WO2012070304A1 - Co2及びh2sを含むガスの回収システム及び方法 - Google Patents

Co2及びh2sを含むガスの回収システム及び方法 Download PDF

Info

Publication number
WO2012070304A1
WO2012070304A1 PCT/JP2011/071696 JP2011071696W WO2012070304A1 WO 2012070304 A1 WO2012070304 A1 WO 2012070304A1 JP 2011071696 W JP2011071696 W JP 2011071696W WO 2012070304 A1 WO2012070304 A1 WO 2012070304A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower
absorption
gas
vicinity
liquid
Prior art date
Application number
PCT/JP2011/071696
Other languages
English (en)
French (fr)
Inventor
浩司 堀添
立花 晋也
盛紀 村上
昌記 湯島
石田 一男
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to AU2011333125A priority Critical patent/AU2011333125B2/en
Priority to US13/989,171 priority patent/US9399190B2/en
Priority to CN201180052453.3A priority patent/CN103189124B/zh
Publication of WO2012070304A1 publication Critical patent/WO2012070304A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1462Removing mixtures of hydrogen sulfide and carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/004Sulfur containing contaminants, e.g. hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/005Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • B01D2252/20489Alkanolamines with two or more hydroxyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/20Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/65Employing advanced heat integration, e.g. Pinch technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention is, for example, coal and biomass such a gas containing CO 2 and H 2 S to efficiently recover H 2 S from CO 2 and H 2 S contained in the gasification gas obtained by gasifying the gasification furnace
  • the present invention relates to a collection system and method.
  • a chemical absorption method for example, an amine absorption liquid (for example, (N -Methyldiethanolamine: using absorption liquid such as MDEA)) and physical absorption methods (for example, using Selexol absorption liquid using polyethylene glycol dimethyl ether) have been proposed.
  • an amine absorption liquid for example, (N -Methyldiethanolamine: using absorption liquid such as MDEA)
  • physical absorption methods for example, using Selexol absorption liquid using polyethylene glycol dimethyl ether
  • a system that combines the CO shift and CCS (carbon capture and storage) is the IGCC, the concentration of H 2 S in the CO 2 recovered by the CO 2 recovery process specified value (e.g., 10 ⁇ 20 ppm) necessary to suppress the degree There is. 4)
  • the amount of heat energy such as steam used is as small as possible. That is, it is required to efficiently and selectively separate H 2 S from a gas containing CO 2 and H 2 S in terms of thermal energy.
  • Patent Document 1 there is a proposal of an energy saving process in which a part of the absorption liquid in which the dissolved component is partially dissipated in the pressure release container (the upper stage of the regeneration tower) is supplied from below from the top of the absorption tower (Patent Document 1). .
  • the present invention provides a gas recovery system including CO 2 and H 2 S that efficiently recovers H 2 S contained in a gasification gas obtained by gasifying coal, biomass, or the like with a gasification furnace. And providing a method.
  • the first invention of the present invention for solving the above-described problem is that a gas containing CO 2 and H 2 S is used as an introduction gas, and the introduction gas is brought into contact with an absorption liquid that absorbs CO 2 and H 2 S.
  • An absorption tower that absorbs CO 2 and H 2 S from the introduced gas and an absorption liquid that absorbs CO 2 and H 2 S are withdrawn from the bottom of the absorption tower and introduced from the top of the tower via the first supply line.
  • CO 2 and H 2 S extracted from the bottom of the absorption tower are absorbed at the intersection of the first supply line and the second supply line.
  • CO intercalated between the first heat exchanger for exchanging heat between the absorption liquid and the regenerated absorption liquid, the third supply line, and the second supply line, and extracted from the vicinity of the middle stage of the absorption tower
  • a second heat exchanger for exchanging heat between the absorbing solution that has absorbed 2 and H 2 S and the regenerated absorbing solution, and CO 2 and H introduced from the vicinity of the middle stage of the regenerating tower after heat exchange.
  • the temperature of the absorbing solution having absorbed S is characterized in that the CO 2 and H 2 temperature of the absorbing solution having absorbed S equal or equivalent or higher is introduced from the tower top of the regenerator after heat exchange It is in the recovery system of gas containing CO 2 and H 2 S.
  • CO 2 and H 2 S gas from the introduction gas including an absorption tower for recovering CO 2 and H 2 S regenerator and CO 2 and recovering method for a gas containing H 2 S with A part of the absorption liquid is extracted from the vicinity of the middle stage of the absorption tower that absorbs CO 2 and H 2 S from the introduced gas, the flow rate of the absorption liquid flowing down the absorption tower is reduced, and the absorption liquid is extracted from the bottom of the tower.
  • CO 2 and H 2 wherein the absorbed liquid is introduced from the vicinity of the top of the regeneration tower, and the absorbent extracted from the vicinity of the middle stage of the absorption tower is introduced into the vicinity of the middle stage of the regeneration tower for regeneration. It is in the recovery method of the gas containing S.
  • the absorption liquid that has absorbed CO 2 and H 2 S extracted from the bottom of the absorption tower and the vicinity of the middle stage of the absorption tower is regenerated and the The absorption liquid that has been exchanged and has absorbed CO 2 and H 2 S introduced from the vicinity of the middle stage of the regeneration tower after heat exchange is absorbed by CO 2 and H 2 introduced from the top of the regeneration tower after heat exchange.
  • the temperature is equal to or higher than the temperature of the absorbing solution that has absorbed S.
  • a portion of the absorbent from the tower middle vicinity of the absorption tower so as to extract the third supply line by reducing the flow rate of the absorption liquid flowing down below the absorption tower, H 2 S
  • the amount of CO 2 absorbed is reduced, the selective separation of H 2 S is improved, and the amount of reboiler heat in the regeneration tower is reduced.
  • FIG. 1-1 is a schematic diagram of a gas recovery system including CO 2 and H 2 S according to the first embodiment.
  • FIG. 1-2 is a schematic diagram in which an example of temperature and pressure conditions of the gas recovery system including CO 2 and H 2 S according to the first embodiment is added.
  • FIG. 2-1 is a diagram comparing the enthalpies of distillation in the recovery system according to the basic process of the prior art and the recovery system according to the embodiment.
  • FIG. 2-2 is a schematic diagram showing the number of theoretical plates of the regeneration tower.
  • FIG. 3 is a schematic diagram of a recovery system for H 2 S containing CO 2 according to the second embodiment.
  • FIG. 4 is a schematic diagram of a gas recovery system including CO 2 and H 2 S according to the third embodiment.
  • FIG. 1-1 is a schematic diagram of a gas recovery system including CO 2 and H 2 S according to the first embodiment.
  • a gas recovery system 10A containing CO 2 and H 2 S according to the present embodiment includes CO 2 and H obtained from a gasification furnace or the like that gasifies coal, biomass, or the like.
  • the tower 13 and the absorbing liquid (rich solution) 12A that has absorbed CO 2 and H 2 S are extracted from the tower bottom 13c of the absorption tower 13 and introduced from the tower top 14a via the first supply line L 1.
  • An absorption liquid regeneration tower (hereinafter referred to as “regeneration tower”) 14 that regenerates the absorption liquid 12 by releasing CO 2 and H 2 S by the heat of 15, and the regenerated absorption liquid (lean solution) 12 B of the regeneration tower 14 Extracted from tower bottom 14c, absorption tower
  • the second supply line L 2 of the back 3 of the top portion 13a, withdrawn absorption liquid (semi-rich solution) 12C that has absorbed part of the tower middle 13b near the CO 2 and H 2 S absorption tower 13, the extracted semi-rich A rich solution is interposed at the intersection of the third supply line L 3 for introducing the solution 12C to the vicinity of the middle stage 14b of the regeneration tower 14, the first supply line L 1 , and the second supply line L 2.
  • the semi-rich solution 12C and the lean solution are interposed at the intersection of the first heat exchanger 16 that exchanges heat between the 12A and the lean solution 12B, the third supply line L 3 , and the second supply line L 2. And a second heat exchanger 17 for exchanging heat with 12B.
  • CO 2 and H 2 S are removed by the regeneration tower 14, and the regenerated absorbent (lean solution) 12 B is reused as the absorbent 12.
  • the absorbent regenerated by removing almost all of the CO 2 and H 2 S is referred to as “lean solution” 12B.
  • This lean solution 12 ⁇ / b> B is indirectly heated by the saturated steam 23 in the reboiler 15 to generate steam 22.
  • CO 2 and H 2 S gas 25 accompanied with water vapor released from the rich solution 12A and the semi-lean solution are led out from the tower top 14a of the absorption liquid regeneration tower 14, and the water vapor is condensed by the condenser 26.
  • the water 28 is separated by the separation drum 27, and CO 2 and H 2 S gas 29 are discharged out of the system and collected.
  • the water 28 separated by the separation drum 27 is supplied to the upper part of the absorption liquid regeneration tower 14.
  • the regenerated absorbent (lean solution) 12B is heat-exchanged with the semi-rich solution 12C in the second heat exchanger 17 and cooled, and then heat-exchanged with the rich solution 12A in the first heat exchanger 16. After cooling, the pressure is increased by a lean solvent pump (not shown), and further cooled by a lean solvent cooler 30, then supplied again to the absorption tower 13 and reused as the absorbing liquid 12.
  • the temperature of the absorbing liquid (semi-rich solution) 12C that has absorbed CO 2 and H 2 S introduced from the vicinity of the middle stage 14b of the regeneration tower 14 after heat exchange is the heat exchange in the second heat exchanger 17.
  • the temperature of the absorption liquid (rich solution) 12A that has absorbed CO 2 and H 2 S introduced from the tower top 14a of the subsequent regeneration tower 14 is made equal to or equal to or higher. This is because the temperature in the middle column 14b of the regeneration tower 14 is higher than that in the tower top 14a due to the heat of the water vapor 22 from the reboiler 15, so that the semi-rich solution 12C introduced here generates heat loss. This is because the temperature needs to be equal to or higher than the tower top portion 14a side.
  • the extraction amount is determined by measuring the temperature, pressure, flow rate, CO 2 concentration and H 2 S concentration of the introduced gas to be introduced, and comprehensively judging these conditions to determine the optimal extraction position and extraction amount. I am doing so.
  • the extracted semi-rich solution 12C is heated by the second heat exchanger 17 by heat exchange with the high-temperature lean solution 12B discharged from the bottom 14c of the regeneration tower 14, and in the vicinity of the middle stage 14b of the regeneration tower 14 More preferably, it supplies below the column middle stage 14b.
  • FIG. 1-2 is a schematic diagram in which an example of temperature and pressure conditions of the gas recovery system including CO 2 and H 2 S according to the first embodiment is added.
  • the introduced gas 11 is introduced into the absorption tower 13.
  • the absorption liquid 12 (lean solution 12B) is introduced into the tower so as to oppose this, and absorbs CO 2 and H 2 S. Since this absorption is an exothermic reaction, the semi-rich solution 12C withdrawn from the vicinity of the middle stage 13b of the absorption tower 13 is 49 ° C.
  • the rich solution 12A extracted from the tower bottom 13c is 44 ° C.
  • the rich solution 12A and the semi-rich solution 12C are heat-exchanged with the high temperature (122 ° C.) lean solution 12B in the first and second heat exchangers 16 and 17, respectively.
  • the rich solution 12A becomes 77 ° C.
  • the regeneration tower 14 It is introduced from the tower top 14a.
  • the semi-rich solution 12C reaches 104 ° C. and is introduced from the vicinity of the middle column 14b of the regeneration tower 14. Thereby, the reboiler heat quantity in the regeneration tower 14 is reduced.
  • FIG. 2-1 compares the enthalpies of distillation in the recovery system according to the basic process of the prior art and the recovery system according to the embodiment.
  • FIG. 2-2 is a schematic diagram showing the number of theoretical plates of the regeneration tower.
  • the conventional technique is a method of extracting all the absorbing liquid from the bottom of the absorption tower 13 and introducing the entire amount from the top 14 a of the regeneration tower 14 to regenerate.
  • the distillation enthalpy at the upper stage of the regeneration tower that is, the required heat energy is greatly reduced, whereas the distillation enthalpy at the lower stage of the regeneration tower is increased.
  • the required heat quantity of the reboiler 15 and the condenser 26 is reduced.
  • the fact that the absorbed heat has decreased due to the reduction of the CO 2 recovery amount also contributes to the reduction of the required heat amount.
  • the amount of reboiler heat can be reduced, and the thermal energy of the entire system can be reduced.
  • FIG. 3 is a schematic diagram of a gas recovery system including CO 2 and H 2 S according to the second embodiment.
  • the gas recovery system 10B containing CO 2 and H 2 S according to the present embodiment is similar to the regeneration tower 14 in the gas recovery system 10A containing CO 2 and H 2 S according to the first embodiment.
  • An extraction line L 4 is provided for extracting the entire amount of the absorbing liquid (semi-lean solution) 12D regenerated by partially releasing CO 2 and H 2 S from the vicinity of the middle stage 14b.
  • this extraction line L 4 is joined to the front stage side of the second heat exchanger 17 interposed in the third supply line L 3 , and the extracted semi-lean solution 12D and the semi-rich solution 12C are mixed here. Thereafter, the heat is exchanged by the second heat exchanger 17, and then introduced into the lower packed portion 14B side of the regeneration tower 14.
  • Table 1 shows conventional technology 1 (recovery system in which the entire amount of absorbing liquid is extracted from the bottom and introduced from the top of the regenerator tower), conventional technology 2 (system patent document 1 having a stripping tower), recovery system of Example 1,
  • the reboiler heat amount, CO 2 recovery amount, H 2 S recovery amount, and H 2 S selection ratio (H 2 S recovery amount / CO 2 recovery amount) of each regeneration tower are compared.
  • the prior art was set to 100 and the relative ratio was compared respectively.
  • FIG. 4 is a schematic diagram of a gas recovery system including CO 2 and H 2 S according to the third embodiment.
  • symbol is attached
  • the gas recovery system 10C containing CO 2 and H 2 S according to the present embodiment is similar to the absorption tower 13 in the gas recovery system 10A containing CO 2 and H 2 S according to the first embodiment.
  • the extraction amount can be adjusted by adjusting the opening of the valves V 1 to V 3 or adjusting the pump flow rate (not shown).
  • the conditions of the introduced gas 11 are measured, and the gas flow rate and reboiler heat amount when the target value of the H 2 S concentration in the purified gas 21 is satisfied are calculated.
  • the extraction position and extraction flow rate (m 3 / h) of the absorbing liquid are obtained.
  • the control means 42 determines the optimum solution for the absorption liquid extraction conditions, and the control means 42 controls the instruction to change the extraction position (open / close the valve).
  • the control means 42 adjusts the extraction flow rate of the semi-rich solution 12C by adjusting the valve opening or instructing the adjustment of the pump flow rate.
  • H 2 S removal performance, H 2 S selectivity (gas flow rate) it is possible to optimize the thermal energy.
  • the H 2 S concentration of the purified gas 21 may also change greatly.
  • the extraction position and extraction amount of the semi-rich solution 12C it is possible to optimize the extraction conditions of the semi-rich solution 12C without modifying the equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)
  • Industrial Gases (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 例えば石炭等をガス化したCO2及びH2Sを含むガス化ガスを導入ガス11とし、CO2及びH2Sを吸収する吸収液12とを接触させて導入ガス11からCO2及びH2Sを吸収させる吸収塔13と、CO2及びH2Sを吸収した吸収液12Aを吸収塔13の塔底部13cより抜き出すと共に塔頂部14aより導入し、CO2及びH2Sを放出させて吸収液12を再生する吸収液再生塔14と、再生された吸収液12Bを再生塔14から吸収塔13に戻す第2の供給ラインL2と、吸収塔13の塔中段13b近傍からCO2及びH2Sの一部を吸収した吸収液(セミリッチ溶液)12Cを抜き出し、該セミリッチ溶液12Cを再生塔14の塔中段14b近傍に導入する第3の供給ラインL3とを具備する。

Description

CO2及びH2Sを含むガスの回収システム及び方法
 本発明は、例えば石炭やバイオマス等をガス化炉によりガス化して得られるガス化ガスに含まれるCO2とH2SからH2Sを効率よく回収するCO2及びH2Sを含むガスの回収システム及び方法に関する。
 石炭やバイオマス等をガス化炉でガス化したガス化ガスに含まれるCO2とH2S等の酸性ガスを除去する技術として、従来より、化学吸収法(例えば、アミン吸収液(例えば(N-メチルジエタノールアミン:MDEA等の吸収液利用))や物理吸収法(例えば、ポリエチレングリコール・ジメチルエーテルを用いるSelexol吸収液利用)が提案されている。
 ところで、IGCC(石炭ガス化複合発電)技術のようなシステムの場合、以下のような要求がある。
1) 発電システムにおいて、大気汚染物質であるSOの排出を規制値未満とするために、SOの発生源となるH2Sの除去が必要となる。一方で、発電効率を上昇させる効果があるため、CO2は極力回収しないことが望ましい。
2) 回収したH2S含有ガス(オフガス)流量が少なく、H2S濃度が高い方が、回収ガスから化製品を製造する場合やH2Sを処理する場合に有利であり、H2Sを選択的に回収できることが望ましい。
3) IGCCにCOシフトとCCS(二酸化炭素回収・貯留)とを組み合わせたシステムでは、CO2回収プロセスで回収したCO2中のH2S濃度を規定値(例えば10~20ppm)程度に抑える必要がある。
4) 発電効率を向上させるためには、スチーム等の熱エネルギーの使用量は少ないほど好ましい。
 すなわち、CO2とH2Sとを含むガスから、H2Sを熱エネルギーの面で効率的、かつ選択的に分離することが求められている。
 そこで、従来では、放圧容器(再生塔上段)で溶解成分を一部放散させた吸収液の一部を、吸収塔の最上部より下方から供給する省エネプロセスの提案がある(特許文献1)。
特開2010-120013号公報
 しかしながら、特許文献1の技術では、H2Sを含まないガスからのCO2回収に適用する場合は有効であるが、CO2とH2Sとを含有するガスからのH2Sの選択回収に適用する場合は、吸収塔の下方の吸収液中のH2S濃度が高くなることで、H2S吸収速度が大幅に低下するため、H2S除去率、H2S選択性が低下し、所望の除去率を得るためには逆に熱エネルギーの増大を招いてしまう、という問題がある。
 よって、化学吸収プロセスにおいて、CO2とH2Sとを含むガスから、CO2の吸収とは別にH2Sを熱エネルギーの面で効率的、かつ選択的に分離することができる手段の出現が切望されている。
 本発明は、前記問題に鑑み、例えば石炭やバイオマス等をガス化炉によりガス化して得られるガス化ガスに含まれるH2Sを効率よく回収するCO2及びH2Sを含むガスの回収システム及び方法を提供することを課題とする。
 上述した課題を解決するための本発明の第1の発明は、CO2及びH2Sを含むガスを導入ガスとし、該導入ガスとCO2及びH2Sを吸収する吸収液とを接触させて前記導入ガスからCO2及びH2Sを吸収させる吸収塔と、CO2及びH2Sを吸収した吸収液を吸収塔の塔底部から抜き出し、第1の供給ラインを介して塔頂部より導入し、リボイラの熱によりCO2及びH2Sを放出させて吸収液を再生する吸収液再生塔と、再生された再生吸収液を吸収塔に戻す第2の供給ラインと、吸収塔の塔中段近傍からCO2及びH2Sの一部を吸収した吸収液を抜き出し、抜き出した吸収液を再生塔の塔中段近傍に導入する第3の供給ラインと、とを具備することを特徴とするCO2及びH2Sを含むガスの回収システムにある。
 第2の発明は、第1の発明において、第1の供給ラインと、第2の供給ラインとの交差部に介装され、吸収塔の塔底部から抜き出したCO2及びH2Sを吸収した吸収液と再生吸収液とを熱交換する第1の熱交換器と、第3の供給ラインと、第2の供給ラインとの交差部に介装され、吸収塔の塔中段近傍から抜き出したCO2及びH2Sを吸収した吸収液と再生吸収液とを熱交換する第2の熱交換器と、を具備し、熱交換の後の再生塔の塔中段近傍より導入されるCO2及びH2Sを吸収した吸収液の温度は、熱交換の後の再生塔の塔頂部より導入されるCO2及びH2Sを吸収した吸収液の温度と同等又は同等以上であることを特徴とするCO2及びH2Sを含むガスの回収システムにある。
 第3の発明は、CO2及びH2Sを含むガスを導入ガスからCO2及びH2Sを回収する吸収塔と再生塔とを用いたCO2及びH2Sを含むガスの回収方法であって、前記導入ガスからCO2及びH2Sを吸収させる吸収塔の塔中段近傍から吸収液の一部を抜き出し、吸収塔の下方に流下する吸収液の流量を低減させ、塔底部から抜き出した吸収液を再生塔の塔頂部近傍から導入させると共に、吸収塔の塔中段近傍から抜き出した吸収液を、再生塔の塔中段近傍に導入して再生することを特徴とするCO2及びH2Sを含むガスの回収方法にある。
 第4の発明は、第3の発明において、吸収塔の塔底部及び塔中段近傍から抜出されるCO2及びH2Sを吸収した吸収液が、再生塔で再生された再生吸収液と各々熱交換され、熱交換の後の再生塔の塔中段近傍より導入されるCO2及びH2Sを吸収した吸収液は、熱交換の後の再生塔の塔頂部より導入されるCO2及びH2Sを吸収した吸収液の温度と同等又は同等以上であることを特徴とするCO2及びH2Sを含むガスの回収方法にある。
 本発明によれば、吸収塔の塔中段近傍から吸収液の一部を第3の供給ラインにより抜き出すようにして、吸収塔の下方に流下する吸収液の流量を低減させることで、H2Sの吸収量をほとんど低下させることなく、CO2吸収量を低下させ、H2Sの選択分離性の向上を図ると共に、再生塔におけるリボイラ熱量の低減を図る。
図1-1は、実施例1に係るCO2及びH2Sを含むガスの回収システムの概略図である。 図1-2は、実施例1に係るCO2及びH2Sを含むガスの回収システムの温度・圧力条件の一例を追加した概略図である。 図2-1は、従来技術の基本プロセスによる回収システムと、実施例による回収システムとにおける蒸留エンタルピーを比較する図である。 図2-2は、再生塔の理論段数を示す模式図である。 図3は、実施例2に係るCO2を含むH2Sの回収システムの概略図である。 図4は、実施例3に係るCO2及びH2Sを含むガスの回収システムの概略図である。
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
 本発明による実施例に係るCO2及びH2Sを含むガスの回収システムについて、図面を参照して説明する。図1-1は、実施例1に係るCO2及びH2Sを含むガスの回収システムの概略図である。
 図1-1に示すように、本実施例に係るCO2及びH2Sを含むガスの回収システム10Aは、例えば石炭やバイオマス等をガス化するガス化炉等から得られたCO2及びH2Sを含むガス化ガスを導入ガス11とし、該導入ガス11とCO2及びH2Sを吸収する吸収液12とを接触させて前記導入ガス11からCO2及びH2Sを吸収させる吸収塔13と、CO2及びH2Sを吸収した吸収液(リッチ溶液)12Aを吸収塔13の塔底部13cより抜き出すと共に、第1の供給ラインL1を介して塔頂部14aより導入し、リボイラ15の熱によりCO2及びH2Sを放出させて吸収液12を再生する吸収液再生塔(以下「再生塔」という)14と、再生された吸収液(リーン溶液)12Bを再生塔14の塔底部14cより抜き出し、吸収塔13の塔頂部13aに戻す第2の供給ラインL2と、吸収塔13の塔中段13b近傍からCO2及びH2Sの一部を吸収した吸収液(セミリッチ溶液)12Cを抜き出し、抜き出したセミリッチ溶液12Cを再生塔14の塔中段14b近傍に導入する第3の供給ラインL3と、第1の供給ラインL1と、第2の供給ラインL2との交差部に介装され、リッチ溶液12Aとリーン溶液12Bとを熱交換する第1の熱交換器16と、第3の供給ラインL3と、第2の供給ラインL2との交差部に介装され、セミリッチ溶液12Cとリーン溶液12Bとを熱交換する第2の熱交換器17と、を具備する。
 このシステムでは、前記再生塔14でCO2及びH2Sを除去し、再生された吸収液(リーン溶液)12Bは吸収液12として再利用される。
 このCO2及びH2Sを含むガスの回収システム10Aを用いた精製方法では、石炭やバイオマス等をガス化するガス化炉で得られたガス化ガスは、ガス冷却装置(図示せず)に送られ、ここで冷却水により冷却され、導入ガス11として吸収塔13に導入される。
 吸収塔13は、塔内部に充填部13A、13Bが設けられ、これらの充填部13A、13Bを通過する際、導入ガス11と吸収液12との対向接触効率を向上させている。なお、充填部は複数設けてもよく、充填法以外に、例えばスプレー法、液柱法、棚段法等により導入ガス11と吸収液12とを対向接触させるようにしている。
 前記吸収塔13において、導入ガス11は例えばアミン系の吸収液12と対向流接触し、排ガス11中のCO2及びH2Sは、化学反応により吸収液12に吸収され、CO2及びH2Sが除去された浄化ガス21は系外に放出される。CO2及びH2Sを吸収した吸収液は「リッチ溶液」12Aとも呼称される。このリッチ溶液12Aは、リッチ溶液ポンプ(図示せず)を介し、第1の熱交換器16において、吸収液再生塔14で再生された吸収液(リーン溶液)12Bとの熱交換により加熱され、その後、吸収液再生塔14に供給される。
 この熱交換されたリッチ溶液12Aは、充填部14A、14Bを有する吸収液再生塔14の塔頂部14a近傍から塔内に導入され、塔内を流下する際に、リボイラ15からの水蒸気22による吸熱反応を生じて、大部分のCO2及びH2Sを放出し、再生される。吸収液再生塔14内で一部または大部分のCO2及びH2Sを放出した吸収液は「セミリーン溶液」と呼称される。このセミリーン溶液は、吸収液再生塔14下部に至る頃には、ほぼ全てのCO2及びH2Sが除去された吸収液となる。このほぼ全てのCO2及びH2Sが除去されることにより再生された吸収液は「リーン溶液」12Bと呼称される。このリーン溶液12Bはリボイラ15で飽和水蒸気23により間接的に過熱され水蒸気22を発生している。
 また、吸収液再生塔14の塔頂部14aからは塔内においてリッチ溶液12A及びセミリーン溶液から放出された水蒸気を伴ったCO2及びH2Sガス25が導出され、コンデンサ26により水蒸気が凝縮され、分離ドラム27にて水28が分離され、CO2及びH2Sガス29が系外に放出されて回収される。分離ドラム27にて分離された水28は吸収液再生塔14の上部に供給される。
 再生された吸収液(リーン溶液)12Bは、第2の熱交換器17にてセミリッチ溶液12Cと熱交換されて冷却され、次いで第1の熱交換器16にてリッチ溶液12Aと熱交換されて冷却され、つづいてリーンソルベントポンプ(図示せず)にて昇圧され、さらにリーンソルベントクーラ30にて冷却された後、再び吸収塔13に供給され、吸収液12として再利用される。
 また、熱交換の後の再生塔14の塔中段14b近傍より導入されるCO2及びH2Sを吸収した吸収液(セミリッチ溶液)12Cの温度は、第2の熱交換器17での熱交換の後の再生塔14の塔頂部14aより導入されるCO2及びH2Sを吸収した吸収液(リッチ溶液)12Aの温度と、同等又は同等以上となるようにしている。
 これは、再生塔14の塔頂部14aより塔中段14b部分はリボイラ15からの上記水蒸気22の熱によりその温度が高くなっているので、ここに導入されるセミリッチ溶液12Cは、その熱損失が発生しないように、塔頂部14a側よりも温度を同等以上とする必要があるからである。
 本実施例では、吸収塔13の最上段より下方側の塔中段13b近傍から吸収液の一部を第3の供給ラインL3により抜き出すようにしている。なお、抜き出し量は、導入される導入ガスの温度、圧力、流量、CO2濃度、H2S濃度を測定し、これらの条件を総合的に判断して最適な抜き出し位置や抜き出し量を決定するようにしている。
 抜き出されたセミリッチ溶液12Cは、第2の熱交換器17により、再生塔14の塔底部14cより排出される高温のリーン溶液12Bとの熱交換により加熱され、再生塔14の塔中段14b近傍、より好ましくは塔中段14bより下方側に供給する。
 ところで、導入ガス11中のH2Sと共にCO2は、吸収塔13内ではH2S及びCO2ともに吸収液12により吸収されている。
 本発明のように、吸収塔13の塔中段13b近傍から吸収液12の一部を第3の供給ラインL3により抜き出すようにして、吸収塔13の下方に流下する吸収液の流量を低減させることで、H2Sはガス側の物質移動、CO2は液側の物質移動が支配的であることから、CO2の方がより吸収速度が低下する。
 これにより、CO2吸収量が低下、すなわち吸収液中のCO2濃度が低下する分、H2Sの吸収量は増加する。
 吸収液の流量の低下によるH2S吸収量の低下を考慮しても、H2S吸収量はほとんど低下しない。
 よって、H2Sの選択性の向上を図ることができる。
 CO2及びH2S濃度が高いリッチ溶液12Aを再生塔14の塔頂部14aから導入し、CO2及びH2S濃度がリッチ溶液12Aと比較して相対的に低いセミリッチ溶液12Cを、リッチ溶液12Aと同等かそれ以上の温度に加温した上で再生塔14の塔中段14b近傍、あるいはそれより下方側に供給することで、リボイラ15の熱量を低減させることができるので、リボイラ15による蒸気消費量を低減することができる。
 図1-2は、実施例1に係るCO2及びH2Sを含むガスの回収システムの温度・圧力条件の一例を追加した概略図である。
 図1-2に示すように、導入ガス11は吸収塔13に導入される。
 これに対向するように吸収液12(リーン溶液12B)は塔内に導入され、CO2及びH2Sを吸収する。
 この吸収は発熱反応であるので、吸収塔13の塔中段13b近傍から抜き出されるセミリッチ溶液12Cは49℃である。一方、塔底部13cから抜き出されるリッチ溶液12Aは44℃である。
 このリッチ溶液12Aとセミリッチ溶液12Cとは第1及び第2の熱交換器16、17において、それぞれ高温(122℃)のリーン溶液12Bと熱交換され、リッチ溶液12Aは77℃となり、再生塔14の塔頂部14aから導入される。またセミリッチ溶液12Cは104℃となり、再生塔14の塔中段14b近傍から導入される。
 これにより、再生塔14でのリボイラ熱量の低減を図るようにしている。
 図2-1は、従来技術の基本プロセスによる回収システムと、実施例による回収システムとにおける蒸留エンタルピーを比較する。図2-2は再生塔の理論段数を示す模式図である。
 ここで、従来技術とは、吸収塔13の塔底部から全ての吸収液を抜き出し、再生塔14の塔頂部14aから全量を導入して再生する方法である。
 図2-1に示すように、従来技術の場合に較べ、実施例の回収システムでは再生塔上段の蒸留エンタルピー、すなわち必要な熱エネルギーが大きく低下するのに対し、再生塔下段では蒸留エンタルピーの増加は比較的小さく、結果としてリボイラ15及びコンデンサ26の必要熱量の低減を図ることが確認された。なお、CO2回収量が低減されたことにより吸収熱が低下したことも、必要熱量の低減に寄与している。
 このように、本発明によれば、リボイラ熱量を低減することができ、システム全体の熱エネルギーの低減を図ることができる。
 本発明による実施例に係るCO2及びH2Sを含むガスの回収システムについて、図面を参照して説明する。図3は、実施例2に係るCO2及びH2Sを含むガスの回収システムの概略図である。なお、図1に示す実施例1の構成と同一の構成については同一の符号を付してその説明は省略する。
 図3に示すように、本実施例に係るCO2及びH2Sを含むガスの回収システム10Bは、実施例1に係るCO2及びH2Sを含むガスの回収システム10Aにおいて、再生塔14の塔中段14b近傍からCO2及びH2Sを一部放出して再生された吸収液(セミリーン溶液)12Dの全量を抜出す抜出しラインL4を設けている。そして、この抜出しラインL4を、第3の供給ラインL3に介装された第2の熱交換器17の前段側に合流させ、抜き出したセミリーン溶液12Dとここでセミリッチ溶液12Cと混合させた後、第2の熱交換器17で熱交換させた後、再生塔14の下段の充填部14B側に導入するようにしている。
 これにより、従来よりもリボイラ15の熱エネルギーの低減を図るようにしている。
 表1は従来技術1(吸収液を全量底部から抜き出し、全量再生塔の塔頂部から導入する回収システム)、従来技術2(放散塔を備えたシステム特許文献1)、実施例1の回収システム、実施例2の回収システムにおける、各々の再生塔のリボイラ熱量とCO2回収量、H2S回収量、H2S選択比(H2S回収量/CO2回収量)についての比較である。
 なお、従来技術を100とし、各々その相対比を比較した。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1及び実施例2は従来技術1と比べて、リボイラ熱量が低下することが確認された。また、H2S回収量を維持しつつ、CO2回収量の低減を図ることができた。この結果、H2S選択比(H2S回収量/CO2回収量)の向上をあることが確認された。
 本発明による実施例に係るCO2及びH2Sを含むガスの回収システムについて、図面を参照して説明する。図4は、実施例3に係るCO2及びH2Sを含むガスの回収システムの概略図である。なお、図1に示す実施例1の構成と同様の構成については同一の符号を付してその説明は省略する。
 図4に示すように、本実施例に係るCO2及びH2Sを含むガスの回収システム10Cは、実施例1に係るCO2及びH2Sを含むガスの回収システム10Aにおいて、吸収塔13を複数の吸収部13A~13Dとし、抜き出す位置を複数としている。
 導入ガス11の温度、圧力、流量、CO2濃度、H2S濃度を計測器41により測定し、制御装置により最適な抜出し位置や抜出し量を決定するようにしている。
 本実施例では、セミリッチ溶液12Cの抜出し位置を3箇所とするようにしており、複数の配管L3-1、L3-2、L3-3及びバルブV1~V3を設けている。
 抜出し量の調整は、吸収塔13の圧力が高いため、前記バルブV1~V3の開度調整、あるいは図示しないポンプ流量の調整により行うことができる。
 そして、導入ガス11の条件を計測し、浄化ガス21中のH2S濃度の目標値を満足させる場合のガス流量、リボイラ熱量の計算を行う。この計算には吸収液の抜き出し位置、抜き出し流量(m3/h)を求める。
 吸収液の抜き出し条件の最適解を制御手段42により決定し、制御手段42は抜き出し位置の変更(バルブの開閉)の指示の制御を行う。
 次に、制御手段42は、バルブの開度を調整又はポンプ流量の調整の指示を行うことで、セミリッチ溶液12Cの抜き出し流量の調整を行う。
 これにより、H2S除去性能、H2S選択性(ガス流量)、熱エネルギーの最適化を図ることができる。
 よって、導入ガス11の条件が、例えば石炭の種類の変更によって変動した場合に、浄化ガス21のH2S濃度も大きく変動することがあるが、このような場合には、本実施例により、セミリッチ溶液12Cの抜き出し位置及び抜き出し量を制御することで、設備の改造を行うことなく、セミリッチ溶液12Cの抜き出し条件を最適化することができる。
 このように、本実施例によれば、導入ガス条件が変動しても、容易に吸収液の抜き出し条件を変更し、目標性能を満足させることができる。
 10A、10B、10C CO2及びH2Sを含むガスの回収システム
 11 導入ガス
 12 吸収液
 12A リッチ溶液
 12B リーン溶液
 12C セミリッチ溶液
 12D セミリーン溶液
 13 吸収塔
 14 吸収液再生塔(再生塔)
 15 リボイラ
 16 第1の熱交換器
 17 第2の熱交換器

Claims (4)

  1.  CO2及びH2Sを含むガスを導入ガスとし、該導入ガスとCO2及びH2Sを吸収する吸収液とを接触させて前記導入ガスからCO2及びH2Sを吸収させる吸収塔と、
     CO2及びH2Sを吸収した吸収液を吸収塔の塔底部から抜き出し、第1の供給ラインを介して塔頂部より導入し、リボイラの熱によりCO2及びH2Sを放出させて吸収液を再生する吸収液再生塔と、
     再生された再生吸収液を吸収塔に戻す第2の供給ラインと、
     吸収塔の塔中段近傍からCO2及びH2Sの一部を吸収した吸収液を抜き出し、抜き出した吸収液を再生塔の塔中段近傍に導入する第3の供給ラインと、とを具備することを特徴とするCO2及びH2Sを含むガスの回収システム。
  2.  請求項1において、
     第1の供給ラインと、第2の供給ラインとの交差部に介装され、吸収塔の塔底部から抜き出したCO2及びH2Sを吸収した吸収液と再生吸収液とを熱交換する第1の熱交換器と、
     第3の供給ラインと、第2の供給ラインとの交差部に介装され、吸収塔の塔中段近傍から抜き出したCO2及びH2Sを吸収した吸収液と再生吸収液とを熱交換する第2の熱交換器とを具備し、
     熱交換の後の再生塔の塔中段近傍より導入されるCO2及びH2Sを吸収した吸収液の温度は、熱交換の後の再生塔の塔頂部より導入されるCO2及びH2Sを吸収した吸収液の温度と同等又は同等以上であることを特徴とするCO2及びH2Sを含むガスの回収システム。
  3.  CO2及びH2Sを含むガスを導入ガスからCO2及びH2Sを回収する吸収塔と再生塔とを用いたCO2及びH2Sを含むガスの回収方法であって、
     前記導入ガスからCO2及びH2Sを吸収させる吸収塔の塔中段近傍から吸収液の一部を抜き出し、吸収塔の下方に流下する吸収液の流量を低減させ、
     塔底部から抜き出した吸収液を再生塔の塔頂部近傍から導入させると共に、吸収塔の塔中段近傍から抜き出した吸収液を、再生塔の塔中段近傍に導入して再生することを特徴とするCO2及びH2Sを含むガスの回収方法。
  4.  請求項3において、
     吸収塔の塔底部及び塔中段近傍から抜出されるCO2及びH2Sを吸収した吸収液が、再生塔で再生された再生吸収液と各々熱交換され、
     熱交換の後の再生塔の塔中段近傍より導入されるCO2及びH2Sを吸収した吸収液は、熱交換の後の再生塔の塔頂部より導入されるCO2及びH2Sを吸収した吸収液の温度と同等又は同等以上であることを特徴とするCO2及びH2Sを含むガスの回収方法。
PCT/JP2011/071696 2010-11-24 2011-09-22 Co2及びh2sを含むガスの回収システム及び方法 WO2012070304A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2011333125A AU2011333125B2 (en) 2010-11-24 2011-09-22 System and method for recovering gas containing C02 and H2S
US13/989,171 US9399190B2 (en) 2010-11-24 2011-09-22 System and method for recovering gas containing CO2 and H2S
CN201180052453.3A CN103189124B (zh) 2010-11-24 2011-09-22 含co2及h2s气体的回收系统及方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-261840 2010-11-24
JP2010261840A JP5591075B2 (ja) 2010-11-24 2010-11-24 Co2及びh2sを含むガスの回収システム及び方法

Publications (1)

Publication Number Publication Date
WO2012070304A1 true WO2012070304A1 (ja) 2012-05-31

Family

ID=46145662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071696 WO2012070304A1 (ja) 2010-11-24 2011-09-22 Co2及びh2sを含むガスの回収システム及び方法

Country Status (5)

Country Link
US (1) US9399190B2 (ja)
JP (1) JP5591075B2 (ja)
CN (1) CN103189124B (ja)
AU (1) AU2011333125B2 (ja)
WO (1) WO2012070304A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140369913A1 (en) * 2012-04-24 2014-12-18 Ihi Corporation Method of recovering carbon dioxide and recovery apparatus
CN104936678A (zh) * 2013-02-21 2015-09-23 三菱重工业株式会社 含co2及h2s的气体的回收系统及回收方法
US20160001223A1 (en) * 2013-04-26 2016-01-07 Ihi Corporation Recovery method and recovery apparatus of carbon dioxide

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5692761B2 (ja) 2010-02-17 2015-04-01 フルーア・テクノロジーズ・コーポレイション 超低硫黄ガスの生成における高圧酸性ガス除去の構成および方法
WO2014066539A1 (en) 2012-10-24 2014-05-01 Fluor Technologies Corporation Integration methods of gas processing plant and nitrogen rejection unit for high nitrogen feed gases
JP5995746B2 (ja) * 2013-02-21 2016-09-21 三菱重工業株式会社 Co2及びh2sを含むガスの回収システム及び方法
US10000713B2 (en) 2013-12-12 2018-06-19 Fluor Technologies Corporation Configurations and methods of flexible CO2 removal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940789B1 (ja) * 1969-08-20 1974-11-05
JPS5684617A (en) * 1979-11-17 1981-07-10 Metallgesellschaft Ag Method and device for regenerating absorbent

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3563695A (en) * 1968-03-22 1971-02-16 Field And Epes Separation of co2 and h2s from gas mixtures
JPS4940789Y1 (ja) * 1968-12-28 1974-11-08
US3563696A (en) * 1969-06-17 1971-02-16 Field And Epes Separation of co2 and h2s from gas mixtures
JPS4940789A (ja) 1972-08-21 1974-04-16
DE3408851A1 (de) 1984-03-10 1985-09-12 Basf Ag, 6700 Ludwigshafen Verfahren zum entfernen von co(pfeil abwaerts)2(pfeil abwaerts) und/oder h(pfeil abwaerts)2(pfeil abwaerts)s aus gasen
DE4027239A1 (de) 1990-08-29 1992-03-05 Linde Ag Verfahren zur selektiven entfernung anorganischer und/oder organischer schwefelverbindungen
JP2824387B2 (ja) 1994-03-18 1998-11-11 関西電力株式会社 ガス中の硫化水素と二酸化炭素を除去する方法
JPH0940789A (ja) * 1995-07-28 1997-02-10 Bridgestone Corp 繊維複合材料及びそれを用いた空気入りタイヤ並びにベルト
DE19753903C2 (de) * 1997-12-05 2002-04-25 Krupp Uhde Gmbh Verfahren zur Entfernung von CO¶2¶ und Schwefelverbindungen aus technischen Gasen, insbesondere aus Erdgas und Roh-Synthesegas
US8435325B2 (en) 2008-10-23 2013-05-07 Hitachi, Ltd. Method and device for removing CO2 and H2S
CN101874967B (zh) * 2009-12-18 2012-07-04 中国五环工程有限公司 采用低温甲醇溶液脱除酸性气体的工艺方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940789B1 (ja) * 1969-08-20 1974-11-05
JPS5684617A (en) * 1979-11-17 1981-07-10 Metallgesellschaft Ag Method and device for regenerating absorbent

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140369913A1 (en) * 2012-04-24 2014-12-18 Ihi Corporation Method of recovering carbon dioxide and recovery apparatus
US9545601B2 (en) * 2012-04-24 2017-01-17 Ihi Corporation Method of recovering carbon dioxide and recovery apparatus
CN104936678A (zh) * 2013-02-21 2015-09-23 三菱重工业株式会社 含co2及h2s的气体的回收系统及回收方法
US9777232B2 (en) 2013-02-21 2017-10-03 Mitsubishi Heavy Industries, Ltd. System and method for recovering gas containing CO2 and H2S
CN104936678B (zh) * 2013-02-21 2018-08-24 三菱重工工程株式会社 含co2及h2s的气体的回收系统及回收方法
US20160001223A1 (en) * 2013-04-26 2016-01-07 Ihi Corporation Recovery method and recovery apparatus of carbon dioxide

Also Published As

Publication number Publication date
AU2011333125A1 (en) 2013-07-11
US9399190B2 (en) 2016-07-26
CN103189124A (zh) 2013-07-03
US20130247755A1 (en) 2013-09-26
JP5591075B2 (ja) 2014-09-17
AU2011333125B2 (en) 2015-04-30
JP2012110835A (ja) 2012-06-14
CN103189124B (zh) 2015-05-13

Similar Documents

Publication Publication Date Title
JP5495520B2 (ja) 排ガス中の二酸化炭素回収装置
WO2012070304A1 (ja) Co2及びh2sを含むガスの回収システム及び方法
JP5875245B2 (ja) Co2回収システム及びco2ガス含有水分の回収方法
AU2012201513B2 (en) CO2 recovery apparatus
EP2722097B1 (en) Combustion exhaust gas treatment system and combustion exhaust gas treatment method
JP5995746B2 (ja) Co2及びh2sを含むガスの回収システム及び方法
JP2005254212A (ja) Co2回収装置及び方法
TW201315529A (zh) 在吸收與解吸方法中之熱回收
WO2014129255A1 (ja) Co2及びh2sを含むガスの回収システム及び方法
JP2013059727A (ja) Co2回収装置およびco2回収方法
WO2014098154A1 (ja) 二酸化炭素の回収装置、及び該回収装置の運転方法
JP5591083B2 (ja) Co2回収システム
WO2012073552A1 (ja) Co2回収システム
JP2011062700A (ja) Co2回収装置及び方法
JP5595243B2 (ja) Co2及びh2sを含むガスの回収システム及び方法
KR101583461B1 (ko) 흡수제 중간 냉각을 이용한 에너지 절감형 산성기체 포집 시스템 및 방법
Yonekawa et al. CO 2 recovery apparatus
JP2013039573A (ja) Co2回収装置及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843401

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13989171

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011333125

Country of ref document: AU

Date of ref document: 20110922

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11843401

Country of ref document: EP

Kind code of ref document: A1