lens L3 of the coupling lens CL to form a convergent light beam. After being reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the second information recording surface RL2 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
  • the positive lens L2 of the coupling lens CL is moved to the dotted line position by the uniaxial actuator AC1.
  • the lens L2 After passing through the lens L2 to be a weak divergent light beam, it is reflected by the rising mirror MR, converted from linearly polarized light to circularly polarized light by the ⁇ / 4 wavelength plate QWP, and its light beam diameter is regulated by a diaphragm (not shown). It becomes a spot formed on the third information recording surface RL3 by the lens OBJ via the transparent substrate PL3 having a third thickness (thicker than the second thickness) as indicated by a dotted line.
  • the reflected light beam modulated by the information pits on the third information recording surface RL3 is again transmitted through the objective lens OBJ and the diaphragm, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP, and the rising mirror MR , And passes through the positive lens L2 and the negative lens L3 of the coupling lens CL to form a convergent light beam. After being reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the third information recording surface RL3 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
  • the polarization prism PBS is disposed close to the coupling lens CL on the side of the semiconductor laser LD, whereas it is launched relatively far from the objective lens OBJ side. Since the mirror MR is arranged, the maximum distance for moving the coupling lens CL arranged at the origin to the semiconductor laser LD side is made smaller than the maximum distance for moving to the objective lens OBJ side, so that different information recording surfaces can be obtained. A compact optical pickup device can be obtained while ensuring a total movement distance for condensing the spots.
  • the objective lens OBJ is moved in the radial direction of the optical disk and / or by the triaxial actuator AC2. Tilt along the tangential direction. As a result, it is possible to stably record and / or reproduce information on the warped optical disc, and to maintain a good spot quality on the information recording surface even when the optical disc is tilted during rotation.
  • FIG. 4 shows that information is appropriately recorded on a BD that is an optical disk having three information recording surfaces RL1 to RL3 (referred to as RL1, RL2, and RL3 in order of increasing distance from the light beam incident surface of the optical disk) in the thickness direction.
  • FIG. 6 is a diagram schematically showing a configuration of an optical pickup device PU2 of a second embodiment capable of performing reproduction. This embodiment has the same configuration as the above-described embodiment except that the negative lens L3 is moved and the positive lens L2 is fixed to the optical pickup device.
  • the negative lens L3 of the coupling lens CL is moved to the position of the solid line by the uniaxial actuator AC1.
  • the lens L2 After passing through the lens L2 to be a weakly convergent light beam, it is reflected by the rising mirror MR, converted from linearly polarized light to circularly polarized light by the ⁇ / 4 wavelength plate QWP, and its light beam diameter is regulated by a diaphragm (not shown). It becomes a spot formed on the first information recording surface RL1 by the lens OBJ through the transparent substrate PL1 having the first thickness as shown by the solid line.
  • the reflected light beam modulated by the information pits on the first information recording surface RL1 is again transmitted through the objective lens OBJ and the diaphragm, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wave plate QWP, and is raised to the rising mirror MR. , And passes through the positive lens L2 and the negative lens L3 of the coupling lens CL to form a convergent light beam. After being reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the first information recording surface RL1 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
  • the negative lens L3 of the coupling lens CL is moved to the position of the alternate long and short dash line by the uniaxial actuator AC1.
  • the lens L2 After passing through the lens L2 and made into a substantially parallel light beam, it is reflected by the rising mirror MR, converted from linearly polarized light to circularly polarized light by the ⁇ / 4 wave plate QWP, and the light beam diameter is regulated by a diaphragm (not shown). It becomes a spot formed on the second information recording surface RL2 by the lens OBJ via the transparent substrate PL2 having the second thickness (thicker than the first thickness), as indicated by a one-dot chain line.
  • the reflected light beam modulated by the information pits on the second information recording surface RL2 is again transmitted through the objective lens OBJ and the stop, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP, and the rising mirror MR , And passes through the positive lens L2 and the negative lens L3 of the coupling lens CL to form a convergent light beam. After being reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the second information recording surface RL2 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
  • the negative lens L3 of the coupling lens CL is moved to the dotted line position by the uniaxial actuator AC1.
  • the lens L2 After passing through the lens L2 to be a weak divergent light beam, it is reflected by the rising mirror MR, converted from linearly polarized light to circularly polarized light by the ⁇ / 4 wavelength plate QWP, and its light beam diameter is regulated by a diaphragm (not shown). It becomes a spot formed on the third information recording surface RL3 by the lens OBJ via the transparent substrate PL3 having a third thickness (thicker than the second thickness) as indicated by a dotted line.
  • the reflected light beam modulated by the information pits on the third information recording surface RL3 is again transmitted through the objective lens OBJ and the diaphragm, and then converted from circularly polarized light to linearly polarized light by the ⁇ / 4 wavelength plate QWP, and the rising mirror MR , And passes through the positive lens L2 and the negative lens L3 of the coupling lens CL to form a convergent light beam. After being reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the third information recording surface RL3 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
  • the objective lens OBJ is attached by the triaxial actuator AC2. It can also be tilted along the radial direction and / or the tangential direction of the optical disc. As a result, it is possible to stably record and / or reproduce information on the warped optical disc, and to maintain a good spot quality on the information recording surface even when the optical disc is tilted during rotation.
  • the focal length of the objective lens OBJ is preferably in the range of 1.0 mm to 1.8 mm.
  • the design wavelength is 405 nm
  • ri in the following table is the radius of curvature
  • di is the position in the optical axis direction from the i-th surface to the (i + 1) -th surface
  • ni is the refractive index of each surface at the design wavelength 405 nm.
  • a power of 10 for example, 2.5 ⁇ 10 ⁇ 3
  • E for example, 2.5 ⁇ E ⁇ 3
  • the optical surface of the objective lens is formed as an aspherical surface that is axisymmetric about the optical axis, each of which is defined by an equation in which the coefficient shown in Table 1 is substituted into Equation (1).
  • X (h) is an axis in the optical axis direction (the light traveling direction is positive)
  • is a conical coefficient
  • a i is an aspherical coefficient
  • h is a height from the optical axis
  • r is a paraxial curvature. Radius.
  • Example 1 shows lens data of Example 1.
  • the condensing optical system of this example is suitable for the second embodiment, and includes a two-group coupling lens having a negative lens (movable lens) and a positive lens (fixed lens), and an objective lens.
  • the coupling lens of this example has an aspheric surface obtained by substituting the aspheric coefficients of the second and fifth surfaces in Table 1 into Equation 1, and the objective lens of this example is shown in Table 1. It has an aspheric surface obtained by substituting the aspheric coefficients of the seventh surface and the eighth surface into Equation (1).
  • Example 2 shows lens data of Example 2.
  • the condensing optical system of this example is suitable for the second embodiment, and includes a two-group coupling lens having a negative lens (movable lens) and a positive lens (fixed lens), and an objective lens.
  • the coupling lens of this example has an aspheric surface obtained by substituting the aspheric coefficients of the second surface and the fifth surface in Table 2 into Equation 1, and the objective lens of this example is shown in Table 2. It has an aspheric surface obtained by substituting the aspheric coefficients of the seventh surface and the eighth surface into Equation (1).
  • Example 3 shows lens data of Example 3.
  • the condensing optical system of this example is suitable for the second embodiment, and includes a two-group coupling lens having a negative lens (movable lens) and a positive lens (fixed lens), and an objective lens.
  • the coupling lens of this embodiment has an aspheric surface obtained by substituting the aspheric coefficients of the second surface and the fifth surface in Table 3 into Equation 1, and the objective lens of this embodiment is shown in Table 3. It has an aspheric surface obtained by substituting the aspheric coefficients of the seventh surface and the eighth surface into Equation (1).
  • Example 4 shows lens data of Example 4.
  • the condensing optical system of this example is suitable for the second embodiment, and includes a two-group coupling lens having a negative lens (movable lens) and a positive lens (fixed lens), and an objective lens.
  • the coupling lens of the present embodiment has an aspheric surface obtained by substituting the aspheric coefficients of the second surface and the fifth surface in Table 4 into Equation 1, and the objective lens of the present embodiment is shown in Table 4. It has an aspheric surface obtained by substituting the aspheric coefficients of the seventh surface and the eighth surface into Equation (1).
  • Example 5 shows lens data of Example 5.
  • the condensing optical system of this example is suitable for the first embodiment, and includes a two-group coupling lens having a negative lens (fixed lens) and a positive lens (movable lens), and an objective lens.
  • the coupling lens of this embodiment has an aspheric surface obtained by substituting the aspheric coefficients of the second surface and the fifth surface in Table 5 into Equation 1, and the objective lens of this embodiment is shown in Table 5. It has an aspheric surface obtained by substituting the aspheric coefficients of the seventh surface and the eighth surface into Equation (1).
  • Example 6 shows lens data of Example 6.
  • the condensing optical system of this example is suitable for the first embodiment, and includes a two-group coupling lens having a negative lens (fixed lens) and a positive lens (movable lens), and an objective lens.
  • the coupling lens of this example has an aspheric surface obtained by substituting the aspheric coefficients of the second surface and the fifth surface in Table 6 into Equation 1, and the objective lens of this example is shown in Table 6. It has an aspheric surface obtained by substituting the aspheric coefficients of the seventh surface and the eighth surface into Equation (1).
  • Example 7 shows lens data of Example 7.
  • the condensing optical system of this example is suitable for the first embodiment, and includes a two-group coupling lens having a negative lens (fixed lens) and a positive lens (movable lens), and an objective lens.
  • the coupling lens of this example has an aspheric surface obtained by substituting the aspheric coefficients of the second surface and the fifth surface in Table 7 into Equation 1, and the objective lens of this example is shown in Table 7. It has an aspheric surface obtained by substituting the aspheric coefficients of the seventh surface and the eighth surface into Equation (1).
  • Table 8 summarizes numerical values corresponding to conditional expressions (2) to (5) for each example.
  • the movement sensitivity ( ⁇ / 0.01 mm) is 0.0020 to 0.0061, and the lens drive control at the time of focus jump is easy.
  • the distance between the lenses of the coupling lens, the distance between the positive lens and the negative lens through which the parallel light beam enters the objective lens is indicated by A in Table 8, and is the thinnest protective substrate thickness of 0.0535 mm.
  • the distance between the positive lens and the negative lens of the coupling lens that emits a convergent light beam in which the third-order spherical aberration of the spot of the objective lens is 0 is B in Table 8.
  • the positive lens of the coupling lens that emits a divergent light beam such that the third-order spherical aberration of the spot of the objective lens is zero when the information recording surface having the thickest protective substrate thickness of 0.1 mm is selected.
  • the distance between the negative lens and the negative lens is indicated by C in Table 8.
  • ⁇ in Table 8 is the distance between the surfaces on the optical axes when a parallel light beam is emitted from the coupling lens to the objective lens (see FIGS. 3 and 4).
  • OBJ Objective lens PU1, PU2 Optical pickup device Blue-violet semiconductor laser AC1 Single-axis actuator AC2 Three-axis actuator PBS Polarizing prism CL Coupling lens L2 Positive lens L3 Negative lens MR Rising mirror PL1 First transparent substrate PL2 Second transparent Substrate PL3 Third transparent substrate RL1 First information recording surface RL2 Second information recording surface RL3 Third information recording surface QWP ⁇ / 4 wavelength plate

Abstract

Provided are a compact and low-cost optical pickup device which can read and write information on an optical disc having multi-layered information storage surfaces, and a coupling lens therefor. To this end, the coupling lens is made up of a positive lens having positive refractive power and a negative lens having negative refractive power, and only one of the positive lens and the negative lens can be displaced along the optical axis. The difference in thickness ΔT(mm) between the information storage surfaces that have the smallest and the greatest protecting-substrate thickness between the incidence surface of the optical disc and the information storage surface satisfies that 0.04 ≤ ΔT ≤ 0.05. The amount of displacement L(mm) of the one lens along the optical axis for focusing light beams of wavelength λ1 on the information storage surfaces with the smallest and the greatest protecting-substrate thickness satisfies that 0.5 ≤ L ≤ 2.0. The focal distance f(mm) of the coupling lens achieved when the one lens is displaced to the position at which the coupling lens emits a collimated light beam satisfies that 9 ≤ f ≤ 15.

Description

光ピックアップ装置及び光ピックアップ装置のカップリングレンズOptical pickup device and coupling lens of optical pickup device
 本発明は、厚さ方向に3つ以上の情報記録面を有する光ディスクに対して情報の記録及び/又は再生を行える光ピックアップ装置及びそれに用いるカップリングレンズに関する。 The present invention relates to an optical pickup device capable of recording and / or reproducing information with respect to an optical disc having three or more information recording surfaces in the thickness direction, and a coupling lens used therefor.
 波長400nm程度の青紫色半導体レーザを用いて、情報の記録及び/又は再生(以下、「記録及び/又は再生」を「記録/再生」と記載する)を行える高密度光ディスクシステムが知られており、その一例であるNA0.85、光源波長405nmの仕様で情報記録/再生を行う光ディスク、いわゆるBlu-ray Disc(以下、BDという)では、DVD(NA0.6、光源波長650nm、記憶容量4.7GB)と同じ大きさである直径12cmの光ディスクに対して、1層あたり25GBの情報の記録が可能である。 There is known a high-density optical disk system capable of recording and / or reproducing information (hereinafter, “recording and / or reproduction” is referred to as “recording / reproduction”) using a blue-violet semiconductor laser having a wavelength of about 400 nm. As an example, an optical disc for recording / reproducing information with specifications of NA 0.85 and light source wavelength 405 nm, so-called Blu-ray Disc (hereinafter referred to as BD), DVD (NA 0.6, light source wavelength 650 nm, storage capacity 4. It is possible to record 25 GB of information per layer on an optical disk having a diameter of 12 cm, which is the same size as 7 GB).
 ところで、1層の情報記録面を有するBDに対し、近年では2層の情報記録面を有するBDも開発され、既に市販されている。ここで特許文献1には、光源と対物レンズとの間に配置した2枚レンズを含むカップリングレンズを光軸方向に移動させることで倍率を変更し、例えば2層(又は4層等)の情報記録面のいずれかを選択して、収差を抑えた光束を集光させることができる光ピックアップ装置が開示されている。 Incidentally, in contrast to a BD having a one-layer information recording surface, a BD having a two-layer information recording surface has recently been developed and is already on the market. Here, in Patent Document 1, the magnification is changed by moving a coupling lens including two lenses arranged between a light source and an objective lens in the optical axis direction, for example, two layers (or four layers, etc.). There has been disclosed an optical pickup device that can select any one of information recording surfaces and collect a light beam with suppressed aberration.
特開2005-129204号公報JP 2005-129204 A 特開2002-197712号公報JP 2002-197712 A
 ところで、記録容量の増大を図るべく3層以上の情報記録面を有するBDも開発されているが、3層以上の情報記録面を有するBDに対して情報の記録/再生を行える光ピックアップ装置において、従来では据え置き型レコーダ等に搭載される、いわゆるハーフハイトと呼ばれる比較的厚めのタイプでは、カップリングレンズの移動スペースを比較的大きく確保できるため大きな問題は生じていなかった。これに対し最近では、ノート型PCや薄形テレビの背面等に搭載される、いわゆるスリムタイプと呼ばれる比較的薄めの光ピックアップ装置において、3層以上の情報記録面を有するBDを使用したいという強い要請があるが、このようなスリムタイプの光ピックアップ装置では、カップリングレンズの移動スペースを十分に確保できないという問題がある。 By the way, in order to increase the recording capacity, a BD having an information recording surface of three layers or more has been developed. In an optical pickup device capable of recording / reproducing information with respect to a BD having an information recording surface of three layers or more. Conventionally, a relatively thick type called a so-called half-height mounted on a stationary recorder or the like has no significant problem because a relatively large moving space for the coupling lens can be secured. On the other hand, recently, there is a strong demand to use a BD having an information recording surface of three or more layers in a relatively thin optical pickup device called a so-called slim type mounted on the back of a notebook PC or thin television. However, such a slim type optical pickup device has a problem that a sufficient space for moving the coupling lens cannot be secured.
 かかる問題をより具体的に説明すると、例えば3層以上の情報記録面を有する光ディスクに対して情報の記録/再生を行おうとすると、カップリングレンズの長い移動距離が必要になる。特にプラスチック製の対物レンズを用いた場合など、温度変化に対する屈折率変化が比較的大きいため、環境温度の変動によって球面収差が増大しやすくなるが、これをカップリングレンズの移動により補正する場合、更に長い移動距離が必要になる。カップリングレンズの移動距離が長くなると、光源から対物レンズまでの光路長が長くなり、例えばスリムタイプの光ピックアップ装置の規格サイズをオーバーしてしまう恐れがある。又、カップリングレンズを駆動する大型のアクチュエータが必要になり、コストも増大するという問題がある。即ち、小型化が要求されるスリムタイプの光ピックアップ装置では、光源から対物レンズまでの光路長が大きく出来ないという制約があるため、3層以上の情報記録面を有するBDへの対応が困難になるという課題がより顕在化しているのである。 More specifically, such a problem will be described. For example, when recording / reproducing information with respect to an optical disk having three or more information recording surfaces, a long moving distance of the coupling lens is required. Especially when a plastic objective lens is used, since the refractive index change with respect to the temperature change is relatively large, spherical aberration is likely to increase due to environmental temperature fluctuations, but when this is corrected by movement of the coupling lens, In addition, a longer moving distance is required. When the moving distance of the coupling lens is increased, the optical path length from the light source to the objective lens is increased, and for example, there is a possibility that the standard size of the slim type optical pickup device is exceeded. In addition, there is a problem that a large actuator for driving the coupling lens is required and the cost is increased. That is, in a slim type optical pickup device that is required to be downsized, there is a restriction that the optical path length from the light source to the objective lens cannot be increased, so that it is difficult to cope with a BD having three or more layers of information recording surfaces. The issue is becoming more apparent.
 特に、特許文献1に開示されたカップリングレンズの場合、ハーフハイトタイプの光ピックアップ装置に好適に用いられるが、その焦点距離fが15mmを超えており、BDにおける3層以上の情報記録面のいずれかを選択しようとすると、レンズ移動量が大きくなりすぎてスリムタイプの光ピックアップ装置に搭載できなくなるという問題がある。 In particular, in the case of the coupling lens disclosed in Patent Document 1, it is suitably used for a half-height type optical pickup device. However, the focal length f exceeds 15 mm, and any of information recording surfaces of three or more layers in a BD is used. However, there is a problem that the lens movement amount becomes too large to be mounted on a slim type optical pickup device.
 一方、特許文献2に開示されたカップリングレンズは、スリムタイプの光ピックアップ装置に搭載可能とされているが、カップリングレンズの焦点距離fが15mmを超えており、また本来的に3層以上の情報記録面を有するBDを用いることは意図されていない。なぜなら、特許文献2に開示されたカップリングレンズは、移動量に対する球面収差の発生量が小さいため、BDにおける3層以上の情報記録面を記録または再生する際、レンズ移動量が大きくなりすぎてスリムタイプの光ピックアップ装置に搭載することは困難となるからである。 On the other hand, the coupling lens disclosed in Patent Document 2 can be mounted on a slim type optical pickup device. However, the focal length f of the coupling lens exceeds 15 mm, and is essentially three or more layers. It is not intended to use a BD having an information recording surface. This is because the coupling lens disclosed in Patent Document 2 has a small amount of spherical aberration with respect to the amount of movement, and therefore the amount of lens movement becomes too large when recording or reproducing information recording surfaces of three or more layers on a BD. This is because it is difficult to mount on a slim type optical pickup device.
 本発明は、上述の問題を考慮してなされたものであり、コンパクト且つ低コストでありながら、多層の情報記録面を有する光ディスクに対して情報の記録/再生を行うことができる光ピックアップ装置及びカップリングレンズを提供することを目的とする。 The present invention has been made in consideration of the above problems, and an optical pickup device capable of recording / reproducing information on / from an optical disc having a multilayer information recording surface while being compact and low in cost. It is an object to provide a coupling lens.
 請求項1に記載の光ピックアップ装置は、厚さ方向に3つ以上の情報記録面を有する光ディスクにおけるいずれかの情報記録面を選択して、情報の記録及び/または再生を行う光ピックアップ装置であって、
 波長λ1(390nm<λ1<415nm)の光束を出射する光源と、前記光束を光ディスクの情報記録面上に集光させるための対物レンズと、前記光源と前記対物レンズとの間に配置されたカップリングレンズとを有し、
 前記カップリングレンズは、正の屈折力を有する正レンズ及び負の屈折力を有する負レンズからなり、前記正レンズと前記負レンズのうち一方のレンズのみが光軸方向に移動可能となっており、
 前記光ディスクの入射側表面から情報記録面までの保護基板厚が最も薄い情報記録面と最も厚い情報記録面との厚みの差ΔTが、(1)式を満たし、
 又、前記保護基板厚が最も薄い情報記録面と前記保護基板厚が最も厚い情報記録面とに対して、情報の記録及び/または再生可能に前記波長λ1の光束を集光させるために必要な前記一方のレンズの光軸方向移動量Lが、(2)式を満たし、
 更に、前記カップリングレンズから前記対物レンズに向けて平行光束が出射する位置に前記一方のレンズを移動させたときにおける前記カップリングレンズの焦点距離fが、(3)式を満たす、
 0.04(mm)≦ΔT≦0.05(mm)    (1)
 0.5(mm) ≦L≦ 2.0(mm)     (2)
   9(mm) ≦f≦ 15(mm)      (3)
ことを特徴とする。
The optical pickup device according to claim 1 is an optical pickup device that selects and records information and / or reproduces information by selecting any information recording surface in an optical disk having three or more information recording surfaces in the thickness direction. There,
A light source that emits a light beam having a wavelength λ1 (390 nm <λ1 <415 nm), an objective lens for condensing the light beam on an information recording surface of an optical disc, and a cup disposed between the light source and the objective lens A ring lens,
The coupling lens includes a positive lens having a positive refractive power and a negative lens having a negative refractive power, and only one of the positive lens and the negative lens is movable in the optical axis direction. ,
The thickness difference ΔT between the thinnest information recording surface and the thickest information recording surface from the incident side surface of the optical disc to the information recording surface satisfies the equation (1),
Further, it is necessary for condensing the light flux having the wavelength λ1 so that information can be recorded and / or reproduced on the information recording surface having the thinnest protective substrate thickness and the information recording surface having the thickest protective substrate thickness. The movement amount L in the optical axis direction of the one lens satisfies the formula (2),
Further, the focal length f of the coupling lens when the one lens is moved to a position where a parallel light beam is emitted from the coupling lens toward the objective lens satisfies the expression (3).
0.04 (mm) ≦ ΔT ≦ 0.05 (mm) (1)
0.5 (mm) ≤ L ≤ 2.0 (mm) (2)
9 (mm) ≤ f ≤ 15 (mm) (3)
It is characterized by that.
 本発明によれば、前記カップリングレンズを、正の屈折力を有する正レンズ及び負の屈折力を有する負レンズから構成し、前記正レンズと前記負レンズのうち一方のレンズのみを光軸方向に移動可能とすることで、その移動距離を低減し、アクチュエータの負荷も軽減できるため、例えばスリムタイプに好適なコンパクトな光ピックアップ装置を提供できる。ここで、Lが(2)式の下限を下回ると、移動させる前記一方のレンズの移動感度(移動距離に対して発生する球面収差量の比)が大きくなりすぎ、アクチュエータの最小駆動単位に制限があることから、収差が適切に補正できなくなる。一方、Lが(2)式の上限を上回ると、移動させる前記一方のレンズの移動量が大きくなりすぎて、これとの干渉を介すべく他部品を遠ざける必要があり、それにより例えばスリムタイプの光ピックアップ装置に搭載することができなくなる。従って、Lは(2)式を満たすのが良い。 According to the present invention, the coupling lens includes a positive lens having a positive refractive power and a negative lens having a negative refractive power, and only one of the positive lens and the negative lens is in the optical axis direction. Since the movement distance can be reduced and the load on the actuator can be reduced, for example, a compact optical pickup device suitable for a slim type can be provided. Here, when L is below the lower limit of the expression (2), the moving sensitivity of the one lens to be moved (ratio of the amount of spherical aberration generated with respect to the moving distance) becomes too large, and is limited to the minimum driving unit of the actuator. Therefore, the aberration cannot be corrected appropriately. On the other hand, if L exceeds the upper limit of the expression (2), the moving amount of the one lens to be moved becomes too large, and it is necessary to move other parts away to interfere with this. It cannot be mounted on the optical pickup device. Therefore, L should satisfy the formula (2).
 又、fが(3)式の下限を下回ると、レーザからの出射光束の光量落ちした周辺まで使用して集光スポットを形成しなくてはならず、スポットのリム強度が低下する結果、スポットサイズが大きくなりエラー信号を生じやすいという問題がある。一方、fが(3)式の上限を上回ると、前記光源から前記カップリングレンズに入射する光束の発散角が小さくなり過ぎ、ピックアップ装置の光利用効率が低下する。従って、fは(3)式を満たすのがよい。 On the other hand, if f is lower than the lower limit of the expression (3), the light spot emitted from the laser must be used up to the periphery where the amount of light has dropped to form a converging spot. There is a problem that the size is increased and an error signal is easily generated. On the other hand, if f exceeds the upper limit of the expression (3), the divergence angle of the light beam incident on the coupling lens from the light source becomes too small, and the light utilization efficiency of the pickup device is lowered. Therefore, f should satisfy the expression (3).
 請求項2に記載の光ピックアップ装置は、請求項1に記載の発明において、以下の(2′)式、
 0.5(mm)≦L≦1.5(mm)    (2′)
を満たすことを特徴とする。(2′)式の上限以下にすることで、より他部材のスペースが必要な場合に好適なピックアップ装置にすることができる。
An optical pickup device according to a second aspect of the present invention is the invention according to the first aspect, wherein the following equation (2 ′):
0.5 (mm) ≤ L ≤ 1.5 (mm) (2 ')
It is characterized by satisfying. By setting the value to the upper limit of the expression (2 ′) or less, it is possible to provide a pickup device that is suitable when a space for other members is required.
 請求項3に記載の光ピックアップ装置は、請求項1又は2に記載の発明において、前記光源から、前記負レンズ、前記正レンズの順で配置されていることを特徴とする。 The optical pickup device according to claim 3 is characterized in that, in the invention according to claim 1 or 2, the light source, the negative lens, and the positive lens are arranged in this order.
 前記光源側に近い位置に前記負レンズを配置すると、光ディスク側に配置する場合に比べ、その有効径を小さくできるから軽量化を図ることができ、前記負レンズを移動させる場合のアクチュエータの負担を減少させることができる。 When the negative lens is disposed at a position close to the light source side, the effective diameter can be reduced compared to the case where the negative lens is disposed on the optical disk side, so that the weight can be reduced, and the burden on the actuator when moving the negative lens is reduced. Can be reduced.
 請求項4に記載の光ピックアップ装置は、請求項1~3のいずれかに記載の発明において、前記負レンズが光軸方向に移動可能となっており、前記負レンズと前記正レンズのパワー比は、(4)式、
 -1.3≦P2/P1≦-0.9      (4)
但し、P1:前記負レンズのパワー、P2:前記正レンズのパワー、
を満たすことを特徴とする。
An optical pickup device according to a fourth aspect of the present invention is the optical pickup device according to any one of the first to third aspects, wherein the negative lens is movable in an optical axis direction, and a power ratio between the negative lens and the positive lens. Is the equation (4),
−1.3 ≦ P2 / P1 ≦ −0.9 (4)
Where P1: power of the negative lens, P2: power of the positive lens,
It is characterized by satisfying.
 前記負レンズは、前記正レンズに比べて薄く軽量であるから、前記負レンズを移動させるアクチュエータの負担を減少させることができる。又、かかる場合に(4)式を満たすと、(2)式を満たすこととなるため好ましい。 Since the negative lens is thinner and lighter than the positive lens, it is possible to reduce the burden on the actuator that moves the negative lens. In such a case, satisfying the expression (4) is preferable because the expression (2) is satisfied.
 請求項5に記載の光ピックアップ装置は、請求項1~3のいずれかに記載の発明において、前記正レンズが光軸方向に移動可能となっており、前記負レンズと前記正レンズのパワー比は、(5)式、
 -8.0≦P2/P1≦-1.25     (5)
但し、P1:前記負レンズのパワー、P2:前記正レンズのパワー、
を満たすことを特徴とする。
The optical pickup device according to claim 5 is the optical pickup device according to any one of claims 1 to 3, wherein the positive lens is movable in an optical axis direction, and a power ratio between the negative lens and the positive lens. Is the equation (5),
-8.0 ≦ P2 / P1 ≦ −1.25 (5)
Where P1: power of the negative lens, P2: power of the positive lens,
It is characterized by satisfying.
 特に、前記光源と前記カップリングレンズの間には、一般的に偏光ビームスプリッタなどが配置されており、移動スペースが限られることから、前記正レンズを光ディスク側に配置することによって、移動スペースを確保することができる。又、かかる場合に(5)式を満たすと、(2)式を満たすこととなるため好ましい。 In particular, a polarizing beam splitter or the like is generally arranged between the light source and the coupling lens, and the moving space is limited. Therefore, the moving space is reduced by arranging the positive lens on the optical disc side. Can be secured. In such a case, satisfying the expression (5) is preferable because the expression (2) is satisfied.
 請求項6に記載の光ピックアップ装置のカップリングレンズは、厚さ方向に3つ以上の情報記録面を有する光ディスクにおけるいずれかの情報記録面を選択して、情報の記録及び/または再生を行う光ピックアップ装置であって、波長λ1(390nm<λ1<415nm)の光束を出射する光源と、前記光束を光ディスクの情報記録面上に集光させるための対物レンズと、前記光源と前記対物レンズとの間に配置されたカップリングレンズとを有する光ピックアップ装置のカップリングレンズにおいて、
 前記カップリングレンズは、正の屈折力を有する正レンズ及び負の屈折力を有する負レンズからなり、前記正レンズと前記負レンズのうち一方のレンズのみが光軸方向に移動可能となっており、
 前記光ディスクの入射側表面から情報記録面までの保護基板厚が最も薄い情報記録面と最も厚い情報記録面との厚みの差ΔTが、(1)式を満たし、
 又、前記保護基板厚が最も薄い情報記録面と前記保護基板厚が最も厚い情報記録面とに対して、情報の記録及び/または再生可能に前記波長λ1の光束を集光させるために必要な前記一方のレンズの光軸方向移動量Lが、(2)式を満たし、
 更に、前記カップリングレンズから前記対物レンズに向けて平行光束が出射する位置に前記一方のレンズを移動させたときにおける前記カップリングレンズの焦点距離fが、(3)式を満たす、
 0.04(mm)≦ΔT≦0.05(mm)   (1)
 0.5(mm) ≦L≦ 2.0(mm)    (2)
   9(mm) ≦f≦ 15(mm)     (3)
ことを特徴とする。
The coupling lens of the optical pickup device according to claim 6 performs recording and / or reproduction of information by selecting one of the information recording surfaces in an optical disc having three or more information recording surfaces in the thickness direction. An optical pickup device, comprising: a light source that emits a light beam having a wavelength λ1 (390 nm <λ1 <415 nm); an objective lens that collects the light beam on an information recording surface of an optical disc; the light source and the objective lens; In a coupling lens of an optical pickup device having a coupling lens disposed between
The coupling lens includes a positive lens having a positive refractive power and a negative lens having a negative refractive power, and only one of the positive lens and the negative lens is movable in the optical axis direction. ,
The thickness difference ΔT between the thinnest information recording surface and the thickest information recording surface from the incident side surface of the optical disc to the information recording surface satisfies the equation (1),
Further, it is necessary for condensing the light flux having the wavelength λ1 so that information can be recorded and / or reproduced on the information recording surface having the thinnest protective substrate thickness and the information recording surface having the thickest protective substrate thickness. The movement amount L in the optical axis direction of the one lens satisfies the formula (2),
Further, the focal length f of the coupling lens when the one lens is moved to a position where a parallel light beam is emitted from the coupling lens toward the objective lens satisfies the expression (3).
0.04 (mm) ≦ ΔT ≦ 0.05 (mm) (1)
0.5 (mm) ≤ L ≤ 2.0 (mm) (2)
9 (mm) ≤ f ≤ 15 (mm) (3)
It is characterized by that.
 請求項7に記載の光ピックアップ装置のカップリングレンズは、請求項6に記載の発明において、以下の(2′)式、
 0.5(mm)≦L≦1.5(mm)      (2′)
を満たすことを特徴とする。
A coupling lens of an optical pickup device according to a seventh aspect is the invention according to the sixth aspect, wherein the following expression (2 ′):
0.5 (mm) ≤ L ≤ 1.5 (mm) (2 ')
It is characterized by satisfying.
 請求項8に記載の光ピックアップ装置のカップリングレンズは、請求項6又は7に記載の発明において、前記光源から、前記負レンズ、前記正レンズの順で配置されていることを特徴とする。 The coupling lens of the optical pickup device according to claim 8 is characterized in that, in the invention according to claim 6 or 7, the negative lens and the positive lens are arranged in this order from the light source.
 請求項9に記載の光ピックアップ装置のカップリングレンズは、請求項6~8のいずれかに記載の発明において、前記負レンズが光軸方向に移動可能となっており、前記負レンズと前記正レンズのパワー比は、(4)式、
 -1.3≦P2/P1≦-0.9       (4)
但し、P1:前記負レンズのパワー、P2:前記正レンズのパワー、
を満たすことを特徴とする。
The coupling lens of the optical pickup device according to claim 9 is the invention according to any one of claims 6 to 8, wherein the negative lens is movable in an optical axis direction, and the negative lens and the positive lens are movable. The power ratio of the lens is given by equation (4)
−1.3 ≦ P2 / P1 ≦ −0.9 (4)
Where P1: power of the negative lens, P2: power of the positive lens,
It is characterized by satisfying.
 請求項10に記載の光ピックアップ装置のカップリングレンズは、請求項6~8のいずれかに記載の発明において、前記正レンズが光軸方向に移動可能となっており、前記負レンズと前記正レンズのパワー比は、(5)式、
 -8.0≦P2/P1≦-1.25      (5)
但し、P1:前記負レンズのパワー、P2:前記正レンズのパワー、
を満たすことを特徴とする。
A coupling lens of an optical pickup device according to a tenth aspect is the invention according to any one of the sixth to eighth aspects, wherein the positive lens is movable in the optical axis direction, and the negative lens and the positive lens The power ratio of the lens is given by equation (5)
-8.0 ≦ P2 / P1 ≦ −1.25 (5)
Where P1: power of the negative lens, P2: power of the positive lens,
It is characterized by satisfying.
 ところで、情報の記録及び/又は再生を行うべき情報記録面をある情報記録面から他の情報記録面へと変える動作を行う際(以下、本明細書ではかかる動作を「フォーカスジャンプ」と呼ぶことがある)、カップリングレンズの移動量を小さく抑える方法として、カップリングレンズを構成するレンズ(レンズ群を含む)のうち、光軸方向に移動されるレンズのパワーを大きく(すなわち、光軸方向に移動されるレンズの焦点距離を短く)することが考えられる。これは、光軸方向に移動されるレンズの移動量はそのレンズのパワーが大きくなるほど(すなわち、そのレンズの焦点距離が短くなるほど)小さくなるからである。然るに、カップリングレンズを一群構成とする場合、光軸方向に移動されるレンズの焦点距離(すなわち、カップリングレンズの焦点距離に等しい)を短くすると、対物レンズで集光されたスポットが楕円形状になり、BDに対する情報の記録及び/又は再生に支障が出る虞がある。この理由を以下に述べる。 By the way, when performing an operation of changing an information recording surface on which information is to be recorded and / or reproduced from one information recording surface to another information recording surface (hereinafter referred to as “focus jump” in this specification). As a method for reducing the amount of movement of the coupling lens, among the lenses (including the lens group) constituting the coupling lens, the power of the lens moved in the optical axis direction is increased (that is, in the optical axis direction). It is conceivable to shorten the focal length of the lens that is moved to (1). This is because the amount of movement of the lens moved in the optical axis direction decreases as the power of the lens increases (that is, as the focal length of the lens decreases). However, when the coupling lens has a group configuration, if the focal length of the lens moved in the optical axis direction (that is, equal to the focal length of the coupling lens) is shortened, the spot condensed by the objective lens becomes elliptical. Therefore, there is a possibility that the recording and / or reproduction of information on the BD may be hindered. The reason for this will be described below.
 一般的に、光ピックアップ装置の光源として用いられる半導体レーザから射出される光束は楕円形状であるため、楕円の長軸方向と短軸方向の光量分布は異なる。カップリングレンズの焦点距離が短くなりすぎると、カップリングレンズが取り込む光量分布の非対称性が顕著になるため、対物レンズで集光されたスポットが楕円形状になり、BDに対する情報の記録及び/又は再生に支障が出る虞がある。従って、カップリングレンズが一群構成の場合は、フォーカスジャンプ時に必要とされるカップリングレンズの移動量を小さくすることと、カップリングレンズが取り込む光量分布の対称性を両立させることは困難である。 Generally, since a light beam emitted from a semiconductor laser used as a light source of an optical pickup device has an elliptical shape, the light quantity distribution in the major axis direction and the minor axis direction of the ellipse is different. If the focal length of the coupling lens becomes too short, the asymmetry of the light amount distribution taken in by the coupling lens becomes remarkable, so that the spot condensed by the objective lens becomes elliptical, and information recording on the BD and / or There is a risk that playback will be hindered. Therefore, when the coupling lens has a one-group configuration, it is difficult to reduce both the amount of movement of the coupling lens required at the time of focus jump and the symmetry of the light amount distribution captured by the coupling lens.
 上記を両立させるために、本発明の光ピックアップ装置では、カップリングレンズを正レンズと負レンズとから構成される2群構成とし、正レンズ又は負レンズを光軸方向に移動させる構成にした。 In order to make the above compatible, in the optical pickup device of the present invention, the coupling lens has a two-group configuration including a positive lens and a negative lens, and the positive lens or the negative lens is moved in the optical axis direction.
 説明を簡略化するために、カップリングレンズを正レンズと負レンズとから構成される2群構成の薄肉レンズ系とし、フォーカスジャンプ時には正レンズを光軸方向に沿って移動させるものとする。正レンズのパワーをP2、正レンズの焦点距離をf、負レンズのパワーをP1、負レンズの焦点距離をf、正レンズと負レンズの距離をDとすると、カップリングレンズ全系のパワーP、及び、カップリングレンズ全系の焦点距離fは以下の(6)式、
 P=P2+P1-D・P2・P1
 P=1/f
 P=1/f+1/f-D/(f・f)     (6)
で表される。
In order to simplify the description, it is assumed that the coupling lens is a two-group thin lens system composed of a positive lens and a negative lens, and the positive lens is moved along the optical axis direction during focus jump. Assuming that the positive lens power is P2, the positive lens focal length is f P , the negative lens power is P1, the negative lens focal length is f N , and the distance between the positive lens and the negative lens is D, the entire coupling lens system The power P C and the focal length f of the entire coupling lens system are expressed by the following equation (6):
P C = P2 + P1-D ・ P2 ・ P1
P C = 1 / f
P C = 1 / f P + 1 / f N -D / (f P · f N) (6)
It is represented by
 ここで、対物レンズの焦点距離をfとすると、カップリングレンズと対物レンズとから構成される集光光学系の倍率Mは以下の(7)式、
 M=-f/f         (7)
となる。
Here, when the focal length of the objective lens is f 2 O , the magnification M of the condensing optical system composed of the coupling lens and the objective lens is expressed by the following equation (7):
M = −f 2 O / f (7)
It becomes.
 カップリングレンズが取り込む光量分布の対称性を良好にし、対物レンズで集光されたスポットの形状を円形状するためには、光源として使用する半導体レーザから射出される光束の楕円率に対して光学系倍率Mを最適な値に設定する必要がある。尚、BD用の光ピックアップ装置では集光光学系の倍率の最適な値は-0.1程度である。また、光源とカップリングレンズとの間に配置される偏光ビームスプリッタ等の光学素子を配置するスペースを考慮すると、カップリングレンズ全系の焦点距離fを極端に短くすることは出来ない。さらに、BDに対して情報の記録及び/または再生を行う際の、対物レンズとBDの距離(作動距離ともいう)が短くなりすぎず、かつ、光ピックアップ装置を薄型化するためには、対物レンズの焦点距離fの最適な範囲は自ずと決まる。以上より、(7)式から、BD用の光ピックアップ装置用のカップリングレンズとして、その全系の焦点距離範囲はある所定の範囲である必要があり、フォーカスジャンプ時に必要なカップリングレンズの移動量のみを考慮してカップリングレンズ全系の焦点距離fをむやみに小さくすることは出来ない。そこで本発明においては、焦点距離fを(3)式を満たす範囲に限定したのである。 In order to improve the symmetry of the distribution of the amount of light captured by the coupling lens and make the shape of the spot collected by the objective lens circular, it is optical with respect to the ellipticity of the light beam emitted from the semiconductor laser used as the light source. It is necessary to set the system magnification M to an optimum value. In the BD optical pickup device, the optimum value of the magnification of the condensing optical system is about -0.1. In consideration of a space for arranging an optical element such as a polarization beam splitter arranged between the light source and the coupling lens, the focal length f of the entire coupling lens system cannot be extremely shortened. Furthermore, when recording and / or reproducing information on the BD, the distance between the objective lens and the BD (also referred to as a working distance) is not too short, and in order to reduce the thickness of the optical pickup device, optimal range of the focal length f O of the lens naturally determined. As described above, from equation (7), as the coupling lens for the optical pickup device for BD, the focal length range of the entire system needs to be a certain predetermined range, and the movement of the coupling lens required at the time of focus jump Considering only the amount, the focal length f of the entire coupling lens system cannot be reduced excessively. Therefore, in the present invention, the focal length f is limited to a range satisfying the expression (3).
 ここで、フォーカスジャンプ時の移動量を小さく抑えるために、正レンズのパワーP2を大きくし、さらに、カップリングレンズ全系の焦点距離fが短くなり過ぎないように、負レンズのパワーP1の絶対値を大きくするのが好ましい((6)式を参照)。 Here, in order to keep the movement amount at the time of focus jump small, the power P2 of the positive lens is increased, and the negative lens power P1 is absolute so that the focal length f of the entire coupling lens system does not become too short. It is preferable to increase the value (see formula (6)).
 以上より、本発明における光ピックアップ装置では、フォーカスジャンプ時に必要とされるレンズの移動量を小さくすることと、カップリングレンズが取り込む光量分布の対称性を両立させることが可能となる。 As described above, in the optical pickup device of the present invention, it is possible to reduce both the amount of movement of the lens required at the time of focus jump and the symmetry of the light amount distribution taken in by the coupling lens.
 これにより、3層以上の光ディスクという、カップリングレンズの移動量が比較的大きくなりがちな光ピックアップ装置においても、前記光源から前記対物レンズまでの光路長を抑え、光ピックアップ装置の小型化と低コスト化を図ることができる。 As a result, even in an optical pickup device that has a relatively large amount of movement of the coupling lens, which is an optical disc having three or more layers, the optical path length from the light source to the objective lens is suppressed, and the optical pickup device can be reduced in size and size. Cost can be reduced.
 尚、本明細書では、カップリングレンズのうち、光軸方向に移動可能とされたレンズを「可動レンズ」と呼ぶことがある。また、本明細書では、「カップリングレンズの移動量」を「可動レンズの移動量」と同じ意味で用いる。 In this specification, among the coupling lenses, a lens that is movable in the optical axis direction may be referred to as a “movable lens”. Further, in this specification, “movement amount of the coupling lens” is used in the same meaning as “movement amount of the movable lens”.
 尚、「対物レンズに対して平行光束が入射する状態」とは、カップリングレンズから射出されて対物レンズに向かう光束が平行光束となるように、カップリングレンズの可動レンズの位置を最適化することと同義である。 Note that “the state in which a parallel light beam is incident on the objective lens” means that the position of the movable lens of the coupling lens is optimized so that the light beam emitted from the coupling lens and directed to the objective lens becomes a parallel light beam. It is synonymous with that.
 本発明に係る光ピックアップ装置は、少なくとも1つの光源(第1光源)を有する。勿論、複数種類の光ディスクに対応できるように、複数種類の光源を有していてもよい。さらに、本発明の光ピックアップ装置は、少なくとも第1光源からの第1光束を第1光ディスクの情報記録面上に集光させるための集光光学系を有する。複数種類の光ディスクに対応可能な光ピックアップ装置においては、集光光学系が、第2光束を第2光ディスクの情報記録面上に集光させ、第3光束を第3光ディスクの情報記録面上に集光するようにしてもよい。また、本発明の光ピックアップ装置は、少なくとも第1光ディスクの情報記録面からの反射光束を受光する受光素子を有する。複数種類の光ディスクに対応可能な光ピックアップ装置においては、受光素子が、第2光ディスクの情報記録面からの反射光束を受光し、第3光ディスクの情報記録面からの反射光束を受光するようにしてもよい。 The optical pickup device according to the present invention has at least one light source (first light source). Of course, a plurality of types of light sources may be provided so as to support a plurality of types of optical disks. Furthermore, the optical pickup device of the present invention has a condensing optical system for condensing at least the first light flux from the first light source on the information recording surface of the first optical disc. In the optical pickup apparatus that can handle a plurality of types of optical disks, the condensing optical system condenses the second light beam on the information recording surface of the second optical disk, and the third light beam on the information recording surface of the third optical disk. You may make it condense. The optical pickup device of the present invention includes a light receiving element that receives at least a reflected light beam from the information recording surface of the first optical disc. In an optical pickup device that can handle a plurality of types of optical disks, the light receiving element receives a reflected light beam from the information recording surface of the second optical disk and receives a reflected light beam from the information recording surface of the third optical disk. Also good.
 第1光ディスクは、厚さがt1の保護基板と情報記録面とを有する。第2光ディスクは厚さがt2(t1<t2)の保護基板と情報記録面とを有する。第3光ディスクは、厚さがt3(t2<t3)の保護基板と情報記録面とを有する。第1光ディスクがBDであり、第2光ディスクがDVDであり、第3光ディスクがCDであることが好ましいが、これに限られるものではない。 The first optical disc has a protective substrate having a thickness t1 and an information recording surface. The second optical disc has a protective substrate having a thickness t2 (t1 <t2) and an information recording surface. The third optical disc has a protective substrate having a thickness t3 (t2 <t3) and an information recording surface. The first optical disc is preferably a BD, the second optical disc is a DVD, and the third optical disc is preferably a CD, but is not limited thereto.
 第1光ディスクは、厚み方向に重ねて3つ以上の情報記録面を有するものである。当然、4つ以上の情報記録面を有していてもよい。また、第2光ディスクや第3光ディスクも複数の情報記録面を有していてもよい。 The first optical disc has three or more information recording surfaces stacked in the thickness direction. Of course, you may have four or more information recording surfaces. The second optical disc and the third optical disc may also have a plurality of information recording surfaces.
 本明細書において、BDとは、波長390~415nm程度の光束、NA0.8~0.9程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.05~0.125mm程度であるBD系列光ディスクの総称であり、単一の情報記録面のみ有するBDや、3層以上の情報記録面を有するBD等を含むものであるが、本発明の光ピックアップ装置は、少なくとも3層以上の情報記録面を有するBDに対応可能である。更に、本明細書においては、DVDとは、NA0.60~0.67程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが0.6mm程度であるDVD系列光ディスクの総称であり、DVD-ROM、DVD-Video、DVD-Audio、DVD-RAM、DVD-R、DVD-RW、DVD+R、DVD+RW等を含む。また、本明細書においては、CDとは、NA0.45~0.51程度の対物レンズにより情報の記録/再生が行われ、保護基板の厚さが1.2mm程度であるCD系列光ディスクの総称であり、CD-ROM、CD-Audio、CD-Video、CD-R、CD-RW等を含む。尚、記録密度については、BDの記録密度が最も高く、次いでDVD、CDの順に低くなる。 In this specification, BD means that information is recorded / reproduced by a light beam having a wavelength of about 390 to 415 nm and an objective lens having an NA of about 0.8 to 0.9, and the thickness of the protective substrate is 0.05 to 0.00 mm. A general term for a BD series optical disc of about 125 mm, including a BD having only a single information recording surface, a BD having three or more information recording surfaces, etc. The optical pickup device of the present invention has at least three layers. It is possible to deal with a BD having the above information recording surface. Further, in this specification, DVD is a general term for DVD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.60 to 0.67 and the thickness of the protective substrate is about 0.6 mm. Including DVD-ROM, DVD-Video, DVD-Audio, DVD-RAM, DVD-R, DVD-RW, DVD + R, DVD + RW, and the like. In this specification, CD is a general term for CD series optical discs in which information is recorded / reproduced by an objective lens having an NA of about 0.45 to 0.51 and the thickness of the protective substrate is about 1.2 mm. Including CD-ROM, CD-Audio, CD-Video, CD-R, CD-RW and the like. As for the recording density, the recording density of BD is the highest, followed by the order of DVD and CD.
 なお、保護基板の厚さt1、t2、t3に関しては、以下の条件式(8)、(9)、(10)を満たすことが好ましいが、これに限られない。 In addition, regarding the thicknesses t1, t2, and t3 of the protective substrate, it is preferable to satisfy the following conditional expressions (8), (9), and (10), but is not limited thereto.
 0.050mm≦t1≦0.125mm    (8)
  0.5mm ≦t2≦0.7mm      (9)
  1.0mm ≦t3≦1.3mm     (10)
 尚、ここで言う、保護基板の厚さとは、光ディスク表面に設けられた保護基板の厚さのことである。即ち、光ディスク表面から、表面に最も近い情報記録面までの保護基板の厚さのことをいう。
0.050 mm ≦ t1 ≦ 0.125 mm (8)
0.5mm ≦ t2 ≦ 0.7mm (9)
1.0mm ≦ t3 ≦ 1.3mm (10)
The thickness of the protective substrate referred to here is the thickness of the protective substrate provided on the surface of the optical disk. That is, the thickness of the protective substrate from the optical disc surface to the information recording surface closest to the surface.
 本明細書において、第1光源、第2光源、第3光源は、好ましくはレーザ光源である。レーザ光源としては、好ましくは半導体レーザ、シリコンレーザ等を用いることが出来る。第1光源から出射される第1光束の第1波長λ1、第2光源から出射される第2光束の第2波長λ2(λ2>λ1)、第3光源から出射される第3光束の第3波長λ3(λ3>λ2)は以下の条件式(11)、(12)を満たすことが好ましい。 In the present specification, the first light source, the second light source, and the third light source are preferably laser light sources. As the laser light source, a semiconductor laser, a silicon laser, or the like can be preferably used. The first wavelength λ1 of the first light beam emitted from the first light source, the second wavelength λ2 (λ2> λ1) of the second light beam emitted from the second light source, and the third of the third light beam emitted from the third light source. The wavelength λ3 (λ3> λ2) preferably satisfies the following conditional expressions (11) and (12).
 1.5・λ1<λ2<1.7・λ1       (11)
 1.8・λ1<λ3<2.0・λ1       (12)
 また、第1光ディスク、第2光ディスク、第3光ディスクとして、それぞれ、BD、DVD及びCDが用いられる場合、第1光源の第1波長λ1は好ましくは、350nm以上、440nm以下、より好ましくは、390nm以上、415nm以下であって、第2光源の第2波長λ2は好ましくは570nm以上、680nm以下、より好ましくは、630nm以上、670nm以下であって、第3光源の第3波長λ3は好ましくは、750nm以上、880nm以下、より好ましくは、760nm以上、820nm以下である。
1.5 · λ1 <λ2 <1.7 · λ1 (11)
1.8 · λ1 <λ3 <2.0 · λ1 (12)
When BD, DVD, and CD are used as the first optical disc, the second optical disc, and the third optical disc, respectively, the first wavelength λ1 of the first light source is preferably 350 nm or more and 440 nm or less, more preferably 390 nm. The second wavelength λ2 of the second light source is preferably 570 nm or more and 680 nm or less, more preferably 630 nm or more and 670 nm or less, and the third wavelength λ3 of the third light source is preferably 415 nm or less. It is 750 nm or more and 880 nm or less, More preferably, it is 760 nm or more and 820 nm or less.
 また、第1光源、第2光源、第3光源のうち少なくとも2つの光源をユニット化してもよい。ユニット化とは、例えば第1光源と第2光源とが1パッケージに固定収納されているようなものをいう。また、光源に加えて、後述する受光素子を1パッケージ化してもよい。 Also, at least two of the first light source, the second light source, and the third light source may be unitized. The unitization means that the first light source and the second light source are fixedly housed in one package, for example. In addition to the light source, a light receiving element to be described later may be packaged.
 受光素子としては、フォトダイオードなどの光検出器が好ましく用いられる。光ディスクの情報記録面上で反射した光が受光素子へ入射し、その出力信号を用いて、各光ディスクに記録された情報の読み取り信号が得られる。さらに、受光素子上のスポットの形状変化、位置変化による光量変化を検出して、合焦検出やトラック検出を行い、この検出に基づいて、合焦、トラッキングのために対物レンズを移動させることが出来る。受光素子は、複数の光検出器からなっていてもよい。受光素子は、メインの光検出器とサブの光検出器を有していてもよい。例えば、情報の記録再生に用いられるメイン光を受光する光検出器の両脇に2つのサブの光検出器を設け、当該2つのサブの光検出器によってトラッキング調整用のサブ光を受光するような受光素子としてもよい。また、受光素子は各光源に対応した複数の受光素子を有していてもよい。 As the light receiving element, a photodetector such as a photodiode is preferably used. Light reflected on the information recording surface of the optical disc enters the light receiving element, and a read signal of information recorded on each optical disc is obtained using the output signal. Furthermore, it detects the change in the light amount due to the spot shape change and position change on the light receiving element, performs focus detection and track detection, and based on this detection, the objective lens can be moved for focusing and tracking I can do it. The light receiving element may comprise a plurality of photodetectors. The light receiving element may have a main photodetector and a sub photodetector. For example, two sub photodetectors are provided on both sides of a photodetector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub photodetectors. It is good also as a simple light receiving element. The light receiving element may have a plurality of light receiving elements corresponding to the respective light sources.
 集光光学系は、カップリングレンズと対物レンズを有する。カップリングレンズとは、対物レンズと光源の間に配置され、光束の発散角を変えるレンズのことをいう。カップリングレンズは、正レンズと負レンズとを有する。正レンズは少なくとも1枚の正レンズを有する。正レンズは、正レンズ1枚のみでもよいし、複数のレンズを有していてもよい。負レンズは少なくとも1枚の負レンズを有する。負レンズは、負レンズ1枚のみでもよいし、複数のレンズを有していてもよい。好ましいカップリングレンズの例は、正レンズ1枚と負レンズ1枚との組み合わせからなるものである。 The condensing optical system has a coupling lens and an objective lens. The coupling lens is a lens that is arranged between the objective lens and the light source and changes the divergence angle of the light beam. The coupling lens has a positive lens and a negative lens. The positive lens has at least one positive lens. The positive lens may be a single positive lens or may have a plurality of lenses. The negative lens has at least one negative lens. The negative lens may be a single negative lens or a plurality of lenses. An example of a preferable coupling lens is a combination of one positive lens and one negative lens.
 また、正レンズと負レンズの配置は、光源側から負レンズ、正レンズの順に配置されていても良いし、光源側から正レンズ、負レンズの順に配置されていても良い。 Further, the positive lens and the negative lens may be arranged in the order of the negative lens and the positive lens from the light source side, or may be arranged in the order of the positive lens and the negative lens from the light source side.
 以上より、本発明の光ピックアップ装置におけるカップリングレンズの最適な例は、正レンズ1枚と負レンズ1枚の組み合わせから成り、光源側から負レンズ、正レンズの順に配置されているものである。 As described above, the optimum example of the coupling lens in the optical pickup device of the present invention is a combination of one positive lens and one negative lens, and is arranged in order of the negative lens and the positive lens from the light source side. .
 第1光ディスクの選択された情報記録面において発生する球面収差を補正するために、負レンズ又は正レンズは光軸方向に移動可能となっている。例えば、第1光ディスクのある情報記録面の記録及び/又は再生を行い、次に、第1光ディスクの他の情報記録面の記録及び/又は再生を行う場合、カップリングレンズの負レンズ又は正レンズが光軸方向に移動し、光束の発散度を変化させ、対物レンズの倍率を変化させることにより、第1光ディスクの異なる情報記録面へのフォーカスジャンプ時に発生する球面収差を補正する。 In order to correct spherical aberration generated on the selected information recording surface of the first optical disc, the negative lens or the positive lens can be moved in the optical axis direction. For example, when recording and / or reproducing an information recording surface of the first optical disk and then recording and / or reproducing another information recording surface of the first optical disk, a negative lens or a positive lens of the coupling lens Moves in the direction of the optical axis, changes the divergence of the light beam, and changes the magnification of the objective lens, thereby correcting the spherical aberration that occurs at the time of focus jump to a different information recording surface of the first optical disc.
 図1は、本発明者が行った検討結果を示す図である。本発明者は、プラスチック製であって、焦点距離f=1.18mmであり光学面が非球面もしくは回折面であり像側開口数が0.85である対物レンズを例として、複数の情報記録面を有する光ディスク(BD)において、最大限離れた情報記録面にそれぞれ最適な集光スポットを形成した際に生じる最大の球面収差の差Aと、環境温度が±30℃変化したときに生じる最大の球面収差Bと、光源の波長が±5nm変化した際に生じる最大の球面収差Cとを求めた。これを図1の棒グラフで表す。かかる球面収差は、カップリングレンズを光軸方向に移動させ、対物レンズの倍率を変化させることで補正できるが、同じカップリングレンズを用いるとすると、球面収差量の合計がカップリングレンズの移動量に相当することとなる。 FIG. 1 is a diagram showing the results of studies conducted by the present inventors. The inventor has made a plurality of information recordings using an objective lens made of plastic, having a focal length f = 1.18 mm, an optical surface being an aspherical surface or a diffractive surface, and an image-side numerical aperture of 0.85. In an optical disc (BD) having a surface, the maximum spherical aberration difference A that occurs when an optimum focused spot is formed on each information recording surface that is the maximum distance, and the maximum that occurs when the environmental temperature changes by ± 30 ° C. And the maximum spherical aberration C that occurs when the wavelength of the light source changes by ± 5 nm. This is represented by the bar graph of FIG. Such spherical aberration can be corrected by moving the coupling lens in the optical axis direction and changing the magnification of the objective lens. However, if the same coupling lens is used, the total amount of spherical aberration is the amount of movement of the coupling lens. It is equivalent to.
 ここで、図1(a)、(b)に示すように、情報記録面を2つ有する光ディスクを使用する場合、光学面が非球面屈折面、回折面のいずれの対物レンズでも、球面収差量の合計は410~430mλrms程度であり、カップリングレンズの移動量は比較的小さいといえる。一方、図1(c)に示すように、情報記録面を4つ有する光ディスクを使用する場合、光学面が非球面屈折面の対物レンズでは、球面収差量の合計は680mλrmsとなり、カップリングレンズの移動量は、情報記録面を2つ有する光ディスクを使用する場合に比べて、約1.5倍必要になる。更に、図1(d)に示すように、光学面が回折面の対物レンズでは、情報記録面を4つ有する光ディスクを使用する場合、回折面の効果として、温度変化に伴って発生する球面収差を低減しているが、その分、波長変化に伴って発生する球面収差が増加してしまい、結果として、球面収差量の合計は660mλrmsとなり、カップリングレンズの移動量は、情報記録面を2つ有する光ディスクを使用する場合に比べて、同様に約1.5倍必要になる。 Here, as shown in FIGS. 1A and 1B, when an optical disk having two information recording surfaces is used, the amount of spherical aberration is obtained regardless of whether the optical surface is an aspherical refractive surface or a diffractive surface. Is about 410 to 430 mλrms, and it can be said that the amount of movement of the coupling lens is relatively small. On the other hand, as shown in FIG. 1C, when an optical disk having four information recording surfaces is used, the total amount of spherical aberration is 680 mλrms in an objective lens having an aspherical refractive surface. The amount of movement is required to be about 1.5 times that required when an optical disc having two information recording surfaces is used. Furthermore, as shown in FIG. 1D, when an optical disk having four information recording surfaces is used in an objective lens having a diffractive optical surface, spherical aberration that occurs as a result of the temperature change is caused by the diffractive surface. However, as a result, the spherical aberration generated with the change in wavelength increases, and as a result, the total amount of spherical aberration becomes 660 mλrms, and the amount of movement of the coupling lens is 2 on the information recording surface. Similarly, about 1.5 times as much is required as compared with the case of using one optical disk.
 但し、対物レンズをガラス製とし且つ光学面を非球面屈折面とすると、環境温度変化による球面収差B(=140mλrms)がほぼゼロとなるため、よりカップリングレンズの移動量は小さく(図1(c)において球面収差540mλrmsの補正量相当)なる。さらに、対物レンズをガラス製とし且つ光学面を波長変動時に発生する球面収差を補正する回折面とすると、環境温度変化による球面収差Bに加え、回折面の機能により光源の波長変動による球面収差Cも減少できるため、カップリングレンズの移動量はより小さく(図1(c)において球面収差500mλrmsの補正量相当)なる。しかしながら、このように対物レンズを改良しても、2つの情報記録面を有する光ディスクの使用時におけるカップリングレンズの移動量に対し、4つの情報記録面を有する光ディスクの使用時におけるカップリングレンズの移動量は依然として2倍程度であるため、カップリングレンズの移動量を抑制する更なる工夫が必要である。同様なことは、3つの情報記録面もしくは5つ以上の情報記録面を有する光ディスクの使用時におけるカップリングレンズの移動量についても言える。 However, if the objective lens is made of glass and the optical surface is an aspherical refracting surface, the spherical aberration B (= 140 mλrms) due to a change in environmental temperature is almost zero, and therefore the amount of movement of the coupling lens is smaller (FIG. 1 ( c), the spherical aberration is 540 mλrms. Furthermore, if the objective lens is made of glass and the optical surface is a diffractive surface that corrects spherical aberration that occurs when the wavelength varies, in addition to spherical aberration B caused by environmental temperature changes, spherical aberration C caused by wavelength fluctuations of the light source due to the function of the diffractive surface. Therefore, the amount of movement of the coupling lens is smaller (corresponding to the correction amount of the spherical aberration of 500 mλrms in FIG. 1C). However, even if the objective lens is improved in this way, the amount of movement of the coupling lens when the optical disk having two information recording surfaces is used is smaller than that of the coupling lens when the optical disk having four information recording surfaces is used. Since the amount of movement is still about twice, further ingenuity is required to suppress the amount of movement of the coupling lens. The same applies to the amount of movement of the coupling lens when using an optical disc having three information recording surfaces or five or more information recording surfaces.
 尚、上記検討において、情報記録面を2つ有する光ディスクとして(光ディスクの光束入射面からの距離が小さいほうの情報記録面をRL1、光ディスクの光束入射面からの距離が大きいほうの情報記録面をRL2、とする)、光ディスクの光束入射面からRL1までの距離が75μmであり、光ディスクの光束入射面からRL2までの距離が100μmである光ディスクを想定した。さらに、情報記録面を4つ有する光ディスクとして(光ディスクの光束入射面からの距離が最小の情報記録面をRL1、光ディスクの光束入射面からの距離が最大の情報記録面をRL4、とする)、光ディスクの光束入射面からRL1までの距離が50μmであり、光ディスクの光束入射面からRL4までの距離が100μmである光ディスクを想定した。 In the above examination, as an optical disc having two information recording surfaces (an information recording surface having a smaller distance from the light beam incident surface of the optical disc is RL1, an information recording surface having a larger distance from the light beam incident surface of the optical disc is RL2), an optical disc in which the distance from the light incident surface of the optical disc to RL1 is 75 μm and the distance from the light incident surface of the optical disc to RL2 is 100 μm. Further, as an optical disk having four information recording surfaces (assuming that the information recording surface having the smallest distance from the light beam incident surface of the optical disk is RL1, and the information recording surface having the largest distance from the light beam incident surface of the optical disk is RL4), An optical disk was assumed in which the distance from the light beam incident surface of the optical disk to RL1 was 50 μm and the distance from the light beam incident surface of the optical disk to RL4 was 100 μm.
 以下、カップリングレンズの構成と、移動量との関係を述べる。図2は、正レンズ(図では1枚)L1のみを含むカップリングレンズCL1と、正レンズ(図では1枚)L2及び負レンズ(図では1枚)L3を含むカップリングレンズCL2の断面図である。ここで、カップリングレンズCL1の焦点距離は、カップリングレンズCL2の合成焦点距離と等しく、これをfとする。従って、カップリングレンズCL2の正レンズL2の焦点距離f2は、カップリングレンズCL1の正レンズL1の焦点距離fより短いこととなる。 The following describes the relationship between the configuration of the coupling lens and the amount of movement. 2 is a cross-sectional view of a coupling lens CL1 including only a positive lens (one in the figure) L1, and a coupling lens CL2 including a positive lens (one in the figure) L2 and a negative lens (one in the figure) L3. It is. Here, the focal length of the coupling lens CL1 is equal to the combined focal length of the coupling lens CL2, which is f. Therefore, the focal length f2 of the positive lens L2 of the coupling lens CL2 is shorter than the focal length f of the positive lens L1 of the coupling lens CL1.
 ここで、同じ倍率変化を与える場合のカップリングレンズの移動量は、移動するレンズのパワー(=1/焦点距離)に逆比例する。よって、同じ倍率変化を与えるために、カップリングレンズCL1の正レンズL1と、カップリングレンズCL2の正レンズL2を移動させたとき、(1/f)<(1/f2)であるから、(カップリングレンズCL1の移動量)>(カップリングレンズCL2の移動量)となる。即ち、1枚レンズのカップリングレンズCL1を移動させるより、正レンズと負レンズの2枚レンズのカップリングレンズCL2の正レンズL2を移動させる方が、必要な移動量が少なくて済むのである。 Here, the amount of movement of the coupling lens when giving the same magnification change is inversely proportional to the power of the moving lens (= 1 / focal length). Therefore, when the positive lens L1 of the coupling lens CL1 and the positive lens L2 of the coupling lens CL2 are moved to give the same change in magnification, (1 / f) <(1 / f2). The amount of movement of the coupling lens CL1)> (the amount of movement of the coupling lens CL2). That is, the amount of movement required is smaller when the positive lens L2 of the coupling lens CL2 of the positive lens and the negative lens is moved than when the coupling lens CL1 of the single lens is moved.
 本明細書において、対物レンズとは、光ピックアップ装置において光ディスクに対向する位置に配置され、光源から射出された光束を光ディスクの情報記録面上に集光する機能を有する光学系を指す。対物レンズは、単玉のレンズであることが好ましいが、複数の光学素子から形成されていても良い。また、対物光学素子は、ガラスレンズであってもプラスチックレンズであっても、又は、ガラスレンズの上に光硬化性樹脂などで回折構造などを設けたハイブリッドレンズであってもよい。また、対物光学素子は、屈折面が非球面であることが好ましい。また、対物レンズは、光路差付与構造が設けられる場合、そのベース面が非球面であることが好ましい。 In this specification, the objective lens refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing a light beam emitted from the light source onto the information recording surface of the optical disk. The objective lens is preferably a single lens, but may be formed of a plurality of optical elements. The objective optical element may be a glass lens, a plastic lens, or a hybrid lens in which a diffractive structure or the like is provided on a glass lens with a photocurable resin or the like. The objective optical element preferably has a refractive surface that is aspheric. Further, when the objective lens is provided with an optical path difference providing structure, the base surface is preferably an aspherical surface.
 対物レンズがガラスレンズであると、図1を参照して説明したように、温度変化によって発生する球面収差を補正するためにカップリングレンズを移動させる必要がないため、カップリングレンズの移動量を減らすことができ、光ピックアップ装置を小型化できるため好ましい。 When the objective lens is a glass lens, as described with reference to FIG. 1, it is not necessary to move the coupling lens in order to correct the spherical aberration caused by the temperature change. This is preferable because it can be reduced and the optical pickup device can be downsized.
 また、対物レンズをガラスレンズとする場合は、ガラス転移点Tgが500℃以下、更に好ましくは400℃以下であるガラス材料を使用することが好ましい。ガラス転移点Tgが500℃以下であるガラス材料を使用することにより、比較的低温での成形が可能となるので、金型の寿命を延ばすことが出来る。このようなガラス転移点Tgが低いガラス材料としては、例えば(株)住田光学ガラス製のK-PG325や、K-PG375(共に製品名)がある。 When the objective lens is a glass lens, it is preferable to use a glass material having a glass transition point Tg of 500 ° C. or lower, more preferably 400 ° C. or lower. By using a glass material having a glass transition point Tg of 500 ° C. or lower, molding at a relatively low temperature is possible, so that the life of the mold can be extended. Examples of such a glass material having a low glass transition point Tg include K-PG325 and K-PG375 (both product names) manufactured by Sumita Optical Glass Co., Ltd.
 ところで、ガラスレンズは一般的に樹脂レンズよりも比重が大きいため、対物レンズをガラスレンズとすると、質量が大きくなり対物レンズを駆動するアクチュエータに負担がかかる。そのため、対物レンズをガラスレンズとする場合には、比重が小さいガラス材料を使用するのが好ましい。具体的には、比重が4.0以下であるのが好ましく、更に好ましくは比重が3.0以下であるものである。 By the way, since the specific gravity of the glass lens is generally larger than that of the resin lens, if the objective lens is a glass lens, the mass is increased and a load is imposed on the actuator that drives the objective lens. Therefore, when the objective lens is a glass lens, it is preferable to use a glass material having a small specific gravity. Specifically, the specific gravity is preferably 4.0 or less, more preferably the specific gravity is 3.0 or less.
 加えて、ガラスレンズを成形して製作する際に重要となる物性値の一つが線膨張係数αである。仮にTgが400℃以下の材料を選んだとしても、プラスチック材料と比較して室温との温度差は依然大きい。線膨張係数αが大きい硝材を用いてレンズ成形を行った場合、降温時に割れが発生しやすくなる。硝材の線膨張係数αは、200(10-7/K)以下にあることが好ましく、更に好ましくは120(10-7/K)以下であることが好ましい。 In addition, one of the important physical properties when molding a glass lens is the linear expansion coefficient α. Even if a material having a Tg of 400 ° C. or lower is selected, the temperature difference from room temperature is still larger than that of a plastic material. When lens molding is performed using a glass material having a large linear expansion coefficient α, cracks are likely to occur when the temperature is lowered. The linear expansion coefficient α of the glass material is preferably 200 (10 −7 / K) or less, more preferably 120 (10 −7 / K) or less.
 また、対物レンズをプラスチックレンズとする場合は、環状オレフィン系の樹脂材料等の脂環式炭化水素系重合体材料を使用するのが好ましい。また、当該樹脂材料は、波長405nmに対する温度25℃での屈折率が1.54乃至1.60の範囲内であって、-5℃から70℃の温度範囲内での温度変化に伴う波長405nmに対する屈折率変化率dN/dT(℃-1)が-20×10-5乃至-5×10-5(より好ましくは、-10×10-5乃至-8×10-5)の範囲内である樹脂材料を使用するのがより好ましい。また、対物レンズをプラスチックレンズとする場合、カップリングレンズもプラスチックレンズとすることが好ましい。 When the objective lens is a plastic lens, it is preferable to use an alicyclic hydrocarbon polymer material such as a cyclic olefin resin material. Further, the resin material has a refractive index of 1.54 to 1.60 at a temperature of 25 ° C. with respect to a wavelength of 405 nm, and a wavelength of 405 nm according to a temperature change within a temperature range of −5 ° C. to 70 ° C. The refractive index change rate dN / dT (° C. −1 ) with respect to the range of −20 × 10 −5 to −5 × 10 −5 (more preferably −10 × 10 −5 to −8 × 10 −5 ). It is more preferable to use a certain resin material. When the objective lens is a plastic lens, the coupling lens is preferably a plastic lens.
 プラスチックとしては、シクロオレフィン樹脂が好適に用いられ、具体的には、日本ゼオン社製のZEONEXや、三井化学社製のAPEL、TOPAS ADVANCED POLYMERS社製のTOPAS、JSR社製ARTONなどが好ましい例として挙げられる。 As the plastic, cycloolefin resin is preferably used. Specifically, ZEONEX manufactured by Nippon Zeon, APEL manufactured by Mitsui Chemicals, TOPAS ADVANCED, TOPAS manufactured by POLYMERS, ARTON manufactured by JSR, etc. are preferable examples. Can be mentioned.
 また、対物レンズを構成する材料のアッベ数は、50以上であることが好ましい。 Further, the Abbe number of the material constituting the objective lens is preferably 50 or more.
 第1光ディスクに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA1とし、第2光ディスクに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA2(NA1>NA2)とし、第3光ディスクに対して情報を再生/記録するために必要な対物レンズの像側開口数をNA3(NA2>NA3)とする。NA1は、0.75以上、0.9以下であることが好ましく、より好ましくは、0.8以上、0.9以下である。特にNA1は0.85であることが好ましい。NA2は、0.55以上、0.7以下であることが好ましい。特にNA2は0.60又は0.65であることが好ましい。また、NA3は、0.4以上、0.55以下であることが好ましい。特にNA3は0.45又は0.53であることが好ましい。 The numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the first optical disc is NA1, and the numerical aperture on the image side of the objective lens necessary for reproducing / recording information on the second optical disc. Is NA2 (NA1> NA2), and the image-side numerical aperture of the objective lens necessary for reproducing / recording information on the third optical disk is NA3 (NA2> NA3). NA1 is preferably 0.75 or more and 0.9 or less, and more preferably 0.8 or more and 0.9 or less. In particular, NA1 is preferably 0.85. NA2 is preferably 0.55 or more and 0.7 or less. In particular, NA2 is preferably 0.60 or 0.65. NA3 is preferably 0.4 or more and 0.55 or less. In particular, NA3 is preferably 0.45 or 0.53.
 また、対物レンズは、以下の条件式(13)を満たすことが好ましい。 Moreover, it is preferable that the objective lens satisfies the following conditional expression (13).
 0.9≦d/f≦1.5      (13)
 但し、dは、対物レンズの光軸上の厚さ(mm)を表し、fは、第1光束における対物レンズの焦点距離を表す。なお、fは、1.0mm以上、1.8mm以下となることが好ましい。
0.9 ≦ d / f 2 O ≦ 1.5 (13)
However, d represents the thickness (mm) on the optical axis of the objective lens, and f O represents the focal length of the objective lens in the first light flux. Incidentally, f O is, 1.0 mm or more, it is preferable that a 1.8mm or less.
 BDのような短波長、高NAの光ディスクに対応する対物レンズの場合、対物レンズの焦点距離に対する光軸上の厚さの比が大きくなりすぎると、対物レンズに対して軸外光束が入射した際に非点収差が発生しやすくなったり、作動距離が確保出来なくなるという課題が生じる。一方、対物レンズの焦点距離に対する光軸上の厚さの比が小さくなりすぎると、面シフト感度が大きくなるという課題が生じる。条件式(13)を満たすことにより非点収差の発生や面シフト感度を抑制することが可能となる。 In the case of an objective lens corresponding to an optical disk with a short wavelength and high NA such as BD, if the ratio of the thickness on the optical axis to the focal length of the objective lens becomes too large, an off-axis light beam enters the objective lens. In this case, astigmatism tends to occur, and a working distance cannot be secured. On the other hand, if the ratio of the thickness on the optical axis to the focal length of the objective lens becomes too small, there arises a problem that the surface shift sensitivity increases. By satisfying conditional expression (13), it is possible to suppress astigmatism and surface shift sensitivity.
 また、第1光ディスクを用いる際の対物レンズの作動距離は、0.15mm以上、1.0mm以下であることが好ましい。 Also, the working distance of the objective lens when using the first optical disk is preferably 0.15 mm or more and 1.0 mm or less.
 本発明に係る光情報記録再生装置は、上述の光ピックアップ装置を有する光ディスクドライブ装置を有する。 An optical information recording / reproducing apparatus according to the present invention includes an optical disc drive apparatus having the above-described optical pickup apparatus.
 ここで、光情報記録再生装置に装備される光ディスクドライブ装置に関して説明すると、光ディスクドライブ装置には、光ピックアップ装置等を収納している光情報記録再生装置本体から光ディスクを搭載した状態で保持可能なトレイのみが外部に取り出される方式と、光ピックアップ装置等が収納されている光ディスクドライブ装置本体ごと、外部に取り出される方式とがある。 Here, the optical disk drive apparatus provided in the optical information recording / reproducing apparatus will be described. The optical disk drive apparatus can hold an optical disk mounted from the optical information recording / reproducing apparatus main body containing the optical pickup apparatus or the like. There are a system in which only the tray is taken out, and a system in which the optical disc drive apparatus main body in which the optical pickup device is stored is taken out to the outside.
 上述した各方式を用いる光情報記録再生装置には、概ね、次の構成部材が装備されているがこれに限られるものではない。ハウジング等に収納された光ピックアップ装置、光ピックアップ装置をハウジングごと光ディスクの内周あるいは外周に向けて移動させるシークモータ等の光ピックアップ装置の駆動源、光ピックアップ装置のハウジングを光ディスクの内周あるいは外周に向けてガイドするガイドレールなどを有した光ピックアップ装置の移送手段及び、光ディスクの回転駆動を行うスピンドルモータ等である。 The optical information recording / reproducing apparatus using each method described above is generally equipped with the following components, but is not limited thereto. An optical pickup device housed in a housing or the like, a drive source of an optical pickup device such as a seek motor that moves the optical pickup device together with the housing toward the inner periphery or outer periphery of the optical disc, and the optical pickup device housing the inner periphery or outer periphery of the optical disc These include a transfer means of an optical pickup device having a guide rail or the like that guides toward the head, a spindle motor that rotates the optical disk, and the like.
 前者の方式には、これら各構成部材の他に、光ディスクを搭載した状態で保持可能なトレイおよびトレイを摺動させるためのローディング機構等が設けられ、後者の方式にはトレイおよびローディング機構がなく、各構成部材が外部に引き出し可能なシャーシに相当するドロワーに設けられていることが好ましい。 In addition to these components, the former method is provided with a tray that can be held in a state in which an optical disk is mounted and a loading mechanism for sliding the tray, and the latter method has no tray and loading mechanism. It is preferable that each component is provided in a drawer corresponding to a chassis that can be pulled out to the outside.
 本発明によれば、コンパクト且つ低コストでありながら、多層の情報記録面を有する光ディスクに対して情報の記録/再生を行うことができる光ピックアップ装置及びカップリングレンズを提供することができる。 According to the present invention, it is possible to provide an optical pickup device and a coupling lens that are capable of recording / reproducing information with respect to an optical disc having a multilayer information recording surface while being compact and low in cost.
本発明者が行った検討結果に基づく各球面収差を比較して示す図である。It is a figure which compares and shows each spherical aberration based on the examination result which this inventor performed. 比較例のカップリングレンズCL1と、本発明の一例にかかるカップリングレンズCL2の断面図である。It is sectional drawing of coupling lens CL1 of a comparative example, and coupling lens CL2 concerning an example of this invention. 光ピックアップ装置PU1の構成を概略的に示す図である。It is a figure which shows schematically the structure of optical pick-up apparatus PU1. 光ピックアップ装置PU2の構成を概略的に示す図である。It is a figure which shows schematically the structure of optical pick-up apparatus PU2.
 (第1の実施の形態)
 以下、本発明の実施の形態を、図面を参照して説明する。図3は、厚さ方向に3つの情報記録面RL1~RL3(光ディスクの光束入射面からの距離が小さい順にRL1、RL2、RL3とする)を有する光ディスクであるBDに対して適切に情報の記録/再生を行うことができる本実施の形態の光ピックアップ装置PU1の構成を概略的に示す図である。かかる光ピックアップ装置PU1は、高さH=8mm以下のスリムタイプの光ピックアップ装置(点線で外形を概略的に示す)である。なお、本発明は、本実施の形態に限られるものではない。例えば、図3ではBD専用の光ピックアップ装置を示しているが、対物レンズOBJをBD/DVD/CD互換用としたり、或いはDVD/CD用の対物レンズを別個に配置することで、BD/DVD/CD互換用の光ピックアップ装置とすることもできる。
(First embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 3 shows that information is appropriately recorded on a BD that is an optical disc having three information recording surfaces RL1 to RL3 (referred to as RL1, RL2, and RL3 in ascending order of the distance from the light incident surface of the optical disc) in the thickness direction. FIG. 2 is a diagram schematically showing a configuration of an optical pickup device PU1 of the present embodiment that can perform reproduction. The optical pickup device PU1 is a slim type optical pickup device having a height H = 8 mm or less (outline is schematically shown by a dotted line). The present invention is not limited to the present embodiment. For example, FIG. 3 shows a BD-dedicated optical pickup device. However, the objective lens OBJ is used for BD / DVD / CD compatibility, or a DVD / CD objective lens is separately provided, so that the BD / DVD is used. / An optical pickup device compatible with CD can be used.
 光ピックアップ装置PU1は、対物レンズOBJ、対物レンズOBJをフォーカシング方向及びトラッキング方向に移動させ、光ディスクのラジアル方向、及び/または、タンジェンシャル方向に傾ける3軸アクチュエータAC2、λ/4波長板QWP、立ち上げミラーMR、正の屈折力を有する正レンズL2と負の屈折力を有する負レンズL3とを有するカップリングCL、正レンズL2のみ光軸方向に移動させる1軸アクチュエータAC1、偏光プリズムPBS、405nmのレーザ光束(光束)を射出する半導体レーザLD、センサ用レンズSL、BDの情報記録面RL1~RL3からの反射光束を受光する受光素子PDを有する。 The optical pickup device PU1 moves the objective lens OBJ, the objective lens OBJ in the focusing direction and the tracking direction, and tilts in the radial direction and / or tangential direction of the optical disc, the λ / 4 wavelength plate QWP, Raising mirror MR, coupling CL having positive lens L2 having positive refractive power and negative lens L3 having negative refractive power, uniaxial actuator AC1 for moving only positive lens L2 in the optical axis direction, polarizing prism PBS, 405 nm And a light receiving element PD that receives reflected light beams from the information recording surfaces RL1 to RL3 of the semiconductor laser LD, the sensor lens SL, and the BD.
 本実施の形態においては、カップリングレンズCLは、偏光プリズムPBSとλ/4波長板QWPとの間に配置されている。半導体レーザLDから、負レンズL3、正レンズL2の順で配置されているが、半導体レーザLDから、正レンズL2、負レンズL3の順で配置しても良い。又、負レンズL3が光軸方向に移動可能となっており、正レンズL2は光ピックアップ装置に固定されている。 In the present embodiment, the coupling lens CL is disposed between the polarizing prism PBS and the λ / 4 wavelength plate QWP. The semiconductor laser LD is arranged in the order of the negative lens L3 and the positive lens L2. However, the semiconductor laser LD may be arranged in the order of the positive lens L2 and the negative lens L3. The negative lens L3 is movable in the optical axis direction, and the positive lens L2 is fixed to the optical pickup device.
 ここで、BDの入射側表面から情報記録面までの保護基板厚が最も薄い情報記録面と最も厚い情報記録面との厚みの差ΔTが、(1)式を満たし、又、保護基板厚が最も薄い情報記録面と保護基板厚が最も厚い情報記録面とに対して、波長λ1の光束を集光させるための、負レンズの光軸方向移動量Lが、(2)式を満たし、更に、カップリングレンズCLから平行光束が出射する位置に負レンズを移動させたときにおけるカップリングレンズCLの焦点距離fが、(3)式を満たす。 Here, the thickness difference ΔT between the information recording surface with the smallest protective substrate thickness from the incident side surface of the BD to the information recording surface satisfies the formula (1), and the thickness of the protective substrate is The amount of movement L in the optical axis direction of the negative lens for converging the light flux having the wavelength λ1 with respect to the thinnest information recording surface and the thickest information recording surface satisfies the equation (2). The focal length f of the coupling lens CL when the negative lens is moved to a position where the parallel light beam is emitted from the coupling lens CL satisfies the expression (3).
 0.04(mm)≦ΔT≦0.05(mm)     (1)
 0.5(mm) ≦L≦ 2.0(mm)      (2)
   9(mm) ≦f≦ 15(mm)       (3)
 まず、BDの第1の情報記録面RL1に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCLの正レンズL2は、1軸アクチュエータAC1により実線の位置に移動させられる。ここで、青紫色半導体レーザLDから射出された光束(λ1=405nm)の発散光束は、偏光プリズムPBSを透過し、カップリングレンズCLの負レンズL3を通過して発散角が増大され、更に正レンズL2を通過して弱い収束光束とされた後、立ち上げミラーMRで反射され、λ/4波長板QWPにより直線偏光から円偏光に変換され、図示しない絞りによりその光束径が規制され、対物レンズOBJによって第1の厚さの透明基板PL1を介して、実線で示すように第1の情報記録面RL1上に形成されるスポットとなる。
0.04 (mm) ≦ ΔT ≦ 0.05 (mm) (1)
0.5 (mm) ≤ L ≤ 2.0 (mm) (2)
9 (mm) ≤ f ≤ 15 (mm) (3)
First, a case where recording / reproduction is performed on the first information recording surface RL1 of the BD will be described. In such a case, the positive lens L2 of the coupling lens CL is moved to the position of the solid line by the uniaxial actuator AC1. Here, the divergent light beam emitted from the blue-violet semiconductor laser LD (λ1 = 405 nm) is transmitted through the polarizing prism PBS, passes through the negative lens L3 of the coupling lens CL, and the divergence angle is increased. After passing through the lens L2 to be a weakly convergent light beam, it is reflected by the rising mirror MR, converted from linearly polarized light to circularly polarized light by the λ / 4 wavelength plate QWP, and its light beam diameter is regulated by a diaphragm (not shown). It becomes a spot formed on the first information recording surface RL1 by the lens OBJ through the transparent substrate PL1 having the first thickness as shown by the solid line.
 第1の情報記録面RL1上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、立ち上げミラーMRで反射され、カップリングレンズCLの正レンズL2及び負レンズL3を通過して収束光束とされ、偏光プリズムPBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第1の情報記録面RL1に記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the first information recording surface RL1 is again transmitted through the objective lens OBJ and the diaphragm, and then converted from circularly polarized light to linearly polarized light by the λ / 4 wave plate QWP, and is raised to the rising mirror MR. , And passes through the positive lens L2 and the negative lens L3 of the coupling lens CL to form a convergent light beam. After being reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the first information recording surface RL1 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
 次に、BDの第2の情報記録面RL2に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCLの正レンズL2は、1軸アクチュエータAC1により一点鎖線の位置に移動させられる。ここで、青紫色半導体レーザLDから射出された光束(λ1=405nm)の発散光束は、偏光プリズムPBSを透過し、カップリングレンズCLの負レンズL3を通過して発散角が増大され、更に正レンズL2を通過して略平行光束とされた後、立ち上げミラーMRで反射され、λ/4波長板QWPにより直線偏光から円偏光に変換され、図示しない絞りによりその光束径が規制され、対物レンズOBJによって第2の厚さ(第1の厚さより厚い)の透明基板PL2を介して、一点鎖線で示すように第2の情報記録面RL2上に形成されるスポットとなる。 Next, a case where recording / reproduction is performed on the second information recording surface RL2 of the BD will be described. In such a case, the positive lens L2 of the coupling lens CL is moved to the position of the alternate long and short dash line by the uniaxial actuator AC1. Here, the divergent light beam emitted from the blue-violet semiconductor laser LD (λ1 = 405 nm) is transmitted through the polarizing prism PBS, passes through the negative lens L3 of the coupling lens CL, and the divergence angle is increased. After passing through the lens L2 and made into a substantially parallel light beam, it is reflected by the rising mirror MR, converted from linearly polarized light to circularly polarized light by the λ / 4 wave plate QWP, and the light beam diameter is regulated by a diaphragm (not shown). It becomes a spot formed on the second information recording surface RL2 by the lens OBJ via the transparent substrate PL2 having the second thickness (thicker than the first thickness), as indicated by a one-dot chain line.
 第2の情報記録面RL2上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、立ち上げミラーMRで反射され、カップリングレンズCLの正レンズL2及び負レンズL3を通過して収束光束とされ、偏光プリズムPBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第2の情報記録面RL2に記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the second information recording surface RL2 is again transmitted through the objective lens OBJ and the stop, and then converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP, and the rising mirror MR , And passes through the positive lens L2 and the negative lens L3 of the coupling lens CL to form a convergent light beam. After being reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the second information recording surface RL2 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
 次に、BDの第3の情報記録面RL3に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCLの正レンズL2は、1軸アクチュエータAC1により点線の位置に移動させられる。ここで、青紫色半導体レーザLDから射出された光束(λ1=405nm)の発散光束は、偏光プリズムPBSを透過し、カップリングレンズCLの負レンズL3を通過して発散角が増大され、更に正レンズL2を通過して弱い発散光束とされた後、立ち上げミラーMRで反射され、λ/4波長板QWPにより直線偏光から円偏光に変換され、図示しない絞りによりその光束径が規制され、対物レンズOBJによって第3の厚さ(第2の厚さより厚い)の透明基板PL3を介して、点線で示すように第3の情報記録面RL3上に形成されるスポットとなる。 Next, a case where recording / reproduction is performed on the third information recording surface RL3 of the BD will be described. In such a case, the positive lens L2 of the coupling lens CL is moved to the dotted line position by the uniaxial actuator AC1. Here, the divergent light beam emitted from the blue-violet semiconductor laser LD (λ1 = 405 nm) is transmitted through the polarizing prism PBS, passes through the negative lens L3 of the coupling lens CL, and the divergence angle is increased. After passing through the lens L2 to be a weak divergent light beam, it is reflected by the rising mirror MR, converted from linearly polarized light to circularly polarized light by the λ / 4 wavelength plate QWP, and its light beam diameter is regulated by a diaphragm (not shown). It becomes a spot formed on the third information recording surface RL3 by the lens OBJ via the transparent substrate PL3 having a third thickness (thicker than the second thickness) as indicated by a dotted line.
 第3の情報記録面RL3上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、立ち上げミラーMRで反射され、カップリングレンズCLの正レンズL2及び負レンズL3を通過して収束光束とされ、偏光プリズムPBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第3の情報記録面RL3に記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the third information recording surface RL3 is again transmitted through the objective lens OBJ and the diaphragm, and then converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP, and the rising mirror MR , And passes through the positive lens L2 and the negative lens L3 of the coupling lens CL to form a convergent light beam. After being reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the third information recording surface RL3 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
 本実施の形態によれば、カップリングレンズCLに対して半導体レーザLD側には、近接して偏光プリズムPBSが配置されているのに対し、対物レンズOBJ側には、比較的離れて立ち上げミラーMRが配置されているので、原点に配置されたカップリングレンズCLを半導体レーザLD側に移動させる最大距離を、対物レンズOBJ側に移動させる最大距離より小さくすることで、異なる情報記録面にスポットを集光させるためのトータルの移動距離を確保しつつ、コンパクトな光ピックアップ装置を得ることができる。また、光ディスクに対して情報の記録及び/または再生行う際に、光ディスクの反りや傾きにより発生するコマ収差を補正するために、3軸アクチュエータAC2で、対物レンズOBJを光ディスクのラジアル方向及び/またはタンジェンシャル方向に沿って傾ける。これにより、反りを持つ光ディスクに対する情報の記録及び/または再生を安定して行え、かつ、光ディスクが回転中に傾いた場合でも情報記録面上のスポットの品質を良好に保つことが可能になる。 According to the present embodiment, the polarization prism PBS is disposed close to the coupling lens CL on the side of the semiconductor laser LD, whereas it is launched relatively far from the objective lens OBJ side. Since the mirror MR is arranged, the maximum distance for moving the coupling lens CL arranged at the origin to the semiconductor laser LD side is made smaller than the maximum distance for moving to the objective lens OBJ side, so that different information recording surfaces can be obtained. A compact optical pickup device can be obtained while ensuring a total movement distance for condensing the spots. Further, in order to correct coma generated by warping or tilting of the optical disk when information is recorded and / or reproduced on the optical disk, the objective lens OBJ is moved in the radial direction of the optical disk and / or by the triaxial actuator AC2. Tilt along the tangential direction. As a result, it is possible to stably record and / or reproduce information on the warped optical disc, and to maintain a good spot quality on the information recording surface even when the optical disc is tilted during rotation.
 (第2の実施の形態)
 図4は、厚さ方向に3つの情報記録面RL1~RL3(光ディスクの光束入射面からの距離が小さい順にRL1、RL2、RL3とする)を有する光ディスクであるBDに対して適切に情報の記録/再生を行うことができる第2の実施の形態の光ピックアップ装置PU2の構成を概略的に示す図である。本実施の形態は、上述した実施の形態に対して、負レンズL3を移動させ、正レンズL2を光ピックアップ装置に固定している以外、同様の構成を有する。
(Second Embodiment)
FIG. 4 shows that information is appropriately recorded on a BD that is an optical disk having three information recording surfaces RL1 to RL3 (referred to as RL1, RL2, and RL3 in order of increasing distance from the light beam incident surface of the optical disk) in the thickness direction. FIG. 6 is a diagram schematically showing a configuration of an optical pickup device PU2 of a second embodiment capable of performing reproduction. This embodiment has the same configuration as the above-described embodiment except that the negative lens L3 is moved and the positive lens L2 is fixed to the optical pickup device.
 まず、BDの第1の情報記録面RL1に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCLの負レンズL3は、1軸アクチュエータAC1により実線の位置に移動させられる。ここで、青紫色半導体レーザLDから射出された光束(λ1=405nm)の発散光束は、偏光プリズムPBSを透過し、カップリングレンズCLの負レンズL3を通過して発散角が増大され、更に正レンズL2を通過して弱い収束光束とされた後、立ち上げミラーMRで反射され、λ/4波長板QWPにより直線偏光から円偏光に変換され、図示しない絞りによりその光束径が規制され、対物レンズOBJによって第1の厚さの透明基板PL1を介して、実線で示すように第1の情報記録面RL1上に形成されるスポットとなる。 First, a case where recording / reproduction is performed on the first information recording surface RL1 of the BD will be described. In such a case, the negative lens L3 of the coupling lens CL is moved to the position of the solid line by the uniaxial actuator AC1. Here, the divergent light beam emitted from the blue-violet semiconductor laser LD (λ1 = 405 nm) is transmitted through the polarizing prism PBS, passes through the negative lens L3 of the coupling lens CL, and the divergence angle is increased. After passing through the lens L2 to be a weakly convergent light beam, it is reflected by the rising mirror MR, converted from linearly polarized light to circularly polarized light by the λ / 4 wavelength plate QWP, and its light beam diameter is regulated by a diaphragm (not shown). It becomes a spot formed on the first information recording surface RL1 by the lens OBJ through the transparent substrate PL1 having the first thickness as shown by the solid line.
 第1の情報記録面RL1上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、立ち上げミラーMRで反射され、カップリングレンズCLの正レンズL2及び負レンズL3を通過して収束光束とされ、偏光プリズムPBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第1の情報記録面RL1に記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the first information recording surface RL1 is again transmitted through the objective lens OBJ and the diaphragm, and then converted from circularly polarized light to linearly polarized light by the λ / 4 wave plate QWP, and is raised to the rising mirror MR. , And passes through the positive lens L2 and the negative lens L3 of the coupling lens CL to form a convergent light beam. After being reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the first information recording surface RL1 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
 次に、BDの第2の情報記録面RL2に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCLの負レンズL3は、1軸アクチュエータAC1により一点鎖線の位置に移動させられる。ここで、青紫色半導体レーザLDから射出された光束(λ1=405nm)の発散光束は、偏光プリズムPBSを透過し、カップリングレンズCLの負レンズL3を通過して発散角が増大され、更に正レンズL2を通過して略平行光束とされた後、立ち上げミラーMRで反射され、λ/4波長板QWPにより直線偏光から円偏光に変換され、図示しない絞りによりその光束径が規制され、対物レンズOBJによって第2の厚さ(第1の厚さより厚い)の透明基板PL2を介して、一点鎖線で示すように第2の情報記録面RL2上に形成されるスポットとなる。 Next, a case where recording / reproduction is performed on the second information recording surface RL2 of the BD will be described. In such a case, the negative lens L3 of the coupling lens CL is moved to the position of the alternate long and short dash line by the uniaxial actuator AC1. Here, the divergent light beam emitted from the blue-violet semiconductor laser LD (λ1 = 405 nm) is transmitted through the polarizing prism PBS, passes through the negative lens L3 of the coupling lens CL, and the divergence angle is increased. After passing through the lens L2 and made into a substantially parallel light beam, it is reflected by the rising mirror MR, converted from linearly polarized light to circularly polarized light by the λ / 4 wave plate QWP, and the light beam diameter is regulated by a diaphragm (not shown). It becomes a spot formed on the second information recording surface RL2 by the lens OBJ via the transparent substrate PL2 having the second thickness (thicker than the first thickness), as indicated by a one-dot chain line.
 第2の情報記録面RL2上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、立ち上げミラーMRで反射され、カップリングレンズCLの正レンズL2及び負レンズL3を通過して収束光束とされ、偏光プリズムPBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第2の情報記録面RL2に記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the second information recording surface RL2 is again transmitted through the objective lens OBJ and the stop, and then converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP, and the rising mirror MR , And passes through the positive lens L2 and the negative lens L3 of the coupling lens CL to form a convergent light beam. After being reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the second information recording surface RL2 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
 次に、BDの第3の情報記録面RL3に対して記録/再生を行う場合について説明する。かかる場合、カップリングレンズCLの負レンズL3は、1軸アクチュエータAC1により点線の位置に移動させられる。ここで、青紫色半導体レーザLDから射出された光束(λ1=405nm)の発散光束は、偏光プリズムPBSを透過し、カップリングレンズCLの負レンズL3を通過して発散角が増大され、更に正レンズL2を通過して弱い発散光束とされた後、立ち上げミラーMRで反射され、λ/4波長板QWPにより直線偏光から円偏光に変換され、図示しない絞りによりその光束径が規制され、対物レンズOBJによって第3の厚さ(第2の厚さより厚い)の透明基板PL3を介して、点線で示すように第3の情報記録面RL3上に形成されるスポットとなる。 Next, a case where recording / reproduction is performed on the third information recording surface RL3 of the BD will be described. In this case, the negative lens L3 of the coupling lens CL is moved to the dotted line position by the uniaxial actuator AC1. Here, the divergent light beam emitted from the blue-violet semiconductor laser LD (λ1 = 405 nm) is transmitted through the polarizing prism PBS, passes through the negative lens L3 of the coupling lens CL, and the divergence angle is increased. After passing through the lens L2 to be a weak divergent light beam, it is reflected by the rising mirror MR, converted from linearly polarized light to circularly polarized light by the λ / 4 wavelength plate QWP, and its light beam diameter is regulated by a diaphragm (not shown). It becomes a spot formed on the third information recording surface RL3 by the lens OBJ via the transparent substrate PL3 having a third thickness (thicker than the second thickness) as indicated by a dotted line.
 第3の情報記録面RL3上で情報ピットにより変調された反射光束は、再び対物レンズOBJ、絞りを透過した後、λ/4波長板QWPにより円偏光から直線偏光に変換され、立ち上げミラーMRで反射され、カップリングレンズCLの正レンズL2及び負レンズL3を通過して収束光束とされ、偏光プリズムPBSで反射した後、センサ用レンズSLによって、受光素子PDの受光面上に収束する。そして、受光素子PDの出力信号を用いて、3軸アクチュエータAC2により対物レンズOBJをフォーカシングやトラッキングさせることで、第3の情報記録面RL3に記録された情報を読み取ることができる。 The reflected light beam modulated by the information pits on the third information recording surface RL3 is again transmitted through the objective lens OBJ and the diaphragm, and then converted from circularly polarized light to linearly polarized light by the λ / 4 wavelength plate QWP, and the rising mirror MR , And passes through the positive lens L2 and the negative lens L3 of the coupling lens CL to form a convergent light beam. After being reflected by the polarizing prism PBS, it is converged on the light receiving surface of the light receiving element PD by the sensor lens SL. Then, using the output signal of the light receiving element PD, the information recorded on the third information recording surface RL3 can be read by focusing or tracking the objective lens OBJ by the triaxial actuator AC2.
 また、以上の実施の形態において、光ディスクに対して情報の記録及び/または再生行う際に、光ディスクの反りや傾きにより発生するコマ収差を補正するために、3軸アクチュエータAC2で、対物レンズOBJを光ディスクのラジアル方向及び/またはタンジェンシャル方向に沿って傾けることもできる。これにより、反りを持つ光ディスクに対する情報の記録及び/または再生を安定して行え、かつ、光ディスクが回転中に傾いた場合でも情報記録面上のスポットの品質を良好に保つことが可能になる。 In the above embodiment, in order to correct coma caused by warping or tilting of the optical disc when information is recorded and / or reproduced on the optical disc, the objective lens OBJ is attached by the triaxial actuator AC2. It can also be tilted along the radial direction and / or the tangential direction of the optical disc. As a result, it is possible to stably record and / or reproduce information on the warped optical disc, and to maintain a good spot quality on the information recording surface even when the optical disc is tilted during rotation.
 更に、以上の実施の形態において、対物レンズOBJの焦点距離は、1.0mmから1.8mmの範囲であることが好ましい。これにより、小型化が要求される薄型の光ピックアップ装置に対して好適な光ピックアップ装置を得ることができる。 Furthermore, in the above embodiment, the focal length of the objective lens OBJ is preferably in the range of 1.0 mm to 1.8 mm. Thereby, an optical pickup device suitable for a thin optical pickup device that is required to be downsized can be obtained.
 次に、上述の実施の形態に用いることができるカップリングレンズと対物レンズの実施例について以下に説明する。ここで、設計波長は405nm、以下の表中のriは曲率半径、diは第i面から第i+1面までの光軸方向の位置、niは設計波長405nmにおける各面の屈折率を表している。尚、これ以降(表のレンズデータ含む)において、10のべき乗数(例えば、2.5×10-3)を、E(例えば、2.5×E-3)を用いて表すものとする。対物レンズの光学面は、それぞれ数1式に表1に示す係数を代入した数式で規定される、光軸の周りに軸対称な非球面に形成されている。 Next, examples of coupling lenses and objective lenses that can be used in the above-described embodiment will be described below. Here, the design wavelength is 405 nm, ri in the following table is the radius of curvature, di is the position in the optical axis direction from the i-th surface to the (i + 1) -th surface, and ni is the refractive index of each surface at the design wavelength 405 nm. . In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −3 ) is represented by using E (for example, 2.5 × E−3). The optical surface of the objective lens is formed as an aspherical surface that is axisymmetric about the optical axis, each of which is defined by an equation in which the coefficient shown in Table 1 is substituted into Equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、X(h)は光軸方向の軸(光の進行方向を正とする)、κは円錐係数、Aは非球面係数、hは光軸からの高さ、rは近軸曲率半径である。 Here, X (h) is an axis in the optical axis direction (the light traveling direction is positive), κ is a conical coefficient, A i is an aspherical coefficient, h is a height from the optical axis, and r is a paraxial curvature. Radius.
 (実施例1)
 表1に実施例1のレンズデータを示す。本実施例の集光光学系は、第2の実施の形態に好適であり、負レンズ(可動レンズ)と正レンズ(固定レンズ)を有する2群構成のカップリングレンズと対物レンズとから構成される。本実施例のカップリングレンズは、表1中第2面及び第5面の非球面係数を数1式に代入して得られる非球面を有し、本実施例の対物レンズは、表1中第7面及び第8面の非球面係数を数1式に代入して得られる非球面を有する。
Example 1
Table 1 shows lens data of Example 1. The condensing optical system of this example is suitable for the second embodiment, and includes a two-group coupling lens having a negative lens (movable lens) and a positive lens (fixed lens), and an objective lens. The The coupling lens of this example has an aspheric surface obtained by substituting the aspheric coefficients of the second and fifth surfaces in Table 1 into Equation 1, and the objective lens of this example is shown in Table 1. It has an aspheric surface obtained by substituting the aspheric coefficients of the seventh surface and the eighth surface into Equation (1).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (実施例2)
 表2に実施例2のレンズデータを示す。本実施例の集光光学系は、第2の実施の形態に好適であり、負レンズ(可動レンズ)と正レンズ(固定レンズ)を有する2群構成のカップリングレンズと対物レンズとから構成される。本実施例のカップリングレンズは、表2中第2面及び第5面の非球面係数を数1式に代入して得られる非球面を有し、本実施例の対物レンズは、表2中第7面及び第8面の非球面係数を数1式に代入して得られる非球面を有する。
(Example 2)
Table 2 shows lens data of Example 2. The condensing optical system of this example is suitable for the second embodiment, and includes a two-group coupling lens having a negative lens (movable lens) and a positive lens (fixed lens), and an objective lens. The The coupling lens of this example has an aspheric surface obtained by substituting the aspheric coefficients of the second surface and the fifth surface in Table 2 into Equation 1, and the objective lens of this example is shown in Table 2. It has an aspheric surface obtained by substituting the aspheric coefficients of the seventh surface and the eighth surface into Equation (1).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (実施例3)
 表3に実施例3のレンズデータを示す。本実施例の集光光学系は、第2の実施の形態に好適であり、負レンズ(可動レンズ)と正レンズ(固定レンズ)を有する2群構成のカップリングレンズと対物レンズとから構成される。本実施例のカップリングレンズは、表3中第2面及び第5面の非球面係数を数1式に代入して得られる非球面を有し、本実施例の対物レンズは、表3中第7面及び第8面の非球面係数を数1式に代入して得られる非球面を有する。
(Example 3)
Table 3 shows lens data of Example 3. The condensing optical system of this example is suitable for the second embodiment, and includes a two-group coupling lens having a negative lens (movable lens) and a positive lens (fixed lens), and an objective lens. The The coupling lens of this embodiment has an aspheric surface obtained by substituting the aspheric coefficients of the second surface and the fifth surface in Table 3 into Equation 1, and the objective lens of this embodiment is shown in Table 3. It has an aspheric surface obtained by substituting the aspheric coefficients of the seventh surface and the eighth surface into Equation (1).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (実施例4)
 表4に実施例4のレンズデータを示す。本実施例の集光光学系は、第2の実施の形態に好適であり、負レンズ(可動レンズ)と正レンズ(固定レンズ)を有する2群構成のカップリングレンズと対物レンズとから構成される。本実施例のカップリングレンズは、表4中第2面及び第5面の非球面係数を数1式に代入して得られる非球面を有し、本実施例の対物レンズは、表4中第7面及び第8面の非球面係数を数1式に代入して得られる非球面を有する。
Example 4
Table 4 shows lens data of Example 4. The condensing optical system of this example is suitable for the second embodiment, and includes a two-group coupling lens having a negative lens (movable lens) and a positive lens (fixed lens), and an objective lens. The The coupling lens of the present embodiment has an aspheric surface obtained by substituting the aspheric coefficients of the second surface and the fifth surface in Table 4 into Equation 1, and the objective lens of the present embodiment is shown in Table 4. It has an aspheric surface obtained by substituting the aspheric coefficients of the seventh surface and the eighth surface into Equation (1).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 (実施例5)
 表5に実施例5のレンズデータを示す。本実施例の集光光学系は、第1の実施の形態に好適であり、負レンズ(固定レンズ)と正レンズ(可動レンズ)を有する2群構成のカップリングレンズと対物レンズとから構成される。本実施例のカップリングレンズは、表5中第2面及び第5面の非球面係数を数1式に代入して得られる非球面を有し、本実施例の対物レンズは、表5中第7面及び第8面の非球面係数を数1式に代入して得られる非球面を有する。
(Example 5)
Table 5 shows lens data of Example 5. The condensing optical system of this example is suitable for the first embodiment, and includes a two-group coupling lens having a negative lens (fixed lens) and a positive lens (movable lens), and an objective lens. The The coupling lens of this embodiment has an aspheric surface obtained by substituting the aspheric coefficients of the second surface and the fifth surface in Table 5 into Equation 1, and the objective lens of this embodiment is shown in Table 5. It has an aspheric surface obtained by substituting the aspheric coefficients of the seventh surface and the eighth surface into Equation (1).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 (実施例6)
 表6に実施例6のレンズデータを示す。本実施例の集光光学系は、第1の実施の形態に好適であり、負レンズ(固定レンズ)と正レンズ(可動レンズ)を有する2群構成のカップリングレンズと対物レンズとから構成される。本実施例のカップリングレンズは、表6中第2面及び第5面の非球面係数を数1式に代入して得られる非球面を有し、本実施例の対物レンズは、表6中第7面及び第8面の非球面係数を数1式に代入して得られる非球面を有する。
(Example 6)
Table 6 shows lens data of Example 6. The condensing optical system of this example is suitable for the first embodiment, and includes a two-group coupling lens having a negative lens (fixed lens) and a positive lens (movable lens), and an objective lens. The The coupling lens of this example has an aspheric surface obtained by substituting the aspheric coefficients of the second surface and the fifth surface in Table 6 into Equation 1, and the objective lens of this example is shown in Table 6. It has an aspheric surface obtained by substituting the aspheric coefficients of the seventh surface and the eighth surface into Equation (1).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 (実施例7)
 表7に実施例7のレンズデータを示す。本実施例の集光光学系は、第1の実施の形態に好適であり、負レンズ(固定レンズ)と正レンズ(可動レンズ)を有する2群構成のカップリングレンズと対物レンズとから構成される。本実施例のカップリングレンズは、表7中第2面及び第5面の非球面係数を数1式に代入して得られる非球面を有し、本実施例の対物レンズは、表7中第7面及び第8面の非球面係数を数1式に代入して得られる非球面を有する。
(Example 7)
Table 7 shows lens data of Example 7. The condensing optical system of this example is suitable for the first embodiment, and includes a two-group coupling lens having a negative lens (fixed lens) and a positive lens (movable lens), and an objective lens. The The coupling lens of this example has an aspheric surface obtained by substituting the aspheric coefficients of the second surface and the fifth surface in Table 7 into Equation 1, and the objective lens of this example is shown in Table 7. It has an aspheric surface obtained by substituting the aspheric coefficients of the seventh surface and the eighth surface into Equation (1).
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 各実施例について、条件式(2)~(5)に相当する数値をまとめて表8に示す。表8に示すように、いずれの実施例もΔT=0.1-0.0535=0.0465(mm)とした。又、実施例において、移動感度(λ/0.01mm)は0.0020~0.0061であり、フォーカスジャンプ時のレンズ駆動制御が容易である。ここで、カップリングレンズのレンズ間距離であるが、平行光束が対物レンズに入射する正レンズと負レンズの間隔が、表8中のAで示され、最も薄い0.0535mmの保護基板厚である情報記録面を選択した場合に、対物レンズのスポットの3次の球面収差が0となるような収束光束を出射するカップリングレンズの正レンズと負レンズの間隔が、表8中のBで示され、最も厚い0.1mmの保護基板厚である情報記録面を選択した場合において、対物レンズのスポットの3次の球面収差が0となるような発散光束を出射するカップリングレンズの正レンズと負レンズの間隔が、表8中のCで示されている。又、表8中のδは、カップリングレンズから対物レンズに平行光束を出射する場合における両者の光軸上の面間距離である(図3,4参照)。 Table 8 summarizes numerical values corresponding to conditional expressions (2) to (5) for each example. As shown in Table 8, ΔT = 0.1−0.0535 = 0.0465 (mm) in any of the examples. In the embodiment, the movement sensitivity (λ / 0.01 mm) is 0.0020 to 0.0061, and the lens drive control at the time of focus jump is easy. Here, the distance between the lenses of the coupling lens, the distance between the positive lens and the negative lens through which the parallel light beam enters the objective lens is indicated by A in Table 8, and is the thinnest protective substrate thickness of 0.0535 mm. When a certain information recording surface is selected, the distance between the positive lens and the negative lens of the coupling lens that emits a convergent light beam in which the third-order spherical aberration of the spot of the objective lens is 0 is B in Table 8. The positive lens of the coupling lens that emits a divergent light beam such that the third-order spherical aberration of the spot of the objective lens is zero when the information recording surface having the thickest protective substrate thickness of 0.1 mm is selected. The distance between the negative lens and the negative lens is indicated by C in Table 8. Further, δ in Table 8 is the distance between the surfaces on the optical axes when a parallel light beam is emitted from the coupling lens to the objective lens (see FIGS. 3 and 4).
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 本発明は、明細書に記載の実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施例や思想から本分野の当業者にとって明らかである。明細書の記載及び実施例は、あくまでも例証を目的としており、本発明の範囲は後述するクレームによって示されている。 The present invention is not limited to the embodiments described in the specification, and other embodiments and modifications are apparent to those skilled in the art from the embodiments and ideas described in the present specification. It is. The description and examples are for illustrative purposes only, and the scope of the invention is indicated by the following claims.
 OBJ 対物レンズ
 PU1、PU2 光ピックアップ装置
 LD 青紫色半導体レーザ
 AC1 1軸アクチュエータ
 AC2 3軸アクチュエータ
 PBS 偏光プリズム
 CL カップリングレンズ
 L2 正レンズ
 L3 負レンズ
 MR 立ち上げミラー
 PL1 第1の透明基板
 PL2 第2の透明基板
 PL3 第3の透明基板
 RL1 第1の情報記録面
 RL2 第2の情報記録面
 RL3 第3の情報記録面
 QWP λ/4波長板
OBJ Objective lens PU1, PU2 Optical pickup device LD Blue-violet semiconductor laser AC1 Single-axis actuator AC2 Three-axis actuator PBS Polarizing prism CL Coupling lens L2 Positive lens L3 Negative lens MR Rising mirror PL1 First transparent substrate PL2 Second transparent Substrate PL3 Third transparent substrate RL1 First information recording surface RL2 Second information recording surface RL3 Third information recording surface QWP λ / 4 wavelength plate

Claims (10)

  1.  厚さ方向に3つ以上の情報記録面を有する光ディスクにおけるいずれかの情報記録面を選択して、情報の記録及び/または再生を行う光ピックアップ装置であって、
     波長λ1(390nm<λ1<415nm)の光束を出射する光源と、前記光束を光ディスクの情報記録面上に集光させるための対物レンズと、前記光源と前記対物レンズとの間に配置されたカップリングレンズとを有し、
     前記カップリングレンズは、正の屈折力を有する正レンズ及び負の屈折力を有する負レンズからなり、前記正レンズと前記負レンズのうち一方のレンズのみが光軸方向に移動可能となっており、
     前記光ディスクの入射側表面から情報記録面までの保護基板厚が最も薄い情報記録面と最も厚い情報記録面との厚みの差ΔTが、(1)式を満たし、
     又、前記保護基板厚が最も薄い情報記録面と前記保護基板厚が最も厚い情報記録面とに対して、情報の記録及び/または再生可能に前記波長λ1の光束を集光させるために必要な前記一方のレンズの光軸方向移動量Lが、(2)式を満たし、
     更に、前記カップリングレンズから前記対物レンズに向けて平行光束が出射する位置に前記一方のレンズを移動させたときにおける前記カップリングレンズの焦点距離fが、(3)式を満たすことを特徴とする光ピックアップ装置。
     0.04(mm)≦ΔT≦0.05(mm)    (1)
     0.5(mm) ≦L≦ 2.0(mm)     (2)
       9(mm) ≦f≦ 15(mm)      (3)
    An optical pickup device that selects and records information and / or reproduces information by selecting any information recording surface in an optical disc having three or more information recording surfaces in the thickness direction,
    A light source that emits a light beam having a wavelength λ1 (390 nm <λ1 <415 nm), an objective lens for condensing the light beam on an information recording surface of an optical disc, and a cup disposed between the light source and the objective lens A ring lens,
    The coupling lens includes a positive lens having a positive refractive power and a negative lens having a negative refractive power, and only one of the positive lens and the negative lens is movable in the optical axis direction. ,
    The thickness difference ΔT between the thinnest information recording surface and the thickest information recording surface from the incident side surface of the optical disc to the information recording surface satisfies the equation (1),
    Further, it is necessary for condensing the light flux having the wavelength λ1 so that information can be recorded and / or reproduced on the information recording surface having the thinnest protective substrate thickness and the information recording surface having the thickest protective substrate thickness. The movement amount L in the optical axis direction of the one lens satisfies the formula (2),
    Further, the focal length f of the coupling lens when the one lens is moved to a position where a parallel light beam is emitted from the coupling lens toward the objective lens satisfies the expression (3). An optical pickup device.
    0.04 (mm) ≦ ΔT ≦ 0.05 (mm) (1)
    0.5 (mm) ≤ L ≤ 2.0 (mm) (2)
    9 (mm) ≤ f ≤ 15 (mm) (3)
  2.  以下の(2′)式を満たすことを特徴とする請求項1に記載の光ピックアップ装置。
     0.5(mm) ≦L≦ 1.5(mm)    (2′)
    The optical pickup device according to claim 1, wherein the following expression (2 ′) is satisfied.
    0.5 (mm) ≤ L ≤ 1.5 (mm) (2 ')
  3.  前記光源から、前記負レンズ、前記正レンズの順で配置されていることを特徴とする請求項1又は2に記載の光ピックアップ装置。 3. The optical pickup device according to claim 1, wherein the negative lens and the positive lens are arranged in this order from the light source.
  4.  前記負レンズが光軸方向に移動可能となっており、前記負レンズと前記正レンズのパワー比は、(4)式を満たすことを特徴とする請求項1~3のいずれかに記載の光ピックアップ装置。
     -1.3≦P2/P1≦-0.9        (4)
    但し、P1:前記負レンズのパワー、P2:前記正レンズのパワー
    The light according to any one of claims 1 to 3, wherein the negative lens is movable in an optical axis direction, and a power ratio between the negative lens and the positive lens satisfies the expression (4). Pickup device.
    −1.3 ≦ P2 / P1 ≦ −0.9 (4)
    Where P1: power of the negative lens, P2: power of the positive lens
  5.  前記正レンズが光軸方向に移動可能となっており、前記負レンズと前記正レンズのパワー比は、(5)式を満たすことを特徴とする請求項1~3のいずれかに記載の光ピックアップ装置。
     -8.0≦P2/P1≦-1.25       (5)
    但し、P1:前記負レンズのパワー、P2:前記正レンズのパワー
    The light according to any one of claims 1 to 3, wherein the positive lens is movable in an optical axis direction, and a power ratio between the negative lens and the positive lens satisfies the expression (5). Pickup device.
    -8.0 ≦ P2 / P1 ≦ −1.25 (5)
    Where P1: power of the negative lens, P2: power of the positive lens
  6.  厚さ方向に3つ以上の情報記録面を有する光ディスクにおけるいずれかの情報記録面を選択して、情報の記録及び/または再生を行う光ピックアップ装置であって、波長λ1(390nm<λ1<415nm)の光束を出射する光源と、前記光束を光ディスクの情報記録面上に集光させるための対物レンズと、前記光源と前記対物レンズとの間に配置されたカップリングレンズとを有する光ピックアップ装置のカップリングレンズにおいて、
     前記カップリングレンズは、正の屈折力を有する正レンズ及び負の屈折力を有する負レンズからなり、前記正レンズと前記負レンズのうち一方のレンズのみが光軸方向に移動可能となっており、
     前記光ディスクの入射側表面から情報記録面までの保護基板厚が最も薄い情報記録面と最も厚い情報記録面との厚みの差ΔTが、(1)式を満たし、
     又、前記保護基板厚が最も薄い情報記録面と前記保護基板厚が最も厚い情報記録面とに対して、情報の記録及び/または再生可能に前記波長λ1の光束を集光させるために必要な前記一方のレンズの光軸方向移動量Lが、(2)式を満たし、
     更に、前記カップリングレンズから前記対物レンズに向けて平行光束が出射する位置に前記一方のレンズを移動させたときにおける前記カップリングレンズの焦点距離fが、(3)式を満たすことを特徴とする光ピックアップ装置のカップリングレンズ。
     0.04(mm)≦ΔT≦0.05(mm)     (1)
     0.5(mm) ≦L≦ 2.0(mm)      (2)
       9(mm) ≦f≦ 15(mm)       (3)
    An optical pickup device that records and / or reproduces information by selecting any information recording surface in an optical disc having three or more information recording surfaces in the thickness direction, and has a wavelength λ1 (390 nm <λ1 <415 nm). ), A light source that emits a light beam, an objective lens for condensing the light beam on an information recording surface of an optical disk, and a coupling lens disposed between the light source and the objective lens. In the coupling lens of
    The coupling lens includes a positive lens having a positive refractive power and a negative lens having a negative refractive power, and only one of the positive lens and the negative lens is movable in the optical axis direction. ,
    The thickness difference ΔT between the thinnest information recording surface and the thickest information recording surface from the incident side surface of the optical disc to the information recording surface satisfies the equation (1),
    Further, it is necessary for condensing the light flux having the wavelength λ1 so that information can be recorded and / or reproduced on the information recording surface having the thinnest protective substrate thickness and the information recording surface having the thickest protective substrate thickness. The movement amount L in the optical axis direction of the one lens satisfies the formula (2),
    Further, the focal length f of the coupling lens when the one lens is moved to a position where a parallel light beam is emitted from the coupling lens toward the objective lens satisfies the expression (3). Coupling lens for optical pickup device.
    0.04 (mm) ≦ ΔT ≦ 0.05 (mm) (1)
    0.5 (mm) ≤ L ≤ 2.0 (mm) (2)
    9 (mm) ≤ f ≤ 15 (mm) (3)
  7.  以下の(2′)式を満たすことを特徴とする請求項6に記載の光ピックアップ装置のカップリングレンズ。
     0.5(mm) ≦L≦ 1.5(mm)     (2′)
    The coupling lens of the optical pickup device according to claim 6, wherein the following expression (2 ′) is satisfied.
    0.5 (mm) ≤ L ≤ 1.5 (mm) (2 ')
  8.  前記光源から、前記負レンズ、前記正レンズの順で配置されていることを特徴とする請求項6又は7に記載の光ピックアップ装置のカップリングレンズ。 The coupling lens of the optical pickup device according to claim 6 or 7, wherein the negative lens and the positive lens are arranged in this order from the light source.
  9.  前記負レンズが光軸方向に移動可能となっており、前記負レンズと前記正レンズのパワー比は、(4)式を満たすことを特徴とする請求項6~8のいずれかに記載の光ピックアップ装置のカップリングレンズ。
     -1.3≦P2/P1≦-0.9         (4)
    但し、P1:前記負レンズのパワー、P2:前記正レンズのパワー
    The light according to any one of claims 6 to 8, wherein the negative lens is movable in an optical axis direction, and a power ratio between the negative lens and the positive lens satisfies the expression (4). The coupling lens of the pickup device.
    −1.3 ≦ P2 / P1 ≦ −0.9 (4)
    Where P1: power of the negative lens, P2: power of the positive lens
  10.  前記正レンズが光軸方向に移動可能となっており、前記負レンズと前記正レンズのパワー比は、(5)式を満たすことを特徴とする請求項6~8のいずれかに記載の光ピックアップ装置のカップリングレンズ。
     -8.0≦P2/P1≦-1.25        (5)
    但し、P1:前記負レンズのパワー、P2:前記正レンズのパワー
    The light according to any one of claims 6 to 8, wherein the positive lens is movable in an optical axis direction, and a power ratio between the negative lens and the positive lens satisfies the expression (5). The coupling lens of the pickup device.
    -8.0 ≦ P2 / P1 ≦ −1.25 (5)
    Where P1: power of the negative lens, P2: power of the positive lens
PCT/JP2011/055477 2010-03-30 2011-03-09 Optical pickup device and coupling lens for the optical pickup device WO2011122275A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012508180A JPWO2011122275A1 (en) 2010-03-30 2011-03-09 Optical pickup device and coupling lens of optical pickup device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-077460 2010-03-30
JP2010077460 2010-03-30

Publications (1)

Publication Number Publication Date
WO2011122275A1 true WO2011122275A1 (en) 2011-10-06

Family

ID=44712000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055477 WO2011122275A1 (en) 2010-03-30 2011-03-09 Optical pickup device and coupling lens for the optical pickup device

Country Status (2)

Country Link
JP (1) JPWO2011122275A1 (en)
WO (1) WO2011122275A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002197712A (en) * 2000-12-25 2002-07-12 Konica Corp Condensing optical system, optical pickup device and reproducing device
JP2004152426A (en) * 2002-10-31 2004-05-27 Pioneer Electronic Corp Device and method for correcting aberration, and optical pickup
JP2006073124A (en) * 2004-09-03 2006-03-16 Sony Corp Optical pickup
WO2010023901A1 (en) * 2008-09-01 2010-03-04 パナソニック株式会社 Optical disk unit, video reproducing device using optical disk unit, server, car navigation system, integrated circuit, and recording/reproducing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002197712A (en) * 2000-12-25 2002-07-12 Konica Corp Condensing optical system, optical pickup device and reproducing device
JP2004152426A (en) * 2002-10-31 2004-05-27 Pioneer Electronic Corp Device and method for correcting aberration, and optical pickup
JP2006073124A (en) * 2004-09-03 2006-03-16 Sony Corp Optical pickup
WO2010023901A1 (en) * 2008-09-01 2010-03-04 パナソニック株式会社 Optical disk unit, video reproducing device using optical disk unit, server, car navigation system, integrated circuit, and recording/reproducing method

Also Published As

Publication number Publication date
JPWO2011122275A1 (en) 2013-07-08

Similar Documents

Publication Publication Date Title
JP5071883B2 (en) Optical pickup device and objective optical element
WO2010044355A1 (en) Objective lens and optical pickup device
JPWO2007010770A1 (en) Optical pickup device and optical information recording medium recording / reproducing device
JP5013117B2 (en) Optical pickup device and objective optical element for optical pickup device
WO2011099329A1 (en) Objective lens of optical pickup device and optical pickup device
JP5152524B2 (en) Optical pickup device and objective lens unit
JP5713248B2 (en) Objective lens for optical pickup device and optical pickup device
JP5083621B2 (en) Objective lens and optical pickup device
JP2010238277A (en) Optical pickup device and objective lens unit
JP2013206496A (en) Optical pickup device and objective
WO2010004858A1 (en) Objective lens and optical pickup device
WO2011052469A1 (en) Light pickup device
WO2011122275A1 (en) Optical pickup device and coupling lens for the optical pickup device
JP5582421B2 (en) Optical pickup device and optical information recording / reproducing device
JP5441014B2 (en) Objective lens for optical pickup device and optical pickup device
WO2012070438A1 (en) Objective lens for optical pickup device and optical pickup device
JP2010097664A (en) Objective lens
JP2011198446A (en) Optical pickup device
WO2011099317A1 (en) Optical pickup device
WO2011065276A1 (en) Objective lens for light pickup device-use and light pickup device
WO2011078022A1 (en) Objective lens for optical pickup device and optical pickup device
JP2012164401A (en) Objective lens, optical pickup device, and adjustment method therefor
JP2009015951A (en) Correction element for optical pickup device, objective optical element unit, and optical pickup device
JP2011165288A (en) Objective lens of optical pickup and optical pickup
JP2011243268A (en) Objective lens for optical pickup device, and optical pickup device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762515

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012508180

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762515

Country of ref document: EP

Kind code of ref document: A1