WO2012066651A1 - Power management system and power management method - Google Patents

Power management system and power management method Download PDF

Info

Publication number
WO2012066651A1
WO2012066651A1 PCT/JP2010/070463 JP2010070463W WO2012066651A1 WO 2012066651 A1 WO2012066651 A1 WO 2012066651A1 JP 2010070463 W JP2010070463 W JP 2010070463W WO 2012066651 A1 WO2012066651 A1 WO 2012066651A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
information
power management
management
management device
Prior art date
Application number
PCT/JP2010/070463
Other languages
French (fr)
Japanese (ja)
Inventor
浩仁 矢野
安東 宣善
角本 喜紀
河村 英之
洋平 河田
芳樹 松浦
鶴貝 満男
冨田 泰志
広考 高橋
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2010/070463 priority Critical patent/WO2012066651A1/en
Priority to JP2012544046A priority patent/JP5576498B2/en
Publication of WO2012066651A1 publication Critical patent/WO2012066651A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand

Definitions

  • the present invention relates to a power management system and a power management method.
  • a path and electrical equipment for supplying commercial power from a power supplier such as an electric power company to each consumer (personal house, building, factory, etc.) are called a power system.
  • a power supplier such as an electric power company
  • each consumer personal house, building, factory, etc.
  • a power system Conventionally, except for some large-scale customers, each customer uses only commercial power from the power system.
  • the distributed power source When the spread rate of the distributed power source was low and the amount of power generation was relatively small, the distributed power source was used as an auxiliary to suppress the consumption of power supplied from the power system. On the other hand, in recent years, the penetration rate of distributed power sources has increased and the amount of power generation has also increased.
  • the power generated by each consumer is larger than the power consumed by each consumer, and surplus power may be generated.
  • surplus power may be generated in a residential area during the day, since a part of the family goes out.
  • the photovoltaic power generator generates power regardless of the presence or absence of a resident.
  • surplus power is generated in a residential area during the day.
  • the distributed power source is managed for each consumer, and it is difficult for one consumer to supply and consume surplus power to other consumers.
  • a distribution network is indispensable in order to pass power from a house with a large amount of power generation to a house with a large amount of power consumption.
  • the configuration of the distribution network is important and confidential information, it is difficult to obtain and manage.
  • a power management system includes a first power management device provided for each predetermined area including a plurality of consumers, and a second power management device provided for each consumer. It is a management system, each 2nd power management apparatus monitors the electric power state in each consumer, transmits the 2nd management information which shows an electric power state to the 1st power management apparatus, and the 1st power management apparatus Based on the second management information, the total amount of power demand and the amount of power generation in the predetermined area are predicted, and the surplus power amount in the predetermined area is calculated from the difference between the total amount of power demand and the total amount of power generation. First management information including information for reducing the amount of power is created, and the first management information is transmitted to each second power management device.
  • customers include private houses (detached houses and apartment houses), various buildings, factories, and the like.
  • a “customer” is a unit for managing power consumption and power generation. Therefore, a consumer can be called a power management unit.
  • Predetermined area means an area managed by the first power management apparatus. For example, an area where there are a plurality of consumers connected to the power system through a common electric wire can be defined as a predetermined area.
  • At least one first power management device is provided in a predetermined area.
  • the second power management apparatus is provided for each consumer.
  • the first power management apparatus transmits first management information including information for reducing surplus power to each second power management apparatus.
  • the “second management information” can include, for example, the power consumption and power generation amount of each consumer, the state of one or more electrical devices (electrical loads) possessed by each consumer, the time, and the like. Each second management information may be associated with a priority in advance. The first power management apparatus can process each second management information based on the priority.
  • the “first management information” includes, for example, information indicating the time zone and amount of surplus power generation, information obtained by converting surplus power into carbon dioxide emissions, and a predetermined amount for encouraging consumption of surplus power by each consumer. Information etc. can be included.
  • the predetermined information includes, for example, information on points given by using surplus power, information indicating that surplus power is set at a lower price than normal electricity charges, and consumption of surplus power in the global environment. Information that shows a positive effect can be mentioned.
  • Each second power management apparatus may output the received first management information as it is or after processing it. For example, information that prompts consumption of surplus power may be output via a display device or an audio output device provided in a consumer.
  • the first power management device is based on customer location information indicating the location of each customer, facility location information indicating the location of the facility for supplying power to each customer, and information on a map including a predetermined area. Thus, it is possible to predict a power distribution network connecting the equipment and each consumer.
  • the first power management apparatus may be connected to a third apparatus that can provide information related to power to each consumer.
  • the third device can set a monitoring condition for monitoring each second management information in the first power management device.
  • the first power management apparatus monitors whether there is information that matches the monitoring condition among the second management information, and notifies the third apparatus when the second management information that matches the monitoring condition is found. be able to.
  • the present invention can be grasped as the first power management apparatus or the power management method. Furthermore, at least a part of the configuration of the present invention may be realized as a computer program or a hardware circuit.
  • the computer program can be distributed, for example, via a communication medium such as the Internet, a recording medium such as a hard disk or a flash memory device. Furthermore, other combinations other than the combinations of the above viewpoints are also included in the scope of the present invention.
  • FIG. 1 is a schematic diagram showing the entire power system and power management system.
  • FIG. 2 shows the functional configuration of the first power management device (CEMS) and the connection between the first power management device and each second power management device (HEMS, BEMS, FEMS, EV-EMS, regional power generation / storage). It is explanatory drawing shown.
  • FIG. 3 is an overall view showing a physical configuration of the power management system.
  • FIG. 4 shows the configuration of the CEMS.
  • FIG. 5 is a block diagram illustrating a configuration of a house including a HEMS.
  • FIG. 6 is a block diagram illustrating a configuration of a building including BEMS.
  • FIG. 7 is a block diagram illustrating a configuration of an apartment house including BEMS.
  • FIG. 1 is a schematic diagram showing the entire power system and power management system.
  • FIG. 2 shows the functional configuration of the first power management device (CEMS) and the connection between the first power management device and each second power management device (HEMS, BEMS, FEMS, EV-EMS
  • FIG. 8 is a block diagram showing a configuration of a factory equipped with FEMS.
  • FIG. 9 is a block diagram illustrating a configuration of a charging station including the EV-EMS.
  • FIG. 10 is an overall view showing a functional configuration of the power management system.
  • FIG. 11 is an explanatory diagram showing a functional configuration of an EMS information hub that constitutes a part of the CEMS.
  • FIG. 12 is an explanatory diagram showing a functional configuration of a consumer side CEMS application that constitutes a part of the CEMS.
  • FIG. 13 is an explanatory diagram showing a functional configuration of a distribution automation system that constitutes a part of the CEMS.
  • FIG. 14 is an explanatory diagram showing a functional configuration of a power supplier side CEMS application that constitutes a part of the CEMS.
  • FIG. 15 is an explanatory diagram showing a functional configuration of an EAM application that constitutes a part of the CEMS.
  • FIG. 16 is an explanatory diagram showing a functional configuration of a common API included in the EMS information hub.
  • FIG. 17 is an explanatory diagram illustrating a state in which the configuration of the power distribution network is estimated based on the location of the customer and the facility and the map.
  • FIG. 18 is an explanatory diagram showing a state in which incentive information is created by predicting a supply and demand balance in a region.
  • FIG. 19 is an explanatory diagram illustrating a configuration example of supply and demand information transmitted from each customer to the CEMS.
  • FIG. 20 is an explanatory diagram illustrating a configuration example of plan information distributed from the CEMS to each consumer.
  • FIG. 21 is an explanatory diagram showing a configuration example of carbon dioxide information distributed from CEMS to each consumer.
  • FIG. 22 is a flowchart showing the overall operation of the CEMS.
  • FIG. 23 is a flowchart showing a process of transmitting supply and demand information from the customer side device.
  • FIG. 24 is a schematic diagram illustrating how the common adapter I / F processes supply and demand information according to priority.
  • FIG. 25 shows an example of a table for managing the priority for each device.
  • FIG. 26 shows an example of a table for managing priorities for each consumer.
  • FIG. 27 is a schematic diagram illustrating how the common data processing function monitors supply and demand information based on monitoring conditions set by a service provider or the like.
  • FIG. 28 is a schematic diagram showing how the common data processing function performs access control.
  • FIG. 29 is a flowchart showing a process when the apparatus on the customer side receives the plan information.
  • FIG. 30 is an example of a screen that displays power supply and demand information.
  • FIG. 31 is an example of a screen that displays carbon dioxide emissions.
  • FIG. 32 shows an example of a screen that displays an incentive for consuming surplus power.
  • FIG. 33 shows another example of a screen displayed on the customer side.
  • FIG. 34 is a schematic diagram showing how measurement data is collected and stored.
  • FIG. 35 shows an example of a distribution network table showing distribution network information.
  • the first power management device (CEMS 10) provided in the predetermined area communicates with the devices 20, 30, 40, 50, 60 on each customer side existing in the predetermined area.
  • the power supply / demand balance in a predetermined area is predicted.
  • the first power management device calculates surplus power from the prediction result of the supply and demand balance, and prompts each consumer to consume surplus power. Thereby, the electric power generated in the predetermined area can be preferentially consumed in the area, and so-called local production for local consumption is realized.
  • the configuration of the power distribution network in a predetermined area can be predicted based on the location information and map information of each customer and facility. Therefore, the electric power produced by a certain consumer can be supplied to other consumers in consideration of the connection state between each consumer. Thereby, the supply and demand of electric power in a predetermined area can be managed more finely.
  • FIG. 1 is an overall configuration diagram schematically showing a relationship between a power management system and a power system for each area.
  • the power system 1 is a system for supplying electric power generated at the power plants 2 and 3 to each consumer, and includes a power generation function, a power transformation function, a power transmission function, and a power distribution function.
  • the power system 1 describes a case where AC power is supplied to each consumer.
  • a system that supplies DC power may be used instead of a system that supplies AC power.
  • the central power supply 2 is a large-scale power plant such as a thermal power plant, a hydro power plant, or a nuclear power plant.
  • the distributed power source 3 is, for example, a relatively large-scale wind power plant, solar power plant, solar thermal power plant, or the like. Since the distributed power source 3 belongs to the system side, it can be called a system side distributed power source.
  • the distributed power supply 3 includes a relatively large-scale storage battery 3A. By storing the power generated by a wind power generator or the like in the storage battery 3A, the power can be used effectively.
  • the electric power generated by the centralized power supply 2 and the distributed power supply 3 is sent to the power transmission station 4 and boosted to a predetermined high voltage.
  • the power transmission station 4 can also include a storage battery 4A. A part of the power from the centralized power supply 2 or the distributed power supply 3 can be stored in the storage battery 4A.
  • the power transmission station 4 is connected to each distribution substation 5 (1), 5 (2) via a power transmission network 6, and high-voltage AC power is supplied to each distribution substation 5 (1), 5 ( 2).
  • the power transmission network 6 may include one or a plurality of substations, but is omitted in FIG.
  • the distribution substations 5 (1) and 5 (2) reduce the voltage value of the power from the power transmission station 4 and supply power of a predetermined voltage to each consumer. When not particularly distinguished, it is referred to as a distribution substation 5.
  • Each distribution substation 5 supplies electric power to each consumer via a plurality of power supply lines 7.
  • one distribution substation 5 (1) includes a plurality of power supply lines 7 (1a) and 7 (1n).
  • the other distribution substation 5 (2) includes a plurality of other power supply lines 7 (2a) and 7 (2n). When not particularly distinguished, it is referred to as a power supply line 7.
  • Each power supply line 7 is provided with one CEMS 10.
  • the CEMS 10 (1a) is provided for the power supply line 7 (1a)
  • the CEMS 10 (1n) is provided for the power supply line 7 (1n)
  • the CEMS 10 (2a) is provided for the power supply line 7 (2a).
  • a CEMS (2n) is provided in the power supply line 7 (2n). Unless otherwise distinguished, it is called CEMS10.
  • the CEMS 10 corresponds to a “first power management device”.
  • HEMS Home Energy Management System
  • BEMS Building and Energy Management System
  • FEMS Fractory Energy Management
  • FIG. System 40
  • EV-EMS Electric Vehicle-Energy Management System
  • Each of these devices 20, 30, 40, 50 is managed by the CEMS 10.
  • Each customer is given reference numerals 200, 300A, 300B, 400, and 500, as will be described later with reference to FIG.
  • Each power supply line 7 is provided for each predetermined area.
  • the power supply line 7 is provided so as to cover an area of a predetermined area.
  • the area size of one power supply line 7 is the first size
  • the area size of the distribution substation 5 including the plurality of power supply lines 7 is larger than the first size. 2 sizes.
  • the first area having the first size can be referred to as a CEMS charge area, for example.
  • the second area having the size of the second size that the distribution substation 5 is in charge of can be called, for example, the distribution substation charge area.
  • the power generated in the first region is consumed in the first region as much as possible by the CEMS 10. Furthermore, in this embodiment, power can be interchanged between the power supply lines 7 connected to the same distribution substation 5. Thereby, the electric power generated in the second area can be consumed in the second area. That is, the surplus power in one first region can be supplied to the other first region under the management of the common distribution substation 5. Thus, in this embodiment, renewable energy is efficiently consumed at a plurality of stages according to the size of the management area.
  • FIG. 2 schematically shows the main functional configuration of the CEMS 10.
  • the physical configuration will be described later with reference to FIGS.
  • the present invention is not limited to the configuration shown in FIG. FIG. 2 is provided for understanding the embodiment and is not intended to limit the scope of the present invention. It is obvious that other drawings than FIG. 2 do not limit the scope of the present invention.
  • the CEMS 10 is provided for each predetermined area (the first area described above) and manages the power state of each customer belonging to the predetermined area.
  • the power state includes a state of power generation and / or a state of power consumption.
  • the CEMS 10 in FIG. 2 includes a supply and demand adjustment function 110 and an EMS information control hub function 120 (see FIG. 10).
  • the EMS information control hub function 120 includes, for example, a common adapter I / F 121, a common API (Application Programming Interface) 122, a common data processing function 123, a common data management function 124, a database group 125, and a security function 126. Is provided.
  • the supply and demand adjustment function 110 is called a consumer side CEMS application 110 in FIG.
  • the EMS information control hub function 120 is called an EMS information control hub 120 in FIG.
  • the supply and demand adjustment function 110 predicts the amount of surplus power generated in the first region in charge of the CEMS 10 and creates information for reducing the surplus power.
  • the supply and demand adjustment function 110 includes, for example, a function of predicting power demand and power supply in the first region, a function of managing actual values of power demand and power supply in the first region, and emission of carbon dioxide gas in the first region.
  • EMS information control hub function 120 processes and stores data collected from devices 20, 30, 40, 50, 60 on each customer side, and provides it to the outside as needed.
  • the station 60 that performs local power generation and / or local power storage will be described later with reference to FIG.
  • the common adapter I / F 121 is an interface for bidirectional communication with the common adapter CA included in each customer-side device 20, 30, 40, 50, 60.
  • the role of the common adapter CA will be described later with reference to FIG.
  • the common API 122 is an interface for two-way communication with an external provider such as the service provider 90A or the application developer 90B.
  • the EMS information control hub 120 provides data regarding the local EMS to the external vendors 90A and 90B.
  • the service provider 90A and the application developer 90B may be referred to as external contractors 90.
  • Examples of the external supplier 90 include a manufacturer or a seller of various products used by each consumer, a weather forecaster that provides weather information, and a consultant company that provides advice on electric power.
  • the common data processing function 123 processes the data acquired from each customer side device 20, 30, 40, 50, 60, etc. as predefined common data.
  • the common data management function 124 stores common data in the database group 125.
  • the database group 125 stores various information related to the EMS in the first region.
  • the security function 126 ensures the reliability and safety of communication between the CEMS and each customer-side device 20, 30, 40, 50, 60, and the like.
  • the security function 126 authenticates a communication partner and encrypts communication contents.
  • FIG. 3 is an overall view showing a physical configuration of the power management system.
  • the distribution network will be described first.
  • a distribution substation 5 and a high-voltage substation 5H are connected to the power transmission network 6.
  • the distribution substation 5 converts AC power of tens of thousands of kilovolts into AC power of several thousand kilovolts and supplies the AC power to the power supply lines 7 (1) and 7 (2).
  • the high voltage substation 5H generates AC power having a voltage higher than the output voltage of the distribution substation 5 and supplies the AC power to the high voltage power supply line 7H.
  • a power supply line 7 hereinafter, when not particularly distinguished, it is referred to as a power supply line 7.
  • Each power supply line 7 includes, for example, a section switch 71, an automatic voltage regulator (SVR) 72A, a static reactive power compensator (SVC: Static Var Compensator) 72B, and a voltage regulator 72C. And are provided. Unless otherwise distinguished, it is called a voltage regulator 72.
  • the voltage regulator 72C is provided in the high-voltage power supply line 7H, and the SVR 72A and the SVC 72B are provided in the power supply line 7 (1).
  • an interconnection switch 73 is provided between the power supply lines 7.
  • the segment switch 71 is a switch circuit that opens and closes the power supply line 7.
  • the SVR 72A and the SVC 72B are circuits that automatically adjust the voltage.
  • the interconnection switch 73 is a switch circuit for connecting the power supply lines 7 to each other and blocking the power supply lines 7. By controlling the interconnection switch 73, even when a disconnection or the like occurs in one power supply line 7, power can be supplied from the other power supply line 7 to each consumer.
  • Each circuit 71, 72A, 72B, 73 provided in the power supply line 7 is connected to a communication master station (RTU: Remote Terminal Unit) 710, 720.
  • RTU Remote Terminal Unit
  • the communication master stations 710 and 720 are connected to the respective circuits 71, 72 ⁇ / b> A, 72 ⁇ / b> B, and 73 on the power supply line 7 through communication slave stations (FTU: Feeder Terminal Units) 750.
  • One communication master station 710 is connected via a communication line 711 to a circuit 72C provided in the high-voltage power supply line 7H.
  • the other communication master station 720 includes circuits 71, 72A, 72B provided in the power supply line 7 (1), the power supply line 7 (1), and the power supply line 7 (2) via the communication line 721. Are connected to the interconnection switch 73 that connects the two. Further, the other communication master station 720 connects the circuit 71 provided in the power supply line 7 (2), the power supply line 7 (2), and the power supply line 7H through another communication line 722. Connected to the interconnection switch 73.
  • the communication master stations 710 and 720 are connected to the CEMS 10. Thereby, the CEMS 10 can remotely monitor the states of the circuits 71, 72A, 72B, 73.
  • the power supply line 7 is connected to a plurality of pole transformers 74.
  • the power receiving equipment of each customer 200, 300 ⁇ / b> A, 300 ⁇ / b> B, 400, 500 is supplied with power from the power supply line 7 via the nearest pole transformer 74. Not all consumers receive power via the pole transformer 74.
  • a power cable provided in the ground may be used, or power may be received directly from the power supply line 7.
  • FIG. 3 shows a plurality of types of consumers, that is, a detached house 200, a building 300A, an apartment house 300B, a factory 400, and a charging station 500.
  • the power generation amount and the power consumption amount of the detached house 200 are managed by a HEMS and a smart meter (SM in the figure).
  • the power generation amount and power consumption of the entire building and the power generation amount and power consumption of each section included in the building are managed by the BEMS and the smart meter.
  • the power generation amount and the power consumption amount are managed by the FEMS and the smart meter.
  • the power generation amount and power consumption amount of the charging station 500 are managed by the EV-EMS and the smart meter.
  • the smart meter is connected to an MDMS (Meter Data Management System) 80 of an AMI (Advanced Metering Infrastructure) 80 via a communication line 810.
  • the CEMS 10 is connected to the MDMS 80, and acquires data (actually measured values) related to the power generation amount and the power consumption amount from the smart meter of each consumer via the MDMS 80.
  • the CEMS 10 is connected to the HEMS, BEMS, FEMS, and EV-EMS via another communication line 820.
  • the CEMS 10 receives other supply and demand information described later from the HEMS, BEMS, FEMS, and EV-EMS using other communication lines 820, and transmits later described plan information to the HEMS, BEMS, FEMS, and EV-EMS. .
  • At least one distributed power source (distributed power source on the customer side) 60 that uses natural energy can be provided.
  • the distributed power supply 60 can include, for example, a wind power plant 61, a power storage plant 62, and a solar power plant 63. Furthermore, for example, devices such as a solar thermal power plant and a heat pump can be provided.
  • the power storage station 62 stores renewable power generated by the wind power plant 61, the solar power plant 63, and the like.
  • the power storage 62 may be configured to convert electrical energy into other energy such as heat energy and store the energy.
  • the CEMS 10 is also connected to a distributed power source 60 provided in the area, and can manage the power generation amount, the power storage amount, and the like of the distributed power source 60.
  • FIG. 4 shows the physical configuration of the CEMS 10.
  • the CEMS 10 includes a plurality of servers 1101, 1102, 1201, 1202, 1203, 1301, 1302, 1303, 1401, 1402, a plurality of databases 1103, 1204, 1205, 1304, 1305, 1403, and the like.
  • “FW” is an abbreviation for FireWall
  • “DMZ” is an abbreviation for DeMilitarizedtarZone.
  • the CEMS 10 prevents intrusion from an external network, and an area in consideration of security is provided in the CEMS 10. In the safe area, for example, at least a part of a server and a database for realizing the supply and demand adjustment function 110, the EMS information control hub function 120, the power supplier side CEMS application 140 (see FIG. 10), and the like are provided.
  • the distribution automation AP server 1301, the distribution automation DB server 1302, the coordination DB server 1303, the master DB 1304, and the slave DB 1305 are configurations for realizing the distribution automation system 130 (see FIG. 10).
  • AP is an abbreviation for application
  • DB is an abbreviation for database.
  • the distribution automation AP server 1301 provides an application program for automatically controlling distribution.
  • the distribution automation DB server 1302 manages a database for automatically controlling distribution.
  • the cooperation DB server 1303 makes a database cooperate with another system (for example, an EMS information control hub).
  • the master DB 1304 includes, for example, current system information (SM and TM), facility information, information recording a load, and graphic information.
  • SV is system facility monitoring data.
  • TM is data obtained by remotely measuring the load of the system facility.
  • the facility information is information on various facilities (system side facilities) provided in the distribution network.
  • the graphic information is information indicating the arrangement of the power system and the like.
  • Data managed by the master DB 1304 is copied to the slave DB 1305.
  • the name of information stored in the slave DB 1305 is omitted in FIG. 4 due to space limitations.
  • the D-EMS AP server 1401 is a configuration for realizing the CEMS application 140 on the power supplier side together with the D-EMS DB server 1402 and the slave DB 1403.
  • the D-EMS indicates the power supplier side CEMS.
  • the D-EMS AP server 1401 provides a CEMS application on the power supplier side.
  • the D-EMS DB server 1402 manages the slave DB 1403.
  • the slave DB 1403 is connected to the slave DB 1305 managed by the cooperation DB server 1302 and the master DB 1204 managed by the hub DB server 1203. Accordingly, the slave DB 1403 stores, for example, configuration information, supply and demand information, prediction information, plan information, and system information (SM, TV).
  • the configuration information is information including the configuration of the distribution network, which is the configuration on the grid side, and the electrical configuration inside each customer.
  • the configuration of the distribution network can be predicted based on the position of the customer, the position of the facility, and the map.
  • the distribution network information may be used.
  • the case where distribution network information is acquired from an electric power supplier is more suitable. This is because balance between supply and demand (supply and consumption) is better adjusted from the viewpoint of power transmission loss and / or reverse power flow, because it is preferable to adjust the balance between power distribution networks rather than whether the physical locations are close. .
  • the supply and demand information is information for managing the actual value of the power consumption and the actual value of the power generation amount for each consumer existing in the region, the power generation amount of the facility on the power system 1 related to the region, and the like.
  • Prediction information indicates the predicted value of power generation and power consumption for the entire region.
  • the plan information is information for managing a plan for reducing surplus power in the region.
  • the configuration information, supply and demand information, prediction information, and plan information are copied from the master DB 1204 managed by the hub DB server 1203.
  • the system information is copied from the slave DB 1305 managed by the cooperation DB server 1303.
  • the customer-side CEMS DB server 1101, the customer-side CEMS AP server 1102, and the slave DB 1103 are configured to realize the customer-side CEMS application 110 (supply / demand adjustment function).
  • the customer side CEMS DB server 1101 manages the slave DB 1103.
  • the customer side CEMS AP server 1102 provides a customer side CEMS application.
  • the slave DB 1103 is connected to the master DB 1204 managed by the hub DB server 1203. Configuration information, supply and demand information, plan information, weather information, map information, and the like are copied from the master DB 1204 to the slave DB 1103.
  • the hub front server 1201, the service front server 1203, the hub DB server 1203, the master DB 1204, and the slave DB 1205 are configured to realize the EMS information control hub 120.
  • the hub front server 1201 exchanges information with each customer, and includes a common adapter I / F 121.
  • the service front server 1202 exchanges information with the service provider 90A or the application developer 90B, and includes a common API 122.
  • the hub DB server 1203 manages the master DB 1204 and the slave DB 1205.
  • the master DB 1204 is connected to the slave DB 1403 and the slave DB 1103.
  • the master DB 1204 includes, for example, configuration information, demand and supply information of customers, facilities, and regions, prediction information, plan information, weather information, map information, graphic information indicating a position on the customer side, and the like.
  • Information for managing the model number of the device (displayed as “device #”) and service information can be stored.
  • the device model number is information for identifying an electrical device (for example, an air conditioner, a water heater, a water heater, a refrigerator, a television) and the like possessed by each consumer.
  • the service information is information for managing various services provided to each consumer.
  • the slave DB 1205 is connected to the slave DB 1305 managed by the cooperation DB server 1303. Equipment information, equipment supply and demand information, and system graphic information are copied from the slave DB 1305 to the slave DB 1205.
  • FIG. 5 schematically shows an electrical configuration of a general detached house 200.
  • the house 200 includes a HEMS 20, a smart meter 21, a distribution board 22 with a meter, a PCS (Power Conditioning System) 23, a PV (PhotoVoltaic) 24, a battery 25, a plurality of electric devices 26A-26H, PLC (Power Line Communications) 27 is provided.
  • the HEMS 20 manages the power state (both power generation and power consumption) in the house 200 and is connected to the CEMS 10.
  • the HEMS 20 can be configured as a microcomputer system including, for example, a microprocessor, a memory, a communication interface, and a monitor display.
  • the BEMS 30, FEMS 40, and EV-EMS 50 described below are also configured as a microcomputer system.
  • the monitor display may be integrated with the HEMS 20 or may be formed separately from the HEMS 20. Furthermore, the structure which utilizes the display apparatus which displays a television broadcast etc. as a monitor display of HEMS20 may be sufficient.
  • the smart meter 21 communicates with the purchased power meter for measuring the power purchased from the power system 1, the sold power meter for measuring the power sold to the power system 1, and the MDMS 80 in FIG. 3.
  • the smart meter 21 and the HEMS 20 may be configured to communicate with each other.
  • the distribution board 22 with a meter is a device for distributing electric power to each room of the house 200, and includes an earth leakage breaker and the like.
  • the distribution board 22 is connected to the HEMS 20.
  • the PCS 23 controls a PV (solar power generation device) 24 and a battery 25.
  • the PCS 23 is connected to the distribution board 22. Further, the PCS 23 is also connected to the HEMS 20.
  • the electric power generated by the PV 24 is stored in the battery 25.
  • the PCS 23 supplies the power stored in the battery 25 to each device 26A-26H in the house 200 or sells the power to the power system 1 via the smart meter 21 so that voltage fluctuation does not occur. To do.
  • excess power generated in the house 200 can be supplied to other customers managed by the same CEMS 10.
  • a plurality of CEMSs 10 cooperate to supply surplus power in a certain house to another house 200 or building 300A managed by another CEMS 10 belonging to the same distribution substation 5 or the like. .
  • Examples of the electric devices in the house 200 include a fuel cell 26A, a heat pump water heater 26B, an air conditioner 26C, a refrigerator 26D, a dryer 26E, a blind 26F, a lighting S6G, and an electric vehicle (EV / PHV). ) 26H.
  • a fuel cell 26A a heat pump water heater 26B, an air conditioner 26C, a refrigerator 26D, a dryer 26E, a blind 26F, a lighting S6G, and an electric vehicle (EV / PHV). ) 26H.
  • Blind 26F is provided with an actuator such as an electric motor and opens and closes manually or automatically.
  • the electric vehicle includes, for example, an EV (Electric Vehicle) that runs only with a battery and an electric motor, and a PHV (Plug-in Hybrid Vehicle) that can be charged from an electric outlet of the house 200.
  • EV Electric Vehicle
  • PHV Plug-in Hybrid Vehicle
  • the PLC 27 is a device for using the power wiring in the house 200 as a communication line to communicate between the HEMS 20 and each device 26A-26H.
  • FIG. 6 schematically shows the electrical configuration of the building 300A.
  • the building 300A includes, for example, a BEMS 30, a smart meter 31, a PCS 32A, a PV 32, a PCS 33A, a battery 33, a configuration 34 for each tenant, a power measurement unit 36B, an electric device 37B, a controller 38B, Is provided.
  • the building 300A includes a common configuration 31, 32, 32A, 33, 33A, 36B, 37B, and 38B, and an individual configuration 34 for each tenant occupying the building.
  • the BEMS 30 manages the power state of each of the common configuration of the building 300A and the individual configuration for each tenant.
  • the BEMS 30 manages the power state in the building.
  • the smart meter 31 measures the amount of power supplied from the power system 1 to the building 300A (amount of power purchased) and the amount of power supplied from the building 300A to the power system 1 (amount of power sold).
  • the smart meter 31 transmits power amount information to the MDMS 80.
  • the PCS 32A for PV control manages the PV 32 provided on the roof of the building 300A in accordance with the instruction from the BEMS 30.
  • the battery control PCS 33 ⁇ / b> A manages the battery 33 in accordance with an instruction from the BEMS 30.
  • the electric power generated by the PV 32 is supplied via the battery 33 to the equipment 37B as common equipment and / or the equipment 37A of each tenant. Surplus power that could not be consumed in the building 300 ⁇ / b> A can be sold to the power system 1. Alternatively, the surplus power in the building 300A is supplied to other customers managed by the same CEMS 10 or to other customers managed by other CEMS 10 belonging to the common distribution substation 5 You can also
  • the configuration 34 for each tenant includes, for example, a smart meter 35A, a power measurement unit 36A, an electric device 37A, and a controller 38A.
  • the smart meter 35A measures the power consumption of the tenant and transmits it to the MDMS 80.
  • the power measurement unit 36A is provided for each electric device 37A, and measures the power consumption of each electric device 37A (a configuration capable of measuring the power generation amount).
  • Each power measurement unit 36 ⁇ / b> A transmits the power consumption of each electrical device 37 ⁇ / b> A to the BEMS 20.
  • Examples of the electrical equipment 37A provided by the tenant include office automation equipment such as an air conditioner, lighting, a personal computer, and a copy machine.
  • the controller 38A controls each electric device 37A in the tenant.
  • the controller 38A is connected to the BEMS 30.
  • Examples of the electric equipment 37B that is a common facility of the building include a heat pump water heater and a refrigerator.
  • the power measurement unit 36B is provided for each electrical device 37B, measures the power consumption of each electrical device 37B, and transmits it to the BEMS 30.
  • the controller 38B controls the electrical equipment 37B that is a common facility of the building 300A.
  • the controller 38B is connected to the BEMS 30.
  • FIG. 7 schematically shows the electrical configuration of the apartment house 300B.
  • the collective housing 300B includes configurations 30, 31, 32, 32A, 33, 33A, 36B, 37B, and 38B that are common to the building 300A described in FIG.
  • the apartment house 300B also has the configuration of the house 200 described in FIG. This is because the apartment house 300B is an aggregate of individual houses.
  • Each house 200 in the apartment house 300 ⁇ / b> B is managed by each HEMS 20.
  • the common configurations 36B, 37B, and 38B of the apartment house 300B are managed by the BEMS 30.
  • FIG. 8 schematically shows the electrical configuration of the factory 400.
  • the factory 400 includes, for example, an FEMS 40, a smart meter 41, a PV 42, a PV control PCS 42A, a battery 43, a battery control PCS 43A, a co-generator 44, and configurations 45A, 46A, 47A, 48 relating to production equipment, Configurations 45B, 46B, 47B relating to the environment in the factory are provided.
  • the FEMS 40 manages the power state of the factory 400.
  • the smart meter 41 measures the amount of power supplied from the power system 1 to the factory 400 and the amount of power supplied from the factory 400 to the power system 1 and transmits it to the MDMS 80.
  • the PCS 42A controls the operation of the PV 42 according to the instruction from the FEMS 40.
  • the PCS 43A controls the operation of the battery 43 in accordance with an instruction from the FEMS 40.
  • the electric power generated by the PV 42 can be consumed by the devices 46A and 46B in the factory 400 via the battery 43.
  • the surplus power at the factory 400 can be supplied to other customers managed by the common CEMS 10 or to other customers belonging to the common distribution substation 5.
  • the factory 400 includes various electric devices 46A such as a press machine, a shearing machine, a welding machine, an injection molding machine, and a packaging machine.
  • the power measurement unit 45A is provided for each electrical device 46A.
  • Each power measurement unit 45 ⁇ / b> A measures the power consumption of each electrical device 46 ⁇ / b> A (a configuration that can measure the amount of power generation. The same applies hereinafter) and transmits the measured power to the FEMS 40.
  • Controller 47A controls each electrical device 46A.
  • the controller 47A is connected to the production management system 48.
  • the production management system 48 can give an instruction to the controller 47A based on the plan information notified from the CEMS 10 or the like.
  • Examples of the electrical equipment 46B related to the factory environment include an air conditioner, a boiler, a refrigerator, an air compressor, and the like.
  • the power measurement unit 45B is provided for each electrical device 46B.
  • Each power measurement unit 45B measures the power consumption of each electrical device 46B and transmits it to the FEMS 40.
  • FIG. 9 schematically shows the electrical configuration of the charging station 500.
  • Charging station 500 is a facility for charging EV (including PHV) 57.
  • the charging station 500 includes, for example, an EV-EMS 50, a smart meter 51, a power measurement unit 52, a charging converter board 53, a PV 54A, a battery 54B, a PCS 55, a quick charging terminal 56A, and a normal charging terminal 56B. And a kiosk terminal 58.
  • the EV-EMS 50 manages the power state of charging station 500.
  • the smart meter 51 measures the amount of power supplied from the power system 1 to the charging station 500 and the amount of power supplied from the charging station 500 to the power system 1, and transmits them to the MDMS 80.
  • the power measurement unit 52 measures the amount of power at each charging terminal 56A, 56B, etc., and transmits it to the EV-EMS 50.
  • the PCS 55 controls the PV 54A and the battery 54B according to instructions from the EV-EMS 50.
  • the electric power generated by the PV 54A can be consumed in the charging station 500.
  • the surplus power in the charging station 500 can be supplied to other customers managed by the common CEMS 10 or to other customers belonging to the common distribution substation 5.
  • the charge converter board 53 is a device for converting the power supplied from the power system 1 or the battery 54B into power having a predetermined high voltage and supplying it to the quick charge terminal 56A.
  • the charge converter board 53 is connected to the EV-EMS 50.
  • the quick charging terminal 56A is a device that charges the battery of the EV 57 with a voltage higher than that of the normal charging terminal 56B. By using the quick charging terminal 56A, the remaining battery level of the EV 57 can be recovered to a predetermined amount in a relatively short time.
  • the normal charging terminal 56 ⁇ / b> B is a device that charges the battery of the EV 57 with normal power supplied from the power system 1, for example.
  • the kiosk terminal 58 is an information terminal for controlling the quick charging terminal 56A.
  • the kiosk terminal 58 performs, for example, user authentication, charging fee settlement, charging terminal 56A maintenance, coupon ticket issuance, and the like.
  • the usage status of the quick charging terminal 56A can be notified from the kiosk terminal 58 to a user in the area or a user outside the area via the CEMS 10.
  • FIG. 10 is an overall configuration diagram focusing on the function of the power management system.
  • the CEMS 10 includes, for example, a consumer side CEMS application 110, an EMS information control hub 120, a power distribution automation system 130, a power supplier side CEMS application 140, and an EAM application 150.
  • a distribution automation system 130 manages power supply from the power system 1 to each consumer. For example, the distribution automation system 130 controls the voltage so that the voltage value of the electric power supplied to each consumer is within a certain range, or identifies the facility where the failure has occurred.
  • the distribution automation system 130 is connected to each circuit (shown as SW in FIG. 10) 71, 72, 73 on the power supply line 7 via the RTUs 710, 720 and the FTU 750.
  • the distribution automation system 130 remotely monitors the status of each segment switch 71, voltage regulator 72, interconnection switch 73, etc. via the RTUs 710, 720, and the like.
  • the power distribution automation system 130 will be described later with reference to FIG.
  • the management devices 20, 30, 40, 50, 50C, 60 on each customer side are connected to the CEMS 10 through the communication line 820. Further, each customer-side smart meter is connected to the MDMS 80 via a communication line 810. Although FIG. 10 shows that the HEMS 20 is connected to the MDMS 80, the smart meter 21 is actually connected to the MDMS 80. Similarly for other consumers, each smart meter is connected to the MDMS 80 via the communication line 810. The MDMS 80 is connected to the distribution automation system 130 and transmits information from each smart meter to the distribution automation system 130.
  • the communication line 810 can be attached to the smart meter of each consumer via the utility pole 74A, for example.
  • the smart meter and the MDMS 80 may be connected using an underground communication cable or wireless communication.
  • the EV center 50C is a facility for managing a plurality of EVs 57. For example, users in the area can jointly use a plurality of EVs 57 managed by the EV center 50C.
  • the consumer-side CEMS application 110 predicts local power demand and power generation amount, calculates surplus power, and generates information for reducing surplus power, for example.
  • the consumer side CEMS application 110 will be described later with reference to FIG.
  • the EMS information control hub 120 controls, for example, distribution of information (which can be referred to as EMS related information) managed by the CEMS 10.
  • the EMS information control hub 120 can be connected to a server of an external vendor such as the service provider 90A or / and the application developer 90B. Further, the EMS information control hub 120 can be connected to the CEMS 10 that is responsible for other regions. The EMS information control hub 120 will be described later with reference to FIG.
  • the power supplier side CEMS application 140 manages, for example, facilities on the power system 1 side.
  • the power supplier side CEMS application 140 will be described later with reference to FIG.
  • the EAM (Enterprise Asset Management) application 150 is responsible for, for example, maintenance of each facility on the power system 1 side.
  • the EAM application 150 will be described later with reference to FIG.
  • FIG. 11 shows functions of the consumer side CEMS application 110.
  • the consumer-side CEMS application 110 includes, for example, a supply and demand prediction function 111, a supply and demand balance prediction function 112, a carbon dioxide visualization function 113, an incentive calculation function 114, an incentive visualization function 115, a supply and demand performance management function 116, DB 117A-117G and a function 118 for linking supply and demand are provided.
  • the supply and demand prediction function 111 predicts the supply and demand of power in the next cycle based on the power supply and demand result managed by the supply and demand result function 116 and the weather information 117E.
  • the prediction cycle is set to about 30 minutes, for example.
  • the prediction result is stored in the prediction information DB 117C.
  • the power supply and demand indicates power demand and power supply.
  • the electric power supply is electric power generated from each distributed power source 60, 24, 32, 42, 54A existing in the region.
  • the supply and demand balance prediction function 112 is a function that predicts the balance between the predicted power demand and the predicted power supply for each hour. In the time zone in which the predicted power demand and the predicted power supply coincide, the power supply and demand is balanced. In this case, since the electric power required by each consumer in the area is supplied from the distributed power supply in the area, it is not necessary to receive power supply from the power system 1.
  • ⁇ Surplus power is generated in a time period when the predicted power supply is more than the predicted power demand.
  • plan information for encouraging consumption of surplus power is distributed to each consumer in the area before the time zone when surplus power is generated.
  • the surplus power can be supplied to consumers in other regions via the distribution substation 5.
  • a configuration may be employed in which the distributed power source is disconnected from the power management system and is idled.
  • the idling means that the power generated by the distributed power source is discarded without being used.
  • it is good also as a structure which supplies surplus electric power to the other substation 5 for distribution, and supplies it to another distant area. That is, a configuration in which surplus power is allowed to flow backward to the power system 1 may be used.
  • the carbon dioxide visualization function 113 calculates and visualizes the amount of carbon dioxide emitted in the area based on the power state of the area. Many of the distributed power sources in the region use renewable natural energy. Therefore, the amount of carbon dioxide emitted from the area is reduced in the time zone where a large amount of distributed power is consumed in the area. On the other hand, since the concentrated power source 2 consumes oil, coal, or the like, the amount of carbon dioxide emission in the region increases in a time zone in which much power from the power system 1 is consumed. The carbon dioxide visualization function 113 calculates the amount of carbon dioxide discharged in the area, graphs the value, and presents it to each consumer.
  • the incentive calculation function 114 calculates an incentive for each consumer in the area to actively consume surplus power generated in the area. Examples of incentives include giving points. More points are given to consumers who have consumed more surplus power during the specified time period. The points can be used, for example, as a right to use the EV 57 shared in the region, or can be used for the power purchased from the power system 1.
  • the incentive visualization function 115 creates plan information based on the calculated incentive.
  • the plan information is information for encouraging consumption of surplus power in a time zone in which surplus power is expected to be generated.
  • the created plan information is stored in the plan information 117D.
  • the supply and demand performance management function 116 manages the actual power demand and actual power supply values.
  • the supply / demand data is stored in supply / demand information T117B.
  • the configuration information 117A stores information indicating the electrical configuration of each consumer and information indicating the configuration of the distribution network from the distribution substation 5 to the power receiving facility of each customer.
  • the electrical configuration of each customer can be obtained from the customer when the customer subscribes to the power management service by the CEMS 10.
  • the information indicating the electrical configuration of each consumer can include the type of electrical equipment used by each consumer and the power consumption of the electrical equipment.
  • the configuration of the distribution network may be obtained from the power supplier if the power supplier supplying power to the area permits it. Even in the case where the power supplier's permission cannot be obtained, in this embodiment, based on the location of each customer, the location of the facility on the power system 1 side, and the map including the region, the distribution network of that region Can be estimated.
  • the device model number information T117G stores information for identifying an electrical device used by each consumer.
  • the function 118 for linking supply and demand performs, for example, processing when an intentional power failure or an unintentional power failure occurs, processing for cutting a demand peak, and the like.
  • FIG. 12 shows the functions of the EMS information control hub 120.
  • the EMS information control hub 120 controls the distribution of EMS related information.
  • the EMS information control hub 120 is connected to each system 110, 130, 140, 150 in the CEMS 10. Furthermore, the EMS information control hub 120 is also connected to each customer's device 20, 30, 40, 50, 60, etc. existing outside the CEMS 10 and a server of an external supplier 90.
  • the EMS information control hub 120 includes a common adapter I / F 121, a common API 122, a common data processing function 123, a common data management function 124, a plurality of databases 125A-125G, a security function 126, and an inter-hub cooperation function 127.
  • System monitoring and system operation function 128 is a common adapter I / F 121, a common API 122, a common data processing function 123, a common data management function 124, a plurality of databases 125A-125G, a security function 126, and an inter-hub cooperation function 127.
  • System monitoring and system operation function 128 System monitoring and system operation function 128.
  • the common adapter I / F 121 is a communication interface for communicating with the common adapter CA included in the HEMS 20, BEMS 30, FEMS 40, and EV-EMS 50 as described above.
  • the common adapter I / F 121 establishes a connection with the common adapter CA such as each management device 20, 30, 40, 50, grasps the communication state, delivers a message, and manages the transaction. Further, the common adapter I / F 121 performs format conversion, conversion or translation of data items and data values, conversion of identification information (ID), and the like.
  • ID identification information
  • the common adapter CA is provided in the management device 20, 30, 40, 50, etc. on the consumer side, and communicates with the common adapter I / F 121.
  • the common adapter CA acquires the actual value of the power supply and demand state of the customer from the management device, converts the actual value into data in a standard format negotiated with the CEMS 10, and transmits the data to the CEMS 10.
  • the common adapter CA receives the plan information from the CEMS 10 and transmits it to the management device. Further, the common adapter CA performs an authentication process for determining whether or not the communication destination is correct, an encryption process for encrypting data, a decryption process for decrypting encrypted data, and the like.
  • the common API 122 provides a common API to the external contractor 90. Thereby, the external contractor 90 can provide a service to each consumer using at least a part of the EMS related information. By using the common API 122, an external contractor can develop an application or service with less man-hours.
  • the common data processing function 123 performs common data processing on various types of information collected from each customer via the common adapter I / F 121.
  • Common data processing includes, for example, abnormal value monitoring processing.
  • the common data processing function 123 checks the data received from the common adapter I / F 121 based on a preset condition, and outputs a warning if abnormal data is found.
  • the common data processing function 123 monitors a large amount of time-series data flowing in at any time in real time, and quickly detects an event.
  • a plurality of event conditions can be set and changed.
  • the event condition can be set by an administrator of the CEMS 10, an external contractor 90, or a customer.
  • Events include, for example, when an abnormally large amount of power is consumed or when a large amount of power exceeding the normal value is generated.
  • the common data processing function 123 By monitoring the event with the common data processing function 123, it is possible to detect anomalies in the region (including failure of electrical equipment at the customer) at an early stage. Based on the detected event, for example, the occurrence of a fire can be prevented, or a crime at the EV center 50C can be detected. Therefore, it contributes not only to local power management but also to improving local safety.
  • the common data management function 124 provides a data model and a data processing function for aggregating a large amount of data collected from time to time from each consumer and holding it in a usable form.
  • the common data management function 124 stores a large amount of collected data in a predetermined database 125A-125G and saves it.
  • the database is called “information”.
  • the equipment model number information T125A manages information for identifying the electrical equipment used by each consumer. Not only the model number but also identification information (ID) may be used. Any name can be used as long as it can identify each electric device, and the name is not particularly limited.
  • the configuration information T125B manages information related to the electrical configuration on the customer side and information related to the configuration of the local distribution network.
  • Supply and demand information (customer) 125C manages supply and demand information (information indicating power demand and power supply) acquired from each customer.
  • the prediction information 125D manages the result of predicting the power demand and power supply in the area for each time zone.
  • For the prediction of power demand and power supply for example, actual values, weather, effectiveness of incentives, configuration changes on the customer side, and the like can be considered.
  • the weather information 125E manages the past weather and future forecast of the area. Information about the weather can be obtained from a weather forecaster or the like.
  • Graphic information (customer) 125F manages the position of each consumer in the area.
  • the service information 125M manages the contents of services provided to each consumer.
  • the facility information 125L manages information related to facilities (transformers, storage batteries, generators, etc.) on the power system 1 side.
  • Supply / demand information (facility) 125K manages power supply / demand information related to facilities on the power system 1 side.
  • the plan information 125J manages plan information D20 (see FIG. 20) including an incentive for consuming surplus power.
  • the map information 125H manages an area map.
  • a two-dimensional map or a three-dimensional map may be used.
  • relevant information such as traffic volume may be included.
  • the graphic information (facility) 125G manages the position of the facility on the power system 1 side.
  • time-series data Since a large amount of time-series data is generated every day, a large amount of storage device is required if it is stored in the same format. Therefore, as will be described later, data within a predetermined period may be stored as time-series data, and data after the predetermined period has elapsed may be compressed and stored.
  • the security function 126 is a function for ensuring the safety of data (information) handled by the CEMS 10.
  • the power supply / demand information and the like handled by the CEMS 10 is important information related to the privacy, personal information, and property of consumers. Therefore, it must be prevented from being leaked or tampered with by a third party without a legitimate authority.
  • the security function 126 performs data encryption and decryption, authentication of the communication partner, and the like.
  • the inter-hub cooperation function 127 is a function for cooperation with other CEMS 10.
  • Each CEMS 10 can exchange information via the inter-hub cooperation function 127. Based on the information exchange, surplus power can be interchanged between the CEMSs 10.
  • the system monitoring and system operation function 128 is a function for adding a database or creating a database backup, for example.
  • FIG. 13 shows the functions of the distribution automation system 130.
  • the power distribution automation system 130 includes, for example, an online power distribution application 131, an offline power distribution application 132, a basic SCADA function 133, a communication interface 134, and each database 135A-135E.
  • the online power distribution application 131 includes, for example, a function 1311 for performing an accident recovery operation, a function 1312 for controlling the voltage of the power distribution network to a predetermined voltage, and a function 1313 for calculating a power flow.
  • the tidal current calculation function 1313 includes a so-called reverse power flow analysis in which power generated on the consumer side flows into the grid.
  • the offline power distribution application 132 includes, for example, an equipment plan on the power system 1 side, an optimal operation plan for the system, a connection analysis of distributed power sources, a training simulator, and the like.
  • the basic SCADA (Supervisory Control And Data Acquisition) function 133 monitors, for example, the status of the facilities and power supply lines of the power system 1.
  • the communication interface 134 for example, communicates with each device 71, 72, 73 provided on the power supply line 7 via the RTU and the like, and communicates with the smart meters 21, 31, 41, 51 of each consumer. And an interface for communicating with the EMS information control hub 120.
  • the current (SV / TM) information 135A is a database that manages the latest values of SV data and TM data.
  • the facility information 135B manages information related to facilities on the power system 1 side.
  • the load record information 135C records the load state of each facility.
  • the graphic information 135D manages the position of each facility in a format such as GIS (Geographic Information System) data.
  • Information necessary for managing power in cooperation with other CEMS 10 is stored in the information 135D for operation in cooperation with other systems.
  • FIG. 14 shows functions of the CEMS application 140 on the power supplier side.
  • the power supplier side CEMS application 140 provides an application used by a power supplier such as a power company.
  • the power supplier side CEMS application 140 includes, for example, an overall management function 141, a short-cycle real-time feedback control function 142, a medium-cycle real-time feedback control function 143, a long-cycle prediction function 144, an operation status monitoring function 145, and a control.
  • a linkage function 146, a data linkage function 147, each database 148A-148E, and a function 149 for linking supply and demand are provided.
  • the overall control function 141 is a function of controlling the entire power supplier side CEMS application 140.
  • the short cycle real-time feedback control function 142 monitors, for example, PV and storage batteries in a short cycle (for example, in seconds) and performs feedback control.
  • the medium cycle real-time feedback control function 143 monitors a device such as a regenerator, for example, in a medium cycle (for example, in units of time) and performs feedback control.
  • the long cycle prediction function 144 predicts the amount of power generated by each distributed power source in the region, the power demand, the amount of interconnection between systems, etc. in a long cycle (for example, in units of several hours).
  • the operation status monitoring function 145 manages the operation and monitors the operation status.
  • the control linkage function 146 is used when directly controlling the electrical equipment of each consumer.
  • the data linkage function 147 is a function for linking data between the distribution automation system 130 and the EMS information control hub 120. Data is stored and updated in the databases 148A to 148E by the data linkage.
  • the configuration information 148A manages the configuration on the customer side and the configuration on the power system 1 side (distribution network, etc.).
  • the supply and demand information 148B manages the supply and demand information (actual value) of local power.
  • the prediction information 148C manages the predicted value of supply and demand of local power.
  • the plan information 148D manages plan information.
  • the TM / SV information 148E manages TM data and SV data.
  • the function 149 that links supply and demand includes, for example, a function 1491 that stabilizes the system voltage, a function 1492 that cuts the peak of demand, and a function 1493 that optimizes the operation plan.
  • FIG. 15 shows the functions of the EAM application 150.
  • the EAM application 150 includes, for example, a maintenance function 151, a design and construction function 152, a planning function 153, and databases 154A to 154E.
  • the maintenance function 151 creates, for example, a plan for inspecting consumer electrical equipment.
  • the design and construction function 152 creates a design and construction plan, for example.
  • the planning function 153 is a function that manages, for example, the progress of the planning, or manages the sections to be preferentially constructed.
  • the facility information 154A manages information related to the facility.
  • the maintenance plan information 154B manages information related to the maintenance plan.
  • the maintenance performance information 154C manages the maintenance work results.
  • the construction plan information 154D manages information related to the construction plan.
  • the construction performance information 154E manages information related to construction performance.
  • FIG. 16 shows functions of the common API 122.
  • the supply / demand information (actual value) of the power of each consumer is stored in the supply / demand performance information 125C in association with the common data item and the unique item for each service.
  • the unique item data for each service is encrypted.
  • the common API 122 sparses a plurality of output protocols 1221, a plurality of output formats 1222, and a plurality of output data conditions 1223, for example.
  • the common API 122 holds a condition 1223 for outputting data for each service provided by the external contractor 90.
  • the common API 122 converts data matching the conditions into data of a predetermined format, and outputs the data to the external vendor 90 using a predetermined protocol.
  • output protocols include HTTP (HyperText Transfer Protocol), SOAP (Simple Object Access Protocol), and FTP (File Transfer Protocol).
  • Data output formats include, for example, XML (Extensible Markup Language), CSV (Comma-Separated Values), PHP (Hypertext Preprocessor) serialization, JSON (JavaScript Object Notation), and the like.
  • the common API 122 provides data related to the service only to the provider providing the service (application).
  • the external contractor 90 can acquire only the data related to the service provided by itself from the CEMS 10 via the common API 122 and cannot acquire the data related to the service provided by another person.
  • FIG. 17 shows processing for predicting the configuration of the local distribution network.
  • the CEMS 10 acquires the map information 125H, the position information 125F of each customer, and the position information 125G of each facility, and collates those information (S10).
  • the CEMS 10 maps the position of each consumer and equipment on a map, and calculates the distance between each element (customer and equipment).
  • the CEMS 10 estimates that, for example, the customer is receiving power from the nearest pole transformer, and the physically close customers are receiving power from a common facility. Thereby, the CEMS 10 can estimate the configuration of the local distribution network (S11).
  • the CEMS 10 stores the estimated distribution network configuration in the configuration information 125B as the distribution network information 125B1.
  • the configuration information 125B also stores device connection information 125B2 indicating the electrical connection configuration at each consumer.
  • the device connection information 125B2 is acquired from each customer based on a contract between the manager of the CEMS 10 and each customer.
  • FIG. 35 shows a specific example of distribution network information. As shown here, the distribution network information is managed by dividing each device known by the CEMS 10 into a plurality of subcommunities. This sub-community is a collection of devices in units of one or more facilities. For example, a plurality of devices connected below one pole transformer constitute one sub-community.
  • the distribution network information may be used.
  • FIG. 18 shows a state in which information for consuming surplus power is generated by predicting local power demand and power supply.
  • the processing in FIG. 18 is executed by the supply and demand adjustment function (customer side CEMS application) 110.
  • the demand / supply prediction function 111 predicts the power supply / demand in units of 30 minutes, for example, based on the actual value of power supply / demand and the weather forecast. Assuming that the period for acquiring supply and demand information from each customer is 3 minutes, the prediction period is set to 10 times that.
  • the supply and demand balance prediction function 112 compares the predicted value of power supply with the predicted value of power demand for each time period, and predicts whether the demand and supply balance.
  • a graph G10 is a supply prediction graph showing a change in power supply for each time period.
  • the graph G11 is a demand prediction graph showing changes in power demand for each time zone.
  • G12 is a graph showing the difference between the prediction of power supply (G10) and the prediction of power demand (G11). When the power supply exceeds the power demand, surplus power SP is generated.
  • the carbon dioxide visualization function 113 predicts a temporal change in the amount of carbon dioxide discharged in the region based on the prediction result of the power supply / demand balance.
  • a graph G13 is a carbon dioxide emission graph showing changes in the amount of carbon dioxide emission for each time period.
  • the incentive calculation function 114 calculates an incentive for consuming surplus power SP. If each consumer operates an electric device during the time when surplus power is generated, the surplus power can be used effectively. For example, if surplus power can be used for a water heater, a regenerator, a storage battery, etc., the power demand of those devices will be shifted as a result, and surplus power can be reduced.
  • the incentive calculation function 114 calculates an incentive for encouraging each consumer to consume surplus power.
  • the incentive calculation function 114 devises an incentive such as “if the heat pump water heater is operated for 2 hours using surplus power, 10 points are given”.
  • the incentive visualization function 115 causes each customer to transmit plan information including an incentive.
  • the surplus power SPa is lower than the predicted value SP (SPa ⁇ SP). Since a predetermined electrical device is used in a time zone in which surplus power is generated, the power demand in a time zone in which the electrical device is normally used decreases. The decrease in power demand is indicated as PP1 and PP2 in the graph G14.
  • the incentive visualization function 115 includes a prediction graph G14 when each local consumer acts according to the plan information in the plan information, together with the plan information, or separately from the plan information. It can be sent and displayed on a monitor display. By presenting the prediction result to each consumer, the motivation for the consumer to act according to the plan information can be enhanced.
  • FIG. 19 shows power supply and demand information D10 transmitted from each consumer to the CEMS 10.
  • Supply / demand information D ⁇ b> 10 is created from each consumer for each device that the consumer has, and is transmitted to CEMS 10.
  • the supply and demand information D10 includes, for example, a customer ID C10, a device ID C11, a power consumption / power generation amount C12, a time C13, an operation C14, and a state C15. Items other than these may be included.
  • the customer ID C10 is information for identifying each customer.
  • the device ID C11 is information for identifying each electric device (PV, battery, home appliance, etc.).
  • the power consumption / power generation amount C12 is information indicating the amount of power consumed by the device specified by C11, or information indicating the amount of power generated from the device specified by C11.
  • the time C13 is information indicating the time when the supply and demand information D10 is created.
  • the operation C14 is information related to the operation of the device such as “operated on”, “operated off”, and “the set temperature has been changed to 18 degrees”.
  • the state C15 is information indicating the state of the device such as “power generation”, “power consumption”, “charging”, “maintenance”, and the like.
  • FIG. 20 shows plan information D20 distributed from the CEMS 10 to each consumer.
  • the plan information D20 is created for each customer and transmitted to each customer.
  • the plan information D20 includes, for example, customer ID C20, time zone C21, point C22, upper limit value C23 of total power consumption, lower limit value C24 of total power consumption, device ID C25, and upper limit value of power consumption. C26 and the lower limit C27 of power consumption are included. Items other than these may be provided.
  • Customer ID C20 is information for identifying each customer.
  • the time zone C21 indicates a time zone in which incentives are applied, that is, a time zone in which surplus power is generated in the region.
  • Point C22 is information indicating the contents of the incentive.
  • the upper limit value C23 of the total power consumption is information indicating the upper limit value of surplus power that can be consumed by the consumer.
  • an upper limit value is set for each consumer so that surplus power generated in the area can be used fairly by each consumer in the area.
  • the lower limit C24 of the total power consumption is information indicating the lower limit of surplus power that should be consumed by the consumer.
  • the amount of surplus power that each consumer should consume is presented.
  • the lower limit value is an effort target value, and no special inconvenience occurs even if it cannot be achieved.
  • a configuration in which some penalty is given to a customer who has not used the surplus power more than the lower limit value may be adopted.
  • Device ID C25 is information for identifying a device owned by a consumer.
  • the upper limit C26 of power consumption indicates the upper limit of surplus power that can be used by the device.
  • the lower limit value C27 of power consumption indicates the lower limit value of surplus power that should be consumed by the device.
  • surplus power allocated to a consumer is reassigned for each device that the consumer has. That is, when the upper limit value C26 of power consumption allocated to each device of the consumer is summed, the upper limit value C23 of total power consumption is obtained. Similarly, when the lower limit value C27 of the power consumption of each device is summed, the lower limit value C24 of the total power consumption is obtained.
  • FIG. 21 shows carbon dioxide information D30.
  • Carbon dioxide information D30 may be configured to be included in plan information D20, or may be configured separately from plan information D20 and transmitted to each consumer.
  • the carbon dioxide information D30 includes, for example, the consumer ID C30, the amount of carbon dioxide C31 generated in the region, the amount of carbon dioxide C32 generated by the consumer, and the carbon dioxide for each device of the consumer. Generation amount C33.
  • the power state of each device to be managed by the CEMS 10 is managed by the power measurement unit or the smart meter. Therefore, the power consumption or power generation amount of each device can be measured. Thereby, in a present Example, the carbon dioxide emission amount of a device unit can be calculated based on the measured information.
  • FIG. 22 is a flowchart showing the overall operation of the CEMS 10.
  • the CEMS 10 acquires supply and demand information D10 from each customer's device 20, 30, 40, 50, etc. (S20), and determines whether or not the acquired supply and demand information D10 is abnormal (S21).
  • CEMS10 transmits a warning to the consumer and makes it output on the monitor display etc. which were provided in the consumer.
  • a warning is sent to the police station, fire department, hospital, school, workplace, pre-designated individuals, etc. using means such as e-mail or telephone. You can also
  • the CEMS 10 stores the supply and demand information D10 (S22), and then evaluates the achievement status of the plan information D20 (S23). That is, the CEMS 10 evaluates how much each customer follows the previous plan information. For example, each customer can be ranked according to the achievement status of the plan information D20. High-ranking consumers are likely to follow the plan information D20, and low-ranking consumers are less likely to follow the plan information D20.
  • the CEMS 10 predicts the power supply / demand state in the next cycle (for example, after 30 minutes) based on the actual value of supply and demand information, the weather forecast, the rank of each customer, and the like (S24). Further, the CEMS 10 predicts whether the demand and supply of power are balanced based on the prediction result of power supply and demand (S25).
  • the CEMS 10 calculates the amount of carbon dioxide generated in the region based on the balance prediction of power supply and demand (S26). In S26, the amount of carbon dioxide at each consumer and the amount of carbon dioxide for each device can also be calculated.
  • the CEMS 10 calculates an incentive for encouraging consumption of surplus power, creates plan information D20 (S27), and transmits the plan information D20 to the management devices 20, 30, 40, 50, etc. on each customer side. (S28).
  • FIG. 23 shows the operation of the management device on the customer side.
  • Each management device 20, 30, 40, 50, etc. on the customer side is referred to as HEMS 20, etc.
  • the HEMS 20 or the like monitors whether the transmission time has arrived (S30).
  • the HEMS 20 and the like are set in advance so as to transmit supply and demand information D10 to the CEMS 10 with a period of about 3 minutes, for example.
  • the HEMS 20 and the like create supply and demand information D10 (S31).
  • the HEMS 20 or the like accesses the CEMS 10 (S32), and transmits supply and demand information D10 to the CEMS 10 (S33).
  • a predetermined authentication process is performed. Further, the encrypted supply and demand information D10 is transmitted from the HEMS 20 or the like to the CEMS 10.
  • FIG. 24 schematically shows how the common adapter I / F 121 processes supply and demand information according to priority.
  • the common adapter I / F 121 includes a data conversion function 1211 and a message distribution function 1212, for example.
  • the data conversion function 1211 converts the supply and demand information D10 into standard format data using the conversion table T1211 and delivers it to the common data processing function 123.
  • the message distribution function 1212 uses the priority management table T1212 to distribute the supply and demand information D10 received from each common adapter CA according to the priority.
  • the message distribution function 1212 registers high-priority supply / demand information D10 in the priority processing queue, and registers other supply / demand information D10 in the normal processing queue.
  • a high priority is set in the supply and demand information D10 (4) transmitted from the local power generation / storage battery 60, and it is processed preferentially.
  • FIG. 25 shows a table T1212 (1) for managing the priority for each device.
  • the priority management table T1212 (1) for each device includes, for example, a device type 12121C1, a priority 12121C2, and a processing cycle 12121C3.
  • the device type 12121C1 indicates the type of each device.
  • the priority 12121C2 the priority of the device is set.
  • the priority may be set with two values, “high” and “low”, or may be set more finely.
  • a cycle for processing the supply and demand information D10 of the device is set.
  • Supply / demand information D10 having a high priority is processed in a short cycle, and supply / demand information D10 having a low priority is processed in a long cycle. That is, the supply / demand information D10 having a high priority is connected to the priority processing queue and processed promptly, and the supply / demand information D10 having a low priority is connected to the normal processing queue and processed.
  • Higher power consumption can be set to have higher priority. Furthermore, it is possible to set so that the priority of a device that generates power or a device that stores electricity is higher than that of a device that consumes power. Alternatively, higher priority can be set for devices that require real-time monitoring, such as large storage batteries.
  • the device type 12121C1 is associated with the device type management table T1212 (2).
  • the device type management table T1212 (2) includes, for example, a device ID 12122C1 and a device type 12122C2.
  • the message distribution function 1212 determines the device type corresponding to the supply / demand information D10 by referring to the device type management table T1212 (2) based on the device ID C11 (see FIG. 19) of the supply / demand information D10.
  • the message distribution function 1212 refers to the priority management table T1212 (1) based on the determined device type to know the priority and period set for the device.
  • FIG. 26 shows a table T1212 (3) for managing the priority for each customer.
  • the priority management table T1212 (3) includes, for example, a customer type 12123C1, a priority 12123C2, and a processing cycle 12123C3.
  • the customer type 12123C1 indicates the type of each customer.
  • the types of customers are shown as HEMS, BEMS, and FEMS.
  • HEMS indicates a house
  • BEMS indicates a building or apartment house
  • FEMS indicates a factory.
  • a consumer with a large amount of power consumption or power generation is set to a higher priority.
  • the customer type 12123C1 is associated with the customer type management table T1212 (4).
  • the customer type management table T1212 (4) includes, for example, a customer ID 12124C1 and a customer type 12124C2.
  • the message distribution function 1212 refers to the device type management table T1212 (4) based on the customer ID C10 (see FIG. 19) of the supply / demand information D10, and determines the consumer type corresponding to the supply / demand information D10. .
  • the message distribution function 1212 refers to the priority management table T1212 (3) based on the determined consumer type to know the priority and period set for the consumer.
  • either the configuration for changing the speed of information processing based on the priority for each device (FIG. 25) or the configuration for changing the speed of information processing based on the priority for each consumer (FIG. 26). Can also be performed. Or it is good also as a structure which controls the speed of information processing combining the priority for every apparatus, and the priority for every consumer.
  • the supply and demand information related to the device having a high priority among the supply and demand information D10 transmitted from the high priority consumer is processed earliest.
  • the supply-demand information related to the device having the low priority is processed the latest.
  • FIG. 27 shows the monitoring function that the common data processing function 123 has.
  • the external contractor 90 such as a service provider can set the monitoring conditions 1231A, 1231B in the common data processing function 123 via the common API 122.
  • the common data processing function 123 monitors whether or not the supply and demand information D10 corresponding to the monitoring conditions 1231A and 1231B is present in the supply and demand information D10 flowing from the common adapter CA via the common adapter I / F 121.
  • the common data processing function 123 uses the supply and demand information D10 (2) as it is or performs the processing 1231C to the outside contractor 90. hand over.
  • the delivery destination external trader 90 is a trader for which the monitoring condition 1231A is set.
  • a configuration may be employed in which the outside contractor who sets the monitoring conditions is different from the outside contractor who receives the notification regarding the supply and demand information that matches the monitoring conditions.
  • the common data processing function 123 can notify the customer who is the transmission source of the supply and demand information that matches the monitoring condition that the monitoring condition is met.
  • FIG. 28 shows an access control process by the common data management function 124.
  • the external supplier 90 can use at least a part of the supply and demand information in the supply and demand performance information 125 ⁇ / b> C via the common API 122.
  • supply and demand information is important information related to the privacy of each consumer, transmission to the external supplier 90 needs to be performed carefully.
  • the common data management function 124 is provided with an access control function 1241 and an access authority management table T1241.
  • the access authority management table T1241 manages, for example, information for identifying the external contractor 90 and information content permitted to the external contractor 90 in association with each other.
  • the range of consumers from which the external contractor 90 can acquire information (list of permitted customer IDs or permitted consumer types) and information are acquired.
  • a range of possible devices (list of allowed device IDs or allowed device types) can be mentioned.
  • the access control function 1241 determines whether or not transmission of information is permitted by referring to the access authority management table T1241 when the server of the external company 90 requests acquisition of information via the common API 122. When permitted, for example, information requested by the external company 90 among the information stored in the supply and demand result information 125 ⁇ / b> C is transmitted to the server of the external company 90 via the common API 122. If not permitted, the common data management function 124 notifies the server of the external vendor 90 of the error.
  • FIG. 29 shows processing when the HEMS 20 or the like receives information from the CEMS 10.
  • the HEMS 20 or the like receives the plan information D20 from the CEMS 10 (S40: YES)
  • the contents of the information are displayed on the monitor display (S41).
  • the monitor display displays a time zone in which surplus power is generated, a recommended consumption of surplus power (a lower limit value of total power consumption), points, and the like (S41).
  • a recommended consumption of surplus power a lower limit value of total power consumption
  • points and the like.
  • An example of the display screen will be described later.
  • the energy manager of the customer can make a reservation for the operation of the device, inspired by the incentive displayed on the monitor display (S42).
  • the HEMS 20 or the like can also call attention to the energy manager when a time zone in which the incentive is valid comes or only a predetermined time before the time zone in which the incentive is valid (S43).
  • the HEMS 20 or the like displays a message such as “The time when surplus power can be used at a reasonable price is approaching” on the monitor display, outputs a voice, or the registered e-mail address of the energy manager. Or send.
  • FIG. 30 is a screen G20 showing the power supply / demand situation that the HEMS 20 or the like displays on the monitor display.
  • the screen G20 showing the power supply and demand situation includes, for example, a region GP21 for displaying various data in a graph, a region GP22 for displaying various data in numerical values or characters, and a region GP23 for displaying points.
  • prediction of power demand in the region for example, prediction of power demand in the region, prediction of power supply in the region, prediction of surplus power generated in the region, prediction of power demand in the customer, and The prediction of power supply and the prediction of surplus power at the customer can be displayed. Furthermore, it is possible to display actual values of power demand and power supply, power charges, and the like of regions and consumers on the screen G20.
  • FIG. 31 shows a screen G30 displaying the amount of carbon dioxide emission.
  • the screen G30 can include a region GP31 indicating the amount of carbon dioxide emission in the entire region and a region GP32 indicating the amount of carbon dioxide emission in the consumer.
  • FIG. 32 shows a screen G40 that displays an incentive.
  • the screen G40 includes a plurality of areas GP41-GP45.
  • a region GP41 indicates a change in surplus power when the plan information D20 is achieved.
  • the area GP42 displays a message prompting the use of surplus power.
  • a region GP43 shows an upper limit value and a lower limit value of surplus power.
  • a region GP44 indicates a method for consuming surplus power for each device.
  • a region GP45 indicates a device (such as PV) whose operation should be stopped in a time zone where surplus power is generated.
  • FIG. 33 shows another example of a screen displayed on the customer side.
  • the information display screen G50 includes, for example, a date column GP51, an incentive information column GP52, and an incentive performance column GP53.
  • the incentive information column GP52 includes, for example, a target GP521 to which an incentive is given, a content GP522 of the incentive, and a time GP523 to which the incentive is given.
  • FIG. 33 shows that 1 point is awarded for every 1 kWh when a water heater is used in the time zone from 12:00 to 14:00. Furthermore, it is shown that when the air conditioner is stopped in the time zone from 12:00 to 14:00, 1 point is awarded every time the power consumption of 1 kWh is saved.
  • the incentive achievement column GP53 includes, for example, the incentive use achievement GP531 and the achievement GP532 of the given points.
  • FIG. 33 shows that 2 points are given because the water heater uses 2 kWh of surplus power. Furthermore, it is shown that 2 points were given because the air conditioner was stopped. In this way, contents that contribute to the consumption of surplus power are collected and managed every day.
  • FIG. 34 shows how the supply and demand information is compressed and managed. As shown in FIG. 34 (a), the supply and demand information is acquired from each consumer at a short cycle of, for example, about 3 minutes. Accordingly, the amount of supply and demand information stored in the CEMS 10 increases day by day.
  • the low frequency component of the supply and demand information is extracted and converted into data indicating a trend.
  • an envelope of a value indicated by supply and demand information every 3 minutes is detected, and data indicating an overall trend is stored in the CEMS 10. Note that recent supply and demand information can be stored as it is, and converted into trend data and stored when a predetermined time has elapsed.

Abstract

The present invention efficiently uses regional power by consuming surplus power in the region in which the surplus power is generated. A CEMS (10) acquires information expressing power supply and demand from intraregional consumer devices (HEMS (20), BEMS (30), FEMS (40), EV-EMS (50), etc.). The CEMS (10) estimates surplus power generated in the region, calculates an incentive for promoting the consumption of surplus power, and notifies consumers of the incentive.

Description

電力管理システム及び電力管理方法Power management system and power management method
 本発明は、電力管理システム及び電力管理方法に関する。 The present invention relates to a power management system and a power management method.
 電力会社等の電力供給者から各需要家(個人住宅、ビルディング、工場等)に商用電源を供給するための経路及び電気設備を、電力系統と呼ぶ。従来は、一部の大規模需要家を除いて、各需要家は、電力系統からの商用電源のみを使用していた。 A path and electrical equipment for supplying commercial power from a power supplier such as an electric power company to each consumer (personal house, building, factory, etc.) are called a power system. Conventionally, except for some large-scale customers, each customer uses only commercial power from the power system.
 しかし、近年、いわゆる低炭素社会への対応が急がれており、太陽光発電、風力発電、ヒートポンプ、燃料電池等の、自然環境への負荷が少ない電源の普及が望まれている。それらの電源は各需要家毎に設けられるため、都市から離れた場所に設けられる従来の大規模発電所に対して、分散電源と呼ばれる(特許文献1,2)。 However, in recent years, the response to so-called low-carbon societies has been urgently required, and the spread of power sources with low impact on the natural environment, such as solar power generation, wind power generation, heat pumps, and fuel cells, is desired. Since these power sources are provided for each consumer, they are called distributed power sources for conventional large-scale power plants that are located away from the city (Patent Documents 1 and 2).
特開2007-336796号公報JP 2007-336796 A 特開2008-271777号公報JP 2008-271777 A
 分散電源の普及率が低く、その発電量も比較的少なかった頃は、電力系統から供給される電力の消費量を抑制するために、分散電源が補助的に用いられていた。これに対し、近年では、分散電源の普及率も増大しており、かつ、その発電量も増加している。 When the spread rate of the distributed power source was low and the amount of power generation was relatively small, the distributed power source was used as an auxiliary to suppress the consumption of power supplied from the power system. On the other hand, in recent years, the penetration rate of distributed power sources has increased and the amount of power generation has also increased.
 従って、例えば、昼間の時間帯には、各需要家で消費される電力よりも各需要家で発電される電力の方が大きくなり、余剰電力が生じる場合がある。例えば、日中の住宅街等では、家族の一部が外出するため、その家の電力消費量は低下する。しかし、太陽光発電装置は、住人の有無とは無関係に発電する。太陽光発電装置の発電量が、その住宅の電力消費量を上回ると、余剰電力が生じる。 Therefore, for example, during the daytime hours, the power generated by each consumer is larger than the power consumed by each consumer, and surplus power may be generated. For example, in a residential area during the day, since a part of the family goes out, the power consumption of the house decreases. However, the photovoltaic power generator generates power regardless of the presence or absence of a resident. When the amount of power generated by the solar power generation device exceeds the power consumption of the house, surplus power is generated.
 余剰電力は、電力供給者に売却することもできる。しかし、一般的に、自然エネルギを利用する分散電源は、発電量の変動が大きい。従って、電力系統が分散電源からの電力を受け入れるためには、変電設備及び配電網等を改善したり、または、補強したりする必要がある。各分散電源から電力系統に流れ込む電力量が変動すると、電力系統から各需要家に供給される電力の周波数が変動し、品質が低下するためである。 Surplus power can be sold to power suppliers. However, in general, a distributed power source that uses natural energy has a large amount of power generation. Therefore, in order for the power system to receive power from the distributed power source, it is necessary to improve or reinforce the substation equipment and the distribution network. This is because if the amount of power flowing from each distributed power source into the power system varies, the frequency of the power supplied from the power system to each consumer varies and the quality deteriorates.
 さらに、従来技術では、各需要家毎に分散電源を管理しており、ある需要家で余った電力を他の需要家に供給して消費させるのが難しい。 Furthermore, in the conventional technology, the distributed power source is managed for each consumer, and it is difficult for one consumer to supply and consume surplus power to other consumers.
 このように、従来技術では、地域内の各分散電源から出力される電力を有効に利用することができず、電力系統への売却も既存設備の許容範囲内に止められている。つまり、地域内の余剰電力は、無駄に捨てられることが多く、有効利用されていない。 Thus, in the conventional technology, the power output from each distributed power source in the region cannot be used effectively, and the sale to the power system is also stopped within the allowable range of the existing facilities. That is, surplus power in the region is often wasted and is not effectively used.
 一方、地域内で各分散電源の電力を有効に利用するためには、地域内の各需要家と電力系統とを接続する配電網の構成を把握する必要がある。例えば、発電量の多い家から電力消費量の多い家に、電力を融通するためには、配電網の構成が不可欠である。しかし、配電網の構成は、重要な極秘情報であるため入手は難しく、その管理も困難である。 On the other hand, in order to effectively use the power of each distributed power source in the region, it is necessary to grasp the configuration of the distribution network that connects each customer in the region and the power system. For example, a distribution network is indispensable in order to pass power from a house with a large amount of power generation to a house with a large amount of power consumption. However, since the configuration of the distribution network is important and confidential information, it is difficult to obtain and manage.
 そこで、本発明の目的は、所定区域での余剰電力を予測して、余剰電力量を低減させることができるようにした電力管理システム及び電力管理方法を提供することにある。本発明の他の目的は、所定区域内の余剰電力を低減し、かつ、需要家及び設備の位置と地図とに基づいて配電網の構成を推定できるようにした電力管理システム及び電力管理方法を提供することにある。発明の更なる目的は、後述する実施形態の記載から明らかになるであろう。 Therefore, an object of the present invention is to provide a power management system and a power management method that can reduce surplus power by predicting surplus power in a predetermined area. Another object of the present invention is to provide a power management system and a power management method capable of reducing surplus power in a predetermined area and estimating the configuration of a distribution network based on the location and map of consumers and facilities. It is to provide. Further objects of the invention will become clear from the description of the embodiments described later.
 上記課題を解決すべく、本発明に係る電力管理システムは、複数の需要家を含む所定区域毎に設けられる第1電力管理装置と、各需要家に設けられる第2電力管理装置とを含む電力管理システムであって、各第2電力管理装置は、各需要家での電力状態を監視して、電力状態を示す第2管理情報を第1電力管理装置に送信し、第1電力管理装置は、第各2管理情報に基づいて、所定区域における電力需要の総量及び発電量の総量を予測し、電力需要の総量と発電量の総量との差から所定区域における余剰電力量を算出し、余剰電力量を低減させるための情報を含む第1管理情報を作成し、第1管理情報を各第2電力管理装置に送信するようになっている。 In order to solve the above problems, a power management system according to the present invention includes a first power management device provided for each predetermined area including a plurality of consumers, and a second power management device provided for each consumer. It is a management system, each 2nd power management apparatus monitors the electric power state in each consumer, transmits the 2nd management information which shows an electric power state to the 1st power management apparatus, and the 1st power management apparatus Based on the second management information, the total amount of power demand and the amount of power generation in the predetermined area are predicted, and the surplus power amount in the predetermined area is calculated from the difference between the total amount of power demand and the total amount of power generation. First management information including information for reducing the amount of power is created, and the first management information is transmitted to each second power management device.
 「需要家」としては、例えば、個人住宅(戸建て住宅、集合住宅)、各種ビルディング、工場等を挙げることができる。「需要家」は、消費電力及び発電量を管理するための単位である。従って、需要家を電力管理単位と呼び変えることもできる。 Examples of “customers” include private houses (detached houses and apartment houses), various buildings, factories, and the like. A “customer” is a unit for managing power consumption and power generation. Therefore, a consumer can be called a power management unit.
 「所定区域」とは、第1電力管理装置により管理される区域を意味する。例えば、共通の電線を介して電力系統に接続されている複数の需要家が存在する区域を、所定区域と定義することができる。 “Predetermined area” means an area managed by the first power management apparatus. For example, an area where there are a plurality of consumers connected to the power system through a common electric wire can be defined as a predetermined area.
 第1電力管理装置は、所定区域に少なくとも一つ設けられる。第2電力管理装置は、各需要家にそれぞれ設けられる。第1電力管理装置は、余剰電力を低減させるための情報を含む第1管理情報を、各第2電力管理装置に送信する。 At least one first power management device is provided in a predetermined area. The second power management apparatus is provided for each consumer. The first power management apparatus transmits first management information including information for reducing surplus power to each second power management apparatus.
 「第2管理情報」は、例えば、各需要家の電力消費量及び発電量、各需要家の有する一つまたは複数の電気機器(電気的負荷)の状態、時刻等を含むことができる。各第2管理情報には予め優先度を対応付けてもよい。第1電力管理装置は、優先度に基づいて、各第2管理情報を処理することができる。 The “second management information” can include, for example, the power consumption and power generation amount of each consumer, the state of one or more electrical devices (electrical loads) possessed by each consumer, the time, and the like. Each second management information may be associated with a priority in advance. The first power management apparatus can process each second management information based on the priority.
 「第1管理情報」は、例えば、余剰電力の発生する時間帯及び発生量を示す情報、余剰電力を炭酸ガスの排出量に換算した情報、各需要家による余剰電力の消費を促すための所定情報等を含むことができる。所定情報としては、例えば、余剰電力を使用することにより付与されるポイントに関する情報、余剰電力が通常の電気料金よりも安く設定されていることを示す情報、余剰電力を消費することが地球環境に良い影響をもたらすことを示す情報等を挙げることができる。 The “first management information” includes, for example, information indicating the time zone and amount of surplus power generation, information obtained by converting surplus power into carbon dioxide emissions, and a predetermined amount for encouraging consumption of surplus power by each consumer. Information etc. can be included. The predetermined information includes, for example, information on points given by using surplus power, information indicating that surplus power is set at a lower price than normal electricity charges, and consumption of surplus power in the global environment. Information that shows a positive effect can be mentioned.
 各第2電力管理装置は、受信した第1管理情報をそのままで、または加工して、出力させてもよい。例えば、需要家に設けられるディスプレイ装置または音声出力装置等を介して、余剰電力の消費を促す情報を出力させてもよい。 Each second power management apparatus may output the received first management information as it is or after processing it. For example, information that prompts consumption of surplus power may be output via a display device or an audio output device provided in a consumer.
 第1電力管理装置は、各需要家の位置を示す需要家位置情報と、各需要家に電力を供給するための設備の位置を示す設備位置情報と、所定区域を含む地図の情報とに基づいて、設備と各需要家とを接続する配電網を予測することもできる。 The first power management device is based on customer location information indicating the location of each customer, facility location information indicating the location of the facility for supplying power to each customer, and information on a map including a predetermined area. Thus, it is possible to predict a power distribution network connecting the equipment and each consumer.
 第1電力管理装置は、各需要家に電力に関連する情報を提供可能な第3装置に接続されてもよい。第3装置は、各第2管理情報を監視するための監視条件を第1電力管理装置に設定することができる。第1電力管理装置は、各第2管理情報のうち監視条件に一致する情報があるか否かを監視し、監視条件に一致する第2管理情報を発見した場合は、第3装置に通知することができる。 The first power management apparatus may be connected to a third apparatus that can provide information related to power to each consumer. The third device can set a monitoring condition for monitoring each second management information in the first power management device. The first power management apparatus monitors whether there is information that matches the monitoring condition among the second management information, and notifies the third apparatus when the second management information that matches the monitoring condition is found. be able to.
 本発明は、第1電力管理装置、または、電力管理方法として把握することもできる。さらに、本発明の構成の少なくとも一部は、コンピュータプログラムまたはハードウェア回路として実現できるであろう。コンピュータプログラムは、例えば、インターネットのような通信媒体、ハードディスクまたはフラッシュメモリデバイスのような記録媒体を介して、配布することができる。さらに、前記観点の組合せ以外の他の組合せも、本発明の範囲に含まれる。 The present invention can be grasped as the first power management apparatus or the power management method. Furthermore, at least a part of the configuration of the present invention may be realized as a computer program or a hardware circuit. The computer program can be distributed, for example, via a communication medium such as the Internet, a recording medium such as a hard disk or a flash memory device. Furthermore, other combinations other than the combinations of the above viewpoints are also included in the scope of the present invention.
図1は、電力系統と電力管理システムの全体を示す模式図である。FIG. 1 is a schematic diagram showing the entire power system and power management system. 図2は、第1電力管理装置(CEMS)の機能構成と、第1電力管理装置と各第2電力管理装置(HEMS、BEMS、FEMS、EV-EMS、地域発電/蓄電)との接続とを示す説明図である。FIG. 2 shows the functional configuration of the first power management device (CEMS) and the connection between the first power management device and each second power management device (HEMS, BEMS, FEMS, EV-EMS, regional power generation / storage). It is explanatory drawing shown. 図3は、電力管理システムの物理的構成を示す全体図である。FIG. 3 is an overall view showing a physical configuration of the power management system. 図4は、CEMSの構成を示す。FIG. 4 shows the configuration of the CEMS. 図5は、HEMSを備える住宅の構成を示すブロック図である。FIG. 5 is a block diagram illustrating a configuration of a house including a HEMS. 図6は、BEMSを備えるビルディングの構成を示すブロック図である。FIG. 6 is a block diagram illustrating a configuration of a building including BEMS. 図7は、BEMSを備える集合住宅の構成を示すブロック図である。FIG. 7 is a block diagram illustrating a configuration of an apartment house including BEMS. 図8は、FEMSを備える工場の構成を示すブロック図である。FIG. 8 is a block diagram showing a configuration of a factory equipped with FEMS. 図9は、EV-EMSを備える充電ステーションの構成を示すブロック図である。FIG. 9 is a block diagram illustrating a configuration of a charging station including the EV-EMS. 図10は、電力管理システムの機能構成を示す全体図である。FIG. 10 is an overall view showing a functional configuration of the power management system. 図11は、CEMSの一部を構成するEMS情報ハブの機能構成を示す説明図である。FIG. 11 is an explanatory diagram showing a functional configuration of an EMS information hub that constitutes a part of the CEMS. 図12は、CEMSの一部を構成する需要者側CEMSアプリケーションの機能構成を示す説明図である。FIG. 12 is an explanatory diagram showing a functional configuration of a consumer side CEMS application that constitutes a part of the CEMS. 図13は、CEMSの一部を構成する配電自動化システムの機能構成を示す説明図である。FIG. 13 is an explanatory diagram showing a functional configuration of a distribution automation system that constitutes a part of the CEMS. 図14は、CEMSの一部を構成する電力供給者側CEMSアプリケーションの機能構成を示す説明図である。FIG. 14 is an explanatory diagram showing a functional configuration of a power supplier side CEMS application that constitutes a part of the CEMS. 図15は、CEMSの一部を構成するEAMアプリケーションの機能構成を示す説明図である。FIG. 15 is an explanatory diagram showing a functional configuration of an EAM application that constitutes a part of the CEMS. 図16は、EMS情報ハブの備える共通APIの機能構成を示す説明図である。FIG. 16 is an explanatory diagram showing a functional configuration of a common API included in the EMS information hub. 図17は、需要家及び設備の位置と地図とに基づいて配電網の構成を推測する様子を示す説明図である。FIG. 17 is an explanatory diagram illustrating a state in which the configuration of the power distribution network is estimated based on the location of the customer and the facility and the map. 図18は、地域内の需給バランスを予測してインセンティブ情報を作成する様子を示す説明図である。FIG. 18 is an explanatory diagram showing a state in which incentive information is created by predicting a supply and demand balance in a region. 図19は、各需要家からCEMSに送信される需給情報の構成例を示す説明図である。FIG. 19 is an explanatory diagram illustrating a configuration example of supply and demand information transmitted from each customer to the CEMS. 図20は、CEMSから各需要家に配信される計画情報の構成例を示す説明図である。FIG. 20 is an explanatory diagram illustrating a configuration example of plan information distributed from the CEMS to each consumer. 図21は、CEMSから各需要家に配信される二酸化炭素情報の構成例を示す説明図である。FIG. 21 is an explanatory diagram showing a configuration example of carbon dioxide information distributed from CEMS to each consumer. 図22は、CEMSの全体動作を示すフローチャートである。FIG. 22 is a flowchart showing the overall operation of the CEMS. 図23は、需要家側の装置から需給情報を送信する処理を示すフローチャートである。FIG. 23 is a flowchart showing a process of transmitting supply and demand information from the customer side device. 図24は、共通アダプタI/Fが優先度に応じて需給情報を処理する様子を示す模式図である。FIG. 24 is a schematic diagram illustrating how the common adapter I / F processes supply and demand information according to priority. 図25は、機器毎の優先度を管理するテーブルの一例を示す。FIG. 25 shows an example of a table for managing the priority for each device. 図26は、需要家毎に優先度を管理するテーブルの一例を示す。FIG. 26 shows an example of a table for managing priorities for each consumer. 図27は、共通データ処理機能が、サービス提供者等から設定される監視条件に基づいて需給情報を監視する様子を示す模式図である。FIG. 27 is a schematic diagram illustrating how the common data processing function monitors supply and demand information based on monitoring conditions set by a service provider or the like. 図28は、共通データ処理機能が、アクセス制御を行う様子を示す模式図である。FIG. 28 is a schematic diagram showing how the common data processing function performs access control. 図29は、需要家側の装置が計画情報を受信した場合の処理を示すフローチャートである。FIG. 29 is a flowchart showing a process when the apparatus on the customer side receives the plan information. 図30は、電力の需給情報を表示する画面例である。FIG. 30 is an example of a screen that displays power supply and demand information. 図31は、二酸化炭素の排出量を表示する画面例である。FIG. 31 is an example of a screen that displays carbon dioxide emissions. 図32は、余剰電力を消費することについてのインセンティブを表示する画面例を示す。FIG. 32 shows an example of a screen that displays an incentive for consuming surplus power. 図33は、需要家側で表示させる画面の他の例を示す。FIG. 33 shows another example of a screen displayed on the customer side. 図34は、計測データを集約して保存する様子を示す模式図である。FIG. 34 is a schematic diagram showing how measurement data is collected and stored. 図35は、配電網情報を示す配電網テーブルの一例を示す。FIG. 35 shows an example of a distribution network table showing distribution network information.
 以下、図面に基づいて、本発明の実施の形態を説明する。本実施形態では、以下に詳述するように、所定区域に設けられる第1電力管理装置(CEMS10)は、所定区域に存在する各需要家側の装置20,30,40,50,60と通信し、所定区域での電力の需給バランスを予測する。第1電力管理装置は、需給バランスの予測結果から余剰電力を算出し、余剰電力の消費を各需要家に促す。これにより、所定区域で発電された電力を、その区域内で優先的に消費させることができ、いわゆる地産地消が実現する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present embodiment, as will be described in detail below, the first power management device (CEMS 10) provided in the predetermined area communicates with the devices 20, 30, 40, 50, 60 on each customer side existing in the predetermined area. The power supply / demand balance in a predetermined area is predicted. The first power management device calculates surplus power from the prediction result of the supply and demand balance, and prompts each consumer to consume surplus power. Thereby, the electric power generated in the predetermined area can be preferentially consumed in the area, and so-called local production for local consumption is realized.
 さらに、本実施形態では、後述のように、各需要家及び設備の位置情報と地図情報とに基づいて、所定区域の配電網の構成を予測できる。従って、各需要家間の接続状態を考慮して、ある需要家で生産された電力を他の需要家に供給等することができる。これにより、所定区域内の電力の需給をより細かく管理できる。 Furthermore, in this embodiment, as will be described later, the configuration of the power distribution network in a predetermined area can be predicted based on the location information and map information of each customer and facility. Therefore, the electric power produced by a certain consumer can be supplied to other consumers in consideration of the connection state between each consumer. Thereby, the supply and demand of electric power in a predetermined area can be managed more finely.
 図1は、各区域毎の電力管理システムと電力系統との関係を模式的に示す全体構成図である。電力系統システム1は、発電所2,3で生成された電力を各需要家に供給するためのシステムであり、発電機能、変電機能、送電機能及び配電機能を含む。本実施例では、電力系統システム1は、交流電力を各需要家に供給する場合を説明する。しかし、交流電力を供給するシステムに代えて、直流電力を各需要家に供給するシステムでもよい。 FIG. 1 is an overall configuration diagram schematically showing a relationship between a power management system and a power system for each area. The power system 1 is a system for supplying electric power generated at the power plants 2 and 3 to each consumer, and includes a power generation function, a power transformation function, a power transmission function, and a power distribution function. In the present embodiment, the power system 1 describes a case where AC power is supplied to each consumer. However, instead of a system that supplies AC power, a system that supplies DC power to each consumer may be used.
 集中電源2は、例えば、火力発電所、水力発電所、原子力発電所のような大規模発電所である。分散電源3は、例えば、比較的大規模な風力発電所または太陽光発電所あるいは太陽熱発電所等である。分散電源3は、系統側に属するため、系統側分散電源と呼ぶことができる。分散電源3は、比較的大規模な蓄電池3Aを備える。風力発電機等で発電された電力を蓄電池3Aに蓄えることにより、電力を有効に利用できる。 The central power supply 2 is a large-scale power plant such as a thermal power plant, a hydro power plant, or a nuclear power plant. The distributed power source 3 is, for example, a relatively large-scale wind power plant, solar power plant, solar thermal power plant, or the like. Since the distributed power source 3 belongs to the system side, it can be called a system side distributed power source. The distributed power supply 3 includes a relatively large-scale storage battery 3A. By storing the power generated by a wind power generator or the like in the storage battery 3A, the power can be used effectively.
 集中電源2及び分散電源3で生成された電力は、送電所4に送られて、所定の高電圧に昇圧される。送電所4は、蓄電池4Aを備えることもできる。その蓄電池4Aに、集中電源2または分散電源3からの電力の一部を蓄えることができる。 The electric power generated by the centralized power supply 2 and the distributed power supply 3 is sent to the power transmission station 4 and boosted to a predetermined high voltage. The power transmission station 4 can also include a storage battery 4A. A part of the power from the centralized power supply 2 or the distributed power supply 3 can be stored in the storage battery 4A.
 送電所4は、送電網6を介して、各配電用変電所5(1),5(2)に接続されており、高電圧の交流電力を各配電用変電所5(1),5(2)に供給する。送電網6は、一つまたは複数の変電所を備えることができるが、図1では省略している。 The power transmission station 4 is connected to each distribution substation 5 (1), 5 (2) via a power transmission network 6, and high-voltage AC power is supplied to each distribution substation 5 (1), 5 ( 2). The power transmission network 6 may include one or a plurality of substations, but is omitted in FIG.
 配電用変電所5(1),5(2)は、送電所4からの電力の電圧値を低下させて、各需要家に所定電圧の電力を供給する。特に区別しない場合は、配電用変電所5と呼ぶ。各配電用変電所5は、複数の電力供給線7を介して、各需要家に電力を供給する。 The distribution substations 5 (1) and 5 (2) reduce the voltage value of the power from the power transmission station 4 and supply power of a predetermined voltage to each consumer. When not particularly distinguished, it is referred to as a distribution substation 5. Each distribution substation 5 supplies electric power to each consumer via a plurality of power supply lines 7.
 図1の例では、一方の配電用変電所5(1)は、複数の電力供給線7(1a),7(1n)を備えている。他方の配電用変電所5(2)は、他の複数の電力供給線7(2a),7(2n)を備えている。特に区別しない場合は、電力供給線7と呼ぶ。 1, one distribution substation 5 (1) includes a plurality of power supply lines 7 (1a) and 7 (1n). The other distribution substation 5 (2) includes a plurality of other power supply lines 7 (2a) and 7 (2n). When not particularly distinguished, it is referred to as a power supply line 7.
 各電力供給線7には、CEMS10が一つずつ設けられる。具体的には、電力供給線7(1a)にはCEMS10(1a)が、電力供給線7(1n)にはCEMS10(1n)が、電力供給線7(2a)にはCEMS10(2a)が、電力供給線7(2n)にはCEMS(2n)が、設けられている。特に区別しない場合、CEMS10と呼ぶ。CEMS10は「第1電力管理装置」に該当する。 Each power supply line 7 is provided with one CEMS 10. Specifically, the CEMS 10 (1a) is provided for the power supply line 7 (1a), the CEMS 10 (1n) is provided for the power supply line 7 (1n), and the CEMS 10 (2a) is provided for the power supply line 7 (2a). A CEMS (2n) is provided in the power supply line 7 (2n). Unless otherwise distinguished, it is called CEMS10. The CEMS 10 corresponds to a “first power management device”.
 図1に示すHEMS(Home Energy Management System)20、BEMS(Building and Energy Management System)30、FEMS(Factory Energy Management
System)40、EV-EMS(Electric Vehicle-Energy Management System)50は、各需要家に設けられる装置であり、「第2電力管理装置」に該当する。それら各装置20,30,40,50は、CEMS10により管理される。なお、各需要家には、図3で後述するように、符号200,300A,300B,400,500が与えられる。
HEMS (Home Energy Management System) 20, BEMS (Building and Energy Management System) 30, FEMS (Factory Energy Management) shown in FIG.
System) 40 and EV-EMS (Electric Vehicle-Energy Management System) 50 are devices provided in each consumer and correspond to a “second power management device”. Each of these devices 20, 30, 40, 50 is managed by the CEMS 10. Each customer is given reference numerals 200, 300A, 300B, 400, and 500, as will be described later with reference to FIG.
 各電力供給線7は、所定区域毎に設けられる。例えば、所定の広さの地域をカバーするようにして電力供給線7が設けられる。一つの電力供給線7が担当する地域の広さを第1サイズとした場合、複数の電力供給線7を備える配電用変電所5が担当する地域の広さは、第1サイズよりも大きい第2サイズとなる。 Each power supply line 7 is provided for each predetermined area. For example, the power supply line 7 is provided so as to cover an area of a predetermined area. In the case where the area size of one power supply line 7 is the first size, the area size of the distribution substation 5 including the plurality of power supply lines 7 is larger than the first size. 2 sizes.
 電力供給線7毎にCEMS10が設けられるため、第1サイズの広さを有する第1地域は、例えば、CEMS担当地域と呼ぶことができる。配電用変電所5が担当する第2サイズの広さを有する第2地域は、例えば配電用変電所担当地域と呼ぶこともできる。 Since the CEMS 10 is provided for each power supply line 7, the first area having the first size can be referred to as a CEMS charge area, for example. The second area having the size of the second size that the distribution substation 5 is in charge of can be called, for example, the distribution substation charge area.
 本実施例では、後述のように、CEMS10により、第1地域で生じた電力をできるだけ第1地域内で消費させる。さらに、本実施例では、同一の配電用変電所5に接続されている電力供給線7同士で電力を融通することもできる。これにより、第2地域内で発生した電力を第2地域内で消費させることができる。つまり、一方の第1地域で余った電力を、共通の配電用変電所5の管理下にある他方の第1地域に供給することもできる。このように、本実施例では、管理地域の広さに応じた複数の段階で、再生可能エネルギを効率的に消費させる。 In the present embodiment, as will be described later, the power generated in the first region is consumed in the first region as much as possible by the CEMS 10. Furthermore, in this embodiment, power can be interchanged between the power supply lines 7 connected to the same distribution substation 5. Thereby, the electric power generated in the second area can be consumed in the second area. That is, the surplus power in one first region can be supplied to the other first region under the management of the common distribution substation 5. Thus, in this embodiment, renewable energy is efficiently consumed at a plurality of stages according to the size of the management area.
 図2は、CEMS10の主要な機能構成を模式的に示す。物理的構成は図3及び図4で後述する。本発明は、図2に示された構成に限定されない。図2は、実施例の理解のために用意されたもので、本発明の範囲を限定するものではない。なお、図2以外の他の図面も、本発明の範囲を限定しないことは明らかである。 FIG. 2 schematically shows the main functional configuration of the CEMS 10. The physical configuration will be described later with reference to FIGS. The present invention is not limited to the configuration shown in FIG. FIG. 2 is provided for understanding the embodiment and is not intended to limit the scope of the present invention. It is obvious that other drawings than FIG. 2 do not limit the scope of the present invention.
 CEMS10は、所定地域(上述の第1地域)毎に設けられ、所定地域に属する各需要家での電力状態を管理する。電力状態には、発電の状態、及び/または、電力消費の状態が含まれる。 The CEMS 10 is provided for each predetermined area (the first area described above) and manages the power state of each customer belonging to the predetermined area. The power state includes a state of power generation and / or a state of power consumption.
 CEMS10の詳細な機能構成は図10で後述する。図2のCEMS10は、需給調整機能110と、EMS情報制御ハブ機能120(図10参照)と、を備える。EMS情報制御ハブ機能120は、例えば、共通アダプタI/F121と、共通API(Application Programming Interface)122と、共通データ処理機能123と、共通データ管理機能124と、データベース群125と、セキュリティ機能126とを備える。需給調整機能110は、図10等では需要者側CEMSアプリケーション110と呼ばれる。EMS情報制御ハブ機能120は、図10等ではEMS情報制御ハブ120と呼ばれる。 The detailed functional configuration of the CEMS 10 will be described later with reference to FIG. The CEMS 10 in FIG. 2 includes a supply and demand adjustment function 110 and an EMS information control hub function 120 (see FIG. 10). The EMS information control hub function 120 includes, for example, a common adapter I / F 121, a common API (Application Programming Interface) 122, a common data processing function 123, a common data management function 124, a database group 125, and a security function 126. Is provided. The supply and demand adjustment function 110 is called a consumer side CEMS application 110 in FIG. The EMS information control hub function 120 is called an EMS information control hub 120 in FIG.
 需給調整機能110は、CEMS10の担当する第1地域で生じる余剰電力量を予測し、その余剰電力を少なくさせるための情報を作成する。需給調整機能110は、例えば、第1地域における電力需要及び電力供給を予測する機能と、第1地域における電力需要及び電力供給の実績値を管理する機能と、第1地域における二酸化炭素ガスの排出量を算出する機能と、余剰電力の消費に関するインセンティブを算出する機能と、算出されたインセンティブを各需要家に提示する機能と、を備える。 The supply and demand adjustment function 110 predicts the amount of surplus power generated in the first region in charge of the CEMS 10 and creates information for reducing the surplus power. The supply and demand adjustment function 110 includes, for example, a function of predicting power demand and power supply in the first region, a function of managing actual values of power demand and power supply in the first region, and emission of carbon dioxide gas in the first region. A function for calculating the amount, a function for calculating an incentive for consumption of surplus power, and a function for presenting the calculated incentive to each consumer.
 EMS情報制御ハブ機能120は、各需要家側の装置20,30,40,50,60から収集されるデータを処理し、保存し、必要に応じて外部に提供する。地域の発電または/及び地域の蓄電を行うステーション60は、図3で後述する。 EMS information control hub function 120 processes and stores data collected from devices 20, 30, 40, 50, 60 on each customer side, and provides it to the outside as needed. The station 60 that performs local power generation and / or local power storage will be described later with reference to FIG.
 共通アダプタI/F121は、各需要家側の装置20,30,40,50,60が有する共通アダプタCAと双方向通信するためのインターフェースである。共通アダプタCAの役割については、図12で後述する。 The common adapter I / F 121 is an interface for bidirectional communication with the common adapter CA included in each customer- side device 20, 30, 40, 50, 60. The role of the common adapter CA will be described later with reference to FIG.
 共通API122は、サービス提供者90Aまたはアプリケーション開発者90Bのような外部業者と双方向通信するためのインターフェースである。EMS情報制御ハブ120は、地域のEMSに関するデータを外部業者90A,90Bに提供する。サービス提供者90Aとアプリケーション開発者90Bを、外部業者90と呼ぶ場合がある。 The common API 122 is an interface for two-way communication with an external provider such as the service provider 90A or the application developer 90B. The EMS information control hub 120 provides data regarding the local EMS to the external vendors 90A and 90B. The service provider 90A and the application developer 90B may be referred to as external contractors 90.
 外部業者90としては、例えば、各需要家で使用されている各種製品の製造者または販売者、天候情報を提供する天気予報業者、電力に関する助言を行うコンサルタント会社、などを挙げることができる。 Examples of the external supplier 90 include a manufacturer or a seller of various products used by each consumer, a weather forecaster that provides weather information, and a consultant company that provides advice on electric power.
 共通データ処理機能123は、各需要家側の装置20,30,40,50,60等から取得したデータを、予め定義された共通データとして処理する。共通データ管理機能124は、共通データをデータベース群125に記憶させる。データベース群125は、第1地域のEMSに関する各種情報を記憶する。 The common data processing function 123 processes the data acquired from each customer side device 20, 30, 40, 50, 60, etc. as predefined common data. The common data management function 124 stores common data in the database group 125. The database group 125 stores various information related to the EMS in the first region.
 セキュリティ機能126は、CEMSと各需要家側の装置20,30,40,50,60等の通信の信頼性及び安全性を確保する。セキュリティ機能126は、通信相手を認証したり、通信内容を暗号化したりする。 The security function 126 ensures the reliability and safety of communication between the CEMS and each customer- side device 20, 30, 40, 50, 60, and the like. The security function 126 authenticates a communication partner and encrypts communication contents.
 図3は、電力管理システムの物理的構成を示す全体図である。先に配電網について説明する。送電網6には、配電用変電所5と高圧用変電所5Hとが接続されている。配電用変電所5は、例えば、数万キロボルトの交流電力を数千キロボルトの交流電力に変換して、各電力供給線7(1),7(2)に供給する。高圧用変電所5Hは、配電用変電所5の出力電圧よりも高い電圧の交流電力を生成し、高圧用の電力供給線7Hに供給する。以下、特に区別しない場合、電力供給線7と呼ぶ。 FIG. 3 is an overall view showing a physical configuration of the power management system. The distribution network will be described first. A distribution substation 5 and a high-voltage substation 5H are connected to the power transmission network 6. For example, the distribution substation 5 converts AC power of tens of thousands of kilovolts into AC power of several thousand kilovolts and supplies the AC power to the power supply lines 7 (1) and 7 (2). The high voltage substation 5H generates AC power having a voltage higher than the output voltage of the distribution substation 5 and supplies the AC power to the high voltage power supply line 7H. Hereinafter, when not particularly distinguished, it is referred to as a power supply line 7.
 各電力供給線7には、例えば、区分開閉器71と、自動電圧調整器(SVR:Step Voltage Regulator)72Aと、静止型無効電力補償装置(SVC:Static Var Compensator)72Bと、電圧調整器72Cとが設けられている。特に区別しない場合、電圧調整器72と呼ぶ。図3の例では、高圧用の電力供給線7Hには電圧調整器72Cが設けられており、電力供給線7(1)にはSVR72A及びSVC72Bが設けられている。さらに、各電力供給線7間には、連系開閉器73が設けられている。 Each power supply line 7 includes, for example, a section switch 71, an automatic voltage regulator (SVR) 72A, a static reactive power compensator (SVC: Static Var Compensator) 72B, and a voltage regulator 72C. And are provided. Unless otherwise distinguished, it is called a voltage regulator 72. In the example of FIG. 3, the voltage regulator 72C is provided in the high-voltage power supply line 7H, and the SVR 72A and the SVC 72B are provided in the power supply line 7 (1). Further, an interconnection switch 73 is provided between the power supply lines 7.
 区分開閉器71は、電力供給線7を開閉するスイッチ回路である。SVR72A及びSVC72Bは、電圧を自動的に調整する回路である。連系開閉器73は、各電力供給線7同士を接続したり、各電力供給線7間を遮断させたりするためのスイッチ回路である。連系開閉器73を制御することにより、一方の電力供給線7に断線等が生じた場合でも、他方の電力供給線7から各需要家に電力を供給できる。 The segment switch 71 is a switch circuit that opens and closes the power supply line 7. The SVR 72A and the SVC 72B are circuits that automatically adjust the voltage. The interconnection switch 73 is a switch circuit for connecting the power supply lines 7 to each other and blocking the power supply lines 7. By controlling the interconnection switch 73, even when a disconnection or the like occurs in one power supply line 7, power can be supplied from the other power supply line 7 to each consumer.
 電力供給線7に設けられる各回路71,72A,72B,73は、通信親局(RTU:Remote Terminal Unit)710,720に接続されている。図10で述べるように、通信親局710,720は、通信子局(FTU:Feeder Terminal Units)750を介して、電力供給線7上の各回路71,72A,72B,73に接続される。 Each circuit 71, 72A, 72B, 73 provided in the power supply line 7 is connected to a communication master station (RTU: Remote Terminal Unit) 710, 720. As described in FIG. 10, the communication master stations 710 and 720 are connected to the respective circuits 71, 72 </ b> A, 72 </ b> B, and 73 on the power supply line 7 through communication slave stations (FTU: Feeder Terminal Units) 750.
 一方の通信親局710は、通信線711を介して、高圧の電力供給線7Hに設けられている回路72Cに接続される。他方の通信親局720は、通信線721を介して、電力供給線7(1)に設けられている回路71,72A,72Bと、電力供給線7(1)と電力供給線7(2)とを接続する連系開閉器73とに接続される。さらに、他方の通信親局720は、他の通信線722を介して、電力供給線7(2)に設けられている回路71と、電力供給線7(2)と電力供給線7Hとを接続する連系開閉器73とに接続される。 One communication master station 710 is connected via a communication line 711 to a circuit 72C provided in the high-voltage power supply line 7H. The other communication master station 720 includes circuits 71, 72A, 72B provided in the power supply line 7 (1), the power supply line 7 (1), and the power supply line 7 (2) via the communication line 721. Are connected to the interconnection switch 73 that connects the two. Further, the other communication master station 720 connects the circuit 71 provided in the power supply line 7 (2), the power supply line 7 (2), and the power supply line 7H through another communication line 722. Connected to the interconnection switch 73.
 各通信親局710,720は、CEMS10に接続される。これにより、CEMS10は、各回路71,72A,72B,73の状態を遠隔監視することができる。 The communication master stations 710 and 720 are connected to the CEMS 10. Thereby, the CEMS 10 can remotely monitor the states of the circuits 71, 72A, 72B, 73.
 電力供給線7は、複数の柱上変圧器74に接続されている。各需要家200,300A,300B,400,500の受電設備は、最寄りの柱上変圧器74を介して、電力供給線7から電力が供給される。なお、全ての需要家が柱上変圧器74を介して電力を受け取るとは限らない。例えば、地中に設けられた電力ケーブルが使用される場合もあるし、電力供給線7から直接電力を受け取る場合もあり得る。 The power supply line 7 is connected to a plurality of pole transformers 74. The power receiving equipment of each customer 200, 300 </ b> A, 300 </ b> B, 400, 500 is supplied with power from the power supply line 7 via the nearest pole transformer 74. Not all consumers receive power via the pole transformer 74. For example, a power cable provided in the ground may be used, or power may be received directly from the power supply line 7.
 図3には、複数種類の需要家、つまり、戸建て住宅200と、ビルディング300Aと、集合住宅300Bと、工場400と、充電ステーション500とが示されている。各需要家の構成はそれぞれ後述するが、簡単に説明すると、戸建て住宅200は、HEMS及びスマートメータ(図中、SM)により、発電量及び電力消費量が管理されている。ビルディング300A及び集合住宅300Bは、BEMS及びスマートメータにより、建物全体の発電量及び電力消費量と、建物に含まれる各区分の発電量及び電力消費量とが管理されている。工場400は、FEMS及びスマートメータにより、発電量及び電力消費量が管理される。充電ステーション500は、EV-EMS及びスマートメータにより、発電量及び電力消費量が管理される。 FIG. 3 shows a plurality of types of consumers, that is, a detached house 200, a building 300A, an apartment house 300B, a factory 400, and a charging station 500. Although the configuration of each consumer will be described later, briefly described, the power generation amount and the power consumption amount of the detached house 200 are managed by a HEMS and a smart meter (SM in the figure). In the building 300A and the apartment house 300B, the power generation amount and power consumption of the entire building and the power generation amount and power consumption of each section included in the building are managed by the BEMS and the smart meter. In the factory 400, the power generation amount and the power consumption amount are managed by the FEMS and the smart meter. The power generation amount and power consumption amount of the charging station 500 are managed by the EV-EMS and the smart meter.
 スマートメータは、通信線810を介して、AMI(Advanced Metering Infrastructure)の有するMDMS(Meter Data Management System)80に接続されている。CEMS10は、MDMS80に接続されており、MDMS80を介して各需要家のスマートメータから発電量及び電力消費量に関するデータ(実測値)を取得する。 The smart meter is connected to an MDMS (Meter Data Management System) 80 of an AMI (Advanced Metering Infrastructure) 80 via a communication line 810. The CEMS 10 is connected to the MDMS 80, and acquires data (actually measured values) related to the power generation amount and the power consumption amount from the smart meter of each consumer via the MDMS 80.
 CEMS10は、他の通信線820を介して、HEMS、BEMS、FEMS、EV-EMSに接続されている。CEMS10は、他の通信線820を用いて、HEMS、BEMS、FEMS、EV-EMSから後述の需給情報を受信したり、後述の計画情報をHEMS、BEMS、FEMS、EV-EMSに送信したりする。 The CEMS 10 is connected to the HEMS, BEMS, FEMS, and EV-EMS via another communication line 820. The CEMS 10 receives other supply and demand information described later from the HEMS, BEMS, FEMS, and EV-EMS using other communication lines 820, and transmits later described plan information to the HEMS, BEMS, FEMS, and EV-EMS. .
 配電用変電所5が担当する地域には、自然エネルギーを利用する分散電源(需要家側分散電源)60を少なくとも一つ設けることができる。分散電源60は、例えば、風力発電所61と、蓄電所62と、太陽光発電所63を備えることができる。さらに、例えば、太陽熱発電所、ヒートポンプ等の装置を備えることもできる。蓄電所62は、風力発電所61及び太陽光発電所63等で発電された、再生可能電力を蓄積する。蓄電所62は、電気エネルギを、例えば、熱エネルギ等の他のエネルギに変換して蓄える構成でもよい。 In the area where the distribution substation 5 is in charge, at least one distributed power source (distributed power source on the customer side) 60 that uses natural energy can be provided. The distributed power supply 60 can include, for example, a wind power plant 61, a power storage plant 62, and a solar power plant 63. Furthermore, for example, devices such as a solar thermal power plant and a heat pump can be provided. The power storage station 62 stores renewable power generated by the wind power plant 61, the solar power plant 63, and the like. The power storage 62 may be configured to convert electrical energy into other energy such as heat energy and store the energy.
 CEMS10は、地域に設けられた分散電源60とも接続されており、分散電源60の発電量及び蓄電量等を管理することができる。 The CEMS 10 is also connected to a distributed power source 60 provided in the area, and can manage the power generation amount, the power storage amount, and the like of the distributed power source 60.
 図4は、CEMS10の物理的構成を示す。CEMS10は、複数のサーバ1101,1102,1201,1202,1203,1301,1302,1303,1401,1402と、複数のデータベース1103,1204,1205,1304,1305,1403等を備える。なお、図4中の「FW」はFireWallの略であり、「DMZ」はDeMilitarized Zoneの略である。CEMS10は、外部のネットワークからの侵入を阻止しており、さらに、CEMS10内にはセキュリティに配慮されたエリアが設けられている。安全なエリア内に、例えば、需給調整機能110とEMS情報制御ハブ機能120及び電力供給者側CEMSアプリケーション140(図10参照)等を実現するためのサーバ及びデータベースの少なくとも一部が設けられる。 FIG. 4 shows the physical configuration of the CEMS 10. The CEMS 10 includes a plurality of servers 1101, 1102, 1201, 1202, 1203, 1301, 1302, 1303, 1401, 1402, a plurality of databases 1103, 1204, 1205, 1304, 1305, 1403, and the like. In FIG. 4, “FW” is an abbreviation for FireWall, and “DMZ” is an abbreviation for DeMilitarizedtarZone. The CEMS 10 prevents intrusion from an external network, and an area in consideration of security is provided in the CEMS 10. In the safe area, for example, at least a part of a server and a database for realizing the supply and demand adjustment function 110, the EMS information control hub function 120, the power supplier side CEMS application 140 (see FIG. 10), and the like are provided.
 配電自動化APサーバ1301と、配電自動化DBサーバ1302と、連携用DBサーバ1303と、マスタDB1304と、スレーブDB1305とは、配電自動化システム130(図10参照)を実現するための構成である。「AP」はアプリケーションの略であり、「DB」はデータベースの略である。 The distribution automation AP server 1301, the distribution automation DB server 1302, the coordination DB server 1303, the master DB 1304, and the slave DB 1305 are configurations for realizing the distribution automation system 130 (see FIG. 10). “AP” is an abbreviation for application, and “DB” is an abbreviation for database.
 配電自動化APサーバ1301は、配電を自動的に制御するためのアプリケーションプログラムを提供する。配電自動化DBサーバ1302は、配電を自動制御するためのデータベースを管理する。連携用DBサーバ1303は、他のシステム(例えば、EMS情報制御ハブ)との間でデータベースを連携させる。 The distribution automation AP server 1301 provides an application program for automatically controlling distribution. The distribution automation DB server 1302 manages a database for automatically controlling distribution. The cooperation DB server 1303 makes a database cooperate with another system (for example, an EMS information control hub).
 マスタDB1304は、例えば、現在の系統情報(SM及びTM)と、設備情報と、負荷を記録した情報と、図形情報とを備える。SVは、系統設備の監視データである。TMは、系統設備の負荷を遠隔測定したデータである。設備情報とは、配電網に設けられている各種設備(系統側の設備)の情報である。図形情報とは、電力系統の配置等を示す情報である。 The master DB 1304 includes, for example, current system information (SM and TM), facility information, information recording a load, and graphic information. SV is system facility monitoring data. TM is data obtained by remotely measuring the load of the system facility. The facility information is information on various facilities (system side facilities) provided in the distribution network. The graphic information is information indicating the arrangement of the power system and the like.
 スレーブDB1305には、マスタDB1304で管理されているデータがコピーされている。紙面の都合上、スレーブDB1305に記憶される情報名は、図4では省略されている。 Data managed by the master DB 1304 is copied to the slave DB 1305. The name of information stored in the slave DB 1305 is omitted in FIG. 4 due to space limitations.
 D-EMS APサーバ1401は、D-EMS DBサーバ1402と、スレーブDB1403と共に、電力供給者側CEMSアプリケーション140を実現するための構成である。ここでD-EMSとは、電力供給者側CEMSを指す。 The D-EMS AP server 1401 is a configuration for realizing the CEMS application 140 on the power supplier side together with the D-EMS DB server 1402 and the slave DB 1403. Here, the D-EMS indicates the power supplier side CEMS.
 D-EMS APサーバ1401は、電力供給者側におけるCEMSアプリケーションを提供する。D-EMS DBサーバ1402は、スレーブDB1403を管理する。スレーブDB1403は、連携用DBサーバ1302により管理されるスレーブDB1305と、ハブDBサーバ1203で管理されるマスタDB1204とに接続される。従って、スレーブDB1403には、例えば、構成情報と、需給情報と、予測情報と、計画情報と、系統情報(SM、TV)とが記憶される。 The D-EMS AP server 1401 provides a CEMS application on the power supplier side. The D-EMS DB server 1402 manages the slave DB 1403. The slave DB 1403 is connected to the slave DB 1305 managed by the cooperation DB server 1302 and the master DB 1204 managed by the hub DB server 1203. Accordingly, the slave DB 1403 stores, for example, configuration information, supply and demand information, prediction information, plan information, and system information (SM, TV).
 構成情報とは、系統側の構成である配電網の構成と、各需要家内部の電気的構成とを含む情報である。本実施例では、後述のように、需要家の位置と設備の位置及び地図に基づいて、配電網の構成を予測できる。但し、電力供給者から配電網情報を取得できるのであれば、その配電網情報を使用してもよい。ここで、電力供給者から配電網情報を取得した場合の方がより好適である。需給のバランス調整(供給及び消費)は、物理的位置が近いかどうかよりも配電網上で近いもの同士で調整する方が、送電ロスの観点または/及び逆潮流の観点からみて望ましいからである。 The configuration information is information including the configuration of the distribution network, which is the configuration on the grid side, and the electrical configuration inside each customer. In the present embodiment, as will be described later, the configuration of the distribution network can be predicted based on the position of the customer, the position of the facility, and the map. However, if the distribution network information can be acquired from the power supplier, the distribution network information may be used. Here, the case where distribution network information is acquired from an electric power supplier is more suitable. This is because balance between supply and demand (supply and consumption) is better adjusted from the viewpoint of power transmission loss and / or reverse power flow, because it is preferable to adjust the balance between power distribution networks rather than whether the physical locations are close. .
 需給情報とは、地域に存在する各需要家毎の電力消費量の実績値及び発電量の実績値と、その地域に関する電力系統システム1側の設備の発電量等を管理する情報である。 The supply and demand information is information for managing the actual value of the power consumption and the actual value of the power generation amount for each consumer existing in the region, the power generation amount of the facility on the power system 1 related to the region, and the like.
 予測情報とは、地域全体の発電量及び電力消費量の予測値を示す。地域全体の発電量の予測値と地域全体の電力消費量の予測値との差は、余剰電力となる(予測発電量-予測電力消費量=余剰電力)。 Prediction information indicates the predicted value of power generation and power consumption for the entire region. The difference between the predicted power generation amount for the entire region and the predicted power consumption amount for the entire region is surplus power (predicted power generation−predicted power consumption = surplus power).
 計画情報とは、地域の余剰電力を低減させるための計画を管理する情報である。構成情報と、需給情報と、予測情報と、計画情報とは、ハブDBサーバ1203で管理されるマスタDB1204からコピーされる。系統情報は、連携用DBサーバ1303で管理されるスレーブDB1305からコピーされる。 The plan information is information for managing a plan for reducing surplus power in the region. The configuration information, supply and demand information, prediction information, and plan information are copied from the master DB 1204 managed by the hub DB server 1203. The system information is copied from the slave DB 1305 managed by the cooperation DB server 1303.
 需要家側CEMS DBサーバ1101と、需要家側CEMS APサーバ1102と、スレーブDB1103とは、需要家側CEMSアプリケーション110(需給調整機能)を実現するための構成である。 The customer-side CEMS DB server 1101, the customer-side CEMS AP server 1102, and the slave DB 1103 are configured to realize the customer-side CEMS application 110 (supply / demand adjustment function).
 需要家側CEMS DBサーバ1101は、スレーブDB1103を管理する。需要家側CEMS APサーバ1102は、需要家側のCEMSアプリケーションを提供する。スレーブDB1103は、ハブDBサーバ1203で管理されるマスタDB1204に接続されている。スレーブDB1103には、マスタDB1204から、構成情報と、需給情報と、計画情報と、天気情報と、地図情報等がコピーされる。 The customer side CEMS DB server 1101 manages the slave DB 1103. The customer side CEMS AP server 1102 provides a customer side CEMS application. The slave DB 1103 is connected to the master DB 1204 managed by the hub DB server 1203. Configuration information, supply and demand information, plan information, weather information, map information, and the like are copied from the master DB 1204 to the slave DB 1103.
 ハブフロントサーバ1201と、サービス向けフロントサーバ1203と、ハブDBサーバ1203と、マスタDB1204と、スレーブDB1205とは、EMS情報制御ハブ120を実現するための構成である。 The hub front server 1201, the service front server 1203, the hub DB server 1203, the master DB 1204, and the slave DB 1205 are configured to realize the EMS information control hub 120.
 ハブフロントサーバ1201は、各需要家と情報を交換するもので、共通アダプタI/F121を備えている。サービス向けフロントサーバ1202は、サービス提供者90Aまたはアプリケーション開発者90Bと情報を交換するもので、共通API122を備えている。ハブDBサーバ1203は、マスタDB1204及びスレーブDB1205を管理する。 The hub front server 1201 exchanges information with each customer, and includes a common adapter I / F 121. The service front server 1202 exchanges information with the service provider 90A or the application developer 90B, and includes a common API 122. The hub DB server 1203 manages the master DB 1204 and the slave DB 1205.
 マスタDB1204は、スレーブDB1403とスレーブDB1103とに接続されている。マスタDB1204は、例えば、構成情報と、需要家と設備及び地域のの需給情報と、予測情報と、計画情報と、天気情報と、地図情報と、需要家側の位置等を示す図形情報と、機器の型番を管理する情報(「機器#」と表示)と、サービス情報とを記憶することができる。 The master DB 1204 is connected to the slave DB 1403 and the slave DB 1103. The master DB 1204 includes, for example, configuration information, demand and supply information of customers, facilities, and regions, prediction information, plan information, weather information, map information, graphic information indicating a position on the customer side, and the like. Information for managing the model number of the device (displayed as “device #”) and service information can be stored.
 機器型番とは、各需要家が有する電気機器(例えば、空調機、温水器、給湯器、冷蔵庫、テレビジョン)等を識別するための情報である。サービス情報は、各需要家に提供される各種サービスを管理するための情報である。 The device model number is information for identifying an electrical device (for example, an air conditioner, a water heater, a water heater, a refrigerator, a television) and the like possessed by each consumer. The service information is information for managing various services provided to each consumer.
 スレーブDB1205は、連携用DBサーバ1303で管理されるスレーブDB1305に接続されている。スレーブDB1205には、スレーブDB1305から、設備情報と、設備の需給情報と、系統の図形情報とがコピーされる。 The slave DB 1205 is connected to the slave DB 1305 managed by the cooperation DB server 1303. Equipment information, equipment supply and demand information, and system graphic information are copied from the slave DB 1305 to the slave DB 1205.
 図5は、一般の戸建て住宅200の電気的構成を模式的に示す。住宅200には、HEMS20と、スマートメータ21と、メータ付き分電盤22と、PCS(Power Conditioning System)23と、PV(PhotoVoltaic)24と、バッテリ25と、複数の電気機器26A-26Hと、PLC(Power Line Communications)27とを備える。 FIG. 5 schematically shows an electrical configuration of a general detached house 200. The house 200 includes a HEMS 20, a smart meter 21, a distribution board 22 with a meter, a PCS (Power Conditioning System) 23, a PV (PhotoVoltaic) 24, a battery 25, a plurality of electric devices 26A-26H, PLC (Power Line Communications) 27 is provided.
 HEMS20は、住宅200内の電力状態(発電と電力消費の両方の状態)を管理しており、CEMS10と接続されている。HEMS20は、例えば、マイクロプロセッサと、メモリと、通信インターフェースと、モニタディスプレイを含むマイクロコンピュータシステムとして構成することができる。以下に述べるBEMS30,FEMS40,EV-EMS50も、マイクロコンピュータシステムとして構成される。 The HEMS 20 manages the power state (both power generation and power consumption) in the house 200 and is connected to the CEMS 10. The HEMS 20 can be configured as a microcomputer system including, for example, a microprocessor, a memory, a communication interface, and a monitor display. The BEMS 30, FEMS 40, and EV-EMS 50 described below are also configured as a microcomputer system.
 モニタディスプレイは、HEMS20に一体化させてもよいし、HEMS20とは別に形成してもよい。さらに、テレビジョン放送等を表示するディスプレイ装置をHEMS20のモニタディスプレイとして利用する構成でもよい。 The monitor display may be integrated with the HEMS 20 or may be formed separately from the HEMS 20. Furthermore, the structure which utilizes the display apparatus which displays a television broadcast etc. as a monitor display of HEMS20 may be sufficient.
 スマートメータ21は、電力系統システム1から購入した電力を計測するための買電電力計と、電力系統システム1に売却した電力を計測するための売電電力計と、図3のMDMS80と通信するための通信回路と、を備える。スマートメータ21とHEMS20とが通信可能な構成でもよい。 The smart meter 21 communicates with the purchased power meter for measuring the power purchased from the power system 1, the sold power meter for measuring the power sold to the power system 1, and the MDMS 80 in FIG. 3. A communication circuit. The smart meter 21 and the HEMS 20 may be configured to communicate with each other.
 メータ付き分電盤22は、住宅200の各部屋に電力を分配するための装置であり、漏電ブレーカ等を備える。分電盤22は、HEMS20に接続されている。 The distribution board 22 with a meter is a device for distributing electric power to each room of the house 200, and includes an earth leakage breaker and the like. The distribution board 22 is connected to the HEMS 20.
 PCS23は、PV(太陽光発電装置)24とバッテリ25を制御する。PCS23は、分電盤22に接続されている。さらに、PCS23は、HEMS20にも接続されている。PV24で発電された電力は、バッテリ25に蓄積される。PCS23は、電圧変動が生じないように、バッテリ25で蓄積された電力を住宅200内の各機器26A-26Hに供給したり、あるいは、スマートメータ21を介して電力系統システム1に売電したりする。 The PCS 23 controls a PV (solar power generation device) 24 and a battery 25. The PCS 23 is connected to the distribution board 22. Further, the PCS 23 is also connected to the HEMS 20. The electric power generated by the PV 24 is stored in the battery 25. The PCS 23 supplies the power stored in the battery 25 to each device 26A-26H in the house 200 or sells the power to the power system 1 via the smart meter 21 so that voltage fluctuation does not occur. To do.
 さらに、住宅200で発電された余分な電力は、同一のCEMS10で管理されている他の需要家に供給できる。または、複数のCEMS10が連携することにより、ある住宅で余った電力を、同一の配電用変電所5に属する他のCEMS10で管理されている他の住宅200またはビルディング300A等に供給することもできる。 Furthermore, excess power generated in the house 200 can be supplied to other customers managed by the same CEMS 10. Alternatively, a plurality of CEMSs 10 cooperate to supply surplus power in a certain house to another house 200 or building 300A managed by another CEMS 10 belonging to the same distribution substation 5 or the like. .
 住宅200内の電気機器としては、例えば、燃料電池26Aと、ヒートポンプ給湯機26Bと、空調機26Cと、冷蔵庫26Dと、乾燥機26Eと、ブラインド26Fと、照明S6Gと、電気自動車(EV/PHV)26Hとを挙げることができる。 Examples of the electric devices in the house 200 include a fuel cell 26A, a heat pump water heater 26B, an air conditioner 26C, a refrigerator 26D, a dryer 26E, a blind 26F, a lighting S6G, and an electric vehicle (EV / PHV). ) 26H.
 ブラインド26Fは、電気モータ等のアクチュエータを備えており、手動または自動的に開閉する。電気自動車には、例えば、バッテリと電気モータだけで走行するEV(Electric Vehicle)と、住宅200の電気コンセントから充電可能なPHV(Plug-in Hybrid Vehicle)とが含まれる。なお、電気自動車に限らず、電気自動二輪車等でもよい。 Blind 26F is provided with an actuator such as an electric motor and opens and closes manually or automatically. The electric vehicle includes, for example, an EV (Electric Vehicle) that runs only with a battery and an electric motor, and a PHV (Plug-in Hybrid Vehicle) that can be charged from an electric outlet of the house 200. In addition, not only an electric vehicle but an electric motorcycle may be used.
 PLC27は、住宅200内の電力配線を通信回線として利用し、HEMS20と各機器26A-26Hとを通信させるための装置である。 The PLC 27 is a device for using the power wiring in the house 200 as a communication line to communicate between the HEMS 20 and each device 26A-26H.
 図6は、ビルディング300Aの電気的構成を模式的に示す。ビルディング300Aは、例えば、BEMS30と、スマートメータ31と、PCS32Aと、PV32と、PCS33Aと、バッテリ33と、各テナント毎の構成34と、電力計測ユニット36Bと、電気機器37Bと、コントローラ38Bと、を備える。 FIG. 6 schematically shows the electrical configuration of the building 300A. The building 300A includes, for example, a BEMS 30, a smart meter 31, a PCS 32A, a PV 32, a PCS 33A, a battery 33, a configuration 34 for each tenant, a power measurement unit 36B, an electric device 37B, a controller 38B, Is provided.
 ビルディング300Aは、共通構成31,32,32A,33,33A,36B,37B,38Bと、ビルディングに入居している各テナント毎の個別構成34とを備える。BEMS30は、ビルディング300Aの共通構成及びテナント毎の個別構成のそれぞれについて、電力状態を管理する。 The building 300A includes a common configuration 31, 32, 32A, 33, 33A, 36B, 37B, and 38B, and an individual configuration 34 for each tenant occupying the building. The BEMS 30 manages the power state of each of the common configuration of the building 300A and the individual configuration for each tenant.
 BEMS30は、ビルディング内の電力状態を管理する。スマートメータ31は、電力系統システム1からビルディング300Aに供給された電力の量(買電量)と、ビルディング300Aから電力系統システム1に供給された電力の量(売電量)とを計測する。スマートメータ31は、MDMS80に、電力量の情報を送信する。 BEMS 30 manages the power state in the building. The smart meter 31 measures the amount of power supplied from the power system 1 to the building 300A (amount of power purchased) and the amount of power supplied from the building 300A to the power system 1 (amount of power sold). The smart meter 31 transmits power amount information to the MDMS 80.
 PV制御用のPCS32Aは、BEMS30からの指示に従って、ビルディング300Aの屋上等に設けられたPV32を管理する。バッテリ制御用のPCS33Aは、BEMS30からの指示に従って、バッテリ33を管理する。 The PCS 32A for PV control manages the PV 32 provided on the roof of the building 300A in accordance with the instruction from the BEMS 30. The battery control PCS 33 </ b> A manages the battery 33 in accordance with an instruction from the BEMS 30.
 PV32で発電された電力は、バッテリ33を介して、共通設備である機器37Bまたは/及び各テナントの機器37Aに供給される。ビルディング300A内で消費できなかった余剰の電力は、電力系統システム1に売却できる。または、ビルディング300Aで余った電力は、同一のCEMS10で管理されている他の需要家に、または、共通の配電用変電所5に属する他のCEMS10で管理されている他の需要家に、供給することもできる。 The electric power generated by the PV 32 is supplied via the battery 33 to the equipment 37B as common equipment and / or the equipment 37A of each tenant. Surplus power that could not be consumed in the building 300 </ b> A can be sold to the power system 1. Alternatively, the surplus power in the building 300A is supplied to other customers managed by the same CEMS 10 or to other customers managed by other CEMS 10 belonging to the common distribution substation 5 You can also
 各テナント毎の構成34には、例えば、スマートメータ35Aと、電力計測ユニット36Aと、電気機器37Aと、コントローラ38Aとが含まれる。スマートメータ35Aは、テナントの消費電力量を計測して、MDMS80に送信する。電力計測ユニット36Aは、各電気機器37A毎に設けられ、各電気機器37Aの消費電力(発電量を計測可能な構成でもよい)を計測する。各電力計測ユニット36Aは、各電気機器37Aの消費電力をBEMS20に送信する。 The configuration 34 for each tenant includes, for example, a smart meter 35A, a power measurement unit 36A, an electric device 37A, and a controller 38A. The smart meter 35A measures the power consumption of the tenant and transmits it to the MDMS 80. The power measurement unit 36A is provided for each electric device 37A, and measures the power consumption of each electric device 37A (a configuration capable of measuring the power generation amount). Each power measurement unit 36 </ b> A transmits the power consumption of each electrical device 37 </ b> A to the BEMS 20.
 テナントの備える電気機器37Aとしては、例えば、空調機、照明、パーソナルコンピュータ及びコピーマシン等のオフィスオートメーション機器を挙げることができる。コントローラ38Aは、テナント内の各電気機器37Aを制御する。コントローラ38Aは、BEMS30に接続されている。 Examples of the electrical equipment 37A provided by the tenant include office automation equipment such as an air conditioner, lighting, a personal computer, and a copy machine. The controller 38A controls each electric device 37A in the tenant. The controller 38A is connected to the BEMS 30.
 ビルディングの共通設備である電気機器37Bとしては、例えば、ヒートポンプ給湯機、冷凍機を挙げることができる。電力計測ユニット36Bは、電気機器37B毎に設けられており、各電気機器37Bの消費電力を計測してBEMS30に送信する。コントローラ38Bは、ビルディング300Aの共通設備である電気機器37Bを制御する。コントローラ38Bは、BEMS30に接続されている。 Examples of the electric equipment 37B that is a common facility of the building include a heat pump water heater and a refrigerator. The power measurement unit 36B is provided for each electrical device 37B, measures the power consumption of each electrical device 37B, and transmits it to the BEMS 30. The controller 38B controls the electrical equipment 37B that is a common facility of the building 300A. The controller 38B is connected to the BEMS 30.
 図7は、集合住宅300Bの電気的構成を模式的に示す。集合住宅300Bは、図6で述べたビルディング300Aと共通する構成30,31,32,32A,33,33A,36B,37B,38Bを備える。さらに、集合住宅300Bは、図5で述べた住宅200の構成も備える。集合住宅300Bは、個人住宅の集合体だからである。集合住宅300B内の各住宅200は、各HEMS20により管理される。集合住宅300Bの共通構成36B,37B,38BはBEMS30により管理される。 FIG. 7 schematically shows the electrical configuration of the apartment house 300B. The collective housing 300B includes configurations 30, 31, 32, 32A, 33, 33A, 36B, 37B, and 38B that are common to the building 300A described in FIG. Furthermore, the apartment house 300B also has the configuration of the house 200 described in FIG. This is because the apartment house 300B is an aggregate of individual houses. Each house 200 in the apartment house 300 </ b> B is managed by each HEMS 20. The common configurations 36B, 37B, and 38B of the apartment house 300B are managed by the BEMS 30.
 図8は、工場400の電気的構成を模式的に示す。工場400は、例えば、FEMS40と、スマートメータ41と、PV42とPV制御用PCS42Aと、バッテリ43と、バッテリ制御用PCS43Aと、コジェネレータ44と、生産設備に関する構成45A,46A,47A,48と、工場内の環境に関する構成45B,46B,47Bとを、備えている。 FIG. 8 schematically shows the electrical configuration of the factory 400. The factory 400 includes, for example, an FEMS 40, a smart meter 41, a PV 42, a PV control PCS 42A, a battery 43, a battery control PCS 43A, a co-generator 44, and configurations 45A, 46A, 47A, 48 relating to production equipment, Configurations 45B, 46B, 47B relating to the environment in the factory are provided.
 FEMS40は、工場400の電力状態を管理する。スマートメータ41は、電力系統システム1から工場400に供給された電力量と、工場400から電力系統システム1に供給した電力量とを計測し、MDMS80に送信する。 The FEMS 40 manages the power state of the factory 400. The smart meter 41 measures the amount of power supplied from the power system 1 to the factory 400 and the amount of power supplied from the factory 400 to the power system 1 and transmits it to the MDMS 80.
 PCS42Aは、FEMS40からの指示に従って、PV42の動作を制御する。PCS43Aは、FEMS40からの指示に従って、バッテリ43の動作を制御する。PV42で発電された電力は、バッテリ43を経由して、工場400内の各機器46A,46Bで消費させることができる。工場400で余った電力は、共通のCEMS10で管理されている他の需要家に、または、共通の配電用変電所5に属する他の需要家に、供給することができる。 The PCS 42A controls the operation of the PV 42 according to the instruction from the FEMS 40. The PCS 43A controls the operation of the battery 43 in accordance with an instruction from the FEMS 40. The electric power generated by the PV 42 can be consumed by the devices 46A and 46B in the factory 400 via the battery 43. The surplus power at the factory 400 can be supplied to other customers managed by the common CEMS 10 or to other customers belonging to the common distribution substation 5.
 生産設備の構成を説明する。工場400は、例えば、プレスマシン、シャーリングマシン、溶接機、射出成型機、包装機等の各種電気機器46Aを備える。電力計測ユニット45Aは、各電気機器46A毎に設けられている。各電力計測ユニット45Aは、各電気機器46Aの消費電力(発電量を計測可能な構成でもよい。以下同様)を計測して、FEMS40に送信する。 Explain the configuration of production equipment. The factory 400 includes various electric devices 46A such as a press machine, a shearing machine, a welding machine, an injection molding machine, and a packaging machine. The power measurement unit 45A is provided for each electrical device 46A. Each power measurement unit 45 </ b> A measures the power consumption of each electrical device 46 </ b> A (a configuration that can measure the amount of power generation. The same applies hereinafter) and transmits the measured power to the FEMS 40.
 コントローラ47Aは、各電気機器46Aを制御する。コントローラ47Aは、生産管理システム48に接続されている。生産管理システム48は、CEMS10から通知された計画情報等に基づいて、コントローラ47Aに指示を与えることができる。 Controller 47A controls each electrical device 46A. The controller 47A is connected to the production management system 48. The production management system 48 can give an instruction to the controller 47A based on the plan information notified from the CEMS 10 or the like.
 工場内の環境に関する構成を説明する。工場の環境に関する電気機器46Bとしては、例えば、空調機、ボイラ、冷凍機、空気圧縮機等を挙げることができる。電力計測ユニット45Bは、各電気機器46B毎に設けられる。各電力計測ユニット45Bは、各電気機器46Bの消費電力を計測して、FEMS40に送信する。 Explain the configuration of the factory environment. Examples of the electrical equipment 46B related to the factory environment include an air conditioner, a boiler, a refrigerator, an air compressor, and the like. The power measurement unit 45B is provided for each electrical device 46B. Each power measurement unit 45B measures the power consumption of each electrical device 46B and transmits it to the FEMS 40.
 図9は、充電ステーション500の電気的構成を模式的に示す。充電ステーション500は、EV(PHVを含む)57に充電するための施設である。充電ステーション500は、例えば、EV-EMS50と、スマートメータ51と、電力計測ユニット52と、充電コンバータ盤53と、PV54Aと、バッテリ54Bと、PCS55と、急速充電端末56Aと、普通充電端末56Bと、キオスク端末58とを備える。 FIG. 9 schematically shows the electrical configuration of the charging station 500. Charging station 500 is a facility for charging EV (including PHV) 57. The charging station 500 includes, for example, an EV-EMS 50, a smart meter 51, a power measurement unit 52, a charging converter board 53, a PV 54A, a battery 54B, a PCS 55, a quick charging terminal 56A, and a normal charging terminal 56B. And a kiosk terminal 58.
 EV-EMS50は、充電ステーション500の電力状態を管理する。スマートメータ51は、電力系統システム1から充電ステーション500に供給された電力量、及び、充電ステーション500から電力系統システム1に供給した電力量を計測し、MDMS80に送信する。 EV-EMS 50 manages the power state of charging station 500. The smart meter 51 measures the amount of power supplied from the power system 1 to the charging station 500 and the amount of power supplied from the charging station 500 to the power system 1, and transmits them to the MDMS 80.
 電力計測ユニット52は、各充電端末56A,56B等での電力量を計測し、EV-EMS50に送信する。 The power measurement unit 52 measures the amount of power at each charging terminal 56A, 56B, etc., and transmits it to the EV-EMS 50.
 PCS55は、EV-EMS50からの指示に従って、PV54Aとバッテリ54Bとを制御する。PV54Aにより発電された電力は、充電ステーション500内で消費することができる。充電ステーション500内の余った電力は、共通のCEMS10で管理されている他の需要家に、または、共通の配電用変電所5に属する他の需要家に、供給することができる。 The PCS 55 controls the PV 54A and the battery 54B according to instructions from the EV-EMS 50. The electric power generated by the PV 54A can be consumed in the charging station 500. The surplus power in the charging station 500 can be supplied to other customers managed by the common CEMS 10 or to other customers belonging to the common distribution substation 5.
 充電コンバータ盤53は、電力系統システム1またはバッテリ54Bから供給された電力を、所定の高電圧を有する電力に変換して、急速充電端末56Aに供給するための装置である。充電コンバータ盤53は、EV-EMS50に接続されている。 The charge converter board 53 is a device for converting the power supplied from the power system 1 or the battery 54B into power having a predetermined high voltage and supplying it to the quick charge terminal 56A. The charge converter board 53 is connected to the EV-EMS 50.
 急速充電端末56Aは、普通充電端末56Bよりも高い電圧でEV57のバッテリを充電する装置である。急速充電端末56Aを用いることにより、比較的短時間で、EV57のバッテリ残量を所定量まで回復させることができる。普通充電端末56Bは、例えば、電力系統システム1から供給される通常の電力で、EV57のバッテリを充電する装置である。 The quick charging terminal 56A is a device that charges the battery of the EV 57 with a voltage higher than that of the normal charging terminal 56B. By using the quick charging terminal 56A, the remaining battery level of the EV 57 can be recovered to a predetermined amount in a relatively short time. The normal charging terminal 56 </ b> B is a device that charges the battery of the EV 57 with normal power supplied from the power system 1, for example.
 キオスク端末58は、急速充電端末56Aを制御するための情報端末である。キオスク端末58は、例えば、利用者認証、充電料金の決済、充電端末56Aの保守、クーポン券の発行等を行う。急速充電端末56Aの使用状況は、キオスク端末58からCEMS10を介して、地域内のユーザまたは地域外のユーザに通知することができる。 The kiosk terminal 58 is an information terminal for controlling the quick charging terminal 56A. The kiosk terminal 58 performs, for example, user authentication, charging fee settlement, charging terminal 56A maintenance, coupon ticket issuance, and the like. The usage status of the quick charging terminal 56A can be notified from the kiosk terminal 58 to a user in the area or a user outside the area via the CEMS 10.
 図10は、電力管理システムの機能に着目した全体構成図である。CEMS10は、例えば、需要者側CEMSアプリケーション110と、EMS情報制御ハブ120と、配電自動化システム130と、電力供給者側CEMSアプリケーション140と、EAMアプリケーション150とを備える。 FIG. 10 is an overall configuration diagram focusing on the function of the power management system. The CEMS 10 includes, for example, a consumer side CEMS application 110, an EMS information control hub 120, a power distribution automation system 130, a power supplier side CEMS application 140, and an EAM application 150.
 配電自動化システム(DMS:Distribution Management System)130は、電力系統システム1から各需要家への電力供給を管理する。例えば、配電自動化システム130は、各需要家に供給される電力の電圧値が一定範囲に収まるように電圧を制御したり、障害の発生した設備を特定したりする。 A distribution automation system (DMS: Distribution Management System) 130 manages power supply from the power system 1 to each consumer. For example, the distribution automation system 130 controls the voltage so that the voltage value of the electric power supplied to each consumer is within a certain range, or identifies the facility where the failure has occurred.
 配電自動化システム130は、RTU710,720とFTU750とを介して、電力供給線7上の各回路(図10ではSWと表示)71,72,73に接続される。配電自動化システム130は、RTU710,720等を介して、各区分開閉器71,電圧調整器72,連系開閉器73等の状態を遠隔監視する。配電自動化システム130については、図13で後述する。 The distribution automation system 130 is connected to each circuit (shown as SW in FIG. 10) 71, 72, 73 on the power supply line 7 via the RTUs 710, 720 and the FTU 750. The distribution automation system 130 remotely monitors the status of each segment switch 71, voltage regulator 72, interconnection switch 73, etc. via the RTUs 710, 720, and the like. The power distribution automation system 130 will be described later with reference to FIG.
 各需要家側の管理装置20,30,40,50,50C,60は、通信線820を介して、CEMS10に接続されている。さらに、各需要家側のスマートメータは、通信線810を介してMDMS80に接続されている。図10では、HEMS20がMDMS80に接続されているかのように示すが、実際には、スマートメータ21がMDMS80に接続される。他の需要家についても同様に、それぞれのスマートメータが通信線810を介してMDMS80に接続される。MDMS80は、配電自動化システム130に接続されており、各スマートメータからの情報を配電自動化システム130に送信する。 The management devices 20, 30, 40, 50, 50C, 60 on each customer side are connected to the CEMS 10 through the communication line 820. Further, each customer-side smart meter is connected to the MDMS 80 via a communication line 810. Although FIG. 10 shows that the HEMS 20 is connected to the MDMS 80, the smart meter 21 is actually connected to the MDMS 80. Similarly for other consumers, each smart meter is connected to the MDMS 80 via the communication line 810. The MDMS 80 is connected to the distribution automation system 130 and transmits information from each smart meter to the distribution automation system 130.
 通信線810は、例えば、電柱74Aを介して各需要家のスマートメータに取り付けることができる。これに代えて、地中の通信ケーブルまたは無線通信を用いて、スマートメータとMDMS80を接続してもよい。 The communication line 810 can be attached to the smart meter of each consumer via the utility pole 74A, for example. Alternatively, the smart meter and the MDMS 80 may be connected using an underground communication cable or wireless communication.
 EVセンタ50Cは、複数のEV57を管理するための施設である。例えば、地域内のユーザは、EVセンタ50Cで管理されている複数のEV57を共同使用できる。 The EV center 50C is a facility for managing a plurality of EVs 57. For example, users in the area can jointly use a plurality of EVs 57 managed by the EV center 50C.
 需要者側CEMSアプリケーション110は、例えば、地域の電力需要及び発電量を予測して、余剰電力を算出し、余剰電力を低減させるための情報を生成する。需要者側CEMSアプリケーション110については、図11で後述する。 The consumer-side CEMS application 110 predicts local power demand and power generation amount, calculates surplus power, and generates information for reducing surplus power, for example. The consumer side CEMS application 110 will be described later with reference to FIG.
 EMS情報制御ハブ120は、例えば、CEMS10で管理される情報(EMS関連情報と呼ぶことができる)の流通等を制御する。EMS情報制御ハブ120は、例えば、サービス提供者90Aまたは/及びアプリケーション開発者90Bのような外部業者のサーバと接続することができる。さらに、EMS情報制御ハブ120は、他の地域を担当するCEMS10と接続することもできる。EMS情報制御ハブ120については、図12で後述する。 The EMS information control hub 120 controls, for example, distribution of information (which can be referred to as EMS related information) managed by the CEMS 10. The EMS information control hub 120 can be connected to a server of an external vendor such as the service provider 90A or / and the application developer 90B. Further, the EMS information control hub 120 can be connected to the CEMS 10 that is responsible for other regions. The EMS information control hub 120 will be described later with reference to FIG.
 電力供給者側CEMSアプリケーション140は、例えば、電力系統システム1側の設備を管理する。電力供給者側CEMSアプリケーション140については、図14で後述する。 The power supplier side CEMS application 140 manages, for example, facilities on the power system 1 side. The power supplier side CEMS application 140 will be described later with reference to FIG.
 EAM(Enterprise Asset Management)アプリケーション150は、例えば、電力系統システム1側の各設備の保守等を担当する。EAMアプリケーション150については、図15で後述する。 The EAM (Enterprise Asset Management) application 150 is responsible for, for example, maintenance of each facility on the power system 1 side. The EAM application 150 will be described later with reference to FIG.
 図11は、需要者側CEMSアプリケーション110の機能を示す。需要者側CEMSアプリケーション110は、例えば、需給予測機能111と、需給バランス予測機能112と、二酸化炭素可視化機能113と、インセンティブ算出機能114と、インセンティブ可視化機能115と、需給実績管理機能116と、各DB117A-117Gと、供給と需要を連携させる機能118とを備えている。 FIG. 11 shows functions of the consumer side CEMS application 110. The consumer-side CEMS application 110 includes, for example, a supply and demand prediction function 111, a supply and demand balance prediction function 112, a carbon dioxide visualization function 113, an incentive calculation function 114, an incentive visualization function 115, a supply and demand performance management function 116, DB 117A-117G and a function 118 for linking supply and demand are provided.
 需給予測機能111は、需給実績機能116で管理される電力の需給実績と天気情報117Eとに基づいて、次サイクルにおける電力の需給を予測する。予測サイクルは、例えば、30分程度に設定される。予測結果は、予測情報DB117Cに記憶される。ここで、電力の需給とは、電力需要と電力供給を示す。電力供給とは、地域に存在する各分散電源60,24,32,42,54Aから発電される電力である。 The supply and demand prediction function 111 predicts the supply and demand of power in the next cycle based on the power supply and demand result managed by the supply and demand result function 116 and the weather information 117E. The prediction cycle is set to about 30 minutes, for example. The prediction result is stored in the prediction information DB 117C. Here, the power supply and demand indicates power demand and power supply. The electric power supply is electric power generated from each distributed power source 60, 24, 32, 42, 54A existing in the region.
 需給バランス予測機能112は、予測された電力需要と予測された電力供給のバランスを時間毎に予測する機能である。予測される電力需要と予測される電力供給とが一致する時間帯では、電力の需給がバランスしている。この場合、地域内の各需要家が必要とする電力は、その地域内の分散電源から供給されるため、電力系統システム1から電力供給を受ける必要はない。 The supply and demand balance prediction function 112 is a function that predicts the balance between the predicted power demand and the predicted power supply for each hour. In the time zone in which the predicted power demand and the predicted power supply coincide, the power supply and demand is balanced. In this case, since the electric power required by each consumer in the area is supplied from the distributed power supply in the area, it is not necessary to receive power supply from the power system 1.
 予測される電力需要よりも、予測される電力供給の方が多い時間帯では、余剰電力が生じる。この場合は、余剰電力の消費を促すための計画情報を、余剰電力の生じる時間帯が始まる前に、地域内の各需要家に向けて配信する。 余 Surplus power is generated in a time period when the predicted power supply is more than the predicted power demand. In this case, plan information for encouraging consumption of surplus power is distributed to each consumer in the area before the time zone when surplus power is generated.
 各需要家に余剰電力の消費を促してもなお余った電力は、配電用変電所5を介して他の地域の需要家に供給できる。あるいは、余剰電力の生じる時間帯では、分散電源を電力管理システムから切り離して、空運転させる構成でもよい。空運転とは、分散電源で発電された電力を使用せずに捨てることを意味する。あるいは、余剰電力を他の配電用変電所5に供給し、遠く離れた別の地域に供給する構成としてもよい。つまり、余剰電力を電力系統システム1に逆潮流させる構成でもよい。 Even if each consumer is encouraged to consume surplus power, the surplus power can be supplied to consumers in other regions via the distribution substation 5. Alternatively, in a time zone in which surplus power is generated, a configuration may be employed in which the distributed power source is disconnected from the power management system and is idled. The idling means that the power generated by the distributed power source is discarded without being used. Or it is good also as a structure which supplies surplus electric power to the other substation 5 for distribution, and supplies it to another distant area. That is, a configuration in which surplus power is allowed to flow backward to the power system 1 may be used.
 二酸化炭素可視化機能113は、地域の電力状態に基づいて、その地域で排出される二酸化炭素の量を算出し、可視化する。地域内の分散電源は、その多くが再生可能な自然エネルギを利用している。従って、地域内の分散電源を多く消費する時間帯では、その地域から排出される二酸化炭素の量は少なくなる。これに対し、集中電源2は、石油または石炭等を消費するため、電力系統システム1からの電力を多く消費する時間帯では、その地域の二酸化炭素の排出量が増大する。二酸化炭素可視化機能113は、地域で排出される二酸化炭素の量を算出し、その値をグラフ化して各需要家に提示する。 The carbon dioxide visualization function 113 calculates and visualizes the amount of carbon dioxide emitted in the area based on the power state of the area. Many of the distributed power sources in the region use renewable natural energy. Therefore, the amount of carbon dioxide emitted from the area is reduced in the time zone where a large amount of distributed power is consumed in the area. On the other hand, since the concentrated power source 2 consumes oil, coal, or the like, the amount of carbon dioxide emission in the region increases in a time zone in which much power from the power system 1 is consumed. The carbon dioxide visualization function 113 calculates the amount of carbon dioxide discharged in the area, graphs the value, and presents it to each consumer.
 インセンティブ算出機能114は、地域で生じた余剰電力を地域内の各需要家に積極的に消費してもらうためのインセンティブを算出する。インセンティブとしては、例えば、ポイントの付与を挙げることができる。指定された時間帯の余剰電力をより多く消費した需要家には、より多くのポイントが与えられる。そのポイントは、例えば、地域で共有するEV57を使用する権利として使ったり、電力系統システム1から購入した電力の代金に充てたりすることができる。 The incentive calculation function 114 calculates an incentive for each consumer in the area to actively consume surplus power generated in the area. Examples of incentives include giving points. More points are given to consumers who have consumed more surplus power during the specified time period. The points can be used, for example, as a right to use the EV 57 shared in the region, or can be used for the power purchased from the power system 1.
 インセンティブ可視化機能115は、算出されたインセンティブに基づいて計画情報を作成する。計画情報とは、余剰電力の発生が予測される時間帯において、余剰電力の消費を促すための情報である。作成された計画情報は、計画情報117Dに記憶される。 The incentive visualization function 115 creates plan information based on the calculated incentive. The plan information is information for encouraging consumption of surplus power in a time zone in which surplus power is expected to be generated. The created plan information is stored in the plan information 117D.
 需給実績管理機能116は、地域の電力需要及び電力供給の実績値を管理する。その需給実績のデータは、需給情報T117Bに記憶される。 The supply and demand performance management function 116 manages the actual power demand and actual power supply values. The supply / demand data is stored in supply / demand information T117B.
 構成情報117Aは、各需要家の電気的構成を示す情報と、配電用変電所5から各需要家の受電設備に至るまでの配電網の構成を示す情報とを記憶する。各需要家の電気的構成は、CEMS10による電力管理サービスに需要家が加入した場合に、その需要家から得ることができる。各需要家の電気的構成を示す情報には、各需要家で使用されている電気機器の種類と、電気機器の消費電力とを含めることができる。 The configuration information 117A stores information indicating the electrical configuration of each consumer and information indicating the configuration of the distribution network from the distribution substation 5 to the power receiving facility of each customer. The electrical configuration of each customer can be obtained from the customer when the customer subscribes to the power management service by the CEMS 10. The information indicating the electrical configuration of each consumer can include the type of electrical equipment used by each consumer and the power consumption of the electrical equipment.
 配電網の構成は、その地域に電力を供給する電力供給者が許可するのであれば、その電力供給者から得てもよい。電力供給者の許可が得られない場合でも、本実施例では、各需要家の位置と、電力系統システム1側の設備の位置と、その地域を含む地図とに基づいて、その地域の配電網の構成を推定できる。 The configuration of the distribution network may be obtained from the power supplier if the power supplier supplying power to the area permits it. Even in the case where the power supplier's permission cannot be obtained, in this embodiment, based on the location of each customer, the location of the facility on the power system 1 side, and the map including the region, the distribution network of that region Can be estimated.
 機器型番情報T117Gには、各需要家で使用されている電気機器を識別するための情報が記憶される。 The device model number information T117G stores information for identifying an electrical device used by each consumer.
 供給と需要とを連携させる機能118は、例えば、意図的な停電または意図しない停電が生じた場合の処理、需要のピークをカットする処理等を行う。 The function 118 for linking supply and demand performs, for example, processing when an intentional power failure or an unintentional power failure occurs, processing for cutting a demand peak, and the like.
 図12は、EMS情報制御ハブ120の機能を示す。上述の通り、EMS情報制御ハブ120は、EMS関連情報の流通等を制御する。EMS情報制御ハブ120は、CEMS10内の各システム110,130,140,150と接続されている。さらに、EMS情報制御ハブ120は、CEMS10の外部に存在する各需要家の装置20,30,40,50,60等と、外部業者90のサーバとにも接続されている。 FIG. 12 shows the functions of the EMS information control hub 120. As described above, the EMS information control hub 120 controls the distribution of EMS related information. The EMS information control hub 120 is connected to each system 110, 130, 140, 150 in the CEMS 10. Furthermore, the EMS information control hub 120 is also connected to each customer's device 20, 30, 40, 50, 60, etc. existing outside the CEMS 10 and a server of an external supplier 90.
 EMS情報制御ハブ120は、共通アダプタI/F121と、共通API122と、共通データ処理機能123と、共通データ管理機能124と、複数のデータベース125A-125Gと、セキュリティ機能126と、ハブ間連携機能127と、システム監視及びシステム運用の機能128を備える。 The EMS information control hub 120 includes a common adapter I / F 121, a common API 122, a common data processing function 123, a common data management function 124, a plurality of databases 125A-125G, a security function 126, and an inter-hub cooperation function 127. System monitoring and system operation function 128.
 共通アダプタI/F121は、上述の通り、HEMS20,BEMS30,FEMS40,EV-EMS50の有する共通アダプタCAと通信するための通信インターフェースである。 The common adapter I / F 121 is a communication interface for communicating with the common adapter CA included in the HEMS 20, BEMS 30, FEMS 40, and EV-EMS 50 as described above.
 共通アダプタI/F121は、各管理装置20,30,40,50等の共通アダプタCAとの間でコネクションを確立し、通信状態を把握し、メッセージを受け渡し、トランザクションを管理する。さらに、共通アダプタI/F121は、フォーマット変換、データ項目及びデータ値の変換または翻訳、識別情報(ID)の変換等も行う。 The common adapter I / F 121 establishes a connection with the common adapter CA such as each management device 20, 30, 40, 50, grasps the communication state, delivers a message, and manages the transaction. Further, the common adapter I / F 121 performs format conversion, conversion or translation of data items and data values, conversion of identification information (ID), and the like.
 共通アダプタCAは、需要者側の管理装置20,30,40,50等に設けられ、共通アダプタI/F121と通信する。共通アダプタCAは、需要家における電力の需給状態の実績値を管理装置から取得して、その実績値をCEMS10との間で取り決められた標準形式のデータに変換し、CEMS10に送信する。 The common adapter CA is provided in the management device 20, 30, 40, 50, etc. on the consumer side, and communicates with the common adapter I / F 121. The common adapter CA acquires the actual value of the power supply and demand state of the customer from the management device, converts the actual value into data in a standard format negotiated with the CEMS 10, and transmits the data to the CEMS 10.
 さらに、共通アダプタCAは、CEMS10から計画情報を受信して、管理装置に送信する。さらに、共通アダプタCAは、通信先が正しいか否かを判断するための認証処理、データを暗号化する暗号化処理、暗号データを復号する復号化処理等も行う。 Furthermore, the common adapter CA receives the plan information from the CEMS 10 and transmits it to the management device. Further, the common adapter CA performs an authentication process for determining whether or not the communication destination is correct, an encryption process for encrypting data, a decryption process for decrypting encrypted data, and the like.
 共通アダプタCAと共通アダプタI/F121とを用いることにより、各需要家の種類、及び、需要家で使用される電気機器の種類に影響されずに、CEMS10と各需要家側との通信を行うことができ、かつ、将来の機能拡張にも容易に対応できる。 By using the common adapter CA and the common adapter I / F 121, communication between the CEMS 10 and each customer side is performed without being affected by the type of each consumer and the type of electrical equipment used by the consumer. And can easily cope with future function expansion.
 共通API122は、外部業者90に、共通のAPIを提供する。これにより、外部業者90は、EMS関連情報の少なくとも一部を利用して、各需要家にサービスを提供することができる。外部業者は、共通API122を利用することにより、より少ない工数で、アプリケーションまたはサービスを開発することができる。 The common API 122 provides a common API to the external contractor 90. Thereby, the external contractor 90 can provide a service to each consumer using at least a part of the EMS related information. By using the common API 122, an external contractor can develop an application or service with less man-hours.
 共通データ処理機能123は、共通アダプタI/F121を介して各需要家から収集された各種の情報について、共通のデータ処理を実施する。共通のデータ処理には、例えば、異常値の監視処理がある。共通データ処理機能123は、予め設定された条件に基づいて、共通アダプタI/F121から受信したデータを検査し、異常なデータを発見した場合は警告を出力する。 The common data processing function 123 performs common data processing on various types of information collected from each customer via the common adapter I / F 121. Common data processing includes, for example, abnormal value monitoring processing. The common data processing function 123 checks the data received from the common adapter I / F 121 based on a preset condition, and outputs a warning if abnormal data is found.
 つまり、共通データ処理機能123は、随時流れ込む多量の時系列データをリアルタイムでモニタリングし、迅速にイベントを検出する。イベント条件は複数設定することができ、かつ、変更可能である。イベント条件は、CEMS10の管理者、外部業者90、需要家が設定することができる。 That is, the common data processing function 123 monitors a large amount of time-series data flowing in at any time in real time, and quickly detects an event. A plurality of event conditions can be set and changed. The event condition can be set by an administrator of the CEMS 10, an external contractor 90, or a customer.
 イベントとしては、例えば、異常に多量の電力を消費している場合、通常値を超えた多量の電力が発電されている場合等がある。共通データ処理機能123でイベントを監視することにより、地域の異常(需要家での電気機器の故障等を含む)を早期に検出することができる。検出されたイベントに基づいて、例えば、火災の発生を予防したり、EVセンタ50Cでの犯罪を検出したりすることができる。従って、地域の電力管理だけでなく、地域の安全性向上にも寄与する。 Events include, for example, when an abnormally large amount of power is consumed or when a large amount of power exceeding the normal value is generated. By monitoring the event with the common data processing function 123, it is possible to detect anomalies in the region (including failure of electrical equipment at the customer) at an early stage. Based on the detected event, for example, the occurrence of a fire can be prevented, or a crime at the EV center 50C can be detected. Therefore, it contributes not only to local power management but also to improving local safety.
 共通データ管理機能124は、各需要家から時々刻々と集められる多量のデータを集約し、利用可能な形態で保持するためのデータモデルとデータ処理機能を提供する。共通データ管理機能124は、収集された多量のデータを、所定のデータベース125A-125Gに格納して、保存する。ここでは、データベースを「情報」と呼ぶ。 The common data management function 124 provides a data model and a data processing function for aggregating a large amount of data collected from time to time from each consumer and holding it in a usable form. The common data management function 124 stores a large amount of collected data in a predetermined database 125A-125G and saves it. Here, the database is called “information”.
 機器型番情報T125Aは、各需要家で使用される電気機器を識別するための情報を管理する。型番に限らず、識別情報(ID)でもよい。各電気機器を識別可能な情報であればよく、呼び名は特に問わない。 The equipment model number information T125A manages information for identifying the electrical equipment used by each consumer. Not only the model number but also identification information (ID) may be used. Any name can be used as long as it can identify each electric device, and the name is not particularly limited.
 構成情報T125Bは、需要家側の電気的構成に関する情報と、地域の配電網の構成に関する情報とを管理する。 The configuration information T125B manages information related to the electrical configuration on the customer side and information related to the configuration of the local distribution network.
 需給情報(需要家)125Cは、各需要家から取得される需給情報(電力の需要及び電力の供給を示す情報)を管理する。 Supply and demand information (customer) 125C manages supply and demand information (information indicating power demand and power supply) acquired from each customer.
 予測情報125Dは、地域における電力の需要と電力の供給とを時間帯毎に予測した結果を管理する。電力需要と電力供給の予測には、例えば、実績値、天気、インセンティブの有効度、需要家側の構成変化等を考慮することができる。 The prediction information 125D manages the result of predicting the power demand and power supply in the area for each time zone. For the prediction of power demand and power supply, for example, actual values, weather, effectiveness of incentives, configuration changes on the customer side, and the like can be considered.
 天気情報125Eは、地域の過去の天気及び将来の予報とを管理する。天気に関する情報は、気象予報業者等から得ることができる。 The weather information 125E manages the past weather and future forecast of the area. Information about the weather can be obtained from a weather forecaster or the like.
 図形情報(需要家)125Fは、地域の各需要家の位置を管理する。 Graphic information (customer) 125F manages the position of each consumer in the area.
 サービス情報125Mは、各需要家に提供されるサービスの内容等を管理する。 The service information 125M manages the contents of services provided to each consumer.
 設備情報125Lは、電力系統システム1側の設備(変圧器、蓄電池、発電機等)に関する情報を管理する。 The facility information 125L manages information related to facilities (transformers, storage batteries, generators, etc.) on the power system 1 side.
 需給情報(設備)125Kは、電力系統システム1側の設備に関する電力の需給情報を管理する。 Supply / demand information (facility) 125K manages power supply / demand information related to facilities on the power system 1 side.
 計画情報125Jは、余剰電力を消費させるためのインセンティブを含む計画情報D20(図20参照)を管理する。 The plan information 125J manages plan information D20 (see FIG. 20) including an incentive for consuming surplus power.
 地図情報125Hは、地域の地図を管理する。二次元の地図でもよいし、三次元の地図でもよい。さらに、交通量等の関連情報を含めてもよい。 The map information 125H manages an area map. A two-dimensional map or a three-dimensional map may be used. Furthermore, relevant information such as traffic volume may be included.
 図形情報(設備)125Gは、電力系統システム1側の設備の位置を管理する。 The graphic information (facility) 125G manages the position of the facility on the power system 1 side.
 時系列データは、日々多量に発生するため、そのままの形式で保存すると、多量のストレージ装置が必要となる。そこで、後述のように、所定期間内のデータは、時系列データとして保存しておき、所定期間が経過した後のデータは圧縮して保存してもよい。 Since a large amount of time-series data is generated every day, a large amount of storage device is required if it is stored in the same format. Therefore, as will be described later, data within a predetermined period may be stored as time-series data, and data after the predetermined period has elapsed may be compressed and stored.
 セキュリティ機能126は、CEMS10で取り扱うデータ(情報)の安全を確保する機能である。CEMS10で取り扱われる電力の需給情報等は、需要家のプライバシー、個人情報、財産に関わる重要な情報である。従って、正当な権限の無い第三者に漏れたり、改ざんされたりしないようにしなければならない。 The security function 126 is a function for ensuring the safety of data (information) handled by the CEMS 10. The power supply / demand information and the like handled by the CEMS 10 is important information related to the privacy, personal information, and property of consumers. Therefore, it must be prevented from being leaked or tampered with by a third party without a legitimate authority.
 そこで、セキュリティ機能126は、データの暗号化及び復号化、通信相手先の認証、等を行う。 Therefore, the security function 126 performs data encryption and decryption, authentication of the communication partner, and the like.
 ハブ間連携機能127は、他のCEMS10と連携するための機能である。各CEMS10は、ハブ間連携機能127を介して情報を交換することができる。その情報交換に基づいて、各CEMS10間で余剰電力を融通しあうこともできる。 The inter-hub cooperation function 127 is a function for cooperation with other CEMS 10. Each CEMS 10 can exchange information via the inter-hub cooperation function 127. Based on the information exchange, surplus power can be interchanged between the CEMSs 10.
 システム監視及びシステム運用の機能128は、例えば、データベースを追加したり、データベースのバックアップを作成したりするための機能である。 The system monitoring and system operation function 128 is a function for adding a database or creating a database backup, for example.
 図13は、配電自動化システム130の機能を示す。配電自動化システム130は、例えば、オンライン配電アプリケーション131と、オフライン配電アプリケーション132と、基本SCADA機能133と、通信インターフェース134と、各データベース135A-135Eとを備える。 FIG. 13 shows the functions of the distribution automation system 130. The power distribution automation system 130 includes, for example, an online power distribution application 131, an offline power distribution application 132, a basic SCADA function 133, a communication interface 134, and each database 135A-135E.
 オンライン配電アプリケーション131は、例えば、事故の復旧操作を行う機能1311と、配電網の電圧を所定電圧に制御する機能1312と、潮流を計算する機能1313とを含む。潮流計算機能1313は、需要家側で発電された電力が系統に流れ込むという、いわゆる逆潮流の解析も含む。 The online power distribution application 131 includes, for example, a function 1311 for performing an accident recovery operation, a function 1312 for controlling the voltage of the power distribution network to a predetermined voltage, and a function 1313 for calculating a power flow. The tidal current calculation function 1313 includes a so-called reverse power flow analysis in which power generated on the consumer side flows into the grid.
 オフライン配電アプリケーション132は、例えば、電力系統システム1側の設備計画、系統の最適な運用計画、分散電源の連系解析、訓練シミュレータ等を含む。 The offline power distribution application 132 includes, for example, an equipment plan on the power system 1 side, an optimal operation plan for the system, a connection analysis of distributed power sources, a training simulator, and the like.
 基本SCADA(Supervisory Control And Data Acquisition)機能133は、例えば、電力系統システム1の設備及び電力供給線等の状態を監視する。 The basic SCADA (Supervisory Control And Data Acquisition) function 133 monitors, for example, the status of the facilities and power supply lines of the power system 1.
 通信インターフェース134は、例えば、電力供給線7に設けられる各機器71,72,73とRTU等を介して通信するためのインターフェースと、各需要家のスマートメータ21,31,41,51と通信するためのインターフェースと、EMS情報制御ハブ120と通信するためのインターフェースとを備える。 The communication interface 134, for example, communicates with each device 71, 72, 73 provided on the power supply line 7 via the RTU and the like, and communicates with the smart meters 21, 31, 41, 51 of each consumer. And an interface for communicating with the EMS information control hub 120.
 現在(SV/TM)情報135Aは、SVデータ及びTMデータの最新値を管理するデータベースである。設備情報135Bは、電力系統システム1側の設備に関する情報を管理する。負荷記録情報135Cは、各設備の負荷状態を記録する。図形情報135Dは、各設備の位置を、例えば、GIS(Geographic Information System)データのような形式で管理する。 The current (SV / TM) information 135A is a database that manages the latest values of SV data and TM data. The facility information 135B manages information related to facilities on the power system 1 side. The load record information 135C records the load state of each facility. The graphic information 135D manages the position of each facility in a format such as GIS (Geographic Information System) data.
 他システムと連携して運用するための情報135Dには、他のCEMS10と連携して電力を管理するために必要な情報が記憶される。 Information necessary for managing power in cooperation with other CEMS 10 is stored in the information 135D for operation in cooperation with other systems.
 図14は、電力供給者側CEMSアプリケーション140の機能を示す。電力供給者側CEMSアプリケーション140は、電力会社等の電力供給者により使用されるアプリケーションを提供する。 FIG. 14 shows functions of the CEMS application 140 on the power supplier side. The power supplier side CEMS application 140 provides an application used by a power supplier such as a power company.
 電力供給者側CEMSアプリケーション140は、例えば、統括管理機能141と、短周期リアルタイムフィードバック制御機能142と、中周期リアルタイムフィードバック制御機能143と、長周期予測機能144と、稼働状況監視機能145と、制御連携機能146と、データ連携機能147と、各データベース148A-148Eと、供給と需要を連携させる機能149とを備える。 The power supplier side CEMS application 140 includes, for example, an overall management function 141, a short-cycle real-time feedback control function 142, a medium-cycle real-time feedback control function 143, a long-cycle prediction function 144, an operation status monitoring function 145, and a control. A linkage function 146, a data linkage function 147, each database 148A-148E, and a function 149 for linking supply and demand are provided.
 統括制御機能141は、電力供給者側CEMSアプリケーション140の全体を制御する機能である。 The overall control function 141 is a function of controlling the entire power supplier side CEMS application 140.
 短周期リアルタイムフィードバック制御機能142は、例えば、PV及び蓄電池等を、短周期で(例えば、秒単位で)監視し、フィードバック制御する。 The short cycle real-time feedback control function 142 monitors, for example, PV and storage batteries in a short cycle (for example, in seconds) and performs feedback control.
 中周期リアルタイムフィードバック制御機能143は、例えば、蓄熱器のような装置を、中周期で(例えば、時間単位で)監視し、フィードバック制御する。 The medium cycle real-time feedback control function 143 monitors a device such as a regenerator, for example, in a medium cycle (for example, in units of time) and performs feedback control.
 長周期予測機能144は、地域内の各分散電源の発電量、電力需要、系統間の連系量等を、長周期で(例えば、数時間単位で)予測する。 The long cycle prediction function 144 predicts the amount of power generated by each distributed power source in the region, the power demand, the amount of interconnection between systems, etc. in a long cycle (for example, in units of several hours).
 稼働状況監視機能145は、運用を管理したり、稼働状況を監視したりする。制御連携機能146は、各需要家の電気機器を直接制御する場合に使用される。データ連携機能147は、配電自動化システム130及びEMS情報制御ハブ120との間で、データを連携させる機能である。そのデータ連携により、データベース148A-148Eにデータが記憶され、更新される。 The operation status monitoring function 145 manages the operation and monitors the operation status. The control linkage function 146 is used when directly controlling the electrical equipment of each consumer. The data linkage function 147 is a function for linking data between the distribution automation system 130 and the EMS information control hub 120. Data is stored and updated in the databases 148A to 148E by the data linkage.
 構成情報148Aは、需要家側の構成及び電力系統システム1側の構成(配電網等)を管理する。需給情報148Bは、地域の電力の需給情報(実績値)を管理する。予測情報148Cは、地域の電力の需給の予測値を管理する。計画情報148Dは、計画情報を管理する。TM/SV情報148Eは、TMデータ及びSVデータを管理する。 The configuration information 148A manages the configuration on the customer side and the configuration on the power system 1 side (distribution network, etc.). The supply and demand information 148B manages the supply and demand information (actual value) of local power. The prediction information 148C manages the predicted value of supply and demand of local power. The plan information 148D manages plan information. The TM / SV information 148E manages TM data and SV data.
 供給と需要を連携させる機能149は、例えば、系統電圧を安定化させる機能1491と、需要のピークをカットする機能1492と、運転計画を最適化する機能1493とを備える。 The function 149 that links supply and demand includes, for example, a function 1491 that stabilizes the system voltage, a function 1492 that cuts the peak of demand, and a function 1493 that optimizes the operation plan.
 図15は、EAMアプリケーション150の機能を示す。EAMアプリケーション150は、例えば、保全機能151と、設計及び工事機能152と、計画機能153と、各データベース154A-154Eとを備える。 FIG. 15 shows the functions of the EAM application 150. The EAM application 150 includes, for example, a maintenance function 151, a design and construction function 152, a planning function 153, and databases 154A to 154E.
 保全機能151は、例えば、需要家の電気機器を点検するための計画等を作成する。設計及び工事機能152は、例えば、設計及び工事の計画を作成する。計画機能153は、例えば、計画の進捗状況を管理したり、優先して工事されるべき区分を管理したりする機能である。 The maintenance function 151 creates, for example, a plan for inspecting consumer electrical equipment. The design and construction function 152 creates a design and construction plan, for example. The planning function 153 is a function that manages, for example, the progress of the planning, or manages the sections to be preferentially constructed.
 設備情報154Aは、設備に関する情報を管理する。保全計画情報154Bは、保全計画に関する情報を管理する。保全実績情報154Cは、保全作業の実績を管理する。工事計画情報154Dは、工事計画に関する情報を管理する。工事実績情報154Eは、工事の実績に関する情報を管理する。 The facility information 154A manages information related to the facility. The maintenance plan information 154B manages information related to the maintenance plan. The maintenance performance information 154C manages the maintenance work results. The construction plan information 154D manages information related to the construction plan. The construction performance information 154E manages information related to construction performance.
 図16は、共通API122の機能を示す。例えば、需給実績情報125Cには、各需要家の電力の需給情報(実績値)が、共通データ項目と各サービス毎の固有項目とを対応付けて記憶される。各サービス毎の固有項目のデータは暗号化されている。 FIG. 16 shows functions of the common API 122. For example, the supply / demand information (actual value) of the power of each consumer is stored in the supply / demand performance information 125C in association with the common data item and the unique item for each service. The unique item data for each service is encrypted.
 共通API122は、例えば、複数の出力プロトコル1221と、複数の出力形式1222と、複数の出力データ条件1223を疎なる。共通API122は、外部業者90の提供する各サービス毎に、データを出力するための条件1223を保持している。共通API122は、条件に合致するデータを、所定形式のデータに変換し、所定のプロトコルで外部業者90に出力する。 The common API 122 sparses a plurality of output protocols 1221, a plurality of output formats 1222, and a plurality of output data conditions 1223, for example. The common API 122 holds a condition 1223 for outputting data for each service provided by the external contractor 90. The common API 122 converts data matching the conditions into data of a predetermined format, and outputs the data to the external vendor 90 using a predetermined protocol.
 出力プロトコルとしては、例えば、HTTP(HyperText Transfer Protocol)、SOAP(Simple Object Access Protocol)、FTP(File Transfer Protocol)等がある。データの出力形式としては、例えば、XML(Extensible Markup Language)、CSV(Comma-Separated Values)、PHP(Hypertext Preprocessor)シリアライズ、JSON(JavaScript Object Notation)等がある。 Examples of output protocols include HTTP (HyperText Transfer Protocol), SOAP (Simple Object Access Protocol), and FTP (File Transfer Protocol). Data output formats include, for example, XML (Extensible Markup Language), CSV (Comma-Separated Values), PHP (Hypertext Preprocessor) serialization, JSON (JavaScript Object Notation), and the like.
 共通API122は、そのサービス(アプリケーション)を提供する業者にのみ、そのサービスに関するデータを提供する。外部業者90は、自分の提供するサービスに関するデータのみを、共通API122を介してCEMS10から取得でき、他人の提供するサービスに関するデータは取得できない。 The common API 122 provides data related to the service only to the provider providing the service (application). The external contractor 90 can acquire only the data related to the service provided by itself from the CEMS 10 via the common API 122 and cannot acquire the data related to the service provided by another person.
 図17は、地域の配電網の構成を予測する処理を示す。CEMS10は、例えば、地図情報125Hと、各需要家の位置情報125Fと、各設備の位置情報125Gとを取得し、それらの情報を照らし合わせる(S10)。CEMS10は、例えば、地図上に、各需要家及び設備の位置をそれぞれマッピングし、各要素(需要家と設備)間の距離等を算出する。 FIG. 17 shows processing for predicting the configuration of the local distribution network. For example, the CEMS 10 acquires the map information 125H, the position information 125F of each customer, and the position information 125G of each facility, and collates those information (S10). For example, the CEMS 10 maps the position of each consumer and equipment on a map, and calculates the distance between each element (customer and equipment).
 CEMS10は、例えば、需要家は最も近い柱上変圧器から受電しており、かつ、物理的に近い需要家同士は共通の設備から受電していると推定する。これにより、CEMS10は、地域の配電網の構成を推定できる(S11)。 The CEMS 10 estimates that, for example, the customer is receiving power from the nearest pole transformer, and the physically close customers are receiving power from a common facility. Thereby, the CEMS 10 can estimate the configuration of the local distribution network (S11).
 CEMS10は、推定された配電網の構成を、配電網情報125B1として構成情報125Bに格納させる。構成情報125Bには、各需要家での電気的接続構成を示す機器接続情報125B2も記憶されている。機器接続情報125B2は、CEMS10の管理者と各需要家との契約等に基づいて、各需要家から取得される。
 図35に配電網情報の具体例を示す。ここに示すとおり、配電網情報は、CEMS10が把握している各機器を複数のサブコミュニュティに分けて管理している。このサブコミュニュティは、1又は複数の設備の単位で各機器を集約したものである。例えば、一つの柱上変圧器以下に接続される複数の機器は一つのサブコミュニティを構成する。
The CEMS 10 stores the estimated distribution network configuration in the configuration information 125B as the distribution network information 125B1. The configuration information 125B also stores device connection information 125B2 indicating the electrical connection configuration at each consumer. The device connection information 125B2 is acquired from each customer based on a contract between the manager of the CEMS 10 and each customer.
FIG. 35 shows a specific example of distribution network information. As shown here, the distribution network information is managed by dividing each device known by the CEMS 10 into a plurality of subcommunities. This sub-community is a collection of devices in units of one or more facilities. For example, a plurality of devices connected below one pole transformer constitute one sub-community.
 なお、電力系統システム1側から正確な配電網情報を取得できるのであれば、その配電網情報を使用してもよい。 Note that, if accurate distribution network information can be acquired from the power system 1 side, the distribution network information may be used.
 図18は、地域の電力需要と電力供給とを予測して、余剰電力を消費させるための情報を作成する様子を示す。図18の処理は、需給調整機能(需要者側CEMSアプリケーション)110により実行される。 FIG. 18 shows a state in which information for consuming surplus power is generated by predicting local power demand and power supply. The processing in FIG. 18 is executed by the supply and demand adjustment function (customer side CEMS application) 110.
 需給予測機能111は、例えば、電力需給の実績値と天気予報とに基づいて、電力需給を例えば30分単位で予測する。需給情報を各需要家から取得する周期を仮に3分とすると、予測周期はその10倍に設定される。 The demand / supply prediction function 111 predicts the power supply / demand in units of 30 minutes, for example, based on the actual value of power supply / demand and the weather forecast. Assuming that the period for acquiring supply and demand information from each customer is 3 minutes, the prediction period is set to 10 times that.
 需給バランス予測機能112は、各時間帯毎に、電力供給の予測値と電力需要の予測値とを比較し、需要と供給がバランスするかを予測する。グラフG10は、時間帯毎の電力供給の変化を示す供給予測グラフである。グラフG11は、時間帯毎の電力需要の変化を示す需要予測グラフである。G12は、電力供給の予測(G10)と電力需要の予測(G11)との差分を示すグラフである。電力需要を電力供給が上回る場合に、余剰電力SPが生じる。 The supply and demand balance prediction function 112 compares the predicted value of power supply with the predicted value of power demand for each time period, and predicts whether the demand and supply balance. A graph G10 is a supply prediction graph showing a change in power supply for each time period. The graph G11 is a demand prediction graph showing changes in power demand for each time zone. G12 is a graph showing the difference between the prediction of power supply (G10) and the prediction of power demand (G11). When the power supply exceeds the power demand, surplus power SP is generated.
 二酸化炭素可視化機能113は、電力の需給バランスの予測結果に基づいて、地域で排出される二酸化炭素量の時間変化を予測する。グラフG13は、時間帯毎の二酸化炭素の排出量の変化を示す二酸化炭素排出グラフである。 The carbon dioxide visualization function 113 predicts a temporal change in the amount of carbon dioxide discharged in the region based on the prediction result of the power supply / demand balance. A graph G13 is a carbon dioxide emission graph showing changes in the amount of carbon dioxide emission for each time period.
 インセンティブ算出機能114は、余剰電力SPを消費させるためのインセンティブを算出する。余剰電力の発生する時間帯に、各需要家が電気機器を作動させれば、余剰電力を有効に利用することができる。例えば、余剰電力を給湯機、蓄熱器、蓄電池等に使用できれば、結果的に、それらの機器の電力需要をシフトさせることになり、余剰電力を低減できる。 The incentive calculation function 114 calculates an incentive for consuming surplus power SP. If each consumer operates an electric device during the time when surplus power is generated, the surplus power can be used effectively. For example, if surplus power can be used for a water heater, a regenerator, a storage battery, etc., the power demand of those devices will be shifted as a result, and surplus power can be reduced.
 そこで、インセンティブ算出機能114は、各需要家に余剰電力の消費を促すためのインセンティブを算出する。インセンティブ算出機能114は、例えば、「余剰電力を用いてヒートポンプ給湯機を2時間作動させた場合は、10ポイントを付与する。」等のインセンティブを立案する。 Therefore, the incentive calculation function 114 calculates an incentive for encouraging each consumer to consume surplus power. The incentive calculation function 114 devises an incentive such as “if the heat pump water heater is operated for 2 hours using surplus power, 10 points are given”.
 インセンティブ可視化機能115は、インセンティブを含む計画情報を各需要家に送信させる。各需要家が計画情報に従って余剰電力を消費すると、グラフG14に示すように、余剰電力SPaが予測値SPよりも低下する(SPa<SP)。所定の電気機器が余剰電力の発生する時間帯で使用されるため、それらの電気機器が通常使用される時間帯での電力需要は低下する。その電力需要の低下分を、グラフG14では、PP1,PP2として示している。 The incentive visualization function 115 causes each customer to transmit plan information including an incentive. When each consumer consumes surplus power according to the plan information, as shown in the graph G14, the surplus power SPa is lower than the predicted value SP (SPa <SP). Since a predetermined electrical device is used in a time zone in which surplus power is generated, the power demand in a time zone in which the electrical device is normally used decreases. The decrease in power demand is indicated as PP1 and PP2 in the graph G14.
 インセンティブ可視化機能115は、地域の各需要家が計画情報に従って行動した場合の予測グラフG14を、計画情報に含めて、または、計画情報と一緒に、あるいは、計画情報とは別に、各需要家に送信してモニタディスプレイに表示させることができる。予測結果を各需要家に提示することにより、需要家が計画情報に従って行動する動機を高めることができる。 The incentive visualization function 115 includes a prediction graph G14 when each local consumer acts according to the plan information in the plan information, together with the plan information, or separately from the plan information. It can be sent and displayed on a monitor display. By presenting the prediction result to each consumer, the motivation for the consumer to act according to the plan information can be enhanced.
 図19は、各需要家からCEMS10に送信される電力の需給情報D10を示す。各需要家から、その需要家の有する各機器毎に需給情報D10が作成されて、CEMS10に送信される。 FIG. 19 shows power supply and demand information D10 transmitted from each consumer to the CEMS 10. Supply / demand information D <b> 10 is created from each consumer for each device that the consumer has, and is transmitted to CEMS 10.
 需給情報D10は、例えば、需要家ID C10と、機器ID C11と、消費電力/発電量C12と、時刻C13と、操作C14と、状態C15とを備える。これら以外の項目を含んでも良い。 The supply and demand information D10 includes, for example, a customer ID C10, a device ID C11, a power consumption / power generation amount C12, a time C13, an operation C14, and a state C15. Items other than these may be included.
 需要家ID C10は、各需要家を識別するための情報である。機器ID C11は、各電気機器(PV、バッテリ、家電製品等)を識別するための情報である。消費電力/発電量C12は、C11で特定される機器で消費された電力量を示す情報、または、C11で特定される機器から発電される電力量を示す情報である。 The customer ID C10 is information for identifying each customer. The device ID C11 is information for identifying each electric device (PV, battery, home appliance, etc.). The power consumption / power generation amount C12 is information indicating the amount of power consumed by the device specified by C11, or information indicating the amount of power generated from the device specified by C11.
 時刻C13は、需給情報D10の作成された時刻を示す情報である。操作C14は、例えば、「オン操作された」、「オフ操作された」、「設定温度が18度に変更された」等の、機器の操作に関する情報である。状態C15は、例えば、「発電中」、「電力消費中」、「充電中」、「メンテナンス中」等の、機器の状態を示す情報である。 The time C13 is information indicating the time when the supply and demand information D10 is created. The operation C14 is information related to the operation of the device such as “operated on”, “operated off”, and “the set temperature has been changed to 18 degrees”. The state C15 is information indicating the state of the device such as “power generation”, “power consumption”, “charging”, “maintenance”, and the like.
 図20は、CEMS10から各需要家に配信される計画情報D20を示す。計画情報D20は、各需要家単位で作成されて、各需要家に送信される。計画情報D20は、例えば、需要家ID C20と、時間帯C21と、ポイントC22と、合計消費電力の上限値C23と、合計消費電力の下限値C24と、機器ID C25と、消費電力の上限値C26と、消費電力の下限値C27とを含む。これら以外の項目を備えても良い。 FIG. 20 shows plan information D20 distributed from the CEMS 10 to each consumer. The plan information D20 is created for each customer and transmitted to each customer. The plan information D20 includes, for example, customer ID C20, time zone C21, point C22, upper limit value C23 of total power consumption, lower limit value C24 of total power consumption, device ID C25, and upper limit value of power consumption. C26 and the lower limit C27 of power consumption are included. Items other than these may be provided.
 需要家ID C20は各需要家を識別するための情報である。時間帯C21は、インセンティブの適用される時間帯、つまり、地域で余剰電力が発生する時間帯を示す。ポイントC22は、インセンティブの内容を示す情報である。 Customer ID C20 is information for identifying each customer. The time zone C21 indicates a time zone in which incentives are applied, that is, a time zone in which surplus power is generated in the region. Point C22 is information indicating the contents of the incentive.
 合計消費電力の上限値C23は、その需要家が消費できる余剰電力の上限値を示す情報である。本実施例では、地域で生じた余剰電力を、地域の各需要家が公平に使用できるように、需要家毎に上限値を設定している。 The upper limit value C23 of the total power consumption is information indicating the upper limit value of surplus power that can be consumed by the consumer. In this embodiment, an upper limit value is set for each consumer so that surplus power generated in the area can be used fairly by each consumer in the area.
 合計消費電力の下限値C24は、その需要家が消費すべき余剰電力の下限値を示す情報である。本実施例では、各需要家が消費すべき余剰電力の量を提示している。下限値は、努力目標値であって、それを達成できなくても特別な不都合は生じない。但し、余剰電力を下限値以上使用しなかった需要家に、何らかのペナルティを与える構成でもよい。 The lower limit C24 of the total power consumption is information indicating the lower limit of surplus power that should be consumed by the consumer. In this embodiment, the amount of surplus power that each consumer should consume is presented. The lower limit value is an effort target value, and no special inconvenience occurs even if it cannot be achieved. However, a configuration in which some penalty is given to a customer who has not used the surplus power more than the lower limit value may be adopted.
 機器ID C25は、需要家の有する機器を識別する情報である。消費電力の上限値C26は、その機器で使用可能な余剰電力の上限値を示す。消費電力の下限値C27は、その機器で消費すべき余剰電力の下限値を示す。 Device ID C25 is information for identifying a device owned by a consumer. The upper limit C26 of power consumption indicates the upper limit of surplus power that can be used by the device. The lower limit value C27 of power consumption indicates the lower limit value of surplus power that should be consumed by the device.
 本実施例では、需要家に割り当てられた余剰電力を、その需要家の有する各機器毎に再割当てする。つまり、需要家の有する各機器に割り当てられた消費電力の上限値C26を合計すると、合計消費電力の上限値C23となる。同様に、各機器の消費電力の下限値C27を合計すると、合計消費電力の下限値C24となる。 In this embodiment, surplus power allocated to a consumer is reassigned for each device that the consumer has. That is, when the upper limit value C26 of power consumption allocated to each device of the consumer is summed, the upper limit value C23 of total power consumption is obtained. Similarly, when the lower limit value C27 of the power consumption of each device is summed, the lower limit value C24 of the total power consumption is obtained.
 図20の例では、一つの機器IDのみを示すが、実際には、需要家IDで特定される需要家の有する各機器(CEMSによる管理対象の機器)について、消費電力の上限値及び下限値が設定される。 In the example of FIG. 20, only one device ID is shown, but in reality, the upper limit value and the lower limit value of power consumption for each device (device to be managed by CEMS) possessed by the customer identified by the customer ID. Is set.
 図21は、二酸化炭素情報D30を示す。二酸化炭素情報D30は、計画情報D20に含める構成でもよいし、または、計画情報D20とは別に作成して各需要家に送信する構成でもよい。 FIG. 21 shows carbon dioxide information D30. Carbon dioxide information D30 may be configured to be included in plan information D20, or may be configured separately from plan information D20 and transmitted to each consumer.
 二酸化炭素情報D30は、例えば、需要家ID C30と、地域で発生する二酸化炭素の量C31と、その需要家で発生する二酸化炭素の量C32と、その需要家の有する各機器毎の二酸化炭素の発生量C33とを備えることができる。 The carbon dioxide information D30 includes, for example, the consumer ID C30, the amount of carbon dioxide C31 generated in the region, the amount of carbon dioxide C32 generated by the consumer, and the carbon dioxide for each device of the consumer. Generation amount C33.
 本実施例では、上述の通り、CEMS10による管理対象の各機器に関する電力状態を、電力計測ユニットまたはスマートメータで管理する。従って、各機器の消費電力または発電量を計測できる。これにより、本実施例では、計測された情報に基づいて機器単位の二酸化炭素排出量を算出することができる。 In this embodiment, as described above, the power state of each device to be managed by the CEMS 10 is managed by the power measurement unit or the smart meter. Therefore, the power consumption or power generation amount of each device can be measured. Thereby, in a present Example, the carbon dioxide emission amount of a device unit can be calculated based on the measured information.
 図22は、CEMS10の全体動作を示すフローチャートである。CEMS10は、上述の通り、各需要家の装置20,30,40,50等から需給情報D10を取得し(S20)、取得した需給情報D10に異常があるか否かを判定する(S21)。異常が発見された場合、CEMS10は、その需要家に警告を送信し、需要家に設けられているモニタディスプレイ等に出力させる。さらに、CEMS10は、必要があると判断した場合、例えば、警察署、消防署、病院、学校、勤務先、事前に指定された個人等に、電子メールまたは電話等の手段を用いて、警告を送信することもできる。 FIG. 22 is a flowchart showing the overall operation of the CEMS 10. As described above, the CEMS 10 acquires supply and demand information D10 from each customer's device 20, 30, 40, 50, etc. (S20), and determines whether or not the acquired supply and demand information D10 is abnormal (S21). When abnormality is discovered, CEMS10 transmits a warning to the consumer and makes it output on the monitor display etc. which were provided in the consumer. Further, when CEMS 10 determines that it is necessary, for example, a warning is sent to the police station, fire department, hospital, school, workplace, pre-designated individuals, etc. using means such as e-mail or telephone. You can also
 CEMS10は、需給情報D10を保存した後(S22)、計画情報D20の達成状況を評価する(S23)。つまり、CEMS10は、各需要家が前回の計画情報にどの程度従ったかを評価する。例えば、計画情報D20の達成状況に応じて、各需要家をランク分けすることができる。高ランクの需要家は、計画情報D20に従う可能性が高く、低ランクの需要家は計画情報D20に従う可能性が低い。 The CEMS 10 stores the supply and demand information D10 (S22), and then evaluates the achievement status of the plan information D20 (S23). That is, the CEMS 10 evaluates how much each customer follows the previous plan information. For example, each customer can be ranked according to the achievement status of the plan information D20. High-ranking consumers are likely to follow the plan information D20, and low-ranking consumers are less likely to follow the plan information D20.
 CEMS10は、需給情報の実績値と天気予報と各需要家のランク等に基づいて、次のサイクル(例えば、30分後)における電力の需給状態を予測する(S24)。さらに、CEMS10は、電力需給の予測結果に基づいて、電力の需要と供給がバランスするかを予測する(S25)。 The CEMS 10 predicts the power supply / demand state in the next cycle (for example, after 30 minutes) based on the actual value of supply and demand information, the weather forecast, the rank of each customer, and the like (S24). Further, the CEMS 10 predicts whether the demand and supply of power are balanced based on the prediction result of power supply and demand (S25).
 CEMS10は、電力需給のバランス予測に基づいて、地域で発生する二酸化炭素の量を算出する(S26)。S26では、各需要家での二酸化炭素量、及び、各機器毎の二酸化炭素量を算出することもできる。 The CEMS 10 calculates the amount of carbon dioxide generated in the region based on the balance prediction of power supply and demand (S26). In S26, the amount of carbon dioxide at each consumer and the amount of carbon dioxide for each device can also be calculated.
 CEMS10は、余剰電力の消費を促すためのインセンティブを算出して、計画情報D20を作成し(S27)、その計画情報D20を各需要家側の管理装置20,30,40,50等に送信する(S28)。 The CEMS 10 calculates an incentive for encouraging consumption of surplus power, creates plan information D20 (S27), and transmits the plan information D20 to the management devices 20, 30, 40, 50, etc. on each customer side. (S28).
 図23は、需要家側の管理装置の動作を示す。需要家側の各管理装置20,30,40,50等を、HEMS20等と呼ぶ。HEMS20等は、送信時刻が到来したか否かを監視している(S30)。HEMS20等は、例えば、3分程度の周期で、需給情報D10をCEMS10に送信するように予め設定されている。 FIG. 23 shows the operation of the management device on the customer side. Each management device 20, 30, 40, 50, etc. on the customer side is referred to as HEMS 20, etc. The HEMS 20 or the like monitors whether the transmission time has arrived (S30). The HEMS 20 and the like are set in advance so as to transmit supply and demand information D10 to the CEMS 10 with a period of about 3 minutes, for example.
 所定の送信時刻が到来すると(S30:YES)、HEMS20等は、需給情報D10を作成する(S31)。HEMS20等は、CEMS10にアクセスして(S32)、需給情報D10をCEMS10に送信する(S33)。HEMS20等がCEMS10にアクセスする場合には、所定の認証処理が行われる。さらに、HEMS20等からCEMS10には、暗号化された需給情報D10が送信される。 When a predetermined transmission time arrives (S30: YES), the HEMS 20 and the like create supply and demand information D10 (S31). The HEMS 20 or the like accesses the CEMS 10 (S32), and transmits supply and demand information D10 to the CEMS 10 (S33). When the HEMS 20 or the like accesses the CEMS 10, a predetermined authentication process is performed. Further, the encrypted supply and demand information D10 is transmitted from the HEMS 20 or the like to the CEMS 10.
 図24は、共通アダプタI/F121が優先度に応じて需給情報を処理する様子を模式的に示す。共通アダプタI/F121は、例えば、データ変換機能1211と、メッセージ振り分け機能1212を備える。 FIG. 24 schematically shows how the common adapter I / F 121 processes supply and demand information according to priority. The common adapter I / F 121 includes a data conversion function 1211 and a message distribution function 1212, for example.
 データ変換機能1211は、変換テーブルT1211を用いて、需給情報D10を標準形式のデータに変換し、共通データ処理機能123に引き渡す。 The data conversion function 1211 converts the supply and demand information D10 into standard format data using the conversion table T1211 and delivers it to the common data processing function 123.
 メッセージ振り分け機能1212は、優先度管理テーブルT1212を用いて、各共通アダプタCAから受信した需給情報D10を、その優先度に応じて振り分ける。メッセージ振り分け機能1212は、優先度の高い需給情報D10を優先処理キューに登録し、それ以外の需給情報D10を通常処理キューに登録する。図24に示す例では、地域の発電/蓄電60から送信される需給情報D10(4)には高い優先度が設定されており、優先的に処理される。 The message distribution function 1212 uses the priority management table T1212 to distribute the supply and demand information D10 received from each common adapter CA according to the priority. The message distribution function 1212 registers high-priority supply / demand information D10 in the priority processing queue, and registers other supply / demand information D10 in the normal processing queue. In the example shown in FIG. 24, a high priority is set in the supply and demand information D10 (4) transmitted from the local power generation / storage battery 60, and it is processed preferentially.
 図25は、各機器毎の優先度を管理するテーブルT1212(1)を示す。機器毎の優先度管理テーブルT1212(1)は、例えば、機器タイプ12121C1と、優先度12121C2と、処理周期12121C3と、を備える。 FIG. 25 shows a table T1212 (1) for managing the priority for each device. The priority management table T1212 (1) for each device includes, for example, a device type 12121C1, a priority 12121C2, and a processing cycle 12121C3.
 機器タイプ12121C1は、各機器のタイプを示す。優先度12121C2は、機器の優先度が設定される。優先度は、例えば、「高」と「低」の2値で設定してもよいし、より細かく設定してもよい。処理周期12121C3は、機器の需給情報D10を処理すべき周期が設定される。優先度の高い需給情報D10は短い周期で処理され、優先度の低い需給情報D10は長い周期で処理される。即ち、優先度の高い需給情報D10は、優先処理キューに接続されて速やかに処理され、優先度の低い需給情報D10は、通常処理キューに接続されて処理される。 The device type 12121C1 indicates the type of each device. As the priority 12121C2, the priority of the device is set. For example, the priority may be set with two values, “high” and “low”, or may be set more finely. In the processing cycle 12121C3, a cycle for processing the supply and demand information D10 of the device is set. Supply / demand information D10 having a high priority is processed in a short cycle, and supply / demand information D10 having a low priority is processed in a long cycle. That is, the supply / demand information D10 having a high priority is connected to the priority processing queue and processed promptly, and the supply / demand information D10 having a low priority is connected to the normal processing queue and processed.
 消費電力の大きい機器ほど、優先度が高くなるように設定できる。さらに、電力を消費する機器よりも、電力を発電する機器または蓄電する機器の優先度の方が高くなるように設定することもできる。または、大型蓄電池のようなリアルタイムでの監視が必要な機器ほど高い優先度を設定することもできる。 ∙ Higher power consumption can be set to have higher priority. Furthermore, it is possible to set so that the priority of a device that generates power or a device that stores electricity is higher than that of a device that consumes power. Alternatively, higher priority can be set for devices that require real-time monitoring, such as large storage batteries.
 機器タイプ12121C1は、機器タイプ管理テーブルT1212(2)に関連付けられている。機器タイプ管理テーブルT1212(2)は、例えば、機器ID12122C1と、機器タイプ12122C2とを備える。 The device type 12121C1 is associated with the device type management table T1212 (2). The device type management table T1212 (2) includes, for example, a device ID 12122C1 and a device type 12122C2.
 メッセージ振り分け機能1212は、需給情報D10の機器ID C11(図19参照)に基づいて、機器タイプ管理テーブルT1212(2)を参照することにより、その需給情報D10に対応する機器タイプを判別する。メッセージ振り分け機能1212は、判別された機器タイプに基づいて、優先度管理テーブルT1212(1)を参照することにより、その機器に設定された優先度と周期を知る。 The message distribution function 1212 determines the device type corresponding to the supply / demand information D10 by referring to the device type management table T1212 (2) based on the device ID C11 (see FIG. 19) of the supply / demand information D10. The message distribution function 1212 refers to the priority management table T1212 (1) based on the determined device type to know the priority and period set for the device.
 図26は、各需要家毎の優先度を管理するテーブルT1212(3)を示す。優先度管理テーブルT1212(3)は、例えば、需要家タイプ12123C1と、優先度12123C2と、処理周期12123C3とを備える。 FIG. 26 shows a table T1212 (3) for managing the priority for each customer. The priority management table T1212 (3) includes, for example, a customer type 12123C1, a priority 12123C2, and a processing cycle 12123C3.
 需要家タイプ12123C1は、各需要家のタイプを示す。便宜上、図26では、需要家のタイプをHEMS、BEMS、FEMSとして示してある。HEMSは住宅を示し、BEMSはビルディングまたは集合住宅を示し、FEMSは工場を示す。消費電力量または発電量の大きい需要家ほど高い優先度に設定される。 The customer type 12123C1 indicates the type of each customer. For convenience, in FIG. 26, the types of customers are shown as HEMS, BEMS, and FEMS. HEMS indicates a house, BEMS indicates a building or apartment house, and FEMS indicates a factory. A consumer with a large amount of power consumption or power generation is set to a higher priority.
 需要家タイプ12123C1は、需要家タイプ管理テーブルT1212(4)に関連付けられている。需要家タイプ管理テーブルT1212(4)は、例えば、需要家ID12124C1と、需要家タイプ12124C2とを備える。 The customer type 12123C1 is associated with the customer type management table T1212 (4). The customer type management table T1212 (4) includes, for example, a customer ID 12124C1 and a customer type 12124C2.
 メッセージ振り分け機能1212は、需給情報D10の需要家ID C10(図19参照)に基づいて、機器タイプ管理テーブルT1212(4)を参照することにより、その需給情報D10に対応する需要家タイプを判別する。メッセージ振り分け機能1212は、判別された需要家タイプに基づいて、優先度管理テーブルT1212(3)を参照することにより、その需要家に設定された優先度と周期を知る。 The message distribution function 1212 refers to the device type management table T1212 (4) based on the customer ID C10 (see FIG. 19) of the supply / demand information D10, and determines the consumer type corresponding to the supply / demand information D10. . The message distribution function 1212 refers to the priority management table T1212 (3) based on the determined consumer type to know the priority and period set for the consumer.
 本実施例では、各機器毎の優先度に基づいて情報処理の速度を変える構成(図25)と、各需要家毎の優先度に基づいて情報処理の速度を変える構成(図26)のいずれも、実行することができる。または、機器毎の優先度と需要家毎の優先度の両方を組み合わせて、情報処理の速度を制御する構成としてもよい。その場合、高い優先度の需要家から送信された需給情報D10のうち、高い優先度を持つ機器に関する需給情報は、最も早く処理される。これに対し、低い優先度の需要家から送信された需給情報D10のうち、低い優先度を持つ機器に関する需給情報は、最も遅く処理される。 In this embodiment, either the configuration for changing the speed of information processing based on the priority for each device (FIG. 25) or the configuration for changing the speed of information processing based on the priority for each consumer (FIG. 26). Can also be performed. Or it is good also as a structure which controls the speed of information processing combining the priority for every apparatus, and the priority for every consumer. In that case, the supply and demand information related to the device having a high priority among the supply and demand information D10 transmitted from the high priority consumer is processed earliest. On the other hand, among the supply and demand information D10 transmitted from the low-priority consumer, the supply-demand information related to the device having the low priority is processed the latest.
 図27は、共通データ処理機能123が有する監視機能を示す。サービス提供者等の外部業者90(90A,90B)は、共通API122を介して、共通データ処理機能123に監視条件1231A,1231Bを設定することができる。 FIG. 27 shows the monitoring function that the common data processing function 123 has. The external contractor 90 (90A, 90B) such as a service provider can set the monitoring conditions 1231A, 1231B in the common data processing function 123 via the common API 122.
 共通データ処理機能123は、共通アダプタCAから共通アダプタI/F121を介して流れ込む需給情報D10のうち、監視条件1231A,1231Bに該当する需給情報D10が有るか否かを監視する。 The common data processing function 123 monitors whether or not the supply and demand information D10 corresponding to the monitoring conditions 1231A and 1231B is present in the supply and demand information D10 flowing from the common adapter CA via the common adapter I / F 121.
 例えば、監視条件1231Aに一致する需給情報D10(2)が検出された場合、共通データ処理機能123は、その需給情報D10(2)をそのままで、または、加工処理1231Cして、外部業者90に引き渡す。引き渡し先の外部業者90は、監視条件1231Aを設定した業者である。監視条件を設定する外部業者と、その監視条件に一致する需給情報に関する通知を受信する外部業者とが異なる構成でもよい。 For example, when the supply and demand information D10 (2) that matches the monitoring condition 1231A is detected, the common data processing function 123 uses the supply and demand information D10 (2) as it is or performs the processing 1231C to the outside contractor 90. hand over. The delivery destination external trader 90 is a trader for which the monitoring condition 1231A is set. A configuration may be employed in which the outside contractor who sets the monitoring conditions is different from the outside contractor who receives the notification regarding the supply and demand information that matches the monitoring conditions.
 さらに、共通データ処理機能123は、監視条件に一致する需給情報の送信元である需要家に、監視条件に一致した旨を通知することもできる。 Furthermore, the common data processing function 123 can notify the customer who is the transmission source of the supply and demand information that matches the monitoring condition that the monitoring condition is met.
 図28は、共通データ管理機能124によるアクセス制御処理を示す。外部業者90は、共通API122を介して、需給実績情報125C内の需給情報の少なくとも一部を利用することができる。しかし、需給情報は、各需要家のプライバシーに関わる重要な情報であるため、外部業者90への送信は慎重に行われる必要がある。 FIG. 28 shows an access control process by the common data management function 124. The external supplier 90 can use at least a part of the supply and demand information in the supply and demand performance information 125 </ b> C via the common API 122. However, since supply and demand information is important information related to the privacy of each consumer, transmission to the external supplier 90 needs to be performed carefully.
 そこで、共通データ管理機能124には、アクセス制御機能1241と、アクセス権限管理テーブルT1241とが設けられる。アクセス権限管理テーブルT1241は、例えば、外部業者90を識別するための情報と、外部業者90に許可された情報内容とを対応付けて管理する。 Therefore, the common data management function 124 is provided with an access control function 1241 and an access authority management table T1241. The access authority management table T1241 manages, for example, information for identifying the external contractor 90 and information content permitted to the external contractor 90 in association with each other.
 外部業者90に許可された情報内容としては、例えば、外部業者90が情報を取得可能な需要家の範囲(許可された需要家IDのリスト、または、許可された需要家タイプ)、情報を取得可能な機器の範囲(許可された機器IDのリスト、または、許可された機器タイプ)を挙げることができる。 As the information content permitted to the external contractor 90, for example, the range of consumers from which the external contractor 90 can acquire information (list of permitted customer IDs or permitted consumer types) and information are acquired. A range of possible devices (list of allowed device IDs or allowed device types) can be mentioned.
 アクセス制御機能1241は、外部業者90のサーバが共通API122を介して、情報の取得を要求してきた場合、アクセス権限管理テーブルT1241を参照し、情報の送信を許可するか否かを判定する。許可された場合、例えば、需給実績情報125Cに記憶された情報のうち外部業者90が要求する情報が、共通API122を介して外部業者90のサーバに送信される。許可されない場合、共通データ管理機能124は、外部業者90のサーバにエラーを通知する。 The access control function 1241 determines whether or not transmission of information is permitted by referring to the access authority management table T1241 when the server of the external company 90 requests acquisition of information via the common API 122. When permitted, for example, information requested by the external company 90 among the information stored in the supply and demand result information 125 </ b> C is transmitted to the server of the external company 90 via the common API 122. If not permitted, the common data management function 124 notifies the server of the external vendor 90 of the error.
 図29は、HEMS20等がCEMS10から情報を受信した場合の処理を示す。HEMS20等は、CEMS10から計画情報D20を受信すると(S40:YES)、その情報の内容をモニタディスプレイに表示させる(S41)。 FIG. 29 shows processing when the HEMS 20 or the like receives information from the CEMS 10. When the HEMS 20 or the like receives the plan information D20 from the CEMS 10 (S40: YES), the contents of the information are displayed on the monitor display (S41).
 例えば、モニタディスプレイには、余剰電力の発生する時間帯、余剰電力の推奨消費量(合計消費電力の下限値)、ポイント等が表示される(S41)。表示画面の例はさらに後述する。 For example, the monitor display displays a time zone in which surplus power is generated, a recommended consumption of surplus power (a lower limit value of total power consumption), points, and the like (S41). An example of the display screen will be described later.
 需要家のエネルギ管理者は、モニタディスプレイに表示されたインセンティブに触発されて、機器の操作を予約することができる(S42)。 The energy manager of the customer can make a reservation for the operation of the device, inspired by the incentive displayed on the monitor display (S42).
 HEMS20等は、インセンティブが有効になる時間帯が到来すると、または、インセンティブの有効になる時間帯よりも所定時間だけ前に、エネルギ管理者に注意を喚起することもできる(S43)。HEMS20等は、例えば、「余剰電力をお得に利用できる時刻が迫っています。」等のメッセージを、モニタディスプレイに表示させたり、音声出力したり、登録されたエネルギ管理者の電子メールアドレスに送信したりする。 The HEMS 20 or the like can also call attention to the energy manager when a time zone in which the incentive is valid comes or only a predetermined time before the time zone in which the incentive is valid (S43). The HEMS 20 or the like, for example, displays a message such as “The time when surplus power can be used at a reasonable price is approaching” on the monitor display, outputs a voice, or the registered e-mail address of the energy manager. Or send.
 図30は、HEMS20等がモニタディスプレイに表示させる、電力の需給状況を示す画面G20である。電力の需給状況を示す画面G20は、例えば、各種のデータをグラフ化して表示させる領域GP21と、各種のデータを数値または文字で表示させる領域GP22と、ポイントを表示させる領域GP23を備える。 FIG. 30 is a screen G20 showing the power supply / demand situation that the HEMS 20 or the like displays on the monitor display. The screen G20 showing the power supply and demand situation includes, for example, a region GP21 for displaying various data in a graph, a region GP22 for displaying various data in numerical values or characters, and a region GP23 for displaying points.
 画面G20には、例えば、その地域における電力需要の予測と、その地域における電力供給の予測と、その地域で発生する余剰電力の予測と、その需要家における電力需要の予測と、その需要家における電力供給の予測と、その需要家における余剰電力の予測と、を表示させることができる。さらに、地域及び需要家の、電力需要及び電力供給の実績値、電力料金等を画面G20に表示させることもできる。 On the screen G20, for example, prediction of power demand in the region, prediction of power supply in the region, prediction of surplus power generated in the region, prediction of power demand in the customer, and The prediction of power supply and the prediction of surplus power at the customer can be displayed. Furthermore, it is possible to display actual values of power demand and power supply, power charges, and the like of regions and consumers on the screen G20.
 図31は、二酸化炭素の排出量を表示する画面G30を示す。画面G30には、地域全体の二酸化炭素の排出量を示す領域GP31と、その需要家における二酸化炭素の排出量を示す領域GP32とを含むことができる。 FIG. 31 shows a screen G30 displaying the amount of carbon dioxide emission. The screen G30 can include a region GP31 indicating the amount of carbon dioxide emission in the entire region and a region GP32 indicating the amount of carbon dioxide emission in the consumer.
 図32は、インセンティブを表示する画面G40を示す。画面G40には、複数の領域GP41-GP45が含まれる。 FIG. 32 shows a screen G40 that displays an incentive. The screen G40 includes a plurality of areas GP41-GP45.
 領域GP41は、計画情報D20が達成された場合の余剰電力の変化等を示す。領域GP42は、余剰電力の使用を促すメッセージを表示する。領域GP43は、余剰電力の上限値及び下限値を示す。領域GP44は、余剰電力の消費方法を機器毎に示す。領域GP45は、余剰電力の発生する時間帯で作動を停止させるべき機器(PV等)を示す。 A region GP41 indicates a change in surplus power when the plan information D20 is achieved. The area GP42 displays a message prompting the use of surplus power. A region GP43 shows an upper limit value and a lower limit value of surplus power. A region GP44 indicates a method for consuming surplus power for each device. A region GP45 indicates a device (such as PV) whose operation should be stopped in a time zone where surplus power is generated.
 図33は、需要家側に表示させる画面の他の例を示す。情報表示画面G50は、例えば、日付欄GP51と、インセンティブ情報欄GP52と、インセンティブ実績欄GP53とを備える。 FIG. 33 shows another example of a screen displayed on the customer side. The information display screen G50 includes, for example, a date column GP51, an incentive information column GP52, and an incentive performance column GP53.
 インセンティブ情報欄GP52には、例えば、インセンティブの付与される対象GP521と、インセンティブの内容GP522と、インセンティブの付与される時間GP523とが含まれる。 The incentive information column GP52 includes, for example, a target GP521 to which an incentive is given, a content GP522 of the incentive, and a time GP523 to which the incentive is given.
 図33では、12時から14時までの時間帯で、給湯機を使用すると、1kWh毎に1ポイントが与えられることが示されている。さらに、12時から14時までの時間帯で空調機を停止させた場合、1kWhの電力消費を節約する度に、1ポイントが与えられることが示されている。 FIG. 33 shows that 1 point is awarded for every 1 kWh when a water heater is used in the time zone from 12:00 to 14:00. Furthermore, it is shown that when the air conditioner is stopped in the time zone from 12:00 to 14:00, 1 point is awarded every time the power consumption of 1 kWh is saved.
 インセンティブ実績欄GP53には、例えば、インセンティブの使用実績GP531と、付与されたポイントの実績GP532とが含まれる。図33では、給湯機が2kWhの余剰電力を使用したため、2ポイント与えられたことが示されている。さらに、空調機が停止されたために、2ポイント与えられたことが示されている。このように、余剰電力の消費に貢献した内容は、毎日集計されて管理される。 The incentive achievement column GP53 includes, for example, the incentive use achievement GP531 and the achievement GP532 of the given points. FIG. 33 shows that 2 points are given because the water heater uses 2 kWh of surplus power. Furthermore, it is shown that 2 points were given because the air conditioner was stopped. In this way, contents that contribute to the consumption of surplus power are collected and managed every day.
 図34は、需給情報を圧縮して管理する様子を示す。図34(a)に示すように、需給情報は、例えば3分間程度の短い周期で、各需要家から取得される。従って、CEMS10に蓄積される需給情報の量は日々増大する。 FIG. 34 shows how the supply and demand information is compressed and managed. As shown in FIG. 34 (a), the supply and demand information is acquired from each consumer at a short cycle of, for example, about 3 minutes. Accordingly, the amount of supply and demand information stored in the CEMS 10 increases day by day.
 そこで、図34(b)に示すように、需給情報の低周波成分を抽出して、傾向を示すデータに変換する。簡単に言えば、3分毎の需給情報の示す値の包絡線を検出し、全体的な傾向を示すデータをCEMS10に保存する。なお、最近の需給情報はそのまま保存し、所定時間が経過した場合に傾向データに変換して保存することができる。 Therefore, as shown in FIG. 34 (b), the low frequency component of the supply and demand information is extracted and converted into data indicating a trend. In short, an envelope of a value indicated by supply and demand information every 3 minutes is detected, and data indicating an overall trend is stored in the CEMS 10. Note that recent supply and demand information can be stored as it is, and converted into trend data and stored when a predetermined time has elapsed.
 なお、本発明は、上述した実施例に限定されない。当業者であれば、本発明の範囲内で、種々の追加や変更等を行うことができる。 In addition, this invention is not limited to the Example mentioned above. A person skilled in the art can make various additions and changes within the scope of the present invention.
 1:電力系統システム、5:配電用変電所、10:CEMS、20:HEMS、30:BEMS、40:FEMS、50:EV-EMS 1: Power system, 5: Distribution substation, 10: CEMS, 20: HEMS, 30: BEMS, 40: FEMS, 50: EV-EMS

Claims (16)

  1.  複数の需要家を含む所定区域毎に設けられる第1電力管理装置と、前記各需要家に設けられる第2電力管理装置とを含む電力管理システムであって、
     前記各第2電力管理装置は、前記各需要家での電力状態を監視して、前記電力状態を示す第2管理情報を前記第1電力管理装置に送信し、
     前記第1電力管理装置は、
      前記第各2管理情報に基づいて、前記所定区域における電力需要の総量及び発電量の総量を予測し、
      前記電力需要の総量と前記発電量の総量との差から前記所定区域における余剰電力量を算出し、
      前記余剰電力量を低減させるための情報を含む第1管理情報を作成し、
      前記第1管理情報を前記各第2電力管理装置に送信する、
    電力管理システム。
    A power management system including a first power management device provided for each predetermined area including a plurality of consumers, and a second power management device provided to each consumer,
    Each of the second power management devices monitors a power state at each consumer, and transmits second management information indicating the power state to the first power management device.
    The first power management device includes:
    Based on each second management information, predict the total amount of power demand and the total amount of power generation in the predetermined area,
    Calculating the surplus power amount in the predetermined area from the difference between the total amount of power demand and the total amount of power generation;
    Creating first management information including information for reducing the surplus power,
    Transmitting the first management information to each of the second power management devices;
    Power management system.
  2.  前記各第2管理情報には、前記各需要家での電力消費量及び発電量が含まれ、
     前記第1管理情報には、前記余剰電力の生じる時間帯において前記余剰電力の消費を前記各需要家に促すための情報が含まれている、
    請求項1に記載の電力管理システム。
    Each of the second management information includes power consumption and power generation amount at each consumer,
    The first management information includes information for encouraging each consumer to consume the surplus power in a time zone in which the surplus power occurs.
    The power management system according to claim 1.
  3.  前記第1管理情報には、前記需要家単位で前記余剰電力の使用を促す情報と、前記需要家の有する複数の所定の機器単位で前記余剰電力の使用を促す情報とが含まれている、請求項2に記載の電力管理システム。 The first management information includes information that prompts the use of surplus power in units of consumers, and information that prompts the use of surplus power in units of a plurality of predetermined devices that the consumers have. The power management system according to claim 2.
  4.  前記第1電力管理装置は、
      前記各需要家の位置を示す需要家位置情報と、前記各需要家に電力を供給するための設備の位置を示す設備位置情報と、前記所定区域を含む地図の情報とに基づいて、前記設備と前記各需要家とを接続する配電網を予測する、
    請求項3に記載の電力管理システム。
    The first power management device includes:
    Based on the customer location information indicating the location of each customer, the facility location information indicating the location of the facility for supplying power to each customer, and the information on the map including the predetermined area, the facility And a power distribution network connecting each consumer and
    The power management system according to claim 3.
  5.  前記第1電力管理装置は、前記各需要家に電力に関連する情報を提供可能な第3装置に接続されており、
     前記第3装置は、前記各第2管理情報を監視するための監視条件を前記第1電力管理装置に設定し、
     前記第1電力管理装置は、前記各第2管理情報のうち前記監視条件に一致する情報があるか否かを監視し、前記監視条件に一致する前記第2管理情報を発見した場合は、前記第3装置に通知する、
    請求項4に記載の電力管理システム。
    The first power management device is connected to a third device capable of providing information related to power to each consumer.
    The third device sets a monitoring condition for monitoring the second management information in the first power management device,
    The first power management device monitors whether there is information that matches the monitoring condition among the second management information, and if the second management information that matches the monitoring condition is found, Notify the third device,
    The power management system according to claim 4.
  6.  前記第1電力管理装置は、前記監視条件に一致する前記第2管理情報を加工して、前記監視条件を設定した前記第3装置に通知する、
    請求項5に記載の電力管理システム。
    The first power management device processes the second management information that matches the monitoring condition and notifies the third device that sets the monitoring condition.
    The power management system according to claim 5.
  7.  前記各第2管理情報には予め優先度が対応付けられており、
     前記第1電力管理装置は、前記優先度に基づいて前記各第2管理情報を処理する、
    請求項6に記載の電力管理システム。
    Priorities are associated with the second management information in advance,
    The first power management device processes the second management information based on the priority.
    The power management system according to claim 6.
  8.  前記優先度は、前記各需要家毎に、または/及び、前記各需要家の有する機器毎に予め設定されており、
     前記第1電力管理装置は、前記優先度の高い前記第2管理情報ほど優先的に処理する、請求項7に記載の電力管理システム。
    The priority is set in advance for each consumer or / and for each device that each consumer has,
    The power management system according to claim 7, wherein the first power management device preferentially processes the second management information having a higher priority.
  9.  前記各需要家には複数種類の需要家が含まれており、
     前記複数種類の需要家毎に前記第2電力管理装置が用意されており、
     前記各第2電力管理装置は、前記第1電力管理装置と双方向通信するための共通通信アダプタを備え、
     前記第1電力管理装置は、前記各共通通信アダプタを介して前記各第2電力管理装置と通信するための共通通信インターフェース部を備えている、
    請求項8に記載の電力管理システム。
    Each customer includes a plurality of types of customers,
    The second power management device is prepared for each of the plurality of types of consumers,
    Each of the second power management devices includes a common communication adapter for bidirectional communication with the first power management device,
    The first power management device includes a common communication interface unit for communicating with the second power management devices via the common communication adapters.
    The power management system according to claim 8.
  10.  第1の電力管理装置と、前記第1の電力管理装置に接続される複数の第2の電力管理装置とを備える電力管理システムであって、
     前記第2の電力管理装置は、当該第2の電力管理装置に接続される一つまたは複数の電気機器の電力状態を示す電力消費情報と電力供給状況情報とを取得して、前記電気機器の電力状態を示す第2の管理情報として前記第1の電力管理装置に送信し、
     前記第1の電力管理装置は、前記第2の管理情報と、前記複数の第2の電力管理装置の存在地点を含む地図情報から作成される配電網情報とに基づいて、前記第2の電力管理装置が管理する前記電気機器の電力需要量と発電量とを予測し、
     前記需要量と前記発電量の差分を低減させる第1管理情報を生成し、
     前記第1管理情報を前記各第2電力管理装置に送信する、
    電力管理システム。
    A power management system comprising a first power management device and a plurality of second power management devices connected to the first power management device,
    The second power management device acquires power consumption information and power supply status information indicating a power state of one or more electrical devices connected to the second power management device, and Transmitting to the first power management apparatus as second management information indicating the power state;
    The first power management device is configured to generate the second power based on the second management information and distribution network information created from map information including locations where the plurality of second power management devices exist. Predicting the power demand and power generation amount of the electrical equipment managed by the management device,
    Generating first management information for reducing a difference between the demand amount and the power generation amount;
    Transmitting the first management information to each of the second power management devices;
    Power management system.
  11.  前記作成された配電網情報では、前記複数の第2の電力管理装置が複数集まって構成されるサブコミュニティ毎に当該第2の電力管理装置が管理され、
     前記第1の電力管理装置は、
     前記作成された配電網情報の前記サブコミュニティ単位で、当該サブコミュニティに含まれる前記複数の第2の電力管理装置についての前記第2の管理情報を合算することで、前記電気機器の前記電力需要量と前記発電量とを予測し、前記第1管理情報を生成することを特徴とする請求項10に記載の電力管理システム。
    In the created distribution network information, the second power management device is managed for each sub-community configured by a plurality of the plurality of second power management devices.
    The first power management device includes:
    By adding the second management information for the plurality of second power management devices included in the subcommunity in the subcommunity unit of the created distribution network information, the power demand of the electrical device The power management system according to claim 10, wherein the first management information is generated by predicting an amount and the power generation amount.
  12.  複数の需要家を含む所定区域毎に設けられる第1電力管理装置と、前各需要家に設けられる第2電力管理装置とを含む電力管理システムであって、
     前記第2電力管理装置は、前記需要家での電力状態を監視して、前記電力状態を示す第2管理情報を前記第1電力管理装置に送信し、
     前記第1電力管理装置は、
     前記需要家の位置を示す需要家位置情報と、前記需要家に電力を供給するための設備の位置を示す設備位置情報と、前記所定区域を含む地図の情報とに基づいて、前記設備と前記需要家とを接続する配電網を予測し、
     前記予測した配電網と、前記第2管理情報の電力状態とに基づいて、前記所定区域における余剰電力量を算出し、
     前記余剰電力量を低減させるための情報を含む第1管理情報を作成し、
     前記第1管理情報を前記各第2電力管理装置に送信する、
    電力管理システム。
    A power management system including a first power management device provided for each predetermined area including a plurality of consumers, and a second power management device provided to each previous consumer,
    The second power management device monitors the power state at the consumer and transmits second management information indicating the power state to the first power management device.
    The first power management device includes:
    Based on the customer location information indicating the location of the customer, facility location information indicating the location of the facility for supplying power to the customer, and information on a map including the predetermined area, the facility and the Predict the power distribution network connecting customers,
    Based on the predicted distribution network and the power state of the second management information, calculate the surplus power amount in the predetermined area,
    Creating first management information including information for reducing the surplus power,
    Transmitting the first management information to each of the second power management devices;
    Power management system.
  13.  所定区域内の複数の需要家に設けられる第2電力管理装置に通信可能に接続される第1電力管理装置であって、
     前記各需要家の位置を示す需要家位置情報と、前記各需要家に電力を供給するための設備の位置を示す設備位置情報と、前記所定区域を含む地図の情報とに基づいて、前記設備と前記各需要家とを接続する配電網を予測し、
     前記各需要家での電力状態を示す第2管理情報を前記各第2電力管理装置からそれぞれ取得し、
     前記各第2管理情報に基づいて、前記所定区域での電力需要の総量及び発電量の総量を予測し、
     前記電力需要の総量と前記発電量の総量との差から余剰電力量を算出し、
     前記余剰電力量を低減させるための情報を含む第1管理情報を作成し、
     前記第1管理情報を前記各第2電力管理装置に送信する、
    第1電力管理装置。
    A first power management device communicably connected to a second power management device provided in a plurality of consumers in a predetermined area,
    Based on the customer location information indicating the location of each customer, the facility location information indicating the location of the facility for supplying power to each customer, and the information on the map including the predetermined area, the facility And a power distribution network connecting each consumer and
    Obtaining second management information indicating a power state at each consumer from each second power management device;
    Based on each of the second management information, predict the total amount of power demand and the total amount of power generation in the predetermined area,
    Calculate surplus power from the difference between the total amount of power demand and the total amount of power generation,
    Creating first management information including information for reducing the surplus power,
    Transmitting the first management information to each of the second power management devices;
    First power management device.
  14.  第2の電力管理装置に接続される第1の電力管理装置であって、
     前記第2の電力管理装置から当該第2の電力管理装置に接続される電気機器の電力状態を示す電力消費情報と電力供給状況情報を取得して、
     前記第2の管理情報と、前記第2の電力管理装置の在地点を含む地図情報から作成される配電網情報とに基づいて、前記第2の電力管理装置が管理する電気機器の電力需要量と発電量とを予測し、
     前記需要量と前記発電量の差分を低減させる第1管理情報を生成し、
     前記第1管理情報を前記第2の電力管理装置に送信する、
    第1の電力管理装置。
    A first power management device connected to a second power management device,
    Obtaining power consumption information and power supply status information indicating a power state of an electrical device connected to the second power management device from the second power management device;
    Based on the second management information and the distribution network information created from the map information including the location of the second power management device, the power demand amount of the electrical equipment managed by the second power management device And the amount of power generation
    Generating first management information for reducing a difference between the demand amount and the power generation amount;
    Transmitting the first management information to the second power management device;
    1st power management apparatus.
  15.  複数の需要家を含む所定区域毎に設けられる第1電力管理装置と、前記各需要家に設けられる第2電力管理装置とを含むシステムを管理する電力管理方法であって、
     前記各需要家の位置を示す需要家位置情報と、前記各需要家に電力を供給するための設備の位置を示す設備位置情報と、前記所定区域を含む地図の情報とに基づいて、前記設備と前記各需要家とを接続する配電網を予測し、
     前記各第2電力管理装置は、前記各需要家での電力状態を示す第2管理情報を前記第1電力管理装置に送信し、
     前記第1電力管理装置は、
      前記第各2管理情報に基づいて、前記所定区域での電力需要の総量及び発電量の総量を予測し、
      前記電力需要の総量と前記発電量の総量との差から余剰電力量を算出し、
      前記余剰電力量を低減させるための情報を含む第1管理情報を作成し、
      前記第1管理情報を前記各第2電力管理装置に送信する、
    電力管理方法。
    A power management method for managing a system including a first power management device provided for each predetermined area including a plurality of consumers and a second power management device provided for each consumer,
    Based on the customer location information indicating the location of each customer, the facility location information indicating the location of the facility for supplying power to each customer, and the information on the map including the predetermined area, the facility And a power distribution network connecting each consumer and
    Each said 2nd power management apparatus transmits the 2nd management information which shows the electric power state in each said consumer to the said 1st power management apparatus,
    The first power management device includes:
    Based on each second management information, predict the total amount of power demand and the total amount of power generation in the predetermined area,
    Calculate surplus power from the difference between the total amount of power demand and the total amount of power generation,
    Creating first management information including information for reducing the surplus power,
    Transmitting the first management information to each of the second power management devices;
    Power management method.
  16.  第1の電力管理装置と、前記第1の電力管理装置に接続される複数の第2の電力管理装置とを備えるシステムを管理する電力管理方法であって、
     前記第2の電力管理装置は、当該第2の電力管理装置に接続される一つまたは複数の電気機器の電力状態を示す電力消費情報と電力供給状況情報を取得して、前記電気機器の電力状態を示す第2の管理情報として前記第1の電力管理装置に送信し、
     前記第1の電力管理装置は、前記第2の管理情報と、前記複数の第2の電力管理装置の在地点を含む地図情報から作成される配電網情報とに基づいて、前記第2の電力管理装置が管理する電気機器の電力需要量と発電量とを予測し、
     前記需要量と前記発電量の差分を低減させる第1管理情報を生成し、
     前記第1管理情報を前記各第2電力管理装置に送信する、
    電力管理方法。
    A power management method for managing a system comprising a first power management device and a plurality of second power management devices connected to the first power management device,
    The second power management device acquires power consumption information and power supply status information indicating a power state of one or a plurality of electrical devices connected to the second power management device to obtain power of the electrical device. Transmitting to the first power management apparatus as second management information indicating the state;
    The first power management device is configured to generate the second power based on the second management information and distribution network information created from map information including locations of the plurality of second power management devices. Predict the power demand and power generation amount of electrical equipment managed by the management device,
    Generating first management information for reducing a difference between the demand amount and the power generation amount;
    Transmitting the first management information to each of the second power management devices;
    Power management method.
PCT/JP2010/070463 2010-11-17 2010-11-17 Power management system and power management method WO2012066651A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/070463 WO2012066651A1 (en) 2010-11-17 2010-11-17 Power management system and power management method
JP2012544046A JP5576498B2 (en) 2010-11-17 2010-11-17 Power management system and power management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/070463 WO2012066651A1 (en) 2010-11-17 2010-11-17 Power management system and power management method

Publications (1)

Publication Number Publication Date
WO2012066651A1 true WO2012066651A1 (en) 2012-05-24

Family

ID=46083614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070463 WO2012066651A1 (en) 2010-11-17 2010-11-17 Power management system and power management method

Country Status (2)

Country Link
JP (1) JP5576498B2 (en)
WO (1) WO2012066651A1 (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014096867A (en) * 2012-11-07 2014-05-22 Mitsubishi Electric Corp Smart community system
JP2014128140A (en) * 2012-12-27 2014-07-07 Hitachi Ltd Power suppression control system and power suppression control method
JP2014233133A (en) * 2013-05-28 2014-12-11 エヌ・ティ・ティ・コムウェア株式会社 Energy distribution control apparatus, energy distribution control method, energy distribution control system, and energy distribution control program
EP2813979A1 (en) 2013-06-14 2014-12-17 Hitachi Ltd. Electric power consumption management system and method
JP2015046685A (en) * 2013-08-27 2015-03-12 株式会社東芝 Household electrical appliance control system
JP2015077014A (en) * 2013-10-10 2015-04-20 三井不動産株式会社 Energy management system for adjusting energy supply and demand of plural blocks and energy management method
JP2015091169A (en) * 2013-11-05 2015-05-11 パナソニックIpマネジメント株式会社 State notification apparatus
JP2015122836A (en) * 2013-12-20 2015-07-02 積水化学工業株式会社 Power management device, power management method and program
KR101545060B1 (en) 2013-11-26 2015-08-17 정유철 Integrate Electric Energy Control System Based On ESS Distributed Control
JP2015202022A (en) * 2014-03-31 2015-11-12 株式会社デンソー energy management system
JP2016077079A (en) * 2014-10-06 2016-05-12 シャープ株式会社 Power management device, power management system, power management method, program, display device, and utterance device
JP2016515373A (en) * 2013-03-08 2016-05-26 エヌイーシー ヨーロッパ リミテッドNec Europe Ltd. System and method for distributing power
JP2016103965A (en) * 2014-11-12 2016-06-02 パナソニックIpマネジメント株式会社 Power management method, power management system and power supply device
JP2016110556A (en) * 2014-12-10 2016-06-20 パナソニックIpマネジメント株式会社 Information notification method and information notification device
JP2016520281A (en) * 2013-05-22 2016-07-11 ブルー ソリューションズ Equipment to restore power to equipment that is supplied with power, especially electric vehicles
JP2016146746A (en) * 2016-03-31 2016-08-12 パナソニックIpマネジメント株式会社 Power control system, program and power control device
JP2016527864A (en) * 2013-08-05 2016-09-08 エヌイーシー ヨーロッパ リミテッドNec Europe Ltd. Method, system and control means for load balancing between local nodes
JP2016184237A (en) * 2015-03-25 2016-10-20 株式会社日立製作所 Facility failure prediction system, facility failure prediction device and facility failure prediction method
JP2017022919A (en) * 2015-07-14 2017-01-26 大和ハウス工業株式会社 Power transfer system and residential block including the same
JP2017028776A (en) * 2015-07-16 2017-02-02 大和ハウス工業株式会社 Power transfer system and housing block comprising the same
JP2017034744A (en) * 2015-07-29 2017-02-09 東京電力ホールディングス株式会社 Monitoring control system
JP6172345B1 (en) * 2016-06-17 2017-08-02 積水ハウス株式会社 Energy management system
JP2017532934A (en) * 2014-08-19 2017-11-02 オリガミ エナジー リミテッド Power distribution control system
US10298056B2 (en) 2013-10-31 2019-05-21 Nec Corporation Power control system, power control method, and recording medium
JP2019126157A (en) * 2018-01-16 2019-07-25 積水化学工業株式会社 Power management system and power management method
EP3576242A1 (en) * 2018-05-31 2019-12-04 Hitachi, Ltd. Energy operation apparatus, method, and system
US10600132B2 (en) 2014-07-24 2020-03-24 Mitsubishi Electric Corporation Supply-demand control device, charge-discharge control device, power storage device, supply-demand control system, and supply-demand control method
US10678198B2 (en) 2014-08-19 2020-06-09 Origami Energy Limited Power distribution control system
US10698433B2 (en) 2013-07-26 2020-06-30 Kyocera Corporation Power management apparatus, power management system, and method for power management
CN111725887A (en) * 2019-03-21 2020-09-29 江苏羚翎电气设备有限公司 Power transmission system based on FTU and control method thereof
JP2020167815A (en) * 2019-03-29 2020-10-08 株式会社日立製作所 Power usage control system
JP2021048667A (en) * 2019-09-17 2021-03-25 河村電器産業株式会社 Vehicle charging device
JP2021052557A (en) * 2019-09-26 2021-04-01 京セラ株式会社 Self consignment system and self consignment method
JP2021087278A (en) * 2019-11-27 2021-06-03 京セラ株式会社 Self-consignment system and self-consignment method
KR102327413B1 (en) * 2021-02-25 2021-11-16 국민대학교산학협력단 Power managing apparatus and method for the same
EP4080433A1 (en) * 2021-04-22 2022-10-26 Hitachi, Ltd. Management system and management method
JP7337225B2 (en) 2017-06-12 2023-09-01 三菱電機株式会社 CONTROL DEVICE, POWER MANAGEMENT SYSTEM, CONTROL METHOD AND PROGRAM
JP7437536B2 (en) 2022-01-29 2024-02-22 シジョン ジョウ, Statistical payment method for electrical energy and carbon emissions based on digital payment wallet and blockchain

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017038501A (en) * 2015-08-12 2017-02-16 株式会社東芝 Energy management device, energy management method, and energy management program
JP6672010B2 (en) 2016-02-25 2020-03-25 オムロン株式会社 Power coordination control system, power coordination control method, and power coordination control program
KR102173777B1 (en) * 2017-07-25 2020-11-03 주식회사 엘지화학 Master battery management unit and a battery pack including the same
KR102173778B1 (en) * 2017-07-25 2020-11-03 주식회사 엘지화학 Battery management unit and a battery pack including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129873A (en) * 2005-11-07 2007-05-24 Nippon Telegr & Teleph Corp <Ntt> Device and method for managing energy demand
JP2010233352A (en) * 2009-03-27 2010-10-14 Tokyo Electric Power Co Inc:The Power supply system, and device for control of distributed power plant

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007228696A (en) * 2006-02-22 2007-09-06 Osaka Gas Co Ltd Energy saving support system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129873A (en) * 2005-11-07 2007-05-24 Nippon Telegr & Teleph Corp <Ntt> Device and method for managing energy demand
JP2010233352A (en) * 2009-03-27 2010-10-14 Tokyo Electric Power Co Inc:The Power supply system, and device for control of distributed power plant

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014096867A (en) * 2012-11-07 2014-05-22 Mitsubishi Electric Corp Smart community system
JP2014128140A (en) * 2012-12-27 2014-07-07 Hitachi Ltd Power suppression control system and power suppression control method
JP2016515373A (en) * 2013-03-08 2016-05-26 エヌイーシー ヨーロッパ リミテッドNec Europe Ltd. System and method for distributing power
JP2016520281A (en) * 2013-05-22 2016-07-11 ブルー ソリューションズ Equipment to restore power to equipment that is supplied with power, especially electric vehicles
JP2014233133A (en) * 2013-05-28 2014-12-11 エヌ・ティ・ティ・コムウェア株式会社 Energy distribution control apparatus, energy distribution control method, energy distribution control system, and energy distribution control program
EP2813979A1 (en) 2013-06-14 2014-12-17 Hitachi Ltd. Electric power consumption management system and method
US10698433B2 (en) 2013-07-26 2020-06-30 Kyocera Corporation Power management apparatus, power management system, and method for power management
JP2016527864A (en) * 2013-08-05 2016-09-08 エヌイーシー ヨーロッパ リミテッドNec Europe Ltd. Method, system and control means for load balancing between local nodes
JP2015046685A (en) * 2013-08-27 2015-03-12 株式会社東芝 Household electrical appliance control system
JP2015077014A (en) * 2013-10-10 2015-04-20 三井不動産株式会社 Energy management system for adjusting energy supply and demand of plural blocks and energy management method
US10298056B2 (en) 2013-10-31 2019-05-21 Nec Corporation Power control system, power control method, and recording medium
JP2015091169A (en) * 2013-11-05 2015-05-11 パナソニックIpマネジメント株式会社 State notification apparatus
KR101545060B1 (en) 2013-11-26 2015-08-17 정유철 Integrate Electric Energy Control System Based On ESS Distributed Control
JP2015122836A (en) * 2013-12-20 2015-07-02 積水化学工業株式会社 Power management device, power management method and program
JP2015202022A (en) * 2014-03-31 2015-11-12 株式会社デンソー energy management system
US10600132B2 (en) 2014-07-24 2020-03-24 Mitsubishi Electric Corporation Supply-demand control device, charge-discharge control device, power storage device, supply-demand control system, and supply-demand control method
JP2017532934A (en) * 2014-08-19 2017-11-02 オリガミ エナジー リミテッド Power distribution control system
US10678198B2 (en) 2014-08-19 2020-06-09 Origami Energy Limited Power distribution control system
JP2016077079A (en) * 2014-10-06 2016-05-12 シャープ株式会社 Power management device, power management system, power management method, program, display device, and utterance device
JP2016103965A (en) * 2014-11-12 2016-06-02 パナソニックIpマネジメント株式会社 Power management method, power management system and power supply device
JP2018061429A (en) * 2014-11-12 2018-04-12 パナソニックIpマネジメント株式会社 Power management method, power management system, and power feeding device
JP2016110556A (en) * 2014-12-10 2016-06-20 パナソニックIpマネジメント株式会社 Information notification method and information notification device
JP2016184237A (en) * 2015-03-25 2016-10-20 株式会社日立製作所 Facility failure prediction system, facility failure prediction device and facility failure prediction method
JP2017022919A (en) * 2015-07-14 2017-01-26 大和ハウス工業株式会社 Power transfer system and residential block including the same
JP2017028776A (en) * 2015-07-16 2017-02-02 大和ハウス工業株式会社 Power transfer system and housing block comprising the same
JP2017034744A (en) * 2015-07-29 2017-02-09 東京電力ホールディングス株式会社 Monitoring control system
JP2016146746A (en) * 2016-03-31 2016-08-12 パナソニックIpマネジメント株式会社 Power control system, program and power control device
JP2017225299A (en) * 2016-06-17 2017-12-21 積水ハウス株式会社 Energy management system
JP6172345B1 (en) * 2016-06-17 2017-08-02 積水ハウス株式会社 Energy management system
JP7337225B2 (en) 2017-06-12 2023-09-01 三菱電機株式会社 CONTROL DEVICE, POWER MANAGEMENT SYSTEM, CONTROL METHOD AND PROGRAM
JP2019126157A (en) * 2018-01-16 2019-07-25 積水化学工業株式会社 Power management system and power management method
EP3576242A1 (en) * 2018-05-31 2019-12-04 Hitachi, Ltd. Energy operation apparatus, method, and system
CN111725887A (en) * 2019-03-21 2020-09-29 江苏羚翎电气设备有限公司 Power transmission system based on FTU and control method thereof
CN111725887B (en) * 2019-03-21 2024-04-09 江苏羚翎电气设备有限公司 FTU-based power transmission system and control method thereof
JP2020167815A (en) * 2019-03-29 2020-10-08 株式会社日立製作所 Power usage control system
JP7220613B2 (en) 2019-03-29 2023-02-10 株式会社日立製作所 Power usage control system
WO2020202620A1 (en) * 2019-03-29 2020-10-08 株式会社日立製作所 Power usage control system
JP7365829B2 (en) 2019-09-17 2023-10-20 河村電器産業株式会社 vehicle charging device
JP2021048667A (en) * 2019-09-17 2021-03-25 河村電器産業株式会社 Vehicle charging device
JP2021052557A (en) * 2019-09-26 2021-04-01 京セラ株式会社 Self consignment system and self consignment method
JP7288377B2 (en) 2019-09-26 2023-06-07 京セラ株式会社 Self-consignment system and self-consignment method
JP2021087278A (en) * 2019-11-27 2021-06-03 京セラ株式会社 Self-consignment system and self-consignment method
JP7229901B2 (en) 2019-11-27 2023-02-28 京セラ株式会社 Self-consignment system and self-consignment method
KR102327413B1 (en) * 2021-02-25 2021-11-16 국민대학교산학협력단 Power managing apparatus and method for the same
EP4080433A1 (en) * 2021-04-22 2022-10-26 Hitachi, Ltd. Management system and management method
JP7437536B2 (en) 2022-01-29 2024-02-22 シジョン ジョウ, Statistical payment method for electrical energy and carbon emissions based on digital payment wallet and blockchain

Also Published As

Publication number Publication date
JPWO2012066651A1 (en) 2014-05-12
JP5576498B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP5576498B2 (en) Power management system and power management method
US9880580B2 (en) Systems and methods for microgrid power generation management with selective disconnect
Baidya et al. Reviewing the opportunities, challenges, and future directions for the digitalization of energy
CN104517240B (en) For managing the method and system of the equipment in micro-capacitance sensor
JP5727063B1 (en) Energy management apparatus, energy management system, energy management method and program
WO2013157481A1 (en) Energy management system, energy management method, program, server device, and client device
US20130173807A1 (en) Energy service delivery platform
US20100292857A1 (en) Electrical network command and control system and method of operation
WO2013030937A1 (en) Regional electric power control system and regional electric power control method
Muhanji et al. Distributed control for distributed energy resources: Long-term challenges and lessons learned
WO2011042787A1 (en) Electric power distribution system
Qi et al. Demand response and smart buildings: A survey of control, communication, and cyber-physical security
Ping et al. Coordinating EV charging via blockchain
Elizabeth et al. Smart grid technology potentials in Nigeria: An Overview
WO2016186056A1 (en) Power station system and power station system server
EP2985859A1 (en) Information appliance, control system, and control method
JP2005198423A (en) Energy management system, energy management method, and energy management program
US10416700B2 (en) Control apparatus and control method
JP2009142023A (en) Integrated management system and program of wide area power data
RU78966U1 (en) AUTOMATED INFORMATION-MEASURING SYSTEM OF ACCOUNTING, MONITORING AND MANAGEMENT OF ENERGY RESOURCES IN HOUSING AND COMMUNAL SERVICES
Veloso et al. Towards sustainability using an edge-fog-cloud architecture for demand-side management
Dang The Energy Web: Concept and challenges to overcome to make large scale renewable and distributed energy resources a true reality
Plecas et al. Accelerating renewable connections through coupling demand and distributed generation
Bekhit et al. A platform for demand response and intentional islanding in distribution grids: The LIVING GRID demonstration project
JP6751693B2 (en) Control devices, information devices, control systems and control methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859725

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012544046

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10859725

Country of ref document: EP

Kind code of ref document: A1