WO2012067101A1 - Procédé et dispositif de contrôle d'un système pour absorber chimiquement du dioxyde de carbone - Google Patents

Procédé et dispositif de contrôle d'un système pour absorber chimiquement du dioxyde de carbone Download PDF

Info

Publication number
WO2012067101A1
WO2012067101A1 PCT/JP2011/076272 JP2011076272W WO2012067101A1 WO 2012067101 A1 WO2012067101 A1 WO 2012067101A1 JP 2011076272 W JP2011076272 W JP 2011076272W WO 2012067101 A1 WO2012067101 A1 WO 2012067101A1
Authority
WO
WIPO (PCT)
Prior art keywords
amine
absorption
regeneration tower
tower
absorber
Prior art date
Application number
PCT/JP2011/076272
Other languages
English (en)
Japanese (ja)
Inventor
島村 潤
利夫 勝部
Original Assignee
バブコック日立株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコック日立株式会社 filed Critical バブコック日立株式会社
Publication of WO2012067101A1 publication Critical patent/WO2012067101A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/65Employing advanced heat integration, e.g. Pinch technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a control method and apparatus for a carbon dioxide chemical absorption system, and more particularly to a control method and apparatus for a carbon dioxide chemical absorption system for removing carbon dioxide in exhaust gas generated by combustion of chemical fuel such as a thermal power plant. About.
  • CO 2 carbon dioxide
  • alkanolamine aqueous solution a CO 2 absorbing solution
  • HSS heat stable salt
  • the present invention relates to a method for controlling a CO 2 absorption system provided with an amine absorbent regenerator having a reclaimer by this distillation method.
  • the CO 2 chemical absorption system mainly comprises a boiler 1, a denitration device 2, an air heater 3, an electrostatic precipitator 4, a wet desulfurization device 5, a press clubber 10, a CO 2 absorption tower 20, a regeneration tower 40, a reboiler 60, etc.
  • the combustion exhaust gas discharged from the boiler 1 by the combustion of fossil fuel such as coal is subjected to heat exchange by the air heater 3 after removing nitrogen oxide by the denitration device 2 and cooled to 120 to 170 ° C., for example.
  • the exhaust gas that has passed through the air heater 3 is removed by soot and dust with an electric dust collector 4, and further pressurized with an induction fan, and then sulfur oxide (SO 2 ) is removed with a wet desulfurization device 5.
  • SO 2 sulfur oxide
  • exit gas is customary that the SO 2 is about several tens of ppm residual, to prevent the deterioration of the CO 2 absorbing solution in a CO 2 absorption tower 20 by the residual SO 2, CO 2
  • a press clubber 10 is installed as a pretreatment facility for the chemical absorption facility, and residual SO 2 is reduced as much as possible (for example, 1 ppm or less).
  • the CO 2 absorption tower 20 is mainly composed of a packed bed 21, an absorbing liquid spray part 22, a water washing part 24, a water washing spray part 25, a demister 26, a water washing water reservoir part 27, a cooler 28, and a water washing pump 29.
  • CO 2 contained in the exhaust gas absorbing the filling layer 21, the gas-liquid contact with the CO 2 absorbing liquid supplied from the CO 2 absorption tower 20 top of CO 2 absorbing solution spraying unit 22, the CO 2 absorbing solution Is done.
  • cooling of the de-CO 2 gas 23 whose temperature has risen due to heat generation during the absorption reaction and mist accompanying the gas are removed. Further, the flush water cooled by the cooler 28 is circulated and used by the flush pump 29.
  • a demister 26 is installed in the upper part of the water washing section 24, and after removing the mist accompanying the gas, it is discharged to the outside as a processing gas 37 (de-CO 2 gas).
  • the absorption liquid that has absorbed CO 2 is extracted from the liquid reservoir at the bottom of the absorption tower 20 by the absorption tower extraction pump 33, heated by the heat exchanger 34, and then sent to the regeneration tower 40 that regenerates the amine absorption liquid. Is done.
  • the regeneration tower 40 an absorbing liquid rich in CO 2 sprayed from the spray section 42 is supplied to the packed bed 41.
  • steam is supplied from the reboiler 60 through the steam supply pipe 65 to the bottom of the regeneration tower 40.
  • the packed bed 41 when the absorbing liquid rich in CO 2 comes into gas-liquid contact with the vapor rising from the bottom, CO 2 is degassed from the absorbing liquid into the gas phase.
  • a demister 45 is installed in the upper part of the washing spray part 44, and after removing mist accompanying the gas from the washing part 43 and the like, it is discharged as CO 2 gas 46 from the upper part of the regeneration tower 40. Thereafter, the CO 2 gas is cooled to about 40 ° C. by the cooler 47, separated into gas and condensed water by the CO 2 separator 48, and the CO 2 gas is introduced into a CO 2 liquefaction facility (not shown) and condensed water. Is supplied to the washing spray section 44 by the drain pump 50.
  • the CO 2 absorption liquid from which CO 2 has been degassed is stored in the regeneration tower liquid reservoir 51 and then sent to the reboiler 60 through the reboiler liquid supply pipe 52.
  • a heat transfer tube or the like is installed inside the reboiler 60, and steam is generated inside the reboiler 60 by indirect heating of the CO 2 absorbing liquid with the steam 62 supplied through the steam supply pipe, and the steam is steam. It is supplied to the regeneration tower 40 through the supply pipe 65.
  • the steam 62 used in the reboiler 60 is recovered as drainage in the heat transfer tube.
  • the CO 2 absorbent stored in the liquid reservoir at the bottom of the regeneration tower 40 is cooled by the pump 93 via the heat exchanger 34 and the cooler 31 through the regeneration tower liquid extraction pipe 66, and then absorbed by CO 2. Returned to Tower 20.
  • the sulfur dioxide (SO 2 ) is slightly mixed in the exhaust gas supplied to the absorption tower 20, and most of this SO 2 reacts with the CO 2 absorption liquid, and heat stable salt (HSS). Abbreviated).
  • This HSS is dissolved in the absorbing solution but loses its reactivity with CO 2 and this reaction is irreversible. Therefore, the higher the HSS concentration in the absorbing solution, the more the CO 2 regeneration energy increases because the equilibrium relationship between amine and CO 2 is lost. Therefore, a reclaimer 94 is used to remove this HSS.
  • the reclaimer 94 comprises a reaction vessel provided with a steam supply pipe 56 for heating. After supplying a Na-based alkaline solution such as Na 2 CO 3 into the reaction vessel, an amine absorbing solution is supplied. Then, HSS in the absorbing solution is reacted with the alkaline solution, and sulfur (S) in the HSS bonded to the amine is dissociated to remove HSS as water-soluble Na 2 SO 4 . Thereafter, the liquid in the reaction vessel is heated by the vapor supply pipe 96 to evaporate and collect the amine absorbing liquid.
  • a Na-based alkaline solution such as Na 2 CO 3
  • an amine absorbing solution is supplied.
  • HSS in the absorbing solution is reacted with the alkaline solution
  • sulfur (S) in the HSS bonded to the amine is dissociated to remove HSS as water-soluble Na 2 SO 4 .
  • the liquid in the reaction vessel is heated by the vapor supply pipe 96 to evaporate and collect the amine absorbing liquid.
  • the operation of the reclaimer 94 in the system is performed as follows. First, the operation of the CO 2 absorption facility 20 is stopped. The CO 2 absorbing solution from which CO 2 has been degassed by the regeneration tower 40 is supplied to the reclaimer 94 via the pipe 66 and the flow meter 92 and the shut-off valve 91 via the pump 93. The CO 2 absorbent is monitored by a level transmitter 95 installed in the reclaimer 94 and supplied until the water level is full. When the water level is full, the shutoff valve 91 is closed.
  • the HSS in the amine solution reacts with the alkali solution, that is, the S bound to the amine is dissociated and becomes water-soluble. Na 2 SO 4 .
  • the shutoff valve 98 is opened, and high temperature steam is supplied through the steam supply pipe 96, whereby the CO 2 absorbing liquid is boiled and evaporated.
  • the steam in the steam supply pipe 96 supplied to the reclaimer 94 is separated from Na 2 SO 4 by boiling and evaporating the amine, and is normally used in the reboiler 60 and is set to avoid thermal decomposition of the amine. The one having a temperature higher than the temperature is used.
  • the evaporated CO 2 absorbing solution passes through the amine vapor pipe 97 and is returned to the regeneration tower 40.
  • Vapor of amine absorbent elevated the regeneration tower 40 is cooled by the water-washing section 43, liquefied by being cooled to about 40 ° C.
  • condenser 47 exits the regenerator 40, CO 2 separator 48 Then, after separating CO 2 , it is returned to the regeneration tower 40 via the drain pump 50.
  • Na 2 SO 4 gradually concentrates in the reclaimer 94, but when the amine absorption liquid evaporates and the water level drops to the specified level, the supply of steam to the reclaimer 94 is terminated and the shut-off valve 98 is closed. .
  • the waste amine solution containing Na 2 SO 4 is collected in the waste amine tank 101 by opening the shut-off valve 100 installed in the pipe 99.
  • the reclaimer 94 sufficiently evaporates and recovers the amine absorption liquid, and therefore, the temperature close to the boiling point of the pure amine (for example, 110 to 130 ° C.) compared to the operating temperature of the heating steam in the reboiler 60 (for example, 110 to 130 ° C.). It was necessary to raise the temperature to 130 ° C to 180 ° C and operate the heating steam.
  • the steam supplied from the steam supply pipe 96 also has a higher temperature and a higher pressure than the steam supply pipe 62, but not only that, but in order to set the boiling point of the reclaimer 94 to the operating temperature, after the CO 2 separator 48 It was necessary to increase the pressure of the entire system by installing a pressure regulating valve (not shown) in the flow. For this reason, the system pressure of the regeneration tower 40 must be changed from normal operating conditions, and therefore, when the reclaimer 94 is operated, the operation of the CO 2 absorption facility 20 must be stopped as described above. There was a point. Stopping the operation of the CO 2 absorption facility 20 is undesirable because it reduces the reliability of the facility.
  • An object of the present invention is to avoid the stop of the CO 2 absorption facility, which was a problem in the operation of the reclaimer indispensable in the CO 2 absorption facility of the exhaust gas mixed with S components such as SO 2 , and to regenerate the amine absorption liquid CO equipped with a CO 2 absorbent regenerator that enables effective use of the supplied heat by controlling the steam generated from the CO 2 absorbent regenerator to the optimal temperature and pressure before supply to 40 2.
  • S components such as SO 2
  • the amine absorbing solution in a CO 2 chemical absorption system Before feeding, the amine absorbing solution in a CO 2 chemical absorption system based a source of coolant, the CO 2 chemical absorption system and controls so that the temperature and pressure of the same degree as the heated steam of the reboiler Control method.
  • the amine absorption liquid after the heat exchange which is circulated from the regeneration tower to the CO 2 absorption tower, is branched to serve as a refrigerant source for temperature control of the vapor. Method.
  • the method according to (2) wherein the steam is cooled by directly spraying the amine absorbent after the heat exchange into the absorbent regenerator.
  • the heat-exchanged amine absorbing liquid is heat-exchanged with the steam via a heat exchanger, and the steam is indirectly cooled.
  • the water level is controlled by installing a buffer tank in the amine absorption liquid piping system so that the water level of the absorption tower, the regeneration tower, and the reboiler does not drop. ) Any one of the methods. (6) The method according to any one of (1) to (5), wherein the control is performed while the CO 2 chemical absorption system is operated.
  • a pressure gauge 81 and a pressure regulating valve 82 are installed in the amine vapor pipe 97 from the reclaimer 94, and the reboiler 60 is controlled by controlling the indicated value of the pressure gauge 81 to be the same as the pressure of the reboiler 60.
  • a heat source necessary for CO 2 regeneration can be supplied from the reclaimer 94.
  • the CO 2 absorbent in the system is used as a refrigerant source for the steam generated from the CO 2 absorbent regeneration facility (reclaimer 94), and the temperature of the regeneration tower 40 is controlled by reducing the temperature of the steam to a predetermined temperature. Can be prevented from rising (including locally).
  • the CO 2 absorbing liquid used as a refrigerant source is sprayed on the amine vapor pipe 97 using a spray nozzle or the like and directly brought into contact with the vapor, or the temperature of the vapor is indirectly reduced using a heat exchanger or the like. May be. There is no limitation on the contact method between the CO 2 absorbent and the vapor.
  • the thermal energy used to reduce the temperature of the steam is transferred to the CO 2 absorbing liquid side, and there is no loss of heat energy due to the temperature reduction of the steam in the system in principle.
  • the steam temperature is controlled before the regeneration tower 40 is supplied, and the amount of heat used to efficiently reduce the temperature of the steam is converted into the regeneration tower 40 via the CO 2 absorbent. Can be returned to.
  • regeneration of the CO 2 absorbing liquid can be carried out during operation without stopping the CO 2 absorbing equipment, and effective use of the heat that has been conventionally discarded can be achieved. Reliability and efficiency can be improved.
  • FIG. 1 is a schematic view of a CO 2 chemical absorption system showing an embodiment of the present invention.
  • FIG. 5 An embodiment according to the present invention is shown in FIG.
  • the difference between the present invention and the conventional apparatus shown in FIG. 5 is that a pressure gauge 81 and a pressure regulating valve 82 are installed in the amine absorption liquid vapor pipe 97 to control the vapor pressure of the amine absorption liquid supplied to the regeneration tower 40.
  • the amine absorbent is used as a refrigerant source for the vapor generated from the CO 2 absorbent regenerator composed of the reclaimer 94, etc., and the amine absorbent supplied to the regeneration tower 40 is optimally controlled. It is to be.
  • the amine absorbent extracted from the bottom of the regeneration tower 40 through a pipe 66 is supplied to a reclaimer 94 through a pipe 96, a flow meter 92 and a shut-off valve 91 by a pump 93.
  • the water level in the claimer 94 is monitored by a level transmitter 95, and the shutoff valve 92 is closed when the water level is full.
  • a Na-based alkaline solution such as Na 2 CO 3 is supplied to the reclaimer 94 in advance, and this Na 2 CO 3 reacts with HSS in the amine to dissociate S bonded to the amine, thereby Na 2 SO 3. 4 and HSS is removed.
  • the shutoff valve 98 is opened and high temperature steam is supplied through the steam supply pipe 96, whereby the CO 2 absorbing liquid in the reboiler 96 is boiled and evaporated.
  • the evaporated CO 2 absorbing solution passes through the amine absorbing solution vapor pipe 97 and is charged into the cooler 83.
  • the temperature of the amine absorbing solution at the outlet of the cooler 83 is measured by a thermometer 85, and the flow rate of the amine absorbing solution for cooling is controlled by the flow rate adjusting valve 84 so that the operating temperature of the reboiler 60 is reached.
  • the pressure adjusting valve 82 after being controlled by the pressure adjusting valve 82 so as to have the same pressure as the reboiler 60, the pressure is returned to the regeneration tower 40.
  • Na 2 SO 4 gradually concentrates in the reclaimer 94.
  • the amine absorption liquid evaporates and the water level is lowered to the specified level, the supply of steam to the reclaimer 94 is terminated.
  • the shut-off valve 98 is closed, the shut-off valve 100 installed in the waste amine pipe 99 is opened, and the waste amine liquid containing Na 2 SO 4 is discharged to the waste amine tank.
  • FIGS. Another embodiment according to the present invention is shown in FIGS.
  • the embodiment shown in FIG. 2 is provided with a bypass line between the pump 33 and the heat exchanger 34, the cooler 83 is used as a heat exchanger, and is absorbed as a cooling medium.
  • the difference is that the amine absorbent supplied from the column 20 is used.
  • FIG. 3 differs from the embodiment shown in FIG. 1 in that a buffer tank 86 and a buffer pump 87 are installed between the cooler 31 and the absorption tower 20.
  • a buffer tank 86 and a buffer pump 87 are installed between the cooler 31 and the absorption tower 20.
  • the reclaimer 94 When supplying the amine absorbing liquid to the water, the buffer pump 87 is started and the flow rate adjusting valve 88 is operated to keep the water level constant. Since the water level rises after the operation of the reclaimer 94 is started, the shutoff valve 89 may be opened to keep the water level of the absorption tower 20 and the like constant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

L'invention a pour but de proposer un procédé de contrôle d'un système pour absorber du CO2, dans lequel un absorbeur de CO2 peut être recyclé et de la chaleur peut être efficacement utilisée au cours du fonctionnement d'un appareilllage d'absorption de CO2. A cet effet, selon l'invention, un système comprend : un appareilllage d'absorption de CO2 dans lequel un gaz d'échappement est amené en contact avec un absorbeur pour absorber le CO2 dans le gaz d'échappement dans une tour d'absorption (20), puis le CO2 est désorbé dans une tour de régénération (40), l'absorbeur après la désorption de CO2 est chauffé, puis l'absorbeur qui circule dans la tour de régénération (40) et est extrait de la tour de régénération (40), est soumis à un échange de chaleur avec l'absorbeur qui est introduit dans la tour de régénération, puis l'absorbeur circule dans la tour d'absorption (20) ; et un appareil (94) de recyclage d'absorbeur dans lequel l'absorbeur est extrait de la tour de régénération (40), des sels thermiquement stables qui sont accumulés dans un absorbeur amine sont retirés par une méthode de distillation, puis la vapeur générée de l'absorbeur est introduite dans la tour de régénération. La vapeur générée par l'appareil de recyclage de l'absorbeur est contrôlée pour avoir une température et une pression similaires à celles de la vapeur de chauffage d'un rebouilleur à l'aide de l'absorbeur dans le système pour absorber chimiquement du dioxyde de carbone en tant que source de réfrigérant avant d'être introduit dans la tour de régénération (40).
PCT/JP2011/076272 2010-11-16 2011-11-15 Procédé et dispositif de contrôle d'un système pour absorber chimiquement du dioxyde de carbone WO2012067101A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010255782 2010-11-16
JP2010-255782 2010-11-16

Publications (1)

Publication Number Publication Date
WO2012067101A1 true WO2012067101A1 (fr) 2012-05-24

Family

ID=46084027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076272 WO2012067101A1 (fr) 2010-11-16 2011-11-15 Procédé et dispositif de contrôle d'un système pour absorber chimiquement du dioxyde de carbone

Country Status (1)

Country Link
WO (1) WO2012067101A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2676717A2 (fr) * 2012-06-20 2013-12-25 Kabushiki Kaisha Toshiba Appareil et procédé de récupération de dioxyde de carbone
FR3027819A1 (fr) * 2014-11-04 2016-05-06 Ifp Energies Now Procede de desacidification d'un effluent gazeux par une solution absorbante avec injection de vapeur dans la solution absorbante regeneree et dispositif pour sa mise en oeuvre
EP3047893A4 (fr) * 2013-11-05 2016-10-19 Mitsubishi Heavy Ind Ltd Dispositif de régénération et procédé et dispositif de récupération pour co2, h2s, ou les deux
WO2019078168A1 (fr) * 2017-10-20 2019-04-25 三菱重工エンジニアリング株式会社 Dispositif de récupération et procédé de récupération
JP2019076810A (ja) * 2017-10-20 2019-05-23 三菱重工エンジニアリング株式会社 酸性ガス除去装置及び酸性ガス除去方法
WO2020118088A1 (fr) * 2018-12-06 2020-06-11 Schlumberger Technology Corporation Procédé et système d'élimination de contaminants dans un gaz à l'aide d'un capteur de liquide
US10794167B2 (en) 2018-12-04 2020-10-06 Schlumberger Technology Corporation Method and system for removing contaminants from a gas stream using a liquid absorbent
CN114397922A (zh) * 2021-09-29 2022-04-26 北京百利时能源技术股份有限公司 一种燃煤电厂二氧化碳捕集再沸器温度控制系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053134A (ja) * 2001-08-21 2003-02-25 Kansai Electric Power Co Inc:The 脱硫脱炭酸方法
JP2008221166A (ja) * 2007-03-14 2008-09-25 Mitsubishi Heavy Ind Ltd Co2回収装置及び廃棄物抽出方法
JP2010227742A (ja) * 2009-03-26 2010-10-14 Babcock Hitachi Kk 排煙処理装置と方法
JP2011208846A (ja) * 2010-03-29 2011-10-20 Hitachi Ltd ボイラ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053134A (ja) * 2001-08-21 2003-02-25 Kansai Electric Power Co Inc:The 脱硫脱炭酸方法
JP2008221166A (ja) * 2007-03-14 2008-09-25 Mitsubishi Heavy Ind Ltd Co2回収装置及び廃棄物抽出方法
JP2010227742A (ja) * 2009-03-26 2010-10-14 Babcock Hitachi Kk 排煙処理装置と方法
JP2011208846A (ja) * 2010-03-29 2011-10-20 Hitachi Ltd ボイラ装置

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103505986A (zh) * 2012-06-20 2014-01-15 株式会社东芝 二氧化碳回收装置和二氧化碳回收方法
EP2676717A3 (fr) * 2012-06-20 2014-01-22 Kabushiki Kaisha Toshiba Appareil et procédé de récupération de dioxyde de carbone
AU2013206428B2 (en) * 2012-06-20 2015-08-27 Kabushiki Kaisha Toshiba Carbon dioxide recovery device and carbon dioxide recovery method
US9248403B2 (en) 2012-06-20 2016-02-02 Kabushiki Kaisha Toshiba Carbon dioxide recovery device and carbon dioxide recovery method
EP2676717A2 (fr) * 2012-06-20 2013-12-25 Kabushiki Kaisha Toshiba Appareil et procédé de récupération de dioxyde de carbone
EP3047893A4 (fr) * 2013-11-05 2016-10-19 Mitsubishi Heavy Ind Ltd Dispositif de régénération et procédé et dispositif de récupération pour co2, h2s, ou les deux
US10137415B2 (en) 2013-11-05 2018-11-27 Mitsubishi Heavy Industries Engineering, Ltd. Reclaiming device, method, and recovery unit of CO2, H2S, or both of CO2 and H2S
US10137410B2 (en) 2014-11-04 2018-11-27 IFP Energies Nouvelles Method of deacidizing a gaseous effluent by an absorbent solution with vapor injection into the regenerated absorbent solution and device for implementing same
EP3017857A1 (fr) * 2014-11-04 2016-05-11 IFP Energies nouvelles Procede de desacidification d'un effluent gazeux par une solution absorbante avec injection de vapeur dans la solution absorbante regeneree et dispositif pour sa mise en oeuvre
FR3027819A1 (fr) * 2014-11-04 2016-05-06 Ifp Energies Now Procede de desacidification d'un effluent gazeux par une solution absorbante avec injection de vapeur dans la solution absorbante regeneree et dispositif pour sa mise en oeuvre
WO2019078168A1 (fr) * 2017-10-20 2019-04-25 三菱重工エンジニアリング株式会社 Dispositif de récupération et procédé de récupération
JP2019076810A (ja) * 2017-10-20 2019-05-23 三菱重工エンジニアリング株式会社 酸性ガス除去装置及び酸性ガス除去方法
JP2019076809A (ja) * 2017-10-20 2019-05-23 三菱重工エンジニアリング株式会社 リクレーミング装置及びリクレーミング方法
JP6998174B2 (ja) 2017-10-20 2022-01-18 三菱重工エンジニアリング株式会社 酸性ガス除去装置及び酸性ガス除去方法
US10794167B2 (en) 2018-12-04 2020-10-06 Schlumberger Technology Corporation Method and system for removing contaminants from a gas stream using a liquid absorbent
WO2020118088A1 (fr) * 2018-12-06 2020-06-11 Schlumberger Technology Corporation Procédé et système d'élimination de contaminants dans un gaz à l'aide d'un capteur de liquide
CN114397922A (zh) * 2021-09-29 2022-04-26 北京百利时能源技术股份有限公司 一种燃煤电厂二氧化碳捕集再沸器温度控制系统
CN114397922B (zh) * 2021-09-29 2023-03-14 北京百利时能源技术股份有限公司 一种燃煤电厂二氧化碳捕集再沸器温度控制系统

Similar Documents

Publication Publication Date Title
WO2012067101A1 (fr) Procédé et dispositif de contrôle d'un système pour absorber chimiquement du dioxyde de carbone
JP5636306B2 (ja) Co2化学吸収システムの制御方法
JP5725992B2 (ja) Co2回収設備
JP5762253B2 (ja) Co2化学吸収システムの制御方法
JP5868741B2 (ja) 酸性ガス除去装置
JP5959882B2 (ja) 燃焼排ガス中の二酸化炭素化学吸収システム
WO2011132660A1 (fr) Système de traitement de gaz d'échappement ayant un dispositif d'élimination de dioxyde de carbone
JP5639814B2 (ja) 脱co2設備付き火力発電システム
WO2013039041A1 (fr) Dispositif et procédé de récupération de co2
JP5855130B2 (ja) 蒸気再圧縮設備を設置した二酸化炭素化学吸収システム
WO2013161574A1 (fr) Dispositif de récupération de co2 et procédé associé
JP2013059727A (ja) Co2回収装置およびco2回収方法
WO2010103392A1 (fr) Système de traitement de gaz d'évacuation et procédé utilisant une solution d'ammoniaque
JP2011194292A (ja) 排ガス処理方法および装置
JP5976817B2 (ja) 熱回収システム及び熱回収方法
JP2013202612A (ja) 排ガス処理システム
JP5897142B2 (ja) 蒸気供給システム及びこれを備えたco2回収設備
WO2022044487A1 (fr) Système de récupération de dioxyde de carbone
Tsujiuchi et al. CO 2 recovery unit and CO 2 recovery method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP