WO2012066911A1 - Electrochemical device electrode binder, method for producing same, and method for preserving electrochemical device electrode binder - Google Patents

Electrochemical device electrode binder, method for producing same, and method for preserving electrochemical device electrode binder Download PDF

Info

Publication number
WO2012066911A1
WO2012066911A1 PCT/JP2011/074636 JP2011074636W WO2012066911A1 WO 2012066911 A1 WO2012066911 A1 WO 2012066911A1 JP 2011074636 W JP2011074636 W JP 2011074636W WO 2012066911 A1 WO2012066911 A1 WO 2012066911A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochemical device
binder
device electrode
electrode
particles
Prior art date
Application number
PCT/JP2011/074636
Other languages
French (fr)
Japanese (ja)
Inventor
恭子 山内
弘一 森田
武志 茂木
達朗 本多
高橋 慎治
一郎 梶原
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2012544167A priority Critical patent/JPWO2012066911A1/en
Publication of WO2012066911A1 publication Critical patent/WO2012066911A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder for an electrochemical device electrode, a method for producing the binder, a method for storing the binder for an electrochemical device electrode, a slurry for an electrochemical device electrode, and an electrochemical device electrode.
  • the binder for an electrochemical device electrode which is a material for obtaining an electrochemical device electrode that has a very low occurrence rate and a high safety such that the separator separating the positive electrode and the negative electrode is damaged, its manufacturing method
  • electrochemical relates to a method for storing a binder for device electrodes, a slurry for electrochemical device electrodes, and an electrochemical device electrode.
  • an electrode active material such as a hydrogen storage alloy or graphite (hereinafter sometimes simply referred to as “active material”), and a thickener such as carboxymethylcellulose
  • active material a hydrogen storage alloy or graphite
  • thickener such as carboxymethylcellulose
  • the binder has a function of improving the adhesion between the electrode layer containing the active material and the current collector.
  • a binder include conjugated dienes.
  • a latex obtained by emulsion polymerization of a monomer containing an aromatic vinyl compound, a (meth) acrylate compound and an ethylenically unsaturated carboxylic acid is known (see Patent Document 1 and Patent Document 2).
  • the binder contains polymer particles that are difficult to swell in the electrolyte solution, have good dispersibility and storage stability when mixed with an active material, and are formed with an electrode layer and a current collector. Performance such as high adhesiveness is required.
  • a binder used for a secondary battery used as a vehicle drive source of a hybrid vehicle or an electric vehicle is required to have higher productivity and safety.
  • compositions (binders) described in Patent Documents 1 and 2 are in a state where organic particles are dispersed in a dispersion medium, aggregates (foreign substances) can be easily formed by processing after production and changes in storage environment. appear. Aggregates thus generated cause a short circuit of the electrode. Specifically, an electrochemical device manufactured using a composition (binder) in which aggregates are generated may cause a problem such as ignition due to an extremely rare defect in the electrode. Therefore, the development of a new binder with reduced foreign matter that can produce an electrode with the least possible occurrence of the above problems has been desired. Furthermore, there has been a demand for the development of a storage method that hardly generates foreign matter.
  • the present invention has been made to solve the above-described problems of the prior art, and has a high safety electrochemical device, specifically, the occurrence rate of defects such as breakage of the separator is extremely small.
  • a binder for an electrochemical device electrode that can be used as a material for forming an electrode of an electrochemical device that hardly causes a problem such as ignition, a method for producing the binder, a slurry for an electrochemical device electrode, and an electrochemical device electrode.
  • the present inventors have found that the binder is removed from the particles having a particle size larger than the thickness of the separator, resulting in the occurrence of defects such as damage to the separator due to the particles. Focusing on the fact that the rate is extremely small, the present inventors have found that the above problem can be achieved by a binder from which particles having a particle size larger than the thickness of the separator are removed, and have completed the present invention.
  • the present invention provides the following binder for an electrochemical device electrode, a method for producing the binder, a method for storing the binder for an electrochemical device electrode, a slurry for an electrochemical device electrode, and an electrochemical device electrode.
  • a binder for an electrochemical device electrode obtained by polymerizing a polymerizable monomer, wherein the number of particles having a particle diameter of 20 ⁇ m or more per mL is 0 when measured with a particle counter.
  • An electrochemical device comprising the binder for an electrochemical device electrode according to any one of the above [1] to [3] (hereinafter sometimes simply referred to as “binder for electrode”) and an electrode active material.
  • Binder for electrode an electrochemical device electrode according to any one of the above [1] to [3]
  • electrode active material an electrode active material.
  • An electrochemical device electrode having a filtration step of polymerizing a polymerizable monomer to obtain a reaction solution containing a polymer and then filtering the obtained reaction solution with a depth-type or pleat-type filter Method for manufacturing binder.
  • Electrochemical device electrode binder containing polymer particles and water stored at a temperature of 2 ° C. or higher and 30 ° C. or lower and filled with the electrochemical device electrode binder for storage
  • the number of particles having a particle diameter of 20 ⁇ m or more per mL when measured with a particle counter is 0, and therefore the separator is damaged by the particles contained in the binder (that is,
  • the separator can be used as a material for forming an electrode constituting an electrochemical device that has a very low defect occurrence rate and high safety.
  • a polymerizable monomer is polymerized to obtain a reaction solution containing a polymer, and then the obtained reaction solution is subjected to a depth type or pleat type filter.
  • the electrode constituting the electrochemical device having a very low safety rate with a very low occurrence rate of defects in which the separator is broken by the particles contained in the binder (that is, the separator is penetrated by the particles).
  • the method for storing the binder for electrochemical device electrodes of the present invention foreign substances such as aggregates are hardly generated during storage of the binder for electrochemical device electrodes, and the yield of the fabricated electrodes can be improved.
  • the separator Since the slurry for an electrochemical device electrode of the present invention contains the binder for an electrochemical device electrode of the present invention, the separator is damaged by the particles contained in the binder (that is, the separator is penetrated by the particles). ) It has an effect that it can be used as a material for forming an electrode constituting an electrochemical device having an extremely low defect occurrence rate and high safety.
  • the electrochemical device electrode of the present invention includes an electrode layer obtained by applying the slurry for an electrochemical device electrode of the present invention to one surface of a current collector, a separator is formed by particles contained in the binder. This produces an effect of constituting an electrochemical device having a very low occurrence rate of defects that are damaged (that is, the separator is penetrated by particles) and that is highly safe.
  • Electrochemical device electrode binder The binder for an electrochemical device electrode of the present invention is obtained by polymerizing a polymerizable monomer. When measured with a particle counter, the number of particles having a particle diameter of 20 ⁇ m or more per mL is 0. Is. In such a binder for an electrochemical device electrode, since the number of particles having a particle diameter of 20 ⁇ m or more per mL when measured with a particle counter is 0, the separator is damaged by the particles contained in the binder (that is, The separator can be used as a material for forming an electrode that constitutes an electrochemical device that has a very low incidence of defects and is highly safe.
  • the conventional binder Since the conventional binder is not operated to remove particles larger than the predetermined particle size, it is considered that particles larger than the predetermined particle size are included. Therefore, if the large particles are charged when an electric current flows, the large particles may be drawn to the electrode side across the separator and may penetrate the separator or cause a crack to penetrate the separator. was there. As described above, the conventional binder may cause a failure in which the separator is damaged (specifically, a failure in which the large particles penetrate the separator or cause a crack to penetrate the separator). It was. When the separator is damaged, the electrochemical device is energized, and thus the electrochemical device may cause a hard short circuit. When the hard short circuit occurs, there is a problem that the electrochemical device ignites in rare cases, for example.
  • the binder for an electrochemical device electrode of the present invention since it does not contain particles (particles larger than a predetermined particle size) that penetrate the separator or cause cracks to penetrate the separator, There is no such problem, and an electrode of an electrochemical device with high safety can be produced.
  • the particles larger than the predetermined particle diameter are specifically particles having a particle diameter of the same size as the thickness of the separator separating the positive electrode and the negative electrode.
  • the thickness of the separator is usually 10 to 30 ⁇ m. If the thickness of the separator is less than 10 ⁇ m, the separator is easily damaged and may cause a failure of the electrochemical device.
  • the binder for an electrochemical device electrode of the present invention is not particularly limited as long as the above conditions are satisfied.
  • the number of particles having a particle diameter of 15 ⁇ m or more and less than 20 ⁇ m per mL when measured with a particle counter. Is preferably 0 to 35000, more preferably 0 to 4000.
  • the number of particles having a particle diameter of more than 10 ⁇ m and less than 15 ⁇ m per mL when measured with a particle counter is more preferably 0 to 500,000, and still more preferably 0 to 200000.
  • the binder tends to be a resistance component, and when this binder is localized, there is a problem that the resistance is likely to increase.
  • the binder is not easily localized. Therefore, there is an advantage that the resistance is hardly increased.
  • the number of particles per mL is measured with a particle counter, and the number of particles is defined for each predetermined particle diameter. That is, the binder for an electrochemical device electrode of the present invention does not contain any particles having a particle diameter of 20 ⁇ m or more per mL.
  • the binder for an electrochemical device electrode of the present invention is obtained by polymerizing a polymerizable monomer.
  • it includes a polymer having a structural unit derived from the polymerizable monomer, and this polymer exhibits a function as a binder.
  • the solid content concentration of the polymer is preferably 20 to 56% by mass, more preferably 23 to 55% by mass, and 25 to 54% by mass. It is particularly preferred.
  • the solid content concentration is within the above range, the polymer particles are stabilized in the binder (exist in a well dispersed state), so that there is an advantage that a binder having excellent long-term stability can be obtained.
  • the solid content concentration is less than 20% by mass, there is a problem that productivity is lowered. That is, when the reaction solution obtained by polymerization is used as a binder as it is, it is necessary to lower the concentration of the polymer obtained by polymerization. Therefore, productivity becomes low.
  • the solid content concentration differs depending on whether it is for the negative electrode or the positive electrode.
  • the solid content concentration of SBR (styrene-butadiene copolymer) which is a negative electrode binder is 40 to 55% by mass.
  • the solid content concentration of the fluoroacrylic emulsion as a binder is 20 to 50% by mass, preferably 27 to 33% by mass.
  • the binder for an electrochemical device electrode of the present invention is not particularly limited as long as it is obtained by polymerizing a polymerizable monomer, and can be used as a binder for a positive electrode or a negative electrode.
  • the binder described in Japanese Patent No. 3999927 can be exemplified.
  • a polymer obtained by polymerizing a polymerizable monomer composed of vinylidene fluoride, a fluorine-containing monomer copolymerizable with vinylidene fluoride, or a hydrocarbon monomer such as ethylene or propylene. can be included.
  • fluorine-containing monomer copolymerizable with vinylidene fluoride examples include vinyl fluoride, trifluoroethylene, trifluorochloroethylene, tetrafluoroethylene, hexafluoropropylene, and fluoroalkyl vinyl ether.
  • monomers other than the above-mentioned monomers include unsaturated dibasic acid monoesters, vinylene carbonate, and the like.
  • unsaturated dibasic acid monoesters include maleic acid monomethyl ester, maleic acid monoethyl ester, citraconic acid monomethyl ester, and citraconic acid monoethyl ester.
  • binder for the negative electrode examples include those described in JP 2010-129186 A. Specific examples include those containing a polymer obtained by polymerizing a polymerizable monomer comprising a conjugated diene, an aromatic vinyl compound, a (meth) acrylate compound, an ethylenically unsaturated carboxylic acid, or the like. .
  • conjugated diene examples include 1,3-butadiene, isoprene, 2-chloro-1,3-butadiene, chloroprene and the like. Of these, 1,3-butadiene is preferred.
  • the proportion of the conjugated diene used in the total amount of the polymerizable monomer is preferably 33 to 48.5% by mass, and more preferably 35 to 45% by mass.
  • the use ratio is less than 33% by mass, the obtained polymer has a high glass transition temperature, and the flexibility of the obtained electrode layer and the adhesion to the current collector tend to be lowered.
  • the content exceeds 48.5% by mass the surface of the obtained electrode layer tends to be sticky, and therefore the workability of the electrode layer sticking to a roll during press working may be inferior. There is.
  • the aromatic vinyl compound examples include styrene, ⁇ -methylstyrene, p-methylstyrene, vinyltoluene, chlorostyrene, divinylbenzene and the like. Among these, styrene is preferable.
  • the use ratio of the aromatic vinyl compound in the total amount of the polymerizable monomer is preferably 40 to 50% by mass, and more preferably 43 to 48% by mass. When the use ratio is less than 40% by mass, the interaction with the graphite used as the active material is reduced, and as a result, the obtained electrode layer tends to easily lose the active material. On the other hand, when it is more than 50% by mass, the obtained polymer is hard and brittle, and the flexibility of the obtained electrode layer and the adhesion to the current collector tend to be lowered.
  • Examples of the (meth) acrylate compound include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl ( (Meth) acrylate, n-amyl (meth) acrylate, i-amyl (meth) acrylate, hexyl (meth) acrylate, 2-hexyl (meth) acrylate, octyl (meth) acrylate, i-nonyl (meth) acrylate, decyl ( Examples include meth) acrylate, hydroxymethyl (meth) acrylate, hydroxyethyl (meth) acrylate, and ethylene glycol (meth) acrylate. Among these, methyl (meth) acrylate, n-butyl (meth) acrylate
  • the proportion of the (meth) acrylate compound used in the total amount of the polymerizable monomer is preferably 8 to 12.5% by mass, and more preferably 9 to 12% by mass.
  • the use ratio is less than 8% by mass, the obtained polymer has low affinity with the electrolytic solution, and the binder tends to be an electric resistance component in the electrochemical device. Therefore, the device internal resistance tends to increase.
  • the content is 12.5% by mass, the obtained polymer has excessive absorption of the electrolytic solution, and the binding property is easily lost in the electrochemical device. For this reason, the battery is likely to be deteriorated during high-temperature storage.
  • Examples of the ethylenically unsaturated carboxylic acid include (meth) acrylic acid and itaconic acid.
  • the use ratio of the ethylenically unsaturated carboxylic acid in the total amount of the polymerizable monomer is preferably 0.1 to 20% by mass, and more preferably 0.2 to 15% by mass.
  • the use ratio is less than 0.1% by mass, the dispersion stability of the polymer particles is insufficient when the slurry for an electrochemical device electrode is prepared, and aggregates are easily generated. Therefore, there is a tendency that problems such as a decrease in the adhesion of the resulting electrode layer to the current collector tend to occur.
  • it exceeds 20% by mass the slurry viscosity increases with time in the storage process after the preparation of the slurry for electrochemical device electrodes, and the slurry tends to be inferior in coatability.
  • polymerizable monomers include, in addition to the above monomers, alkyl amides of ethylenically unsaturated carboxylic acids such as (meth) acrylamide and N-methylol acrylamide; vinyl carboxylates such as vinyl acetate and vinyl propionate.
  • Esters acid anhydrides, monoalkyl esters, monoamides of ethylenically unsaturated dicarboxylic acids; aminoalkyl amides of ethylenically unsaturated carboxylic acids such as aminoethyl acrylamide, dimethylaminomethyl methacrylamide, methylaminopropyl methacrylamide; ) Vinyl cyanide compounds such as acrylonitrile and ⁇ -chloroacrylonitrile.
  • the binder for electrochemical device electrodes of the present invention may contain an emulsifier, a polymerization initiator, a molecular weight regulator, etc. used in the polymerization step described later, in addition to the polymer.
  • the method for producing a binder for an electrochemical device electrode of the present invention is a method for producing the above-described binder for an electrochemical device electrode of the present invention, and a reaction liquid containing a polymer is obtained by polymerizing a polymerizable monomer. Then, the obtained reaction solution is filtered using a depth type or pleat type filter. Since it has such a process, the separator is damaged by the particles contained in the binder (that is, the separator is penetrated by the particles), and the electrode forming the electrochemical device that has a very low incidence of defects and high safety is formed. Thus, a binder for an electrochemical device electrode can be produced.
  • the electrode binder is usually manufactured in a place that is not in a maintained environment such as a clean room.
  • Polymerization step In the method for producing a binder for an electrochemical device electrode of the present invention, a conventionally known method can be adopted as a method for obtaining a reaction solution containing a polymer by polymerizing a polymerizable monomer (polymerization step). .
  • a conventionally known method can be adopted as a method for obtaining a reaction solution containing a polymer by polymerizing a polymerizable monomer (polymerization step).
  • methods described in JP 2010-129186 A, JP 3999927 A, and the like can be mentioned.
  • a reaction liquid containing a polymer is obtained by polymerizing a polymerizable monomer such as vinylidene fluoride by a method such as suspension polymerization, emulsion polymerization, or solution polymerization.
  • a method such as suspension polymerization, emulsion polymerization, or solution polymerization.
  • the method of obtaining can be mentioned.
  • aqueous suspension polymerization and emulsion polymerization are preferable from the viewpoint of ease of post-treatment and the like, and aqueous suspension polymerization is particularly preferable.
  • suspending agent for example, methyl cellulose, methoxylated methyl cellulose, propoxylated methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol, polyethylene oxide, gelatin and the like can be used as a suspending agent.
  • the suspending agent is preferably added in the range of 0.005 to 1.0% by mass, and preferably in the range of 0.01 to 0.4% by mass with respect to the dispersion medium (eg water). Is more preferable.
  • polymerization initiator examples include diisopropyl peroxydicarbonate, dinormalpropyl peroxydicarbonate, dinormalheptafluoropropyl peroxydicarbonate, isobutyryl peroxide, di (chlorofluoroacyl) peroxide, and di (perfluoro). Acyl) peroxide and the like can be used.
  • the amount of the polymerization initiator used is preferably 0.1 to 5 parts by mass, more preferably 0.3 to 3 parts by mass with respect to 100 parts by mass of the total amount of polymerizable monomers. .
  • a chain transfer agent may be added.
  • the chain transfer agent include ethyl acetate, methyl acetate, acetone, ethanol, n-propanol, acetaldehyde, propyl aldehyde, ethyl propionate, tetra
  • examples thereof include carbon chloride.
  • the amount of the chain transfer agent used is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the total amount of polymerizable monomers. preferable.
  • the total charged amount of the polymerizable monomers is preferably 1: 1 to 1:10, and preferably 1: 2 to 1: 5 in terms of the total amount of polymerizable monomers: dispersion medium. Is more preferable.
  • the polymerization conditions can be 10 to 50 ° C. and 10 to 100 hours.
  • a method for obtaining a reaction liquid containing a polymer by emulsion polymerization of a polymerizable monomer in an aqueous medium in the presence of an emulsifier, a polymerization initiator, and a molecular weight regulator can be mentioned.
  • anionic surfactants As the emulsifier, anionic surfactants, nonionic surfactants, amphoteric surfactants and the like can be used alone or in combination of two or more.
  • anionic surfactant sulfates of higher alcohols, alkylbenzene sulfonates, aliphatic sulfonates, sulfates of polyethylene glycol alkyl ethers, and the like can be used.
  • nonionic surfactant an alkyl ester type of polyethylene glycol, an alkyl ether type, an alkylphenyl ether type, or the like can be used.
  • amphoteric surfactants include those in which the anion moiety is a carboxylate salt, sulfate ester salt, sulfonate salt, or phosphate ester salt, and the cation moiety is an amine salt or a quaternary ammonium salt.
  • examples include amino acids such as bentines such as lauryl betaine and stearyl betaine, lauryl- ⁇ -alanine, lauryl di (aminoethyl) glycine, and octyldi (aminoethyl) glycine.
  • the amount of the emulsifier used is preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the total amount of polymerizable monomers used.
  • polymerization initiator examples include water-soluble polymerization initiators such as sodium persulfate, potassium persulfate, and ammonium persulfate, and oil-soluble polymerization initiators such as benzoyl peroxide, lauryl peroxide, and 2,2′-azobisisobutyronitrile.
  • Redox polymerization initiators in combination with a reducing agent such as sodium bisulfite can be used alone or in combination of two or more.
  • the amount of the polymerization initiator used is preferably 0.3 to 3 parts by mass with respect to 100 parts by mass of the total amount of polymerizable monomers.
  • molecular weight modifiers examples include halogenated hydrocarbons such as chloroform and carbon tetrachloride, mercaptans such as n-hexyl mercaptan, n-octyl mercaptan, n-todecyl mercaptan, t-dotezyl mercaptan and thioglycolic acid, dimethyl Those used in usual emulsion polymerization such as xanthogens such as xanthogen disulfide and diisopropylxanthogen disulfide, terpinolene and ⁇ -methylstyrene dimer can be used.
  • the usage-amount of a molecular weight regulator is 5 mass parts or less normally with respect to 100 mass parts of whole quantity of a polymerizable monomer.
  • the emulsion polymerization may be one-stage, but is preferably a two-stage emulsion polymerization.
  • the first stage emulsion polymerization preferably has a polymerization temperature of, for example, 40 to 80 ° C., a polymerization time of, for example, 2 to 4 hours, and a polymerization conversion rate of 50% or more. It is preferable that it is 60% or more.
  • the polymerization temperature is, for example, 40 to 80 ° C.
  • the polymerization time is, for example, 2 to 6 hours.
  • the polymer in the resulting reaction solution is not particularly limited as long as the electrochemical device electrode binder of the present invention exhibits a function as a binder, but the number average particle diameter is preferably 50 to 400 nm, More preferably, it is 100 to 300 nm.
  • the “number average particle size” in the present specification is a value measured by a concentrated particle size analyzer “FPAR-1000” (trade name) (manufactured by Otsuka Electronics Co., Ltd.).
  • the polymer preferably has a glass transition temperature of ⁇ 50 to + 25 ° C., more preferably ⁇ 30 to + 5 ° C.
  • glass transition temperature means that a polymer film is formed by applying a binder to a glass plate and drying at 120 ° C. for 1 hour. It is a glass transition temperature (Tg) measured using a meter (for example, “differential scanning calorimeter” manufactured by Seiko Denshi Kogyo Co., Ltd.).
  • the depth type filter is a high-precision filtration filter also referred to as a depth filtration or volume filtration type filter.
  • depth type filters include those having a laminated structure in which filtration membranes having a large number of pores are laminated, and those in which fiber bundles are wound up.
  • Specific examples of depth type filters include Profile II, Nexis NXA, Nexis NXT, Polyfine XLD, Ultiplez Profile, etc. (all manufactured by Nippon Pole), depth cartridge filters, wind cartridge filters, etc. (all, Advantech) Co., Ltd.), CP filter, BM filter, etc. (all manufactured by Chisso Corporation), slope pure, diamond, micro-Syria, etc. (all manufactured by Loki Techno Co.), and the like.
  • the depth type filter it is preferable to use a filter having a rated filtration accuracy of 1.0 to 20 ⁇ m, and more preferably 5.0 to 10 ⁇ m.
  • a filter having a rated filtration accuracy within the above range, it is possible to efficiently obtain a filtrate in which the number of particles having a particle diameter of 20 ⁇ m or more per mL when measured with a particle counter is zero. Also, the usable period of the filter is extended because the number of coarse particles trapped in the filter is minimized.
  • the pleated type filter is formed by fold-folding a microfiltration membrane sheet made of non-woven fabric, filter paper, metal mesh, etc., and then forming into a cylindrical shape and sealing the crease seam of the sheet in a liquid-tight manner, and It is a cylindrical high-precision filtration filter obtained by sealing both ends of a cylinder liquid-tightly.
  • a filter having a rated filtration accuracy of 1.0 to 20 ⁇ m is preferably used, and a filter having a rating of 5.0 to 10 ⁇ m is more preferable.
  • a filter having a rated filtration accuracy within the above range it is possible to efficiently obtain a filtrate in which the number of particles having a particle diameter of 20 ⁇ m or more per mL when measured with a particle counter is zero. Also, the usable period of the filter is extended because the number of coarse particles trapped in the filter is minimized.
  • pleat type filters include HDCII, Polyfine II, etc. (all manufactured by Nippon Pole), PP pleated cartridge filter (manufactured by Advantech), Porous Fine (manufactured by Chisso), Sirton Pore, Micropure, etc (All manufactured by Loki Techno Co., Ltd.).
  • the filtration conditions are as follows.
  • a filtrate with 0 particles having a particle diameter of 20 ⁇ m or more per mL is obtained.
  • the differential pressure may be set as appropriate within a range that does not exceed the maximum differential pressure resistance of the filter to be used.
  • the differential pressure is preferably 0.2 to 0.4 MPaG.
  • the liquid temperature is preferably 10 to 50 ° C.
  • the filtration step can be performed using, for example, a filtration device 100 as shown in FIG.
  • the filtration device 100 includes a supply tank 1 for storing and supplying an electrochemical device electrode binder before foreign matter removal, a metering pump 2 for flowing the electrochemical device electrode binder before foreign matter removal at a constant flow rate, and a cartridge filter. (Not shown) and a filter 4 having a housing in which the cartridge filter is housed (mounted), a pulsation preventer 3 located in the middle of the metering pump 2 and the filter 4, a pulsation preventer 3 and a filter 4
  • positioned downstream of the filter 4 are provided.
  • the filtration device 100 includes a return conduit 6 that returns the binder from the filter 4 to the supply tank 1, and a discharge conduit 5 that discharges the binder for an electrochemical device electrode filtered by the filter 4.
  • the reaction solution obtained in the polymerization step is supplied from the supply tank 1 to the pulsation preventer 3 that has been pressurized by the metering pump 2.
  • the pulsation is reduced by the pulsation preventer 3.
  • the reaction liquid discharged from the pulsation preventer 3 is supplied to the filter 4 and removed through the discharge conduit 5 after removing foreign substances.
  • the recovered liquid recovered is an electrochemical device electrode binder.
  • “foreign matter” means particles having a particle diameter of 20 ⁇ m or more.
  • the material of the particles is not particularly limited as long as the particle diameter is 20 ⁇ m or more, and is a metal, a resin, a mixture thereof, or the like.
  • the recovered liquid is returned to the supply tank 1 through the return conduit 6 without returning to the electrochemical device electrode binder, and the filter 4 again. It can also be filtered. Moreover, when the pulsation by the metering pump 2 does not occur, the pulsation preventer 3 may not be disposed. Furthermore, when the viscosity of the reaction solution is high, the viscosity of the reaction solution can be lowered by heating the supply tank, the conduit, or both of them. That is, you may further provide the heating means which can heat a supply tank, a conduit
  • the filtration apparatus 100 is provided with the 1st pressure gauge 7a and the 2nd pressure gauge 7b, you may use the filtration apparatus which is not provided with a pressure gauge. However, by providing the first pressure gauge 7a and the second pressure gauge 7b, the differential pressure generated in the filter can be managed so that the filter functions normally. Moreover, it may replace with the supply tank 1 and may supply the binder for electrochemical device electrodes before foreign material removal directly from the container for conveyance.
  • the filtration apparatus 100 is an example using the single filter 4, a several filter can also be used. When using a some filter, a some filter may be connected in series and you may arrange
  • the method for storing a binder for an electrochemical device electrode of the present invention can store the binder for an electrochemical device electrode containing polymer particles and water well (that is, in a state where no foreign matter is generated) for a long period of time.
  • save method of this invention can be suitably employ
  • the polymer contained in the binder for an electrochemical device electrode contains a polymer that easily aggregates (for example, a fluorine-based polymer), the preservation method of the present invention exhibits a better effect.
  • the electrochemical device electrode binder In the storage method of the present invention, it is essential to store the electrochemical device electrode binder at a temperature of 2 to 30 ° C., preferably 10 to 25 ° C.
  • the upper limit of the above range When the upper limit of the above range is exceeded, polymer particles aggregate at the portion of the interface between the void and the electrochemical device electrode binder that contacts the wall surface of the container during long-term storage, and foreign matter is generated. Therefore, it cannot be stored stably for a long time.
  • polymer particles aggregate in the binder for an electrochemical device electrode, and a gel or foreign matter is generated. Therefore, it cannot be stored stably for a long time.
  • the inner volume of the container is equal to the volume of the void portion excluding the volume occupied by the binder for the electrochemical device electrode from the inner volume of the container filled with the electrochemical device electrode binder. It is essential that the ratio (%) (hereinafter also referred to as “porosity”) is 1 to 20%, preferably 3 to 15%, more preferably 5 to 10%.
  • porosity exceeds the upper limit of the above range, the volatilization amount of water increases when the storage temperature changes, and as a result, the amount of vapor is increased at the gas-liquid interface (the interface between the void and the electrochemical device electrode binder). Aggregation of coalesced particles occurs and foreign matter is generated. Therefore, it cannot be stably stored.
  • the porosity is less than the lower limit of the above range, when the volume of the electrochemical device electrode binder changes due to a change in storage temperature, the container is deformed or the container is ruptured. Therefore, it cannot be stably stored.
  • the oxygen concentration in the void is preferably 1% or less.
  • the binder component the component contained in the binder for electrochemical device electrodes
  • the oxygen concentration is a value obtained by measuring the concentration in the void immediately before sealing the container using an oxygen concentration meter (model number “OXY-1S” manufactured by Jiko Co., Ltd.).
  • the elution rate of metal ions from the container for storing the binder for an electrochemical device electrode is 50 ppm or less.
  • the metal ions are eluted in the electrochemical device electrode binder, the zeta potential balance on the particle surface contributing to the dispersion of the polymer particles in the electrochemical device electrode binder is lost. For this reason, aggregation easily occurs.
  • the polymer particles aggregated in this way are contained, a smooth active material layer cannot be formed, or when producing an electricity storage device, the aggregated polymer particles break through the separator, and the positive electrode and the negative electrode This is not preferable because there is a high possibility of causing a fatal problem such as short-circuiting the circuit.
  • a container made of glass or resin is preferable.
  • a clean container manufactured according to JP-A-59-035043 can be preferably used.
  • the quality of the binder for an electrochemical device electrode hardly changes during storage even if the storage period is sequentially extended to June, December, and 18 months. Moreover, a gel-like thing is not produced. For this reason, the same active material layer can be formed on the same conditions as forming an active material layer using the binder for electrochemical device electrodes immediately after manufacture. Moreover, the effect which can improve the productivity of the binder for electrochemical device electrodes becomes so large that a storage period becomes long in June, December, and 18 months.
  • the slurry for an electrochemical device electrode of the present invention contains the above-mentioned binder for an electrochemical device electrode of the present invention and an electrode active material. Since such a slurry for an electrochemical device electrode contains the binder for an electrochemical device electrode of the present invention, the separator is damaged by the particles contained in the binder (that is, the separator is penetrated by the particles). ) It can be used as a material for forming an electrode constituting an electrochemical device having a very low defect occurrence rate and high safety.
  • the slurry for an electrochemical device electrode of the present invention can be prepared by mixing the binder for an electrochemical device electrode of the present invention and an electrode active material.
  • Electrode active material is not particularly limited. When used for lithium ion secondary battery electrodes, by firing carbon, carbon materials obtained by firing organic polymer compounds such as phenolic resin, polyacrylonitrile, cellulose, etc. The obtained carbon material, artificial graphite, natural graphite and the like can be used. Moreover, when using for an electric double layer capacitor electrode, activated carbon, activated carbon fiber, silica, alumina, etc. can be used. Further, when used for a lithium ion capacitor electrode, a carbon material such as graphite, non-graphitizable carbon, hard carbon, coke, polyacene organic semiconductor (PAS), or the like can be used.
  • PES polyacene organic semiconductor
  • the slurry for electrochemical device electrodes of the present invention includes thickeners, dispersants such as sodium hexametaphosphate, sodium tripolyphosphate, sodium polyacrylate, nonionic or anionic surfactants as latex stabilizers, Additives such as foaming agents may be contained.
  • the solid content in the electrode binder is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the electrode active material. Is more preferably 3 to 3 parts by mass, particularly preferably 0.3 to 3 parts by mass, and most preferably 0.5 to 2 parts by mass.
  • the ratio of the solid content of the electrode binder is too small, good adhesion tends not to be obtained.
  • the ratio of the solid content of the binder for electrodes is excessive, the overvoltage tends to increase and affect the battery characteristics.
  • the favorable adhesiveness of an electrode layer and a collector may not be acquired as the said content rate is less than 0.1 mass part.
  • it exceeds 10 parts by mass it may be difficult to sufficiently improve battery characteristics.
  • the slurry for electrochemical device electrodes of the present invention as means for mixing the binder for electrochemical device electrodes, the electrode active material, and the additive used as necessary, a stirrer, a defoamer, a bead mill, A high-pressure homogenizer can be used.
  • the electrode slurry can be prepared under reduced pressure. By carrying out under reduced pressure, it can prevent that a bubble arises in the electrode layer obtained.
  • Electrochemical device electrode The electrochemical device electrode of the present invention is arranged on a plate-like current collector and one surface side of the current collector, and the above-described slurry for an electrochemical device electrode of the present invention is disposed on one surface of the current collector.
  • An electrode layer obtained by coating Since such an electrochemical device electrode includes an electrode layer obtained by applying the slurry for an electrochemical device electrode of the present invention to one surface of a current collector, a separator is formed by particles contained in the binder. It is possible to construct an electrochemical device that has a very low occurrence rate of defects that are damaged (that is, the separator is penetrated by particles) and that is highly safe.
  • the method for producing an electrochemical device electrode of the present invention is as follows.
  • the above-described slurry for an electrochemical device electrode of the present invention is applied to the surface of a flat plate current collector and dried to form a coating film on the current collector. Form a laminate. Thereafter, the obtained laminate is pressed in the thickness direction. In this way, the electrochemical device electrode of the present invention can be produced.
  • the composition may be applied to the current collector.
  • the current collector As the current collector, a metal foil, an etching metal foil, an expanded metal, or the like can be used. As a material constituting the current collector, a material selected from metal materials such as aluminum, copper, nickel, tantalum, stainless steel, and titanium can be appropriately selected and used according to the type of the target electrochemical device.
  • the current collector has a thickness of 5 to 30 ⁇ m, preferably 8 to 25 ⁇ m, for example, when an electrode for a lithium secondary battery is formed. For example, in the case of constituting an electrode for an electric double layer capacitor, the thickness is 5 to 100 ⁇ m, preferably 10 to 70 ⁇ m, more preferably 15 to 30 ⁇ m.
  • Electrode layer As described above, the electrode layer is disposed on one surface (for example, the surface) side of the current collector, and is obtained by applying the slurry for an electrochemical device electrode of the present invention to one surface of the current collector. is there.
  • a method of applying the slurry for an electrochemical device electrode a conventionally known method can be appropriately employed. For example, a spin coating method (spin coating method), a casting coating method, a roll coating method, a slit & spin coating method, a doctor blade method, a reverse roll method, a comma bar method, a gravure method, an air knife method and the like can be mentioned.
  • the treatment temperature is preferably 20 to 250 ° C., for example, and more preferably 50 to 150 ° C.
  • the treatment time is preferably 1 to 120 minutes, for example, and more preferably 5 to 60 minutes.
  • the electrode layer thus formed has, for example, a thickness of 40 to 100 ⁇ m and a density of 1.3 to 2.0 g / cm 2 .
  • Electrochemical device The electrochemical device electrode obtained as described above can be suitably used as an electrode of an electrochemical device such as a lithium ion secondary battery, an electric double layer capacitor, or a lithium ion capacitor. Electrochemical devices are generally formed on the current collector and the surface of the current collector, and are formed on the surface of the current collector and the current collector. And a separator disposed between the positive electrode and the negative electrode, and the thickness of the separator is usually 10 to 10 as described above. 30 ⁇ m. If the thickness of the separator is less than 10 ⁇ m, the separator is easily damaged by vibration or the like, which may cause a failure of the electrochemical device.
  • the separator is made of a porous film, and examples of the material thereof include polypropylene and polyethylene.
  • LiClO 4 LiBF 4, LiI , LiPF 6, LiCF 3 SO 3, LiAsF 6, LiSbF 6, LiAlCl 4, LiCl, LiBr, LiB (C 2 H 5) 4, LiCH 3 SO 3, LiC 4 F 9 SO 3, Li ( C 4 F 3 SO 2) 2 N, Li [(CO 2) 2] such as 2 B and the like.
  • solvent examples include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate, lactones such as ⁇ -butyrolactone, trimethoxysilane, 1,2-dimethoxyethane, and diethyl ether.
  • carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate
  • lactones such as ⁇ -butyrolactone, trimethoxysilane, 1,2-dimethoxyethane, and diethyl ether.
  • Ethers such as 2-ethoxyethane, tetrahydrofuran and 2-methyltetrahydrofuran, sulfoxides such as dimethyl sulfoxide, oxolanes such as 1,3-dioxolane and 4-methyl-1,3-dioxolane, nitrogen such as acetonitrile and nitromethane Containing compounds, esters such as methyl formate, methyl acetate, butyl acetate, methyl propionate, ethyl propionate, phosphate triester, diglyme, triglyme, tetrag Glymes such as Im, ketones such as acetone, diethyl ketone, methyl ethyl ketone, methyl isobutyl ketone, sulfones such as sulfolane, oxazolidinones such as 2-methyl-2-oxazolidinone, 1,3-propane sultone, 4-butane
  • an electrolyte such as tetraethylammonium tetrafluoroborate, triethylmethylammonium tetrafluoroborate, tetraethylammonium hexafluorophosphate is contained in the solvent.
  • a dissolved electrolytic solution is used.
  • the same electrolytic solution as in the case of forming the lithium ion secondary battery can be used.
  • the binder is measured using a dense particle size analyzer “FPAR1000” (manufactured by Otsuka Electronics Co., Ltd.) with an autosampler.
  • FPAR1000 dense particle size analyzer
  • the electrochemical device electrode binder after removing the foreign matter has no change in various properties as a binder (that is, for the electrochemical device electrode). It can be evaluated that the same function as a conventional binder is maintained as a binder.
  • the particle counter is measured using a particle count particle size distribution measuring device “Accurizer 780APS” manufactured by Particle Sizing Systems. Specifically, the number of coarse particles to be measured is “4000 particles / mL (0.56 ⁇ m)” (that is, “4000 particles having a particle diameter larger than 0.56 ⁇ m in 1 mL or less”). Repeat the blank measurement with ultrapure water. Thereafter, 100 mL of a binder (sample) diluted 100 times with ultrapure water is prepared, and this sample is set in the particle size distribution analyzer. After the setting, the sample is automatically diluted to the optimum concentration by the particle size distribution analyzer. Thereafter, the particle size distribution measuring device measures the number of particles per mL of the sample twice, and calculates an average value. This average value is multiplied by 100 to obtain the number of particles per 1 mL of binder.
  • the prepared slurry for electrochemical devices is uniformly applied to the surface of a copper foil current collector (flat current collector) by a doctor blade method so that the film thickness after drying becomes 100 ⁇ m. And a drying treatment at 120 ° C. for 20 minutes to form a dry slurry layer on the surface of the current collector. Thereafter, the current collector on which the dry slurry layer is formed on the surface is pressed with a roll press so that the density of the obtained electrode layer is 1.5 g / cm 3 . In this way, a negative electrode comprising the current collector and the electrode layer formed on the surface (one surface) of the current collector is prepared.
  • the slurry for positive electrode is prepared by stirring and mixing sequentially.
  • the prepared slurry for positive electrode is uniformly applied to the surface of a current collector (flat plate current collector) made of aluminum foil by a doctor blade method so that the film thickness after drying becomes 90 ⁇ m. Drying is carried out at 20 ° C. for 20 minutes to form a dry slurry layer on the surface of the current collector. Thereafter, the current collector with the dry slurry layer formed on the surface thereof is pressed by a roll press so that the density of the obtained electrode layer is 3.8 g / cm 3 . In this way, a positive electrode comprising the current collector and the electrode layer formed on the surface (one surface) of the current collector is produced.
  • a secondary battery composed of a bipolar single-layer laminate cell is manufactured by joining and sealing one unbonded side of the outer package by thermocompression bonding with a heating sealing device.
  • Example 1 In a temperature-controlled reactor equipped with a stirrer, 200 parts of water, 0.1 part of sodium dodecylbenzenesulfonate, 1.0 part of potassium persulfate, 0.5 part of sodium bisulfite, ⁇ -methylstyrene dimer 0 .2 parts, 0.1 parts of dodecyl mercaptan, 6.0 parts of butadiene as the conjugated diene, 12.5 parts of styrene as the aromatic vinyl compound, 3.5 parts of methyl methacrylate as the (meth) acrylate compound, ethylenically unsaturated carboxylic acid
  • a polymerizable monomer (monomer composition (a)) consisting of 0.5 part of acrylic acid and 2.5 parts of itaconic acid was charged at a temperature of 70 ° C. The temperature was raised and the polymerization reaction was carried out for 2 hours (first stage).
  • the pH of the obtained latex was adjusted to 7.5, residual monomers were removed by steam distillation, and concentrated by vacuum treatment. Thereafter, it was subjected to a Sato-type vibrating screen machine “1200D-1S special type” (manufactured by Koei Sangyo Co., Ltd.) equipped with a 250 mesh filter to obtain a binder for an electrochemical device electrode before foreign matter removal.
  • the obtained binder for an electrochemical device electrode before removing foreign matter had a solid concentration of 48.5% by mass, a pH of 7.8, and a viscosity of 119 mPa ⁇ s.
  • a filtration apparatus 100 shown in FIG. 1 includes a supply tank 1 for storing and supplying an electrochemical device electrode binder before foreign matter removal, and a metering pump 2 for flowing the electrochemical device electrode binder before foreign matter removal at a constant flow rate.
  • a filter 4 having a cartridge filter (not shown) and a housing containing (mounting) the cartridge filter, a pulsation preventer 3 located in the middle of the metering pump 2 and the filter 4, and a pulsation preventer 3
  • a first pressure gauge 7 a disposed between the filter 4 and a second pressure gauge 7 b disposed downstream of the filter 4 is provided.
  • the filtration device 100 includes a return conduit 6 that returns the binder from the filter 4 to the supply tank 1, and a discharge conduit 5 that discharges the binder for an electrochemical device electrode filtered by the filter 4.
  • the filter 4 is one in which a depth type cartridge filter “Profile II” (manufactured by Nippon Pall Co., Ltd., rated filtration accuracy 10 ⁇ m, length 1 inch) is mounted in the housing.
  • the metering pump 2 was an air-driven diaphragm pump, and the differential pressure before and after the filter was 0.34 MPaG.
  • the number average particle diameter in the binder for electrochemical device electrodes after filtration by the filtration apparatus 100 shown in FIG. 1 was 177 nm.
  • the number average particle diameter is a value measured by a concentrated particle size analyzer “FPAR1000” (manufactured by Otsuka Electronics Co., Ltd.) with an autosampler.
  • the binder for an electrochemical device electrode after filtration by the filtration apparatus 100 shown in FIG. The evaluation results are shown in Table 1.
  • the binder for an electrochemical device electrode after filtration by the filtration device 100 is the number of particles having a particle diameter of 20 ⁇ m or more per mL when measured with a particle counter, and the particle diameter is 15 ⁇ m.
  • the number of particles having a particle diameter of less than 20 ⁇ m and the number of particles having a particle diameter of more than 10 ⁇ m and less than 15 ⁇ m were all zero.
  • Example 2 In the same manner as in Example 1, a binder for an electrochemical device electrode before removing foreign matters was obtained. About the obtained binder for electrochemical device electrodes before foreign material removal, it filtered using the filtration apparatus. The filtration device used in this example was replaced with a depth type cartridge filter “Profile II” (manufactured by Nihon Pall Co., Ltd., rated filtration accuracy 10 ⁇ m, length 1 inch) of the filtration device 100 shown in FIG. A type cartridge filter “Profile II” (manufactured by Nippon Pole Co., Ltd., rated filtration accuracy 20 ⁇ m, length 1 inch) was used. The differential pressure before and after the filter was 0.25 MPaG. Moreover, the number average particle diameter in the binder for electrochemical device electrodes after filtration was 177 nm. Said various evaluation was performed about the binder for electrochemical device electrodes after filtration with a filtration apparatus. The evaluation results are shown in Table 2.
  • Example 2 (Comparative Example 2) The above-mentioned various evaluations were carried out in the same manner as in Example 2 with respect to the “binder for electrochemical device electrode before removing foreign matter” before filtration by the filtration device used in Example 2. The evaluation results are shown in Table 2.
  • Example 3 In the same manner as in Example 1, a binder for an electrochemical device electrode before removing foreign matters was obtained.
  • the obtained binder for an electrochemical device electrode before removing the foreign matter was filtered using the filtration apparatus 100 shown in FIG.
  • the differential pressure before and after filtration was set to 0.38 MPaG, and the filtrate was sampled 5 minutes after the start of filtration by the filtration device 100, and the various evaluations were performed.
  • the evaluation results are shown in Table 3.
  • the number average particle diameter in the binder for electrochemical device electrodes after filtration was 177 nm.
  • Example 4 The filtrate (electrochemical device electrode binder after filtration by a filtration device) was sampled in the same manner as in Example 3 except that the filtrate after 10 minutes from the start of filtration was sampled. Said various evaluation was performed about the obtained filtrate. The evaluation results are shown in Table 3. In addition, the number average particle diameter in the binder for electrochemical device electrodes after filtration was 177 nm.
  • Example 5 The filtrate (electrochemical device electrode binder after filtration by a filtration apparatus) was sampled in the same manner as in Example 3 except that the filtrate 15 minutes after the start of filtration was sampled. Said various evaluation was performed about the obtained filtrate. The evaluation results are shown in Table 3. In addition, the number average particle diameter in the binder for electrochemical device electrodes after filtration was 177 nm.
  • Example 3 (Comparative Example 3) The above-mentioned various evaluations were performed in the same manner as in Example 3 with respect to the “binder for electrochemical device electrode before foreign matter removal” before filtration by the filtration device used in Example 3. The evaluation results are shown in Table 3. In addition, the number average particle diameter in the binder for electrochemical device electrodes after filtration was 177 nm.
  • the electrochemical device electrode binders of Examples 1 to 5 were more defective than the electrochemical device electrode binders of Comparative Examples 1 to 3 to break the separator. It was confirmed that the material can be used as a material for constituting an electrode of an electrochemical device having a very low rate and high safety.
  • Example 6 to 10 Comparative Examples 4 to 10
  • JSR TRD2001 manufactured by JSR
  • Example 8 to 10 and Comparative Examples 8 to 10 Table 5
  • each electrochemical device electrode binder produced in Examples 1 to 3 electrochemical device electrode binder after filtration was used to evaluate the presence or absence of hard shorts and the yield rate according to the method described above. did. Furthermore, the [six months storage stability] shown below was evaluated.
  • Table 4 shows the storage temperature (° C.), the ratio of the volume of the void to the internal volume of the container (void ratio (%)), and the oxygen concentration in the gas remaining in the void. , 5 conditions. Then, let stand and store for 6 months. After storage for 6 months, the presence or absence of foreign matter in the binder for electrochemical device electrodes and the container mode are visually observed and evaluated. The evaluation results are shown in Tables 4 and 5. The oxygen concentration was adjusted by placing the electrochemical device electrode binder in a storage container and then blowing high-purity nitrogen into the container to replace the nitrogen.
  • cleaning bottle indicates a 20-liter square can type clean bottle commercially available from Aicello.
  • Wash polycontainer refers to the inside of a commercially available 20-liter square can-type polypropylene container washed in pure room with pure water.
  • Metal can indicates a commercially available metal can.
  • the storage method of the present invention was effective as a storage method capable of preventing the generation of foreign substances such as aggregates. That is, according to the storage method of the present invention, it was confirmed that foreign substances such as aggregates are hardly generated during the storage of the binder for an electrochemical device electrode, and the yield of the manufactured electrode can be improved.
  • the binder for an electrochemical device electrode of the present invention is suitable as a material for an electrode constituting an electrochemical device used as a power source for driving electronic equipment, for example.
  • the slurry for an electrochemical device electrode of the present invention is suitable as a material for an electrode constituting an electrochemical device used as a power source for driving an electronic device, for example.
  • the electrochemical device electrode of the present invention is suitable as an electrode constituting an electrochemical device used as a power source for driving electronic equipment, for example.
  • the method for producing an electrochemical device electrode binder is, for example, a method for producing an electrochemical device electrode binder as an electrode material constituting an electrochemical device used as a power source for driving electronic equipment.
  • the method for preserving the binder for an electrochemical device electrode is suitable as a method for preserving the binder for an electrochemical device electrode that is a material of an electrode constituting an electrochemical device used as a power source for driving an electronic device, for example.
  • 1 supply tank
  • 2 metering pump
  • 3 anti-pulsation device
  • 4 filter
  • 5 discharge conduit
  • 6 return conduit
  • 7a first pressure gauge
  • 7b second pressure gauge
  • 100 filtration device

Abstract

Provided is an electrochemical device electrode binder that can be used as a material for forming an electrode for configuring an electrochemical device that has a high safety level and a very low occurrence rate of faults such as separator damage. The electrochemical device electrode binder is obtained by polymerizing a polymerizable monomer, and when measured using a particle counter, the number of particles in 1mL having a particle diameter greater than or equal to 20μm is zero.

Description

電気化学デバイス電極用バインダー、その製造方法、及び電気化学デバイス電極用バインダーの保存方法Binder for electrochemical device electrode, method for producing the same, and storage method for binder for electrochemical device electrode
 本発明は、電気化学デバイス電極用バインダー、その製造方法、電気化学デバイス電極用バインダーの保存方法、電気化学デバイス電極用スラリー、及び電気化学デバイス電極に関する。更に詳しくは、正極と負極を分けるセパレータが破損するような不良の発生率が極めて小さく安全性が高い電気化学デバイス電極を得るための材料である電気化学デバイス電極用バインダー、その製造方法、電気化学デバイス電極用バインダーの保存方法、電気化学デバイス電極用スラリー、及び電気化学デバイス電極に関する。 The present invention relates to a binder for an electrochemical device electrode, a method for producing the binder, a method for storing the binder for an electrochemical device electrode, a slurry for an electrochemical device electrode, and an electrochemical device electrode. In more detail, the binder for an electrochemical device electrode, which is a material for obtaining an electrochemical device electrode that has a very low occurrence rate and a high safety such that the separator separating the positive electrode and the negative electrode is damaged, its manufacturing method, electrochemical The present invention relates to a method for storing a binder for device electrodes, a slurry for electrochemical device electrodes, and an electrochemical device electrode.
 近年、電子機器の小型化・軽量化の進歩は目覚しい。それに伴い、当該電子機器の駆動用電源として用いられる二次電池等の電気化学デバイスにおいても、小型化・高エネルギー密度化の要求が一層高まっている。そして、このような要求を満足するために、電気化学デバイスとして、ニッケルカドミウム二次電池に代わり、ニッケル水素二次電池、リチウムイオン二次電池等が使用されている。 In recent years, advances in miniaturization and weight reduction of electronic devices are remarkable. Accordingly, there is a growing demand for miniaturization and high energy density in electrochemical devices such as secondary batteries used as power sources for driving the electronic devices. And in order to satisfy such a request | requirement, a nickel-hydrogen secondary battery, a lithium ion secondary battery, etc. are used instead of a nickel cadmium secondary battery as an electrochemical device.
 これらの電気化学デバイスを構成する電極を製造する方法としては、水素吸蔵合金や黒鉛等の電極活物質(以下、単に「活物質」と記す場合がある)と、カルボキシメチルセルロース等の増粘剤と、重合体粒子を含有するラテックスよりなるバインダーとが水に分散されてなるペーストまたはスラリーを、集電体の表面に塗布して乾燥し、得られる塗膜をプレス加工することにより、電極層を形成する方法等が知られている。 As a method for producing an electrode constituting these electrochemical devices, an electrode active material such as a hydrogen storage alloy or graphite (hereinafter sometimes simply referred to as “active material”), and a thickener such as carboxymethylcellulose, The electrode layer is formed by applying a paste or slurry in which a binder made of latex containing polymer particles is dispersed in water to the surface of the current collector and drying it, and pressing the resulting coating film. A forming method is known.
 ここで、バインダーは、活物質を結着する機能の他に、活物質を含む電極層と集電体との密着性を向上させる機能を有するものであり、このようなバインダーとしては、共役ジエン、芳香族ビニル化合物、(メタ)アクリレート化合物及びエチレン性不飽和カルボン酸を含む単量体を乳化重合して得られるラテックスからなるものが知られている(特許文献1及び特許文献2参照)。 Here, in addition to the function of binding the active material, the binder has a function of improving the adhesion between the electrode layer containing the active material and the current collector. Examples of such a binder include conjugated dienes. And a latex obtained by emulsion polymerization of a monomer containing an aromatic vinyl compound, a (meth) acrylate compound and an ethylenically unsaturated carboxylic acid is known (see Patent Document 1 and Patent Document 2).
特開平10-241692号公報Japanese Patent Laid-Open No. 10-241692 特開平11-25989号公報Japanese Patent Laid-Open No. 11-25989
 そして、バインダーには、含有する重合体粒子が電解液に膨潤し難いこと、活物質と混合されたときに、分散性や保存安定性が良好であること、形成される電極層と集電体との密着性が高いことなどの性能が要求されている。特に、ハイブリッド自動車、電気自動車の自動車駆動源として用いられる二次電池に使用されるバインダーには、更に高生産性、安全性などが要求される。 The binder contains polymer particles that are difficult to swell in the electrolyte solution, have good dispersibility and storage stability when mixed with an active material, and are formed with an electrode layer and a current collector. Performance such as high adhesiveness is required. In particular, a binder used for a secondary battery used as a vehicle drive source of a hybrid vehicle or an electric vehicle is required to have higher productivity and safety.
 しかしながら、特許文献1,2に記載された組成物(バインダー)は、有機粒子が分散媒に分散した状態であるため、製造後の処理や、保存環境の変化で容易に凝集体(異物)が発生する。このようにして発生した凝集体は、電極をショートさせる原因となる。具体的には、凝集体が発生した組成物(バインダー)を用いて作製された電気化学デバイスは、極まれに電極に不具合が生じることに起因して発火などの問題が生じるおそれがある。そのため、前記不具合の発生が極力少ない電極を製造することができる、異物を低減させた新たなバインダーの開発が切望されていた。更に、異物を発生させ難い保存方法の開発が要求されていた。 However, since the compositions (binders) described in Patent Documents 1 and 2 are in a state where organic particles are dispersed in a dispersion medium, aggregates (foreign substances) can be easily formed by processing after production and changes in storage environment. appear. Aggregates thus generated cause a short circuit of the electrode. Specifically, an electrochemical device manufactured using a composition (binder) in which aggregates are generated may cause a problem such as ignition due to an extremely rare defect in the electrode. Therefore, the development of a new binder with reduced foreign matter that can produce an electrode with the least possible occurrence of the above problems has been desired. Furthermore, there has been a demand for the development of a storage method that hardly generates foreign matter.
 本発明は、上述のような従来技術の課題を解決するためになされたものであり、安全性が高い電気化学デバイス、具体的には、セパレータが破損するような不良の発生率が極めて小さく、発火などの問題が極めて生じ難い電気化学デバイスの電極を形成するための材料として用いることのできる電気化学デバイス電極用バインダー、その製造方法、電気化学デバイス電極用スラリー、及び電気化学デバイス電極を提供することを目的とする。更に、電気化学デバイス電極用バインダーを保存するにあたり、異物を発生させない保存方法を提供し、作製される電極の歩留まりの向上を図ることにある。 The present invention has been made to solve the above-described problems of the prior art, and has a high safety electrochemical device, specifically, the occurrence rate of defects such as breakage of the separator is extremely small. Provided are a binder for an electrochemical device electrode that can be used as a material for forming an electrode of an electrochemical device that hardly causes a problem such as ignition, a method for producing the binder, a slurry for an electrochemical device electrode, and an electrochemical device electrode. For the purpose. Furthermore, it is an object of the present invention to provide a storage method that does not generate foreign matters when storing the binder for electrochemical device electrodes, and to improve the yield of the manufactured electrodes.
 本発明者らは前記課題を達成すべく鋭意検討した結果、セパレータの厚みよりも大きな粒径を有する粒子を除去したバインダーによれば、前記粒子に起因してセパレータが破損するような不良の発生率が極めて小さくなることに着眼し、セパレータの厚みよりも大きな粒径を有する粒子を除去したバインダーによって、前記課題を達成することが可能であることを見出し、本発明を完成するに至った。 As a result of intensive investigations to achieve the above-mentioned problems, the present inventors have found that the binder is removed from the particles having a particle size larger than the thickness of the separator, resulting in the occurrence of defects such as damage to the separator due to the particles. Focusing on the fact that the rate is extremely small, the present inventors have found that the above problem can be achieved by a binder from which particles having a particle size larger than the thickness of the separator are removed, and have completed the present invention.
 本発明により、以下の電気化学デバイス電極用バインダー、その製造方法、電気化学デバイス電極用バインダーの保存方法、電気化学デバイス電極用スラリー、及び電気化学デバイス電極が提供される。 The present invention provides the following binder for an electrochemical device electrode, a method for producing the binder, a method for storing the binder for an electrochemical device electrode, a slurry for an electrochemical device electrode, and an electrochemical device electrode.
[1]重合性の単量体を重合させて得られるものであり、パーティクルカウンタで測定したときの、1mL当りにおける粒子径20μm以上の粒子の数が0個である電気化学デバイス電極用バインダー。 [1] A binder for an electrochemical device electrode obtained by polymerizing a polymerizable monomer, wherein the number of particles having a particle diameter of 20 μm or more per mL is 0 when measured with a particle counter.
[2]パーティクルカウンタで測定したときの、1mL当りにおける粒子径15μm以上で20μm未満の粒子の数が0個~35000個である前記[1]に記載の電気化学デバイス電極用バインダー。 [2] The binder for an electrochemical device electrode according to [1], wherein the number of particles having a particle diameter of 15 μm or more and less than 20 μm per mL is 0 to 35000 as measured with a particle counter.
[3]パーティクルカウンタで測定したときの、1mL当りにおける粒子径10μm超で15μm未満の粒子の数が0個~500000個である前記[1]または[2]に記載の電気化学デバイス電極用バインダー。 [3] The binder for an electrochemical device electrode according to the above [1] or [2], wherein the number of particles having a particle diameter of more than 10 μm and less than 15 μm per mL is 0 to 500,000 as measured by a particle counter .
[4]前記[1]~[3]のいずれかに記載の電気化学デバイス電極用バインダー(以下、単に「電極用バインダー」と記す場合がある)と、電極活物質と、を含有する電気化学デバイス電極用スラリー。 [4] An electrochemical device comprising the binder for an electrochemical device electrode according to any one of the above [1] to [3] (hereinafter sometimes simply referred to as “binder for electrode”) and an electrode active material. Device electrode slurry.
[5]平板状の集電体と、前記集電体の一方の面側に配置され、前記[4]に記載の電気化学デバイス電極用スラリーを前記集電体の前記一方の面に塗布して得られる電極層と、を備える電気化学デバイス電極。 [5] A plate-like current collector and the electrochemical device electrode slurry according to [4], which are disposed on one surface side of the current collector, are applied to the one surface of the current collector. And an electrode layer obtained by the method.
[6]重合性の単量体を重合させて重合体を含む反応液を得た後、得られた前記反応液を、デプスタイプまたはプリーツタイプのフィルタでろ過するろ過工程を有する電気化学デバイス電極用バインダーの製造方法。 [6] An electrochemical device electrode having a filtration step of polymerizing a polymerizable monomer to obtain a reaction solution containing a polymer and then filtering the obtained reaction solution with a depth-type or pleat-type filter Method for manufacturing binder.
[7]前記ろ過工程によって、パーティクルカウンタで測定したときの、1mL当りにおける粒子径20μm以上の粒子の数が0個であるろ液を得る前記[6]に記載の電気化学デバイス電極用バインダーの製造方法。 [7] The electrochemical device electrode binder according to [6], wherein a filtrate having 0 particles having a particle diameter of 20 μm or more per mL when measured with a particle counter is obtained by the filtration step. Production method.
[8]重合体粒子及び水を含有する電気化学デバイス電極用バインダーを、2℃以上30℃以下の温度で保存し、かつ、前記電気化学デバイス電極用バインダーを充填して保存する容器の内容積から前記電気化学デバイス電極用バインダーの占める体積を除いた空隙部の体積の、前記容器の内容積に占める比率(%)が、1~20%である電気化学デバイス電極用バインダーの保存方法。 [8] Electrochemical device electrode binder containing polymer particles and water stored at a temperature of 2 ° C. or higher and 30 ° C. or lower and filled with the electrochemical device electrode binder for storage The method for preserving a binder for an electrochemical device electrode, wherein a ratio (%) of the volume of the void portion excluding the volume occupied by the binder for an electrochemical device electrode to the internal volume of the container is 1 to 20%.
[9]前記空隙部の酸素濃度が1%以下である前記[8]に記載の電気化学デバイス電極用バインダーの保存方法。 [9] The method for storing an electrochemical device electrode binder according to [8], wherein the void portion has an oxygen concentration of 1% or less.
[10]前記電気化学デバイス電極用バインダーが、前記[1]~[3]のいずれかに記載の電気化学デバイス電極用バインダーである前記[8]または[9]に記載の電気化学デバイス電極用バインダーの保存方法。 [10] The electrochemical device electrode binder according to [8] or [9], wherein the electrochemical device electrode binder is the electrochemical device electrode binder according to any one of [1] to [3]. Binder storage method.
 本発明の電気化学デバイス電極用バインダーは、パーティクルカウンタで測定したときの、1mL当りにおける粒子径20μm以上の粒子の数が0個であるため、バインダー中に含まれる粒子によってセパレータが破損する(即ち、セパレータが粒子によって貫通される)不良の発生率が極めて小さく安全性が高い電気化学デバイスを構成する電極を形成するための材料として用いることができるという効果を奏するものである。 In the binder for an electrochemical device electrode of the present invention, the number of particles having a particle diameter of 20 μm or more per mL when measured with a particle counter is 0, and therefore the separator is damaged by the particles contained in the binder (that is, The separator can be used as a material for forming an electrode constituting an electrochemical device that has a very low defect occurrence rate and high safety.
 本発明の電気化学デバイス電極用バインダーの製造方法は、重合性の単量体を重合させて重合体を含む反応液を得た後、得られた前記反応液を、デプスタイプまたはプリーツタイプのフィルタでろ過するろ過工程を有するため、バインダー中に含まれる粒子によってセパレータが破損する(即ち、セパレータが粒子によって貫通される)不良の発生率が極めて小さく安全性が高い電気化学デバイスを構成する電極を形成するための電気化学デバイス電極用バインダーを製造することができるという効果を奏するものである。 In the method for producing a binder for an electrochemical device electrode according to the present invention, a polymerizable monomer is polymerized to obtain a reaction solution containing a polymer, and then the obtained reaction solution is subjected to a depth type or pleat type filter. The electrode constituting the electrochemical device having a very low safety rate with a very low occurrence rate of defects in which the separator is broken by the particles contained in the binder (that is, the separator is penetrated by the particles). There exists an effect that the binder for electrochemical device electrodes for forming can be manufactured.
 本発明の電気化学デバイス電極用バインダーの保存方法によれば、電気化学デバイス電極用バインダーの保存中に、凝集物などの異物が発生し難く、作製される電極の歩留まりを向上させることができる。 According to the method for storing the binder for electrochemical device electrodes of the present invention, foreign substances such as aggregates are hardly generated during storage of the binder for electrochemical device electrodes, and the yield of the fabricated electrodes can be improved.
 本発明の電気化学デバイス電極用スラリーは、本発明の電気化学デバイス電極用バインダーを含有するものであるため、前記バインダー中に含まれる粒子によってセパレータが破損する(即ち、セパレータが粒子によって貫通される)不良の発生率が極めて小さく安全性が高い電気化学デバイスを構成する電極を形成するための材料として用いることができるという効果を奏するものである。 Since the slurry for an electrochemical device electrode of the present invention contains the binder for an electrochemical device electrode of the present invention, the separator is damaged by the particles contained in the binder (that is, the separator is penetrated by the particles). ) It has an effect that it can be used as a material for forming an electrode constituting an electrochemical device having an extremely low defect occurrence rate and high safety.
 本発明の電気化学デバイス電極は、本発明の電気化学デバイス電極用スラリーを集電体の一方の面に塗布して得られる電極層を備えるものであるため、前記バインダー中に含まれる粒子によってセパレータが破損する(即ち、セパレータが粒子によって貫通される)不良の発生率が極めて小さく安全性が高い電気化学デバイスを構成するという効果を奏するものである。 Since the electrochemical device electrode of the present invention includes an electrode layer obtained by applying the slurry for an electrochemical device electrode of the present invention to one surface of a current collector, a separator is formed by particles contained in the binder. This produces an effect of constituting an electrochemical device having a very low occurrence rate of defects that are damaged (that is, the separator is penetrated by particles) and that is highly safe.
本発明の電気化学デバイス電極用バインダーの製造方法の一実施形態において使用されるろ過装置を模式的に示す説明図である。It is explanatory drawing which shows typically the filtration apparatus used in one Embodiment of the manufacturing method of the binder for electrochemical device electrodes of this invention.
 以下、本発明を実施するための形態について説明するが、本発明は以下の実施の形態に限定されるものではない。即ち、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に属することが理解されるべきである。 Hereinafter, although the form for implementing this invention is demonstrated, this invention is not limited to the following embodiment. That is, it is understood that modifications and improvements as appropriate to the following embodiments are also within the scope of the present invention based on ordinary knowledge of those skilled in the art without departing from the spirit of the present invention. Should be.
[1]電気化学デバイス電極用バインダー:
 本発明の電気化学デバイス電極用バインダーは、重合性の単量体を重合させて得られるものであり、パーティクルカウンタで測定したときの、1mL当りにおける粒子径20μm以上の粒子の数が0個のものである。このような電気化学デバイス電極用バインダーは、パーティクルカウンタで測定したときの、1mL当りにおける粒子径20μm以上の粒子の数が0個であるため、バインダー中に含まれる粒子によってセパレータが破損する(即ち、セパレータが粒子によって貫通される)不良の発生率が極めて小さく安全性が高い電気化学デバイスを構成する電極を形成するための材料として用いることができる。
[1] Electrochemical device electrode binder:
The binder for an electrochemical device electrode of the present invention is obtained by polymerizing a polymerizable monomer. When measured with a particle counter, the number of particles having a particle diameter of 20 μm or more per mL is 0. Is. In such a binder for an electrochemical device electrode, since the number of particles having a particle diameter of 20 μm or more per mL when measured with a particle counter is 0, the separator is damaged by the particles contained in the binder (that is, The separator can be used as a material for forming an electrode that constitutes an electrochemical device that has a very low incidence of defects and is highly safe.
 従来のバインダーは、所定の粒子径よりも大きな粒子を除去する操作を行っていないため、所定の粒子径よりも大きな粒子が含まれていると考えられる。そのため、電流が流れた際に前記大きな粒子が帯電していると、前記大きな粒子がセパレータを跨いだ電極側に引き寄せられ、セパレータを貫通してしまったり、セパレータを貫通する亀裂を生じさせる可能性があった。このように従来のバインダーはセパレータが破損される不良(具体的には、前記大きな粒子がセパレータを貫通してしまったり、セパレータを貫通する亀裂を生じさせてしまう不良)が発生する可能性があった。そして、セパレータが破損すると、通電してしまうため電気化学デバイスがハードショートを起こす可能性があり、ハードショートを起こすと、極まれに例えば電気化学デバイスが発火するなどの問題があった。一方、本発明の電気化学デバイス電極用バインダーによれば、セパレータを貫通したりセパレータを貫通する亀裂を生じさせたりするような粒子(所定の粒子径よりも大きな粒子)を含まないため、前記のような問題が無く安全性が高い電気化学デバイスの電極を作製することができる。ここで、所定の粒子径よりも大きな粒子は、具体的には、正極と負極とを分けるセパレータの厚みと同程度の大きさの粒子径を有する粒子のことである。なお、セパレータの厚さは、通常、10~30μmである。セパレータの厚みが10μmよりも薄過ぎると、破損し易く電気化学デバイスの不良の原因となるおそれがある。 Since the conventional binder is not operated to remove particles larger than the predetermined particle size, it is considered that particles larger than the predetermined particle size are included. Therefore, if the large particles are charged when an electric current flows, the large particles may be drawn to the electrode side across the separator and may penetrate the separator or cause a crack to penetrate the separator. was there. As described above, the conventional binder may cause a failure in which the separator is damaged (specifically, a failure in which the large particles penetrate the separator or cause a crack to penetrate the separator). It was. When the separator is damaged, the electrochemical device is energized, and thus the electrochemical device may cause a hard short circuit. When the hard short circuit occurs, there is a problem that the electrochemical device ignites in rare cases, for example. On the other hand, according to the binder for an electrochemical device electrode of the present invention, since it does not contain particles (particles larger than a predetermined particle size) that penetrate the separator or cause cracks to penetrate the separator, There is no such problem, and an electrode of an electrochemical device with high safety can be produced. Here, the particles larger than the predetermined particle diameter are specifically particles having a particle diameter of the same size as the thickness of the separator separating the positive electrode and the negative electrode. The thickness of the separator is usually 10 to 30 μm. If the thickness of the separator is less than 10 μm, the separator is easily damaged and may cause a failure of the electrochemical device.
 本発明の電気化学デバイス電極用バインダーは、前記条件を満たす限り特に制限はないが、前記条件に加えて、パーティクルカウンタで測定したときの、1mL当りにおける粒子径15μm以上で20μm未満の粒子の数が0~35000個であることが好ましく、0~4000個であることが更に好ましい。更に、パーティクルカウンタで測定したときの、1mL当りにおける粒子径10μm超で15μm未満の粒子の数が0~500000個であることがより好ましく、0~200000個であることが更に好ましい。このように所定の粒子径の粒子が前記範囲内であると、これらの粒子によってセパレータが破損してしまう可能性を更に低くすることができる。また、バインダーは、抵抗成分になり易く、このバインダーが局在化すると、抵抗が増大し易いという不具合がある。しかし、所定の粒子径の粒子を前記範囲内とすることにより、バインダーが局在化し難くなる。従って、前記抵抗が増大し難いという利点がある。 The binder for an electrochemical device electrode of the present invention is not particularly limited as long as the above conditions are satisfied. In addition to the above conditions, the number of particles having a particle diameter of 15 μm or more and less than 20 μm per mL when measured with a particle counter. Is preferably 0 to 35000, more preferably 0 to 4000. Further, the number of particles having a particle diameter of more than 10 μm and less than 15 μm per mL when measured with a particle counter is more preferably 0 to 500,000, and still more preferably 0 to 200000. Thus, when the particle | grains of a predetermined | prescribed particle diameter are in the said range, possibility that a separator will be damaged by these particles can be made still lower. In addition, the binder tends to be a resistance component, and when this binder is localized, there is a problem that the resistance is likely to increase. However, by setting the particles having a predetermined particle diameter within the above range, the binder is not easily localized. Therefore, there is an advantage that the resistance is hardly increased.
 本発明においては、1mL当りにおける粒子の数をパーティクルカウンタで測定し、所定の粒子径ごとに分けて粒子の数を規定している。即ち、本発明の電気化学デバイス電極用バインダーには、1mL当りにおける粒子径20μm以上の粒子は全く含まれていないことになる。 In the present invention, the number of particles per mL is measured with a particle counter, and the number of particles is defined for each predetermined particle diameter. That is, the binder for an electrochemical device electrode of the present invention does not contain any particles having a particle diameter of 20 μm or more per mL.
 本発明の電気化学デバイス電極用バインダーは、上述したように、重合性の単量体を重合させて得られるものである。別言すれば、前記重合性の単量体に由来する構造単位を有する重合体を含むものであり、この重合体によりバインダーとしての機能が発現する。 As described above, the binder for an electrochemical device electrode of the present invention is obtained by polymerizing a polymerizable monomer. In other words, it includes a polymer having a structural unit derived from the polymerizable monomer, and this polymer exhibits a function as a binder.
 本発明の電気化学デバイス電極用バインダーにおいては、前記重合体の固形分濃度が20~56質量%であることが好ましく、23~55質量%であることが更に好ましく、25~54質量%であることが特に好ましい。前記固形分濃度が前記範囲内であると、重合体の粒子がバインダー中で安定化する(良好に分散した状態で存在する)ため、長期安定性に優れるバインダーが得られるという利点がある。前記固形分濃度が20質量%未満であると、生産性が低くなるという不具合がある。即ち、重合により得られる反応液をそのままバインダーとして使用する場合、重合によって得られる重合体の濃度を低くする必要がある。そのため、生産性が低くなる。一方、56質量%超であると、バインダーの粘度が増加し過ぎるため、長期安定性が十分に得られないおそれがある。なお、固形分濃度は、負極用であるか正極用であるかによって異なり、例えば、負極用バインダーであるSBR(スチレン-ブタジエン共重合体)の固形分濃度は40~55質量%であり、正極バインダーであるフッ素アクリルエマルジョンの固形分濃度は20~50質量%、好ましくは、27~33質量%である。 In the binder for an electrochemical device electrode of the present invention, the solid content concentration of the polymer is preferably 20 to 56% by mass, more preferably 23 to 55% by mass, and 25 to 54% by mass. It is particularly preferred. When the solid content concentration is within the above range, the polymer particles are stabilized in the binder (exist in a well dispersed state), so that there is an advantage that a binder having excellent long-term stability can be obtained. When the solid content concentration is less than 20% by mass, there is a problem that productivity is lowered. That is, when the reaction solution obtained by polymerization is used as a binder as it is, it is necessary to lower the concentration of the polymer obtained by polymerization. Therefore, productivity becomes low. On the other hand, if it exceeds 56% by mass, the viscosity of the binder increases excessively, so that long-term stability may not be sufficiently obtained. The solid content concentration differs depending on whether it is for the negative electrode or the positive electrode. For example, the solid content concentration of SBR (styrene-butadiene copolymer) which is a negative electrode binder is 40 to 55% by mass. The solid content concentration of the fluoroacrylic emulsion as a binder is 20 to 50% by mass, preferably 27 to 33% by mass.
 本発明の電気化学デバイス電極用バインダーは、重合性の単量体を重合させて得られるものである限り特に制限はなく、正極用または負極用のバインダーとして用いることができるものである。 The binder for an electrochemical device electrode of the present invention is not particularly limited as long as it is obtained by polymerizing a polymerizable monomer, and can be used as a binder for a positive electrode or a negative electrode.
 正極用のバインダーとしては、例えば、特許第3999927号公報などに記載されたバインダーを例示することができる。具体的には、フッ化ビニリデン、フッ化ビニリデンと共重合可能な含フッ素単量体、エチレン、プロピレン等の炭化水素単量体などからなる重合性の単量体を重合させて得られる重合体を含むものを挙げることができる。 As the positive electrode binder, for example, the binder described in Japanese Patent No. 3999927 can be exemplified. Specifically, a polymer obtained by polymerizing a polymerizable monomer composed of vinylidene fluoride, a fluorine-containing monomer copolymerizable with vinylidene fluoride, or a hydrocarbon monomer such as ethylene or propylene. Can be included.
 フッ化ビニリデンと共重合可能な含フッ素単量体としては、例えば、フッ化ビニル、トリフルオロエチレン、トリフルオロクロロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン、フルオロアルキルビニルエーテル等を挙げることができる。 Examples of the fluorine-containing monomer copolymerizable with vinylidene fluoride include vinyl fluoride, trifluoroethylene, trifluorochloroethylene, tetrafluoroethylene, hexafluoropropylene, and fluoroalkyl vinyl ether.
 そして、前記単量体以外の単量体としては、例えば、不飽和二塩基酸のモノエステル、ビニレンカーボネート等を挙げることができる。不飽和二塩基酸のモノエステルとしては、具体的には、マレイン酸モノメチルエステル、マレイン酸モノエチルエステル、シトラコン酸モノメチルエステル、シトラコン酸モノエチルエステル等を挙げることができる。 And examples of monomers other than the above-mentioned monomers include unsaturated dibasic acid monoesters, vinylene carbonate, and the like. Specific examples of unsaturated dibasic acid monoesters include maleic acid monomethyl ester, maleic acid monoethyl ester, citraconic acid monomethyl ester, and citraconic acid monoethyl ester.
 負極用のバインダーとしては、例えば、特開2010-129186号公報などに記載されたバインダーを例示することができる。具体的には、共役ジエン、芳香族ビニル化合物、(メタ)アクリレート化合物、エチレン性不飽和カルボン酸などからなる重合性の単量体を重合させて得られる重合体を含むものを挙げることができる。 Examples of the binder for the negative electrode include those described in JP 2010-129186 A. Specific examples include those containing a polymer obtained by polymerizing a polymerizable monomer comprising a conjugated diene, an aromatic vinyl compound, a (meth) acrylate compound, an ethylenically unsaturated carboxylic acid, or the like. .
 共役ジエンとしては、例えば、1,3-ブタジエン、イソプレン、2-クロロ-1、3-ブタジエン、クロロプレンなどを挙げることができる。これらの中でも、1,3-ブタジエンが好ましい。重合性の単量体の全量における共役ジエンの使用割合は、33~48.5質量%であることが好ましく、35~45質量%であることが更に好ましい。前記使用割合が33質量%未満である場合には、得られる重合体のガラス転移温度が高く、得られる電極層の柔軟性や集電体に対する密着性が低下する傾向にある。一方、48.5質量%超である場合には、得られる電極層の表面が粘着性を有する傾向にあるため、プレス加工時に電極層がロールへ貼り付く等の加工性に劣るものとなるおそれがある。 Examples of the conjugated diene include 1,3-butadiene, isoprene, 2-chloro-1,3-butadiene, chloroprene and the like. Of these, 1,3-butadiene is preferred. The proportion of the conjugated diene used in the total amount of the polymerizable monomer is preferably 33 to 48.5% by mass, and more preferably 35 to 45% by mass. When the use ratio is less than 33% by mass, the obtained polymer has a high glass transition temperature, and the flexibility of the obtained electrode layer and the adhesion to the current collector tend to be lowered. On the other hand, when the content exceeds 48.5% by mass, the surface of the obtained electrode layer tends to be sticky, and therefore the workability of the electrode layer sticking to a roll during press working may be inferior. There is.
 芳香族ビニル化合物としては、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、ビニルトルエン、クロルスチレン、ジビニルベンゼンなどを挙げることができる。これらの中でも、スチレンが好ましい。重合性の単量体の全量における芳香族ビニル化合物の使用割合は、40~50質量%であることが好ましく、43~48質量%であることが更に好ましい。前記使用割合が40質量%未満である場合には、活物質として用いられるグラファイトに対する相互作用が低下する結果、得られる電極層は活物質が脱落しやすいものとなる傾向にある。一方、50質量%超である場合には、得られる重合体は硬くてもろい性質となり、得られる電極層の柔軟性や集電体に対する密着性が低下する傾向にある。 Examples of the aromatic vinyl compound include styrene, α-methylstyrene, p-methylstyrene, vinyltoluene, chlorostyrene, divinylbenzene and the like. Among these, styrene is preferable. The use ratio of the aromatic vinyl compound in the total amount of the polymerizable monomer is preferably 40 to 50% by mass, and more preferably 43 to 48% by mass. When the use ratio is less than 40% by mass, the interaction with the graphite used as the active material is reduced, and as a result, the obtained electrode layer tends to easily lose the active material. On the other hand, when it is more than 50% by mass, the obtained polymer is hard and brittle, and the flexibility of the obtained electrode layer and the adhesion to the current collector tend to be lowered.
 (メタ)アクリレート化合物としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、i-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、n-アミル(メタ)アクリレート、i-アミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、i-ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ヒドロキシメチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、エチレングリコール(メタ)アクリレートなどを挙げることができる。これらの中でも、メチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレートが好ましく、メチル(メタ)アクリレートが特に好ましい。 Examples of the (meth) acrylate compound include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl ( (Meth) acrylate, n-amyl (meth) acrylate, i-amyl (meth) acrylate, hexyl (meth) acrylate, 2-hexyl (meth) acrylate, octyl (meth) acrylate, i-nonyl (meth) acrylate, decyl ( Examples include meth) acrylate, hydroxymethyl (meth) acrylate, hydroxyethyl (meth) acrylate, and ethylene glycol (meth) acrylate. Among these, methyl (meth) acrylate, n-butyl (meth) acrylate and i-butyl (meth) acrylate are preferable, and methyl (meth) acrylate is particularly preferable.
 重合性の単量体の全量における(メタ)アクリレート化合物の使用割合は、8~12.5質量%であることが好ましく、9~12質量%であることが更に好ましい。前記使用割合が8質量%未満である場合には、得られる重合体は電解液との親和性が低く、電気化学デバイス中においてバインダーが電気抵抗成分となりやすい。そのため、デバイス内部抵抗が上昇する傾向にある。一方、12.5質量%である場合には、得られる重合体は、電解液の吸収が過大なものとなり、電気化学デバイス中において結着性が失われやすい。そのため、高温貯蔵時に電池の劣化が生じやすくなる。 The proportion of the (meth) acrylate compound used in the total amount of the polymerizable monomer is preferably 8 to 12.5% by mass, and more preferably 9 to 12% by mass. When the use ratio is less than 8% by mass, the obtained polymer has low affinity with the electrolytic solution, and the binder tends to be an electric resistance component in the electrochemical device. Therefore, the device internal resistance tends to increase. On the other hand, when the content is 12.5% by mass, the obtained polymer has excessive absorption of the electrolytic solution, and the binding property is easily lost in the electrochemical device. For this reason, the battery is likely to be deteriorated during high-temperature storage.
 エチレン性不飽和カルボン酸としては、(メタ)アクリル酸、イタコン酸などを挙げることができる。重合性の単量体の全量におけるエチレン性不飽和カルボン酸の使用割合は、0.1~20質量%であることが好ましく、0.2~15質量%であることが更に好ましい。前記使用割合が0.1質量%未満である場合には、電気化学デバイス電極用スラリーを調製する際に、重合体粒子の分散安定性が不足し、凝集物を生じやすい。そのため、結果として得られる電極層の集電体に対する密着性が低下する等の問題が生じやすい傾向にある。一方、20質量%超である場合には、電気化学デバイス電極用スラリーの調製後の貯蔵過程において、経時的なスラリー粘度の上昇が生じ、塗工性の劣るスラリーとなり易い傾向にある。 Examples of the ethylenically unsaturated carboxylic acid include (meth) acrylic acid and itaconic acid. The use ratio of the ethylenically unsaturated carboxylic acid in the total amount of the polymerizable monomer is preferably 0.1 to 20% by mass, and more preferably 0.2 to 15% by mass. When the use ratio is less than 0.1% by mass, the dispersion stability of the polymer particles is insufficient when the slurry for an electrochemical device electrode is prepared, and aggregates are easily generated. Therefore, there is a tendency that problems such as a decrease in the adhesion of the resulting electrode layer to the current collector tend to occur. On the other hand, if it exceeds 20% by mass, the slurry viscosity increases with time in the storage process after the preparation of the slurry for electrochemical device electrodes, and the slurry tends to be inferior in coatability.
 重合性の単量体としては、前記単量体以外に、例えば、(メタ)アクリルアミド、N-メチロールアクリルアミドなどのエチレン性不飽和カルボン酸のアルキルアミド;酢酸ビニル、プロピオン酸ビニルなどのカルボン酸ビニルエステル;エチレン性不飽和ジカルボン酸の酸無水物、モノアルキルエステル、モノアミド類;アミノエチルアクリルアミド、ジメチルアミノメチルメタクリルアミド、メチルアミノプロピルメタクリルアミドなどのエチレン性不飽和カルボン酸のアミノアルキルアミド;(メタ)アクリロニトリル、α-クロルアクリロニトリルなどのシアン化ビニル系化合物などが挙げられる。 Examples of polymerizable monomers include, in addition to the above monomers, alkyl amides of ethylenically unsaturated carboxylic acids such as (meth) acrylamide and N-methylol acrylamide; vinyl carboxylates such as vinyl acetate and vinyl propionate. Esters; acid anhydrides, monoalkyl esters, monoamides of ethylenically unsaturated dicarboxylic acids; aminoalkyl amides of ethylenically unsaturated carboxylic acids such as aminoethyl acrylamide, dimethylaminomethyl methacrylamide, methylaminopropyl methacrylamide; ) Vinyl cyanide compounds such as acrylonitrile and α-chloroacrylonitrile.
 なお、本発明の電気化学デバイス電極用バインダーは、前記重合体以外に、後述する重合工程に使用した、乳化剤、重合開始剤、分子量調節剤などを含有していてもよい。 In addition, the binder for electrochemical device electrodes of the present invention may contain an emulsifier, a polymerization initiator, a molecular weight regulator, etc. used in the polymerization step described later, in addition to the polymer.
[2]電気化学デバイス電極用バインダーの製造方法:
 本発明の電気化学デバイス電極用バインダーの製造方法は、上述した本発明の電気化学デバイス電極用バインダーを製造する方法であり、重合性の単量体を重合させて重合体を含む反応液を得た後、得られた反応液を、デプスタイプまたはプリーツタイプのフィルタでろ過するろ過工程を有するものである。このような工程を有するため、バインダー中に含まれる粒子によってセパレータが破損する(即ち、セパレータが粒子によって貫通される)不良の発生率が極めて小さく安全性が高い電気化学デバイスを構成する電極を形成するための電気化学デバイス電極用バインダーを製造することができる。なお、電極用バインダーは、クリーンルームなどの整備された環境下ではないところで製造されることが通常である。
[2] Method for producing binder for electrochemical device electrode:
The method for producing a binder for an electrochemical device electrode of the present invention is a method for producing the above-described binder for an electrochemical device electrode of the present invention, and a reaction liquid containing a polymer is obtained by polymerizing a polymerizable monomer. Then, the obtained reaction solution is filtered using a depth type or pleat type filter. Since it has such a process, the separator is damaged by the particles contained in the binder (that is, the separator is penetrated by the particles), and the electrode forming the electrochemical device that has a very low incidence of defects and high safety is formed. Thus, a binder for an electrochemical device electrode can be produced. The electrode binder is usually manufactured in a place that is not in a maintained environment such as a clean room.
[2-1]重合工程:
 本発明の電気化学デバイス電極用バインダーの製造方法において、重合性の単量体を重合させて重合体を含む反応液を得る(重合工程)方法としては、従来公知の方法を採用することができる。例えば、特開2010-129186号公報、特許第3999927号公報などに記載された方法を挙げることができる。
[2-1] Polymerization step:
In the method for producing a binder for an electrochemical device electrode of the present invention, a conventionally known method can be adopted as a method for obtaining a reaction solution containing a polymer by polymerizing a polymerizable monomer (polymerization step). . For example, methods described in JP 2010-129186 A, JP 3999927 A, and the like can be mentioned.
 具体的には、正極用バインダーを作製する場合、フッ化ビニリデンなどの重合性の単量体を、懸濁重合、乳化重合、溶液重合等の方法で重合することにより重合体を含む反応液を得る方法を挙げることができる。これらの中でも、後処理の容易さ等の点から水系の懸濁重合、乳化重合が好ましく、水系懸濁重合が特に好ましい。 Specifically, when producing a binder for a positive electrode, a reaction liquid containing a polymer is obtained by polymerizing a polymerizable monomer such as vinylidene fluoride by a method such as suspension polymerization, emulsion polymerization, or solution polymerization. The method of obtaining can be mentioned. Among these, aqueous suspension polymerization and emulsion polymerization are preferable from the viewpoint of ease of post-treatment and the like, and aqueous suspension polymerization is particularly preferable.
 懸濁重合においては、懸濁剤として、例えば、メチルセルロース、メトキシ化メチルセルロース、プロポキシ化メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ポリビニルアルコール、ポリエチレンオキシド、ゼラチン等を用いることができる。そして、懸濁剤は、分散媒(例えば水)に対して、0.005~1.0質量%の範囲で添加することが好ましく、0.01~0.4質量%の範囲で添加することが更に好ましい。 In suspension polymerization, for example, methyl cellulose, methoxylated methyl cellulose, propoxylated methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol, polyethylene oxide, gelatin and the like can be used as a suspending agent. The suspending agent is preferably added in the range of 0.005 to 1.0% by mass, and preferably in the range of 0.01 to 0.4% by mass with respect to the dispersion medium (eg water). Is more preferable.
 重合開始剤としては、例えば、ジイソプロピルパーオキシジカーボネート、ジノルマルプロピルパーオキシジカーボネート、ジノルマルヘプタフルオロプロピルパーオキシジカーボネート、イソブチリルパーオキサイド、ジ(クロロフルオロアシル)パーオキサイド、ジ(パーフルオロアシル)パーオキサイド等を使用することができる。前記重合開始剤の使用量は、重合性の単量体の全量100質量部に対して、0.1~5質量部であることが好ましく、0.3~3質量部であることが更に好ましい。 Examples of the polymerization initiator include diisopropyl peroxydicarbonate, dinormalpropyl peroxydicarbonate, dinormalheptafluoropropyl peroxydicarbonate, isobutyryl peroxide, di (chlorofluoroacyl) peroxide, and di (perfluoro). Acyl) peroxide and the like can be used. The amount of the polymerization initiator used is preferably 0.1 to 5 parts by mass, more preferably 0.3 to 3 parts by mass with respect to 100 parts by mass of the total amount of polymerizable monomers. .
 そして、懸濁重合においては、連鎖移動剤を添加してもよく、連鎖移動剤としては、例えば、酢酸エチル、酢酸メチル、アセトン、エタノール、n-プロパノール、アセトアルデヒド、プロピルアルデヒド、プロピオン酸エチル、四塩化炭素等を挙げることができる。連鎖移動剤の使用量は、通常、重合性の単量体の全量100質量部に対して、0.05~10質量部であることが好ましく、0.1~5質量部であることが更に好ましい。 In suspension polymerization, a chain transfer agent may be added. Examples of the chain transfer agent include ethyl acetate, methyl acetate, acetone, ethanol, n-propanol, acetaldehyde, propyl aldehyde, ethyl propionate, tetra Examples thereof include carbon chloride. Usually, the amount of the chain transfer agent used is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the total amount of polymerizable monomers. preferable.
 重合性の単量体の合計仕込量は、重合性の単量体の全量:分散媒の質量比で1:1~1:10であることが好ましく、1:2~1:5であることが更に好ましい。そして、重合条件としては、10~50℃で10~100時間とすることができる。 The total charged amount of the polymerizable monomers is preferably 1: 1 to 1:10, and preferably 1: 2 to 1: 5 in terms of the total amount of polymerizable monomers: dispersion medium. Is more preferable. The polymerization conditions can be 10 to 50 ° C. and 10 to 100 hours.
 また、負極用バインダーを作製する場合、重合性の単量体を水性媒体中において、乳化剤、重合開始剤、及び分子量調節剤の存在下で、乳化重合させて重合体を含む反応液を得る方法を挙げることができる。 Further, when preparing a binder for a negative electrode, a method for obtaining a reaction liquid containing a polymer by emulsion polymerization of a polymerizable monomer in an aqueous medium in the presence of an emulsifier, a polymerization initiator, and a molecular weight regulator. Can be mentioned.
 乳化剤としては、アニオン性界面活性剤、ノニオン性界面活性剤、両性界面活性剤などを単独でまたは2種以上組み合わせて用いることができる。アニオン性界面活性剤としては、高級アルコールの硫酸エステル、アルキルベンゼンスルホン酸塩、脂肪族スルホン酸塩、ポリエチレングリコールアルキルエーテルの硫酸エステルなどを用いることができる。ノニオン性界面活性剤としては、ポリエチレングリコールのアルキルエステル型のもの、アルキルエーテル型のもの、アルキルフェニルエーテル型のものなどを用いることができる。両性界面活性剤の具体例としては、アニオン部分が、カルボン酸塩、硫酸エステル塩、スルホン酸塩、リン酸エステル塩で、カチオン部分が、アミン塩、第4級アンモニウム塩であるものを用いることができる。より具体的には、ラウリルベタイン、ステアリルベタインなどのベンタイン類、ラウリル-β-アラニン、ウラリルジ(アミノエチル)グリシン、オクチルジ(アミノエチル)グリシンなどのアミノ酸タイプのものを例示することができる。乳化剤の使用量は、用いられる重合性の単量体の全量100質量部に対して0.5~5質量部であることが好ましい。 As the emulsifier, anionic surfactants, nonionic surfactants, amphoteric surfactants and the like can be used alone or in combination of two or more. As the anionic surfactant, sulfates of higher alcohols, alkylbenzene sulfonates, aliphatic sulfonates, sulfates of polyethylene glycol alkyl ethers, and the like can be used. As the nonionic surfactant, an alkyl ester type of polyethylene glycol, an alkyl ether type, an alkylphenyl ether type, or the like can be used. Specific examples of amphoteric surfactants include those in which the anion moiety is a carboxylate salt, sulfate ester salt, sulfonate salt, or phosphate ester salt, and the cation moiety is an amine salt or a quaternary ammonium salt. Can do. More specifically, examples include amino acids such as bentines such as lauryl betaine and stearyl betaine, lauryl-β-alanine, lauryl di (aminoethyl) glycine, and octyldi (aminoethyl) glycine. The amount of the emulsifier used is preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the total amount of polymerizable monomers used.
 重合開始剤としては、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウムなどの水溶性重合開始剤、過酸化ベンゾイル、ラウリルパーオキサイド、2,2’-アゾビスイソブチロニトリル等の油溶性重合開始剤、重亜硫酸ナトリウム等の還元剤との組み合わせによるレドックス系重合開始剤などを、単独でまたは2種以上を組み合わせて用いることができる。重合開始剤の使用量は、重合性の単量体の全量100質量部に対して0.3~3質量部であることが好ましい。 Examples of the polymerization initiator include water-soluble polymerization initiators such as sodium persulfate, potassium persulfate, and ammonium persulfate, and oil-soluble polymerization initiators such as benzoyl peroxide, lauryl peroxide, and 2,2′-azobisisobutyronitrile. Redox polymerization initiators in combination with a reducing agent such as sodium bisulfite can be used alone or in combination of two or more. The amount of the polymerization initiator used is preferably 0.3 to 3 parts by mass with respect to 100 parts by mass of the total amount of polymerizable monomers.
 分子量調節剤としては、クロロホルム、四塩化炭素などのハロゲン化炭化水素類、n-ヘキシルメルカプタン、n-オクチルメルカプタン、n-トデシルメルカプタン、t-ドテジルメルカプタン、チオグリコール酸などのメルカプタン類、ジメチルキサントゲンジサルファイド、ジイソプロピルキサントゲンジサルファイドなどのキサントゲン類、ターピノーレン、α-メチルスチレンダイマーなどの通常の乳化重合に使用されるものを用いることができる。分子量調節剤の使用量は、重合性の単量体の全量100質量部に対して通常5質量部以下である。 Examples of molecular weight modifiers include halogenated hydrocarbons such as chloroform and carbon tetrachloride, mercaptans such as n-hexyl mercaptan, n-octyl mercaptan, n-todecyl mercaptan, t-dotezyl mercaptan and thioglycolic acid, dimethyl Those used in usual emulsion polymerization such as xanthogens such as xanthogen disulfide and diisopropylxanthogen disulfide, terpinolene and α-methylstyrene dimer can be used. The usage-amount of a molecular weight regulator is 5 mass parts or less normally with respect to 100 mass parts of whole quantity of a polymerizable monomer.
 乳化重合は、1段階でもよいが2段階の乳化重合とすることが好ましい。2段階の乳化重合とする場合、第1段階の乳化重合は、重合温度が例えば40~80℃、重合時間が例えば2~4時間の条件であることが好ましく、重合転化率が50%以上であることが好ましく、より好ましくは60%以上である。そして、第2段階の乳化重合は、重合温度が例えば40~80℃、重合時間が例えば2~6時間の条件であることが好ましい。 The emulsion polymerization may be one-stage, but is preferably a two-stage emulsion polymerization. In the case of the two-stage emulsion polymerization, the first stage emulsion polymerization preferably has a polymerization temperature of, for example, 40 to 80 ° C., a polymerization time of, for example, 2 to 4 hours, and a polymerization conversion rate of 50% or more. It is preferable that it is 60% or more. In the second stage emulsion polymerization, it is preferable that the polymerization temperature is, for example, 40 to 80 ° C., and the polymerization time is, for example, 2 to 6 hours.
 なお、得られる反応液中の重合体は、本発明の電気化学デバイス電極用バインダーがバインダーとしての機能を発揮する限り特に制限はないが、数平均粒子径が50~400nmであることが好ましく、100~300nmであることが更に好ましい。ここで、本明細書において「数平均粒子径」は、濃厚系粒径アナライザー「FPAR-1000」(商品名)(大塚電子社製)によって測定される値である。 The polymer in the resulting reaction solution is not particularly limited as long as the electrochemical device electrode binder of the present invention exhibits a function as a binder, but the number average particle diameter is preferably 50 to 400 nm, More preferably, it is 100 to 300 nm. Here, the “number average particle size” in the present specification is a value measured by a concentrated particle size analyzer “FPAR-1000” (trade name) (manufactured by Otsuka Electronics Co., Ltd.).
 また、前記重合体は、ガラス転移温度が-50~+25℃であることが好ましく、-30~+5℃であることが更に好ましい。ここで、本明細書において「ガラス転移温度」は、バインダーをガラス板に塗布し、120℃で1時間乾燥することにより、重合体フィルムを形成し、得られた重合体フィルムについて、示差走査熱量計(例えばセイコー電子工業社製の「示差走査熱量計」)を用いて測定したガラス転移温度(Tg)のことである。 The polymer preferably has a glass transition temperature of −50 to + 25 ° C., more preferably −30 to + 5 ° C. Here, in the present specification, “glass transition temperature” means that a polymer film is formed by applying a binder to a glass plate and drying at 120 ° C. for 1 hour. It is a glass transition temperature (Tg) measured using a meter (for example, “differential scanning calorimeter” manufactured by Seiko Denshi Kogyo Co., Ltd.).
[2-2]ろ過工程:
 本発明の電気化学デバイス電極用バインダーの製造方法においては、以上のようにして得られた反応液を、デプスタイプまたはプリーツタイプのフィルタでろ過して、パーティクルカウンタで測定したときの、1mL当りにおける粒子径20μm以上の粒子の数が0個であるろ液を得る。
[2-2] Filtration step:
In the method for producing the binder for an electrochemical device electrode of the present invention, the reaction solution obtained as described above is filtered with a depth type or pleat type filter and measured with a particle counter per mL. A filtrate in which the number of particles having a particle diameter of 20 μm or more is 0 is obtained.
 ここで、本明細書においてデプスタイプのフィルタとは、深層ろ過または体積ろ過タイプのフィルタとも称される高精度ろ過フィルタである。このようなデプスタイプのフィルタは、多数の孔が形成されたろ過膜を積層させた積層構造をなすものや、繊維束を巻き上げたものなどがある。デプスタイプのフィルタとしては、具体的には、プロファイルII、ネクシスNXA、ネクシスNXT、ポリファインXLD、ウルチプリーツプロファイル等(全て、日本ポール社製)、デプスカートリッジフィルタ、ワインドカートリッジフィルタ等(全て、アドバンテック社製)、CPフィルタ、BMフィルタ等(全て、チッソ社製)、スロープピュア、ダイア、マイクロシリア等(全て、ロキテクノ社製)等が挙げられる。 Here, in this specification, the depth type filter is a high-precision filtration filter also referred to as a depth filtration or volume filtration type filter. Such depth type filters include those having a laminated structure in which filtration membranes having a large number of pores are laminated, and those in which fiber bundles are wound up. Specific examples of depth type filters include Profile II, Nexis NXA, Nexis NXT, Polyfine XLD, Ultiplez Profile, etc. (all manufactured by Nippon Pole), depth cartridge filters, wind cartridge filters, etc. (all, Advantech) Co., Ltd.), CP filter, BM filter, etc. (all manufactured by Chisso Corporation), slope pure, diamond, micro-Syria, etc. (all manufactured by Loki Techno Co.), and the like.
 デプスタイプのフィルタとしては、定格ろ過精度が1.0~20μmであるものを用いることが好ましく、5.0~10μmであるものを用いることが更に好ましい。定格ろ過精度が前記範囲のものを用いることにより、パーティクルカウンタで測定したときの、1mL当りにおける粒子径20μm以上の粒子の数が0個であるろ液を効率良く得ることができる。また、フィルタに捕捉される粗大粒子の数が最小限になるため、フィルタの使用可能期間が延びる。 As the depth type filter, it is preferable to use a filter having a rated filtration accuracy of 1.0 to 20 μm, and more preferably 5.0 to 10 μm. By using a filter having a rated filtration accuracy within the above range, it is possible to efficiently obtain a filtrate in which the number of particles having a particle diameter of 20 μm or more per mL when measured with a particle counter is zero. Also, the usable period of the filter is extended because the number of coarse particles trapped in the filter is minimized.
 また、プリーツタイプのフィルタとは、不織布、ろ紙、金属メッシュなどからなる精密ろ過膜シートをひだ折り加工した後、筒状に成形するとともに前記シートのひだの合わせ目を液密にシールし、かつ、筒の両端を液密にシールして得られる筒状の高精度ろ過フィルタのことである。 In addition, the pleated type filter is formed by fold-folding a microfiltration membrane sheet made of non-woven fabric, filter paper, metal mesh, etc., and then forming into a cylindrical shape and sealing the crease seam of the sheet in a liquid-tight manner, and It is a cylindrical high-precision filtration filter obtained by sealing both ends of a cylinder liquid-tightly.
 プリーツタイプのフィルタとしては、定格ろ過精度が1.0~20μmであるものを用いることが好ましく、5.0~10μmであるものを用いることが更に好ましい。定格ろ過精度が前記範囲のものを用いることにより、パーティクルカウンタで測定したときの、1mL当りにおける粒子径20μm以上の粒子の数が0個であるろ液を効率良く得ることができる。また、フィルタに捕捉される粗大粒子の数が最小限になるため、フィルタの使用可能期間が延びる。 As the pleated type filter, a filter having a rated filtration accuracy of 1.0 to 20 μm is preferably used, and a filter having a rating of 5.0 to 10 μm is more preferable. By using a filter having a rated filtration accuracy within the above range, it is possible to efficiently obtain a filtrate in which the number of particles having a particle diameter of 20 μm or more per mL when measured with a particle counter is zero. Also, the usable period of the filter is extended because the number of coarse particles trapped in the filter is minimized.
 プリーツタイプのフィルタとしては、具体的には、HDCII、ポリファインII等(全て、日本ポール社製)、PPプリーツカートリッジフィルタ(アドバンテック社製)、ポーラスファイン(チッソ社製)、サートンポア、ミクロピュア等(全て、ロキテクノ社製)等を挙げることができる。 Specific examples of pleat type filters include HDCII, Polyfine II, etc. (all manufactured by Nippon Pole), PP pleated cartridge filter (manufactured by Advantech), Porous Fine (manufactured by Chisso), Sirton Pore, Micropure, etc (All manufactured by Loki Techno Co., Ltd.).
 ろ過する際の条件(フィルタ前後の圧力差(差圧)、液温など)は、パーティクルカウンタで測定したときの、1mL当りにおける粒子径20μm以上の粒子の数が0個であるろ液を得ることができる限り特に制限はない。例えば、差圧は、使用するフィルタの最大耐差圧を超えない範囲で適宜設定すればよいが、具体的には0.2~0.4MPaGであることが好ましい。また、液温は、10~50℃であることが好ましい。 The filtration conditions (pressure difference before and after the filter (differential pressure), liquid temperature, etc.) are as follows. When measuring with a particle counter, a filtrate with 0 particles having a particle diameter of 20 μm or more per mL is obtained. There is no particular limitation as long as it can. For example, the differential pressure may be set as appropriate within a range that does not exceed the maximum differential pressure resistance of the filter to be used. Specifically, the differential pressure is preferably 0.2 to 0.4 MPaG. The liquid temperature is preferably 10 to 50 ° C.
 ろ過工程は、例えば、図1に示すようなろ過装置100を用いて行うことができる。ろ過装置100は、異物除去前の電気化学デバイス電極用バインダーを貯蔵し供給する供給タンク1と、異物除去前の電気化学デバイス電極用バインダーを一定の流量で流すための定量ポンプ2と、カートリッジフィルタ(図示せず)及びこのカートリッジフィルタを収納(装着)したハウジングを有するろ過器4と、定量ポンプ2とろ過器4の途中に位置する脈動防止器3と、脈動防止器3とろ過器4との間に配置された第一圧力計7aと、ろ過器4の下流に配置された第二圧力計7bと、を備えている。そして、ろ過装置100は、ろ過器4から供給タンク1にバインダーを戻す戻り導管6と、ろ過器4によりろ過された電気化学デバイス電極用バインダーを排出する排出導管5と、を備えている。 The filtration step can be performed using, for example, a filtration device 100 as shown in FIG. The filtration device 100 includes a supply tank 1 for storing and supplying an electrochemical device electrode binder before foreign matter removal, a metering pump 2 for flowing the electrochemical device electrode binder before foreign matter removal at a constant flow rate, and a cartridge filter. (Not shown) and a filter 4 having a housing in which the cartridge filter is housed (mounted), a pulsation preventer 3 located in the middle of the metering pump 2 and the filter 4, a pulsation preventer 3 and a filter 4 The 1st pressure gauge 7a arrange | positioned between these, and the 2nd pressure gauge 7b arrange | positioned downstream of the filter 4 are provided. The filtration device 100 includes a return conduit 6 that returns the binder from the filter 4 to the supply tank 1, and a discharge conduit 5 that discharges the binder for an electrochemical device electrode filtered by the filter 4.
 ろ過装置100において、前記重合工程で得られた反応液は、供給タンク1から定量ポンプ2により昇圧された脈動防止器3に供給される。定量ポンプ2による脈動がある場合は、脈動防止器3によって脈動が低減される。脈動防止器3から排出された反応液は、ろ過器4に供給され、異物が除去された後、排出導管5を通って回収される。回収された回収液が電気化学デバイス電極用バインダーである。ここで、本明細書において「異物」とは、粒子径が20μm以上の粒子のことである。なお、前記粒子は、粒子径が20μm以上である限りその材質は特に制限はなく、金属、樹脂、これらの混合物などのことである。 In the filtration device 100, the reaction solution obtained in the polymerization step is supplied from the supply tank 1 to the pulsation preventer 3 that has been pressurized by the metering pump 2. When there is a pulsation by the metering pump 2, the pulsation is reduced by the pulsation preventer 3. The reaction liquid discharged from the pulsation preventer 3 is supplied to the filter 4 and removed through the discharge conduit 5 after removing foreign substances. The recovered liquid recovered is an electrochemical device electrode binder. Here, in this specification, “foreign matter” means particles having a particle diameter of 20 μm or more. The material of the particles is not particularly limited as long as the particle diameter is 20 μm or more, and is a metal, a resin, a mixture thereof, or the like.
 排出導管5を通って回収された液体の異物の除去が十分でない場合には、回収液を電気化学デバイス電極用バインダーとすることなく戻す、戻り導管6を通して供給タンク1に戻し、再びろ過器4にてろ過することもできる。また、定量ポンプ2による脈動が生じない場合には、脈動防止器3を配置しなくてもよい。更に、反応液の粘度が高い場合には、供給タンク、導管、またはこれらの両方を加温することにより、反応液の粘度を低下させることができる。即ち、供給タンク、導管、またはこれらの両方を加温可能な加温手段を更に備えていてもよい。このようにして、反応液の粘度が高い場合に生産性を向上させることができる。 If the removal of foreign substances in the liquid collected through the discharge conduit 5 is not sufficient, the recovered liquid is returned to the supply tank 1 through the return conduit 6 without returning to the electrochemical device electrode binder, and the filter 4 again. It can also be filtered. Moreover, when the pulsation by the metering pump 2 does not occur, the pulsation preventer 3 may not be disposed. Furthermore, when the viscosity of the reaction solution is high, the viscosity of the reaction solution can be lowered by heating the supply tank, the conduit, or both of them. That is, you may further provide the heating means which can heat a supply tank, a conduit | pipe, or both. In this way, productivity can be improved when the viscosity of the reaction solution is high.
 なお、ろ過装置100は、第一圧力計7aと第二圧力計7bとを備えているが、圧力計を備えないろ過装置を用いてもよい。但し、第一圧力計7aと第二圧力計7bとを備えることにより、ろ過器が正常に機能するようにろ過器に生じる差圧を管理することができる。また、供給タンク1に代えて、運搬用のコンテナから直接、異物除去前の電気化学デバイス電極用バインダーを供給してもよい。そして、ろ過装置100は、1つのろ過器4を用いた例であるが、複数のろ過器を用いることもできる。複数のろ過器を用いる場合、複数のろ過器を直列に連結してもよいし、並列に配置してもよい。 In addition, although the filtration apparatus 100 is provided with the 1st pressure gauge 7a and the 2nd pressure gauge 7b, you may use the filtration apparatus which is not provided with a pressure gauge. However, by providing the first pressure gauge 7a and the second pressure gauge 7b, the differential pressure generated in the filter can be managed so that the filter functions normally. Moreover, it may replace with the supply tank 1 and may supply the binder for electrochemical device electrodes before foreign material removal directly from the container for conveyance. And although the filtration apparatus 100 is an example using the single filter 4, a several filter can also be used. When using a some filter, a some filter may be connected in series and you may arrange | position in parallel.
[3]電気化学デバイス電極用バインダーの保存方法:
 本発明の電気化学デバイス電極用バインダーの保存方法は、重合体粒子及び水を含有する電気化学デバイス電極用バインダーを良好に(即ち、異物が発生しない状態で)長期間保存することができる。そして、本発明の保存方法は、上述の方法で作製された、1mL当りにおける粒子径20μm以上の粒子の数が0個である電気化学デバイス電極用バインダーの保存方法として好適に採用することができる。特に、電気化学デバイス電極用バインダーに含有される重合体が、凝集し易い重合体(例えばフッ素系の重合体)を含有する場合には、本発明の保存方法は効果を更に良好に発揮する。
[3] Storage method of binder for electrochemical device electrode:
The method for storing a binder for an electrochemical device electrode of the present invention can store the binder for an electrochemical device electrode containing polymer particles and water well (that is, in a state where no foreign matter is generated) for a long period of time. And the preservation | save method of this invention can be suitably employ | adopted as a preservation | save method of the binder for electrochemical device electrodes which is produced by the above-mentioned method, and the number of particles with a particle diameter of 20 micrometers or more per mL is zero. . In particular, when the polymer contained in the binder for an electrochemical device electrode contains a polymer that easily aggregates (for example, a fluorine-based polymer), the preservation method of the present invention exhibits a better effect.
 本発明の保存方法では、前記電気化学デバイス電極用バインダーを2~30℃の温度で保存することが必須であり、好ましくは10~25℃である。前記範囲の上限値を超える場合、長期間の保存の間に空隙部と電気化学デバイス電極用バインダーとの界面のうち容器の壁面と接する部分に重合体粒子が凝集し、異物が発生する。そのため、長期間安定に保存することができない。前記範囲の下限値未満である場合、前記電気化学デバイス電極用バインダー中で重合体粒子が凝集し、ゲル状物や異物が発生する。そのため、長期間安定に保存することができない。 In the storage method of the present invention, it is essential to store the electrochemical device electrode binder at a temperature of 2 to 30 ° C., preferably 10 to 25 ° C. When the upper limit of the above range is exceeded, polymer particles aggregate at the portion of the interface between the void and the electrochemical device electrode binder that contacts the wall surface of the container during long-term storage, and foreign matter is generated. Therefore, it cannot be stored stably for a long time. When it is less than the lower limit of the above range, polymer particles aggregate in the binder for an electrochemical device electrode, and a gel or foreign matter is generated. Therefore, it cannot be stored stably for a long time.
 本発明の保存方法は、前記電気化学デバイス電極用バインダーを充填して保存する容器の内容積から前記電気化学デバイス電極用バインダーの占める体積を除いた空隙部の体積の、前記容器の内容積に占める比率(%)(以下、「空隙率」ともいう)が、1~20%であることが必須であり、好ましくは3~15%であり、より好ましくは5~10%である。空隙率が前記範囲の上限値を超えると、保存温度が変化した場合に水分の揮発量が多くなり、その結果、気液界面(空隙部と電気化学デバイス電極用バインダーとの界面)にて重合体粒子の凝集が生じ、異物が発生する。そのため、安定に保存することができない。空隙率が前記範囲の下限値未満であると、保存温度の変化により電気化学デバイス電極用バインダーが体積変化を起こした場合、容器の変形や容器の破裂が発生する。そのため、安定に保存することができない。 In the storage method of the present invention, the inner volume of the container is equal to the volume of the void portion excluding the volume occupied by the binder for the electrochemical device electrode from the inner volume of the container filled with the electrochemical device electrode binder. It is essential that the ratio (%) (hereinafter also referred to as “porosity”) is 1 to 20%, preferably 3 to 15%, more preferably 5 to 10%. When the porosity exceeds the upper limit of the above range, the volatilization amount of water increases when the storage temperature changes, and as a result, the amount of vapor is increased at the gas-liquid interface (the interface between the void and the electrochemical device electrode binder). Aggregation of coalesced particles occurs and foreign matter is generated. Therefore, it cannot be stably stored. When the porosity is less than the lower limit of the above range, when the volume of the electrochemical device electrode binder changes due to a change in storage temperature, the container is deformed or the container is ruptured. Therefore, it cannot be stably stored.
 本発明の保存方法では、空隙部の酸素濃度が1%以下であることが好ましい。空隙部の酸素濃度が前記範囲内であると、長期間の保存の間にバインダー成分(電気化学デバイス電極用バインダーに含まれる成分)が酸化、変質することなく、重合体粒子の凝集を抑制することができる。そのため、異物の発生を効果的に抑制することができる。酸素濃度は、酸素濃度計(ジコー社製、型番「OXY-1S」)を用いて、容器を密閉する直前に空隙部の濃度を測定した値である。 In the preservation method of the present invention, the oxygen concentration in the void is preferably 1% or less. When the oxygen concentration in the voids is within the above range, the binder component (the component contained in the binder for electrochemical device electrodes) is not oxidized or deteriorated during long-term storage, thereby suppressing aggregation of the polymer particles. be able to. Therefore, the generation of foreign matters can be effectively suppressed. The oxygen concentration is a value obtained by measuring the concentration in the void immediately before sealing the container using an oxygen concentration meter (model number “OXY-1S” manufactured by Jiko Co., Ltd.).
 本発明の保存方法では、電気化学デバイス電極用バインダーを保存する容器からの金属イオンの溶出率が50ppm以下であることが好ましい。金属イオンが電気化学デバイス電極用バインダー中に溶出すると、電気化学デバイス電極用バインダー中の重合体粒子の分散に寄与している粒子表面のゼータ電位バランスが崩れる。そのため、凝集が発生しやすくなる。このようにして凝集した重合体粒子が含まれることによって、平滑な活物質層を形成することができなかったり、蓄電デバイスを作製する際に、凝集した重合体粒子がセパレータを突き破り、正極と負極を短絡させてしまったりするなどの致命的な不具合を生じる可能性が高いため、好ましくない。 In the storage method of the present invention, it is preferable that the elution rate of metal ions from the container for storing the binder for an electrochemical device electrode is 50 ppm or less. When the metal ions are eluted in the electrochemical device electrode binder, the zeta potential balance on the particle surface contributing to the dispersion of the polymer particles in the electrochemical device electrode binder is lost. For this reason, aggregation easily occurs. When the polymer particles aggregated in this way are contained, a smooth active material layer cannot be formed, or when producing an electricity storage device, the aggregated polymer particles break through the separator, and the positive electrode and the negative electrode This is not preferable because there is a high possibility of causing a fatal problem such as short-circuiting the circuit.
 なお、このような金属イオンの溶出の少ない容器としては、ガラス製、樹脂製の材質により構成されているものが好ましい。例えば、特開昭59-035043号公報等により製造されたクリーンな容器を好ましく使用することができる。 In addition, as such a container with little elution of metal ions, a container made of glass or resin is preferable. For example, a clean container manufactured according to JP-A-59-035043 can be preferably used.
 本発明の保存方法によれば、保存期間を6月、12月、18月に順次延長しても保存中に電気化学デバイス電極用バインダーの品質がほとんど変化しない。また、ゲル状物を生ずることもない。このため、製造直後の電気化学デバイス電極用バインダーを用いて活物質層を形成するのと同じ条件で、同様の活物質層を形成することができる。また、電気化学デバイス電極用バインダーの生産性を向上できる効果は、保存期間が6月、12月、18月と長くなるほど大きくなる。 According to the storage method of the present invention, the quality of the binder for an electrochemical device electrode hardly changes during storage even if the storage period is sequentially extended to June, December, and 18 months. Moreover, a gel-like thing is not produced. For this reason, the same active material layer can be formed on the same conditions as forming an active material layer using the binder for electrochemical device electrodes immediately after manufacture. Moreover, the effect which can improve the productivity of the binder for electrochemical device electrodes becomes so large that a storage period becomes long in June, December, and 18 months.
[4]電気化学デバイス電極用スラリー:
 本発明の電気化学デバイス電極用スラリーは、上述した本発明の電気化学デバイス電極用バインダーと、電極活物質と、を含有するものである。このような電気化学デバイス電極用スラリーは、本発明の電気化学デバイス電極用バインダーを含有するものであるため、前記バインダー中に含まれる粒子によってセパレータが破損する(即ち、セパレータが粒子によって貫通される)不良の発生率が極めて小さく安全性が高い電気化学デバイスを構成する電極を形成するための材料として用いることができる。本発明の電気化学デバイス電極用スラリーは、本発明の電気化学デバイス電極用バインダーと電極活物質とを混合することにより調製することができる。
[4] Slurry for electrochemical device electrode:
The slurry for an electrochemical device electrode of the present invention contains the above-mentioned binder for an electrochemical device electrode of the present invention and an electrode active material. Since such a slurry for an electrochemical device electrode contains the binder for an electrochemical device electrode of the present invention, the separator is damaged by the particles contained in the binder (that is, the separator is penetrated by the particles). ) It can be used as a material for forming an electrode constituting an electrochemical device having a very low defect occurrence rate and high safety. The slurry for an electrochemical device electrode of the present invention can be prepared by mixing the binder for an electrochemical device electrode of the present invention and an electrode active material.
[4-1]電極活物質:
 電極活物質は、特に限定されるものではない。リチウムイオン二次電池電極に用いる場合には、負極用として、カーボン、例えばフェノール樹脂、ポリアクリロニトリル、セルロース等の有機高分子化合物を焼成することにより得られる炭素材料、コークスやピッチを焼成することにより得られる炭素材料、人造グラファイト、天然グラファイトなどを用いることができる。また、電気二重層キャパシタ電極に用いる場合には、活性炭、活性炭繊維、シリカ、アルミナなどを用いることができる。また、リチウムイオンキャパシタ電極に用いる場合には、黒鉛、難黒鉛化炭素、ハードカーボン、コークスなとの炭素材料や、ポリアセン系有機半導体(PAS)などを用いることができる。
[4-1] Electrode active material:
The electrode active material is not particularly limited. When used for lithium ion secondary battery electrodes, by firing carbon, carbon materials obtained by firing organic polymer compounds such as phenolic resin, polyacrylonitrile, cellulose, etc. The obtained carbon material, artificial graphite, natural graphite and the like can be used. Moreover, when using for an electric double layer capacitor electrode, activated carbon, activated carbon fiber, silica, alumina, etc. can be used. Further, when used for a lithium ion capacitor electrode, a carbon material such as graphite, non-graphitizable carbon, hard carbon, coke, polyacene organic semiconductor (PAS), or the like can be used.
 本発明の電気化学デバイス電極用スラリーには、増粘剤、ヘキサメタリン酸ソーダ、トリポリリン酸ソーダ、ポリアクリル酸ソーダなどの分散剤、ラテックスの安定化剤としてのノニオン性またはアニオン性界面活性剤、消泡剤などの添加剤が含有されていてもよい。 The slurry for electrochemical device electrodes of the present invention includes thickeners, dispersants such as sodium hexametaphosphate, sodium tripolyphosphate, sodium polyacrylate, nonionic or anionic surfactants as latex stabilizers, Additives such as foaming agents may be contained.
 本発明の電気化学デバイス電極用スラリーにおいては、電極活物質100質量部に対して、電極用バインダーにおける固形分が0.1~10質量部の割合で含有されていることが好ましく、0.1~3質量部であることが更に好ましく、0.3~3質量部であることが特に好ましく、0.5~2質量部であることが最も好ましい。電極用バインダーの固形分の割合が過小である場合には、良好な密着性が得られなくなる傾向にある。一方、電極用バインダーの固形分の割合が過大である場合には、過電圧が上昇して電池特性に影響を及ぼす傾向にある。更に、前記含有割合が0.1質量部未満であると、電極層と集電体との良好な密着性が得られなくなるおそれがある。一方、10質量部超であると、電池特性を十分に向上させることが困難になるおそれがある。 In the slurry for an electrochemical device electrode of the present invention, the solid content in the electrode binder is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the electrode active material. Is more preferably 3 to 3 parts by mass, particularly preferably 0.3 to 3 parts by mass, and most preferably 0.5 to 2 parts by mass. When the ratio of the solid content of the electrode binder is too small, good adhesion tends not to be obtained. On the other hand, when the ratio of the solid content of the binder for electrodes is excessive, the overvoltage tends to increase and affect the battery characteristics. Furthermore, there exists a possibility that the favorable adhesiveness of an electrode layer and a collector may not be acquired as the said content rate is less than 0.1 mass part. On the other hand, if it exceeds 10 parts by mass, it may be difficult to sufficiently improve battery characteristics.
 本発明の電気化学デバイス電極用スラリーの調製において、電気化学デバイス電極用バインダーと、電極活物質と、必要に応じて用いられる添加剤とを混合する手段としては、攪拌機、脱泡機、ビーズミル、高圧ホモジナイザーなどを挙げることができる。また、電極用スラリーの調製においては、減圧下で行うことができる。減圧下で行うことにより、得られる電極層内に気泡が生じることを防止することができる。 In the preparation of the slurry for electrochemical device electrodes of the present invention, as means for mixing the binder for electrochemical device electrodes, the electrode active material, and the additive used as necessary, a stirrer, a defoamer, a bead mill, A high-pressure homogenizer can be used. In addition, the electrode slurry can be prepared under reduced pressure. By carrying out under reduced pressure, it can prevent that a bubble arises in the electrode layer obtained.
[5]電気化学デバイス電極:
 本発明の電気化学デバイス電極は、平板状の集電体と、この集電体の一方の面側に配置され、上述した本発明の電気化学デバイス電極用スラリーを集電体の一方の面に塗布して得られる電極層と、を備えるものである。このような電気化学デバイス電極は、本発明の電気化学デバイス電極用スラリーを集電体の一方の面に塗布して得られる電極層を備えるものであるため、前記バインダー中に含まれる粒子によってセパレータが破損する(即ち、セパレータが粒子によって貫通される)不良の発生率が極めて小さく安全性が高い電気化学デバイスを構成することができる。本発明の電気化学デバイス電極の作製方法は、まず、上述した本発明の電気化学デバイス電極用スラリーを平板状の集電体の表面に塗布して乾燥処理して集電体上に塗膜を形成して積層体を得る。その後、得られた積層体を厚さ方向にプレス加工する。このようにして本発明の電気化学デバイス電極を作製することができる。また、保存後の電気化学デバイス電極用バインダーから活物質層を形成するには、例えば通常と同様に保存後の電気化学デバイス電極用バインダーに活物質を添加して組成物を得た後、この組成物を集電体に塗布すればよい。
[5] Electrochemical device electrode:
The electrochemical device electrode of the present invention is arranged on a plate-like current collector and one surface side of the current collector, and the above-described slurry for an electrochemical device electrode of the present invention is disposed on one surface of the current collector. An electrode layer obtained by coating. Since such an electrochemical device electrode includes an electrode layer obtained by applying the slurry for an electrochemical device electrode of the present invention to one surface of a current collector, a separator is formed by particles contained in the binder. It is possible to construct an electrochemical device that has a very low occurrence rate of defects that are damaged (that is, the separator is penetrated by particles) and that is highly safe. The method for producing an electrochemical device electrode of the present invention is as follows. First, the above-described slurry for an electrochemical device electrode of the present invention is applied to the surface of a flat plate current collector and dried to form a coating film on the current collector. Form a laminate. Thereafter, the obtained laminate is pressed in the thickness direction. In this way, the electrochemical device electrode of the present invention can be produced. In order to form an active material layer from the electrochemical device electrode binder after storage, for example, after adding an active material to the electrochemical device electrode binder after storage to obtain a composition, The composition may be applied to the current collector.
[5-1]集電体:
 集電体としては、金属箔、エッチング金属箔、エキスパンドメタルなどからなるもの用いることができる。集電体を構成する材料としては、アルミニウム、銅、ニッケル、タンタル、ステンレス、チタンなどの金属材料から目的とする電気化学デバイスの種類に応じて適宜選択して用いることができる。また、集電体の厚みは、例えばリチウム二次電池用の電極を構成する場合には、5~30μm、好ましくは8~25μmである。そして、例えば電気二重層キャパシタ用の電極を構成する場合には、5~100μm、好ましくは10~70μm、より好ましくは15~30μmである。
[5-1] Current collector:
As the current collector, a metal foil, an etching metal foil, an expanded metal, or the like can be used. As a material constituting the current collector, a material selected from metal materials such as aluminum, copper, nickel, tantalum, stainless steel, and titanium can be appropriately selected and used according to the type of the target electrochemical device. The current collector has a thickness of 5 to 30 μm, preferably 8 to 25 μm, for example, when an electrode for a lithium secondary battery is formed. For example, in the case of constituting an electrode for an electric double layer capacitor, the thickness is 5 to 100 μm, preferably 10 to 70 μm, more preferably 15 to 30 μm.
[5-2]電極層:
 電極層は、上述したように、集電体の一方の面(例えば表面)側に配置され、本発明の電気化学デバイス電極用スラリーを集電体の一方の面に塗布して得られるものである。電気化学デバイス電極用スラリーを塗布する方法としては、従来公知の方法を適宜採用することができる。例えば、回転塗布法(スピンコート法)、流延塗布法、ロール塗布法、スリット&スピンコート法、ドクターブレード法、リバースロール法、コンマバー法、グラビヤ法、エアーナイフ法などを挙げることができる。
[5-2] Electrode layer:
As described above, the electrode layer is disposed on one surface (for example, the surface) side of the current collector, and is obtained by applying the slurry for an electrochemical device electrode of the present invention to one surface of the current collector. is there. As a method of applying the slurry for an electrochemical device electrode, a conventionally known method can be appropriately employed. For example, a spin coating method (spin coating method), a casting coating method, a roll coating method, a slit & spin coating method, a doctor blade method, a reverse roll method, a comma bar method, a gravure method, an air knife method and the like can be mentioned.
 また、電気化学デバイス電極用スラリーからなる塗膜の乾燥処理の条件としては、処理温度が例えば20~250℃であることが好ましく、50~150℃であることが更に好ましい。また、処理時間が例えば1~120分間であることが好ましく、5~60分間であることが更に好ましい。 In addition, as a condition for drying treatment of the coating film made of the slurry for electrochemical device electrodes, the treatment temperature is preferably 20 to 250 ° C., for example, and more preferably 50 to 150 ° C. Further, the treatment time is preferably 1 to 120 minutes, for example, and more preferably 5 to 60 minutes.
 また、プレス加工する手段としては、高圧スーパープレス、ソフトカレンダー、1トンプレス機などを利用することができる。プレス加工の条件としては、用いる加工機に応じて適宜設定される。このようにして形成される電極層は、例えば厚みが40~100μmであり、密度が1.3~2.0g/cmである。 Moreover, as a means to press-work, a high pressure super press, a soft calendar, a 1-ton press machine, etc. can be utilized. The press working conditions are appropriately set according to the processing machine to be used. The electrode layer thus formed has, for example, a thickness of 40 to 100 μm and a density of 1.3 to 2.0 g / cm 2 .
[6]電気化学デバイス:
 以上のようにして得られる電気化学デバイス電極は、例えばリチウムイオン二次電池、電気二重層キャパシタ、リチウムイオンキャパシタなどの電気化学デバイスの電極として好適に用いることができる。なお、電気化学デバイスは、一般的に、集電体及びこの集電体の表面に形成され、正極用のバインダーを含む電極層からなる正極と、集電体及びこの集電体の表面に形成され、負極用のバインダーを含む電極層からなる負極と、前記正極及び前記負極の間に配置されるセパレータと、を備えており、このセパレータの厚さは、上述したように、通常、10~30μmである。セパレータの厚みが10μmよりも薄過ぎると、振動などにより破損し易く電気化学デバイスの不良の原因となるおそれがある。セパレータは、多孔膜からなるものであり、その材質は、例えば、ポリプロピレン、ポリエチレンなどを挙げることができる。
[6] Electrochemical device:
The electrochemical device electrode obtained as described above can be suitably used as an electrode of an electrochemical device such as a lithium ion secondary battery, an electric double layer capacitor, or a lithium ion capacitor. Electrochemical devices are generally formed on the current collector and the surface of the current collector, and are formed on the surface of the current collector and the current collector. And a separator disposed between the positive electrode and the negative electrode, and the thickness of the separator is usually 10 to 10 as described above. 30 μm. If the thickness of the separator is less than 10 μm, the separator is easily damaged by vibration or the like, which may cause a failure of the electrochemical device. The separator is made of a porous film, and examples of the material thereof include polypropylene and polyethylene.
 得られる電気化学デバイス電極を用いてリチウムイオン二次電池を構成する場合には、電解液として、リチウム化合物からなる電解質が溶媒中に溶解されてなるものが用いられる。 When a lithium ion secondary battery is configured using the obtained electrochemical device electrode, an electrolytic solution in which an electrolyte composed of a lithium compound is dissolved in a solvent is used.
 電解質としては、例えば、LiClO、LiBF、LiI、LiPF、LiCFSO、LiAsF、LiSbF、LiAlCl、LiCl、LiBr、LiB(C、LiCHSO、LiCSO、Li(CSON、Li[(COBなどが挙げられる。 As the electrolyte, for example, LiClO 4, LiBF 4, LiI , LiPF 6, LiCF 3 SO 3, LiAsF 6, LiSbF 6, LiAlCl 4, LiCl, LiBr, LiB (C 2 H 5) 4, LiCH 3 SO 3, LiC 4 F 9 SO 3, Li ( C 4 F 3 SO 2) 2 N, Li [(CO 2) 2] such as 2 B and the like.
 溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等のカーボネート類、γ-ブチロラクトン等のラクトン類、トリメトキシシラン、1,2-ジメトキシエタン、ジエチルエーテル、2-エトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル類、ジメチルスルホキシド等のスルホキシド類、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン等のオキソラン類、アセトニトリル、ニトロメタン等の窒素含有化合物、ギ酸メチル、酢酸メチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル等のエステル類、ジグライム、トリグライム、テトラグライム等のグライム類、アセトン、ジエチルケトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、スルホラン等のスルホン類、2-メチル-2-オキサゾリジノン等のオキサゾリジノン類、1,3-プロパンスルトン、4-ブタンスルトン、ナフタスルトン等のスルトン類などが挙げられる。 Examples of the solvent include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate, lactones such as γ-butyrolactone, trimethoxysilane, 1,2-dimethoxyethane, and diethyl ether. , Ethers such as 2-ethoxyethane, tetrahydrofuran and 2-methyltetrahydrofuran, sulfoxides such as dimethyl sulfoxide, oxolanes such as 1,3-dioxolane and 4-methyl-1,3-dioxolane, nitrogen such as acetonitrile and nitromethane Containing compounds, esters such as methyl formate, methyl acetate, butyl acetate, methyl propionate, ethyl propionate, phosphate triester, diglyme, triglyme, tetrag Glymes such as Im, ketones such as acetone, diethyl ketone, methyl ethyl ketone, methyl isobutyl ketone, sulfones such as sulfolane, oxazolidinones such as 2-methyl-2-oxazolidinone, 1,3-propane sultone, 4-butane sultone, And sultone such as naphtha sultone.
 また、本発明の電気化学デバイス電極を用いて電気二重層キャパシタを構成する場合には、前記溶媒中に、テトラエチルアンモニウムテトラフルオロボレート、トリエチルメチルアンモニウムテトラフルオロボレート、テトラエチルアンモニウムヘキサフルオロホスフェート等の電解質が溶解されてなる電解液が用いられる。 Further, when an electric double layer capacitor is constituted using the electrochemical device electrode of the present invention, an electrolyte such as tetraethylammonium tetrafluoroborate, triethylmethylammonium tetrafluoroborate, tetraethylammonium hexafluorophosphate is contained in the solvent. A dissolved electrolytic solution is used.
 また、本発明の電気化学デバイス電極を用いてリチウムイオンキャパシタを構成する場合には、前記リチウムイオン二次電池を構成する場合と同様の電解液を用いることができる。 In the case where a lithium ion capacitor is formed using the electrochemical device electrode of the present invention, the same electrolytic solution as in the case of forming the lithium ion secondary battery can be used.
 以下、本発明を実施例及び比較例に基づいて具体的に説明するが、本発明はこれらの実施例及び比較例に限定されるものではない。なお、実施例の記載における「部」及び「%」は、特記しない限り質量基準である。また、各種物性値の測定方法、及び諸特性の評価方法を以下に示す。 Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples, but the present invention is not limited to these Examples and Comparative Examples. In the description of Examples, “parts” and “%” are based on mass unless otherwise specified. Moreover, the measuring method of various physical-property values and the evaluation method of various characteristics are shown below.
[数平均粒子径]:
 バインダーについて、オートサンプラー付き濃厚系粒径アナライザー「FPAR1000」(大塚電子社製)を用いて測定する。なお、異物除去(ろ過工程)前後の粒子において数平均粒子径に変化がなければ、異物除去後の電気化学デバイス電極用バインダーはバインダーとしての諸特性に変化は無い(即ち、電気化学デバイス電極用バインダーとして従来のバインダーと同等の機能を維持している)と評価することができる。
[Number average particle diameter]:
The binder is measured using a dense particle size analyzer “FPAR1000” (manufactured by Otsuka Electronics Co., Ltd.) with an autosampler. In addition, if the number average particle diameter does not change in the particles before and after removing the foreign matter (filtering step), the electrochemical device electrode binder after removing the foreign matter has no change in various properties as a binder (that is, for the electrochemical device electrode). It can be evaluated that the same function as a conventional binder is maintained as a binder.
[1mL当りにおける粒子の数]:
 パーティクルカウンタとして、Particle Sizing Systems製の個数カウント式粒度分布測定器「Accusizer 780APS」を用いて測定する。具体的には、測定される粗大粒子の数が「4000個/mL(0.56μm)」(即ち、「粒子径が0.56μmよりも大きな粒子が、1mL中に4000個以下」)となるまで超純水でブランク測定を繰り返す。その後、超純水で100倍に希釈したバインダー(サンプル)100mLを用意し、このサンプルを前記粒度分布測定器にセットする。セット後、前記粒度分布測定器により最適濃度になるように自動でサンプルの希釈が行われる。その後、前記粒度分布測定器により前記サンプルの1mL当りにおける粒子の数が2回測定され、平均値が算出される。この平均値を100倍して、バインダー1mL当りにおける粒子の数とする。
[Number of particles per mL]:
The particle counter is measured using a particle count particle size distribution measuring device “Accurizer 780APS” manufactured by Particle Sizing Systems. Specifically, the number of coarse particles to be measured is “4000 particles / mL (0.56 μm)” (that is, “4000 particles having a particle diameter larger than 0.56 μm in 1 mL or less”). Repeat the blank measurement with ultrapure water. Thereafter, 100 mL of a binder (sample) diluted 100 times with ultrapure water is prepared, and this sample is set in the particle size distribution analyzer. After the setting, the sample is automatically diluted to the optimum concentration by the particle size distribution analyzer. Thereafter, the particle size distribution measuring device measures the number of particles per mL of the sample twice, and calculates an average value. This average value is multiplied by 100 to obtain the number of particles per 1 mL of binder.
[ハードショートの有無]:
 まず、正極及び負極を作製する。以下、具体的に説明する。
[Hard short presence]:
First, a positive electrode and a negative electrode are prepared. This will be specifically described below.
(負極の作製)
 二軸型プラネタリーミキサー(プライミクス社製の「TKハイビスミックス 2P-03」)に、増粘剤としてダイセル化学社製の「CMC2200」を固形分換算で1部、負極活物質としてグラファイトを固形分換算で100部、及び、水68部を投入し、60rpmで1時間攪拌を行う。その後、異物除去前または異物除去後の電気化学デバイス電極用バインダーを、含まれる重合体の固形分換算で1部加え、更に1時間攪拌を行い、ペーストを得る。得られたペーストに水34部を投入した後、攪拌脱泡機(THINKY社製の製品名「泡とり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、真空下において1800rpmで1.5分間、順次攪拌混合して電気化学デバイス用スラリーを調製する。
(Preparation of negative electrode)
In a biaxial planetary mixer (“TK Hibismix 2P-03” manufactured by PRIMIX Corporation), “CMC2200” manufactured by Daicel Chemical Co., Ltd. as a thickener is 1 part in terms of solid content, and graphite is used as a negative electrode active material. In conversion, 100 parts and 68 parts of water are added, and stirring is performed at 60 rpm for 1 hour. Thereafter, 1 part of the binder for an electrochemical device electrode before or after removing foreign matter is added in terms of solid content of the polymer contained, and further stirred for 1 hour to obtain a paste. After adding 34 parts of water to the resulting paste, using a stirring defoamer (product name “Tentaro Netaro” manufactured by THINKY), 2 minutes at 200 rpm, 5 minutes at 1800 rpm, 1800 rpm under vacuum The slurry for an electrochemical device is prepared by stirring and mixing sequentially for 1.5 minutes.
 次に、銅箔からなる集電体(平板状の集電体)の表面に、調製した電気化学デバイス用スラリーを、乾燥後の膜厚が100μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥処理して、集電体の表面に乾燥スラリー層を形成する。その後、得られる電極層の密度が1.5g/cmとなるように、表面に乾燥スラリー層が形成された集電体をロールプレス機でプレス加工する。このようにして、前記集電体と、この集電体の表面(一方の面)に形成された電極層とからなる負極を調製する。 Next, the prepared slurry for electrochemical devices is uniformly applied to the surface of a copper foil current collector (flat current collector) by a doctor blade method so that the film thickness after drying becomes 100 μm. And a drying treatment at 120 ° C. for 20 minutes to form a dry slurry layer on the surface of the current collector. Thereafter, the current collector on which the dry slurry layer is formed on the surface is pressed with a roll press so that the density of the obtained electrode layer is 1.5 g / cm 3 . In this way, a negative electrode comprising the current collector and the electrode layer formed on the surface (one surface) of the current collector is prepared.
(正極の作製)
 まず、二軸型プラネタリーミキサー(TKハイビスミックス 2P-03:プライミクス社製)にPVdF(ポリフッ化ビニリデン)を4部(固形分換算)、正極活物質としてリン酸鉄リチウムを100部(固形分換算)、導電剤としてアセチレンブラックを5部(固形分換算)、N-メチルピロリドン(NMP)を25部投入し、60rpmで1時間攪拌を行う。その後、更に、NMPを10部投入した後、攪拌脱泡機(泡とり練太郎:THINKY社製)を使用して、200rpmで2分間、1800rpmで5分間、真空下において1800rpmで1.5分間、順次攪拌混合して正極用スラリーを調製する。
(Preparation of positive electrode)
First, 4 parts of PVdF (polyvinylidene fluoride) (in terms of solid content) is added to a biaxial planetary mixer (TK Hibismix 2P-03: manufactured by Primex), and 100 parts of lithium iron phosphate as the positive electrode active material (solid content) Conversion), 5 parts of acetylene black as a conductive agent (in terms of solid content) and 25 parts of N-methylpyrrolidone (NMP) are added and stirred at 60 rpm for 1 hour. Then, after further adding 10 parts of NMP, using a stirring defoaming machine (Awatori Netaro: manufactured by THINKY), 2 minutes at 200 rpm, 5 minutes at 1800 rpm, 1.5 minutes at 1800 rpm under vacuum. Then, the slurry for positive electrode is prepared by stirring and mixing sequentially.
 次に、アルミ箔からなる集電体(平板状の集電体)の表面に、調製した正極用スラリーを、乾燥後の膜厚が90μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥処理して、集電体の表面に乾燥スラリー層を形成する。その後、得られる電極層の密度が3.8g/cmとなるように、表面に乾燥スラリー層が形成された集電体をロールプレス機によりプレス加工する。このようにして、前記集電体と、この集電体の表面(一方の面)に形成された電極層とからなる正極を作製する。 Next, the prepared slurry for positive electrode is uniformly applied to the surface of a current collector (flat plate current collector) made of aluminum foil by a doctor blade method so that the film thickness after drying becomes 90 μm. Drying is carried out at 20 ° C. for 20 minutes to form a dry slurry layer on the surface of the current collector. Thereafter, the current collector with the dry slurry layer formed on the surface thereof is pressed by a roll press so that the density of the obtained electrode layer is 3.8 g / cm 3 . In this way, a positive electrode comprising the current collector and the electrode layer formed on the surface (one surface) of the current collector is produced.
(二次電池の作製)
 次に、長方形状のアルミニウムフィルムからなる外装アルミシールが2枚積層され、これらの外装アルミシールの4つの外周辺のうち3辺が互いに接合され残りの1辺が未接合である外装体内に、50mm×25mmに切り出した前記負極を載置する。次いで、この負極上に、54mm×27mmに切り出したポリプロピレン製の多孔膜からなるセパレータ(商品名「セルガード#2400」(セルガード社製)、厚み25μm)を載置するとともに、空気が入らないようにこの外装体内に電解液を注入する。その後、48mm×23mmに切り出した前記正極を前記セパレータ上(負極とは反対側の位置)に載置する。その後、加温シーリング装置で、前記外装体の未接合の1辺を熱圧着により接合させて封止することによって、2極式単層ラミネートセルからなる二次電池(電気化学デバイス)を作製する。なお、使用した電解液は、エチレンカーボネート/エチルメチルカーボネート=1/1の溶媒に、LiPFが1モル/リットルの濃度で溶解した溶液である。これらの操作は、グローブボックス内で行う。
(Production of secondary battery)
Next, two exterior aluminum seals made of rectangular aluminum film are laminated, and in the exterior body in which three sides of the four outer peripheries of these exterior aluminum seals are joined to each other and the remaining one side is unjoined, The negative electrode cut out to 50 mm × 25 mm is placed. Next, a separator (trade name “Celguard # 2400” (manufactured by Celgard), thickness 25 μm) made of a polypropylene porous film cut out to 54 mm × 27 mm is placed on the negative electrode so that air does not enter. An electrolyte is injected into the exterior body. Thereafter, the positive electrode cut out to 48 mm × 23 mm is placed on the separator (position opposite to the negative electrode). Then, a secondary battery (electrochemical device) composed of a bipolar single-layer laminate cell is manufactured by joining and sealing one unbonded side of the outer package by thermocompression bonding with a heating sealing device. . The electrolytic solution used was a solution in which LiPF 6 was dissolved at a concentration of 1 mol / liter in a solvent of ethylene carbonate / ethyl methyl carbonate = 1/1. These operations are performed in the glove box.
 次に、前記作製方法に従って100個の二次電池を作製し、作製した二次電池について、60℃保存試験を行う。具体的には、定電流(0.2C)-定電圧(4.2V)方式にて2.5時間かけて充電し、定電流(0.2C)方式にて放電し、再度、定電流(0.2C)-定電圧(4.2V)方式にて2.5時間かけて充電した100個の二次電池を60℃に設定した恒温槽に30日間放置する。そして、30日間放置後の各二次電池の開回路電圧(OCV)を測定して評価を行う。評価においては、OCVの低下傾向をハードショート発生の指標とした。具体的には、著しい電圧降下が発生しなければ(OCVの低下が確認できなければ)、ハードショートが無いと判断し、急激な電圧降下(瞬間的に電圧が降下すること)が発生した場合にはハードショートが有りと判断する。 Next, 100 secondary batteries are produced according to the production method described above, and a 60 ° C. storage test is performed on the produced secondary batteries. Specifically, charging is performed for 2.5 hours by the constant current (0.2 C) -constant voltage (4.2 V) method, discharging is performed by the constant current (0.2 C) method, and then the constant current (0.2 C) method is repeated 0.2 C) —100 secondary batteries charged for 2.5 hours in a constant voltage (4.2 V) mode are left in a thermostat set at 60 ° C. for 30 days. Then, the open circuit voltage (OCV) of each secondary battery after being left for 30 days is measured and evaluated. In the evaluation, the decreasing tendency of OCV was used as an index of occurrence of hard short. Specifically, if a significant voltage drop does not occur (if no decrease in OCV can be confirmed), it is determined that there is no hard short, and a sudden voltage drop (a momentary voltage drop) occurs. Is judged to have a hard short.
[良品率(%)]:
 前記[ハードショートの有無]の評価から二次電池の良品率(%)を算出する。具体的には、式:二次電池の良品率(%)=[{(ハードショートの有無の試験を実施した二次電池の個数)-(ハードショートが発生した二次電池の個数)}/(ハードショートの有無の試験を実施した二次電池の個数)]×100により算出する。良品率(%)が98%以上であれば「良好」と判断でき、99%以上であると、生産性が非常に向上するため「より良好」と判断できる。
[Good product rate (%)]:
The non-defective product rate (%) of the secondary battery is calculated from the evaluation of [presence or absence of hard short circuit]. Specifically, the formula: non-defective product ratio of secondary battery (%) = [{(number of secondary batteries subjected to hard short test) − (number of secondary batteries with hard short circuit)} / (Number of secondary batteries subjected to a test for the presence or absence of hard short)] × 100. If the non-defective rate (%) is 98% or more, it can be determined as “good”, and if it is 99% or more, the productivity is greatly improved, so that it can be determined as “better”.
(実施例1)
 攪拌機を備えた温度調節の可能な反応器中に、水200部、ドデシルベンゼンスルホン酸ナトリウム0.1部、過硫酸カリウム1.0部、重亜硫酸ナトリウム0.5部、α-メチルスチレンダイマー0.2部、ドデシルメルカプタン0.1部、共役ジエンとしてブタジエン6.0部、芳香族ビニル化合物としてスチレン12.5部、(メタ)アクリレート化合物としてメチルメタクリレート3.5部、エチレン性不飽和カルボン酸としてアクリル酸0.5部、及び、イタコン酸2.5部からなる重合性の単量体(単量体組成物(a))25部を一括して仕込み、前記反応器内を70℃に昇温して2時間重合反応させた(第1段階目)。
Example 1
In a temperature-controlled reactor equipped with a stirrer, 200 parts of water, 0.1 part of sodium dodecylbenzenesulfonate, 1.0 part of potassium persulfate, 0.5 part of sodium bisulfite, α-methylstyrene dimer 0 .2 parts, 0.1 parts of dodecyl mercaptan, 6.0 parts of butadiene as the conjugated diene, 12.5 parts of styrene as the aromatic vinyl compound, 3.5 parts of methyl methacrylate as the (meth) acrylate compound, ethylenically unsaturated carboxylic acid As a batch, 25 parts of a polymerizable monomer (monomer composition (a)) consisting of 0.5 part of acrylic acid and 2.5 parts of itaconic acid was charged at a temperature of 70 ° C. The temperature was raised and the polymerization reaction was carried out for 2 hours (first stage).
 次いで、重合転化率が80%以上であることを確認した後、反応器内の温度を70℃に維持したまま、共役ジエンとしてブタジエン31.5部、芳香族ビニル化合物としてスチレン34.5部、(メタ)アクリレート化合物としてメチルメタクリレート8.0部、エチレン性不飽和カルボン酸としてアクリル酸0.5部、及び、イタコン酸0.5部からなる重合性の単量体(単量体組成物(b))75部を6時間かけて前記容器(反応器)に添加して重合させた。この際、単量体組成物(b)の添加開始から3時間経過した時点で、α-メチルスチレンダイマー0.5部及びドデシルメルカプタン0.1部を前記容器に添加した。単量体組成物(b)の添加が終了した後、前記容器内の温度を80℃に昇温し、更に2時間反応させた(第2段階目)。 Next, after confirming that the polymerization conversion was 80% or more, 31.5 parts of butadiene as a conjugated diene and 34.5 parts of styrene as an aromatic vinyl compound while maintaining the temperature in the reactor at 70 ° C. A polymerizable monomer (monomer composition) comprising 8.0 parts of methyl methacrylate as the (meth) acrylate compound, 0.5 part of acrylic acid as the ethylenically unsaturated carboxylic acid, and 0.5 part of itaconic acid. b)) 75 parts were added to the vessel (reactor) over 6 hours for polymerization. At this time, when 3 hours had elapsed from the start of addition of the monomer composition (b), 0.5 part of α-methylstyrene dimer and 0.1 part of dodecyl mercaptan were added to the container. After the addition of the monomer composition (b) was completed, the temperature in the container was raised to 80 ° C. and reacted for another 2 hours (second stage).
 そして、重合反応が終了した後、得られたラテックスのpHを7.5に調整し、水蒸気蒸留によって残留する単量体を除去し、減圧処理によって濃縮した。その後、250メッシュのフィルタを装着した佐藤式振動ふるい機「1200D-1S 特殊型」(晃栄産業社製)に供して、異物除去前の電気化学デバイス電極用バインダーを得た。得られた異物除去前の電気化学デバイス電極用バインダーは、固体濃度48.5質量%、pH7.8、粘度119mPa・sであった。 Then, after the polymerization reaction was completed, the pH of the obtained latex was adjusted to 7.5, residual monomers were removed by steam distillation, and concentrated by vacuum treatment. Thereafter, it was subjected to a Sato-type vibrating screen machine “1200D-1S special type” (manufactured by Koei Sangyo Co., Ltd.) equipped with a 250 mesh filter to obtain a binder for an electrochemical device electrode before foreign matter removal. The obtained binder for an electrochemical device electrode before removing foreign matter had a solid concentration of 48.5% by mass, a pH of 7.8, and a viscosity of 119 mPa · s.
 次に、得られた異物除去前の電気化学デバイス電極用バインダーについて図1に示すろ過装置100でろ過を行った(ろ過工程)。図1に示すろ過装置100は、異物除去前の電気化学デバイス電極用バインダーを貯蔵し供給する供給タンク1と、異物除去前の電気化学デバイス電極用バインダーを一定の流量で流すための定量ポンプ2と、カートリッジフィルタ(図示せず)及びこのカートリッジフィルタを収納(装着)したハウジングを有するろ過器4と、定量ポンプ2とろ過器4の途中に位置する脈動防止器3と、脈動防止器3とろ過器4との間に配置された第一圧力計7aと、ろ過器4の下流に配置された第二圧力計7bと、を備えている。そして、ろ過装置100は、ろ過器4から供給タンク1にバインダーを戻す戻り導管6と、ろ過器4によりろ過された電気化学デバイス電極用バインダーを排出する排出導管5と、を備えている。 Next, the obtained binder for an electrochemical device electrode before removing the foreign matter was filtered with the filtration device 100 shown in FIG. 1 (filtration step). A filtration apparatus 100 shown in FIG. 1 includes a supply tank 1 for storing and supplying an electrochemical device electrode binder before foreign matter removal, and a metering pump 2 for flowing the electrochemical device electrode binder before foreign matter removal at a constant flow rate. A filter 4 having a cartridge filter (not shown) and a housing containing (mounting) the cartridge filter, a pulsation preventer 3 located in the middle of the metering pump 2 and the filter 4, and a pulsation preventer 3 A first pressure gauge 7 a disposed between the filter 4 and a second pressure gauge 7 b disposed downstream of the filter 4 is provided. The filtration device 100 includes a return conduit 6 that returns the binder from the filter 4 to the supply tank 1, and a discharge conduit 5 that discharges the binder for an electrochemical device electrode filtered by the filter 4.
 本実施例において、ろ過器4は、ハウジング内にデプスタイプのカートリッジフィルタ「プロファイルII」(日本ポール社製、定格ろ過精度10μm、長さ1インチ)を1本装着したものである。定量ポンプ2は、エア駆動式のダイヤフラムポンプを用い、ろ過器前後の差圧が0.34MPaGとなるようにした。なお、図1に示すろ過装置100によるろ過後の電気化学デバイス電極用バインダーにおける数平均粒子径は177nmであった。 In this embodiment, the filter 4 is one in which a depth type cartridge filter “Profile II” (manufactured by Nippon Pall Co., Ltd., rated filtration accuracy 10 μm, length 1 inch) is mounted in the housing. The metering pump 2 was an air-driven diaphragm pump, and the differential pressure before and after the filter was 0.34 MPaG. In addition, the number average particle diameter in the binder for electrochemical device electrodes after filtration by the filtration apparatus 100 shown in FIG. 1 was 177 nm.
 なお、実施例1~5及び比較例1~3において、数平均粒子径は、オートサンプラー付き濃厚系粒径アナライザー「FPAR1000」(大塚電子社製)により測定した値である。 In Examples 1 to 5 and Comparative Examples 1 to 3, the number average particle diameter is a value measured by a concentrated particle size analyzer “FPAR1000” (manufactured by Otsuka Electronics Co., Ltd.) with an autosampler.
 図1に示すろ過装置100によるろ過後の電気化学デバイス電極用バインダーについて、前記各種評価を行った。評価結果を表1に示す。表1に示すように、本実施例において、ろ過装置100によるろ過後の電気化学デバイス電極用バインダーは、パーティクルカウンタで測定したときの、1mL当りにおける粒子径20μm以上の粒子の数、粒子径15μm以上で20μm未満の粒子の数、及び、粒子径10μm超で15μm未満の粒子の数は全て0個であった。 Various evaluations were performed on the binder for an electrochemical device electrode after filtration by the filtration apparatus 100 shown in FIG. The evaluation results are shown in Table 1. As shown in Table 1, in this example, the binder for an electrochemical device electrode after filtration by the filtration device 100 is the number of particles having a particle diameter of 20 μm or more per mL when measured with a particle counter, and the particle diameter is 15 μm. The number of particles having a particle diameter of less than 20 μm and the number of particles having a particle diameter of more than 10 μm and less than 15 μm were all zero.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(比較例1)
 図1に示すろ過装置100によるろ過を行う前の「異物除去前の電気化学デバイス電極用バインダー」について、実施例1と同様にして、前記各種評価を行った。評価結果を表1に示す。
(Comparative Example 1)
In the same manner as in Example 1, the above-described various evaluations were performed on the “binder for electrochemical device electrode before foreign matter removal” before filtration by the filtration apparatus 100 shown in FIG. The evaluation results are shown in Table 1.
(実施例2)
 実施例1と同様にして異物除去前の電気化学デバイス電極用バインダーを得た。得られた異物除去前の電気化学デバイス電極用バインダーについて、ろ過装置を用いてろ過を行った。本実施例で使用したろ過装置は、図1に示すろ過装置100のデプスタイプのカートリッジフィルタ「プロファイルII」(日本ポール社製、定格ろ過精度10μm、長さ1インチ)1本に代えて、デプスタイプのカートリッジフィルタ「プロファイルII」(日本ポール社製、定格ろ過精度20μm、長さ1インチ)1本を装着したものを用いた。なお、ろ過器前後の差圧は0.25MPaGとした。また、ろ過後の電気化学デバイス電極用バインダーにおける数平均粒子径は177nmであった。ろ過装置によるろ過後の電気化学デバイス電極用バインダーについて前記各種評価を行った。評価結果を表2に示す。
(Example 2)
In the same manner as in Example 1, a binder for an electrochemical device electrode before removing foreign matters was obtained. About the obtained binder for electrochemical device electrodes before foreign material removal, it filtered using the filtration apparatus. The filtration device used in this example was replaced with a depth type cartridge filter “Profile II” (manufactured by Nihon Pall Co., Ltd., rated filtration accuracy 10 μm, length 1 inch) of the filtration device 100 shown in FIG. A type cartridge filter “Profile II” (manufactured by Nippon Pole Co., Ltd., rated filtration accuracy 20 μm, length 1 inch) was used. The differential pressure before and after the filter was 0.25 MPaG. Moreover, the number average particle diameter in the binder for electrochemical device electrodes after filtration was 177 nm. Said various evaluation was performed about the binder for electrochemical device electrodes after filtration with a filtration apparatus. The evaluation results are shown in Table 2.
(比較例2)
 実施例2で用いたろ過装置によるろ過を行う前の「異物除去前の電気化学デバイス電極用バインダー」について、実施例2と同様にして、前記各種評価を行った。評価結果を表2に示す。
(Comparative Example 2)
The above-mentioned various evaluations were carried out in the same manner as in Example 2 with respect to the “binder for electrochemical device electrode before removing foreign matter” before filtration by the filtration device used in Example 2. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例3)
 実施例1と同様にして異物除去前の電気化学デバイス電極用バインダーを得た。得られた異物除去前の電気化学デバイス電極用バインダーについて、実施例1と同様にして図1に示すろ過装置100でろ過を行った。なお、本実施例においては、ろ過前後の差圧を0.38MPaGとし、ろ過装置100によるろ過開始から5分後のろ液をサンプリングして前記各種評価を行った。評価結果を表3に示す。なお、ろ過後の電気化学デバイス電極用バインダーにおける数平均粒子径は177nmであった。
(Example 3)
In the same manner as in Example 1, a binder for an electrochemical device electrode before removing foreign matters was obtained. The obtained binder for an electrochemical device electrode before removing the foreign matter was filtered using the filtration apparatus 100 shown in FIG. In this example, the differential pressure before and after filtration was set to 0.38 MPaG, and the filtrate was sampled 5 minutes after the start of filtration by the filtration device 100, and the various evaluations were performed. The evaluation results are shown in Table 3. In addition, the number average particle diameter in the binder for electrochemical device electrodes after filtration was 177 nm.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(実施例4)
 ろ過開始から10分後のろ液をサンプリングしたこと以外は、実施例3と同様にしてろ液(ろ過装置によるろ過後の電気化学デバイス電極用バインダー)をサンプリングした。得られたろ液について前記各種評価を行った。評価結果を表3に示す。なお、ろ過後の電気化学デバイス電極用バインダーにおける数平均粒子径は177nmであった。
Example 4
The filtrate (electrochemical device electrode binder after filtration by a filtration device) was sampled in the same manner as in Example 3 except that the filtrate after 10 minutes from the start of filtration was sampled. Said various evaluation was performed about the obtained filtrate. The evaluation results are shown in Table 3. In addition, the number average particle diameter in the binder for electrochemical device electrodes after filtration was 177 nm.
(実施例5)
 ろ過開始から15分後のろ液をサンプリングしたこと以外は、実施例3と同様にしてろ液(ろ過装置によるろ過後の電気化学デバイス電極用バインダー)をサンプリングした。得られたろ液について前記各種評価を行った。評価結果を表3に示す。なお、ろ過後の電気化学デバイス電極用バインダーにおける数平均粒子径は177nmであった。
(Example 5)
The filtrate (electrochemical device electrode binder after filtration by a filtration apparatus) was sampled in the same manner as in Example 3 except that the filtrate 15 minutes after the start of filtration was sampled. Said various evaluation was performed about the obtained filtrate. The evaluation results are shown in Table 3. In addition, the number average particle diameter in the binder for electrochemical device electrodes after filtration was 177 nm.
(比較例3)
 実施例3で用いたろ過装置によるろ過を行う前の「異物除去前の電気化学デバイス電極用バインダー」について、実施例3と同様にして、前記各種評価を行った。評価結果を表3に示す。なお、ろ過後の電気化学デバイス電極用バインダーにおける数平均粒子径は177nmであった。
(Comparative Example 3)
The above-mentioned various evaluations were performed in the same manner as in Example 3 with respect to the “binder for electrochemical device electrode before foreign matter removal” before filtration by the filtration device used in Example 3. The evaluation results are shown in Table 3. In addition, the number average particle diameter in the binder for electrochemical device electrodes after filtration was 177 nm.
 表1~表3から明らかなように、実施例1~5の電気化学デバイス電極用バインダーは、比較例1~3の電気化学デバイス電極用バインダーに比べて、セパレータが破損するような不良の発生率が極めて小さく安全性が高い電気化学デバイスの電極を構成するための材料として用いることが可能であることが確認できた。 As is clear from Tables 1 to 3, the electrochemical device electrode binders of Examples 1 to 5 were more defective than the electrochemical device electrode binders of Comparative Examples 1 to 3 to break the separator. It was confirmed that the material can be used as a material for constituting an electrode of an electrochemical device having a very low rate and high safety.
(実施例6~10、比較例4~10)
 実施例6,7、比較例4~7においては、電気化学デバイス電極用バインダーとして、JSR TRD2001(JSR社製)を使用し、実施例8~10、比較例8~10においては、表5に示すように実施例1~3で作製した各電気化学デバイス電極用バインダー(ろ過後の電気化学デバイス電極用バインダー)をそれぞれ使用して、ハードショートの有無、及び良品率を前述の方法にて評価した。更に、以下に示す[6ヶ月保存性]の評価を行った。
(Examples 6 to 10, Comparative Examples 4 to 10)
In Examples 6 and 7 and Comparative Examples 4 to 7, JSR TRD2001 (manufactured by JSR) was used as a binder for an electrochemical device electrode. In Examples 8 to 10 and Comparative Examples 8 to 10, Table 5 As shown, each electrochemical device electrode binder produced in Examples 1 to 3 (electrochemical device electrode binder after filtration) was used to evaluate the presence or absence of hard shorts and the yield rate according to the method described above. did. Furthermore, the [six months storage stability] shown below was evaluated.
[6ヶ月保存性]:
 電気化学デバイス電極用バインダーを保存容器に入れ、保存温度(℃)、容器の内容積に対する空隙部の体積の比率(空隙率(%))、空隙部に残留する気体中の酸素濃度を表4,5に記載の条件とする。その後、静置して6ヶ月保存する。6ヶ月保存後、電気化学デバイス電極用バインダー中における異物の発生の有無及び容器態様を目視にて観察し評価する。評価結果を表4,5に示す。なお、酸素濃度は、電気化学デバイス電極用バインダーを保存容器に入れた後、容器内に高純度の窒素を吹き付けて窒素置換することにより調整した。
[Six months shelf life]:
Table 4 shows the storage temperature (° C.), the ratio of the volume of the void to the internal volume of the container (void ratio (%)), and the oxygen concentration in the gas remaining in the void. , 5 conditions. Then, let stand and store for 6 months. After storage for 6 months, the presence or absence of foreign matter in the binder for electrochemical device electrodes and the container mode are visually observed and evaluated. The evaluation results are shown in Tables 4 and 5. The oxygen concentration was adjusted by placing the electrochemical device electrode binder in a storage container and then blowing high-purity nitrogen into the container to replace the nitrogen.
 異物発生の有無の評価は、目視にて凝集物(異物)が確認された場合を不良(表4,5中「N」と示す)とし、凝集物が確認されなかった場合を良好(表4,5中「G」と示す)とした。容器態様の評価は、目視にて容器外観に変化が確認できなかった場合を良好(表4,5中「G」と示す)とし、容器外観に変化が確認された場合を不良(表4,5中「N」と示す)とした。なお、比較例5,6,8,9において、「N(液漏れ・変形)」は、容器外観に変形が確認され、バインダーが漏れ出ていたことを示す。 In the evaluation of the presence or absence of foreign matter, the case where the aggregate (foreign matter) was confirmed visually was regarded as defective (indicated as “N” in Tables 4 and 5), and the case where the aggregate was not confirmed was good (Table 4). , 5 indicates “G”). In the evaluation of the container mode, the case where the change in the container appearance could not be confirmed by visual observation was good (indicated as “G” in Tables 4 and 5), and the case where the change in the container appearance was confirmed was poor (Table 4, 5). In Comparative Examples 5, 6, 8, and 9, “N (Liquid Leakage / Deformation)” indicates that deformation was confirmed in the container appearance, and the binder had leaked.
 表4,5において、「クリーンボトル」は、アイセロ社より市販されている20リットルの角缶型のクリーンボトルを示す。「洗浄ポリ容器」は、市販されている20リットルの角缶型のポリプロピレン容器の内部をクリーンルーム中で、純水を用いて容器内部を洗浄したものを示す。「金属缶」は、市販の金属製の一斗缶を示す。 In Tables 4 and 5, “clean bottle” indicates a 20-liter square can type clean bottle commercially available from Aicello. “Washing polycontainer” refers to the inside of a commercially available 20-liter square can-type polypropylene container washed in pure room with pure water. “Metal can” indicates a commercially available metal can.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 以上の結果より、本発明の保存方法は、凝集物などの異物の発生を防止可能な保存方法として有効であることが確認できた。即ち、本発明の保存方法によれば、電気化学デバイス電極用バインダーの保存中に、凝集物などの異物が発生し難く、作製される電極の歩留まりを向上することができることが確認できた。 From the above results, it was confirmed that the storage method of the present invention was effective as a storage method capable of preventing the generation of foreign substances such as aggregates. That is, according to the storage method of the present invention, it was confirmed that foreign substances such as aggregates are hardly generated during the storage of the binder for an electrochemical device electrode, and the yield of the manufactured electrode can be improved.
 本発明の電気化学デバイス電極用バインダーは、例えば電子機器の駆動用電源として用いられる電気化学デバイスを構成する電極の材料として好適である。本発明の電気化学デバイス電極用スラリーは、例えば電子機器の駆動用電源として用いられる電気化学デバイスを構成する電極の材料として好適である。本発明の電気化学デバイス電極は、例えば電子機器の駆動用電源として用いられる電気化学デバイスを構成する電極として好適である。電気化学デバイス電極用バインダーの製造方法は、例えば電子機器の駆動用電源として用いられる電気化学デバイスを構成する電極の材料の電気化学デバイス電極用バインダーを製造する方法である。電気化学デバイス電極用バインダーの保存方法は、例えば電子機器の駆動用電源として用いられる電気化学デバイスを構成する電極の材料である電気化学デバイス電極用バインダーの保存方法として好適である。 The binder for an electrochemical device electrode of the present invention is suitable as a material for an electrode constituting an electrochemical device used as a power source for driving electronic equipment, for example. The slurry for an electrochemical device electrode of the present invention is suitable as a material for an electrode constituting an electrochemical device used as a power source for driving an electronic device, for example. The electrochemical device electrode of the present invention is suitable as an electrode constituting an electrochemical device used as a power source for driving electronic equipment, for example. The method for producing an electrochemical device electrode binder is, for example, a method for producing an electrochemical device electrode binder as an electrode material constituting an electrochemical device used as a power source for driving electronic equipment. The method for preserving the binder for an electrochemical device electrode is suitable as a method for preserving the binder for an electrochemical device electrode that is a material of an electrode constituting an electrochemical device used as a power source for driving an electronic device, for example.
1:供給タンク、2:定量ポンプ、3:脈動防止器、4:ろ過器、5:排出導管、6:戻り導管、7a:第一圧力計、7b:第二圧力計、100:ろ過装置。 1: supply tank, 2: metering pump, 3: anti-pulsation device, 4: filter, 5: discharge conduit, 6: return conduit, 7a: first pressure gauge, 7b: second pressure gauge, 100: filtration device.

Claims (10)

  1.  重合性の単量体を重合させて得られるものであり、
     パーティクルカウンタで測定したときの、1mL当りにおける粒子径20μm以上の粒子の数が0個である電気化学デバイス電極用バインダー。
    It is obtained by polymerizing a polymerizable monomer,
    A binder for an electrochemical device electrode in which the number of particles having a particle diameter of 20 μm or more per mL is 0 when measured with a particle counter.
  2.  パーティクルカウンタで測定したときの、1mL当りにおける粒子径15μm以上で20μm未満の粒子の数が0~35000個である請求項1に記載の電気化学デバイス電極用バインダー。 2. The binder for an electrochemical device electrode according to claim 1, wherein the number of particles having a particle diameter of 15 μm or more and less than 20 μm per mL is 0 to 35000 as measured with a particle counter.
  3.  パーティクルカウンタで測定したときの、1mL当りにおける粒子径10μm超で15μm未満の粒子の数が0~500000個である請求項1または2に記載の電気化学デバイス電極用バインダー。 3. The binder for an electrochemical device electrode according to claim 1, wherein the number of particles having a particle diameter of more than 10 μm and less than 15 μm per mL is 0 to 500,000 as measured with a particle counter.
  4.  請求項1~3のいずれか一項に記載の電気化学デバイス電極用バインダーと、電極活物質と、を含有する電気化学デバイス電極用スラリー。 An electrochemical device electrode slurry containing the electrochemical device electrode binder according to any one of claims 1 to 3 and an electrode active material.
  5.  平板状の集電体と、
     前記集電体の一方の面側に配置され、請求項4に記載の電気化学デバイス電極用スラリーを前記集電体の前記一方の面に塗布して得られる電極層と、を備える電気化学デバイス電極。
    A flat plate current collector,
    An electrochemical device, comprising: an electrode layer disposed on one surface side of the current collector and obtained by applying the slurry for an electrochemical device electrode according to claim 4 to the one surface of the current collector. electrode.
  6.  重合性の単量体を重合させて重合体を含む反応液を得た後、得られた前記反応液を、デプスタイプまたはプリーツタイプのフィルタでろ過するろ過工程を有する電気化学デバイス電極用バインダーの製造方法。 An electrochemical device electrode binder having a filtration step of polymerizing a polymerizable monomer to obtain a reaction solution containing a polymer and then filtering the obtained reaction solution with a depth type or pleat type filter. Production method.
  7.  前記ろ過工程によって、パーティクルカウンタで測定したときの、1mL当りにおける粒子径20μm以上の粒子の数が0個であるろ液を得る請求項6に記載の電気化学デバイス電極用バインダーの製造方法。 The method for producing a binder for an electrochemical device electrode according to claim 6, wherein a filtrate having 0 particles having a particle diameter of 20 µm or more per mL when measured with a particle counter is obtained by the filtration step.
  8.  重合体粒子及び水を含有する電気化学デバイス電極用バインダーを、2℃以上30℃以下の温度で保存し、かつ、前記電気化学デバイス電極用バインダーを充填して保存する容器の内容積から前記電気化学デバイス電極用バインダーの占める体積を除いた空隙部の体積の、前記容器の内容積に占める比率(%)が、1~20%である電気化学デバイス電極用バインダーの保存方法。 The electrochemical device electrode binder containing polymer particles and water is stored at a temperature of 2 ° C. or higher and 30 ° C. or lower and filled with the electrochemical device electrode binder for storage of the electricity. A method for preserving a binder for an electrochemical device electrode, wherein a ratio (%) of the volume of the void portion excluding the volume occupied by the binder for a chemical device electrode to the internal volume of the container is 1 to 20%.
  9.  前記空隙部の酸素濃度が1%以下である請求項8に記載の電気化学デバイス電極用バインダーの保存方法。 The method for storing a binder for an electrochemical device electrode according to claim 8, wherein the oxygen concentration in the void is 1% or less.
  10.  前記電気化学デバイス電極用バインダーが、請求項1~3のいずれか一項に記載の電気化学デバイス電極用バインダーである請求項8または9に記載の電気化学デバイス電極用バインダーの保存方法。 The method for storing an electrochemical device electrode binder according to claim 8 or 9, wherein the electrochemical device electrode binder is the electrochemical device electrode binder according to any one of claims 1 to 3.
PCT/JP2011/074636 2010-11-17 2011-10-26 Electrochemical device electrode binder, method for producing same, and method for preserving electrochemical device electrode binder WO2012066911A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012544167A JPWO2012066911A1 (en) 2010-11-17 2011-10-26 Binder for electrochemical device electrode, method for producing the same, and storage method for binder for electrochemical device electrode

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010256879 2010-11-17
JP2010-256879 2010-11-17
JP2011-107734 2011-05-13
JP2011107734 2011-05-13

Publications (1)

Publication Number Publication Date
WO2012066911A1 true WO2012066911A1 (en) 2012-05-24

Family

ID=46083850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074636 WO2012066911A1 (en) 2010-11-17 2011-10-26 Electrochemical device electrode binder, method for producing same, and method for preserving electrochemical device electrode binder

Country Status (3)

Country Link
JP (1) JPWO2012066911A1 (en)
TW (1) TW201230478A (en)
WO (1) WO2012066911A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029835A1 (en) * 2013-08-29 2015-03-05 日本ゼオン株式会社 Method for preserving aqueous binder composition for lithium secondary cell
JP2016015270A (en) * 2014-07-03 2016-01-28 Jsr株式会社 Binder composition for power storage device and method for producing the same
JP2016015254A (en) * 2014-07-02 2016-01-28 Jsr株式会社 Method for charging binder composition for power storage device into container
JP2016046186A (en) * 2014-08-26 2016-04-04 Jsr株式会社 Quality control system of binder composition for power storage device
KR20170026397A (en) 2014-07-04 2017-03-08 제이에스알 가부시끼가이샤 Binder composition for power storage devices

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10241692A (en) * 1997-02-26 1998-09-11 Jsr Corp Hydrogen-storage electrode binder
JPH1125989A (en) * 1997-07-04 1999-01-29 Jsr Corp Battery electrode binder
JP2001319639A (en) * 2000-05-12 2001-11-16 Mitsubishi Electric Corp Battery
WO2007122947A1 (en) * 2006-03-31 2007-11-01 Zeon Corporation Lithium ion secondary battery
JP2008546135A (en) * 2005-05-17 2008-12-18 エルジー・ケム・リミテッド Binder for electrochemical devices including multiple stacked electrochemical cells
JP2010033803A (en) * 2008-07-28 2010-02-12 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042581A (en) * 2005-07-07 2007-02-15 Fujifilm Holdings Corp Manufacturing method of solid electrolyte dope, solid electrolyte film and its manufacturing method, electrode membrane assembly, and fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10241692A (en) * 1997-02-26 1998-09-11 Jsr Corp Hydrogen-storage electrode binder
JPH1125989A (en) * 1997-07-04 1999-01-29 Jsr Corp Battery electrode binder
JP2001319639A (en) * 2000-05-12 2001-11-16 Mitsubishi Electric Corp Battery
JP2008546135A (en) * 2005-05-17 2008-12-18 エルジー・ケム・リミテッド Binder for electrochemical devices including multiple stacked electrochemical cells
WO2007122947A1 (en) * 2006-03-31 2007-11-01 Zeon Corporation Lithium ion secondary battery
JP2010033803A (en) * 2008-07-28 2010-02-12 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029835A1 (en) * 2013-08-29 2015-03-05 日本ゼオン株式会社 Method for preserving aqueous binder composition for lithium secondary cell
JPWO2015029835A1 (en) * 2013-08-29 2017-03-02 日本ゼオン株式会社 Storage method of aqueous binder composition for lithium secondary battery
JP2016015254A (en) * 2014-07-02 2016-01-28 Jsr株式会社 Method for charging binder composition for power storage device into container
JP2016015270A (en) * 2014-07-03 2016-01-28 Jsr株式会社 Binder composition for power storage device and method for producing the same
KR20170026397A (en) 2014-07-04 2017-03-08 제이에스알 가부시끼가이샤 Binder composition for power storage devices
US10505195B2 (en) 2014-07-04 2019-12-10 Jsr Corporation Method for producing electrical storage device electrode with binder composition
JP2016046186A (en) * 2014-08-26 2016-04-04 Jsr株式会社 Quality control system of binder composition for power storage device

Also Published As

Publication number Publication date
JPWO2012066911A1 (en) 2014-05-12
TW201230478A (en) 2012-07-16

Similar Documents

Publication Publication Date Title
JP5077612B2 (en) Method for storing electrode binder composition
JP6068993B2 (en) Slurry for electrode
US9171675B2 (en) Electrical storage device, lithium ion capacitor and negative electrode for lithium ion capacitor
JP5949914B2 (en) Electrode mixture
TWI469433B (en) Electrode binder composition
WO2012066911A1 (en) Electrochemical device electrode binder, method for producing same, and method for preserving electrochemical device electrode binder
JP5949915B2 (en) Electrode mixture
EP3407410B1 (en) Binder composition, binder dispersion liquid, electrode mixture, electrode, nonaqueous electrolyte secondary battery, and method for producing binder composition
JP6068973B2 (en) Electrode binder composition
JP5365835B2 (en) Binder for electrochemical device electrode, slurry for electrochemical device electrode, and electrochemical device electrode
JP2016076493A (en) Composition for power storage device, slurry for power storage device, power storage device electrode and manufacturing method thereof, protection film and manufacturing method thereof, and power storage device
JP2005310747A (en) Binder for forming nonaqueous electrochemical element electrode, electrode mix, electrode structure, and electrochemical element
US11081700B2 (en) Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
JP5359306B2 (en) Electrochemical device electrode binder composition, electrochemical device electrode composition, electrochemical device electrode and electrochemical device
JP5057125B2 (en) Electrode binder composition, electrode slurry, electrode, and electrochemical device
JP2016015270A (en) Binder composition for power storage device and method for producing the same
JP2016015254A (en) Method for charging binder composition for power storage device into container
JP6066142B2 (en) Electrode slurry, electrode, and electrochemical device
JP2011009116A (en) Binder composition for electrochemical device electrodes, slurry for electrochemical device electrodes, and electrochemical device electrode
WO2022045267A1 (en) Conductive material dispersion liquid for electrochemical element, slurry composition for electrochemical element electrode, method for manufacturing same, electrochemical element electrode, and electrochemical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841234

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012544167

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841234

Country of ref document: EP

Kind code of ref document: A1