WO2012066794A1 - Multilayered sheet and endless belt - Google Patents

Multilayered sheet and endless belt Download PDF

Info

Publication number
WO2012066794A1
WO2012066794A1 PCT/JP2011/053883 JP2011053883W WO2012066794A1 WO 2012066794 A1 WO2012066794 A1 WO 2012066794A1 JP 2011053883 W JP2011053883 W JP 2011053883W WO 2012066794 A1 WO2012066794 A1 WO 2012066794A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
hot plate
laminating apparatus
multilayer
laminating
Prior art date
Application number
PCT/JP2011/053883
Other languages
French (fr)
Japanese (ja)
Inventor
淳 油布
篠田 隆志
活之 榊原
靖史 高木
克也 本多
広明 安野
Original Assignee
日清紡メカトロニクス株式会社
本多産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日清紡メカトロニクス株式会社, 本多産業株式会社 filed Critical 日清紡メカトロニクス株式会社
Priority to KR1020137014164A priority Critical patent/KR20140027064A/en
Priority to CN201180065445.2A priority patent/CN103370194B/en
Publication of WO2012066794A1 publication Critical patent/WO2012066794A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0004Cutting, tearing or severing, e.g. bursting; Cutter details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/14Driving-belts made of plastics
    • F16G1/16Driving-belts made of plastics with reinforcement bonded by the plastic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/483Reactive adhesives, e.g. chemically curing adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5007Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like characterised by the structure of said adhesive tape, threads or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5042Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like covering both elements to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7858Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus characterised by the feeding movement of the parts to be joined
    • B29C65/7861In-line machines, i.e. feeding, joining and discharging are in one production line
    • B29C65/787In-line machines, i.e. feeding, joining and discharging are in one production line using conveyor belts or conveyor chains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/128Stepped joint cross-sections
    • B29C66/1282Stepped joint cross-sections comprising at least one overlap joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/128Stepped joint cross-sections
    • B29C66/1284Stepped joint cross-sections comprising at least one butt joint-segment
    • B29C66/12841Stepped joint cross-sections comprising at least one butt joint-segment comprising at least two butt joint-segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/342Preventing air-inclusions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/432Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms
    • B29C66/4322Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms by joining a single sheet to itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/432Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms
    • B29C66/4324Joining a relatively small portion of the surface of said articles for making tubular articles or closed loops, e.g. by joining several sheets ; for making hollow articles or hollow preforms for making closed loops, e.g. belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/433Casing-in, i.e. enclosing an element between two sheets by an outlined seam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/729Textile or other fibrous material made from plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/746Joining plastics material to non-plastics material to inorganic materials not provided for in groups B29C66/742 - B29C66/744
    • B29C66/7465Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8145General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/81455General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps being a fluid inflatable bag or bladder, a diaphragm or a vacuum bag for applying isostatic pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/548Creep
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/554Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2433/00Closed loop articles
    • B32B2433/02Conveyor belts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a multilayer sheet, an endless belt, and a method for producing the same. More specifically, the present invention relates to a multilayer sheet excellent in heat resistance, non-adhesiveness and abrasion resistance, and grip, which can be used for industrial use, an endless belt comprising the multilayer sheet, and a method for producing the same. It is.
  • the present invention also relates to a protective sheet and a protective sheet comprising a multilayered sheet according to the present invention as a hot plate protective sheet (hereinafter also referred to simply as “protective sheet”) used in a laminating apparatus for manufacturing a solar cell module.
  • the present invention relates to a laminating apparatus in which the sheet and the protective sheet and the conveying sheet are incorporated.
  • heat-resistant composite sheets are known in which a heat-resistant fiber woven fabric excellent in heat resistance and tensile strength is combined with a heat-resistant resin excellent in heat resistance and non-adhesiveness. They are used as related heat-resistant non-adhesive sheets and heat-resistant non-adhesive transport belts.
  • a heat resistant fiber woven fabric used for the heat resistant composite sheet for example, a woven fabric in which glass fiber, aramid fiber or the like is plain woven or twill woven is used.
  • fluororesins such as polytetrafluoroethylene resin (PTFE), are used, for example.
  • fluororesin is excellent in heat resistance, cold resistance, non-adhesiveness, chemical resistance, combustion resistance, weather resistance, electrical insulation, low friction, etc., but poor in wear resistance.
  • heat-resistant materials that are superior to fluororesins in abrasion resistance, inferior in low friction, excellent in grip properties, and difficult to slip include polyimide resins.
  • a method for producing a sheet having improved wear resistance for example, a heat-resistant fiber woven fabric is impregnated and adhered to a mixed solution in which a polyimide resin is dispersed in an aqueous fluororesin suspension, dried, and then fired.
  • Patent Document 1 Japanese Patent Laid-Open No. 2006-21403 (Patent Document 1) has been proposed.
  • the sheet described in Patent Document 1 is a mixed material of a polyimide resin and a fluororesin, both performances are averaged, and it is possible to obtain the original excellent wear resistance of the polyimide resin. It seems difficult.
  • the inner surface of the belt which is the contact surface with the drive roll, has an appropriate grip and wear resistance.
  • it is a mixed material of polyimide resin and fluororesin. So it seems difficult to achieve both.
  • Tubular endless belts that form a layer of polyimide resin and fluororesin that is not a mixture of polyimide resin and fluororesin (Japanese Patent Laid-Open No. 7-110632 (Patent Document 2), Japanese Patent Laid-Open No. 7-178741 (Patent Document) 3) and JP-A-2002-178422 (Patent Document 4) have also been proposed.
  • the manufacturing method is molding with a cylindrical mold, and the equipment cost seems to increase in order to cope with various dimensions.
  • a laminating apparatus used for sealing a solar cell module is generally divided into a lower chamber and a lower chamber partitioned by a pressing member such as a diaphragm during laminating.
  • the lower chamber is provided with a hot plate for heating a workpiece such as a solar cell module, and a transfer sheet for transferring the workpiece from the laminating apparatus onto the hot plate.
  • the upper chamber includes a pressing member such as a diaphragm for pressing the workpiece. Since the conveyance sheet travels with the work piece mounted thereon, friction is generated between the conveyance sheet and the conveyance sheet, and thus the conveyance sheet is susceptible to damage such as scratches and tears. Further, the contact surface of the hot plate with the conveying sheet is also worn by friction with the conveying sheet. Therefore, it is common to protect the transport sheet by providing a protective sheet (the above-described hot plate protective sheet) on the hot plate.
  • a first object of the present invention is to provide a multilayer sheet capable of producing endless belts of various dimensions without using a mold, and an endless belt comprising the multilayer sheet, and a method for producing the same, by cutting and making it endless.
  • the protective sheet and transport sheet used in the laminating apparatus for manufacturing the solar cell module have the following problems.
  • a third object is to provide a laminating apparatus using the protective sheet and the conveying sheet.
  • the multilayer sheet which is the first invention for achieving the above object is a multilayer sheet having at least one composite material layer made of a fluororesin and a heat-resistant fiber woven fabric and a surface layer made of a polyimide resin. And the said surface layer is formed through the process surface formed by the surface activation process made
  • the multilayer sheet of the second invention includes the multilayer sheet according to the first invention, wherein the surface activation treatment is silica particle adhesion firing treatment, metal sodium etching treatment, plasma discharge treatment or corona discharge treatment.
  • the endless belt of the third invention is characterized in that, in the first invention, the endless belt is composed of an annular body of a belt-like material formed from the multilayer sheet.
  • the production method of the endless belt of the fourth invention is to cut the multilayer sheet of the first invention into a belt shape, and join the two opposite ends of the belt-like object of this multilayer sheet to obtain an annular body, It is characterized by.
  • an endless belt manufacturing method comprising: a belt-like material in which the multilayer sheet of the first invention and another sheet are laminated; two opposite end portions of the belt-like material with respect to the multilayer sheet; Two opposite ends of the other sheet of the belt-like material are joined or arranged close to each other to obtain an annular body.
  • a hot plate protective sheet for a laminating apparatus is characterized by comprising the multilayer sheet of the first aspect or the second aspect.
  • the hot plate protection sheet for a laminating apparatus of the seventh invention is characterized in that, in the sixth invention, after laminating, there is no adhesion to the conveying sheet of the laminating apparatus.
  • a hot plate protection sheet for a laminating apparatus according to an eighth invention is characterized in that, in the sixth invention or the seventh invention, the surface layer made of the polyimide resin is provided on the surface in contact with the transport sheet.
  • a conveying sheet for a laminating apparatus is characterized by comprising the multilayer sheet according to the first aspect or the second aspect.
  • the conveying sheet for a laminating apparatus is characterized in that, in the ninth aspect, after laminating, there is no adhesion to the hot plate protection sheet of the laminating apparatus.
  • the transport sheet according to an eleventh invention is characterized by having a surface layer made of the polyimide resin on the surface in contact with the hot plate protection sheet.
  • a laminating apparatus according to a twelfth aspect is characterized by using the hot plate protection sheet according to any of the sixth to eighth aspects.
  • a laminating apparatus according to a thirteenth aspect of the present invention is characterized in that the conveyance sheet according to any of the ninth to eleventh aspects of the invention is used.
  • seat which has the outstanding heat resistance, non-adhesiveness and abrasion resistance, and grip property can be obtained. Since this multilayer sheet has a polyimide resin as its surface layer, it is possible to obtain non-adhesiveness, wear resistance, grip properties and the like suitable for the desired use and required performance. And according to the present invention, this multilayer sheet or a laminate of other sheets is formed so that an endless belt having a desired width and length can be formed as it is or after laminating other sheets. Since an endless belt can be obtained by cutting the belt into a belt shape, an endless belt having a desired width, length, and layer configuration according to the application can be easily manufactured.
  • each layer having a desired width and length Prior to lamination, each layer having a desired width and length is prepared, and after these are laminated, an endless belt can be manufactured.
  • a wide endless belt is once formed without cutting the same multilayer sheet, and then the wide endless belt is cut to a desired width.
  • a plurality of products can be manufactured at the same time. It is also easy to make different endless belts with different widths by adjusting the width when cutting the wide endless belt.
  • the formation of the surface layer of the multilayer sheet can be carried out by applying a polyimide resin, the surface layer is obtained in comparison with the case where the surface layer portion is obtained in the form of a sheet in advance and laminated with an adhesive or the like.
  • the multilayer sheet of the present invention for a hot plate protective sheet and a conveying sheet of a laminating apparatus. Since there is no adhesion between the transport sheet and the hot plate protection sheet during the laminating process, the hot plate protection sheet is not damaged even if the work sheet is run with the workpiece mounted after laminating. Adhesion between the hot plate protection sheet and the transport sheet can be eliminated, and the wear resistance of the hot plate protection sheet and the transport sheet can be further improved.
  • the hot plate protection sheet and the transport sheet for the laminating apparatus have good thermal conductivity, can increase the temperature rising rate, and can improve the production efficiency of the laminating process.
  • the laminating apparatus of the present invention since there is no adhesion between the transport sheet and the hot plate protection sheet during lamination processing, after laminating, the workpiece is mounted and the transport sheet travels on the hot plate protection sheet.
  • the heat plate protection sheet and the transport sheet are not damaged or broken, and both sheets can be made thin, so that the thermal conductivity is improved.
  • This makes it possible to increase the rate of temperature increase of the workpiece during laminating, and improve the production efficiency of laminating.
  • the defective lamination process of the solar cell module caused by the insufficient temperature increase of the lamination process is reduced, and the product yield is improved.
  • FIG. 1 is a cross-sectional view showing the structure of a multilayer sheet according to the present invention.
  • FIG. 2 is a cross-sectional view showing the structure of the multilayer sheet according to the present invention.
  • FIG. 3 is a sectional view showing the structure of the endless belt according to the present invention.
  • FIG. 4 is a cross-sectional view showing the structure of the endless belt according to the present invention.
  • FIG. 5 is a schematic view of a laminating apparatus for manufacturing a solar cell module.
  • FIG. 6 is a side sectional view of the laminating portion of the laminating apparatus.
  • FIG. 7 is a side cross-sectional view of the laminating portion at the time of laminating by the laminating apparatus.
  • FIG. 1 is a cross-sectional view showing the structure of a multilayer sheet according to the present invention.
  • FIG. 2 is a cross-sectional view showing the structure of the multilayer sheet according to the present invention.
  • FIG. 3 is a sectional view showing
  • FIG. 8 is an explanatory diagram of a conventional hot plate protection sheet and conveyance sheet.
  • FIG. 9 is an explanatory diagram of the hot plate protection sheet and the conveyance sheet of the present invention.
  • FIG. 10 is an explanatory diagram of the hot plate protection sheet of the present invention.
  • FIG. 11 is a schematic view of a hot press machine for evaluating the adhesion and heat transfer of the hot plate protection sheet of the present invention.
  • FIG. 12 is an explanatory diagram of heat transfer characteristics of the hot plate protection sheet of the present invention.
  • FIG. 13 is a cross-sectional view of a workpiece.
  • the multilayer sheet according to the present invention is a multilayer sheet having at least one composite material layer composed of a fluororesin and a heat-resistant fiber woven fabric and a surface layer composed of a polyimide resin, wherein the surface layer is composed of the composite sheet. It is characterized by being formed through a treated surface formed by a surface activation treatment performed on the material layer.
  • Preferable specific examples of the multilayer sheet according to the present invention include those described in FIGS.
  • a multilayer sheet 10 according to the present invention shown in FIG. 1 is a multilayer sheet having a single composite layer 2 composed of a fluororesin 2a and a heat-resistant fiber woven fabric 2b and a surface layer 3a composed of a polyimide resin.
  • the surface layer 3a is formed through a treated surface 4 formed by a surface activation treatment performed on the composite material layer 2.
  • the multilayer sheet 11 according to the present invention shown in FIG. 2 has a surface layer made of a polyimide resin on both sides of the multilayer sheet, and is a single layer made of a fluororesin 2a and a heat resistant fiber woven fabric 2b.
  • the composite material layer in the multilayer sheet according to the present invention comprises a fluororesin and a heat resistant fiber woven fabric.
  • the fluororesin in the present invention is not limited, but is polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP). And a heat resistant resin selected from the group consisting of: Of these, polytetrafluoroethylene is particularly preferred.
  • the fluororesin can be mixed with conductive powder as necessary. As a result, it is possible to impart or improve conductivity and improve wear resistance.
  • Preferable specific examples of the conductive powder include carbon black and titanium oxide.
  • the blending amount is preferably 1 to 20 parts by mass with respect to the fluororesin.
  • the heat-resistant fiber woven fabric includes, but is not limited to, glass fiber and aramid fiber.
  • the thickness of the heat resistant fiber woven fabric is generally 30 to 1000 ⁇ m, particularly preferably 30 to 700 ⁇ m.
  • Such a composite material layer can be preferably formed, for example, by impregnating the heat-resistant fiber woven fabric with the aqueous suspension of the fluororesin particles, drying, and firing.
  • the solvent for preparing the aqueous suspension for example, water, particularly pure water is preferable.
  • the amount of the fluororesin particles in the aqueous suspension is preferably 20 to 60 parts by mass, particularly preferably 30 to 60 parts by mass with respect to 100 parts by mass of the solvent.
  • the fluororesin sufficiently penetrates into the inside of the heat resistant fiber woven fabric, and the surface of the heat resistant fiber woven fabric is covered with the fluororesin. Therefore, the application amount of the fluororesin is preferably 30 to 70 parts by mass, particularly 40 to 60 parts by mass, where the total amount of the heat resistant fiber woven fabric and the fluororesin is 100 parts by mass.
  • the multilayer sheet according to the present invention has a surface layer made of a polyimide resin.
  • the polyimide resin is not limited. For example, polyimide and polyamideimide are preferable, and polyimide is particularly preferable.
  • a liquid polyimide varnish can be used to facilitate the coating, and a solvent can be blended if necessary.
  • viscosity can be reduced and coating property can be improved.
  • electroconductive powder can be mix
  • the surface layer can be formed by applying the polyimide resin to the surface activation-treated surface of the composite material layer, drying it, and firing it.
  • the firing temperature of the polyimide resin is preferably 300 to 400 ° C, particularly preferably 330 to 370 ° C.
  • the thickness of the surface layer can be appropriately determined depending on the specific use and purpose of the multilayer sheet and endless belt according to the present invention. For example, if it shows about the multilayer sheet for endless belt manufacture especially suitable for a conveyance use, 1-50 micrometers is preferable and, as for the thickness of a polyimide resin surface layer, 5-20 micrometers is especially preferable.
  • ⁇ Surface activation treatment> In the multilayer sheet according to the present invention, the surface layer is formed via a treated surface formed by a surface activation treatment performed on the composite material layer.
  • the surface activation treatment means that the surface tension of the composite material layer is reduced by treating the fluororesin on the surface of the composite material layer according to the present invention to reduce the surface tension.
  • the preferable surface activation treatment in the present invention include silica particle adhesion firing treatment, metal sodium etching surface treatment, plasma discharge treatment, and corona discharge treatment. Among these, silica particle adhesion firing treatment is particularly preferable.
  • the detail of the surface activation process in this invention is shown below.
  • Silica particle adhesion firing treatment After applying a mixed aqueous suspension of silica particles and fluororesin particles to a composite material composed of fluororesin and heat-resistant fiber woven fabric, the surface of the composite material is made hydrophilic by firing treatment. Improve the processing.
  • Metal sodium etching surface treatment Treatment to improve the hydrophilicity of the composite material surface by applying a metal sodium solution to the composite material made of fluororesin and heat-resistant fiber woven fabric.
  • Plasma discharge treatment Treatment for improving the hydrophilicity of the composite material surface by performing glow discharge treatment on the surface of the composite material made of fluororesin and heat-resistant fiber woven fabric.
  • Corona discharge treatment A treatment for improving the hydrophilicity of the surface of the composite material by applying a corona discharge treatment to the surface of the composite material made of a fluororesin and a heat-resistant fiber woven fabric.
  • the surface activation treatment is preferably performed on the entire surface of the composite material layer where the surface layer is formed, but it is performed on a portion of the composite material layer where the surface layer is formed. You can also By performing such surface activation treatment, the contact angle (JIS K6768) when pure water is dropped on the fluororesin surface of the composite layer surface is significantly reduced.
  • the contact angle which was about 106 ° before the surface activation treatment, is 80 to 90 ° by the silica particle adhesion firing treatment, 50 to 60 ° by the metal sodium etching surface treatment, and 50 to 60 ° by the plasma discharge treatment.
  • the endless belt according to the present invention is characterized by comprising an annular body of a belt-like material formed from the above multilayer sheet. Therefore, the endless belt according to the present invention has excellent characteristics of the multilayer sheet, for example, excellent heat resistance, shape stability, non-adhesiveness and durability based on a composite material layer mainly composed of a fluororesin and a heat-resistant fiber woven fabric.
  • the method for producing an endless belt according to the present invention is characterized in that the multilayer sheet is cut into a belt shape, and two opposite ends of the belt-like object of the multilayer sheet are joined to obtain an annular body. And in addition, this annular body is formed by, for example, (b) overlapping and joining the other end to the peripheral region of one end of the belt-like material of the multilayer sheet (FIG. 3A), ) By firmly joining the two end portions of the belt-like material of the multilayer sheet at the end section (FIG.
  • another endless belt manufacturing method includes a belt-like material in which the multilayer sheet and another sheet are laminated, and two opposite ends of the belt-like material with respect to the multilayer sheet. And the two opposite ends of the belt and the other sheet of the belt-like material are joined or arranged close to each other to obtain an annular body.
  • seat which consists of a single layer or a some layer can be mentioned.
  • FIG. 4 shows a preferred embodiment of such an endless belt according to the present invention.
  • the endless belt 12 according to the present invention shown in FIG. 4 has the multilayer sheet 10 shown in FIG. 1 on the outer peripheral side and the other sheet 5 on the inner peripheral side. A sheet having the same contents as the composite material layer 2 is used.
  • two opposing ends of the multilayer sheet 10 and two opposing ends of the belt-like material with respect to the other sheet 5 are positioned at positions 6 and 7, respectively.
  • An endless belt is obtained by joining or closely arranging to obtain an annular body.
  • the endless belt according to the present invention includes a multilayer sheet 10 shown in FIG. 1 on the inner peripheral side and another sheet 5 on the outer peripheral side as a preferable specific example.
  • an endless belt having a desired width, length, and layer configuration can be easily obtained, unlike a method of manufacturing an endless belt using a seamless tubular product manufactured by a conventional mold or the like. Can be manufactured.
  • a wide endless belt is once formed without cutting the same multilayer sheet, and then the wide endless belt is cut to a desired width.
  • a plurality of products can be manufactured at the same time. It is also easy to make different endless belts with different widths by adjusting the width when cutting the wide endless belt.
  • the laminated sheet of the multilayer sheet and the other sheet according to the present invention is preferably obtained by heat-sealing the multilayer sheet and the other sheet, but the multilayer sheet and the other sheet are bonded with an adhesive. To obtain a laminated sheet.
  • Example 1 A multilayer sheet in which a polyimide resin surface layer is formed on one side of a composite material.
  • the thickness of the plain weave glass fiber cloth (95 ⁇ m) is measured with a continuous coating device.
  • An aqueous suspension of PTFE) was impregnated and adhered, dried at 80 ° C., and then fired at a temperature of 350 ° C. to obtain a composite material of fluororesin and glass fiber (thickness: 135 ⁇ m).
  • a surface activation treatment liquid is mixed.
  • a surface activation treatment liquid is applied and adhered to one side of a fluororesin / glass fiber composite material with a continuous coating apparatus, dried at 80 ° C., and then baked at a temperature of 350 ° C. to attach silica.
  • the surface activation treatment layer was obtained by firing.
  • liquid polyimide varnish 100 parts by mass of a solvent (dimethylacetamide (DMAC)) is mixed with 100 parts by mass of a commercial product (“Toray Nice # 3000” (trade name) manufactured by Toray Industries, Inc.), and the viscosity is 50 Cp.
  • DMAC dimethylacetamide
  • Toray Nice # 3000 trade name
  • the viscosity is 50 Cp.
  • the liquid polyimide varnish was obtained.
  • the liquid polyimide varnish is applied and adhered to the surface activated surface of the composite material (thickness 135 ⁇ m) of the fluororesin and glass fiber using a continuous coating apparatus, dried at 80 ° C., and 350 Firing at a temperature of 0 ° C.
  • the polyimide resin is superior in wear resistance, non-adhesiveness, and low friction than the fluororesin. From this result, it was found that the polyimide resin is less likely to wear and slip than the fluororesin. This result is the result at room temperature. In the case where the multilayer sheet of the present invention is applied to the hot plate protective sheet or the conveying sheet of the laminating apparatus described in Example 2, the ambient temperature is about 170 ° C. In such a case, the polyimide resin is superior in non-adhesiveness (easy to peel).
  • Example A1 For the structure of Example A1, it is preferable to use a fluorine resin surface on the workpiece side where non-adhesiveness is important and grip performance is not important, and a polyimide resin surface on the workpiece non-contact side where wear resistance and grip properties are important. There is, but is not limited to.
  • Example A2> (2) Multi-layer sheet having polyimide resin surface layers formed on both sides of the composite material A multi-layer sheet was obtained in the same manner as in Example A1.
  • Example A2 Surface activation treatment and formation of a polyimide resin surface layer are performed on the surface of the multilayer sheet on which the polyimide resin surface layer is not formed in the same manner as in Example A1, and the polyimide resin surface is formed on both surfaces of the composite material.
  • a multilayer sheet (thickness: 145 ⁇ m) on which a layer was formed was obtained (FIG. 2).
  • the structure of Example A2 is suitable for use in applications where wear resistance and grip properties are important and non-stickiness is not important, but is not limited thereto.
  • Example A3> (3) Multi-layer sheet of Example A1 and other sheets and endless belt
  • the multi-layer sheet (thickness 140 ⁇ m) of Example A1, a fluororesin and a glass fiber composite material (thickness 135 ⁇ m) are laminated, and endless.
  • the endless belts (thicknesses) with the fluororesin layer surfaces stacked on each other and heat-sealed at a temperature of 350 ° C. with a hot press machine to form a fluororesin surface layer on one side and a polyimide resin surface layer on the other side 275 ⁇ m) was obtained (FIG. 4).
  • Example A4 Double-sided polyimide resin endless belt obtained by laminating two multilayer sheets of Example A1 Two belts of the multilayer sheet (thickness 140 ⁇ m) of Example A1 were prepared, and the fluororesin layer surfaces were made to be endless. Was laminated by heat fusion at a temperature of 350 ° C.
  • Example A4 The structure of the endless belt of Example A4 is suitable for use in applications where wear resistance and grip properties are important and non-stickiness is not important, but is not limited thereto.
  • various non-adhesive properties, abrasion resistance, and grip properties are provided as necessary, and the various dimensions can be obtained by cutting to the required dimensions and endlessly using a mold or the like.
  • a conveyor belt or conveyor sheet comprising the multilayer sheet. it can.
  • Example A1 Although the liquid polyimide varnish was applied to the multilayer sheet of Example A1 without performing surface activation treatment, the multilayer sheet could not be bonded and a usable multilayer sheet having sufficient bonding strength could not be obtained.
  • Examples C1 to C4> In Examples A1 to A4, the multilayer sheet C1 according to the present invention was used in the same manner as in Examples A1 to A4, except that the surface activation treatment layer was formed by performing a metal sodium etching treatment instead of the silica adhesion baking treatment. , C2 and endless belts C3 and C4 were obtained.
  • Examples D1 to D4> multilayer sheets D1 and D2 according to the present invention were used in the same manner as in Examples A1 to A4, except that the surface activation treatment layer was formed by performing plasma treatment instead of silica adhesion baking treatment. And endless belts D3 and D4 were obtained.
  • ⁇ Joint strength test> For the polyimide surface layer of each multilayer sheet obtained by Examples A1 to A4, Examples C1 to C4 and Examples D1 to D4, a cross-cut test (1 mm ⁇ 100 mm) in accordance with JIS H5400 However, the number of squares peeled off from the multilayer sheet was 0 in any multilayer sheet. On the other hand, in Comparative Example A1 in which the surface activation treatment layer was not performed, the number of cells that were peeled off was 100. The evaluation results are shown in Table 2.
  • Example 2 is an example in which the multilayer sheet of the present invention is used for a hot plate protective sheet and a conveying sheet of a laminating apparatus for manufacturing a solar cell module, and will be described with reference to FIGS.
  • the workpiece in Example 1 corresponds to the solar cell module (“20” in FIG. 13) in Example 2.
  • the structure of the laminating apparatus 100 for manufacturing a solar cell module includes an upper case 110, a hot plate 122 (see FIG. 6), a conveying sheet 130, a diaphragm 112, a lower case 120, a hot plate protective sheet 400 ( Etc.).
  • FIG. 5 the structure of the laminating apparatus 100 for manufacturing a solar cell module includes an upper case 110, a hot plate 122 (see FIG. 6), a conveying sheet 130, a diaphragm 112, a lower case 120, a hot plate protective sheet 400 ( Etc.).
  • FIG. 6 is a side sectional view of the laminating portion of the laminating apparatus.
  • FIG. 7 is a side cross-sectional view of the laminating portion at the time of laminating by the laminating apparatus.
  • a hot plate protection sheet 400 is provided on the surface of the hot plate 122, and a transport sheet 130 is movably provided thereon. Yes.
  • the transport sheet travels on the hot plate while the workpiece 20 is mounted, so that the upper surface of the hot plate is worn by the transport sheet.
  • a hot plate protective sheet is provided on the hot plate.
  • the solar cell module has a configuration in which a string 25 is sandwiched between a transparent cover glass 21 and a back material 22 via fillers 23 and 24.
  • the back material 22 is made of an opaque material such as polyethylene resin.
  • EVA ethylene vinyl acetate resin or the like is used.
  • the string 25 has a configuration in which solar cells 28 as crystal cells are connected between electrodes 26 and 27 through lead wires 29.
  • the conveyance sheet 130 receives the workpiece 20 before lamination from the carry-in conveyor 200 in FIG.
  • the conveyance sheet 130 delivers the to-be-processed object 20 after lamination to the carrying-out conveyor 300 of FIG. 5, 6, and 7, the conveying sheet 130 is similar in structure to the conventional hot plate protection sheet, and is therefore added as (400).
  • the laminating process by the laminating apparatus 100 according to the present embodiment will be described more specifically. First, as illustrated in FIG. 6, the conveyance sheet 130 conveys the workpiece 20 to the center position of the laminate unit 101. Next, an elevating device (not shown) lowers the upper case 110.
  • the laminating unit 101 performs evacuation by a vacuum pump in the upper chamber 113 through the intake / exhaust port 114 of the upper case 110. Similarly, the laminating unit 101 evacuates the lower chamber 121 with a vacuum pump through the intake / exhaust port 123 of the lower case 120 (vacuum process). Due to the evacuation of the lower chamber 121, the bubbles contained in the workpiece 20 are sent out of the workpiece 20.
  • the laminate unit 101 introduces the atmosphere into the upper chamber 113 through the intake / exhaust port 114 of the upper case 110 while keeping the vacuum state of the lower chamber 121. As a result, a pressure difference is generated between the upper chamber 113 and the lower chamber 121, so that the diaphragm 112 expands. Accordingly, the diaphragm 112 is pushed downward as shown in FIG. 7 (pressurizing step).
  • the workpiece 20 is sandwiched between the diaphragm 112 extruded downward and the hot plate 122, and the constituent members are bonded by the fillers 23 and 24 melted by heating.
  • the laminating unit 101 introduces air into the lower chamber 121 through the intake / exhaust port 123 of the lower case 120.
  • the lifting device raises the upper case 110.
  • the transport sheet 130 By raising the upper case 110, the transport sheet 130 can be moved as shown in FIG.
  • the conveyance sheet 130 delivers the workpiece 20 after lamination to the carry-out conveyor 300. Lamination of the solar cell module is performed as described above.
  • the conventional hot plate protective sheet 400 and the conveying sheet 130 exist between the solar cell module 20 as the workpiece and the hot plate 122. It prevents the direct supply of heat from the hot plate. Further, during the laminating process, the hot plate protection sheet and the conveying sheet at the contact portion K in FIG. 7 are heated by the hot plate and further pressed between the diaphragm and the hot plate, so that both sheets are likely to adhere.
  • the conventional hot plate protection sheet and transport sheet are made of only a fluorine-based resin, or, as shown in FIG. 8 (corresponding to “2” in FIGS. 1 and 2), a glass cloth woven with glass fibers.
  • both sheets are laminated. In laminating, it is required to increase the rate of temperature increase of the solar cell module as much as possible in order to increase the production efficiency. Therefore, it is preferable that both sheets have a low specific heat, a high thermal conductivity, and a thin sheet.
  • the hot plate protection sheet travels on top of the solar cell module, which is the workpiece to be processed, so if there is adhesion between the transfer sheet and the hot plate protection sheet due to lamination, The sheet is damaged. Further, even if the hot plate protection sheet itself is damaged, the transport sheet is damaged.
  • the hot plate protection sheet is damaged mainly due to adhesion to the transport sheet. For this reason, it is important that the hot plate protection sheet has a configuration in which the hot plate side easily adheres to the hot plate and does not easily adhere to the transport sheet. Even if the hot plate protection sheet and the conveying sheet of the present invention are pressed for about 15 minutes at 175 ° C. and 0.1 MPa, which are lamination conditions in a laminating apparatus, both sheets do not adhere.
  • a laminating apparatus for manufacturing a solar cell module is formed by sandwiching EVA resin as a sealant and cross-linking it between a hot plate and a diaphragm for a certain time at a predetermined temperature under a vacuum state. .
  • the hot plate Since the crosslinking of the EVA resin starts at about 140 ° C., the hot plate is set at about 150 to 170 ° C.
  • the above processing conditions of 175 ° C., 0.1 MPa, and pressurization for about 15 minutes correspond to the temperature, pressure, and time that the hot plate protection sheet receives in the laminating process.
  • the hot plate protective sheet and the transport sheet of the present invention like the multilayer sheet of the present invention, have a polyimide resin (hereinafter, polyimide resin) having a thickness of about several ⁇ m on the surface of the composite layer described in Example 1. Called).
  • As the composite layer only a fluororesin may be used, or a composite of a heat resistant fiber woven fabric corresponding to the portion “2” in FIGS.
  • the hot plate protection sheet and the transport sheet of the present invention are used in a laminating apparatus for manufacturing a solar cell module, and the size is approximately several 100 mm square to about 1 m ⁇ 2 m, Can be larger. By making the hot plate protection sheet and the conveying sheet of the present invention have the above-described configuration, adhesion of both sheets can be eliminated.
  • the polyimide resin on the surface has high heat resistance, and has the effect of preventing partial softening under the thermal conditions applied during lamination and preventing adhesion of both sheets.
  • Such a polyimide resin layer may be provided on both the hot plate protection sheet and the conveyance sheet, or may be provided on either one.
  • a polyimide resin layer is provided on the hot plate protection sheet side, it is provided on the contact surface side of the conveying sheet of the hot plate protection sheet as shown in FIG.
  • a polyimide resin layer is provided on the conveying sheet side, it is provided on the hot plate protection sheet side of the conveying sheet.
  • the hot plate protection sheet may be configured to provide the polyimide resin layer only on the surface in contact with the transport sheet.
  • the transport sheet may have a configuration in which the polyimide resin layer is provided only on the surface where the transport sheet is in contact with the hot plate protection sheet.
  • the polyimide resin layer to be processed on the hot plate protection sheet and the transport sheet is also effective in preventing adhesion, such as a method of distributing the polyimide resin-containing portion in a striped or island shape on the sheet surface. Can be selected as appropriate so that is expressed.
  • the thickness of the hot plate protection sheet and transport sheet is preferably 35 ⁇ m to 205 ⁇ m, more preferably 70 ⁇ m to 205 ⁇ m, and even more preferably 85 ⁇ m to 205 ⁇ m. If the thickness of the hot plate protection sheet is less than 35 ⁇ m, it is preferable in that the heat transfer of the hot plate is not hindered. However, since the tensile strength is too weak, the hot plate protection sheet may be damaged when attached to the hot plate. There is.
  • Example E1 if the thickness of the hot plate protection sheet exceeds 205 ⁇ m, heat transfer to the workpiece is greatly hindered.
  • Example E2 if the thickness of the hot plate protection sheet exceeds 205 ⁇ m, heat transfer to the workpiece is greatly hindered.
  • Example E2 if the thickness of the hot plate protection sheet exceeds 205 ⁇ m, heat transfer to the workpiece is greatly hindered.
  • Example E2 if the thickness of the hot plate protection sheet exceeds 205 ⁇ m, heat transfer to the workpiece is greatly hindered.
  • Example E2 the degree of adhesion between the hot plate protection sheet of the present invention and the transport sheet was confirmed.
  • the hot plate protection sheets of the examples and comparative examples those in Table 3 were used.
  • the conveyance sheet the premium 10 (manufactured by Saint-Gobain Co., Ltd.), which is a conventional product, was used for each of Example E1, Example E2, Comparative Example E1, and Comparative Example E2.
  • the material of the conveying sheet is a composite layer of glass cloth and fluororesin.
  • the hot plate protection sheet and the transport sheet were set to overlap each other on a heating press machine capable of realizing a pressing force and a heating temperature in a laminating apparatus for manufacturing a solar cell module, and heated and pressurized for a certain time.
  • the heating press has a structure that is divided into an upper part and a lower part, and is a structure that can control the temperature of each of the upper part and the lower part and can apply a predetermined pressure.
  • the hot plate protection sheet of the present invention was placed on the pedestal on the lower side of the heating press. At this time, it is not particularly fixed.
  • the conventional conveyance sheet was attached to the pedestal on the upper side of the heating press, and its periphery was fixed with a frame-shaped fixing member. Next, it pressed with the predetermined
  • the pressurizing conditions were such that the temperatures of the upper and lower pedestals were both set to 175 ° C., and pressure was pressed at 0.1 MPa for 15 minutes. After pressurizing for 15 minutes, the upper pedestal of the heating press was raised and separated from the lower pedestal. At this time, the case where the hot plate protection sheet of the present invention was lifted up together with the transport sheet and remained lifted was defined as “attached”.
  • thermocouple was set on the pedestal on the lower side of the heating press, and the hot plate protection sheet of the present invention was placed thereon and pressed.
  • the pressurizing condition was set to 175 ° C. only for the upper pedestal, and the lower pedestal was pressed at 0.4 MPa for 20 seconds with no heating.
  • Example F1 is a temperature change when the hot plate protection sheet is the same material as Example E1 and has a thickness of 105 ⁇ m.
  • Example F2 is a temperature change when the hot plate protection sheet is the same material as Example E2 and has a thickness of 105 ⁇ m.
  • Comparative Example F1 is a temperature change when the hot plate protection sheet is the same material as Comparative Example E1 and has a thickness of 220 ⁇ m. ((4) in Fig.
  • Comparative Example F2 is a temperature change when the hot plate protection sheet is the same material as Comparative Example E2 and has a thickness of 100 ⁇ m. ((3) in Fig. 12) As can be seen from FIG. 12, Examples F1, F2 and Comparative Example F2 are thin, so the temperature rises quickly, and when the solar cell module is laminated, the temperature of the hot plate of the laminating apparatus is quickly transmitted to the workpiece. I understand that I can do it. Further, in Example F1 and Example F2, the rate of temperature increase is faster than that in the case where the thickness of the hot plate protection sheet using the same material as that of the conventional product is approximately the same.
  • Comparative Example F2 the thickness is thin and the temperature rise rate is fast, but both sheets after lamination are adhered, and when the workpiece is mounted on the transport sheet and run, the hot plate protection sheet is damaged.
  • Examples F1 and F2 after laminating, there is no adhesion between the hot plate protection sheet of this embodiment and the transport sheet, and there is no breakage of the hot plate protection sheet even if the work piece is mounted on the transport sheet and run. . Therefore, by using the hot plate protection sheet and the transport sheet of the present invention in a laminating apparatus for manufacturing a solar cell module, the heating time at the time of laminating the solar cell module is not damaged even if the thickness of both sheets is reduced. Can be shortened and the production efficiency can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Textile Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

Provided is a multilayered sheet which has excellent heat resistance, non-stickiness, abrasion resistance and creep properties, and also provided are an endless belt formed from the multilayered sheet and a method for producing the same. The multilayered sheet comprises: at least one composite material layer formed from a fluorine resin and a heat-resistant fiber woven fabric; and a surface layer formed from a polyimide resin, characterized in that the surface layer is formed by way of a treatment surface produced by surface activation of the composite material layer.

Description

複層シートおよびエンドレスベルトMulti-layer sheet and endless belt
 本発明は、複層シート、エンドレスベルトならびにその製造方法に関するものである。さらに詳しくは、本発明は、例えば工業関連に用いることができる耐熱性、非粘着性および耐摩耗性、グリップ性が優れた複層シートおよびこの複層シートからなるエンドレスベルトならびにその製造方法に関するものである。
 また本発明は、太陽電池モジュールを製造するラミネート装置に用いられる熱板保護シート(以後、単に「保護シート」と呼ぶこともある)と搬送シートを上記発明の複層シートとした保護シートと搬送シート、及び当該保護シート及び搬送シートを組み込んだラミネート装置に関するものである。
The present invention relates to a multilayer sheet, an endless belt, and a method for producing the same. More specifically, the present invention relates to a multilayer sheet excellent in heat resistance, non-adhesiveness and abrasion resistance, and grip, which can be used for industrial use, an endless belt comprising the multilayer sheet, and a method for producing the same. It is.
The present invention also relates to a protective sheet and a protective sheet comprising a multilayered sheet according to the present invention as a hot plate protective sheet (hereinafter also referred to simply as “protective sheet”) used in a laminating apparatus for manufacturing a solar cell module. The present invention relates to a laminating apparatus in which the sheet and the protective sheet and the conveying sheet are incorporated.
 従来、耐熱性および引張強度等に優れた耐熱性繊維織布に、耐熱性や非粘着性に優れた耐熱性樹脂を複合した耐熱性複合シートが知られており、これら耐熱性複合シートは工業関連の耐熱非粘着性シートや耐熱非粘着性搬送ベルト等として使用されている。
 上記耐熱性複合シートに用いられる耐熱性繊維織布としては、例えば、ガラス繊維、アラミド繊維等を平織、綾織等とした織布が用いられている。
 また、上記耐熱性複合シートに用いられる耐熱性樹脂としては、例えば、ポリテトラフルオロエチレン樹脂(PTFE)等のフッ素樹脂が用いられている。
 しかし、一般的に、フッ素樹脂は、耐熱性、耐寒性、非粘着性、耐薬品性、耐燃焼性、耐候性、電気絶縁性、低摩擦性等に優れているが、耐摩耗性に乏しいことと低摩擦性に優れるためスリップし易いという問題点がある。
 フッ素樹脂よりも耐摩耗性に優れ、低摩擦性に劣り、グリップ性に優れ、スリップし難い耐熱性材料としてポリイミド系樹脂等が挙げられる。
 耐摩耗性を向上させたシートの製造方法としては、例えば、ポリイミド系樹脂をフッ素樹脂水性懸濁液に分散させた混合液に耐熱性繊維織布を含浸し付着させて、乾燥した後、焼成する方法(特開2006−21403号公報(特許文献1))が提案されている。
 しかし、上記の特許文献1に記載のシートは、ポリイミド系樹脂とフッ素樹脂の混合材であることから双方の性能が平均化されていて、ポリイミド系樹脂本来の優れた耐摩耗性を得ることは困難なようである。搬送用のエンドレスベルトにおいては、駆動ロールとの接触面であるベルトの内側面が適度なグリップ性と耐摩耗性を有していることが重要となるが、ポリイミド系樹脂とフッ素樹脂の混合材ではこれらを両立させることは困難なようである。
 ポリイミド系樹脂とフッ素樹脂の混合材ではない、ポリイミド系樹脂とフッ素樹脂の層を形成する管状エンドレスベルト(特開平7−110632号公報(特許文献2)、特開平7−178741号公報(特許文献3)、特開2002−178422号公報(特許文献4))も提案されている。しかし、製造方法が円筒状金型での成型であり、様々な寸法に対応するためには、設備費が増大するようである。
 また、太陽電池モジュールを封止する際に用いられるラミネート装置は、特許文献5に開示されているように、一般的に、ラミネート加工時は、ダイヤフラム等の押圧部材により仕切られた上チャンバと下チャンバを有している。下チャンバには太陽電池モジュール等の被加工物を加熱する熱板と、被加工物をラミネート装置外から当該熱板上に搬送するための搬送シート等を備えている。上チャンバは、被加工物を押圧するためのダイヤフラムなどの押圧部材等を備えている。
 搬送シートは、被加工物を搭載して走行するので、熱板との間で摩擦が生じるため、傷や破れ等の損傷を受けやすい。また熱板の搬送シートとの接触面も搬送シートとの摩擦により摩耗する。そのため、熱板の上部に保護シート(前記した熱板保護シート)を設けて、搬送シートを保護するのが一般的である。
特開2006−21403号公報 特開平7−110632号公報 特開平7−178741号公報 特開2002−178422号公報 特開2000−101117号公報
Conventionally, heat-resistant composite sheets are known in which a heat-resistant fiber woven fabric excellent in heat resistance and tensile strength is combined with a heat-resistant resin excellent in heat resistance and non-adhesiveness. They are used as related heat-resistant non-adhesive sheets and heat-resistant non-adhesive transport belts.
As the heat resistant fiber woven fabric used for the heat resistant composite sheet, for example, a woven fabric in which glass fiber, aramid fiber or the like is plain woven or twill woven is used.
Moreover, as heat resistant resin used for the said heat resistant composite sheet, fluororesins, such as polytetrafluoroethylene resin (PTFE), are used, for example.
However, in general, fluororesin is excellent in heat resistance, cold resistance, non-adhesiveness, chemical resistance, combustion resistance, weather resistance, electrical insulation, low friction, etc., but poor in wear resistance. In addition, there is a problem that it is easy to slip because of its excellent low friction property.
Examples of heat-resistant materials that are superior to fluororesins in abrasion resistance, inferior in low friction, excellent in grip properties, and difficult to slip include polyimide resins.
As a method for producing a sheet having improved wear resistance, for example, a heat-resistant fiber woven fabric is impregnated and adhered to a mixed solution in which a polyimide resin is dispersed in an aqueous fluororesin suspension, dried, and then fired. (Japanese Patent Laid-Open No. 2006-21403 (Patent Document 1)) has been proposed.
However, since the sheet described in Patent Document 1 is a mixed material of a polyimide resin and a fluororesin, both performances are averaged, and it is possible to obtain the original excellent wear resistance of the polyimide resin. It seems difficult. In endless belts for conveyance, it is important that the inner surface of the belt, which is the contact surface with the drive roll, has an appropriate grip and wear resistance. However, it is a mixed material of polyimide resin and fluororesin. So it seems difficult to achieve both.
Tubular endless belts that form a layer of polyimide resin and fluororesin that is not a mixture of polyimide resin and fluororesin (Japanese Patent Laid-Open No. 7-110632 (Patent Document 2), Japanese Patent Laid-Open No. 7-178741 (Patent Document) 3) and JP-A-2002-178422 (Patent Document 4)) have also been proposed. However, the manufacturing method is molding with a cylindrical mold, and the equipment cost seems to increase in order to cope with various dimensions.
In addition, as disclosed in Patent Document 5, a laminating apparatus used for sealing a solar cell module is generally divided into a lower chamber and a lower chamber partitioned by a pressing member such as a diaphragm during laminating. It has a chamber. The lower chamber is provided with a hot plate for heating a workpiece such as a solar cell module, and a transfer sheet for transferring the workpiece from the laminating apparatus onto the hot plate. The upper chamber includes a pressing member such as a diaphragm for pressing the workpiece.
Since the conveyance sheet travels with the work piece mounted thereon, friction is generated between the conveyance sheet and the conveyance sheet, and thus the conveyance sheet is susceptible to damage such as scratches and tears. Further, the contact surface of the hot plate with the conveying sheet is also worn by friction with the conveying sheet. Therefore, it is common to protect the transport sheet by providing a protective sheet (the above-described hot plate protective sheet) on the hot plate.
JP 2006-21403 A JP-A-7-110632 JP 7-178741 A JP 2002-178422 A JP 2000-101117 A
 本発明は、前記の事情を考慮し、検討したものであって、優れた耐熱性、非粘着性と共に必要な耐摩耗性やグリップ性を有した複層シートを得て、これを必要寸法に裁断してエンドレス化することで、型を使用せず様々な寸法のエンドレスベルトが製造可能な複層シート、およびこの複層シートからなるエンドレスベルトならびにその製造方法を提供することを第1の目的とする。
 また太陽電池モジュールを製造するラミネート装置において使用される保護シート及び搬送シートについては以下のような問題がある。
 熱板上に保護シートを設けることにより、熱板にて発生する熱が保護シートおよび搬送シートを介して被加工物に伝わることになる。これにより、ラミネート加工する被加工物への熱が伝わりにくくなり、ラミネート加工時の昇温速度の遅延が生じることになる。その結果、ラミネート加工時間が長くなり、生産効率が低下するという問題点があった。一方、被加工物の生産タクトタイムを優先すると、ラミネート加工に必要な熱量が不足し、被加工物の構成部材である充填材(封止材)のラミネート加工度不足(架橋不足)が生じることになる。この場合、被加工物の品質的な問題や製造歩留りの問題が発生する。
 一方、搬送シートは耐熱性・非粘着性・潤滑性・耐薬品性等の理由からフッ素系樹脂を含むものPTFE等が使用されており、また熱板保護シートにも同じ理由から同材料が用いられている。ラミネート加工時には、これら二種類のシートが密着し、さらにラミネート加工時に両シートに熱が加わるが、いずれもフッ素樹脂を含むものから成るため、互いに張り付きやすいという問題も有った。一回目のラミネート加工が終わった後、熱板に取り付けられて固定されている熱板保護シートと搬送シートが張り付いたままで搬送シートが被加工物を搬出するために動き出すと、当該保護シートも搬送シートにより引っ張られ、熱板保護シートの取り付け部で破損することがあった。また同時に搬送シートも破損してしまうこともある。
 また、本発明は、このような問題に鑑みてなされたものであり、ラミネート加工時の昇温速度を向上させることができ、同時に保護シートの破損を防止した保護シート及び搬送シートを提供することを第2の目的とする。また当該保護シート及び搬送シートを使用したラミネート装置を提供することを第3の目的としている。
The present invention has been studied in consideration of the above-mentioned circumstances, and obtains a multilayer sheet having excellent heat resistance and non-adhesiveness as well as necessary wear resistance and grip properties, and has the required dimensions. A first object of the present invention is to provide a multilayer sheet capable of producing endless belts of various dimensions without using a mold, and an endless belt comprising the multilayer sheet, and a method for producing the same, by cutting and making it endless. And
Further, the protective sheet and transport sheet used in the laminating apparatus for manufacturing the solar cell module have the following problems.
By providing the protective sheet on the hot plate, the heat generated in the hot plate is transmitted to the workpiece through the protective sheet and the conveying sheet. This makes it difficult for heat to be transferred to the workpiece to be laminated, resulting in a delay in the temperature increase rate during the lamination. As a result, there is a problem in that the laminating time becomes long and the production efficiency is lowered. On the other hand, if the production tact time of the workpiece is prioritized, the amount of heat required for laminating will be insufficient, resulting in insufficient degree of laminating (insufficient crosslinking) of the filler (encapsulant) that is a component of the workpiece. become. In this case, the quality problem of a workpiece and the problem of manufacturing yield occur.
On the other hand, PTFE, etc. containing fluororesin is used for the transport sheet for reasons such as heat resistance, non-adhesiveness, lubricity, and chemical resistance, and the same material is used for the hot plate protection sheet for the same reason. It has been. At the time of laminating, these two types of sheets are in close contact with each other, and heat is applied to both sheets at the time of laminating. However, since both are made of a material containing a fluororesin, there is a problem that they are easily stuck to each other. After the first laminating process is finished, if the transport sheet starts moving to carry out the work piece with the heat plate protection sheet and the transport sheet attached and fixed to the heat plate attached, the protection sheet will also be There was a case where the sheet was pulled by the conveying sheet and was damaged at the attachment portion of the hot plate protection sheet. At the same time, the conveying sheet may be damaged.
In addition, the present invention has been made in view of such a problem, and can provide a protective sheet and a transport sheet that can improve the rate of temperature increase during lamination and at the same time prevent the protective sheet from being damaged. Is the second purpose. A third object is to provide a laminating apparatus using the protective sheet and the conveying sheet.
 上記の課題を達成するための第1発明である複層シートは、フッ素樹脂と耐熱性繊維織布からなる少なくとも1層の複合材層とポリイミド系樹脂からなる表面層とを有する複層シートであって、前記表面層が、前記複合材層に対してなされた表面活性化処理により形成された処理面を介して形成されていること、を特徴とするものである。
 第2発明の複層シートは、第1発明において、前記の表面活性化処理が、シリカ粒子付着焼成処理、金属ナトリウムエッチング処理、プラズマ放電処理またはコロナ放電処理であるもの、を包含する。
 第3発明のエンドレスベルトは、第1発明において、上記の複層シートから形成されたベルト状物の環状体からなること、を特徴とするものである。
 第4発明のエンドレスベルトの製造方法は、第1発明の複層シートをベルト状に裁断し、この複層シートのベルト状物の対向する二つの端部を接合して環状体を得ること、を特徴とするものである。
 第5発明のエンドレスベルトの製造方法は、第1発明の複層シートと他のシートとが積層されたベルト状物を、このベルト状物の前記複層シートについての対向する二つの端部およびこのベルト状物の前記他のシートについての対向する二つの端部をそれぞれ接合ないし近接配置させて環状体を得ること、を特徴とするものである。
 第6発明のラミネート装置用の熱板保護シートは、第1発明または第2発明の複層シートからなることを特徴とするものである。
 第7発明のラミネート装置用の熱板保護シートは、第6発明において、ラミネート加工した後、ラミネート装置の搬送シートとの付着がまったく無いことを特徴とするものである。
 第8発明のラミネート装置用の熱板保護シートは、第6発明または第7発明において、搬送シートと接触する側の表面に前記ポリイミド系樹脂からなる表面層を有することを特徴とするものである。
 第9発明のラミネート装置用の搬送シートは、第1発明また第2発明の複層シートからなることを特徴とするものである。
 第10発明のラミネート装置用の搬送シートは、第9発明において、ラミネート加工した後、ラミネート装置の熱板保護シートとの付着がまったく無いことを特徴とするものである。
 第11発明の前記搬送シートは、第9発明または第10発明において、熱板保護シートと接触する側の表面に前記ポリイミド系樹脂からなる表面層を有することを特徴とする。
 第12発明のラミネート装置は、第6発明から第8発明のいずれかの熱板保護シートを使用したことを特徴とするものである。
 第13発明のラミネート装置は、第9発明から第11発明のいずれかの搬送シートを使用したことを特徴とするものである。
The multilayer sheet which is the first invention for achieving the above object is a multilayer sheet having at least one composite material layer made of a fluororesin and a heat-resistant fiber woven fabric and a surface layer made of a polyimide resin. And the said surface layer is formed through the process surface formed by the surface activation process made | formed with respect to the said composite material layer, It is characterized by the above-mentioned.
The multilayer sheet of the second invention includes the multilayer sheet according to the first invention, wherein the surface activation treatment is silica particle adhesion firing treatment, metal sodium etching treatment, plasma discharge treatment or corona discharge treatment.
The endless belt of the third invention is characterized in that, in the first invention, the endless belt is composed of an annular body of a belt-like material formed from the multilayer sheet.
The production method of the endless belt of the fourth invention is to cut the multilayer sheet of the first invention into a belt shape, and join the two opposite ends of the belt-like object of this multilayer sheet to obtain an annular body, It is characterized by.
According to a fifth aspect of the present invention, there is provided an endless belt manufacturing method comprising: a belt-like material in which the multilayer sheet of the first invention and another sheet are laminated; two opposite end portions of the belt-like material with respect to the multilayer sheet; Two opposite ends of the other sheet of the belt-like material are joined or arranged close to each other to obtain an annular body.
A hot plate protective sheet for a laminating apparatus according to a sixth aspect of the invention is characterized by comprising the multilayer sheet of the first aspect or the second aspect.
The hot plate protection sheet for a laminating apparatus of the seventh invention is characterized in that, in the sixth invention, after laminating, there is no adhesion to the conveying sheet of the laminating apparatus.
A hot plate protection sheet for a laminating apparatus according to an eighth invention is characterized in that, in the sixth invention or the seventh invention, the surface layer made of the polyimide resin is provided on the surface in contact with the transport sheet. .
A conveying sheet for a laminating apparatus according to a ninth aspect is characterized by comprising the multilayer sheet according to the first aspect or the second aspect.
The conveying sheet for a laminating apparatus according to a tenth aspect of the invention is characterized in that, in the ninth aspect, after laminating, there is no adhesion to the hot plate protection sheet of the laminating apparatus.
In the ninth or tenth invention, the transport sheet according to an eleventh invention is characterized by having a surface layer made of the polyimide resin on the surface in contact with the hot plate protection sheet.
A laminating apparatus according to a twelfth aspect is characterized by using the hot plate protection sheet according to any of the sixth to eighth aspects.
A laminating apparatus according to a thirteenth aspect of the present invention is characterized in that the conveyance sheet according to any of the ninth to eleventh aspects of the invention is used.
 本発明によれば、優れた耐熱性、非粘着性および耐摩耗性、グリップ性を有する複層シートを得ることができる。
 この複層シートは、その表面層がポリイミド系樹脂であることから、所望の用途、要求性能等に適合した非粘着性、耐摩耗性ないしグリップ性等を得ることが出来る。
 そして、本発明によれば、この複層シートをそのままあるいは他のシートを積層した後に、所望とする幅および長さのエンドレスベルトが形成できるように、この複層シートあるいは他のシートの積層物をベルト状に切断し、これからエンドレスベルトを得ることができるので、用途に応じた所望の幅、長さ、層構成のエンドレスベルトを容易に製造することができる。また、積層に先だって、所望の幅、長さを有する各層を用意し、これらを積層の後、エンドレスベルトを製造することができる。
 また、場合により、同一の複層シートを切断することなしに幅広のエンドレスベルトを一旦形成させた後に、この幅広のエンドレスベルトを所望の幅に切断することによって、長さが同一のエンドレスベルトを同時に複数製造することが可能になる。また、前記の幅広のエンドレスベルトを切断する際の幅を調整することによって、幅が異なるエンドレスベルトを作り分けることも容易である。
 そして、複層シートの表面層の形成をポリイミド系樹脂の塗布によって行うことができるので、予め表面層部分をシート状で得ておいてこれを接着剤等によって積層する場合に比べて、表面層の接合強度が高いことから強度および耐久性が優れた複層シートおよびエンドレスベルトを得ることができ、かつ複層シートやエンドレスベルトの製造を容易かつ効率的に行うことができる。
 本発明の複層シートをラミネート装置の熱板保護シート及び搬送シートに使用することにより以下の効果を得ることができる。
 ラミネ−ト加工中に搬送シートと熱板保護シートの付着が無いので、ラミネート加工後に被加工物を搭載して搬送シートを走行させても、熱板保護シートが損傷することがない。熱板保護シートと搬送シートとの付着を無くすことができ、熱板保護シートおよび搬送シートの耐摩耗性を更に向上させることができる。したがってラミネート装置用の熱板保護シートおよび搬送シートの寿命が向上するのでその交換作業を減らすことができ、太陽電池モジュールの生産性が向上する。
 ラミネート加工後の熱板保護シートと搬送シートとの付着が無いので、ラミネート加工が終了した後に搬送シートに被加工物を搭載して走行させても、両シートが破断するようなことが無く、熱板保護シートおよび搬送シートの厚みを薄くすることができる。これにより熱板から熱板保護シート、搬送シートを介して被加工物への加熱が迅速になされ、被加工物のラミネート加工時間を短縮することができる。したがって本発明の熱板保護シート及び搬送シートは熱伝導性が良好であり、昇温速度を早めることが可能となり、ラミネート加工の生産効率を向上させることができる。
 本発明のラミネート装置によれば、ラミネ−ト加工中に搬送シートと熱板保護シートの付着が無いので、ラミネート加工後、被加工物を搭載して搬送シートが熱板保護シート上を走行しても、熱板保護シートや搬送シートが損傷したり破断することが無く、両シートを薄くできるので熱伝導性が良好となる。これによりラミネート加工の際の被加工物の昇温速度を早めることが可能となり、ラミネート加工の生産効率を向上させることができる。またラミネート加工の温度上昇不足により生じていた太陽電池モジュールのラミネート加工不良が減り、製品の歩留りが向上する。
ADVANTAGE OF THE INVENTION According to this invention, the multilayer sheet | seat which has the outstanding heat resistance, non-adhesiveness and abrasion resistance, and grip property can be obtained.
Since this multilayer sheet has a polyimide resin as its surface layer, it is possible to obtain non-adhesiveness, wear resistance, grip properties and the like suitable for the desired use and required performance.
And according to the present invention, this multilayer sheet or a laminate of other sheets is formed so that an endless belt having a desired width and length can be formed as it is or after laminating other sheets. Since an endless belt can be obtained by cutting the belt into a belt shape, an endless belt having a desired width, length, and layer configuration according to the application can be easily manufactured. Prior to lamination, each layer having a desired width and length is prepared, and after these are laminated, an endless belt can be manufactured.
In some cases, a wide endless belt is once formed without cutting the same multilayer sheet, and then the wide endless belt is cut to a desired width. A plurality of products can be manufactured at the same time. It is also easy to make different endless belts with different widths by adjusting the width when cutting the wide endless belt.
And since the formation of the surface layer of the multilayer sheet can be carried out by applying a polyimide resin, the surface layer is obtained in comparison with the case where the surface layer portion is obtained in the form of a sheet in advance and laminated with an adhesive or the like. Therefore, it is possible to obtain a multilayer sheet and an endless belt excellent in strength and durability, and to easily and efficiently manufacture the multilayer sheet and the endless belt.
The following effects can be obtained by using the multilayer sheet of the present invention for a hot plate protective sheet and a conveying sheet of a laminating apparatus.
Since there is no adhesion between the transport sheet and the hot plate protection sheet during the laminating process, the hot plate protection sheet is not damaged even if the work sheet is run with the workpiece mounted after laminating. Adhesion between the hot plate protection sheet and the transport sheet can be eliminated, and the wear resistance of the hot plate protection sheet and the transport sheet can be further improved. Therefore, since the lifetime of the hot plate protection sheet and the transport sheet for the laminating apparatus is improved, the replacement work can be reduced, and the productivity of the solar cell module is improved.
Since there is no adhesion between the hot plate protection sheet and the transport sheet after laminating, both sheets will not break even if the work is mounted on the transport sheet after laminating is completed, The thickness of the hot plate protection sheet and the transport sheet can be reduced. As a result, the workpiece is quickly heated from the hot plate via the hot plate protective sheet and the conveying sheet, and the laminate processing time of the workpiece can be shortened. Therefore, the hot plate protection sheet and the transport sheet of the present invention have good thermal conductivity, can increase the temperature rising rate, and can improve the production efficiency of the laminating process.
According to the laminating apparatus of the present invention, since there is no adhesion between the transport sheet and the hot plate protection sheet during lamination processing, after laminating, the workpiece is mounted and the transport sheet travels on the hot plate protection sheet. However, the heat plate protection sheet and the transport sheet are not damaged or broken, and both sheets can be made thin, so that the thermal conductivity is improved. This makes it possible to increase the rate of temperature increase of the workpiece during laminating, and improve the production efficiency of laminating. Moreover, the defective lamination process of the solar cell module caused by the insufficient temperature increase of the lamination process is reduced, and the product yield is improved.
 図1は、本発明による複層シートの構造を示す断面図である。
 図2は、本発明による複層シートの構造を示す断面図である。
 図3は、本発明によるエンドレスベルトの構造を示す断面図である。
 図4は、本発明によるエンドレスベルトの構造を示す断面図である。
 図5は、太陽電池モジュール製造用のラミネート装置の概略図である。
 図6は、ラミネート装置のラミネート部の側断面図である。
 図7は、ラミネート装置のラミネート加工時におけるラミネート部の側断面図である。
 図8は、従来の熱板保護シート及び搬送シートの説明図である。
 図9は、本発明の熱板保護シートおよび搬送シートの説明図である。
 図10は、本発明の熱板保護シートの説明図である。
 図11は、本発明の熱板保護シートの付着性および熱伝達性を評価する加熱プレス機の概略図である。
 図12は、本発明の熱板保護シートの熱伝達特性の説明図である「。
 図13は、被加工物の断面図である。
FIG. 1 is a cross-sectional view showing the structure of a multilayer sheet according to the present invention.
FIG. 2 is a cross-sectional view showing the structure of the multilayer sheet according to the present invention.
FIG. 3 is a sectional view showing the structure of the endless belt according to the present invention.
FIG. 4 is a cross-sectional view showing the structure of the endless belt according to the present invention.
FIG. 5 is a schematic view of a laminating apparatus for manufacturing a solar cell module.
FIG. 6 is a side sectional view of the laminating portion of the laminating apparatus.
FIG. 7 is a side cross-sectional view of the laminating portion at the time of laminating by the laminating apparatus.
FIG. 8 is an explanatory diagram of a conventional hot plate protection sheet and conveyance sheet.
FIG. 9 is an explanatory diagram of the hot plate protection sheet and the conveyance sheet of the present invention.
FIG. 10 is an explanatory diagram of the hot plate protection sheet of the present invention.
FIG. 11 is a schematic view of a hot press machine for evaluating the adhesion and heat transfer of the hot plate protection sheet of the present invention.
FIG. 12 is an explanatory diagram of heat transfer characteristics of the hot plate protection sheet of the present invention.
FIG. 13 is a cross-sectional view of a workpiece.
 10、11  複層シート
 2      複合材層
 2a     フッ素樹脂
 2b     耐熱性繊維織布
 3a     ポリイミド系樹脂からなる表面層
 4      処理面
 5      他のシート
 12     エンドレスベルト
 20     被加工物(太陽電池モジュール)
 100    ラミネート装置
 101    ラミネート部
 110    上ケース
 112    ダイヤフラム
 113    上チャンバ
 120    下ケース
 121    下チャンバ
 122    熱板
 130    搬送シート
 200    搬入コンベア
 300    搬出コンベア
 400    熱板保護シート及び搬送シート(従来品)
 500    熱板保護シート(本発明)
 600    搬送シート(本発明)
 K      密着部分
DESCRIPTION OF SYMBOLS 10, 11 Multi-layer sheet 2 Composite material layer 2a Fluororesin 2b Heat resistant fiber woven fabric 3a Surface layer made of polyimide resin 4 Treatment surface 5 Other sheet 12 Endless belt 20 Workpiece (solar cell module)
DESCRIPTION OF SYMBOLS 100 Laminating apparatus 101 Laminating part 110 Upper case 112 Diaphragm 113 Upper chamber 120 Lower case 121 Lower chamber 122 Heat plate 130 Conveying sheet 200 Carrying in conveyor 300 Carrying out conveyor 400 Hot plate protection sheet and conveying sheet (conventional product)
500 Hot plate protection sheet (present invention)
600 Conveying sheet (present invention)
K adhesion part
 本発明による複層シートは、フッ素樹脂と耐熱性繊維織布からなる少なくとも1層の複合材層とポリイミド系樹脂からなる表面層とを有する複層シートであって、前記表面層が、前記複合材層に対してなされた表面活性化処理により形成された処理面を介して形成されていること、を特徴とするものである。
 このような本発明による複層シートの好ましい具体例としては、例えば図1、2に記載されたものを挙げることができる。
 図1に示される本発明による複層シート10は、フッ素樹脂2aと耐熱性繊維織布2bからなる1層の複合材層2とポリイミド系樹脂からなる表面層3aとを有する複層シートであって、前記表面層3aが、前記複合材層2に対してなされた表面活性化処理により形成された処理面4を介して形成されているものである。
 図2に示される本発明による複層シート11は、この複層シートの両面にポリイミド系樹脂からなる表面層を有するものであって、フッ素樹脂2aと耐熱性繊維織布2bからなる1層の複合材層2と、ポリイミド系樹脂からなる表面層3aとを有する複層シートであって、前記表面層3aが、前記複合材層2に対してなされた表面活性化処理により形成された処理面4を介して形成されているものである。
 <複合材層>
 本発明による複層シートにおける複合材層は、フッ素樹脂と耐熱性繊維織布からなるものである。
 本発明におけるフッ素樹脂としては、限定するものではないが、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)からなる群から選ばれた耐熱性樹脂が挙げられる。この中では、特にポリテトラフルオロエチレンが好ましい。
 前記フッ素樹脂には、必要に応じて導電性粉を配合することができる。これによって、導電性の付与ないし向上ならびに耐摩耗性の向上等を図ることができる。導電性粉の好ましい具体例としては、カーボンブラックおよび酸化チタンを挙げることができる。その配合量は、フッ素樹脂に対して1~20質量部が好ましい。
 本発明において、前記耐熱性繊維織布としては、限定するものではないが、ガラス繊維、アラミド繊維が挙げられる。耐熱性繊維織布の厚さは、一般的に30~1000μm、特に30~700μmが好ましい。
 このような複合材層は、好ましくは、例えば、前記のフッ素樹脂の粒子の水性懸濁液を前記の耐熱性繊維織布に含浸させ、乾燥した後、焼成することによって形成することができる。水性懸濁液を調製する際の溶媒としては、例えば水、特に純水、が好ましい。水性懸濁液中のフッ素樹脂の粒子の量は、溶媒100質量部に対して20~60質量部、特に30~60質量部が好ましい。
 本発明における複合材層は、フッ素樹脂が耐熱性繊維織布の内部にまで充分浸透し、かつ耐熱性繊維織布の表面がフッ素樹脂に覆われていることが好ましい。従って、フッ素樹脂の施用量は、耐熱性繊維織布とフッ素樹脂との総量を100質量部として、30~70質量部、特に40~60質量部、が好ましい。
 <表面層>
 本発明による複層シートは、ポリイミド系樹脂からなる表面層を有するものである。
 本発明において、ポリイミド系樹脂は、限定されるものではないが、例えばポリイミドおよびポリアミドイミドが好ましく、特にポリイミドが好ましい。
 本発明において表面層を塗工により形成させる際は、その塗工を容易にするために液状のポリイミドワニスを用いることができ、必要に応じて溶剤を配合することができる。これによって、粘度を低減して塗工性の向上を図ることができる。
 また、ポリイミド樹脂には、必要に応じて導電性粉を配合することができる。これによって、例えば導電性や熱伝導性の付与ないし向上ならびに耐摩耗性の向上等を図ることができる。
 上記の表面層の形成は、上記のポリイミド系樹脂を、複合材層の表面活性化処理面に塗工し、乾燥した後、焼成することによって行うことができる。ポリイミド系樹脂の焼成温度は、300~400℃が好ましく、特に330~370℃が好ましい。
 表面層の厚さは、本発明による複層シートおよびエンドレスベルトの具体的用途や目的等によって適宜定めることができる。例えば、搬送用途に特に適したエンドレスベルト製造用の複層シートについて示せば、ポリイミド樹脂表面層の厚さは1~50μmが好ましく、特に5~20μmが特に好ましい。
 <表面活性化処理>
 本発明による複層シートにおいては、前記表面層が前記複合材層に対してなされた表面活性化処理により形成された処理面を介して形成されている。ここで、表面活性化処理とは、前述の本発明による複合材層の表面のフッ素樹脂を処理することによって、その表面張力を低下させて、複合材層のフッ素樹脂と複層シートの表面層として形成されるポリイミド系樹脂との接合を可能にし、かつ充分な接合強度を発現させる処理を言う。この表面活性化処理が行なわれない場合には、前記の複合材に、ポリイミド系樹脂からなる表面層を形成することができず、本発明の目的を達成することができない。
 本発明における好ましい表面活性化処理としては、例えばシリカ粒子付着焼成処理、金属ナトリウムエッチング表面処理、プラズマ放電処理、コロナ放電処理を挙げることができる。この中では、シリカ粒子付着焼成処理が特に好ましい。
 ここで、本発明における表面活性化処理の詳細を下記に示す。
 シリカ粒子付着焼成処理:フッ素樹脂と耐熱性繊維織布からなる複合材に、シリカ粒子とフッ素樹脂粒子との混合水性懸濁液を塗布した後、焼成処理を行うことにより複合材表面の親水性を向上させる処理。
 金属ナトリウムエッチング表面処理:フッ素樹脂と耐熱性繊維織布からなる複合材に、金属ナトリウム溶液を塗布することにより、複合材表面の親水性を向上させる処理。
 プラズマ放電処理:フッ素樹脂と耐熱性繊維織布からなる複合材の表面にグロー放電処理を施して、複合材表面の親水性を向上させる処理。
 コロナ放電処理:フッ素樹脂と耐熱性繊維織布からなる前記の複合材の表面にコロナ放電処理を施し、複合材の表面の親水性を向上させる処理。
 表面活性化処理は、上記複合材層の上記の表面層が形成される部位の全面に対して行うことが好ましいが、上記の複合材層の表面層が形成される部位の一部分に対して行うこともできる。
 このような表面活性化処理を施すことによって、複合材層表面のフッ素樹脂面上に純水を滴下した際の接触角(JIS K6768)が有意に低下する。表面活性化処理前では106°程度であった接触角が、シリカ粒子付着焼成処理によって80~90°に、金属ナトリウムエッチング表面処理では、50~60°に、プラズマ放電処理によって、50~60°にまで低下する。
 <エンドレスベルト>
 本発明によるエンドレスベルトは、上記の複層シートから形成されたベルト状物の環状体からなることを特徴とするものである。したがって、本発明によるエンドレスベルトは、上記複層シートの優れた特性、例えば、主としてフッ素樹脂と耐熱性繊維織布からなる複合材層に基づく優れた耐熱性、形状安定性、非粘着性および耐久性と、主として表面層であるポリイミド系樹脂に基づく諸特性(例えば、耐摩耗性、耐熱性、耐久性)を具備するものである。
 そして、本発明によるエンドレスベルトの製造方法は、上記の複層シートをベルト状に裁断し、この複層シートのベルト状物の対向する二つの端部を接合して環状体を得ることを特徴とする。なお、この環状体は、例えば、(イ)複層シートのベルト状物の一方の端部の周辺域に他方の端部を重ね合わせて接合することにより(図3(A))、(ロ)複層シートのベルト状物の二つの端部をその端部断面にて強固に接合することにより(図3(B))、(ハ)複層シートのベルト状物の二つの端部の双方を同一の連結用シートに接合することによって(図3(C))、得ることができる。なお、二つの端部の接合は、熱融着あるいは接着剤を用いることによって行うことができる。
 また、本発明によるもう一つのエンドレスベルトの製造方法は、上記の複層シートと他のシートとが積層されたベルト状物を、このベルト状物の前記複層シートについての対向する二つの端部およびこのベルト状物の前記他のシートについての対向する二つの端部をそれぞれ接合ないし近接配置させて環状体を得ることを特徴とする。ここで、上記の複層シートと積層する他のシートとしては、単層または複数の層からなるシートを挙げることができる。なお、この他のシートとしては、単層および複層シートを用いることができる。そのような他のシートには、例えば上記の複合材2および複層シート10、11等も包含される。
 図4は、このような本発明によるエンドレスベルトの好ましい具体例を示すものである。図4に示される本発明によるエンドレスベルト12は、図1に示された複層シート10を外周側に、他のシート5を内周側にするものであって、この他のシート5として上記の複合材層2と同一内容のシートを用いたものである。この本発明によるエンドレスベルト12では、複層シート10についての対向する二つの端部およびこのベルト状物の前記他のシート5についての対向する二つの端部を、6、7の位置にて、それぞれ接合あるいは近接配置させて環状体を得て、エンドレスベルトとしている。
 なお、本発明によるエンドレスベルトは、図1に示された複層シート10を内周側に、他のシート5を外周側にしたものも好ましい具体例として包含する。
 このような本発明では、従来の型等によって作製したシームレス管状物を利用してエンドレスベルトを製造する方法と異なって、用途に応じた所望の幅、長さ、層構成のエンドレスベルトを容易に製造することができる。
 また、場合により、同一の複層シートを切断することなしに幅広のエンドレスベルトを一旦形成させた後に、この幅広のエンドレスベルトを所望の幅に切断することによって、長さが同一のエンドレスベルトを同時に複数製造することが可能になる。また、前記の幅広のエンドレスベルトを切断する際の幅を調整することによって、幅が異なるエンドレスベルトを作り分けることも容易である。
 本発明による複層シートと他のシートとの積層シートは、複層シートと他のシートとを熱融着させることによって得ることが好ましいが、接着剤によって複層シートと他のシートとを接着させて積層シートを得ることもできる。
The multilayer sheet according to the present invention is a multilayer sheet having at least one composite material layer composed of a fluororesin and a heat-resistant fiber woven fabric and a surface layer composed of a polyimide resin, wherein the surface layer is composed of the composite sheet. It is characterized by being formed through a treated surface formed by a surface activation treatment performed on the material layer.
Preferable specific examples of the multilayer sheet according to the present invention include those described in FIGS.
A multilayer sheet 10 according to the present invention shown in FIG. 1 is a multilayer sheet having a single composite layer 2 composed of a fluororesin 2a and a heat-resistant fiber woven fabric 2b and a surface layer 3a composed of a polyimide resin. Thus, the surface layer 3a is formed through a treated surface 4 formed by a surface activation treatment performed on the composite material layer 2.
The multilayer sheet 11 according to the present invention shown in FIG. 2 has a surface layer made of a polyimide resin on both sides of the multilayer sheet, and is a single layer made of a fluororesin 2a and a heat resistant fiber woven fabric 2b. A multi-layer sheet having a composite material layer 2 and a surface layer 3a made of a polyimide resin, wherein the surface layer 3a is formed by a surface activation treatment performed on the composite material layer 2 4 is formed.
<Composite layer>
The composite material layer in the multilayer sheet according to the present invention comprises a fluororesin and a heat resistant fiber woven fabric.
The fluororesin in the present invention is not limited, but is polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP). And a heat resistant resin selected from the group consisting of: Of these, polytetrafluoroethylene is particularly preferred.
The fluororesin can be mixed with conductive powder as necessary. As a result, it is possible to impart or improve conductivity and improve wear resistance. Preferable specific examples of the conductive powder include carbon black and titanium oxide. The blending amount is preferably 1 to 20 parts by mass with respect to the fluororesin.
In the present invention, the heat-resistant fiber woven fabric includes, but is not limited to, glass fiber and aramid fiber. The thickness of the heat resistant fiber woven fabric is generally 30 to 1000 μm, particularly preferably 30 to 700 μm.
Such a composite material layer can be preferably formed, for example, by impregnating the heat-resistant fiber woven fabric with the aqueous suspension of the fluororesin particles, drying, and firing. As the solvent for preparing the aqueous suspension, for example, water, particularly pure water is preferable. The amount of the fluororesin particles in the aqueous suspension is preferably 20 to 60 parts by mass, particularly preferably 30 to 60 parts by mass with respect to 100 parts by mass of the solvent.
In the composite material layer of the present invention, it is preferable that the fluororesin sufficiently penetrates into the inside of the heat resistant fiber woven fabric, and the surface of the heat resistant fiber woven fabric is covered with the fluororesin. Therefore, the application amount of the fluororesin is preferably 30 to 70 parts by mass, particularly 40 to 60 parts by mass, where the total amount of the heat resistant fiber woven fabric and the fluororesin is 100 parts by mass.
<Surface layer>
The multilayer sheet according to the present invention has a surface layer made of a polyimide resin.
In the present invention, the polyimide resin is not limited. For example, polyimide and polyamideimide are preferable, and polyimide is particularly preferable.
In the present invention, when the surface layer is formed by coating, a liquid polyimide varnish can be used to facilitate the coating, and a solvent can be blended if necessary. Thereby, viscosity can be reduced and coating property can be improved.
Moreover, electroconductive powder can be mix | blended with a polyimide resin as needed. As a result, for example, it is possible to impart or improve conductivity and thermal conductivity and improve wear resistance.
The surface layer can be formed by applying the polyimide resin to the surface activation-treated surface of the composite material layer, drying it, and firing it. The firing temperature of the polyimide resin is preferably 300 to 400 ° C, particularly preferably 330 to 370 ° C.
The thickness of the surface layer can be appropriately determined depending on the specific use and purpose of the multilayer sheet and endless belt according to the present invention. For example, if it shows about the multilayer sheet for endless belt manufacture especially suitable for a conveyance use, 1-50 micrometers is preferable and, as for the thickness of a polyimide resin surface layer, 5-20 micrometers is especially preferable.
<Surface activation treatment>
In the multilayer sheet according to the present invention, the surface layer is formed via a treated surface formed by a surface activation treatment performed on the composite material layer. Here, the surface activation treatment means that the surface tension of the composite material layer is reduced by treating the fluororesin on the surface of the composite material layer according to the present invention to reduce the surface tension. The process which enables joining with the polyimide-type resin formed as above, and expresses sufficient joining strength. If this surface activation treatment is not performed, a surface layer made of a polyimide resin cannot be formed on the composite material, and the object of the present invention cannot be achieved.
Examples of the preferable surface activation treatment in the present invention include silica particle adhesion firing treatment, metal sodium etching surface treatment, plasma discharge treatment, and corona discharge treatment. Among these, silica particle adhesion firing treatment is particularly preferable.
Here, the detail of the surface activation process in this invention is shown below.
Silica particle adhesion firing treatment: After applying a mixed aqueous suspension of silica particles and fluororesin particles to a composite material composed of fluororesin and heat-resistant fiber woven fabric, the surface of the composite material is made hydrophilic by firing treatment. Improve the processing.
Metal sodium etching surface treatment: Treatment to improve the hydrophilicity of the composite material surface by applying a metal sodium solution to the composite material made of fluororesin and heat-resistant fiber woven fabric.
Plasma discharge treatment: Treatment for improving the hydrophilicity of the composite material surface by performing glow discharge treatment on the surface of the composite material made of fluororesin and heat-resistant fiber woven fabric.
Corona discharge treatment: A treatment for improving the hydrophilicity of the surface of the composite material by applying a corona discharge treatment to the surface of the composite material made of a fluororesin and a heat-resistant fiber woven fabric.
The surface activation treatment is preferably performed on the entire surface of the composite material layer where the surface layer is formed, but it is performed on a portion of the composite material layer where the surface layer is formed. You can also
By performing such surface activation treatment, the contact angle (JIS K6768) when pure water is dropped on the fluororesin surface of the composite layer surface is significantly reduced. The contact angle, which was about 106 ° before the surface activation treatment, is 80 to 90 ° by the silica particle adhesion firing treatment, 50 to 60 ° by the metal sodium etching surface treatment, and 50 to 60 ° by the plasma discharge treatment. Drop to.
<Endless belt>
The endless belt according to the present invention is characterized by comprising an annular body of a belt-like material formed from the above multilayer sheet. Therefore, the endless belt according to the present invention has excellent characteristics of the multilayer sheet, for example, excellent heat resistance, shape stability, non-adhesiveness and durability based on a composite material layer mainly composed of a fluororesin and a heat-resistant fiber woven fabric. And various characteristics (for example, wear resistance, heat resistance, durability) based on the polyimide resin as the surface layer.
The method for producing an endless belt according to the present invention is characterized in that the multilayer sheet is cut into a belt shape, and two opposite ends of the belt-like object of the multilayer sheet are joined to obtain an annular body. And In addition, this annular body is formed by, for example, (b) overlapping and joining the other end to the peripheral region of one end of the belt-like material of the multilayer sheet (FIG. 3A), ) By firmly joining the two end portions of the belt-like material of the multilayer sheet at the end section (FIG. 3B), (c) the two end portions of the belt-like material of the multilayer sheet It can be obtained by bonding both to the same connecting sheet (FIG. 3C). The two ends can be joined by heat fusion or using an adhesive.
Further, another endless belt manufacturing method according to the present invention includes a belt-like material in which the multilayer sheet and another sheet are laminated, and two opposite ends of the belt-like material with respect to the multilayer sheet. And the two opposite ends of the belt and the other sheet of the belt-like material are joined or arranged close to each other to obtain an annular body. Here, as another sheet laminated | stacked on said multilayer sheet, the sheet | seat which consists of a single layer or a some layer can be mentioned. In addition, as this other sheet | seat, a single layer and a multilayer sheet | seat can be used. Such other sheets include, for example, the composite material 2 and the multilayer sheets 10 and 11 described above.
FIG. 4 shows a preferred embodiment of such an endless belt according to the present invention. The endless belt 12 according to the present invention shown in FIG. 4 has the multilayer sheet 10 shown in FIG. 1 on the outer peripheral side and the other sheet 5 on the inner peripheral side. A sheet having the same contents as the composite material layer 2 is used. In the endless belt 12 according to the present invention, two opposing ends of the multilayer sheet 10 and two opposing ends of the belt-like material with respect to the other sheet 5 are positioned at positions 6 and 7, respectively. An endless belt is obtained by joining or closely arranging to obtain an annular body.
Note that the endless belt according to the present invention includes a multilayer sheet 10 shown in FIG. 1 on the inner peripheral side and another sheet 5 on the outer peripheral side as a preferable specific example.
In the present invention, an endless belt having a desired width, length, and layer configuration can be easily obtained, unlike a method of manufacturing an endless belt using a seamless tubular product manufactured by a conventional mold or the like. Can be manufactured.
In some cases, a wide endless belt is once formed without cutting the same multilayer sheet, and then the wide endless belt is cut to a desired width. A plurality of products can be manufactured at the same time. It is also easy to make different endless belts with different widths by adjusting the width when cutting the wide endless belt.
The laminated sheet of the multilayer sheet and the other sheet according to the present invention is preferably obtained by heat-sealing the multilayer sheet and the other sheet, but the multilayer sheet and the other sheet are bonded with an adhesive. To obtain a laminated sheet.
 実施例1として、実施例A1~A4、実施例C1~C4、および実施例D1~D4について以下にて説明する。
 <実施例A1>
(1)複合材の片面にポリイミド樹脂表面層を形成した複層シート
 まず、フッ素樹脂とガラス繊維の複合材を得るため、連続塗工装置で平織のガラス繊維布厚み(95μm)にフッ素樹脂(PTFE)の水性懸濁液を含浸し付着させて、80℃で乾燥した後、350℃の温度で焼成して、フッ素樹脂とガラス繊維の複合材(厚み135μm)を得た。
 次に、フッ素樹脂とガラス繊維の複合材へ表面活性化処理を行なうため、シリカの水性懸濁液100質量部へPTFE樹脂の水性懸濁液100質量部を混合して、表面活性化処理液を得た。
 次に、連続塗工装置でフッ素樹脂とガラス繊維の複合材の片面に、表面活性化処理液を塗布し付着させて、80℃で乾燥した後、350℃の温度で焼成し、シリカを付着焼成させて表面活性化処理層を得た。
 次に、液状ポリイミドワニスを得るために、市販の(東レ社製「トレニース#3000」(商品名))100質量部へ、溶剤(ジメチルアセトアミド(DMAC)を100質量部混合し、粘度が50Cpの液状ポリイミドワニスを得た。
 次に、連続塗工装置で前記のフッ素樹脂とガラス繊維の複合材(厚み135μm)の表面活性化処理した面へ前記の液状ポリイミドワニスを塗工し付着させ、80℃で乾燥した後、350℃の温度で焼成して、フッ素樹脂とガラス繊維複合材の片面にポリイミド樹脂表面層を形成した複層シート(厚み140μm)を得た(図1)。
 上記のようにして得られた複合材のフッ素樹脂層面と、複層シートのポリイミド樹脂層面を下記の評価方法で比較した。評価結果を表1に示す。
1)摩耗試験:JIS H8682−1に準拠して実施した。(スガ摩耗試験機を用い、速度2.4m/分、荷重350gf、試験回数1000回、相手材として摩耗輪(直径50mm、幅12mm)、#4000耐水フイルムの条件にて測定。)
2)摩擦係数:JIS K7218に準拠して実施した。(オリエンテック社製 摩擦摩耗試験機を用い、滑り速度50mm/S、荷重20N、試験時間30分、相手材としてSUS304リングを使用して測定。)
3)接触角:JIS K6768に準拠して実施した。(協和界面化学社製の接触角計CA−D型を用い、試験液として蒸留水を使用して測定。)
Figure JPOXMLDOC01-appb-T000001
 上記の評価結果より、ポリイミド樹脂はフッ素樹脂よりも、耐摩耗性に優れ、非粘着性、低摩擦性に劣る。この結果より、ポリイミド樹脂はフッ素樹脂よりも、摩耗、スリップし難いことが分かった。この結果は、常温の状態での結果である。実施例2で記載しているラミネート装置の熱板保護シートや搬送シートに本発明の複層シートを応用する場合には雰囲気温度は約170℃程度になる。そのような場合は、非粘着性(剥がれやすさ)はポリイミド樹脂の方が優れている。この内容は、実施例2において詳述する。
 実施例A1の構造は、非粘着性が重要で、グリップ性を重要としないワーク側へフッ素樹脂面を、耐摩耗性、グリップ性が重要なワーク非接触側へポリイミド樹脂面を使用すると好適であるが、限定するものではない。
 <実施例A2>
(2)複合材の両面にポリイミド樹脂表面層を形成した複層シート
 実施例A1と同様にして複層シートを得た。この複層シートのポリイミド樹脂表面層が形成されていない面に、実施例A1と同様の操作にて、表面活性化処理およびポリイミド樹脂表面層の形成を行って、複合材の両面にポリイミド樹脂表面層が形成された複層シート(厚み145μm)を得た(図2)。
 実施例A2の構造は、耐摩耗性、グリップ性が重要で、非粘着性が重要でない用途へ使用すると好適であるが、限定するものではない。
 <実施例A3>
(3)実施例A1の複層シートと他のシートとの積層シートおよびエンドレスベルト
 実施例A1の複層シート(厚み140μm)とフッ素樹脂とガラス繊維複合材(厚み135μm)を積層して、エンドレスになるようフッ素樹脂層面同士を重ね、加熱プレス機で350℃の温度でこれらを熱融着して、片面にフッ素樹脂表面層が、もう片面にポリイミド樹脂表面層が形成されたエンドレスベルト(厚み275μm)を得た(図4)。
 この実施例A3のエンドレスベルトの構造は、非粘着性が重要で、スリップを重要としないワーク側へフッ素樹脂面を、耐摩耗性、グリップ性が重要なワーク非接触側の駆動ロール側へポリイミド樹脂面を使用すると好適であるが、限定するものではない。
 <実施例A4>
(4)実施例A1の複層シート2枚を積層した両面ポリイミド樹脂のエンドレスベルト
 実施例A1の複層シート(厚み140μm)のベルトを2つ用意し、これらをエンドレスになるようフッ素樹脂層面同士を重ね、加熱プレス機で350℃の温度で熱融着して、積層して、両面にポリイミド樹脂表面層が形成されたエンドレスベルト(厚み280μm)を得た(図4)。
 この実施例A4のエンドレスベルトの構造は、耐摩耗性、グリップ性が重要で、非粘着性が重要でない用途へ使用すると好適であるが、限定するものではない。
 上記の実施例A1~A4の様に、必要に応じた非粘着性、耐摩耗性、グリップ性を付与し、かつ必要寸法に裁断し、エンドレスすることで型等を使用せず、様々な寸法に対応できるエンドレスベルトが製造可能な、耐熱性、耐摩耗性、非粘着性およびグリップ性を有する高機能な複層シート、この複層シートからなる搬送ベルト(又は搬送シート)を提供することができる。
 <比較例A1>
 実施例A1の複層シートに、表面活性化処理を行わずに液状ポリイミドワニスを塗工したが、接合できず、使用可能な十分な接合強度を有する複層シートを得ることはできなかった。
 <実施例C1~C4>
 実施例A1~A4において、シリカ付着焼成処理の代わりに金属ナトリウムエッチング処理を行うことによって表面活性化処理層を形成させた以外は実施例A1~A4と同様にして、本発明による複層シートC1、C2およびエンドレスベルトC3、C4を得た。
 <実施例D1~D4>
 実施例A1~A4において、シリカ付着焼成処理の代わりにプラズマ処理を行うことによって表面活性化処理層を形成させた以外は実施例A1~A4と同様にして、本発明による複層シートD1、D2およびエンドレスベルトD3、D4を得た。
 <接合強度試験>
 上記の実施例A1~A4、実施例C1~C4および実施例D1~D4によって得られた各複層シートのポリイミド表面層に対して、JIS H5400に準拠して碁盤目試験(1mm×100升)を実施したが、複層シートから剥がれた升目の数はいずれの複層シートにおいても0個であった。一方、表面活性化処理層を行わない比較例A1では、剥がれた升目の数は100個であった。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
As Example 1, Examples A1 to A4, Examples C1 to C4, and Examples D1 to D4 will be described below.
<Example A1>
(1) A multilayer sheet in which a polyimide resin surface layer is formed on one side of a composite material. First, in order to obtain a composite material of a fluororesin and glass fiber, the thickness of the plain weave glass fiber cloth (95 μm) is measured with a continuous coating device. An aqueous suspension of PTFE) was impregnated and adhered, dried at 80 ° C., and then fired at a temperature of 350 ° C. to obtain a composite material of fluororesin and glass fiber (thickness: 135 μm).
Next, in order to perform surface activation treatment on the composite material of fluororesin and glass fiber, 100 mass parts of an aqueous suspension of PTFE resin is mixed with 100 mass parts of an aqueous suspension of silica, and a surface activation treatment liquid is mixed. Got.
Next, a surface activation treatment liquid is applied and adhered to one side of a fluororesin / glass fiber composite material with a continuous coating apparatus, dried at 80 ° C., and then baked at a temperature of 350 ° C. to attach silica. The surface activation treatment layer was obtained by firing.
Next, in order to obtain a liquid polyimide varnish, 100 parts by mass of a solvent (dimethylacetamide (DMAC)) is mixed with 100 parts by mass of a commercial product (“Toray Nice # 3000” (trade name) manufactured by Toray Industries, Inc.), and the viscosity is 50 Cp. A liquid polyimide varnish was obtained.
Next, the liquid polyimide varnish is applied and adhered to the surface activated surface of the composite material (thickness 135 μm) of the fluororesin and glass fiber using a continuous coating apparatus, dried at 80 ° C., and 350 Firing at a temperature of 0 ° C. yielded a multilayer sheet (thickness 140 μm) in which a polyimide resin surface layer was formed on one side of a fluororesin and a glass fiber composite (FIG. 1).
The fluororesin layer surface of the composite material obtained as described above was compared with the polyimide resin layer surface of the multilayer sheet by the following evaluation method. The evaluation results are shown in Table 1.
1) Wear test: Executed according to JIS H8682-1. (Measured using a Suga Abrasion Tester at a speed of 2.4 m / min, a load of 350 gf, a test count of 1000 times, a wear wheel (diameter 50 mm, width 12 mm) as a mating material, and # 4000 water-resistant film.)
2) Coefficient of friction: Measured according to JIS K7218. (Measured using a friction wear tester manufactured by Orientec Co., Ltd., using a SUS304 ring as the mating material, with a sliding speed of 50 mm / S, a load of 20 N, a test time of 30 minutes.)
3) Contact angle: implemented in accordance with JIS K6768. (Measured using contact angle meter CA-D manufactured by Kyowa Interface Chemical Co., Ltd.) using distilled water as a test solution.
Figure JPOXMLDOC01-appb-T000001
From the above evaluation results, the polyimide resin is superior in wear resistance, non-adhesiveness, and low friction than the fluororesin. From this result, it was found that the polyimide resin is less likely to wear and slip than the fluororesin. This result is the result at room temperature. In the case where the multilayer sheet of the present invention is applied to the hot plate protective sheet or the conveying sheet of the laminating apparatus described in Example 2, the ambient temperature is about 170 ° C. In such a case, the polyimide resin is superior in non-adhesiveness (easy to peel). This will be described in detail in the second embodiment.
For the structure of Example A1, it is preferable to use a fluorine resin surface on the workpiece side where non-adhesiveness is important and grip performance is not important, and a polyimide resin surface on the workpiece non-contact side where wear resistance and grip properties are important. There is, but is not limited to.
<Example A2>
(2) Multi-layer sheet having polyimide resin surface layers formed on both sides of the composite material A multi-layer sheet was obtained in the same manner as in Example A1. Surface activation treatment and formation of a polyimide resin surface layer are performed on the surface of the multilayer sheet on which the polyimide resin surface layer is not formed in the same manner as in Example A1, and the polyimide resin surface is formed on both surfaces of the composite material. A multilayer sheet (thickness: 145 μm) on which a layer was formed was obtained (FIG. 2).
The structure of Example A2 is suitable for use in applications where wear resistance and grip properties are important and non-stickiness is not important, but is not limited thereto.
<Example A3>
(3) Multi-layer sheet of Example A1 and other sheets and endless belt The multi-layer sheet (thickness 140 μm) of Example A1, a fluororesin and a glass fiber composite material (thickness 135 μm) are laminated, and endless. The endless belts (thicknesses) with the fluororesin layer surfaces stacked on each other and heat-sealed at a temperature of 350 ° C. with a hot press machine to form a fluororesin surface layer on one side and a polyimide resin surface layer on the other side 275 μm) was obtained (FIG. 4).
In the structure of the endless belt of Example A3, the non-adhesiveness is important, the fluororesin surface is applied to the work side where slip is not important, and the work roll non-contact side where the wear resistance and grip are important is polyimide. The use of a resin surface is preferred but not limiting.
<Example A4>
(4) Double-sided polyimide resin endless belt obtained by laminating two multilayer sheets of Example A1 Two belts of the multilayer sheet (thickness 140 μm) of Example A1 were prepared, and the fluororesin layer surfaces were made to be endless. Was laminated by heat fusion at a temperature of 350 ° C. with a heating press, and an endless belt (thickness: 280 μm) having a polyimide resin surface layer formed on both sides was obtained (FIG. 4).
The structure of the endless belt of Example A4 is suitable for use in applications where wear resistance and grip properties are important and non-stickiness is not important, but is not limited thereto.
As in Examples A1 to A4 above, various non-adhesive properties, abrasion resistance, and grip properties are provided as necessary, and the various dimensions can be obtained by cutting to the required dimensions and endlessly using a mold or the like. To provide a high-performance multilayer sheet having heat resistance, abrasion resistance, non-adhesiveness and grip, and a conveyor belt (or conveyor sheet) comprising the multilayer sheet. it can.
<Comparative Example A1>
Although the liquid polyimide varnish was applied to the multilayer sheet of Example A1 without performing surface activation treatment, the multilayer sheet could not be bonded and a usable multilayer sheet having sufficient bonding strength could not be obtained.
<Examples C1 to C4>
In Examples A1 to A4, the multilayer sheet C1 according to the present invention was used in the same manner as in Examples A1 to A4, except that the surface activation treatment layer was formed by performing a metal sodium etching treatment instead of the silica adhesion baking treatment. , C2 and endless belts C3 and C4 were obtained.
<Examples D1 to D4>
In Examples A1 to A4, multilayer sheets D1 and D2 according to the present invention were used in the same manner as in Examples A1 to A4, except that the surface activation treatment layer was formed by performing plasma treatment instead of silica adhesion baking treatment. And endless belts D3 and D4 were obtained.
<Joint strength test>
For the polyimide surface layer of each multilayer sheet obtained by Examples A1 to A4, Examples C1 to C4 and Examples D1 to D4, a cross-cut test (1 mm × 100 mm) in accordance with JIS H5400 However, the number of squares peeled off from the multilayer sheet was 0 in any multilayer sheet. On the other hand, in Comparative Example A1 in which the surface activation treatment layer was not performed, the number of cells that were peeled off was 100. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 実施例2として、実施例E1、E2、F1、およびF2について以下にて説明する。
 実施例2は、本発明の複層シートを太陽電池モジュール製造用のラミネート装置の熱板保護シート及び搬送シートに使用した実施例であり、図5~図13を使用して説明する。実施例1におけるワークは、実施例2において太陽電池モジュール(図13の「20」)に相当する。
 太陽電池モジュール製造用のラミネート装置100の構造は、図5に示すように、上ケース110、熱板122(図6参照)、搬送シート130、ダイヤフラム112、下ケース120、熱板保護シート400(図6参照)等で構成される。図6は、ラミネート装置のラミネート部の側断面図である。図7は、ラミネート装置のラミネート加工時におけるラミネート部の側断面図である。
 図6に示すように、上ケース110と下ケース120との間で、熱板122の表面には、熱板保護シート400が設けられ、さらにその上を搬送シート130が移動自在に設けられている。この熱板保護シートが熱板上に設けれていない場合、搬送シートが熱板上を被加工物20を搭載しながら走行するので熱板の上面が搬送シートにより摩耗してしまう。このような熱板の摩耗を防止するために熱板上に熱板保護シートが設けられている。
 図13は、被加工物20として結晶系セルを使用した太陽電池モジュールの構成を示す断面図である。太陽電池モジュールは、図示のように、透明なカバーガラス21と裏面材22との間に、充填材23、24を介してストリング25を挟み込んだ構成を有する。裏面材22にはポリエチレン樹脂等の不透明な材料が使用される。充填材23、24にはEVA(エチレンビニルアセテート)樹脂等が使用される。ストリング25は、電極26、27の間に結晶系セルとしての太陽電池セル28をリード線29を介して接続した構成である。
 搬送シート130は、熱板保護シート上を走行しながら、図5の搬入コンベア200からラミネート前の被加工物20を受け取ってラミネート部101の中央位置、すなわち熱板122の中央部に正確に搬送する。また、搬送シート130は、ラミネート後の被加工物20を図5の搬出コンベア300に受け渡す。尚図5、図6、図7において搬送シート130は、従来の熱板保護シートと構成は類似しているので、(400)と付記している。
 次に、本実施形態に係るラミネート装置100によるラミネート加工についてより具体的に説明する。まず、図6に示すように、搬送シート130は、被加工物20をラミネート部101の中央位置に搬送する。
 次に、昇降装置(図示しない)は、上ケース110を下降させる。上ケース110を下降させることにより、図7に示すように、上ケース110と下ケース120との内部空間は、密閉される。すなわち、上ケース110と下ケース120との内部にて上チャンバ113及び下チャンバ121は、それぞれ密閉状態に保つことができる。
 次に、ラミネート部101は、上ケース110の吸排気口114を介して、上チャンバ113内の真空ポンプにより真空引きを行う。同様に、ラミネート部101は、下ケース120の吸排気口123を介して、下チャンバ121内を真空ポンプにより真空引きを行う(真空工程)。下チャンバ121の真空引きにより、被加工物20内に含まれている気泡は、被加工物20外に送出される。
 被加工物20は、温度制御装置の温度制御により加熱された熱板122によって加熱されるので、被加工物20の内部に含まれる充填材23、24も加熱される。
 次に、ラミネート部101は、下チャンバ121の真空状態を保ったまま、上ケース110の吸排気口114を介して、上チャンバ113に大気を導入する。これにより、上チャンバ113と下チャンバ121との間に気圧差が生じることで、ダイヤフラム112が膨張する。従って、ダイヤフラム112は、図7に示すように下方に押し出される(加圧工程)。被加工物20は、下方に押し出されたダイヤフラム112と、熱板122とで挟圧され、加熱により溶融された充填材23、24によって各構成部材が接着される。
 このようにラミネート工程が終了した後、ラミネート部101は、下ケース120の吸排気口123を介して、下チャンバ121に大気を導入する。このとき、昇降装置は、上ケース110を上昇させる。上ケース110を上昇させることにより、図6に示すように、搬送シート130を移動させることができるようになる。搬送シート130は、ラミネート後の被加工物20を搬出コンベア300に受け渡す。
 太陽電池モジュールのラミネート加工は、上記のように行われる。したがって太陽電池モジュールに対して所定の熱が熱板から供給されるが、被加工物である太陽電池モジュール20と熱板122の間には従来型の熱板保護シート400と搬送シート130が存在しており、熱板から熱の直接的供給を妨げている。さらにラミネート加工中は、図7の密着部分Kの熱板保護シートと搬送シートは、熱板により加熱され、さらにダイヤフラムと熱板の間で加圧され、両シートが付着しやすい状態となっている。
 従来の熱板保護シート及び搬送シートは、フッ素系樹脂だけで構成したり、図8(図1および図2の「2」部に相当する)に示すように、ガラス繊維により製織したガラスクロスにフッ素系樹脂を含浸して焼成したものを使用している。熱板保護シートと搬送シートも同質素材を含んで構成されているので両シートは、ラミネー
Figure JPOXMLDOC01-appb-I000003
 ラミネート加工においては、その生産効率を上げるため太陽電池モジュールの昇温速度をできるだけ高めることが要求されている。したがって両シートは、比熱が低く、熱伝導率が高く、薄いものが好ましい。一方、熱板保護シートは、搬送シートが被加工物である太陽電池モジュールを搭載しながら、その上を走行するので、ラミネート加工により搬送シートと熱板保護シートの付着が有ると、熱板保護シートは損傷する。
 また、熱板保護シート自体が損傷を受けても、搬送シートが損傷を招くことになる。熱板保護シートの損傷は、前述したように、主に搬送シートとの付着に起因して生じる。このため、熱板保護シートは、熱板側は熱板と付着しやすく搬送シートと付着しにくい構成とすることが重要である。
 本発明の熱板保護シート及び搬送シートは、ラミネート装置におけるラミネート加工条件である、175℃、0.1MPaで15分間程度加圧しても、両シートの付着が無い。太陽電池モジュール製造用のラミネート装置は、封止剤であるEVA樹脂を溶融し架橋するために、真空状態下で、所定の温度で一定時間、熱板とダイヤフラムとの間で挟圧して行われる。EVA樹脂の架橋はおよそ140℃から開始するため、熱板はおよそ150~170℃に設定される。前記した175℃、0.1MPa、15分間程度加圧という加工条件は、当該ラミネート加工において、熱板保護シートが受ける温度、圧力、時間に対応している。
 本発明の当該熱板保護シート及び搬送シートは、本発明の複層シートと同様に、実施例1に記載の複合層の表面上に厚さが数μm程度のポリイミド系樹脂(以下、ポリイミド樹脂という)を設けている。複合層としては、フッ素樹脂のみでもよいし、図1および図2の「2」部に相当する耐熱性繊維織布とフッ素樹脂を複合化させたものでもよい。フッ素系樹脂としては、PTFE、FEP、PFA、ETFE等の公知のものから適宜選択することが可能である。実施例1の複層シートと同様の製造方法により得ることができる。
 尚本発明の熱板保護シートおよび搬送シートは、太陽電池モジュール製造用のラミネート装置に使用されるものであり、その大きさは概略数100mm角の大きさから1m×2m程度の大きさ、更にはそれ以上の大きさとすることもできる。
 本発明の熱板保護シート及び搬送シートを上記の構成とすることにより、両シートの付着を無くすことができる。表面のポリイミド樹脂は、高い耐熱性を有し、ラミネート時に加わる熱的条件で部分的な軟化を防止し、両シートの付着を防止する効果を有する。
 このようなポリイミド樹脂層は、熱板保護シートと搬送シートの両シートに設けてもよいし、どちらか一方に設けるようにしてもよい。このようなポリイミド樹脂層を熱板保護シート側に設ける時は、図6に示すように熱板保護シートの搬送シートの接触面側に設ける。またこのようなポリイミド樹脂層を搬送シート側に設ける時は、搬送シートの熱板保護シート側に設ける。このような構成とすることによりラミネート加工後における熱板保護シートと搬送シートの付着を無くすことができ両シートの破損を防止することができる。
 本発明の熱板保護シート及び搬送シートの表面にポリイミド樹脂層を設ける形態としては、シート全体にわたって均一に分布させても良い。また両シートの付着を防止するという観点から、図9(a)に示すように、熱板保護シートは、ポリイミド樹脂層を搬送シートと接する面にだけ設ける構成でもよい。一方搬送シートは、図9(b)に示すように、ポリイミド樹脂層を搬送シートが熱板保護シートに接する面にだけ設ける構成としてもよい。このような構成とすることにより、熱板保護シートと搬送シートが付着するという問題は解消する。さらにラミネート装置の上ケースと下ケースを図7のように閉合させた場合に、下ケース側のOリングが搬送シートと直接接触するような場合には、Oリングの複数回の加圧接触による摩耗損傷を防止することにも有効である。
 また図示していないが、搬送シートの両面にポリイミド樹脂層を設ける構成とすることもできる。これにより、搬送シートの被加工物を搭載する側の耐摩耗性も向上させることができる。さらにラミネート装置の上ケース側にもOリングを設け搬送シートと直接接触するような場合には、Oリングの複数回の加圧接触による摩耗損傷を防止することにも有効である。
 熱板保護シート及び搬送シートに処理するポリイミド樹脂層は、図10に示すように、ポリイミド樹脂を含む部分をシート面において縞状や島状に分布させるなどの方法も、付着防止という点で効果が発現するように、適宜選択することができる。
 当該熱板保護シート及び搬送シートの厚みは35μm~205μmとすることが好ましく、70μm~205μmがより好ましく、85μm~205μmがさらに好ましい。熱板保護シートの厚みが35μmよりも薄ければ熱板の熱伝達を阻害しない点で好適ではあるが、引張強度が弱すぎるため、当該熱板保護シートを熱板に取り付ける際に破損する虞がある。また熱板保護シートの厚みが205μmを超えると、被加工物への熱伝達が大きく阻害される。
 以下、実施例E1、実施例E2、比較例E1、比較例E2により本発明の熱板保護シート及び搬送シートの付着が無いことについて確認した。
 まず本発明の熱板保護シートと搬送シートとの付着の度合いについて確認した。実施例および比較例の熱板保護シートとしては、表3のものを用いた。搬送シートは、実施例E1、実施例E2および比較例E1および比較例E2ともに従来品のプレミアム10(サンゴバン株式会社製)を用いた。搬送シートの材質は、ガラスクロスとフッ素樹脂の複合層としている。
Figure JPOXMLDOC01-appb-T000004
 図11に示すように、熱板保護シートと搬送シートを太陽電池モジュール製造用のラミネート装置における加圧力と加熱温度を実現できる加熱プレス機に重ね合わせてセットし、一定時間加熱および加圧した。加熱プレス機は、上側部と下側部に分かれた構成であり、上側部および下側部それぞれの温度制御が可能で所定の加圧力を加えることができる構造である。
 まず加熱プレス機の下側部の台座に本発明の熱板保護シートを置いた。このとき特に固定していない。従来品の搬送シートは、加熱プレス機の上側部の台座に取り付けその周辺を枠状の固定部材で固定した。次に加熱プレス機の上側部と下側部を所定の温度に制御しながら所定の加圧力でプレスした。加圧条件は、上下の台座の温度はともに175℃に設定し、0.1MPa、15分間加圧プレスした。15分間の加圧プレス後、加熱プレスの上側台座を上げて下側の台座から離した。このときに、本発明の熱板保護シートが搬送シートと一緒に持ち上がって持ち上がったままの場合を「付着あり」とした。一緒に持ち上がらない、または一旦持ち上がっても重力で自然に下に落ちた場合を「付着なし」として判定した。
 結果は、実施例E1、E2は「付着無し」、比較例E1、E2は「付着有り」であった。
 次に本発明の熱板保護シートおよび搬送シートの熱伝導性試験を行った。
 加熱プレス機の下側部の台座に熱電対をセットしておき、その上に本発明の熱板保護シートを置き、加圧プレスした。加圧条件は、上側部の台座だけ175℃に設定し、下側部の台座は加熱なしとして、0.4MPaで20秒間プレスした。このとき、熱電対が示す温度を記録し、経過時間に対する温度変化を図12に示す。
 実施例F1は、熱板保護シートが実施例E1と同じ素材で厚みが105μmである場合の温度変化である。(図12中(1))
 実施例F2は、熱板保護シートが実施例E2と同じ素材で厚みが105μmである場合の温度変化である。(図12中(2))
 比較例F1は、熱板保護シートが比較例E1と同じ素材で厚みが220μmである場合の温度変化である。(図12中(4))
 比較例F2は、熱板保護シートが比較例E2と同じ素材で厚みが100μmである場合の温度変化である。(図12中(3))
 図12からわかるように、実施例F1、F2及び比較例F2は厚さが薄いので温度上昇が速く、太陽電池モジュールをラミネート加工する際にラミネート装置の熱板の温度を素早く被加工物に伝達できることがわかる。また、実施例F1及び実施例F2は、従来品と同様の素材を使用した熱板保護シートの厚さを同程度としたものより温度上昇速度は速い。比較例F2は、厚みが薄く温度上昇速度は速いがラミネート加工後の両シートの付着が有り、搬送シートに被加工物を搭載し走行させると熱板保護シートは破損する。一方実施例F1、F2では、ラミネート加工後、本実施例の熱板保護シートと搬送シートとの付着は無く、搬送シートに被加工物を搭載し走行させても熱板保護シートの破損は無い。したがって本発明の熱板保護シート及び搬送シートを太陽電池モジュール製造用のラミネート装置に使用することにより、両シートの厚みを薄くしても破損することは無く太陽電池モジュールのラミネート加工時の加熱時間を短縮することができその生産効率を向上させることができる。
As Example 2, Examples E1, E2, F1, and F2 will be described below.
Example 2 is an example in which the multilayer sheet of the present invention is used for a hot plate protective sheet and a conveying sheet of a laminating apparatus for manufacturing a solar cell module, and will be described with reference to FIGS. The workpiece in Example 1 corresponds to the solar cell module (“20” in FIG. 13) in Example 2.
As shown in FIG. 5, the structure of the laminating apparatus 100 for manufacturing a solar cell module includes an upper case 110, a hot plate 122 (see FIG. 6), a conveying sheet 130, a diaphragm 112, a lower case 120, a hot plate protective sheet 400 ( Etc.). FIG. 6 is a side sectional view of the laminating portion of the laminating apparatus. FIG. 7 is a side cross-sectional view of the laminating portion at the time of laminating by the laminating apparatus.
As shown in FIG. 6, between the upper case 110 and the lower case 120, a hot plate protection sheet 400 is provided on the surface of the hot plate 122, and a transport sheet 130 is movably provided thereon. Yes. When the hot plate protection sheet is not provided on the hot plate, the transport sheet travels on the hot plate while the workpiece 20 is mounted, so that the upper surface of the hot plate is worn by the transport sheet. In order to prevent such abrasion of the hot plate, a hot plate protective sheet is provided on the hot plate.
FIG. 13 is a cross-sectional view showing a configuration of a solar cell module using a crystal cell as the workpiece 20. As shown in the drawing, the solar cell module has a configuration in which a string 25 is sandwiched between a transparent cover glass 21 and a back material 22 via fillers 23 and 24. The back material 22 is made of an opaque material such as polyethylene resin. For the fillers 23 and 24, EVA (ethylene vinyl acetate) resin or the like is used. The string 25 has a configuration in which solar cells 28 as crystal cells are connected between electrodes 26 and 27 through lead wires 29.
The conveyance sheet 130 receives the workpiece 20 before lamination from the carry-in conveyor 200 in FIG. 5 while traveling on the hot plate protection sheet, and accurately conveys it to the central position of the laminating unit 101, that is, the central part of the hot plate 122. To do. Moreover, the conveyance sheet 130 delivers the to-be-processed object 20 after lamination to the carrying-out conveyor 300 of FIG. 5, 6, and 7, the conveying sheet 130 is similar in structure to the conventional hot plate protection sheet, and is therefore added as (400).
Next, the laminating process by the laminating apparatus 100 according to the present embodiment will be described more specifically. First, as illustrated in FIG. 6, the conveyance sheet 130 conveys the workpiece 20 to the center position of the laminate unit 101.
Next, an elevating device (not shown) lowers the upper case 110. By lowering the upper case 110, the internal space between the upper case 110 and the lower case 120 is sealed as shown in FIG. That is, the upper chamber 113 and the lower chamber 121 can be kept sealed inside the upper case 110 and the lower case 120, respectively.
Next, the laminating unit 101 performs evacuation by a vacuum pump in the upper chamber 113 through the intake / exhaust port 114 of the upper case 110. Similarly, the laminating unit 101 evacuates the lower chamber 121 with a vacuum pump through the intake / exhaust port 123 of the lower case 120 (vacuum process). Due to the evacuation of the lower chamber 121, the bubbles contained in the workpiece 20 are sent out of the workpiece 20.
Since the workpiece 20 is heated by the hot plate 122 heated by the temperature control of the temperature control device, the fillers 23 and 24 included in the workpiece 20 are also heated.
Next, the laminate unit 101 introduces the atmosphere into the upper chamber 113 through the intake / exhaust port 114 of the upper case 110 while keeping the vacuum state of the lower chamber 121. As a result, a pressure difference is generated between the upper chamber 113 and the lower chamber 121, so that the diaphragm 112 expands. Accordingly, the diaphragm 112 is pushed downward as shown in FIG. 7 (pressurizing step). The workpiece 20 is sandwiched between the diaphragm 112 extruded downward and the hot plate 122, and the constituent members are bonded by the fillers 23 and 24 melted by heating.
After the laminating process is completed in this manner, the laminating unit 101 introduces air into the lower chamber 121 through the intake / exhaust port 123 of the lower case 120. At this time, the lifting device raises the upper case 110. By raising the upper case 110, the transport sheet 130 can be moved as shown in FIG. The conveyance sheet 130 delivers the workpiece 20 after lamination to the carry-out conveyor 300.
Lamination of the solar cell module is performed as described above. Therefore, although predetermined heat is supplied from the hot plate to the solar cell module, the conventional hot plate protective sheet 400 and the conveying sheet 130 exist between the solar cell module 20 as the workpiece and the hot plate 122. It prevents the direct supply of heat from the hot plate. Further, during the laminating process, the hot plate protection sheet and the conveying sheet at the contact portion K in FIG. 7 are heated by the hot plate and further pressed between the diaphragm and the hot plate, so that both sheets are likely to adhere.
The conventional hot plate protection sheet and transport sheet are made of only a fluorine-based resin, or, as shown in FIG. 8 (corresponding to “2” in FIGS. 1 and 2), a glass cloth woven with glass fibers. What is impregnated with a fluorine-based resin and fired is used. Since the hot plate protection sheet and the transport sheet are made of the same material, both sheets are laminated.
Figure JPOXMLDOC01-appb-I000003
In laminating, it is required to increase the rate of temperature increase of the solar cell module as much as possible in order to increase the production efficiency. Therefore, it is preferable that both sheets have a low specific heat, a high thermal conductivity, and a thin sheet. On the other hand, the hot plate protection sheet travels on top of the solar cell module, which is the workpiece to be processed, so if there is adhesion between the transfer sheet and the hot plate protection sheet due to lamination, The sheet is damaged.
Further, even if the hot plate protection sheet itself is damaged, the transport sheet is damaged. As described above, the hot plate protection sheet is damaged mainly due to adhesion to the transport sheet. For this reason, it is important that the hot plate protection sheet has a configuration in which the hot plate side easily adheres to the hot plate and does not easily adhere to the transport sheet.
Even if the hot plate protection sheet and the conveying sheet of the present invention are pressed for about 15 minutes at 175 ° C. and 0.1 MPa, which are lamination conditions in a laminating apparatus, both sheets do not adhere. A laminating apparatus for manufacturing a solar cell module is formed by sandwiching EVA resin as a sealant and cross-linking it between a hot plate and a diaphragm for a certain time at a predetermined temperature under a vacuum state. . Since the crosslinking of the EVA resin starts at about 140 ° C., the hot plate is set at about 150 to 170 ° C. The above processing conditions of 175 ° C., 0.1 MPa, and pressurization for about 15 minutes correspond to the temperature, pressure, and time that the hot plate protection sheet receives in the laminating process.
The hot plate protective sheet and the transport sheet of the present invention, like the multilayer sheet of the present invention, have a polyimide resin (hereinafter, polyimide resin) having a thickness of about several μm on the surface of the composite layer described in Example 1. Called). As the composite layer, only a fluororesin may be used, or a composite of a heat resistant fiber woven fabric corresponding to the portion “2” in FIGS. 1 and 2 and a fluororesin may be used. The fluororesin can be appropriately selected from known ones such as PTFE, FEP, PFA, and ETFE. It can be obtained by the same production method as the multilayer sheet of Example 1.
The hot plate protection sheet and the transport sheet of the present invention are used in a laminating apparatus for manufacturing a solar cell module, and the size is approximately several 100 mm square to about 1 m × 2 m, Can be larger.
By making the hot plate protection sheet and the conveying sheet of the present invention have the above-described configuration, adhesion of both sheets can be eliminated. The polyimide resin on the surface has high heat resistance, and has the effect of preventing partial softening under the thermal conditions applied during lamination and preventing adhesion of both sheets.
Such a polyimide resin layer may be provided on both the hot plate protection sheet and the conveyance sheet, or may be provided on either one. When such a polyimide resin layer is provided on the hot plate protection sheet side, it is provided on the contact surface side of the conveying sheet of the hot plate protection sheet as shown in FIG. When such a polyimide resin layer is provided on the conveying sheet side, it is provided on the hot plate protection sheet side of the conveying sheet. By adopting such a configuration, it is possible to eliminate adhesion of the hot plate protection sheet and the conveying sheet after the lamination process, and it is possible to prevent the both sheets from being damaged.
As a form which provides a polyimide resin layer on the surface of the hot-plate protection sheet and conveyance sheet of this invention, you may distribute uniformly over the whole sheet | seat. Moreover, from a viewpoint of preventing adhesion of both sheets, as shown in FIG. 9A, the hot plate protection sheet may be configured to provide the polyimide resin layer only on the surface in contact with the transport sheet. On the other hand, as shown in FIG. 9B, the transport sheet may have a configuration in which the polyimide resin layer is provided only on the surface where the transport sheet is in contact with the hot plate protection sheet. By adopting such a configuration, the problem that the hot plate protection sheet and the conveyance sheet adhere is solved. Further, when the upper case and the lower case of the laminating apparatus are closed as shown in FIG. 7, when the O-ring on the lower case side is in direct contact with the conveying sheet, the O-ring is subjected to a plurality of pressure contacts. It is also effective in preventing wear damage.
Although not shown, a polyimide resin layer may be provided on both sides of the transport sheet. Thereby, the wear resistance on the side of the conveying sheet on which the workpiece is mounted can also be improved. Further, when an O-ring is also provided on the upper case side of the laminating apparatus and is in direct contact with the conveying sheet, it is also effective in preventing wear damage due to multiple pressing contact of the O-ring.
As shown in FIG. 10, the polyimide resin layer to be processed on the hot plate protection sheet and the transport sheet is also effective in preventing adhesion, such as a method of distributing the polyimide resin-containing portion in a striped or island shape on the sheet surface. Can be selected as appropriate so that is expressed.
The thickness of the hot plate protection sheet and transport sheet is preferably 35 μm to 205 μm, more preferably 70 μm to 205 μm, and even more preferably 85 μm to 205 μm. If the thickness of the hot plate protection sheet is less than 35 μm, it is preferable in that the heat transfer of the hot plate is not hindered. However, since the tensile strength is too weak, the hot plate protection sheet may be damaged when attached to the hot plate. There is. On the other hand, if the thickness of the hot plate protection sheet exceeds 205 μm, heat transfer to the workpiece is greatly hindered.
Hereinafter, it was confirmed that there was no adhesion of the hot plate protection sheet and the conveyance sheet of the present invention by Example E1, Example E2, Comparative Example E1, and Comparative Example E2.
First, the degree of adhesion between the hot plate protection sheet of the present invention and the transport sheet was confirmed. As the hot plate protection sheets of the examples and comparative examples, those in Table 3 were used. As the conveyance sheet, the premium 10 (manufactured by Saint-Gobain Co., Ltd.), which is a conventional product, was used for each of Example E1, Example E2, Comparative Example E1, and Comparative Example E2. The material of the conveying sheet is a composite layer of glass cloth and fluororesin.
Figure JPOXMLDOC01-appb-T000004
As shown in FIG. 11, the hot plate protection sheet and the transport sheet were set to overlap each other on a heating press machine capable of realizing a pressing force and a heating temperature in a laminating apparatus for manufacturing a solar cell module, and heated and pressurized for a certain time. The heating press has a structure that is divided into an upper part and a lower part, and is a structure that can control the temperature of each of the upper part and the lower part and can apply a predetermined pressure.
First, the hot plate protection sheet of the present invention was placed on the pedestal on the lower side of the heating press. At this time, it is not particularly fixed. The conventional conveyance sheet was attached to the pedestal on the upper side of the heating press, and its periphery was fixed with a frame-shaped fixing member. Next, it pressed with the predetermined | prescribed pressurizing force, controlling the upper part and lower part of a heat press machine to predetermined temperature. The pressurizing conditions were such that the temperatures of the upper and lower pedestals were both set to 175 ° C., and pressure was pressed at 0.1 MPa for 15 minutes. After pressurizing for 15 minutes, the upper pedestal of the heating press was raised and separated from the lower pedestal. At this time, the case where the hot plate protection sheet of the present invention was lifted up together with the transport sheet and remained lifted was defined as “attached”. A case where they did not lift together or fell naturally due to gravity even when lifted up once was judged as “no adhesion”.
As a result, Examples E1 and E2 were “no adhesion”, and Comparative Examples E1 and E2 were “adhesion”.
Next, the thermal conductivity test of the hot plate protection sheet and the transport sheet of the present invention was performed.
A thermocouple was set on the pedestal on the lower side of the heating press, and the hot plate protection sheet of the present invention was placed thereon and pressed. The pressurizing condition was set to 175 ° C. only for the upper pedestal, and the lower pedestal was pressed at 0.4 MPa for 20 seconds with no heating. At this time, the temperature indicated by the thermocouple was recorded, and the temperature change with respect to the elapsed time is shown in FIG.
Example F1 is a temperature change when the hot plate protection sheet is the same material as Example E1 and has a thickness of 105 μm. ((1) in Fig. 12)
Example F2 is a temperature change when the hot plate protection sheet is the same material as Example E2 and has a thickness of 105 μm. ((2) in Fig. 12)
Comparative Example F1 is a temperature change when the hot plate protection sheet is the same material as Comparative Example E1 and has a thickness of 220 μm. ((4) in Fig. 12)
Comparative Example F2 is a temperature change when the hot plate protection sheet is the same material as Comparative Example E2 and has a thickness of 100 μm. ((3) in Fig. 12)
As can be seen from FIG. 12, Examples F1, F2 and Comparative Example F2 are thin, so the temperature rises quickly, and when the solar cell module is laminated, the temperature of the hot plate of the laminating apparatus is quickly transmitted to the workpiece. I understand that I can do it. Further, in Example F1 and Example F2, the rate of temperature increase is faster than that in the case where the thickness of the hot plate protection sheet using the same material as that of the conventional product is approximately the same. In Comparative Example F2, the thickness is thin and the temperature rise rate is fast, but both sheets after lamination are adhered, and when the workpiece is mounted on the transport sheet and run, the hot plate protection sheet is damaged. On the other hand, in Examples F1 and F2, after laminating, there is no adhesion between the hot plate protection sheet of this embodiment and the transport sheet, and there is no breakage of the hot plate protection sheet even if the work piece is mounted on the transport sheet and run. . Therefore, by using the hot plate protection sheet and the transport sheet of the present invention in a laminating apparatus for manufacturing a solar cell module, the heating time at the time of laminating the solar cell module is not damaged even if the thickness of both sheets is reduced. Can be shortened and the production efficiency can be improved.

Claims (13)

  1.  フッ素樹脂と耐熱性繊維織布からなる少なくとも1層の複合材層とポリイミド系樹脂からなる表面層とを有する複層シートであって、前記表面層が、前記複合材層に対してなされた表面活性化処理により形成された処理面を介して形成されていることを特徴とする、複層シート。 A multi-layer sheet having at least one composite material layer made of a fluororesin and a heat-resistant fiber woven fabric and a surface layer made of a polyimide-based resin, wherein the surface layer is formed on the composite material layer. A multilayer sheet formed through a treatment surface formed by an activation treatment.
  2.  前記の表面活性化処理が、無機粒子付着焼成処理、金属ナトリウムエッチング処理、プラズマ放電処理またはコロナ放電処理である、請求項1に記載の複層シート。 The multilayer sheet according to claim 1, wherein the surface activation treatment is inorganic particle adhesion firing treatment, metal sodium etching treatment, plasma discharge treatment or corona discharge treatment.
  3.  請求項1に記載の複層シートから形成されたベルト状物の環状体からなることを特徴とする、エンドレスベルト。 An endless belt comprising an annular body of a belt-like material formed from the multilayer sheet according to claim 1.
  4.  請求項1に記載の複層シートをベルト状に裁断し、この複層シートのベルト状物の対向する二つ端部を接合して環状体を得ることを特徴とする、エンドレスベルトの製造方法。 A method for producing an endless belt, comprising: cutting the multilayer sheet according to claim 1 into a belt shape, and joining two opposite ends of the belt-like material of the multilayer sheet to obtain an annular body. .
  5.  請求項1に記載の複層シートと他のシートとが積層されたベルト状物を、このベルト状物の前記複層シートについての対向する二つ端部およびこのベルト状物の前記他のシートについての対向する二つ端部をそれぞれ接合ないし近接配置させて環状体を得ることを特徴とする、エンドレスベルトの製造方法。 A belt-like material in which the multilayer sheet according to claim 1 and another sheet are laminated, two opposite ends of the belt-like material with respect to the multilayer sheet and the other sheet of the belt-like material. A method for producing an endless belt, characterized in that two end portions facing each other are joined or arranged close to each other to obtain an annular body.
  6.  ラミネート装置用の熱板保護シートであって、
     前記熱板保護シートは、請求項1または請求項2に記載の複層シートからなることを特徴とするラミネート装置用の前記熱板保護シート。
    A hot plate protection sheet for laminating apparatus,
    The said hot plate protective sheet consists of a multilayer sheet of Claim 1 or Claim 2, The said hot plate protective sheet for laminating apparatuses characterized by the above-mentioned.
  7.  ラミネート装置用の熱板保護シートであって、
     前記熱板保護シートは、ラミネート加工した後、ラミネート装置の搬送シートとの付着がまったく無いことを特徴とする請求項6に記載のラミネート装置用の熱板保護シート。
    A hot plate protection sheet for laminating apparatus,
    The hot plate protective sheet for a laminating apparatus according to claim 6, wherein the hot plate protective sheet does not adhere to the conveying sheet of the laminating apparatus after being laminated.
  8.  前記熱板保護シートは、搬送シートと接触する側の表面に前記ポリイミド系樹脂からなる表面層を有することを特徴とする請求項6または請求項7に記載のラミネート装置用の熱板保護シート。 The hot plate protective sheet for a laminating apparatus according to claim 6 or 7, wherein the hot plate protective sheet has a surface layer made of the polyimide-based resin on a surface in contact with the transport sheet.
  9.  ラミネート装置用の搬送シートであって、
     前記搬送シートは、請求項1または請求項2に記載の複層シートからなるラミネート装置用の搬送シート。
    A conveying sheet for laminating apparatus,
    The said conveyance sheet is a conveyance sheet for laminating apparatuses which consists of a multilayer sheet of Claim 1 or Claim 2.
  10. ラミネート装置用の搬送シートであって、
     前記搬送シートは、ラミネート加工した後、ラミネート装置の熱板保護シートとの付着がまったく無いことを特徴とする請求項9に記載のラミネート装置用の搬送シート。
    A conveying sheet for laminating apparatus,
    The transport sheet for a laminating apparatus according to claim 9, wherein the transport sheet does not adhere to the hot plate protection sheet of the laminating apparatus after being laminated.
  11. 前記搬送シートは、熱板保護シートと接触する側の表面に前記ポリイミド系樹脂からなる表面層を有することを特徴とする請求項9または請求項10に記載のラミネート装置用の搬送シート。 The transport sheet for a laminating apparatus according to claim 9 or 10, wherein the transport sheet has a surface layer made of the polyimide resin on a surface in contact with the hot plate protection sheet.
  12. 請求項6から請求項8のいずれかに記載のラミネート装置用の熱板保護シートを使用したことを特徴とするラミネート装置。 A laminating apparatus using the hot plate protection sheet for a laminating apparatus according to any one of claims 6 to 8.
  13. 請求項9から請求項11のいずれかに記載のラミネート装置用の搬送シートを使用したことを特徴とするラミネート装置。 A laminating apparatus comprising the conveying sheet for a laminating apparatus according to any one of claims 9 to 11.
PCT/JP2011/053883 2010-11-18 2011-02-16 Multilayered sheet and endless belt WO2012066794A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137014164A KR20140027064A (en) 2010-11-18 2011-02-16 Multilayered sheet and endless belt
CN201180065445.2A CN103370194B (en) 2010-11-18 2011-02-16 Cladding thin material and endless belt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-257481 2010-11-18
JP2010257481A JP5750663B2 (en) 2010-11-18 2010-11-18 Multi-layer sheet and endless belt

Publications (1)

Publication Number Publication Date
WO2012066794A1 true WO2012066794A1 (en) 2012-05-24

Family

ID=46083740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053883 WO2012066794A1 (en) 2010-11-18 2011-02-16 Multilayered sheet and endless belt

Country Status (5)

Country Link
JP (1) JP5750663B2 (en)
KR (1) KR20140027064A (en)
CN (1) CN103370194B (en)
TW (1) TWI511873B (en)
WO (1) WO2012066794A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2930756A4 (en) * 2012-12-07 2016-07-13 Chukoh Chem Ind Solar cell integrated film material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI511188B (en) * 2012-09-07 2015-12-01 Iner Aec Executive Yuan A method to form a metal finger electrode on a thin film device, and a combined device manufactured by the method
EP2829381A1 (en) 2013-07-25 2015-01-28 PackSys Global (Switzerland) Ltd. Welding device for manufacturing tubular bodies
WO2019031154A1 (en) * 2017-08-10 2019-02-14 本多産業株式会社 Multilayered seamless belt and production method therefor
US11407616B2 (en) * 2020-01-24 2022-08-09 Otis Elevator Company Elevator belt surface protection for installation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179936A (en) * 1987-01-20 1988-07-23 Shin Etsu Chem Co Ltd Production of fluororesin substrate
JP2000101117A (en) * 1998-09-24 2000-04-07 Nisshinbo Ind Inc Laminating device for solar cell
JP2005203577A (en) * 2004-01-15 2005-07-28 Mitsubishi Heavy Ind Ltd Solar cell and method for manufacturing the same
JP2006021403A (en) * 2004-07-07 2006-01-26 Chuko Kasei Kogyo Kk Abrasion-resistant sheet
JP2011031572A (en) * 2009-08-05 2011-02-17 Honda Sangyo Kk Multiple layer sheet, endless belt, and method of manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796625B2 (en) * 1987-01-21 1995-10-18 日本合成化学工業株式会社 Method for producing stretched film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179936A (en) * 1987-01-20 1988-07-23 Shin Etsu Chem Co Ltd Production of fluororesin substrate
JP2000101117A (en) * 1998-09-24 2000-04-07 Nisshinbo Ind Inc Laminating device for solar cell
JP2005203577A (en) * 2004-01-15 2005-07-28 Mitsubishi Heavy Ind Ltd Solar cell and method for manufacturing the same
JP2006021403A (en) * 2004-07-07 2006-01-26 Chuko Kasei Kogyo Kk Abrasion-resistant sheet
JP2011031572A (en) * 2009-08-05 2011-02-17 Honda Sangyo Kk Multiple layer sheet, endless belt, and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2930756A4 (en) * 2012-12-07 2016-07-13 Chukoh Chem Ind Solar cell integrated film material
US10396224B2 (en) 2012-12-07 2019-08-27 Chukoh Chemical Industries, Ltd. Solar cell integrated film material

Also Published As

Publication number Publication date
TWI511873B (en) 2015-12-11
TW201221348A (en) 2012-06-01
CN103370194A (en) 2013-10-23
JP5750663B2 (en) 2015-07-22
JP2012106424A (en) 2012-06-07
KR20140027064A (en) 2014-03-06
CN103370194B (en) 2015-07-29

Similar Documents

Publication Publication Date Title
JP5750663B2 (en) Multi-layer sheet and endless belt
JP5461098B2 (en) Multi-layer sheet, endless belt and method for producing the same
KR101857854B1 (en) Manufacturing method for reinforced electrolyte membrane and manufacturing apparatus of manufacturing the same
JP3384395B2 (en) Polytetrafluoroethylene laminate
EP2358530B1 (en) Barrier structure and method for making
US20200238653A1 (en) Multi-layered seamless belt and production method thereof
JP5276925B2 (en) Composite sheet and composite
CN113646158B (en) Bonding method and high-frequency dielectric heating adhesive sheet
KR101765981B1 (en) Multilayered sheet, endless belt, and method for manufacturing the same
JP2020183287A (en) Bilayer seamless belt and method for producing the same
CN212314648U (en) Conveying belt
WO2014156395A1 (en) Method for producing pvb member and method for producing laminated glass
JP6119401B2 (en) Manufacturing method of laminate
JP2014105746A (en) Process of manufacture of endless belt and endless belt
TWI468288B (en) Multilayer sheet, endless belt and method for manufacturing endless belt
JP5267823B2 (en) Multi-layer sheet, endless belt and method for producing the same
JP2016037022A (en) Laminate and method for producing laminate
TW201139136A (en) Composite sheet body for substrate conveying tool, and substrate conveying tool
JP7408286B2 (en) Release film and electronic device manufacturing method
WO2021230116A1 (en) Heat-resistant buffering sheet, and heating/pressurizing treatment method
JP2020169709A (en) Bilayer seamless belt and method for producing the same
KR20230171542A (en) High-barrier eco-friendly cosmetic tube body for high-frequency upper and lower belt induction heating bonding and its manufacturing method
CN114179460A (en) Preparation method of waterproof laminated glass
JP2000301671A (en) Laminated sheet and production thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137014164

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11840870

Country of ref document: EP

Kind code of ref document: A1