WO2012067463A2 - 전극형성용 은 페이스트 조성물 및 이를 이용한 실리콘 태양전지 - Google Patents

전극형성용 은 페이스트 조성물 및 이를 이용한 실리콘 태양전지 Download PDF

Info

Publication number
WO2012067463A2
WO2012067463A2 PCT/KR2011/008843 KR2011008843W WO2012067463A2 WO 2012067463 A2 WO2012067463 A2 WO 2012067463A2 KR 2011008843 W KR2011008843 W KR 2011008843W WO 2012067463 A2 WO2012067463 A2 WO 2012067463A2
Authority
WO
WIPO (PCT)
Prior art keywords
paste composition
silver paste
electrode
silver
average particle
Prior art date
Application number
PCT/KR2011/008843
Other languages
English (en)
French (fr)
Other versions
WO2012067463A3 (ko
Inventor
이수희
허수연
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201180055844.0A priority Critical patent/CN103222011B/zh
Priority to US13/885,988 priority patent/US9640298B2/en
Publication of WO2012067463A2 publication Critical patent/WO2012067463A2/ko
Publication of WO2012067463A3 publication Critical patent/WO2012067463A3/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • B22F1/0003
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a silver paste composition for forming an electrode and a silicon solar cell using the same. More particularly, the electrical characteristics of the solar cell are improved by stably making contact between the front electrode and the emitter of the solar cell and realizing a high aspect ratio.
  • the present invention relates to a silver paste composition for forming an electrode and a silicon solar cell using the same.
  • the metal paste generally used includes a conductive metal, a glass frit, and an organic binder. Silver, aluminum, and the like are used as the conductive metal, and silver is mainly used.
  • conductive metal pastes are mainly used for mounting hybrid ICs and semiconductor ICs and various capacitors and electrodes, and are widely used in advanced electronic products such as PCBs, ELs, touch panels, RFID, LCDs, PDPs, and solar cells. As the related industries expand and develop, the demand also increases.
  • the solar cell uses solar heat to generate the steam needed to rotate the turbine and the characteristics of the semiconductor It is classified as a photovoltaic cell that converts photons into electrical energy, and a solar cell generally refers to a photovoltaic cell (hereinafter referred to as a solar cell).
  • FIG. 1 is a cross-sectional view showing the basic structure of a silicon solar cell.
  • the silicon solar cell includes a substrate 101 made of a p-type silicon semiconductor and an emitter layer 102 made of an n-type silicon semiconductor, and a diode is provided at the interface between the substrate 101 and the emitter layer 102. Similarly, pn junctions are formed.
  • Figure 2 briefly shows the configuration of the front electrode in the solar cell structure.
  • the front electrode of the solar cell is formed Ag on the front surface of the substrate, and includes a conductive aluminum and silver on the back. At this time, the front electrode is not shown in the figure, but is connected to the emitter layer through the anti-reflection film when forming a silicon solar cell.
  • Electrons and electrons generated by the photovoltaic effect are attracted to the n-type silicon semiconductor and the p-type silicon semiconductor, respectively, and the front electrode 103 and the rear electrode 104 bonded to the lower portion of the substrate 101 and the upper portion of the emitter layer 102, respectively. ), The current flows when the electrodes 103 and 104 are connected by wires.
  • the conductive metal paste is used for manufacturing the front electrode or the back electrode in the solar cell, and as described above, is used for manufacturing various electrodes in other electronic products.
  • the front electrode (Ag electrode) of commercially available crystalline silicon solar cell is screen Through the printing process.
  • the line width of the front electrode formed on the front surface of the silicon substrate should be finer and the height should be higher.
  • An object of the present invention is to make stable contact between the front electrode and the emitter of the solar cell during heat treatment, and to improve the printability of the electrode can realize the fine line width and high aspect ratio of the electrical characteristics by improving the light conversion conversion efficiency of the solar cell To provide a silver paste composition for forming an electrode and a silicon solar cell using the same.
  • the present invention is a silver paste composition of about 90,000 to 500,000 cP (Brookfield viscometer, spindle 14, measuring temperature 25 ° C) containing silver powder, glass frit powder, organic binder and carbon black,
  • the carbon black has an average particle diameter of about 0.1 kPa to 0.5 / m, a specific surface area of about 100 to 200 mVg, and about 1 to about the entire silver paste composition.
  • the silver powder preferably comprises a spherical silver powder having an average particle diameter of about 1 to 3 and a flake silver powder having an average particle diameter of about 1 to 3 mm 3.
  • the content of the spherical silver powder having an average particle diameter of about 1 to 3 / zm may be about 70 to 85 wt% based on the total silver paste composition. Also above The content of silver powder in the form of flakes having an average particle diameter of about 1/3 may be about 1 to 5% by weight based on the total silver paste composition.
  • the present invention can provide a solar cell front electrode formed using the silver paste composition.
  • the light conversion conversion efficiency of the crystalline silicon solar cell consisting of the electrode may be about 17 to 18%.
  • a silicon semiconductor substrate In addition, according to the present invention, a silicon semiconductor substrate;
  • the front electrode provides a silicon solar cell formed by applying and firing the silver paste composition in a predetermined pattern on the anti-reflection film.
  • the silver paste composition for forming an electrode of the present invention carbon black having specific parameter properties is added, so that a stable fire-through occurs when the front electrode heat-treats the printed solar cell, thereby improving the fill factor.
  • the carbon black has a high aspect ratio when the pattern is manufactured by screen printing by improving the rheological properties of the paste, thereby improving the electrical properties of the solar cell.
  • FIG. 2 is a schematic view of a solar cell produced using the front electrode-forming silver paste for Joe "Dangerous to the present invention.
  • Example 3 is a graph showing a comparison of the light conversion conversion efficiency of the solar cells of Example 1 and Comparative Example 1 according to the present invention.
  • T.I thixotropic index
  • FIG. 5 is an electron micrograph showing a structure in which the electrode of the solar cell implemented in Example 1 has a narrow line width and a high constitution.
  • Example 6 is an electron micrograph showing an enlarged interface between an electrode and silicon after etching and removing the electrode of the silicon solar cell implemented in Example 1;
  • An object of the present invention is to provide a silver paste composition for forming an electrode and a silicon solar cell using the same.
  • the silver paste having a viscosity of about 90,000 to 500,000 cP (Brookfield viscometer, spindle 14, measuring temperature 25 ° C) including silver powder, glass frit powder, organic binder and carbon black
  • the carbon black has an average particle diameter of about 0.1 to 0.5, a specific surface area of about 100 to 200 mVg, and comprises about 1 to 10% by weight of the total silver paste composition. do.
  • the silver paste composition for forming an electrode of the present invention has an average particle diameter of about
  • the carbon black may have an average particle diameter of about 0.9 mi to 0.4 and a specific surface area of about 120 to 150 mVg.
  • the carbon black is a particle having a primary average particle size of 10 to 50 nm, a specific surface area of 50 to 400 ni7g, preferably a primary average particle size of 20 to 30 nm and a specific surface area of 100 to 50 nm.
  • the particles having a second average particle size of 0.5 to 2 may be formed by coagulating the particles having an irf / g of 200 irf / g, and those formed by grinding the particles may be used.
  • the final obtained silver paste composition includes carbon blocks of fine particles having the above-described size and specific surface area, and thus, when forming a pattern through screen printing, the resulting high paste yields higher light conversion efficiency.
  • the present invention can improve the rheological properties associated with the viscosity and adhesion of the paste. Therefore, in the present invention, a stable fire-through is performed during heat treatment of the front electrode using the silver paste composition to improve the filling coefficient.
  • the pattern when the pattern is manufactured by a screen printing process that is generally performed during electrode manufacturing, the pattern can be easily adjusted to realize a fine line width and a high aspect ratio.
  • the average particle diameter of the carbon black is less than 0.1 ⁇ there is a problem of increasing the viscosity of the paste, there is a problem that when it is more than 0.5 and the other the dispersion of the solid content of the paste composition is reduced, lowering the electrical performance.
  • the specific surface area of the carbon black is less than about 100 mVg
  • the carbon black included in the silver paste composition may satisfy the above-described ranges of the average particle diameter and specific surface area, thereby obtaining a paste having a desired viscosity, thereby realizing high consensus and fine pattern of the final pattern.
  • the average particle diameter of the parameter condition of the carbon black in the final silver paste composition satisfies the range of the present application, there is a problem that the thixotropic property is lowered if the specific surface area is outside the range of the present application.
  • the content of the carbon black in the present invention may be included in about 1 to 10% by weight based on the total silver paste composition, more preferably about 3 to 7% by weight, most preferably about 3 to 4% by weight It is good to be. If the content of the carbon black is less than about 1% by weight, the thixotropic index (T.I) of the paste may be lowered. If the content of the carbon black exceeds 10% by weight, mask clogging may occur during screen printing.
  • T.I thixotropic index
  • the silver powder used in the present invention may be a mixture containing a spherical silver powder having an average particle diameter of about 3 mm 3 and a silver powder in the form of flakes having an average particle diameter of about 1-3.
  • the content of the spherical silver powder having an average particle diameter of about 1 / m to 3 ⁇ is preferably about 70 to 85% by weight based on the total silver paste composition.
  • the content of the silver powder of the flake type (flake type) having an average particle diameter of about 1 to 3 is preferably about 1 to 5% by weight based on the total silver paste composition.
  • the average particle diameter of each silver powder is less than about 1
  • the fire-though does not occur evenly, and if it exceeds about 3 /
  • the viscosity of the paste is lowered and the aspect ratio of the pattern is lowered.
  • the content of the spherical silver powder having an average particle diameter of about 1 to 3 mm is less than about 70 wt%
  • the resistance of the electrode is increased, and when it exceeds about 85 wt%, the flowability between the powders suitable for the printability of the paste is increased. There is a problem of deterioration.
  • the content of the silver powder in the form of flakes having an average particle diameter of about 1/3 is less than about 1% by weight, there is a problem that the contact with the emitter layer is not sufficiently made, about 5 weight 3 ⁇ 4> If it exceeds, there exists a problem that the flowability of the paste suitable for printing falls.
  • the glass frit powder that can be used in the present invention may be used without limitation the glass frit used in the art.
  • glass frit powders may include bismuth-based compounds that do not contain lead.
  • Bi 2 0 3 -B 2 0 3 -Si0 2 type , or Bi 2 0 3 -B 2 0 3 -Zn0 type powder, or the like may be used alone or in combination of two or more kinds, but is not limited thereto. Do not.
  • the content of the glass frit and the organic binder is easy to form the electrode, has a very easy viscosity for screen printing, and if the range can exhibit a suitable aspect ratio by preventing the paste from falling after screen printing,
  • the range is not particularly limited.
  • the content of the glass frit is preferably about 1 to 5% by weight based on the total silver paste composition, more preferably about 2 It is preferably from 3% by weight.
  • the content of the organic binder is preferably about 5 to 15% by weight based on the total silver paste composition, more preferably about 8 to 12% by weight.
  • the silver paste composition of the present invention may further include additional additives without departing from the scope of the present invention.
  • electroconductive metal particle, an antifoamer, a dispersing agent, a plasticizer, etc. can be further added to the composition of this invention as needed.
  • the silver paste composition of the present invention may further include an organic solvent.
  • the silver paste composition of the present invention is not particularly limited in the production method, it can be produced by a method well known in the art.
  • the silver paste composition may be prepared by adding the spherical and flake shaped silver powder, the glass frit powder, the binder, and the carbon black powder simultaneously into a mixer and mixing the same.
  • the carbon black may be mixed first, and then pulverized so that the carbon black has an appropriate average particle size range.
  • the viscosity of the silver paste composition of the present invention obtained by this method may be about 90,000 to 500,000 cP, more preferably about 100,000 to 500000 cP.
  • each said viscosity uses the Brookfield viscometer and means the value measured on the conditions of spindle 14 and the measurement temperature of 25 degreeC .
  • Such front electrodes may be prepared by methods well known in the art, and the method is not particularly limited. Then, the manufacturing method of the front electrode using the silver paste for front electrode formation which concerns on this invention is demonstrated to an example more specifically.
  • the manufacturing method of the front electrode of the present invention may include the step of coating and baking the silver paste composition on a substrate in a predetermined pattern.
  • the substrate may include an anti-reflection film and an emitter layer.
  • the substrate may be a substrate used in manufacturing a conventional semiconductor device, for example, a silicon substrate may be preferably used.
  • the thickness of the silver paste composition coated on the substrate is not particularly limited, but is preferably about 20 to 40 in consideration of stable electrical conductivity.
  • the rheological properties of the silver paste are improved by carbon blocks satisfying specific parameter conditions included in the silver paste composition, thereby solving the problem of narrowing the existing heat treatment condition range to 790 to 820 ° C. Can be. Therefore, according to the present invention, firing may be performed for 30 seconds to 1 minute in a wide range of peak temperature 700 to 900 ° C., preferably 750 to 850 ° C.
  • the carbon black is burned out by firing the substrate, but since the carbon black is effectively used to improve the rheological properties of the silver paste, it is possible to improve the electrical characteristics of the solar cell.
  • the present invention provides a solar cell comprising a front electrode prepared using the silver paste composition.
  • the solar cell may be a silicon solar cell.
  • the present invention is a silicon semiconductor substrate; An emitter layer formed on the substrate; An anti-reflection film formed on the emitter layer; A front electrode penetrating the antireflection film and connected to the emitter layer; And a back electrode connected to a rear surface of the substrate, wherein the front electrode provides a silicon solar cell formed by coating and firing the silver paste composition on the antireflection film in a predetermined pattern.
  • FIG. 2 a silicon solar cell using the silver paste composition of the present invention will be described with reference to FIG. 2 as an example.
  • the embodiments described in the specification and the drawings shown below are only the most preferred embodiment of the present invention and represent all of the technical idea of the present invention Therefore, it should be understood that there may be various equivalents and modifications that can substitute for them at the time of the present application.
  • FIG. 2 is a schematic view of a solar cell produced using the silver paste composition for forming a front electrode of the present invention.
  • the silicon solar cell according to the present invention includes a silicon semiconductor substrate 201, an emitter layer (not shown) formed on the substrate 201, and an antireflection film 202 formed on the emitter layer. And a front electrode 203 which penetrates the antireflection film 202 and is connected to the upper surface of the emitter layer, and a rear electrode 205 which is connected to the rear surface of the substrate 201.
  • a back surface field (BSF) layer 204 which is a p + layer, may be formed between the back electrode and the substrate and, in the case of the back electrode, includes a Ag pattern 206 having a predetermined pattern.
  • the substrate 201 may be doped with impurities such as group III elements B, Ga, In, etc.
  • the antireflective film 202 immobilizes defects (eg, dangling bonds) present in the surface or bulk of the emitter layer and reduces the reflectance of sunlight incident on the front surface of the substrate 201. Immobilization of defects in the emitter layer eliminates the recombination sites of minority carriers and increases the open voltage of the solar cell. When the reflectance of the solar light is reduced, the amount of light reaching the p-n junction is increased to increase the short circuit current of the solar cell. As such, when the open circuit voltage and the short circuit current of the solar cell are increased by the anti-reflection film 202, the conversion efficiency of the solar cell is improved by that much.
  • defects eg, dangling bonds
  • the anti-reflection film 202 is any one selected from the group consisting of a silicon nitride film, a silicon nitride film containing hydrogen (SiNx), a silicon oxide film, a silicon oxynitride film, MgF 2 , ZnS, MgF 2 , Ti0 2 and Ce0 2 , for example. It may have a single film or a multi-film structure in which two or more material films are combined, but is not limited thereto. It is not.
  • the anti-reflection film 202 may be formed by vacuum deposition, chemical vapor deposition, spin coating, screen printing, or spray coating. However, the method of forming the anti-reflection film 202 according to the present invention is not limited thereto.
  • the front electrode 203 and the back electrode 205 are metal electrodes made of silver and aluminum, respectively.
  • the front electrode 203 can be made using the silver paste composition of the present invention and the back electrode 205 is made using a conventional aluminum paste composition.
  • the silver electrode is excellent in electrical conductivity, and the aluminum electrode is not only excellent in electrical conductivity, but also has an excellent affinity with the substrate 201 made of a silicon semiconductor, which has the advantage of good bonding.
  • the front electrode 203 and the back electrode 205 can be manufactured by various known techniques, but are preferably formed by screen printing. That is, the front electrode 203 is formed by screen printing the silver paste composition of the present invention described above on the front electrode formation point and then performing heat treatment. When the heat treatment is performed, the front electrode penetrates the antireflection film 202 and is connected to the emitter layer 202 by a punch through phenomenon.
  • the back electrode 205 is formed by printing on the back surface of the substrate 201 using heat paste after the aluminum paste for back electrode, in which ordinary aluminum, quartz silica, binder, or the like is added.
  • aluminum an electrode constituent material
  • the back surface of the substrate 201 is formed by heat treatment of the back electrode, aluminum, an electrode constituent material, is diffused through the back surface of the substrate 201 to form a back surface field layer 204 on the interface between the back electrode 205 and the substrate 201. have.
  • carriers may be prevented from moving back to the back of the substrate 201 and recombining. When recombination of the carrier is prevented, the open circuit voltage and the layer realization are increased, thereby improving the conversion efficiency of the solar cell.
  • a back Ag pad 206 which is a back Ag pattern 206, may be formed in a predetermined pattern by a conventional deposition or screen printing method.
  • the printing method for forming the front electrode and the back electrode described above In addition to screen printing, conventional methods such as doctor blade, ink jet printing, and gravure printing can be used.
  • the silver paste composition was prepared by mixing and pulverizing each component with the composition and content shown in Table 1 below (unit: weight%).
  • a silver paste including carbon black coagulated by mixing carbon black with silver powder, glass frit powder, and an organic binder was prepared.
  • the viscosity of the prepared silver paste of Examples 1 to 4 was 250,000 cP, 80,000 cP, 40,000 cP and 150,000 cP, respectively.
  • the silver pastes were pulverized using a 3-mill each to cause the particles in the silver paste to be pulverized evenly.
  • a silver paste including carbon black having an average particle diameter of 0.1 was prepared.
  • the viscosity of the silver paste of the finally obtained Examples 1-4 was 300,000 cP, 90,000 cP 500,000 cP, and 200,000 cP, respectively.
  • the silver powder is a mixture of 80% by weight of the spherical silver powder having an average particle diameter of 1 to 3 and 2% by weight of the silver powder of the flake form having an average particle diameter of 2, and the glass frit contains bismuth oxide.
  • Bi 2 0 3 -3 ⁇ 40 3 -Si0 2 with an average particle diameter of 10 / zm was used, and the organic binder was ethyl salose.
  • the carbon black in each Example used the particle
  • the silver paste composition was prepared by simply mixing each component with the composition and content of Table 1 below (unit: weight%).
  • Comparative Example 1 no carbon black was used, and Comparative Examples 2 and 3 used carbon black in an amount of 12 wt% and 0.5 wt%, respectively.
  • Comparative Example 4 an average particle diameter of 20 nm and a specific surface area of 70 mVg were used.
  • Comparative Example 5 an average particle diameter of 30 nm and a specific surface area of 200 mVg were used.
  • Comparative Example 6 instead of carbon black, an average particle diameter of 3 and a specific surface area of .20 mVg were used.
  • Comparative Example 7 carbon black having an average particle diameter of 0.3 and a specific surface area of 220 mVg was used.
  • Comparative Example 8 carbon black having an average particle diameter of 1 m and a specific surface area of 200 mVg was used.
  • the viscosity of the silver paste composition of Comparative Examples 1-5 showed -270,000 cP, 600,000 cP, 100,000 cP, 200,000 cP, 350,000 cP, respectively.
  • Carbon black average particle size 20nm, specific surface area 70mVg
  • Carbon black average particle diameter 30nm, specific surface area 200mVg
  • Carbon Black Average particle size 1 / m and specific surface area 200mVg
  • Examples 1 to 4 of the present invention by using a silver paste containing a carbon block of the fine particles, it was possible to achieve a high aspect ratio when manufacturing the pattern by screen printing. Therefore, Examples 1 to 4 showed overall excellent battery characteristics compared to Comparative Examples 1 to 8, in particular, it was confirmed that the light conversion conversion efficiency is better. On the other hand, when the carbon black of the present invention is not used or by a pendulum as in Comparative Examples 1 and 6, it can be seen that the battery efficiency is lowered and the filling factor value is also lowered.
  • Figure 3 is a graph showing the comparison of the optical conversion conversion efficiency of the solar cell of ⁇ Example 1 and Comparative Example 1 according to the present invention.
  • Example 1 of the present invention not only implements a fine line width but also has excellent ohmic contact (ohmic contact) as the FF value is improved, the energy conversion efficiency is superior to the solar cell of Comparative Example 1 It was.
  • Example 1 the viscosity at lrpm and lOrpm were analyzed by a viscometer to measure the thixotropic index (T.I.), and the results are shown in FIG. 4.
  • Example 1 has rheological properties capable of confirming a pattern having a higher aspect ratio without line spread in screen printing than Comparative Example 1.
  • FIG. 5 shows an electron micrograph showing a structure in which the electrode of the solar cell of Example 1 has a narrow line width and high consensus. 5, it can be seen that the electrode implemented according to the present invention implements a fine line width and exhibits a high aspect ratio.
  • FIG. 6 is an electron micrograph showing an enlarged interface between the electrode and the silicon substrate after etching the electrode of the silicon solar cell implemented in Example 1. 6, the electrode of Example 1 is uniformly formed with the light emitting layer of the substrate. It can be seen that Ag is stably recrystallized by ohmic-contact. That is, FIG. 6 is an electron micrograph showing a state in which Ag is formed in the emitter layer in the electrode of the solar cell of Example 1 to form a stable ohmic-contact.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)

Abstract

본 발명은 전극형성용 은 페이스트 조성물 및 이를 이용한 실리콘 태양전지에 관한 것으로, 보다 상세하게는 특정 파라미터 특성을 갖는 카본블랙을 포함하여 페이스트의 유변학적 특성 개선으로 인쇄성을 향상시키고 이에 따라 높은 종횡비를 나타내어 전기적 특성을 향상시키는 전극형성용 은 페이스트 조성물 및 이를 이용한 실리콘 태양전지에 관한 것이다.

Description

【명세세
【발명의 명칭】
전극형성용 은 페이스트 조성물 및 이를 이용한 실리콘 태양전지 【기술분야】
본 발명은 전극형성용 은 페이스트 조성물 및 이를 이용한 실리콘 태양전지에 관한 것으로, 더욱 상세하게는 전면전극과 태양전지의 에미터간의 접촉을 안정적으로 이루어지게 하고 높은 종횡비를 구현하여 태양전지의 전기적 특성을 향상시킬 수 있는 전극형성용 은 페이스트 조성물 및 이를 이용한 실리콘 태양전지에 관한 것이다.
【발명의 배경이 되는 기술】
최근 전자 산업이 발달함에 따라 전자제품 및 소자의 소형화 및 높은 신뢰성을 요구되고 있으며, 높은 집적도를 요구하는 현재 전자제품의 회로 패턴이나 전극 형성을 위해 다양한 방법들이 시도되고 있다. 그 중에서 도전성 금속 페이스트를 사용하는 것이 공정 중 부산물이나 오염물질의 생성이 적어 관심의 대상이 되고 있다.
일반적으로 사용되는 금속 페이스트는 도전성 금속, 유리 프릿, 유기 바인더를 포함하여 이루어지며, 도전성 금속으로는 은, 알루미늄 등이 사용되고, 그 중에서 은이 주로 사용된다. 현재 도전성 금속 페이스트가 주로 사용되는 제품으로는 하이브리드 IC, 반도체 IC의 실장이나 각종 콘덴서 및 전극 등이 있으며, 최근 PCB, EL, 터치패널, RFID, LCD, PDP, 태양전지 등의 첨단 전자제품에도 널리 사용되는 등, 관련 산업이 확대 발전됨에 따라 그 수요도 더욱 증가하고 있는 실정이다.
일 예로 태양전지의 경우에는 최근 석유나 석탄과 같은 기존 에너지 자원의 고갈이 예측되면서 이들을 대체할 대체 에너지에 대한 관심이 높아지고 있으며, 그 중에서도 태양전지는 에너지 자원이 풍부하고 환경오염에 대한 문제점이 없어 특히 주목 받고 있다.
태양전지에는 태양열을 이용하여 터빈을 회전시키는데 필요한 증기를 발생시키는 태양열 전지와, 반도체의 성질을 이용하여 태양빛 (photons)을 전기에너지로 변환시키는 태양광 전지로 분류되는데, 태양전지라고 하면 일반적으로 태양광 전지 (이하 태양전지라 한다)를 일컫는다.
태양전지는 원료 물질에 따라 크게 실리콘 태양전지 (silicon solar cell), 화합물 반도체 태양전지 (compound semiconductor solar cell) 및 적층형 태양전지 (tandem solar cell)로 구분된다. 이러한 3가지 종류의 태양전지 중 태양전지 시장에서는 실리콘 태양전지가 주류를 이루고 있다. 도 1은 실리콘 태양전지의 기본적인 구조를 보여주는 단면도이다. 도면을 참조하면, 실리콘 태양전지는 p형의 실리콘 반도체로 이루어진 기판 (101)과 n형 실리콘 반도체로 이루어진 에미터층 (102)을 포함하고, 기판 (101)과 에미터층 (102)의 계면에는 다이오드와 유사하게 p-n 접합이 형성되어 있다. 또한 도 2는 태양전지 구조에서 전면 전극의 구성을 간략히 도시한 것이다. 도 2에서와 같이, 태양전지의 전면 전극은 기판의 전면에 Ag가 형성되고, 후면에 도전성 알루미늄과 은을 포함한다. 이때, 전면전극은 도면에 미도시하였지만, 실리콘태양전지 형성시 반사 방지막을 관통하여 상기 에미터층에 접속된다.
위와 같은 구조를 갖는 태양전지에 태양광이 입사되면, 광기전력효과 (photovoltaic effect)에 의해 불순물이 도핑된 실리콘 반도체에서 전자와 정공이 발생한다. 참고로, n형 실리콘 반도체로 이루어진 에미터층 (102)에서는 전자가 다수 캐리어로 발생되고, p형 실리콘 반도체로 이루어진 기판 (101)에서는 정공이 다수 캐리어로 발생된다. 광기전력효과에 의해 발생된 전자와 전공은 각각 n형 실리콘 반도체 및 p형 실리콘 반도체 쪽으로 끌어 당겨져 각각 기판 (101) 하부 및 에미터층 (102) 상부와 접합된 전면전극 (103) 및 후면전극 (104)으로 이동하며, 이 전극 (103, 104)들을 전선으로 연결하면 전류가 흐르게 된다.
도전성 금속 페이스트는 태양전지에서 전면전극 또는 후면전극의 제조를 위해 사용되며, 전술한 바와 같이 기타 다른 전자 제품에서 각종 전극을 제조하기 위해 사용된다.
상용화된 결정형 실리콘 태양전지의 전면 전극 (Ag 전극)은 스크린 인쇄 공정을 통해 이루어진다. 전기변환 효율을 높이기 위해서는 실리콘 기판 전면에 형성되는 전면 전극의 선폭이 더욱 미세하면서 선고 (height)가 높아져야 한다.
그러나 종래 일반적인 은 페이스트를 이용한 경우 기판에 스크린 인쇄한 후 소성시 미세 선폭의 구현이 어렵다. 또한, 페이스트의 스크린 인쇄후 기판을 소성하는 과정에서 전면 전극과 태양전지의 에미터 간의 접촉 (contact)을 안정적으로 이를 수 없어서, 그 .열처리 범위가 협소한 문제가 있다. 【발명의 내용】
【해결하고자 하는 과제】
본 발명의 목적은 열처리시 전면 전극과 태양전지의 에미터간의 접촉이 안정적으로 이루어지게 하고, 인쇄성 향상으로 전극의 미세 선폭과 높은 종횡비를 구현할 수 있어서 태양전지의 광전환 변환 효율 향상으로 전기적 특성을 개선하는 전극형성용 은 페이스트 조성물 및 이를 이용한 실리콘 태양전지를 제공하는 것이다.
【과제의 해결 수단】
본 발명은 은 분말, 글래스 프릿 분말, 유기 바인더 및 카본블랙을 포함하는 점도 약 90,000 내지 500,000 cP (브룩필드 점도계, 스핀들 14, 측정온도 25 °C)의 은 페이스트 조성물이며,
상기 카본블랙은 평균 입경이 약 0.1卿 내지 0.5/m이고 비표면적이 약 100 내지 200 mVg이며, 전체 은 페이스트 조성물에 대하여 약 1 내지
10 중량 %로 포함하는 것인 전극 형성용 은 페이스트 조성물을 제공한다. 본 발명에 있어서, 상기 은 분말은 평균입경이 약 1 내지 3 인 구형의 은 분말과 평균입경이 약 1 내지 3 卿인 플레이크 형태의 은 분말을 포함하는 것이 바람직하다.
상기 평균입경이 약 1 내지 3 /zm인 구형의 은 분말의 함량은 전체 은 페이스트 조성물에 대하여 약 70 내지 85 중량 %일 수 있다. 또한 상기 평균입경이 약 1/ 내지 3 인 플레이크 형태의 은 분말의 함량은 전체 은 페이스트 조성물에 대하여 약 1 내지 5 중량 %일 수 있다.
또한 본 발명은 상기 은 페이스트 조성물을 이용하여 형성되는 태양전지용 전면 전극을 제공할 수 있다.
상기 전극으로 이루어진 결정형 실리콘 태양전지의 광전환 변환효율이 약 17 내지 18%일 수 있다.
또한 본 발명에 따르면, 실리콘 반도체 기판;
실리콘 반도체 기판;
상기 기판 상부에 형성되는 에미터층;
상기 에미터층 상에 형성된 반사방지막;
상기 반사방지막을 관통하여 상기 에미터층에 접속된 전면 전극; 및 상기 기판의 배면에 접속되며 알루미늄층이 형성된 후면 전극을 포함하는 실리콘 태양전지이며 ,
상기 전면 전극은 상기 은 페이스트 조성물을 상기 반사 방지막 상에 소정의 패턴으로 도포하고 소성시켜 형성된 것인 실리콘 태양전지를 제공한다.
【발명의 효과】
본 발명의 전극 형성용 은 페이스트 조성물은 특정 파라미터 물성을 갖는 카본블랙이 첨가됨으로써 전면 전극이 인쇄된 태양전지를 열처리할 때 안정적인 fire-through가 일어나 층진 계수 (fill factor)가 향상된다. 또한 상기 카본 블랙은 페이스트의 유변학적 특성을 개선시켜 스크린 인쇄로 패턴을 제조할 때 높은 종횡비 (high aspect ratio)를 구현할 수 있어서 태양전지의 전기적 특성을 향상시키는 효과가 있다.
【도면의 간단한 설명】
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술된 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 종래 기술에 따른 실리콘 태양전지의 개략적인 구조를 도시한 단면도이다.
도 2는 본 발명의 전면 전극 형성용 은 페이스트 조'성물을 이용하여 제조되는 태양전지의 개략도이다.
도 3은 본 발명에 따른 실시예 1 및 비교예 1의 태양전지의 광전환 변환 효율을 비교하여 나타내는 그래프이다.
도 4는 본 발명에 따른 실시예 1 및 비교예 1의 페이스트에 대하여 lrpm과 lOrpm에서의 점도를 측정한 후의 요변 지수 (Thixotropic Index, T.I) 결과를 나타낸 그래프이다.
도 5는 실시예 1에서 구현된 태양전지의 전극이 좁은 선폭 및 높은 선고를 이루고 있는 구조를 보여주는 전자현미경 사진이다.
도 6은 실시예 1에서 구현된 실리콘 태양전지의 전극을 에칭하여 제거한 후 전극과 실리콘의 계면을 확대하여 나타낸 전자 현미경 사진이다.
【발명을 실시하기 위한 구체적인 내용】
이하에서 본 발명을 더욱 상세하게 설명한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 본 발명은 전면 전극 형성시 사용하는 은 페이스트 조성물에 있어서, 특정 파라미터 특성을 갖는 카본블랙을 특정량 포함시킴으로써 열처리시 안정성을 부여하고, 또한 인쇄성 향상으로 미세 패턴 형성이 용이하여 높은 종횡비를 구현하여 전기적 특성을 향상시키는 전극 형성용 은 페이스트 조성물 및 이를 이용한 실리콘 태양전지를 제공하고자 한다.
이러한 본 발명의 바람직한 구현예에 따르면, 은 분말, 글래스 프릿 분말, 유기 바인더 및 카본블랙을 포함하는 점도 약 90,000 내지 500,000 cP (브룩필드 점도계, 스핀들 14, 측정온도 25 °C)의 은 페이스트 조성물이며, 상기 카본블랙은 평균입경이 약 0.1 내지 0.5 이고 비표면적이 약 100 내지 200 mVg이며, 전체 은 페이스트 조성물에 대하여 약 1 내지 10 중량 %로 포함하는 것인 전극 형성용 은 페이스트 조성물이 제공된다.
즉 본 발명의 전극 형성용 은 페이스트 조성물은 평균입경이 약
0.1 내지 0.5zm이고 비표면적이 약 100 내지 200 m7g인, 특정 범위의 평균입경과 비표면적의 파라미터 조건을 모두 만족하는 카본블랙을 포함하는 것을 특징으로 한다. 보다 바람직하게, 상기 카본블랙은 평균입경이 약 0. mi 내지 0.4 이고, 비표면적이 약 120 내지 150 mVg 일 수 있다.
이때, 상기 카본블랙은 1차 평균입경 (primary average particle size)이 10 내지 50 nm이고, 비표면적이 50 내지 400 ni7g인 입자, 바람직하게 1차 평균입경이 20 내지 30 nm이고 비표면적이 100 내지 200 irf/g인 입자들을 웅집하여 2차 평균입경 (secondary average particle size)이 0.5 내지 2 인 입자를 형성하고, 이를 분쇄하여 형성된 것을 사용할 수 있다.
따라서, 최종 얻어진 은 페이스트 조성물은 상술한 크기와 비표면적을 갖는 미립자의 카본블택을 포함하므로 , 이를 이용하여 스크린 인쇄를 통해 패턴을 형성할 경우, 기존에 비해 높은 선고를 나타내어 광전환변환효율을 향상시킬 수 있다. 특히, 본 발명은 페이스트의 점성 및 접착력과 관련된 유변학적 특성을 향상시킬 수 있다 . 그러므로, 본 발명의 경우 은 페이스트 조성물을 이용한 전면 전극의 열처리시 안정적인 소성 (fire-through)을 행하여 충진계수를 향상시킨다. 또한 일반적으로 전극 제조시 행하는 스크린 인쇄 공정으로 패턴을 제조할 때, 패턴 조절이 용이하여 미세 선폭을 실현할 수 있고, 또한 높은 종횡비를 구현할 수 있다. 이때 상기 카본블랙의 평균입경이 0.1卿 미만이면 페이스트의 점도를 상승시키는 문제가 있고, 0.5 를 초과하면 페이스트의 다른 고형분의 조성물과의 분산이 저하되어 전기적 성능을' 저하시키는 문제가 있다. 또한 상기 카본블랙의 비표면적이 약 lOOmVg 미만이면 분산 공정에서 층분히 유기 비히클과 흔합되지 못하는 문제가 있고, 약
200mVg를 초과하면 페이스트의 점도가 상승하는 문제가 있다. 그러므로, 은 페이스트 조성물 중에 포함되는 카본블랙은 상술한 평균입경과 비표면적의 범위를 모두 만족해야만, 원하는 점도를 갖는 페이스트를 얻을 수 있고, 이에 따라 최종 패턴의 높은 선고와 미세 패턴을 구현할 수 있다. 다시 말해, 최종 은 페이스트 조성물에서 상기 카본블랙의 파라미터 조건 중 평균입경이 본원의 범위를 만족하더라도 비표면적이 본원의 범위를 벗어나면 요변 (thixotropic) 성질이 저하되는 문제가 있다. 또한, 최종 은 페이스트 조성물에서 카본블랙의 비표면적이 본원의 범위를 만족하여도 평균입경이 본원의 범위를 벗어나면 페이스트 조성물의 균일한 분산이 저하되는 문제를 초래할 수 있다.
또한 본 발명에서 상기 카본블랙의 함량은 전체 은 페이스트 조성물에 대하여 약 1 내지 10 중량 %로 포함될 수 있으며, 보다 바람직하게는 약 3 내지 7 중량 %, 가장 비ᅵ람직하게는 약 3 내지 4 중량 %인 것이 좋다. 상기 카본 블랙의 함량이 약 1 중량 % 미만이면 페이스트의 요변 지수 (thixotropic index, T. I)가 낮아지는 문제가 있고, 약 10 중량 %를 초과하면 스크린 인쇄시 마스크 막힘이 일어나는 문제가 있다.
또한 본 발명의 은 페이스트 조성물에 있어서, 열처리 과정에서 fire-through가 .안정적으로 일어나면서 최종 소결이 균일하게 이루어지는 조건을 고려하여, 상기 은 분말의 입자 크기와 형태를 특정범위로 조절한 흔합물을 사용하는 것이 바람직하다. 따라서, 본 발명에서 사용하는 은 분말은 평균입경 약 내지 3 卿인 구형의 은 분말과 평균입경 약 1 내지 3 인 플레이크 (flake) 형태의 은 분말을 포함하는 흔합물을 사용할 수 있다. 또한 상기 평균입경 약 1/m 내지 3 卿인 구형의 은 분말의 함량은 전체 은 페이스트 조성물에 대하여 약 70 내지 85 중량 %인 것이 바람직하다. 또한 상기 평균입경 약 1 내지 3 인 플레이크 형태 (flake type)의 은 분말의 함량은 전체 은 페이스트 조성물에 대하여 약 1 내지 5 중량 %인 것이 바람직하다.
상기 은 분말에 있어서, 각 은 분말의 평균입경이 약 1 미만이면 fire-though가 층분히 일어나지 못하는 문제가 있고, 약 3 / 를 초과하면 페이스트의 점도가 낮아져 패턴의 종횡비가 낮아지는 문제가 있다. 또한 상기 평균입경 약 1 내지 3 卿인 구형의 은 분말의 함량이 약 70 중량 % 미만이면 전극의 저항이 상승하는 문제가 있고, 약 85 중량 %를 초과하면 페이스트의 인쇄성에 적합한 분말 간의 흐름성이 나빠지는 문제가 있다. 상기 평균입경 약 1/ 내지 3 인 플레이크 형태의 은 분말의 함량이 약 1 중량 % 미만이면 에미터 (emitter)층과의 접촉 (contact)이 충분히 이루어지지 못하는 문제가 있고, 약 5 중량 ¾>를 초과하면 인쇄에 적합한 페이스트의 흐름성이 저하되는 문제가 있다.
또한 본 발명에서 사용될 수 있는 글래스 프릿 분말은 당분야에서 사용되는 글래스 프릿이 제한 없이 사용될 수 있다. 이러한 글래스 프릿 분말의 예를 들면, 납이 포함되지 않는 비스무스 계열의 화합물을 포함할 수 있다. 구체적으로는 Bi203-B203-Si02계, 또는 Bi203-B203-Zn0계 분말 등이 각각 단독으로 또는 2종 이상 흔합되어 사용될 수 있으나, 이에 한정되지는 않는다.
상기 유기 바인더는 은 분말, 글래스 프릿 및 카본블랙을 흔합하여 페이스트 상으로 제조하기 위해 사용하며, 본 발명에서 사용되는 유기 바인더는 페이스트 조성물을 제조하기 위해 당분야에서 사용되는 유기 바인더라면 제한없이 사용될 수 있다. 예를 들면, 상기 유기 바인더는 샐를로오스 수지, 아크릴계 수지, 부틸카르비를 및 터피네을로 이루어진 군에서 선택된 어느 하나 또는 2종 이상의 흔합물을 사용할 수 있으나, 이에 한정되는 것은 아니며, 바람직하게 에틸 셀를로오스 또는 아크릴레이트 계열의 폴리머 수지를 사용할 수 있다.
또한 상기 글래스 프릿과 유기바인더의 함량은 전극 형성이 용이하고, 스크린 프린팅에 매우 용이한 점도를 가지며, 스크린 프린팅 후 페이스트가 홀러내리는 것을 방지하여 적합한 종횡비 (Aspect ratio)를 나타낼 수 있는 범위라면, 그 범위가 특별히 한정되지 않는다.
예를 들면, 상기 글래스 프릿의 함량은 전체 은 페이스트 조성물에 대하여 약 1 내지 5 중량 %인 것이 바람직하고, 보다 바람직하게는 약 2 내지 3 중량 %인 것이 좋다.
또한 상기 유기 바인더의 함량은 전체 은 페이스트 조성물에 대하여 약 5 내지 15 중량 %인 것이 바람직하고, 보다 바람직하게는 약 8 내지 12 중량 %인 것이 좋다. '
선택적으로, 본 발명의 은 페이스트 조성물은 본 발명의 범위를 벗어나지 않는 한도 내에서 추가적인 첨가제를 더 포함할 수 있다. 예를 들면 도전성 금속 입자, 소포제, 분산제, 가소제 등을 필요에 따라 본 발명의 조성물에 더 첨가할 수 있다. 또한 본 발명의 상기 은 페이스트 조성물은 유기용매를 더 포함할 수도 있다.
한편, 본 발명의 은 페이스트 조성물은 그 제조방법이 특별히 한정되지 않으며 , 이 분야에 잘 알려진 방법에 의해 제조 가능하다.
바람직한 일례를 들면, 상기 구형 및 플레이크 형태의 은 분말, 글래스 프릿 분말, 바인더 및 카본 블랙 분말을 동시에 흔합기에 넣고 흔합하는 방법을 이용해 은 페이스트 조성물이 제조될 수 있다. 이때, 카본블랙이 적절한 평균 입경 범위를 갖도록 먼저 흔합 후 페이스트를 분쇄하는 공정을 진행할 수 있다.
이러한 방법으로 얻어진 본 발명의 은 페이스트 조성물의 점도는 약 90,000 내지 500,000 cP이고, 보다 바람직하게는 약 100,000 내지 500000 cP 일 수 있다. 또한 상기 각 점도는 브룩필드 점도계를 이용하고, 스핀들 14, 측정온도 25 °C의 조건에서 측정한 값을 의미한다.
한편, 본 발명의 또 다른 구현예에 따르면, 상술한 특정 파라미터를 갖는 카본블택을 포함한 은 페이스트 조성물을 이용한 태양전지용 전면전극이 제공된다.
이러한 전면 전극은 이 분야에 잘 알려진 방법에 의해 제조될 수 있으며, 그 방법이 특별히 한정되지는 않는다. · 그러면, 본 발명에 따른 전면 전극 형성용 은 페이스트를 이용한 전면전극의 제조방법에 대해 일례를 들어 보다 구체적으로 설명한다.
본 발명의 전면 전극의 제조방법은 기판 위에 상기 은 페이스트 조성물을 소정의 패턴으로 코팅하고 소성하는 단계를 포함할 수 있다. 이때, 상기 기판은 반사 방지막과 에미터층을 포함할 수 있다. 또한 상기 기판은 통상의 반도체 소자 제조시 사용되는 기판을 사용할 수 있고, 예를 들어, 실리콘 기판이 바람직하게 사용될 수 있다.
상기 기판에 코팅되는 은 페이스트 조성물의 두께는 특별히 한정되지는 않으나, 안정적인 전기 전도성을 고려하여 약 20 내지 40 인 것이 바람직하다.
또한 상기 기판을 소성하는 경우, 은 페이스트 조성물 중에 포함된 특정 파라미터 조건을 만족하는 카본 블택에 의해, 은 페이스트의 유변학적 특성을 개선하므로 기존 열처리 조건 범위가 790 내지 820°C로 협소했던 문제를 해결할 수 있다. 따라서, 본 발명에 따르면, 피크 은도 (peak temperature) 700 내지 900 °C , 바람직하게 750 내지 850 °C의 넓은 범위에서 30초 내지 1분 동안 소성을 수행할 수 있다. 여기서, 상기 카본블랙은 기판의 소성을 통해 태워져서 (burn-out) 제거되지만, 이것은 상기 은 페이스트의 유변학적 특성 개선에 효과적으로 사용되므로 태양전지의 전기적 특성을 향상시킬 수 있다. 한편, 본 발명은 상기 은 페이스트 조성물을 이용하여 제조된 전면 전극을 포함하는 태양전지를 제공한다. 상기 태양전지는 실리콘 태양전지일 수 있다.
바람직한 구현예에 따르면, 본 발명은 실리콘 반도체 기판; 상기 기판 상부에 형성되는 에미터층; 상기 에미터층 상에 형성된 반사방지막; 상기 반사방지막을 관통하여 상기 에미터층에 접속된 전면 전극; 및 상기 기판의 배면에 접속된 후면 전극을 포함하는 실리콘 태양전지이며, 상기 전면 전극은 상기 은 페이스트 조성물을 상기 반사 방지막 상에 소정의 패턴으로 도포하고 소성시켜 형성되는 실리콘 태양전지를 제공한다.
이하에서는 본 발명의 은 페이스트 조성물을 사용하는 실리콘 태양전지를 일 실시예로서 도 2를 참조하여 설명한다. 그러나, 이하 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 2는 본 발명의 전면 전극 형성용 은 페이스트 조성물을 이용하여 제조되는 태양전지의 개략도이다.
도 2를 참조하면, 본 발명에 따른 실리콘 태양전지는, 실리콘 반도체 기판 (201), 상기 기판 (201)의 상부에 형성되는 에미터층 (미도시), 상기 에미터층 상에 형성된 반사방지막 (202), 상기 반사방지막 (202)을 관통하여 에미터층의 상부 표면과 접속된 전면 전극 (203), 및 상기 기판 (201)의 배면에 접속된 후면 전극 (205)을 포함한다. 또한 상기 후면 전극과 기판 사이에는 p+층인 후면전계 (Back Surface Field, BSF)층 (204)이 형성될 수 있으며, 후면 전극의 ·경우 소정 패턴의 Ag 패턴 (206)을 포함한다. 기판 (201)에는 p형 불순물로서 3족 원소인 B, Ga, In 등이 불순물로 도핑될 수 있고, 에미터층에는 n형 불순물로서 5족 원소인 P, As, Sb 등이 불순물로 도핑될 수 있다. 이처럼 기판 (201)과 에미터층에 반대 도전형의 불순물이 도핑되면 기판 (201)과 에미터층의 계면에는 p-n 접합이 형성된다. 한편 P-n 접합은 기판 (201)에 n형 불순물을 도핑하고 에미터층에 p형 불순물을 도핑하여 형성해도 무방하다.
상기 반사방지막 (202)은 에미터층의 표면 또는 벌크 내에 존재하는 결함 (예컨대, 댕글링 본드)을 부동화하고 기판 (201)의 전면으로 입사되는 태양광의 반사율을 감소시킨다. 에미터층에 존재하는 결함이 부동화되면 소수 캐리어의 재결합 사이트가 제거되어 태양전지의 개방전압이 증가한다. 그리고 태양광의 반사율이 감소되면 p-n 접합까지 도달되는 빛의 량이 증대되어 태양전지의 단락전류가 증가한다. 이처럼 반사방지막 (202)에 의해 태양전지의 개방전압과 단락전류가 증가되면 그 만큼 태양전지의 변환효율이 향상된다.
상기 반사방지막 (202)은 예를 들면 실리콘 질화막, 수소를 포함한 실리콘 질화막 (SiNx), 실리콘 산화막, 실리콘 산화질화막, MgF2, ZnS, MgF2, Ti02 및 Ce02 로 이루어진 군에서 선택된 어느 하나의 단일막 또는 2개 이상의 물질막이 조합된 다중막 구조를 가질 수 있으나, 이에 한정되는 것은 아니다. 그리고 상기 반사방지막 (202)은 진공 증착법, 화학 기상 증착법, 스핀 코팅, 스크린 인쇄 또는 스프레이 코팅에 의해 형성될 수 있다. 하지만 본 발명에 따른 상기 반사방지막 (202)의 형성방법이 이에 한정되는 것은 아니다.
상기 전면 전극 (203)과 후면 전극 (205)은 각각 은과 알루미늄으로 이루어진 금속 전극이다. 상기 전면 전극 (203)는 본 발명의 은 페이스트 조성물을 이용하여 제조될 수 있고 후면 전극 (205)은 통상의 알루미늄 페이스트 조성물을 이용하여 제조된다. 상기 은 전극은 전기 전도성이 우수하고, 알루미늄 전극은 전기 전도성이 우수할 뿐만 아니라 실리콘 반도체로 이루어진 기판 (201)과의 친화력이 우수하여 접합이 잘 되는 장점이 있다.
상기 전면 전극 (203)과 후면 전극 (205)은 공지된 여러 가지 기술에 의해 제조 가능하지만, 바람직하게는 스크린 인쇄법에 의해 형성된 것이다. 즉, 전면 전극 (203)은 상술한 본 발명의 은 페이스트 조성물을 전면 전극 형성 지점에 스크린 인쇄한 후 열처리를 시행하여 형성한다. 열처리가 시행되면 편치 스루 (punch through) 현상에 의해 전면 전극이 반사방지막 (202)을 뚫고 에미터층 (202)과 접속된다.
이와 유사하게, 후면 전극 (205)은 통상의 알루미늄, 석영 실리카, 바인더 등이 첨가된 후면 전극용 알루미늄 페이스트를 이용하여, 기판 (201)의 배면에 인쇄한 후 열처리를 시행하여 형성한다. 후면 전극의 열처리 시에는 전극 구성 물질인 알루미늄이 기판 (201)의 배면을 통해 확산됨으로써 후면 전극 (205)과 기판 (201)의 경계면에 후면 전계 (Back Surface field)층 (204)이 형성될 수 있다. 후면 전계층이 형성되면 캐리어가 기판 (201)의 배면으로 이동하여 재결합되는 것을 방지할 수 있다. 캐리어의 재결합이 방지되면 개방전압과 층실도가 상승하여 태양전지의 변환효율이 향상된다. 또한 상기 알루미늄 페이스트를 이용하여 알루미늄 전극을 형성하는 경우 통상의 증착 또는 스크린 인쇄 방법으로 후면 Ag 패턴 (206)인 후면 은 패드 (Back Ag pad)를 소정의 패턴으로 형성할 수 있다. 이때, 본 발명에서 전면전극 및 후면전극 형성시 인쇄방법은 상술한 스크린 인쇄 법 이외에, 닥터블레이드, 잉크젯 인쇄, 그라비아 인쇄와 같은 통상의 방법을 사용할 수 있다. 이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상세히 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.
<실시예 1내지 4>
하기 표 1의 조성과 함량으로 각 성분을 흔합후 분쇄하는 과정을 통해 은 페이스트 조성물을 제조하였다 (단위: 중량 %).
구체적으로, 각 실시예에서 은 분말, 글래스 프릿 분말 및 유기 바인더에 카본블랙을 흔합하여 웅집된 카본블랙을 포함하는 은 페이스트를 제조하였다. 이때, 제조된 실시예 1 내지 4의 은 페이스트의 점도는 각각 250,000cP, 80,000cP, 40,000cP 및 150,000 cP 였다.
이후, 상기 은 페이스트들을 각각 3-를 밀을 이용하여 분쇄하여 은 페이스트내 입자들이 고르게 분쇄되도록 하였다. 이러한 방법을 통해, 평균입경 0.1 인 카본블랙을 포함하는 은 페이스트를 제조하였다. 최종 얻어진 실시예 1 내지 4의 은 페이스트의 점도는 각각 300,000cP, 90,000cP 500,000cP, 200,000 cP 였다.
또한 각 실시예에서, 은 분말은 평균입경이 1 내지 3 인 구형의 은 분말 80 중량 % 및 평균입경이 2 인 플레이크 형태의 은 분말 2 중량 %의 흔합물을 사용하고, 글래스 프릿은 비스무스 산화물을 포함하는 평균입경 10/zm의 Bi203-¾03-Si02을 사용하였고, 유기바인더는 에틸샐를로오스를 사용하였다. 또한, 각 실시예에서 카본블랙은 비표면적이 100 m7g인 카본블랙의 입자를 사용하였다.
실시예 4에서 사용된 은 분말은 평균입경이 1 내지 3 인 구형의 은 분말 78 중량 % 및 평균입경이 2 / 인 플레이크 형태의 은 분말 5 중량 %의 흔합물을 사용하였다. <비교예 1내지 5>
하기 표 1의 조성과 함량으로 각 성분을 단순 흔합하여 은 페이스트 조성물을 제조하였다 (단위: 중량 %). 또한 비교예 1의 경우 카본블랙을 사용하지 않았으며, 비교예 2 및 3은 카본블랙을 각각 12 증량 % 및 0.5 중량 %로 사용하였다. 또한 비교예 4는 평균입경이 20nm이고 비표면적이 70 mVg 인 것을 사용하였다. 또한 비교예 5는 평균입경이 30nm이고 비표면적이 200mVg 인 것을 사용하였다. 비교예 6은 카본블랙 대신 평균입경이 3 이고 비표면적이 .20mVg 인 혹연을 사용하였다. 비교예 7은 평균입경 0.3 이고 비표면적 220mVg인 카본블랙을 사용하였다. 또한 비교예 8은 평균입경 1 /m이고 비표면적 200mVg 인 카본블랙을 사용하였다. 비교예 1 내지 5의 은 페이스트 조성물의 점도는 각각 · 270,000cP, 600,000cP, 100,000cP, 200,000cP, 350,000 cP를 나타내었다.
[표 1]
Figure imgf000015_0001
3
비교예
80 2 . 14.5 카본블랙 υ 3.5 4
비교예
80 2 14.5 카본블택 2) 3.5 5
비교예
80 2 14.5 흐ᄋ 3.5 6
비교예
80 2 14.5 카본블랙 3) 3.5 7
비교예
80 2 14.5 카본블랙 4) 3.5 8
주)
1) 카본블랙: 평균입경 20nm, 비표면적 70 mVg
2) 카본블랙: 평균입경 30nm이고 비표면적 200mVg
3) 카본블랙: 평균입경 0.3 이고 비표면적 220mVg
4) 카본블랙 : 평균입경 1 /m이고 비표면적 200mVg
<실험예 1>
통상의 방법으로 도 2에 도시된 실리콘 반도체 기판 (201), 상기 기판 (201)의 상부에 형성되는 에미터층, 상기 에미터층 상에 형성된 반사방지막 (202), 상기 반사방지막 (202)을 관통하여 에미터층의 상부 표면과 접속된 전면 전극 (203), 및 상기 기판 (201)의 배면에 접속된 후면 전극 (205)을 포함하는 구조의 실리콘 태양전지를 제조하였다. 이때, 전면전극 형성시 실시예 1 내지 4 및 비교예 1 내지 5의 페이스트를 이용하여 기판 위에 스크린 인쇄 방법으로 도포하고 소성하였다. 상기 소성은 600 내지 800 °C의 온도에서 30초 동안 진행하였다.
이어서, 상기 실시예 1 내지 4 및 비교예 1 내지 5에서 제조된 페이스트를 이용한 실리콘 태양전지에 대하여, 통상적인 방법으로 물성 (Jsc, Voc, 층진계수 (FF), 효율)을 측정하여 그 결과를 표 2에 나타내었다.
[표 2]
Figure imgf000017_0001
표 2의 결과에서 알 수 있듯이, 본 발명의 실시예 1 내지 4는 미립자의 카본블택을 포함한 은 페이스트를 사용함으로써, 스크린 인쇄로 패턴을 제조시 높은 종횡비 (high aspect ratio)를 구현할 수 있었다. 따라서, 실시예 1 내지 4는 비교예 1 내지 8에 비해 전반적으로 우수한 전지특성을 나타내었고 특히 광전환 변환 효율이 더 우수함을 확인하였다. 반면, 비교예 1, 6과 같이 본 발명의 카본블랙을 사용하지 않거나 혹연을 사용할 경우, 전지 효율이 떨어지고, 충진계수 값도 떨어짐을 알 수 있다. 또한 본 발명의 카본블랙을 사용하여도 그 함량이 비교예 2처럼 과다하거나, 비교예 3처럼 너무 적게 사용한 경우, 비교예 1보다는 충진계수 값이 약간 상승하였지만, 광전환 변환 효율이 실시예 1-4보다 낮았다. 더욱이, 비교예 4와 같이 평균입경과 비표면적이 모두 본원 범위를 벗어난 경우, JSC값이 본원과 동등 수준이어도 층진계수와 효율이 비교예 1 수준으로 낮아졌다.. 또한 비교예 5 및 8과 같이 은 페이스트 조성물 중에 포함되는 카본블랙이 본원과 유사한 비표면적을 가지더라도 평균입경이 본원 범위에 포함되지 않아 역시 실시예 1—4에 비해 효과가 떨어졌다. 이때, 비교예 8의 경우 실시예와 약간 유사한 결과를 얻긴 했지만, 페이스트 조성물의 점도가 시간이 지날수록 급격히 상승하는 문제가 발생하여 안정적인 인쇄가 어려웠다. 또한, 비교예 7의 경우도, 카본블택이 본원과 유사한 평균입경을 가졌지만, 비표면적이 100-200 m7g을 벗어나서 광전환 변환효율이 본원보다 불량하였다.
<실험예 2>
도 3은 본 발명에 따른 ^시예 1 및 비교예 1의 태양전지의 광전환 변환 효율을 비교하여 나타내는 그래프이다. 도 3에서 알 수 있듯이, 본 발명의 실시예 1은 미세한 선폭을 구현할 뿐만 아니라 우수한 저항 접촉 (ohmic contact)를 이루어 FF 값이 향상됨에 따라, 비교예 1의 태양전지에 비해 에너지 변환효율이 더 우수하였다.
또한, 실시예 1 및 비교예 1의 페이스트에 대하여, 각각 lrpm과 lOrpm에서의 점도를 점도계 (Viscometer)로 분석하여 요변 지수 (Thixotropic index, T.I.)를 측정하였고, 그 결과는 도 4에 나타내었다.
도 4의 결과를 통해, 실시예 1이 비교예 1보다 스크린 인쇄에서 선 퍼짐 없이 높은 종횡비를 가지는 패턴을 확인할 수 있는 유변학적 성질을 가짐을 알 수 있다.
또한 도 5에는 실시예 1의 태양전지의 전극이 좁은 선폭 및 높은 선고를 이루고 있는 구조를 보여주는 전자현미경 사진을 나타내었다. 도 5의 결과를 보면, 본 발명에 따라 구현된 전극은 미세한 선폭을 구현하고 높은 종횡비를 나타냄을 확인할 수 있다.
또한 도 6은 실시예 1에서 구현된 실리콘 태양전지의 전극을 에칭한 후 전극과 실리콘 기판 사이의 계면을 확대하여 나타낸 전자현미경 사진이다. 도 6에서 보면, 실시예 1의 전극이 기판의 발광층과 균일하게 저항 접촉 (ohmic-contact)을 이루어 Ag가 안정적으로 재결정화되어 있는 상태임을 알 수 있다. 즉, 도 6은 실시예 1의 태양전지의 전극에서, 에미터층에 Ag가 층분히 형성되어 안정적인 음 -접촉 (ohmic-contact )을 이룬 상태를 보여주는 전자현미경 사진이다.
【부호의 설명】
101: 기판
102: 에미터층
103: 전면전극
104: 후면전극
201: 기판 202: 반사방지막
203: 전면 전극 204: BSF층
205: 후면 전극 206: 후면 Ag 패턴

Claims

【특허청구범위】
【청구항 11
은 분말, 글래스 프릿 분말, 유기 바인더 및 카본블택을 포함하는 점도 90,000 내지 500,000 cP (브룩필드 점도계, 스핀들 14, 측정온도 25 °C)의 은 페이스트 조성물이며,
상기 카본블랙은 평균 입경이 0.1 내지 0.5 이고 비표면적이 100 내지 200 m7g이며, 전체 은 페이스트 조성물에 대하여 1 내지 10 중량 %로 포함하는 것인 전극 형성용 은 페이스트 조성물.
【청구항 2]
제 1항에 있어서, 상기 은 분말은 평균입경이 1 내지 3 인 구형의 은 분말과 평균입경이 1 내지 3 인 플레이크 형태의 은 분말을 포함하는 전극 형성용 은 페이스트 조성물.
【청구항, 3】
제 2항에 있어서, 상기 평균입경이 1 내지 3 인 구형의 은 분말의 함량은 전체 은 페이스트 조성물에 대하여 70 내지 85 중량 %인 것인 전극 형성용 은 페이스트 조성물.
【청구항 4]
제 2항에 있어서, 상기 평균입경이 1 내지 3 인 플레이크 형태의 은 분말의 함량은 전체 은 페이스트 조성물에 대하여 1 내지 5 중량 %인 것인 전극 형성용 은 페이스트 조성물.
[청구항 5】
게 1항에 있어서, 상기 글래스 프릿 분말은 비스무스 계열의 화합물을 포함하는 전극형성용 은 페이스트 조성물.
【청구항 6]
제 1항에 있어서, 상기 유기 바인더는 셀를로오스 수지, 아크릴계 수지, 부틸카르비를 및 터피네올로 이루어진 군에서 선택된 어느 하나 또는 2종 이상의 흔합물인 전극 형성용 은 페이스트 조성물.
【청구항 7]
제 1항 내지 계 6항 중 어느 한 항에 따른 은 페이스트 조성물을 이용하여 형성되는 태양전지용 전면 전극.
【청구항 8]
실리콘 반도체 기판;
상기 기판 상부에 형성되는 에미터층;
상기 에미터층 상에 형성된 반사방지막;
상기 반사방지막을 관통하여 상기 에미터층에 접속된 전면 전극; 및 상기 기판의 배면에 접속된 후면 전극을 포함하는 실리콘 태양전지이며,
상기 전면 전극은 계 1항 내지 제 6항에 따른 은 페이스트 조성물을 상기 반사 방지막 상에 소정의 패턴으로 도포하고 소성시켜 형성된 것인, 실리콘 태양전지.
PCT/KR2011/008843 2010-11-18 2011-11-18 전극형성용 은 페이스트 조성물 및 이를 이용한 실리콘 태양전지 WO2012067463A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180055844.0A CN103222011B (zh) 2010-11-18 2011-11-18 银糊组合物及使用其的太阳能电池和太阳能电池前电极
US13/885,988 US9640298B2 (en) 2010-11-18 2011-11-18 Silver paste composition for forming an electrode, and silicon solar cell using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0114973 2010-11-18
KR20100114973 2010-11-18

Publications (2)

Publication Number Publication Date
WO2012067463A2 true WO2012067463A2 (ko) 2012-05-24
WO2012067463A3 WO2012067463A3 (ko) 2012-08-23

Family

ID=46084547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008843 WO2012067463A2 (ko) 2010-11-18 2011-11-18 전극형성용 은 페이스트 조성물 및 이를 이용한 실리콘 태양전지

Country Status (4)

Country Link
US (1) US9640298B2 (ko)
KR (1) KR101595035B1 (ko)
CN (1) CN103222011B (ko)
WO (1) WO2012067463A2 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104137194A (zh) * 2012-02-27 2014-11-05 E.I.内穆尔杜邦公司 银浆及其在太阳能电池生产中的用途
KR101596548B1 (ko) * 2013-03-27 2016-02-22 제일모직주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
TWI480357B (zh) * 2013-12-17 2015-04-11 Ind Tech Res Inst 導電膠組成物與電極的形成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11330506A (ja) * 1998-05-11 1999-11-30 Matsushita Battery Industrial Co Ltd 太陽電池およびその電極の製造方法
JP2005317898A (ja) * 2004-03-31 2005-11-10 Toyo Aluminium Kk ペースト組成物およびそれを用いた太陽電池素子
KR20090126427A (ko) * 2008-06-04 2009-12-09 주식회사 엘지화학 전극형성용 금속 페이스트 조성물 및 그 제조 방법과 그를이용한 실리콘 태양전지
KR20100042766A (ko) * 2008-10-17 2010-04-27 대주전자재료 주식회사 도전성 페이스트 조성물, 이를 이용한 전극의 제조방법 및 이를 포함하는 태양전지

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009098938A1 (ja) * 2008-02-06 2009-08-13 Namics Corporation 熱硬化性導電ペースト、及びそれを用いて形成した外部電極を有する積層セラミック電子部品
US20090266409A1 (en) * 2008-04-28 2009-10-29 E.I.Du Pont De Nemours And Company Conductive compositions and processes for use in the manufacture of semiconductor devices
US20120000523A1 (en) * 2008-06-04 2012-01-05 Lg Chem, Ltd. Metal paste composition for forming electrode and silver-carbon composite electrode and silicon solar cell using the same
US7976734B2 (en) * 2008-09-10 2011-07-12 E.I. Du Pont De Nemours And Company Solar cell electrodes
WO2010103998A1 (ja) 2009-03-11 2010-09-16 信越化学工業株式会社 太陽電池セル電極の接続用シート、太陽電池モジュールの製造方法及び太陽電池モジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11330506A (ja) * 1998-05-11 1999-11-30 Matsushita Battery Industrial Co Ltd 太陽電池およびその電極の製造方法
JP2005317898A (ja) * 2004-03-31 2005-11-10 Toyo Aluminium Kk ペースト組成物およびそれを用いた太陽電池素子
KR20090126427A (ko) * 2008-06-04 2009-12-09 주식회사 엘지화학 전극형성용 금속 페이스트 조성물 및 그 제조 방법과 그를이용한 실리콘 태양전지
KR20100042766A (ko) * 2008-10-17 2010-04-27 대주전자재료 주식회사 도전성 페이스트 조성물, 이를 이용한 전극의 제조방법 및 이를 포함하는 태양전지

Also Published As

Publication number Publication date
WO2012067463A3 (ko) 2012-08-23
US20130306144A1 (en) 2013-11-21
US9640298B2 (en) 2017-05-02
CN103222011A (zh) 2013-07-24
CN103222011B (zh) 2016-04-20
KR101595035B1 (ko) 2016-02-17
KR20120053978A (ko) 2012-05-29

Similar Documents

Publication Publication Date Title
KR101226861B1 (ko) 태양전지 전극 형성용 도전성 페이스트
KR101165160B1 (ko) 태양전지 소자 및 그 제조방법
KR101497038B1 (ko) 전극 형성용 은 페이스트 조성물 및 이의 제조 방법
JP2012502503A (ja) 太陽電池電極
WO2016084915A1 (ja) 導電性組成物
KR101396444B1 (ko) 태양전지의 전극의 제조방법 및 이를 이용한 태양전지
KR20130042524A (ko) 은 페이스트 조성물 및 이를 이용한 태양전지
CN113178495A (zh) 导电性组合物、半导体元件及太阳能电池元件
KR20100127619A (ko) 전극형성용 금속 페이스트 조성물 및 이를 이용한 은-탄소 복합체 전극과 실리콘 태양전지
JP2017092253A (ja) 導電性組成物
TWI655784B (zh) 用於太陽能電池的前電極和包括其的太陽能電池
KR101595035B1 (ko) 전극형성용 은 페이스트 조성물 및 이를 이용한 실리콘 태양전지
US20130160835A1 (en) Back-side electrode of p-type solar cell and method for forming the same
KR20140048465A (ko) 전극형성용 페이스트 조성물, 이를 이용한 실리콘 태양전지
KR20140048464A (ko) 전극형성용 페이스트 조성물, 이를 이용한 실리콘 태양전지
KR101278976B1 (ko) 전극형성용 금속 페이스트 조성물 및 그 제조 방법과 그를이용한 실리콘 태양전지
TWI419177B (zh) 漿料組成物與使用漿料組成物之太陽能電池電極
KR20130063266A (ko) 전극형성용 은 페이스트 조성물, 이를 이용한 실리콘 태양전지
KR20120086389A (ko) 태양전지 전극 형성용 도전성 페이스트 및 이를 이용한 태양전지의 제조 방법
KR20130067693A (ko) 전극형성용 은 페이스트 조성물, 이를 이용한 실리콘 태양전지
TW200947717A (en) An electroconductive paste for solar cell
KR101396445B1 (ko) 태양전지 전면 전극의 제조방법 및 이를 이용하는 태양전지 제조방법
KR20130063264A (ko) 전극형성용 금속 페이스트 조성물 및 이를 이용한 실리콘 태양전지
KR20120002974A (ko) 전극형성용 금속 페이스트 조성물 및 그 제조 방법과 그를 이용한 실리콘 태양전지
KR101416335B1 (ko) 전극형성용 금속 페이스트 조성물

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180055844.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841248

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13885988

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11841248

Country of ref document: EP

Kind code of ref document: A2