JPH10241692A - Hydrogen-storage electrode binder - Google Patents

Hydrogen-storage electrode binder

Info

Publication number
JPH10241692A
JPH10241692A JP9058502A JP5850297A JPH10241692A JP H10241692 A JPH10241692 A JP H10241692A JP 9058502 A JP9058502 A JP 9058502A JP 5850297 A JP5850297 A JP 5850297A JP H10241692 A JPH10241692 A JP H10241692A
Authority
JP
Japan
Prior art keywords
weight
electrode
polymer
hydrogen
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9058502A
Other languages
Japanese (ja)
Other versions
JP3580072B2 (en
Inventor
Nobuyuki Ito
信幸 伊藤
Tadashi Yasuda
直史 安田
Yoshika Noritake
芳佳 則武
Yasumasa Takeuchi
安正 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP05850297A priority Critical patent/JP3580072B2/en
Priority to KR1019980005914A priority patent/KR19980071685A/en
Publication of JPH10241692A publication Critical patent/JPH10241692A/en
Application granted granted Critical
Publication of JP3580072B2 publication Critical patent/JP3580072B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow to firing risk, lessen effect on electrode active materials, maintain high conductivity, and enhance the binding property with collecting material by specifying a glass transition point and the containing amount of toluene insoluble portion, and constituting of an aqueous dispersing body of a copolymer, containing a functional group in a polymer. SOLUTION: In a copolymer used as a hydrogen-storage electrode binder, a toluene insoluble portion is 20 to 100 percentage by weight, a glass transition point is 5 deg. or less, a functional group such as a carboxyl group, an acid anhydride group, a glycidyl group, or an amino group is required. As the aqueous dispersing body of the copolymers, a styrene-isoprene copolymer, polyorganosiloxane polymer polyvinylidene fluoride polymer, and the like are cited, and the same can be synthesized by a normal emulsion polymerization method. By the binder formed thereof, it is possible to obtain a hydrogen storage alloy electrode for a nickel hydrogen secondary battery, which has a high binding property with the collecting material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は結着性、充放電サイ
クル性、保存特性、安全性に優れた2次電池電極用バイ
ンダーに関するものである。さらに詳しくは、水素吸蔵
合金が集電材に保持された水素吸蔵電極用バインダー組
成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a binder for a secondary battery electrode having excellent binding properties, charge / discharge cycle properties, storage characteristics, and safety. More specifically, the present invention relates to a binder composition for a hydrogen storage electrode in which a hydrogen storage alloy is held on a current collector.

【0002】[0002]

【従来の技術】近年、電子産業における技術進歩は著し
く、電池技術においても高エネルギー密度、安全性等の
要求が増大している。ニッケル/水素電池は、単位容積
あたりのエネルギー密度が大きく、しかも公害物質を含
んでいないので安全性に優れた電池として注目されてい
る。ニッケル/水素電池は、負極の活物質に水素吸蔵合
金を使用しそれは水素雰囲気下において発熱、吸熱を伴
い自由に水素イオンを放出する。この水素イオンの吸放
出し易さが、高容量化、長寿命化につながる。また、ニ
ッケル/水素電池は急速充放電可能、過充電、過放電に
強くかつ高容量、小型、軽量化という点で優れた性能を
有し、すでに実用化されている。ニッケル/水素電池で
は、活物質を集電材に固定させる目的にポリマーバイン
ダーが使用され、このバインダーに要求される性能とし
ては、活物質と集電材の結着性が良好であること、
電解液中の水素イオンをできるだけ抵抗なく自由に移動
させること、電解液や充放電によって体積変化しない
こと、等があげられる。例えば、従来水素吸蔵合金用の
バインダーとしては、ポリテトラフルオロエチレン、ポ
リフッ化ビニリデン等のフッ素系ポリマーが知られてい
るが、これらフッ素系ポリマーでは集電材との結着性が
悪く、充放電サイクルの繰り返しで活物質の剥離が生じ
やすいという問題点があった。かかる問題点を解決すべ
く、例えば熱可塑性エラストマーであるSEBS(スチ
レン−エチエンーブチレンースチレンブロック共重合
体)を用いる試みがなされているが、サイクル初期の充
放電効率が悪いという問題点があり、さらにトルエン等
の有機溶剤を使用するため、工業的規模の製造プロセス
に於いて水素吸蔵合金との混合プロセスで発火の危険性
の大きい問題点があった。また、水系のスチレン−ブタ
ジエン共重合体の乳化物を用いる試みもなされている
が、バインダーが活物質全体を包み込んでしまうため、
充放電効率が悪く、集電体との密着性も不十分という問
題があった。
2. Description of the Related Art In recent years, technological progress in the electronics industry has been remarkable, and demands for high energy density, safety, and the like have also been increasing in battery technology. Nickel / hydrogen batteries have attracted attention as batteries with high energy density per unit volume and excellent safety because they do not contain pollutants. Nickel / hydrogen batteries use a hydrogen storage alloy as the active material of the negative electrode, which freely releases hydrogen ions with heat generation and heat absorption in a hydrogen atmosphere. The ease of absorbing and releasing hydrogen ions leads to higher capacity and longer life. Nickel / hydrogen batteries have already been put to practical use because they are capable of rapid charge / discharge, are resistant to overcharge and overdischarge, and have excellent performance in terms of high capacity, small size, and light weight. In nickel / hydrogen batteries, a polymer binder is used for the purpose of fixing the active material to the current collector, and the performance required for this binder is that the binding between the active material and the current collector is good,
Examples of the method include freely moving hydrogen ions in the electrolytic solution with as little resistance as possible, and preventing volume change due to the electrolytic solution and charge / discharge. For example, conventionally, as binders for hydrogen storage alloys, fluorine-based polymers such as polytetrafluoroethylene and polyvinylidene fluoride have been known, but these fluorine-based polymers have poor binding properties with a current collector, and have a poor charge / discharge cycle. There is a problem that the active material is easily peeled off by repeating the above. In order to solve such a problem, attempts have been made to use, for example, SEBS (styrene-ethylenebutylene-styrene block copolymer) which is a thermoplastic elastomer. In addition, since an organic solvent such as toluene is used, there is a problem in that there is a high risk of ignition in a mixing process with a hydrogen storage alloy in an industrial scale manufacturing process. Attempts have been made to use emulsions of aqueous styrene-butadiene copolymers, but since the binder encloses the entire active material,
There is a problem that charge / discharge efficiency is poor and adhesion to a current collector is insufficient.

【0003】[0003]

【発明が解決しようとする課題】本発明では水素吸蔵合
金を電極活物質とするニッケル/水素二次電池におい
て、水素吸蔵合金とバインダーとの混合プロセスにおい
て発火の危険性がない水系で、電極活物質に対する影響
が少なく、高い導電性を維持し、かつ集電材との結着性
に優れたバインダーを用いて長寿命、高容量化を達成す
ることにある。
SUMMARY OF THE INVENTION The present invention relates to a nickel / hydrogen secondary battery using a hydrogen storage alloy as an electrode active material, in an aqueous system having no danger of ignition in the mixing process of the hydrogen storage alloy and the binder. An object of the present invention is to achieve long life and high capacity by using a binder that has little influence on a substance, maintains high conductivity, and has excellent binding properties with a current collector.

【0004】[0004]

【課題を解決するための手段】本発明は、上記の課題を
解決するために、 ガラス転移点が5℃以下、トルエン
不溶分が20〜100重量%、かつポリマー中に官能基
を含有する共重合体の水系分散体からなることを特徴と
する水素吸蔵電極用バインダーを提供するものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a polymer having a glass transition point of 5 ° C. or less, a toluene insoluble content of 20 to 100% by weight, and a polymer containing a functional group. An object of the present invention is to provide a binder for a hydrogen storage electrode, comprising a water-based dispersion of a polymer.

【0005】以下に本発明を詳細に説明する。本発明で
使用する共重合体は、トルエン不溶分が20〜100重
量%、好ましくは30〜90重量%、特に好ましくは5
0〜85重量%である。本発明において、トルエン不溶
分は、0.5Nアンモニア水または0.5N塩酸でpH
8に調整した固形分50重量%の共重合体水分散液を1
20℃で1時間乾燥させて成膜させた後、この乾燥フィ
ルムをポリマー重量の100重量部のトルエンと共に三
角フラスコ等の容器に入れ、3時間振とう後200メッ
シュのフィルターで濾過して不溶分を採取し、120℃
で1時間乾燥させて不溶分の重量を測定し、次式でゲル
量を求める。 ゲル量=(トルエン不溶分重量/浸積前の重量)×10
0(%) 共重合体のトルエン不溶分が20重量%未満では、電極
を形成し加熱乾燥するときにポリマーフローが生じて電
極活物質を過度に覆い、過電圧が上昇し使用できなくな
る。また、電解液である水酸化カリウムの耐久性も劣
り、水素吸蔵合金の集電材からの脱離が生じてしまう。
本発明で使用する共重合体のガラス転移点(Tg)は5
℃以下である。Tgが5℃を超えると、共重合体により
得られるポリマーフィルムは柔軟性、粘着性が乏しく活
材の集電材への接着性が劣る。本発明において、共重合
体は水系分散体として使用される。この水系分散体中に
分散する共重合体粒子の平均粒子径は、0.05〜5μ
mが好ましく、さらに好ましくは0.1〜2μmで、電
極活物質の1/3より小さいことが望ましい。本発明で
使用する共重合体は、カルボキシ基、酸無水物基、グリ
シジル基、アミノ基などの官能基を有することが必要で
あり、これらの官能基はポリマー1分子中0.1〜10
%の割合で有することが好ましく、熱分解ガスクロマト
グラフィーから求める。官能基が0.1%未満では、共
重合体のバインダー性能、耐薬品性が劣り、一方10%
を超えると、耐水性、貯蔵安定性が劣るものとなり好ま
しくない。
Hereinafter, the present invention will be described in detail. The copolymer used in the present invention has a toluene-insoluble content of 20 to 100% by weight, preferably 30 to 90% by weight, particularly preferably 5 to 90% by weight.
0 to 85% by weight. In the present invention, the toluene-insoluble content is adjusted to pH with 0.5N ammonia water or 0.5N hydrochloric acid.
The aqueous dispersion of the copolymer having a solid content of 50% by weight adjusted to 8 was added to 1
After drying at 20 ° C. for 1 hour to form a film, the dried film is put in a container such as an Erlenmeyer flask together with 100 parts by weight of toluene of the polymer, shaken for 3 hours, and then filtered through a 200 mesh filter to remove insoluble matter. And collected at 120 ° C
After drying for 1 hour, the weight of the insoluble matter is measured, and the gel amount is determined by the following equation. Gel amount = (weight of toluene-insoluble matter / weight before immersion) × 10
If the toluene-insoluble content of the 0 (%) copolymer is less than 20% by weight, a polymer flow occurs when the electrode is formed and heated and dried, so that the electrode active material is excessively covered. In addition, the durability of potassium hydroxide, which is an electrolytic solution, is poor, and the hydrogen storage alloy is detached from the current collector.
The glass transition point (Tg) of the copolymer used in the present invention is 5
It is below ° C. When the Tg exceeds 5 ° C., the polymer film obtained from the copolymer has poor flexibility and tackiness and poor adhesion of the active material to the current collector. In the present invention, the copolymer is used as an aqueous dispersion. The average particle size of the copolymer particles dispersed in the aqueous dispersion is 0.05 to 5 μm.
m is preferably, more preferably 0.1 to 2 μm, and desirably smaller than 1/3 of the electrode active material. The copolymer used in the present invention needs to have a functional group such as a carboxy group, an acid anhydride group, a glycidyl group, and an amino group.
%, Preferably determined by pyrolysis gas chromatography. When the functional group is less than 0.1%, the binder performance and chemical resistance of the copolymer are inferior, while 10%
Exceeding the water resistance and storage stability are undesirably poor.

【0006】本発明で使用することのできる共重合体の
水系分散体としては、スチレン−イソプレン共重合体、
ポリオルガノシロキサン系重合体、ポリビニリデンフロ
ライド系重合体などが挙げられる。これらの共重合体の
水系分散体は、通常の乳化重合法で合成することができ
る。スチレン−イソプレン共重合体は、イソプレン30
重量%以上と、スチレン30〜60重量%と、後述する
官能性モノマー0.1〜10重量%乳化重合してなる。
ポリオルガノシロキサン系重合体は、オルガノシロキサ
ンに必要に応じてグラフト交叉剤を共縮合して得られる
ポリオルガノシロキサン系重合体の水性分散体の存在下
に、アクリル酸アルキルエステル、後述する官能性モノ
マーおよびこれらと共重合可能な他の単量体成分を乳化
重合することによって得られる。また、アクリル酸エス
テルとは例えば、(メタ)アクリル酸メチル、(メタ)
アクリル酸エチル、(メタ)アクリル酸n−プロピル、
(メタ)アクリル酸i−プロピル、(メタ)アクリル酸
n−ブチル、(メタ)アクリル酸i−ブチル、(メタ)
アクリル酸n−アミル、(メタ)アクリル酸i−アミ
ル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸
2−ヘキシル、(メタ)アクリル酸オクチル、(メタ)
アクリル酸i−ノニル、(メタ)アクリル酸デシル、ヒ
ドロヒシメチル(メタ)アクリレート、ヒドロキシエチ
ル(メタ)アクリレートなどが挙げられる。アクリル酸
アルキルエステルおよび官能性モノマーと共重合可能な
モノマーとしては、α−メチルスチレン、ジビニルベン
ゼン、エチレングリコールジメタクリレートなどが挙げ
られる。
The aqueous dispersion of the copolymer that can be used in the present invention includes styrene-isoprene copolymer,
Examples thereof include polyorganosiloxane polymers and polyvinylidene fluoride polymers. Aqueous dispersions of these copolymers can be synthesized by a usual emulsion polymerization method. Styrene-isoprene copolymer is isoprene 30
% Or more, 30 to 60% by weight of styrene, and 0.1 to 10% by weight of a functional monomer described below by emulsion polymerization.
The polyorganosiloxane-based polymer is obtained by co-condensing a polyorganosiloxane-based polymer with an organosiloxane, if necessary, in the presence of an aqueous dispersion of the polyorganosiloxane-based polymer, an alkyl acrylate, a functional monomer described below. And other monomer components copolymerizable therewith by emulsion polymerization. In addition, acrylates include, for example, methyl (meth) acrylate, (meth)
Ethyl acrylate, n-propyl (meth) acrylate,
I-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, (meth)
N-Amyl acrylate, i-amyl (meth) acrylate, hexyl (meth) acrylate, 2-hexyl (meth) acrylate, octyl (meth) acrylate, (meth)
Examples thereof include i-nonyl acrylate, decyl (meth) acrylate, hydroshimethyl (meth) acrylate, and hydroxyethyl (meth) acrylate. Examples of monomers copolymerizable with the alkyl acrylate and the functional monomer include α-methylstyrene, divinylbenzene, and ethylene glycol dimethacrylate.

【0007】ポリビニリデンフロライド系重合体とは、
(イ)フッ化ビニリデン50〜80重量%、六フッ化プ
ロピレン20〜50重量%およびその他共重合可能な単
量体0〜30重量%からなる単量体を重合してなる重合
体、(ロ)フッ化ビニリデン50〜80重量%、六フッ
化プロピレン20〜50重量%およびその他共重合可能
な単量体0〜30重量%からなる単量体を重合してなる
含フッ素重合体と(メタ)アクリル酸アルキルエステル
40〜100重量%およびその他共重合可能な単量体0
〜60重量%からなる単量体を重合してなるアクリル系
重合体とが複合してなる複合重合体などを挙げることが
できる。ポリビニリデンフロライド系重合体は好ましく
は特開平7−258499号公報に、ポリオルガノシロ
キサン系重合体は好ましくは特開平4−261454号
公報に示される方法で合成することができる。
[0007] The polyvinylidene fluoride polymer is
(B) a polymer obtained by polymerizing a monomer comprising 50 to 80% by weight of vinylidene fluoride, 20 to 50% by weight of propylene hexafluoride and 0 to 30% by weight of a copolymerizable monomer; A) a fluoropolymer obtained by polymerizing a monomer comprising 50 to 80% by weight of vinylidene fluoride, 20 to 50% by weight of propylene hexafluoride and 0 to 30% by weight of a copolymerizable monomer; ) 40 to 100% by weight of alkyl acrylate and other copolymerizable monomer 0
And a composite polymer obtained by compounding an acrylic polymer obtained by polymerizing a monomer of 60 to 60% by weight. The polyvinylidene fluoride-based polymer can be synthesized preferably by the method described in JP-A-7-258499, and the polyorganosiloxane-based polymer can be synthesized preferably by the method described in JP-A-4-261454.

【0008】本発明において、官能性モノマーとしては
例えば、アクリル酸、(メタ)アクリル酸、イタコン
酸、フマル酸、マレイン酸などのエチレン性不飽和カル
ボン酸、;(メタ)アクリルアミド、N−メチロールア
クリルアミドなどのエチレン性不飽和カルボン酸のアル
キルアミド;酢酸ビニル、プロピオン酸ビニルなどのカ
ルボン酸ビニルエステル;エチレン系不飽和ジカルボン
酸の、酸無水物、モノアルキルアステル、モノアミド
類;アミノエチルアクリレート、ジメチルアミノエチル
アクリレート、ブチルアミノエチルアクリレートなどの
エチレン系不飽和カルボン酸のアミノアルキルエステ
ル;アミノエチルアクリルアミド、ジメチルアミノメチ
ルメタクリルアミド、メチルアミノプロピルメタクリル
アミドなどのエチレン系不飽和カルボン酸のアミノアル
キルアミド;(メタ)アクリロニトリル、α−クロルア
クリロニトリルなどのシアン化ビニル系化合物;グリシ
ジル(メタ)アクリレートなどの不飽和脂肪族グリシジ
ルエステルなどを挙げることができる。これらは1種類
単独でも、あるいは2種類以上を併用することもでき、
結着強度の面で必須である。これらの官能性モノマー
は、共重合体を製造するために使用する全モノマー成分
全体に対して0.1〜10重量%、好ましくは2〜10
重量%、さらに好ましくは3〜10重量%使用される。
In the present invention, examples of the functional monomer include ethylenically unsaturated carboxylic acids such as acrylic acid, (meth) acrylic acid, itaconic acid, fumaric acid, and maleic acid; (meth) acrylamide, N-methylolacrylamide Alkyl amides of ethylenically unsaturated carboxylic acids such as vinyl acetate; vinyl carboxylate esters such as vinyl acetate and vinyl propionate; acid anhydrides, monoalkyl esters, monoamides of ethylenically unsaturated dicarboxylic acids; aminoethyl acrylate, dimethylamino Aminoalkyl esters of ethylenically unsaturated carboxylic acids such as ethyl acrylate and butylaminoethyl acrylate; ethylene compounds such as aminoethylacrylamide, dimethylaminomethylmethacrylamide, methylaminopropylmethacrylamide (Meth) acrylonitrile, alpha-chloro acrylonitrile vinyl cyanide compounds such as; aminoalkyl amides of unsaturated carboxylic acids and unsaturated aliphatic glycidyl esters such as glycidyl (meth) acrylate. These can be used alone or in combination of two or more.
It is essential in terms of binding strength. These functional monomers are used in an amount of 0.1 to 10% by weight, preferably 2 to 10% by weight, based on the total amount of all monomer components used for producing the copolymer.
%, More preferably 3 to 10% by weight.

【0009】本発明において、共重合体の水系分散体を
バインダーとする電池電極組成物には、必要に応じて添
加剤として増粘剤を共重合体100重量部に対して1〜
200重量部用いてもよい。水溶性増粘剤としては、カ
ルボキシメチルセルロース、メチルセルロース、ヒドロ
キシメチルセルロース、エチルセルロース、ポリビニル
アルコール、ポリアクリル酸(塩)、酸化スターチ、リ
ン酸化スターチ、カゼインなどが含まれる。また、共重
合体の水分散体の固形分濃度は、通常20〜65重量
%、好ましくは35〜60重量%である。
In the present invention, a battery electrode composition containing an aqueous dispersion of a copolymer as a binder may optionally contain a thickener as an additive in an amount of 1 to 100 parts by weight of the copolymer.
200 parts by weight may be used. Examples of the water-soluble thickener include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, polyacrylic acid (salt), oxidized starch, phosphorylated starch, casein and the like. The solids content of the aqueous dispersion of the copolymer is usually 20 to 65% by weight, preferably 35 to 60% by weight.

【0010】本発明の水素吸蔵電極用バインダーは、水
素吸蔵合金粉末と配合して電池電極用組成物とし、この
電池電極用組成物を集電体に塗布し、乾燥することによ
り、水素吸蔵電極を製造することができる。本発明で用
いる水素吸蔵合金粉末は、MmNi5をベースにNiの
1部をMn、Al、Coなどで置き換えたものである。
ここでMmは希土類の混合物であるミッシュメタルを表
している。また、粉体の形状は、100メッシュを通過
した粉末であり、粒子径は、3〜400μm程度であ
る。本発明の水素吸蔵電極用バインダーは、水素吸蔵合
金粉末100重量部に対して固形分で0.1〜20重量
部、好ましくは0.5〜10重量部配合される。水素吸
蔵電極用バインダーの配合量が0.1重量部未満では良
好な接着力が得られず、20重量部を超えると過電圧が
著しく上昇し電池特性に悪影響をおよぼす。電池電極用
組成物は、水素吸蔵合金粉末と水素吸蔵電極用バインダ
ーと必要に応じて水溶性増粘剤からなるが、その他に、
ヘキサメタリン酸ソーダ、トリポリリン酸ソーダ、ピロ
リン酸ソーダ、ポリアクリル酸ソーダなどの分散剤、さ
らにラテックスの安定化剤としてのノニオン性、アニオ
ン性界面活性剤などの添加剤、電極の導電性付与の目的
でカーボンを加えてもよい。
The binder for a hydrogen storage electrode of the present invention is mixed with a hydrogen storage alloy powder to form a composition for a battery electrode, and the composition for a battery electrode is applied to a current collector and dried to obtain a hydrogen storage electrode. Can be manufactured. The hydrogen storage alloy powder used in the present invention is obtained by replacing a part of Ni with Mn, Al, Co or the like based on MmNi5.
Here, Mm represents a misch metal which is a mixture of rare earth elements. The shape of the powder is a powder that has passed through 100 mesh, and the particle diameter is about 3 to 400 μm. The binder for a hydrogen storage electrode of the present invention is compounded in a solid content of 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the hydrogen storage alloy powder. If the amount of the binder for a hydrogen storage electrode is less than 0.1 part by weight, good adhesive strength cannot be obtained, and if it exceeds 20 parts by weight, the overvoltage increases significantly and adversely affects battery characteristics. The composition for a battery electrode is composed of a hydrogen storage alloy powder, a binder for a hydrogen storage electrode, and a water-soluble thickener as required.
Dispersants such as sodium hexametaphosphate, sodium tripolyphosphate, sodium pyrophosphate, and sodium polyacrylate; additives such as nonionic and anionic surfactants as latex stabilizers; and for the purpose of imparting electrode conductivity Carbon may be added.

【0011】水素吸蔵電極を形成するには、前記電池電
極用組成物を、好ましくはスラリー状にして集電体に塗
布し、加熱し、乾燥する。集電体としては、例えばニッ
ケルなどの金属からなる厚さ40〜80μmの芯板であ
り、多孔であることが好ましい。このとき、金属芯板の
開孔率は、通常、30〜60%である。この時、必要と
すれば集電体材料と共に成形してもよいし、また別法と
してNiメッシュ、パンチングNiなどの集電体基材に
塗布して用いることもできる。電池電極用組成物の塗布
方法としては、リバースロール法、コンマバー法、グラ
ビヤ法、エアーナイフ法など任意のコーターヘッドを用
いることができ、乾燥方法としては放置乾燥、送風乾燥
機、温風乾燥機、赤外線加熱機、遠赤外線加熱機などが
使用できる。乾燥温度は、通常150℃で行う。
In order to form a hydrogen storage electrode, the composition for a battery electrode is preferably applied in the form of a slurry to a current collector, heated and dried. The current collector is a core plate made of a metal such as nickel and having a thickness of 40 to 80 μm, and is preferably porous. At this time, the opening ratio of the metal core plate is usually 30 to 60%. At this time, if necessary, it may be molded together with the current collector material, or alternatively, it may be used by being applied to a current collector base material such as Ni mesh or punched Ni. As a method of applying the composition for a battery electrode, any coater head such as a reverse roll method, a comma bar method, a gravure method, and an air knife method can be used, and the drying methods include standing drying, blast drying, and hot air drying. , An infrared heater, a far infrared heater and the like can be used. The drying temperature is usually 150 ° C.

【0012】上記のようにして得られた電池電極を用い
て、ニッケル水素電池を組み立てる場合、電解液に5規
定以上の水酸化カリウムを使用し、正極材料NiOO
H、負極に水素吸蔵合金を用いる。さらに、要すればセ
パレーター、集電体、端子、絶縁板などの部品を用いて
電池が構成される。また、電池の構造としては、特に限
定されるものではないが、正極、負極、さらに要すれば
セパレーターを単層または複層としたペーパー型電池、
または正極、負極、さらに要すればセパレーターをロー
ル状に巻いた円筒状電池などの形態が一例として挙げら
れる。本発明の水素吸蔵電極用バインダーを用いて製造
した電池電極は、具体的にOA機器、ポータブルタイプ
のAV機器などに好適に使用することができる。
When assembling a nickel-metal hydride battery using the battery electrode obtained as described above, potassium hydroxide of 5N or more is used as an electrolyte, and a positive electrode material NiOO
H, a hydrogen storage alloy is used for the negative electrode. Further, if necessary, a battery is configured using components such as a separator, a current collector, a terminal, and an insulating plate. Further, the structure of the battery is not particularly limited, but a positive electrode, a negative electrode, and, if necessary, a paper type battery having a single-layer or multiple-layer separator,
Alternatively, examples include a positive electrode, a negative electrode, and, if necessary, a cylindrical battery in which a separator is wound in a roll shape. The battery electrode manufactured using the binder for a hydrogen storage electrode of the present invention can be suitably used for OA equipment, portable AV equipment, and the like.

【0013】[0013]

【実施例】以下に実施例にて本発明をさらに詳しく説明
する。但し、本発明はこれらの実施例に何ら制約される
ものではない。 測定法 (1)トルエンゲル量測定;0.5Nアンモニア水およ
び0.5N塩酸でpH8に調整したラテックスを120
℃で1時間乾燥させて成膜させた後、ポリマー重量の1
00重量部のトルエンに浸積し、3時間振とう後200
メッシュのフィルターで濾過して不溶分を採取し、12
0℃で1時間乾燥させて不溶分の重量を測定し、次式で
ゲル量を求めた。 ゲル量=(トルエン不溶分重量/浸積前の重量)×10
0(%) (2)ガラス転移点の測定;(1)で作成したフィルム
を使用し、セイコー電子工業(株)製(示差走査熱量
計)を用いてガラス転移点を求めた。 (3)平均粒子径の測定;大塚電子(株)製レーザー粒
径解析システムLPA−3000s/3100を用いて
粒子径を測定した。
The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these embodiments. Measurement method (1) Toluene gel amount measurement; latex adjusted to pH 8 with 0.5N ammonia water and 0.5N hydrochloric acid was used for 120
After drying at ℃ for 1 hour to form a film, 1% of the polymer weight
After immersing in 00 parts by weight of toluene and shaking for 3 hours, 200
The mixture was filtered through a mesh filter to collect insolubles, and 12
After drying at 0 ° C. for 1 hour, the weight of the insoluble matter was measured, and the gel amount was determined by the following equation. Gel amount = (weight of toluene-insoluble matter / weight before immersion) × 10
0 (%) (2) Measurement of glass transition point: Using the film prepared in (1), the glass transition point was determined using a Seiko Denshi Kogyo KK (differential scanning calorimeter). (3) Measurement of average particle diameter: The particle diameter was measured using a laser particle size analysis system LPA-3000s / 3100 manufactured by Otsuka Electronics Co., Ltd.

【0014】実施例1 攪拌機を備えたオートクレーブに、イオン交換水70部
および過硫酸カリウム0.3部をそれぞれ仕込み、気相
部を15分間窒素ガスで置換し、80℃に昇温した。一
方、別容器で表1に示す成分と乳化剤ドデシルベンゼン
スルホン酸0.2重量部を混合し、15時間かけて前記
オートクレーブに滴下した。滴下中は、80℃で反応を
行った。滴下終了後、さらに85℃で5時間攪拌した後
反応を終了させた。25℃に冷却後、水酸化カリウムで
pHを7に調整し、その後スチームを導入して残留モノ
マーを除去し、次いで濃縮して共重合体の水分散体を得
た。
Example 1 An autoclave equipped with a stirrer was charged with 70 parts of ion-exchanged water and 0.3 part of potassium persulfate, and the gas phase was replaced with nitrogen gas for 15 minutes, and the temperature was raised to 80 ° C. On the other hand, the components shown in Table 1 and 0.2 parts by weight of the emulsifier dodecylbenzenesulfonic acid were mixed in a separate container and added dropwise to the autoclave over 15 hours. During the dropwise addition, the reaction was carried out at 80 ° C. After the completion of the dropwise addition, the mixture was further stirred at 85 ° C. for 5 hours to terminate the reaction. After cooling to 25 ° C., the pH was adjusted to 7 with potassium hydroxide, then steam was introduced to remove residual monomers, and then concentrated to obtain an aqueous dispersion of a copolymer.

【0015】実施例2、4 (1)ビニルフェニルメチルジメトキシシラン(VpM
DMS)1.5部およびオクタメチルシクロテトラシロ
キサン(D4)98.5部を混合し、これをαーオレフ
ィンスルホン酸(RCH=CH(CH2)nSO3Na
約75wt%、RCH2CH(OH)(CH2)mSO
3Na約25wt%の混合物)2.0部を溶解した蒸留
水300部中に入れ、ホモミキサーにより3分間攪拌し
て乳化分散させた。この混合液を、コンデンサー、窒素
導入口および攪拌機を備えたセパラブルフラスコに移
し、攪拌混合しながら90℃で6時間加熱し、5℃で2
4時間冷却することによって縮合を完結させた。得られ
たオルガノポリシロキサン水分散体を、炭酸ナトリウム
水溶液pH7に中和した。 (2)コンデンサー、窒素導入口および攪拌機を備えた
セパラブルフラスコに、100重量部(固形分)のオル
ガノポリシロキサン水分散体、イオン交換水70部およ
び過硫酸アンモニウム0.3部をそれぞれ仕込み、気相
部を15分間窒素ガスで置換し、80℃に昇温した。 (3)一方、別容器でスチレン21重量部、n−ブチル
アクリレート71重量部およびグリシジルメタクリレー
ト8重量部を混合し、3時間かけて(2)のオルガノポ
リシロキサン水分散体に滴下した。滴下中は、窒素ガス
を導入しながら80℃で反応を行った。滴下終了後、さ
らに85℃で2時間攪拌した後反応を終了させた。その
後25℃まで冷却し、アンモニア水でpH7に調整し、
スチレンアクリル変性シリコーン重合体の水分散体を得
た。
Examples 2 and 4 (1) Vinylphenylmethyldimethoxysilane (VpM
(DMS) 1.5 parts and octamethylcyclotetrasiloxane (D4) 98.5 parts were mixed, and this was mixed with α-olefin sulfonic acid (RCH = CH (CH 2) nSO 3 Na).
About 75 wt%, RCH2CH (OH) (CH2) mSO
2.0 parts of a mixture of 3Na (about 25% by weight) was placed in 300 parts of distilled water in which 2.0 parts were dissolved, and the mixture was stirred for 3 minutes with a homomixer to emulsify and disperse. This mixed solution was transferred to a separable flask equipped with a condenser, a nitrogen inlet and a stirrer, heated at 90 ° C. for 6 hours while stirring and mixing, and then heated at 5 ° C. for 2 hours.
The condensation was completed by cooling for 4 hours. The obtained aqueous dispersion of organopolysiloxane was neutralized to a sodium carbonate aqueous solution pH of 7. (2) A separable flask equipped with a condenser, a nitrogen inlet, and a stirrer was charged with 100 parts by weight (solid content) of an aqueous dispersion of an organopolysiloxane, 70 parts of ion-exchanged water, and 0.3 part of ammonium persulfate. The phase was replaced with nitrogen gas for 15 minutes, and the temperature was raised to 80 ° C. (3) Separately, 21 parts by weight of styrene, 71 parts by weight of n-butyl acrylate and 8 parts by weight of glycidyl methacrylate were mixed in a separate container, and added dropwise to the aqueous organopolysiloxane dispersion of (2) over 3 hours. During the dropwise addition, the reaction was carried out at 80 ° C. while introducing nitrogen gas. After the completion of the dropwise addition, the mixture was further stirred at 85 ° C. for 2 hours to terminate the reaction. Then cool to 25 ° C, adjust to pH 7 with aqueous ammonia,
An aqueous dispersion of a styrene acrylic-modified silicone polymer was obtained.

【0016】実施例3 (1)電磁式攪拌機を備えた内容積約6リットルのオー
トクレーブを窒素ガスで充分に置換したのち、脱酸素し
た純水2.5リットル、乳化剤としてパーフルオロデカ
ン酸アンモニウム25gを仕込み、350rpmで攪拌
しながら60℃まで昇温した。次いでフッ化ビニリデン
単量体(VdF)44.2重量%及び六フッ化プロピレ
ン単量体(HFP)55.8重量%からなる混合ガスを
20kg/cm2Gになるまで仕込み、重合開始剤のジ
イソプロピルパーオキシジカーボネート20重量%を含
有したフロン113溶液25gを窒素ガスで圧入し重合
を開始させた。重合の進行と共に圧力が降下するのでV
dF60.2重量%及びHFP39.8重量%からなる混
合ガスを逐次圧入し、圧力を20kg/cm2Gに維持
して反応を継続した。反応時間と共に重合速度が低下す
るため、3時間経過した後再度先と同量の重合開始剤を
窒素ガスで圧入し、更に3時間反応を継続させた。 次
いで系内を冷却、攪拌を停止した後未反応単量体を放出
し反応を停止させて含フッ素重合体の水分体を得た。 (2)容量7リットルのセパラブルフラスコの内部を窒
素置換したのち、得られた含フッ素重合体水性分散液を
固形分換算で150部および2−(1−アリル)−4−
ノニルフェノキシポリエチレングリコールスルフェート
アンモニウム3部を入れて、75℃に昇温させた。次に
単量体混合物(および場合により水)を加え、75℃で
30分攪拌した。ここに過硫酸ナトリウム0.5部を加
え85〜95°Cで2時間重合したのち、冷却して反応
を停止させて、ポリビニルデンフロライド系重合体の水
分散体を得た。
Example 3 (1) An autoclave equipped with an electromagnetic stirrer and having an internal volume of about 6 liters was sufficiently replaced with nitrogen gas, and then 2.5 liters of deoxygenated pure water and 25 g of ammonium perfluorodecanoate as an emulsifier were used. And heated to 60 ° C. while stirring at 350 rpm. Next, a mixed gas consisting of 44.2% by weight of vinylidene fluoride monomer (VdF) and 55.8% by weight of propylene hexafluoride monomer (HFP) was charged to 20 kg / cm 2 G, and diisopropyl par as a polymerization initiator was charged. 25 g of a Freon 113 solution containing 20% by weight of oxydicarbonate was injected with nitrogen gas to initiate polymerization. As the pressure drops as the polymerization proceeds, V
A mixed gas consisting of 60.2% by weight of dF and 39.8% by weight of HFP was sequentially injected, and the reaction was continued while maintaining the pressure at 20 kg / cm 2 G. Since the polymerization rate decreases with the reaction time, after 3 hours, the same amount of the polymerization initiator as above was again injected with nitrogen gas, and the reaction was further continued for 3 hours. Next, the system was cooled and the stirring was stopped, and then the unreacted monomer was released to stop the reaction, thereby obtaining a water body of the fluoropolymer. (2) After the inside of the separable flask having a capacity of 7 liters was replaced with nitrogen, 150 parts of the obtained fluoropolymer aqueous dispersion was converted to solids and 2- (1-allyl) -4-
Nonylphenoxy polyethylene glycol sulfate ammonium (3 parts) was added, and the temperature was raised to 75 ° C. Next, the monomer mixture (and optionally water) was added and stirred at 75 ° C. for 30 minutes. After adding 0.5 part of sodium persulfate thereto and polymerizing at 85 to 95 ° C. for 2 hours, the reaction was stopped by cooling to obtain an aqueous dispersion of a polyvinyldenfluoride-based polymer.

【0017】比較例1、3 実施例1において、単量体成分の組成を表2のとおりと
した以外は、実施例1と同様にして重合体の水分散体を
得た。 比較例2 実施例4において、オルガノポリシロキサン使用量およ
び単量体成分の組成を表2のとおりとした以外は、実施
例4と同様にしてスチレンアクリル変性シリコ−ン重合
体の水分散体を得た。
Comparative Examples 1 and 3 A polymer aqueous dispersion was obtained in the same manner as in Example 1 except that the composition of the monomer component was changed as shown in Table 2. Comparative Example 2 An aqueous dispersion of a styrene acrylic-modified silicone polymer was prepared in the same manner as in Example 4 except that the amount of the organopolysiloxane used and the composition of the monomer components were changed as shown in Table 2. Obtained.

【0018】 [0018]

【0019】 なお、表1、2における単量体の略号は、次の化合物を
示す。 D4=オクタメチルシクロテトラシロキサン VpMDMS=ビニルフェニルメチルジメトキシシラン VdF=フッ化ビニリデン HFP=六フッ化プロピレン ST=スチレン IP=イソプレン GMA=グリシジルメタクリレート nBA=n−ブチルアクリレート MMA=メチルメタクリレート AA=アクリル酸 IA=イタコン酸 NMAM=N−メチロールアクリルアミド
[0019] The abbreviations of the monomers in Tables 1 and 2 indicate the following compounds. D4 = octamethylcyclotetrasiloxane VpMDMS = vinylphenylmethyldimethoxysilane VdF = vinylidene fluoride HFP = propylene hexafluoride ST = styrene IP = isoprene GMA = glycidyl methacrylate nBA = n-butyl acrylate MMA = methyl methacrylate AA = acrylic acid IA = Itaconic acid NMAM = N-methylolacrylamide

【0020】試験例 平均粒径が170μmの水素吸蔵合金粉末(La0.99重
量%、Ni3.41重量%、Co1.20重量%、Mn0.10重量
%、Al0.29重量%)と実施例1〜6および比較例1〜
3で製造した電池電極用バインダー1重量部、増粘剤と
してポリビニルアルコール水溶液を固形分で1重量部を
加え、よく混合して電池電極用組成物を製造し、得られ
た電池電極を用いて下記の試験を行った。結果を表3お
よび表4をに示す。 (1)Niメッシュとの結着性; 厚さ1mmNiメッ
シュを基材として、アプリケーターでこの得られた電池
電極用組成物を400g/m2の厚さで塗工し、150
℃×20分乾燥、圧着し、厚さ200μm電池電極を得
た。得られた電池電極に粘着テープを貼り付け、剥がし
た後に粘着面に付着した塗布膜の具合で評価した。例え
ば粘着面にほとんど、塗布膜が付着しないときを5点、
粘着面全体の塗布膜が剥離した場合を1点とする。 (2)導電性の測定法;100μmのPETフィルムに
電池電極組成物を400g/m2 の厚さで塗工し、1
50℃×20分乾燥、圧着し、膜厚200μmの塗布膜
を得た。これを4端子法で抵抗を測定した。 (3)耐電解液性;上記(1)で得られた電池電極を電
解液6NKOHに24時間浸積した。変化のないときを
5点、完全に剥離した場合を1点とする。 (4)電池特性;正極にニッケル酸化物、上記(1)で
得られた電池電極を負極とし、0.9cm×5.5cm
に切り出してそれぞれにNiのリード線を溶接し、6規
定の水酸化カリウム水溶液を電解液として、セパレータ
ーと組み合わせて電池を組み立てた。 この電池を2.0Vまで充電し、10mAで1.0Vま
で放電するサイクルを繰り返し、容量保存率を測定し
た。また、2.0Vに充電したセルを70℃×30日間
保存し、保存安定性を測定した。
Test Example Hydrogen storage alloy powder having an average particle diameter of 170 μm (La 0.99 wt%, Ni 3.41 wt%, Co 1.20 wt%, Mn 0.10 wt%, Al 0.29 wt%) and Example 1 ~ 6 and Comparative Examples 1 ~
1 part by weight of the binder for the battery electrode prepared in 3 and 1 part by weight of a polyvinyl alcohol aqueous solution as a thickener in solid content were added and mixed well to prepare a composition for a battery electrode, and the obtained battery electrode was used. The following tests were performed. The results are shown in Tables 3 and 4. (1) Binding property with Ni mesh; Using a 1 mm thick Ni mesh as a base material, the obtained composition for a battery electrode was applied with an applicator at a thickness of 400 g / m 2,
The resultant was dried at 20 ° C. for 20 minutes and pressure-bonded to obtain a 200 μm thick battery electrode. An adhesive tape was attached to the obtained battery electrode, and after peeling off, the condition of the coating film attached to the adhesive surface was evaluated. For example, when the coating film hardly adheres to the adhesive surface, 5 points,
One point is when the coating film on the entire adhesive surface is peeled off. (2) Conductivity measurement method: A battery electrode composition was applied to a 100 μm PET film at a thickness of 400 g / m 2,
The coating was dried at 50 ° C. × 20 minutes and pressed to obtain a coating film having a thickness of 200 μm. The resistance was measured by a four-terminal method. (3) Electrolytic solution resistance: The battery electrode obtained in the above (1) was immersed in an electrolytic solution 6NKOH for 24 hours. 5 points when there is no change and 1 point when completely peeled. (4) Battery characteristics: Nickel oxide as positive electrode, battery electrode obtained in (1) above as negative electrode, 0.9 cm × 5.5 cm
And a Ni lead wire was welded to each, and a 6N aqueous potassium hydroxide solution was used as an electrolyte to combine with a separator to assemble a battery. The cycle of charging the battery to 2.0 V and discharging it to 1.0 V at 10 mA was repeated, and the capacity retention was measured. The cell charged to 2.0 V was stored at 70 ° C. for 30 days, and the storage stability was measured.

【0021】 [0021]

【0022】 [0022]

【0023】表1の実施例1〜4は、本発明の範囲のポ
リマー、表2は本発明の範囲外のポリマーの組成およ
び、トルエンゲル、Tg、平均粒子径である。表3から
明らかなように、本発明のポリマーを用いた場合結着
性、導電性、耐電解液性のバランスがとれ、さらに電池
特性のサイクル性、保存特性、安全性に優れている。こ
れに対し、比較例1、2は、高Tgのポリマーの例であ
り、結着力、柔軟性にが低く電池特性に劣る。比較例3
は、官能基を有するモノマーを導入していないポリマー
の例であり、結着性、耐電解液性、電池特性に劣る。
Examples 1 to 4 in Table 1 show the polymers falling within the scope of the present invention, and Table 2 shows the compositions of the polymers outside the scope of the present invention, toluene gel, Tg, and average particle diameter. As is evident from Table 3, when the polymer of the present invention is used, the binding property, the conductivity, and the resistance to the electrolytic solution are balanced, and the cycle characteristics of battery characteristics, storage characteristics, and safety are excellent. On the other hand, Comparative Examples 1 and 2 are examples of a polymer having a high Tg, and have low binding power and low flexibility and are inferior in battery characteristics. Comparative Example 3
Is an example of a polymer into which a monomer having a functional group is not introduced, and is inferior in binding properties, electrolyte resistance, and battery characteristics.

【0024】[0024]

【発明の効果】本発明の水素吸蔵電極用バインダーによ
り、水素吸蔵合金を電極活物質とする電池、主にニッケ
ル−水素二次電池において、耐電解液性に優れ、高い導
電性を維持し、かつ集電材との高い結着性を有する水素
吸蔵合金電極を得ることができる。また水を分散媒とし
て使用するため電極作成行程も容易となる。更に本発明
のバインダーを使用した水素吸蔵合金電極は、充放電サ
イクル特性に優れたニッケル水素二次電池を与える。
According to the binder for a hydrogen storage electrode of the present invention, in a battery using a hydrogen storage alloy as an electrode active material, mainly in a nickel-hydrogen secondary battery, excellent electrolyte resistance and high conductivity are maintained. In addition, a hydrogen storage alloy electrode having a high binding property with the current collector can be obtained. In addition, since water is used as a dispersion medium, the process of forming an electrode is also facilitated. Further, the hydrogen storage alloy electrode using the binder of the present invention provides a nickel-hydrogen secondary battery having excellent charge / discharge cycle characteristics.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 安正 東京都中央区築地2丁目11番24号 日本合 成ゴム株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yasumasa Takeuchi 2-11-24 Tsukiji, Chuo-ku, Tokyo Inside Nippon Gosei Rubber Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項】 ガラス転移点が5℃以下、トルエン不溶分
が20〜100重量%、かつポリマー中に官能基を含有
する共重合体の水系分散体からなることを特徴とする水
素吸蔵電極用バインダー。
A binder for a hydrogen storage electrode, comprising a water-based dispersion of a copolymer having a glass transition point of 5 ° C. or lower, a toluene insoluble content of 20 to 100% by weight, and a functional group in a polymer. .
JP05850297A 1997-02-26 1997-02-26 Binder for hydrogen storage electrode Expired - Lifetime JP3580072B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP05850297A JP3580072B2 (en) 1997-02-26 1997-02-26 Binder for hydrogen storage electrode
KR1019980005914A KR19980071685A (en) 1997-02-26 1998-02-25 Binder for Ni-MH Battery Electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05850297A JP3580072B2 (en) 1997-02-26 1997-02-26 Binder for hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPH10241692A true JPH10241692A (en) 1998-09-11
JP3580072B2 JP3580072B2 (en) 2004-10-20

Family

ID=13086206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05850297A Expired - Lifetime JP3580072B2 (en) 1997-02-26 1997-02-26 Binder for hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JP3580072B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001034328A1 (en) * 1999-11-10 2001-05-17 Shin-Etsu Chemical Co., Ltd. Hydrogen storage composite formed article and method for preparing the same
JP2002151085A (en) * 2000-11-07 2002-05-24 Nippon Zeon Co Ltd Binder for nickel hydrogen secondary battery electrode, slurry, and nickel hydrogen secondary battery
US6475671B1 (en) 1999-07-13 2002-11-05 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy electrode and nickel-metal hydride battery
WO2012066911A1 (en) * 2010-11-17 2012-05-24 Jsr株式会社 Electrochemical device electrode binder, method for producing same, and method for preserving electrochemical device electrode binder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475671B1 (en) 1999-07-13 2002-11-05 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy electrode and nickel-metal hydride battery
WO2001034328A1 (en) * 1999-11-10 2001-05-17 Shin-Etsu Chemical Co., Ltd. Hydrogen storage composite formed article and method for preparing the same
JP2002151085A (en) * 2000-11-07 2002-05-24 Nippon Zeon Co Ltd Binder for nickel hydrogen secondary battery electrode, slurry, and nickel hydrogen secondary battery
WO2012066911A1 (en) * 2010-11-17 2012-05-24 Jsr株式会社 Electrochemical device electrode binder, method for producing same, and method for preserving electrochemical device electrode binder
JPWO2012066911A1 (en) * 2010-11-17 2014-05-12 Jsr株式会社 Binder for electrochemical device electrode, method for producing the same, and storage method for binder for electrochemical device electrode

Also Published As

Publication number Publication date
JP3580072B2 (en) 2004-10-20

Similar Documents

Publication Publication Date Title
JP3721727B2 (en) Battery electrode binder
CA2179392C (en) Binder for batteries and electrode compositions and batteries incorporating same
JP5912814B2 (en) Aqueous electrode binder for secondary battery
JP5943602B2 (en) Acrylic aqueous dispersion and aqueous paste for electrochemical cell, and method for producing electrode / battery comprising the same
JP5359074B2 (en) Aqueous carbon material composition and battery composition using the same
JP6109525B2 (en) Emulsion binder for forming nickel-metal hydride secondary battery electrode and composite ink for forming nickel-hydrogen secondary battery electrode
WO2001006584A1 (en) Binder composition for lithium ion secondary battery electrodes and use thereof
JP2012234703A (en) Metal salt-containing binder
JP5854867B2 (en) Method for producing electrode composition
KR20150143875A (en) Positive electrode for secondary batteries, and secondary battery
JP3562197B2 (en) Binder for hydrogen storage electrode
JP2012150896A (en) Resin current collector and secondary battery
JP4969734B2 (en) Secondary battery negative electrode binder and secondary battery electrode composition
JP2003123766A (en) Electrode binder for electrochemical element and electrode
JP7385499B2 (en) Binder and its use
JP3580072B2 (en) Binder for hydrogen storage electrode
JPH10302797A (en) Electrode binder for battery
WO2023226765A1 (en) Positive electrode active material, and positive electrode sheet and battery which comprise positive electrode active material
JP2005063735A (en) Binder for secondary battery
JP6061563B2 (en) Aqueous electrode binder for secondary battery
JP6450453B2 (en) Binder for electrode of lithium ion secondary battery
JP5697906B2 (en) Electrode aqueous composition for secondary battery
CN117678043A (en) Binder composition for negative electrode
JP7267142B2 (en) Binder for secondary battery electrode and its use
JP5164031B2 (en) Secondary battery negative electrode binder

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term