JP3580072B2 - Binder for hydrogen storage electrode - Google Patents

Binder for hydrogen storage electrode Download PDF

Info

Publication number
JP3580072B2
JP3580072B2 JP05850297A JP5850297A JP3580072B2 JP 3580072 B2 JP3580072 B2 JP 3580072B2 JP 05850297 A JP05850297 A JP 05850297A JP 5850297 A JP5850297 A JP 5850297A JP 3580072 B2 JP3580072 B2 JP 3580072B2
Authority
JP
Japan
Prior art keywords
weight
copolymer
binder
hydrogen storage
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05850297A
Other languages
Japanese (ja)
Other versions
JPH10241692A (en
Inventor
信幸 伊藤
直史 安田
芳佳 則武
安正 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP05850297A priority Critical patent/JP3580072B2/en
Priority to KR1019980005914A priority patent/KR19980071685A/en
Publication of JPH10241692A publication Critical patent/JPH10241692A/en
Application granted granted Critical
Publication of JP3580072B2 publication Critical patent/JP3580072B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は結着性、充放電サイクル性、保存特性、安全性に優れた2次電池電極用バインダーに関するものである。さらに詳しくは、水素吸蔵合金が集電材に保持された水素吸蔵電極用バインダー組成物に関する。
【0002】
【従来の技術】
近年、電子産業における技術進歩は著しく、電池技術においても高エネルギー密度、安全性等の要求が増大している。ニッケル/水素電池は、単位容積あたりのエネルギー密度が大きく、しかも公害物質を含んでいないので安全性に優れた電池として注目されている。
ニッケル/水素電池は、負極の活物質に水素吸蔵合金を使用しそれは水素雰囲気下において発熱、吸熱を伴い自由に水素イオンを放出する。この水素イオンの吸放出し易さが、高容量化、長寿命化につながる。
また、ニッケル/水素電池は急速充放電可能、過充電、過放電に強くかつ高容量、小型、軽量化という点で優れた性能を有し、すでに実用化されている。
ニッケル/水素電池では、活物質を集電材に固定させる目的にポリマーバインダーが使用され、このバインダーに要求される性能としては、▲1▼活物質と集電材の結着性が良好であること、▲2▼電解液中の水素イオンをできるだけ抵抗なく自由に移動させること、▲3▼電解液や充放電によって体積変化しないこと、等があげられる。
例えば、従来水素吸蔵合金用のバインダーとしては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素系ポリマーが知られているが、これらフッ素系ポリマーでは集電材との結着性が悪く、充放電サイクルの繰り返しで活物質の剥離が生じやすいという問題点があった。かかる問題点を解決すべく、例えば熱可塑性エラストマーであるSEBS(スチレン−エチエンーブチレンースチレンブロック共重合体)を用いる試みがなされているが、サイクル初期の充放電効率が悪いという問題点があり、さらにトルエン等の有機溶剤を使用するため、工業的規模の製造プロセスに於いて水素吸蔵合金との混合プロセスで発火の危険性の大きい問題点があった。
また、水系のスチレン−ブタジエン共重合体の乳化物を用いる試みもなされているが、バインダーが活物質全体を包み込んでしまうため、充放電効率が悪く、集電体との密着性も不十分という問題があった。
【0003】
【発明が解決しようとする課題】
本発明では水素吸蔵合金を電極活物質とするニッケル/水素二次電池において、水素吸蔵合金とバインダーとの混合プロセスにおいて発火の危険性がない水系で、電極活物質に対する影響が少なく、高い導電性を維持し、かつ集電材との結着性に優れたバインダーを用いて長寿命、高容量化を達成することにある。
【0004】
【課題を解決するための手段】
本発明は、上記の課題を解決するために、ガラス転移点が5℃以下、トルエン不溶分が20〜100重量%、かつポリマー中に官能性モノマーに起因する官能基を含有する共重合体の水系分散体からなる水素吸蔵電極用バインダーであって、官能基を含有する前の共重合体がスチレン−イソプレン共重合体、ポリオルガノシロキサン系重合体またはポリビニリデンフロライド系重合体であり、かつ、官能基がカルボキシル基、酸無水物基、グリシジル基またはアミノ基であり、さらに共重合体を構成する官能性モノマーが全モノマー中に0.1〜10重量%、かつ共重合体粒子の平均粒子径が0.05〜5μmである、水素吸蔵電極用バインダーを提供するものである。
【0005】
以下に本発明を詳細に説明する。
本発明で使用する共重合体は、トルエン不溶分が20〜100重量%、好ましくは30〜90重量%、特に好ましくは50〜85重量%である。本発明において、トルエン不溶分は、0.5Nアンモニア水または0.5N塩酸でpH8に調整した固形分50重量%の共重合体水分散液を120℃で1時間乾燥させて成膜しフィルム化した後、この乾燥フィルムをポリマー重量の100重量部のトルエンと共に三角フラスコ等の容器に入れ、3時間振とう後200メッシュのフィルターで濾過して不溶分を採取し、120℃で1時間乾燥させて不溶分の重量を測定し、次式でゲル量を求める。
ゲル量=(トルエン不溶分重量/浸漬前の重量)×100(%)
共重合体のトルエン不溶分が20重量%未満では、電極を形成し加熱乾燥するときにポリマーフローが生じて電極活物質を過度に覆い、過電圧が上昇し使用できなくなる。また、電解液である水酸化カリウムの耐久性も劣り、水素吸蔵合金の集電材からの脱離が生じてしまう。本発明で使用する共重合体のガラス転移点(Tg)は5℃以下である。Tgが5℃を超えると、共重合体により得られるポリマーフィルムは柔軟性、粘着性が乏しく活材の集電材への接着性が劣る。本発明において、共重合体は水系分散体として使用される。この水系分散体中に分散する共重合体粒子の平均粒子径は、0.05〜5μmであり、好ましくは0.1〜2μmで、電極活物質の1/3より小さいことが望ましい。これらの官能基は共重合体を構成する官能性モノマーが全モノマー成分全体に対して0.1〜10重量%の割合で有することが好ましく、熱分解ガスクロマトグラフィーから求める。官能基が0.1重量%未満では、共重合体のバインダー性能、耐薬品性が劣り、一方10重量%を超えると、耐水性、貯蔵安定性が劣るものとなり好ましくない。
本発明で使用する共重合体は、カルボキシル基、酸無水物基、グリシジル基、アミノ基からなる官能基を有することが必要であり、これらの官能基は共重合体を構成する官能性モノマーが全モノマー成分全体に対して0.1〜10重量%の割合で有することが好ましく、熱分解ガスクロマトグラフィーから求める。官能基が0.1重量%未満では、共重合体のバインダー性能、耐薬品性が劣り、一方10重量%を超えると、耐水性、貯蔵安定性が劣るものとなり好ましくない。
【0006】
本発明で使用することのできる共重合体の水系分散体としては、スチレン−イソプレン共重合体、ポリオルガノシロキサン系重合体、ポリビニリデンフロライド系重合体である。これらの共重合体の水系分散体は、通常の乳化重合法で合成することができる。スチレン−イソプレン共重合体は、イソプレン30重量%以上と、スチレン30〜60重量%と、後述する官能性モノマー0.1〜10重量%乳化重合してなる。ポリオルガノシロキサン系重合体は、オルガノシロキサンに必要に応じてグラフト交叉剤を共縮合して得られるポリオルガノシロキサン系重合体の水性分散体の存在下に、アクリル酸アルキルエステル、後述する官能性モノマーおよびこれらと共重合可能な他の単量体成分を乳化重合することによって得られる。また、アクリル酸アルキルエステルとは例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸i−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸i−ブチル、(メタ)アクリル酸n−アミル、(メタ)アクリル酸i−アミル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2−ヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸i−ノニル、(メタ)アクリル酸デシル、ヒドロヒシメチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレートなどが挙げられる。アクリル酸アルキルエステルおよび官能性モノマーと共重合可能なモノマーとしては、α−メチルスチレン、ジビニルベンゼン、エチレングリコールジメタクリレートなどが挙げられる。
【0007】
ポリビニリデンフロライド系重合体とは、(イ)フッ化ビニリデン50〜80重量%、六フッ化プロピレン20〜50重量%およびその他共重合可能な単量体0〜30重量%からなる単量体を重合してなる重合体、(ロ)フッ化ビニリデン50〜80重量%、六フッ化プロピレン20〜50重量%およびその他共重合可能な単量体0〜30重量%からなる単量体を重合してなる含フッ素重合体と(メタ)アクリル酸アルキルエステル40〜100重量%およびその他共重合可能な単量体0〜60重量%からなる単量体を重合してなるアクリル系重合体とが複合してなる複合重合体などを挙げることができる。
ポリビニリデンフロライド系重合体は好ましくは特開平7−258499号公報に、ポリオルガノシロキサン系重合体は好ましくは特開平4−261454号公報に示される方法で合成することができる。
【0008】
本発明において、官能性モノマーとしては例えば、アクリル酸、(メタ)アクリル酸、イタコン酸、フマル酸、マレイン酸などのエチレン性不飽和カルボン酸、;(メタ)アクリルアミド、N−メチロールアクリルアミドなどのエチレン性不飽和カルボン酸のアルキルアミド;酢酸ビニル、プロピオン酸ビニルなどのカルボン酸ビニルエステル;エチレン系不飽和ジカルボン酸の、酸無水物、モノアルキルアステル、モノアミド類;アミノエチルアクリレート、ジメチルアミノエチルアクリレート、ブチルアミノエチルアクリレートなどのエチレン系不飽和カルボン酸のアミノアルキルエステル;アミノエチルアクリルアミド、ジメチルアミノメチルメタクリルアミド、メチルアミノプロピルメタクリルアミドなどのエチレン系不飽和カルボン酸のアミノアルキルアミド;(メタ)アクリロニトリル、α−クロルアクリロニトリルなどのシアン化ビニル系化合物;グリシジル(メタ)アクリレートなどの不飽和脂肪族グリシジルエステルなどを挙げることができる。
これらは1種類単独でも、あるいは2種類以上を併用することもでき、結着強度の面で必須である。
これらの官能性モノマーは、共重合体を製造するために使用する全モノマー成分全体に対して0.1〜10重量%、好ましくは2〜10重量%、さらに好ましくは3〜10重量%使用される。
【0009】
本発明において、共重合体の水系分散体をバインダーとする電池電極組成物には、必要に応じて添加剤として増粘剤を共重合体100重量部に対して1〜200重量部用いてもよい。
水溶性増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸(塩)、酸化スターチ、リン酸化スターチ、カゼインなどが含まれる。また、共重合体の水分散体の固形分濃度は、通常20〜65重量%、好ましくは35〜60重量%である。
【0010】
本発明の水素吸蔵電極用バインダーは、水素吸蔵合金粉末と配合して電池電極用組成物とし、この電池電極用組成物を集電体に塗布し、乾燥することにより、水素吸蔵電極を製造することができる。
本発明で用いる水素吸蔵合金粉末は、MmNi5をベースにNiの1部をMn、Al、Coなどで置き換えたものである。ここでMmは希土類の混合物であるミッシュメタルを表している。また、粉体の形状は、100メッシュを通過した粉末であり、粒子径は、3〜400μm程度である。
本発明の水素吸蔵電極用バインダーは、水素吸蔵合金粉末100重量部に対して固形分で0.1〜20重量部、好ましくは0.5〜10重量部配合される。
水素吸蔵電極用バインダーの配合量が0.1重量部未満では良好な接着力が得られず、20重量部を超えると過電圧が著しく上昇し電池特性に悪影響をおよぼす。
電池電極用組成物は、水素吸蔵合金粉末と水素吸蔵電極用バインダーと必要に応じて水溶性増粘剤からなるが、その他に、ヘキサメタリン酸ソーダ、トリポリリン酸ソーダ、ピロリン酸ソーダ、ポリアクリル酸ソーダなどの分散剤、さらにラテックスの安定化剤としてのノニオン性、アニオン性界面活性剤などの添加剤、電極の導電性付与の目的でカーボンを加えてもよい。
【0011】
水素吸蔵電極を形成するには、前記電池電極用組成物を、好ましくはスラリー状にして集電体に塗布し、加熱し、乾燥する。
集電体としては、例えばニッケルなどの金属からなる厚さ40〜80μmの芯板であり、多孔であることが好ましい。このとき、金属芯板の開孔率は、通常、30〜60%である。
この時、必要とすれば集電体材料と共に成形してもよいし、また別法としてNiメッシュ、パンチングNiなどの集電体基材に塗布して用いることもできる。
電池電極用組成物の塗布方法としては、リバースロール法、コンマバー法、グラビヤ法、エアーナイフ法など任意のコーターヘッドを用いることができ、乾燥方法としては放置乾燥、送風乾燥機、温風乾燥機、赤外線加熱機、遠赤外線加熱機などが使用できる。
乾燥温度は、通常150℃で行う。
【0012】
上記のようにして得られた電池電極を用いて、ニッケル水素電池を組み立てる場合、電解液に5規定以上の水酸化カリウムを使用し、正極材料NiOOH、負極に水素吸蔵合金を用いる。
さらに、要すればセパレーター、集電体、端子、絶縁板などの部品を用いて電池が構成される。また、電池の構造としては、特に限定されるものではないが、正極、負極、さらに要すればセパレーターを単層または複層としたペーパー型電池、または正極、負極、さらに要すればセパレーターをロール状に巻いた円筒状電池などの形態が一例として挙げられる。
本発明の水素吸蔵電極用バインダーを用いて製造した電池電極は、具体的にOA機器、ポータブルタイプのAV機器などに好適に使用することができる。
【0013】
【実施例】
以下に実施例にて本発明をさらに詳しく説明する。但し、本発明はこれらの実施例に何ら制約されるものではない。
測定法
(1)トルエンゲル量測定;0.5Nアンモニア水および0.5N塩酸でpH8に調整したラテックスを120℃で1時間乾燥させて成膜させた後、ポリマー重量の100重量部のトルエンに浸漬し、3時間振とう後200メッシュのフィルターで濾過して不溶分を採取し、120℃で1時間乾燥させて不溶分の重量を測定し、次式でゲル量を求めた。
ゲル量=(トルエン不溶分重量/浸積前の重量)×100(%)
(2)ガラス転移点の測定;(1)で作成したフィルムを使用し、セイコー電子工業(株)製(示差走査熱量計)を用いてガラス転移点を求めた。
(3)平均粒子径の測定;大塚電子(株)製レーザー粒径解析システムLPA−3000s/3100を用いて粒子径を測定した。
【0014】
実施例1
攪拌機を備えたオートクレーブに、イオン交換水70重量部および過硫酸カリウム0.3重量部をそれぞれ仕込み、気相部を15分間窒素ガスで置換し、80℃に昇温した。一方、別容器で表1に示す成分と乳化剤ドデシルベンゼンスルホン酸0.2重量部を混合し、15時間かけて前記オートクレーブに滴下した。滴下中は、80℃で反応を行った。滴下終了後、さらに85℃で5時間攪拌した後反応を終了させた。25℃に冷却後、水酸化カリウムでpHを7に調整し、その後スチームを導入して残留モノマーを除去し、次いで濃縮して共重合体の水分散体を得た。
【0015】
実施例2、4
(1)ビニルフェニルメチルジメトキシシラン(VpMDMS)1.5重量部およびオクタメチルシクロテトラシロキサン(D4)98.5重量部を混合し、これをα−オレフィンスルホン酸(RCH=CH(CH2)nSO3Na約75重量%、RCH2CH(OH)(CH2)mSO3Na約25wt%の混合物)2.0重量部を溶解した蒸留水300重量部中に入れ、ホモミキサーにより3分間攪拌して乳化分散させた。この混合液を、コンデンサー、窒素導入口および攪拌機を備えたセパラブルフラスコに移し、攪拌混合しながら90℃で6時間加熱し、5℃で24時間冷却することによって縮合を完結させた。得られたオルガノポリシロキサン水分散体を、炭酸ナトリウム水溶液を用いてpH7に中和した。
(2)コンデンサー、窒素導入口および攪拌機を備えたセパラブルフラスコに、100重量部(固形分)のオルガノポリシロキサン水分散体、イオン交換水70重量部および過硫酸アンモニウム0.3重量部をそれぞれ仕込み、気相部を15分間窒素ガスで置換し、80℃に昇温した。
(3)一方、別容器でスチレン21重量部、n−ブチルアクリレート71重量部およびグリシジルメタクリレート8重量部を混合し、3時間かけて(2)のオルガノポリシロキサン水分散体に滴下した。滴下中は、窒素ガスを導入しながら80℃で反応を行った。滴下終了後、さらに85℃で2時間攪拌した後反応を終了させた。その後25℃まで冷却し、アンモニア水でpH7に調整し、スチレンアクリル変性シリコーン重合体の水分散体を得た。
【0016】
実施例3
(1)電磁式攪拌機を備えた内容積約6リットルのオートクレーブを窒素ガスで充分に置換したのち、脱酸素した純水2.5リットル、乳化剤としてパーフルオロデカン酸アンモニウム25gを仕込み、350rpmで攪拌しながら60℃まで昇温した。次いでフッ化ビニリデン単量体(VdF)44.2重量%及び六フッ化プロピレン単量体(HFP)55.8重量%からなる混合ガスを20kg/cm2Gになるまで仕込み、重合開始剤のジイソプロピルパーオキシジカーボネート20重量%を含有したフロン113溶液25gを窒素ガスで圧入し重合を開始させた。重合の進行と共に圧力が降下するのでVdF60.2重量%及びHFP39.8重量%からなる混合ガスを逐次圧入し、圧力を20kg/cm2Gに維持して反応を継続した。反応時間と共に重合速度が低下するため、3時間経過した後再度先と同量の重合開始剤を窒素ガスで圧入し、更に3時間反応を継続させた。 次いで系内を冷却、攪拌を停止した後未反応単量体を放出し反応を停止させて含フッ素重合体の水分体を得た。
(2)容量7リットルのセパラブルフラスコの内部を窒素置換したのち、得られた含フッ素重合体水性分散液を固形分換算で150部および2−(1−アリル)−4−ノニルフェノキシポリエチレングリコールスルフェートアンモニウム3部を入れて、75℃に昇温させた。次に単量体混合物(および場合により水)を加え、75℃で30分攪拌した。ここに過硫酸ナトリウム0.5部を加え85〜95°Cで2時間重合したのち、冷却して反応を停止させて、ポリビニルデンフロライド系重合体の水分散体を得た。
【0017】
比較例1、3
実施例1において、単量体成分の組成を表2のとおりとした以外は、実施例1と同様にして重合体の水分散体を得た。
比較例2
実施例4において、オルガノポリシロキサン使用量および単量体成分の組成を表2のとおりとした以外は、実施例4と同様にしてスチレンアクリル変性シリコ−ン重合体の水分散体を得た。
【0018】

Figure 0003580072
【0019】
【表2】
Figure 0003580072
【0020】
試験例
平均粒径が170μmの水素吸蔵合金粉末(La0.99重量%、Ni3.41重量%、Co1.20重量%、Mn0.10重量%、Al0.29重量%)と実施例1〜6および比較例1〜3で製造した電池電極用バインダー1重量部、増粘剤としてポリビニルアルコール水溶液を固形分で1重量部を加え、よく混合して電池電極用組成物を製造し、得られた電池電極を用いて下記の試験を行った。結果を表3および表4をに示す。
(1)Niメッシュとの結着性; 厚さ1mmNiメッシュを基材として、アプリケーターでこの得られた電池電極用組成物を400g/m2の厚さで塗工し、150℃×20分乾燥、圧着し、厚さ200μm電池電極を得た。
得られた電池電極に粘着テープを貼り付け、剥がした後に粘着面に付着した塗布膜の具合で評価した。例えば粘着面にほとんど、塗布膜が付着しないときを5点、粘着面全体の塗布膜が剥離した場合を1点とする。
(2)導電性の測定法;100μmのPETフィルムに電池電極組成物を400g/m2 の厚さで塗工し、150℃×20分乾燥、圧着し、膜厚200μmの塗布膜を得た。これを4端子法で抵抗を測定した。
(3)耐電解液性;上記(1)で得られた電池電極を電解液6NKOHに24時間浸積した。変化のないときを5点、完全に剥離した場合を1点とする。
(4)電池特性;正極にニッケル酸化物、上記(1)で得られた電池電極を負極とし、0.9cm×5.5cmに切り出してそれぞれにNiのリード線を溶接し、6規定の水酸化カリウム水溶液を電解液として、セパレーターと組み合わせて電池を組み立てた。
この電池を2.0Vまで充電し、10mAで1.0Vまで放電するサイクルを繰り返し、容量保存率を測定した。また、2.0Vに充電したセルを70℃×30日間保存し、保存安定性を測定した。
【0021】
Figure 0003580072
【0022】
Figure 0003580072
【0023】
表1の実施例1〜4は、本発明の範囲のポリマー、表2は本発明の範囲外のポリマーの組成および、トルエンゲル、Tg、平均粒子径である。表3から明らかなように、本発明のポリマーを用いた場合結着性、導電性、耐電解液性のバランスがとれ、さらに電池特性のサイクル性、保存特性、安全性に優れている。これに対し、比較例1、2は、高Tgのポリマーの例であり、結着力、柔軟性が低く電池特性に劣る。比較例3は、官能基を有するモノマーを導入していないポリマーの例であり、結着性、耐電解液性、電池特性に劣る。
【0024】
【発明の効果】
本発明の水素吸蔵電極用バインダーにより、水素吸蔵合金を電極活物質とする電池、主にニッケル−水素二次電池において、耐電解液性に優れ、高い導電性を維持し、かつ集電材との高い結着性を有する水素吸蔵合金電極を得ることができる。また水を分散媒として使用するため電極作成行程も容易となる。更に本発明のバインダーを使用した水素吸蔵合金電極は、充放電サイクル特性に優れたニッケル水素二次電池を与える。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a binder for a secondary battery electrode having excellent binding properties, charge / discharge cycle properties, storage characteristics, and safety. More specifically, the present invention relates to a binder composition for a hydrogen storage electrode in which a hydrogen storage alloy is held by a current collector.
[0002]
[Prior art]
In recent years, technological progress in the electronics industry has been remarkable, and demands for battery technology, such as high energy density and safety, are increasing. Nickel / hydrogen batteries have attracted attention as batteries having excellent energy density per unit volume and excellent safety because they do not contain pollutants.
Nickel / hydrogen batteries use a hydrogen storage alloy as the active material of the negative electrode, and emit hydrogen ions freely with heat generation and heat absorption in a hydrogen atmosphere. The ease of absorbing and releasing hydrogen ions leads to higher capacity and longer life.
Nickel / hydrogen batteries have already been put to practical use because they are capable of rapid charge / discharge, are resistant to overcharge and overdischarge, and have excellent performance in terms of high capacity, small size, and light weight.
In a nickel / hydrogen battery, a polymer binder is used for the purpose of fixing the active material to the current collector, and the performance required for the binder is as follows: (1) good binding between the active material and the current collector; (2) free movement of hydrogen ions in the electrolytic solution as little as possible, and (3) no volume change due to the electrolytic solution or charge / discharge.
For example, conventionally, as binders for hydrogen storage alloys, fluorine-based polymers such as polytetrafluoroethylene and polyvinylidene fluoride have been known, but these fluorine-based polymers have poor binding properties with a current collector, and have a poor charge / discharge cycle. There was a problem that the active material was easily peeled off by repeating the above. In order to solve such a problem, attempts have been made to use, for example, SEBS (styrene-ethylenebutylene-styrene block copolymer) which is a thermoplastic elastomer. In addition, since an organic solvent such as toluene is used, there is a problem in that there is a high risk of ignition in a mixing process with a hydrogen storage alloy in an industrial-scale manufacturing process.
Attempts have also been made to use an aqueous emulsion of a styrene-butadiene copolymer, but since the binder wraps around the entire active material, the charge / discharge efficiency is poor and the adhesion to the current collector is insufficient. There was a problem.
[0003]
[Problems to be solved by the invention]
In the present invention, in a nickel / hydrogen secondary battery using a hydrogen storage alloy as an electrode active material, there is no danger of ignition in the process of mixing the hydrogen storage alloy and the binder, and there is little influence on the electrode active material and high conductivity. And to achieve long life and high capacity by using a binder excellent in binding property with the current collector.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a copolymer having a glass transition point of 5 ° C. or less, a toluene insoluble content of 20 to 100% by weight, and a polymer containing a functional group derived from a functional monomer in a polymer. A hydrogen storage electrode binder comprising an aqueous dispersion, wherein the copolymer before containing a functional group is a styrene-isoprene copolymer, a polyorganosiloxane-based polymer or a polyvinylidene fluoride-based polymer, and Wherein the functional group is a carboxyl group, an acid anhydride group, a glycidyl group or an amino group, the functional monomer constituting the copolymer is 0.1 to 10% by weight in all the monomers, and the average of the copolymer particles is An object of the present invention is to provide a binder for a hydrogen storage electrode having a particle diameter of 0.05 to 5 μm.
[0005]
Hereinafter, the present invention will be described in detail.
The copolymer used in the present invention has a toluene-insoluble content of 20 to 100% by weight, preferably 30 to 90% by weight, particularly preferably 50 to 85% by weight. In the present invention, the toluene-insoluble matter is obtained by drying a copolymer aqueous dispersion having a solid content of 50% by weight adjusted to pH 8 with 0.5N ammonia water or 0.5N hydrochloric acid at 120 ° C. for 1 hour to form a film to form a film. After that, the dried film was put into a container such as an Erlenmeyer flask together with 100 parts by weight of toluene based on the weight of the polymer, shaken for 3 hours, and then filtered through a 200-mesh filter to collect insolubles, followed by drying at 120 ° C. for 1 hour. The weight of the insoluble matter is measured using the following formula, and the gel amount is determined by the following equation.
Gel amount = (weight of toluene-insoluble matter / weight before immersion) × 100 (%)
If the toluene-insoluble content of the copolymer is less than 20% by weight, a polymer flow occurs when the electrode is formed and heated and dried, so that the electrode active material is excessively covered, and the overvoltage rises, making it unusable. In addition, the durability of potassium hydroxide, which is an electrolyte, is poor, and the hydrogen storage alloy is detached from the current collector. The glass transition point (Tg) of the copolymer used in the present invention is 5 ° C. or less. If the Tg exceeds 5 ° C., the polymer film obtained from the copolymer has poor flexibility and tackiness, and poor adhesion of the active material to the current collector. In the present invention, the copolymer is used as an aqueous dispersion. The average particle size of the copolymer particles dispersed in the aqueous dispersion is 0.05 to 5 μm , preferably 0.1 to 2 μm, and is desirably smaller than one third of the electrode active material. These functional groups are preferably present in the functional monomer constituting the copolymer at a ratio of 0.1 to 10% by weight based on the whole monomer components, and are determined by pyrolysis gas chromatography. When the amount of the functional group is less than 0.1% by weight, the binder performance and chemical resistance of the copolymer are inferior. On the other hand, when the amount exceeds 10% by weight, water resistance and storage stability are inferior.
The copolymer used in the present invention needs to have a functional group consisting of a carboxyl group, an acid anhydride group, a glycidyl group, and an amino group, and these functional groups are the functional monomers constituting the copolymer. It is preferred to have a ratio of 0.1 to 10% by weight based on the total amount of all monomer components, and it is determined by pyrolysis gas chromatography. When the amount of the functional group is less than 0.1% by weight, the binder performance and chemical resistance of the copolymer are inferior. On the other hand, when the amount exceeds 10% by weight, water resistance and storage stability are inferior.
[0006]
Examples of the aqueous dispersion of the copolymer that can be used in the present invention include a styrene-isoprene copolymer, a polyorganosiloxane polymer, and a polyvinylidene fluoride polymer . Aqueous dispersions of these copolymers can be synthesized by a usual emulsion polymerization method. The styrene-isoprene copolymer is obtained by emulsion polymerization of 30% by weight or more of isoprene, 30 to 60% by weight of styrene, and 0.1 to 10% by weight of a functional monomer described later. The polyorganosiloxane-based polymer is obtained by co-condensing an organosiloxane with a graft-linking agent, if necessary, in the presence of an aqueous dispersion of the polyorganosiloxane-based polymer. And other monomer components copolymerizable therewith by emulsion polymerization. Examples of the alkyl acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, and n-butyl (meth) acrylate. I-butyl (meth) acrylate, n-amyl (meth) acrylate, i-amyl (meth) acrylate, hexyl (meth) acrylate, 2-hexyl (meth) acrylate, octyl (meth) acrylate , I-nonyl (meth) acrylate, decyl (meth) acrylate, hydrohismethyl (meth) acrylate, hydroxyethyl (meth) acrylate, and the like. Examples of monomers copolymerizable with the alkyl acrylate and the functional monomer include α-methylstyrene, divinylbenzene, and ethylene glycol dimethacrylate.
[0007]
The polyvinylidene fluoride-based polymer is a monomer composed of (a) 50 to 80% by weight of vinylidene fluoride, 20 to 50% by weight of propylene hexafluoride, and 0 to 30% by weight of a copolymerizable monomer. And (b) polymerizing 50 to 80% by weight of vinylidene fluoride, 20 to 50% by weight of propylene hexafluoride, and 0 to 30% by weight of a copolymerizable monomer. And an acrylic polymer obtained by polymerizing a monomer comprising 40 to 100% by weight of an alkyl (meth) acrylate and 0 to 60% by weight of another copolymerizable monomer. A composite polymer formed by a composite can be exemplified.
The polyvinylidene fluoride polymer can be synthesized preferably by the method described in JP-A-7-258499, and the polyorganosiloxane polymer can be synthesized preferably by the method described in JP-A-4-261454.
[0008]
In the present invention, examples of the functional monomer include ethylenically unsaturated carboxylic acids such as acrylic acid, (meth) acrylic acid, itaconic acid, fumaric acid, and maleic acid; and ethylene such as (meth) acrylamide and N-methylolacrylamide. Alkyl amides of unsaturated unsaturated carboxylic acids; vinyl acetates such as vinyl acetate and vinyl propionate; acid anhydrides, monoalkyl esters and monoamides of ethylenically unsaturated dicarboxylic acids; aminoethyl acrylate, dimethylaminoethyl acrylate; Aminoalkyl esters of ethylenically unsaturated carboxylic acids such as butylaminoethyl acrylate; ethylenically unsaturated carboxy such as aminoethylacrylamide, dimethylaminomethylmethacrylamide, methylaminopropylmethacrylamide Aminoalkyl amides of acid; (meth) acrylonitrile, alpha-chloro acrylonitrile vinyl cyanide compounds, such as an unsaturated aliphatic glycidyl esters such as glycidyl (meth) acrylate.
These may be used alone or in combination of two or more, and are essential in terms of binding strength.
These functional monomers are used in an amount of 0.1 to 10% by weight, preferably 2 to 10% by weight, more preferably 3 to 10% by weight, based on the total amount of all monomer components used for producing the copolymer. You.
[0009]
In the present invention, the battery electrode composition using an aqueous dispersion of the copolymer as a binder may use a thickener as an additive, if necessary, in an amount of 1 to 200 parts by weight based on 100 parts by weight of the copolymer. Good.
Examples of the water-soluble thickener include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, polyacrylic acid (salt), oxidized starch, phosphorylated starch, casein and the like. The solid content concentration of the aqueous dispersion of the copolymer is usually 20 to 65% by weight, preferably 35 to 60% by weight.
[0010]
The binder for a hydrogen storage electrode of the present invention is mixed with a hydrogen storage alloy powder to form a composition for a battery electrode, and the composition for a battery electrode is applied to a current collector and dried to produce a hydrogen storage electrode. be able to.
The hydrogen storage alloy powder used in the present invention is obtained by replacing a part of Ni with Mn, Al, Co or the like based on MmNi5. Here, Mm represents a misch metal which is a mixture of rare earth elements. The shape of the powder is a powder that has passed through 100 mesh, and the particle diameter is about 3 to 400 μm.
The binder for a hydrogen storage electrode of the present invention is blended in a solid content of 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the hydrogen storage alloy powder.
If the compounding amount of the binder for a hydrogen storage electrode is less than 0.1 part by weight, good adhesive strength cannot be obtained, and if it exceeds 20 parts by weight, the overvoltage increases significantly and adversely affects battery characteristics.
The composition for a battery electrode is composed of a hydrogen storage alloy powder, a binder for a hydrogen storage electrode, and a water-soluble thickener as required. And the like. Further, an additive such as a nonionic or anionic surfactant as a stabilizer for the latex, or carbon for the purpose of imparting electrode conductivity may be added.
[0011]
In order to form a hydrogen storage electrode, the above-mentioned composition for a battery electrode is preferably applied in the form of a slurry to a current collector, heated and dried.
The current collector is a core plate made of a metal such as nickel and having a thickness of 40 to 80 μm, and is preferably porous. At this time, the opening ratio of the metal core plate is usually 30 to 60%.
At this time, if necessary, it may be molded together with the current collector material, or alternatively, it may be applied to a current collector base material such as Ni mesh or punched Ni for use.
As a method for applying the composition for a battery electrode, any coater head such as a reverse roll method, a comma bar method, a gravure method, and an air knife method can be used. , An infrared heater, a far infrared heater and the like can be used.
The drying temperature is usually set at 150 ° C.
[0012]
When assembling a nickel-metal hydride battery using the battery electrodes obtained as described above, potassium hydroxide of 5N or more is used as an electrolyte, NiOOH for a positive electrode material, and a hydrogen storage alloy for a negative electrode.
Further, if necessary, a battery is configured using components such as a separator, a current collector, a terminal, and an insulating plate. In addition, the structure of the battery is not particularly limited, but a positive electrode, a negative electrode, and, if necessary, a paper type battery having a single-layer or multiple-layer separator, or a positive electrode, a negative electrode, and a separator, if necessary. A form such as a cylindrical battery wound in a shape is given as an example.
The battery electrode manufactured using the binder for a hydrogen storage electrode of the present invention can be suitably used for OA equipment, portable AV equipment and the like.
[0013]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to these embodiments.
Measurement method (1) Toluene gel amount measurement: A latex adjusted to pH 8 with 0.5N ammonia water and 0.5N hydrochloric acid was dried at 120 ° C. for 1 hour to form a film, and then 100 parts by weight of toluene based on the polymer weight was added. After immersing and shaking for 3 hours, the mixture was filtered through a 200-mesh filter to collect insolubles, dried at 120 ° C. for 1 hour, weighed, and the amount of gel was determined by the following formula.
Gel amount = (weight of insoluble matter in toluene / weight before immersion) × 100 (%)
(2) Measurement of glass transition point: Using the film prepared in (1), the glass transition point was determined by using a differential scanning calorimeter (manufactured by Seiko Instruments Inc.).
(3) Measurement of average particle diameter: The particle diameter was measured using a laser particle size analysis system LPA-3000s / 3100 manufactured by Otsuka Electronics Co., Ltd.
[0014]
Example 1
70 parts by weight of ion-exchanged water and 0.3 parts by weight of potassium persulfate were charged into an autoclave equipped with a stirrer, the gas phase was replaced with nitrogen gas for 15 minutes, and the temperature was raised to 80 ° C. On the other hand, the components shown in Table 1 and 0.2 parts by weight of the emulsifier dodecylbenzenesulfonic acid were mixed in a separate container, and added dropwise to the autoclave over 15 hours. During the dropping, the reaction was performed at 80 ° C. After the completion of the dropwise addition, the mixture was further stirred at 85 ° C. for 5 hours to terminate the reaction. After cooling to 25 ° C., the pH was adjusted to 7 with potassium hydroxide, then steam was introduced to remove residual monomers, and then concentrated to obtain an aqueous dispersion of a copolymer.
[0015]
Examples 2 and 4
(1) A mixture of 1.5 parts by weight of vinylphenylmethyldimethoxysilane (VpMDMS) and 98.5 parts by weight of octamethylcyclotetrasiloxane (D4) was mixed with α-olefinsulfonic acid (RCH = CH (CH 2 ) nSO). 3 Na about 75 wt%, RCH 2 CH (OH) (CH 2) mSO 3 Na mixture of about 25 wt%) 2.0 parts by weight in distilled water in 300 parts by weight was dissolved, and stirred for 3 minutes using a homomixer And emulsified and dispersed. This mixture was transferred to a separable flask equipped with a condenser, a nitrogen inlet and a stirrer, heated at 90 ° C. for 6 hours while stirring and mixing, and cooled at 5 ° C. for 24 hours to complete the condensation. The obtained aqueous dispersion of organopolysiloxane was neutralized to pH 7 using an aqueous sodium carbonate solution.
(2) 100 parts by weight (solid content) of an aqueous dispersion of an organopolysiloxane, 70 parts by weight of ion-exchanged water, and 0.3 part by weight of ammonium persulfate were charged into a separable flask equipped with a condenser, a nitrogen inlet, and a stirrer. The gas phase was replaced with nitrogen gas for 15 minutes, and the temperature was raised to 80 ° C.
(3) Separately, 21 parts by weight of styrene, 71 parts by weight of n-butyl acrylate and 8 parts by weight of glycidyl methacrylate were mixed in a separate container, and added dropwise to the aqueous dispersion of organopolysiloxane (2) over 3 hours. During the dropwise addition, the reaction was carried out at 80 ° C. while introducing nitrogen gas. After the completion of the dropwise addition, the mixture was further stirred at 85 ° C. for 2 hours to terminate the reaction. Thereafter, the mixture was cooled to 25 ° C. and adjusted to pH 7 with aqueous ammonia to obtain an aqueous dispersion of a styrene acryl-modified silicone polymer.
[0016]
Example 3
(1) After sufficiently replacing an autoclave having an electromagnetic stirrer with an internal volume of about 6 liters with nitrogen gas, 2.5 liters of deoxygenated pure water and 25 g of ammonium perfluorodecanoate as an emulsifier were charged and stirred at 350 rpm. While heating, the temperature was raised to 60 ° C. Next, a mixed gas consisting of 44.2% by weight of vinylidene fluoride monomer (VdF) and 55.8% by weight of propylene hexafluoride monomer (HFP) was charged to 20 kg / cm2G, and diisopropyl par as a polymerization initiator was charged. 25 g of a Freon 113 solution containing 20% by weight of oxydicarbonate was injected with nitrogen gas to start polymerization. Since the pressure dropped with the progress of polymerization, a mixed gas consisting of 60.2% by weight of VdF and 39.8% by weight of HFP was sequentially injected, and the reaction was continued while maintaining the pressure at 20 kg / cm2G. Since the polymerization rate decreases with the reaction time, after 3 hours, the same amount of the polymerization initiator as above was again injected with nitrogen gas, and the reaction was further continued for 3 hours. Next, after the system was cooled and stirring was stopped, unreacted monomers were released and the reaction was stopped to obtain a water body of a fluoropolymer.
(2) After the inside of a separable flask having a capacity of 7 liters was replaced with nitrogen, 150 parts of the obtained fluoropolymer aqueous dispersion in terms of solid content and 2- (1-allyl) -4-nonylphenoxypolyethylene glycol were converted. 3 parts of ammonium sulfate were added and the temperature was raised to 75 ° C. Then the monomer mixture (and optionally water) was added and stirred at 75 ° C. for 30 minutes. After adding 0.5 part of sodium persulfate thereto and polymerizing at 85 to 95 ° C. for 2 hours, the reaction was stopped by cooling to obtain an aqueous dispersion of a polyvinyldenfluoride-based polymer.
[0017]
Comparative Examples 1 and 3
A water dispersion of a polymer was obtained in the same manner as in Example 1 except that the composition of the monomer components was changed as shown in Table 2.
Comparative Example 2
An aqueous dispersion of a styrene acrylic-modified silicone polymer was obtained in the same manner as in Example 4 except that the amount of the organopolysiloxane used and the composition of the monomer components were changed as shown in Table 2.
[0018]
Figure 0003580072
[0019]
[Table 2]
Figure 0003580072
[0020]
Test Example Hydrogen storage alloy powder having an average particle diameter of 170 μm (La 0.99% by weight, Ni 3.41% by weight, Co 1.20% by weight, Mn 0.10% by weight, Al 0.29% by weight) and Examples 1 to 6 and 1 part by weight of the binder for a battery electrode manufactured in Comparative Examples 1 to 3 and 1 part by weight of a polyvinyl alcohol aqueous solution as a thickener in solid content were added and mixed well to produce a composition for a battery electrode, and the obtained battery was obtained. The following tests were performed using the electrodes. The results are shown in Tables 3 and 4.
(1) Binding property with Ni mesh; Using a 1-mm-thick Ni mesh as a base material, the obtained composition for a battery electrode was applied with an applicator at a thickness of 400 g / m2, and dried at 150 ° C for 20 minutes. Crimping was performed to obtain a battery electrode having a thickness of 200 μm.
An adhesive tape was attached to the obtained battery electrode, peeled off, and evaluated by the condition of the coating film attached to the adhesive surface. For example, 5 points when the coating film hardly adheres to the adhesive surface, and 1 point when the coating film on the entire adhesive surface peels off.
(2) Conductivity measurement method: A battery electrode composition was applied to a 100 μm PET film at a thickness of 400 g / m 2, dried at 150 ° C. for 20 minutes, and pressed to obtain a coating film having a thickness of 200 μm. The resistance was measured by a four-terminal method.
(3) Electrolytic solution resistance: The battery electrode obtained in the above (1) was immersed in an electrolytic solution 6NKOH for 24 hours. 5 points when there is no change, and 1 point when completely peeled.
(4) Battery characteristics: Nickel oxide was used as the positive electrode, the battery electrode obtained in the above (1) was used as the negative electrode, cut into 0.9 cm × 5.5 cm, and Ni lead wires were welded to each, and 6N water was used. A battery was assembled by using a potassium oxide aqueous solution as an electrolytic solution in combination with a separator.
The cycle of charging the battery to 2.0 V and discharging it to 1.0 V at 10 mA was repeated, and the capacity retention was measured. Further, the cell charged to 2.0 V was stored at 70 ° C. for 30 days, and the storage stability was measured.
[0021]
Figure 0003580072
[0022]
Figure 0003580072
[0023]
Examples 1 to 4 in Table 1 show the polymers within the scope of the present invention, and Table 2 shows the compositions of the polymers outside the scope of the present invention, toluene gel, Tg, and average particle size. As is clear from Table 3, when the polymer of the present invention is used, the binding property, the conductivity, and the resistance to the electrolytic solution are balanced, and the cycle characteristics, storage characteristics, and safety of the battery characteristics are excellent. On the other hand, Comparative Examples 1 and 2 are examples of polymers having a high Tg, and have low binding power and low flexibility and are inferior in battery characteristics. Comparative Example 3 is an example of a polymer into which a monomer having a functional group was not introduced, and was inferior in binding properties, electrolyte resistance, and battery characteristics.
[0024]
【The invention's effect】
With the binder for a hydrogen storage electrode of the present invention, a battery using a hydrogen storage alloy as an electrode active material, mainly a nickel-hydrogen secondary battery, has excellent electrolytic solution resistance, maintains high conductivity, and is used as a current collector. A hydrogen storage alloy electrode having high binding properties can be obtained. In addition, since water is used as a dispersion medium, the process of forming an electrode is also facilitated. Further, the hydrogen storage alloy electrode using the binder of the present invention provides a nickel-metal hydride secondary battery having excellent charge / discharge cycle characteristics.

Claims (1)

ガラス転移点が5℃以下、トルエン不溶分が20〜100重量%、かつポリマー中に官能性モノマーに起因する官能基を含有する共重合体の水系分散体からなる水素吸蔵電極用バインダーであって、官能基を含有する前の共重合体がスチレン−イソプレン共重合体、ポリオルガノシロキサン系重合体またはポリビニリデンフロライド系重合体であり、かつ、官能基がカルボキシル基、酸無水物基、グリシジル基またはアミノ基であり、さらに共重合体を構成する官能性モノマーが全モノマー中に0.1〜10重量%、かつ共重合体粒子の平均粒子径が0.05〜5μmである、水素吸蔵電極用バインダー。A binder for a hydrogen storage electrode comprising an aqueous dispersion of a copolymer having a glass transition point of 5 ° C. or lower, a toluene insoluble content of 20 to 100% by weight, and a functional group derived from a functional monomer in a polymer. The copolymer before containing a functional group is a styrene-isoprene copolymer, a polyorganosiloxane-based polymer or a polyvinylidene fluoride-based polymer, and the functional group is a carboxyl group, an acid anhydride group, or glycidyl. A hydrogen or hydrogen group, wherein the functional monomer constituting the copolymer is 0.1 to 10% by weight in all the monomers and the average particle diameter of the copolymer particles is 0.05 to 5 μm. Binder for electrodes.
JP05850297A 1997-02-26 1997-02-26 Binder for hydrogen storage electrode Expired - Lifetime JP3580072B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP05850297A JP3580072B2 (en) 1997-02-26 1997-02-26 Binder for hydrogen storage electrode
KR1019980005914A KR19980071685A (en) 1997-02-26 1998-02-25 Binder for Ni-MH Battery Electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05850297A JP3580072B2 (en) 1997-02-26 1997-02-26 Binder for hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPH10241692A JPH10241692A (en) 1998-09-11
JP3580072B2 true JP3580072B2 (en) 2004-10-20

Family

ID=13086206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05850297A Expired - Lifetime JP3580072B2 (en) 1997-02-26 1997-02-26 Binder for hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JP3580072B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1069634A2 (en) 1999-07-13 2001-01-17 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy electrode and nickel-metal hydride battery
CN1336856A (en) * 1999-11-10 2002-02-20 信越化学工业株式会社 Hydrogen storage composite formed article and method for preparing the same
JP4524907B2 (en) * 2000-11-07 2010-08-18 日本ゼオン株式会社 Nickel-hydrogen secondary battery electrode binder, slurry, and nickel-hydrogen secondary battery
WO2012066911A1 (en) * 2010-11-17 2012-05-24 Jsr株式会社 Electrochemical device electrode binder, method for producing same, and method for preserving electrochemical device electrode binder

Also Published As

Publication number Publication date
JPH10241692A (en) 1998-09-11

Similar Documents

Publication Publication Date Title
JP3721727B2 (en) Battery electrode binder
JP5943602B2 (en) Acrylic aqueous dispersion and aqueous paste for electrochemical cell, and method for producing electrode / battery comprising the same
JP5359074B2 (en) Aqueous carbon material composition and battery composition using the same
JP4692693B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery
WO2001006584A1 (en) Binder composition for lithium ion secondary battery electrodes and use thereof
WO2004107481A1 (en) Composite binder for an electrode with dispersants chemically bound
CN103636027A (en) Porous membrane for secondary batteries, method for producing same, and use of same
JP3562197B2 (en) Binder for hydrogen storage electrode
KR20150143875A (en) Positive electrode for secondary batteries, and secondary battery
JPH1167213A (en) Composition for battery electrode and battery electrode
JP2012234703A (en) Metal salt-containing binder
JP6547630B2 (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
CN115260403B (en) Aqueous binder, modified diaphragm, battery and preparation method of aqueous binder
JP4969734B2 (en) Secondary battery negative electrode binder and secondary battery electrode composition
JP2002231251A (en) Binder composition for lithium ion secondary battery electrode and lithium ion secondary battery
JP2003123766A (en) Electrode binder for electrochemical element and electrode
JP3580072B2 (en) Binder for hydrogen storage electrode
JP3998446B2 (en) Alkaline storage battery
JP5499532B2 (en) Method for producing electrode for lithium ion secondary battery and composite particle
WO2023226765A1 (en) Positive electrode active material, and positive electrode sheet and battery which comprise positive electrode active material
JP2005063735A (en) Binder for secondary battery
JP6450453B2 (en) Binder for electrode of lithium ion secondary battery
JP5164031B2 (en) Secondary battery negative electrode binder
CN115275524A (en) Battery diaphragm and battery
JP2002329496A (en) Binder for negative electrode of secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term