WO2013030937A1 - Regional electric power control system and regional electric power control method - Google Patents

Regional electric power control system and regional electric power control method Download PDF

Info

Publication number
WO2013030937A1
WO2013030937A1 PCT/JP2011/069493 JP2011069493W WO2013030937A1 WO 2013030937 A1 WO2013030937 A1 WO 2013030937A1 JP 2011069493 W JP2011069493 W JP 2011069493W WO 2013030937 A1 WO2013030937 A1 WO 2013030937A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
consumer
information
power management
predetermined
Prior art date
Application number
PCT/JP2011/069493
Other languages
French (fr)
Japanese (ja)
Inventor
剛人 太田
浩仁 矢野
広考 高橋
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2011/069493 priority Critical patent/WO2013030937A1/en
Publication of WO2013030937A1 publication Critical patent/WO2013030937A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • H02J2310/14The load or loads being home appliances
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • H02J2310/60Limiting power consumption in the network or in one section of the network, e.g. load shedding or peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances

Definitions

  • the present invention relates to a regional power management system and a regional power management method.
  • a path and electrical equipment for supplying commercial power from a power supplier such as an electric power company to each consumer (personal house, building, factory, etc.) are called a power system.
  • a power supplier such as an electric power company
  • each consumer personal house, building, factory, etc.
  • each customer used only commercial power from the power grid.
  • the distributed power source When the spread rate of the distributed power source was low and the amount of power generation was relatively small, the distributed power source was used as an auxiliary to suppress the consumption of power supplied from the power system. On the other hand, in recent years, the penetration rate of distributed power sources has increased and the amount of power generation has also increased.
  • the power generated by each consumer is larger than the power consumed by each consumer, and surplus power may be generated.
  • surplus power is generated when the amount of power generated by the photovoltaic power generator exceeds the power consumption of the house.
  • a regional power management system is a regional power management system that manages each consumer-side power management device for monitoring the power state of each consumer in a predetermined region.
  • a communication interface unit for communicating with each consumer side power management device; and an information management unit for storing and managing information received from each consumer side power management device via the communication interface unit;
  • a control unit that executes predetermined processing based on information managed by the information management unit.
  • the control unit acquires power management information indicating the power consumption and power generation amount of each consumer from each consumer side power management apparatus via the communication interface unit, and manages the acquired power management information by the information management unit.
  • control unit based on the power management information, a supply and demand prediction unit for predicting surplus power generated at a predetermined time in a predetermined region, and a predetermined request for consumption of surplus power from each consumer.
  • a request destination selection unit for selecting a customer and a request information for requesting consumption of surplus power are generated, and the customer-side power management that the predetermined customer has the request information through the communication interface unit
  • a predetermined consumer consumes power according to the request information based on the request information generation unit to be transmitted to the device and the power management information acquired from the consumer-side power management device of the predetermined customer via the communication interface unit
  • a performance determination unit for determining whether or not
  • the power management information acquired from the consumer-side power management device of at least a predetermined consumer includes correspondence information indicating that the request information is supported, and the performance determination unit is based on the correspondence information, You may comprise so that a predetermined consumer may determine whether electric power was consumed according to request information.
  • the request destination selection unit inquires of the consumer-side power management device of each consumer whether the surplus power can be consumed according to the request information, and returns a positive response to the query. You may select the consumer to have as a predetermined consumer.
  • Each customer-side power management apparatus can determine a response to an inquiry based on a preset policy.
  • the request destination selection unit obtains information on reliability from the reliability management unit for managing the information on the reliability of each customer, which is updated based on the determination result by the performance determination unit, and information on the reliability Based on the above, a consumer having reliability equal to or higher than a predetermined reliability threshold value can be selected as a predetermined consumer from each consumer.
  • the request destination selection unit acquires information on the transmission distance from the distance management unit for managing information on the transmission distance from the substation that supplies power to each consumer to each customer, and based on the information on the transmission distance A consumer having a power transmission distance equal to or less than a distance threshold of a predetermined value can be selected as a predetermined consumer from each consumer.
  • the request destination selection unit acquires information on the transmission distance from the distance management unit for managing information on the transmission distance from the substation that supplies power to each consumer to each customer, and further, the determination by the performance determination unit Obtain information on reliability from the reliability management section for managing the information on the reliability of each customer, which is updated based on the results, and from each customer, the transmission distance below the predetermined distance threshold And a consumer having reliability equal to or higher than a predetermined reliability threshold can be selected as the predetermined consumer.
  • the request information generation unit may generate the request information including the predetermined execution condition so that consumption of surplus power is permitted in a predetermined consumer when a predetermined execution condition set in advance is satisfied. Good.
  • At least a part of the configuration of the present invention can be realized as a computer program or a hardware circuit.
  • the computer program can be distributed, for example, via a communication medium such as the Internet, a recording medium such as a hard disk or a flash memory device.
  • FIG. 1 is an overall configuration diagram of a regional power management system.
  • FIG. 2 shows the electrical connection relationship between the distribution substation and each customer.
  • FIG. 3 is a block diagram of a community power management system (CEMS).
  • FIG. 4 shows an electrical configuration of a house including a HEMS (Home Energy Management System) as an example of a consumer side power management apparatus.
  • FIG. 5 shows a configuration of supply and demand information as power management information transmitted from the HEMS or the like to the CEMS.
  • FIG. 6 is an explanatory diagram showing a situation in which demand information for predicting the supply and demand of electric power in a region is generated, request information for eliminating surplus electric power is generated, and transmitted to a predetermined consumer.
  • FIG. 7 shows a configuration of request information transmitted to a predetermined HEMS or the like.
  • FIG. 8 is a table for managing customer reliability.
  • FIG. 9 is a flowchart illustrating a process of selecting a consumer who requests power consumption.
  • FIG. 10 is a table for managing requested customers.
  • FIG. 11 is a flowchart illustrating processing for generating request information.
  • FIG. 12 is a flowchart showing processing for detecting acceptance of a request.
  • FIG. 13 is a flowchart illustrating a process for determining whether the requested power consumption has been implemented.
  • FIG. 14 is an explanatory diagram illustrating a relationship between a power transmission distance and a margin for voltage fluctuation according to the second embodiment.
  • FIG. 15 is a table for managing the distance between the substation and the customer.
  • FIG. 16 is a flowchart illustrating a process of selecting a consumer who requests power consumption.
  • FIG. 16 is a flowchart illustrating a process of selecting a consumer who requests power consumption.
  • FIG. 17 is a flowchart illustrating processing for requesting power consumption with execution conditions according to the third embodiment.
  • FIG. 18 is a flowchart illustrating a process of consuming electric power after confirming that the execution condition is satisfied.
  • FIG. 19 is a flowchart illustrating processing for determining whether or not the execution condition is satisfied in the HEMS according to the fourth embodiment.
  • FIG. 20 is a flowchart illustrating processing for selecting a consumer who requests power consumption according to the fifth embodiment.
  • FIG. 21 is a table for managing the reliability and predicted power consumption of each customer according to the sixth embodiment.
  • the CEMS 10 as a regional power management system monitors power consumption and power generation in each consumer in a predetermined region, and predicts the power supply and demand state. When the generation of surplus power is predicted, the CEMS 10 selects a predetermined consumer for consuming the surplus power.
  • the CEMS 10 can select, as a predetermined consumer, a customer who promises to consume more power than usual in a time zone where surplus power is generated.
  • the CEMS 10 transmits request information for requesting power consumption to a predetermined consumer.
  • the apparatus that manages a predetermined consumer operates the electrical equipment under management (or stops the electrical equipment) at the requested time, and reduces surplus power.
  • the CEMS 10 determines whether or not the promise regarding the execution of the request information has been kept, and updates the reliability of the customer according to the degree of fulfillment of the promise.
  • this embodiment it is possible to suppress the surplus power in the predetermined area with relatively high reliability while having a relatively simple configuration. This is because the power consumption is not requested to all the consumers in the predetermined area, but only the consumers satisfying the predetermined criteria (reliability, power transmission distance) are requested. Therefore, in this embodiment, it is possible to adjust the power supply and demand in a predetermined area without using a complicated prediction algorithm or the like.
  • FIG. 1 is an overall configuration diagram schematically showing a relationship between a power management system and a power system for each region.
  • the configuration of the power system varies from country to country.
  • the configuration shown in FIG. 1 is an example, and the present invention can be applied to configurations other than the configuration shown in FIG.
  • the electric power system 1 is a system for supplying electric power generated at the power plants 2 and 3 to each consumer, and includes a power generation function, a substation function, a power transmission function, and a power distribution function.
  • the power system 1 describes a case where AC power is supplied to each consumer.
  • a system that supplies DC power instead of a system that supplies AC power, a system that supplies DC power to each consumer may be used.
  • the central power supply 2 is a large-scale power plant such as a thermal power plant, a hydro power plant, or a nuclear power plant.
  • the distributed power source 3 is, for example, a relatively large-scale wind power plant, solar power plant, solar thermal power plant, or the like. Since the distributed power source 3 shown in FIG. 1 belongs to the system side, it can be called a system side distributed power source.
  • the distributed power supply 3 includes a relatively large-scale storage battery 3A. By storing the power generated by a wind power generator or the like in the storage battery 3A, the power can be used effectively.
  • the electric power generated by the centralized power supply 2 and the distributed power supply 3 is sent to the power transmission station 4 and boosted to a predetermined high voltage.
  • the power transmission station 4 can also include a storage battery 4A. A part of the power from the centralized power supply 2 or the distributed power supply 3 can be stored in the storage battery 4A.
  • the power transmission station 4 is connected to each distribution substation 5 (1), 5 (2) via a power transmission network 6, and high-voltage AC power is supplied to each distribution substation 5 (1), 5 ( 2).
  • the power transmission network 6 may include one or a plurality of substations, but is omitted in FIG.
  • the distribution substations 5 (1) and 5 (2) reduce the voltage value of the power from the power transmission station 4 and supply power of a predetermined voltage to each consumer. When not particularly distinguished, it is referred to as a distribution substation 5.
  • Each distribution substation 5 supplies electric power to each consumer via a plurality of power supply lines 7.
  • one distribution substation 5 (1) includes a plurality of power supply lines 7 (1a) and 7 (1n).
  • the other distribution substation 5 (2) includes a plurality of other power supply lines 7 (2a) and 7 (2n). When not particularly distinguished, it is referred to as a power supply line 7.
  • Each power supply line 7 is provided with one CEMS 10.
  • the CEMS 10 (1a) is provided for the power supply line 7 (1a)
  • the CEMS 10 (1n) is provided for the power supply line 7 (1n)
  • the CEMS 10 (2a) is provided for the power supply line 7 (2a).
  • a CEMS (2n) is provided in the power supply line 7 (2n). Unless otherwise distinguished, it is called CEMS10.
  • a configuration in which one CEMS 10 is provided for a plurality of power supply lines 7 may be employed.
  • HEMS Home Energy Management System
  • BEMS Building and Energy Management System
  • FEMS Fractory Energy Management
  • FIG. System 40
  • EV-EMS Electric Vehicle-Energy Management System
  • HEMS Home Energy Management System
  • BEMS Building and Energy Management System
  • FEMS Fractory Energy Management
  • FIG. System 40
  • EV-EMS Electric Vehicle-Energy Management System
  • Each consumer is given reference numerals 200, 300A, 300B, 400, and 500, as will be described later with reference to FIG.
  • FIG. 2 is an overall view showing an example of a physical configuration of the power management system.
  • a distribution substation 5 and a high-voltage substation 5H are connected to the power transmission network 6.
  • the distribution substation 5 converts AC power of tens of thousands of kilovolts into AC power of several thousand kilovolts and supplies the AC power to the power supply lines 7 (1) and 7 (2).
  • the high voltage substation 5H generates AC power having a voltage higher than the output voltage of the distribution substation 5 and supplies the AC power to the high voltage power supply line 7H.
  • a power supply line 7 7.
  • Each power supply line 7 includes, for example, a section switch 71, an automatic voltage regulator (SVR) 72A, a static reactive power compensator (SVC) 72B, and a voltage regulator 72C. And are provided. Unless otherwise distinguished, it is called a voltage regulator 72.
  • the voltage regulator 72C is provided in the high-voltage power supply line 7H, and the SVR 72A and the SVC 72B are provided in the power supply line 7 (1).
  • an interconnection switch 73 is provided between the power supply lines 7.
  • the segment switch 71 is a switch circuit that opens and closes the power supply line 7.
  • the SVR 72A and the SVC 72B are circuits that automatically adjust the voltage.
  • the interconnection switch 73 is a switch circuit for connecting the power supply lines 7 to each other and blocking the power supply lines 7. By controlling the interconnection switch 73, even when a disconnection or the like occurs in one power supply line 7, power can be supplied from the other power supply line 7 to each consumer.
  • Each circuit 71, 72A, 72B, 73 provided in the power supply line 7 is connected to a communication master station (RTU: Remote Terminal Unit) 710, 720.
  • the communication master stations 710 and 720 are connected to the circuits 71, 72A, 72B, and 73 on the power supply line 7 via communication slave stations (FTU: Feeder Terminal Units) (not shown).
  • One communication master station 710 is connected via a communication line 711 to a circuit 72C provided in the high-voltage power supply line 7H.
  • the other communication master station 720 includes circuits 71, 72A, 72B provided in the power supply line 7 (1), the power supply line 7 (1), and the power supply line 7 (2) via the communication line 721. Are connected to the interconnection switch 73 that connects the two. Further, the other communication master station 720 connects the circuit 71 provided in the power supply line 7 (2), the power supply line 7 (2), and the power supply line 7H through another communication line 722. Connected to the interconnection switch 73.
  • the communication master stations 710 and 720 are connected to the CEMS 10. Thereby, the CEMS 10 can remotely monitor the states of the circuits 71, 72A, 72B, 73.
  • the power supply line 7 is connected to a plurality of pole transformers 74.
  • the power receiving equipment of each customer 200, 300 ⁇ / b> A, 300 ⁇ / b> B, 400, 500 is supplied with power from the power supply line 7 via the nearest pole transformer 74. Not all consumers receive power via the pole transformer 74.
  • a power cable provided in the ground may be used, or power may be received directly from the power supply line 7.
  • FIG. 2 shows a plurality of types of consumers, that is, a detached house 200, a building 300A, an apartment house 300B, a factory 400, and a charging station 500.
  • the power generation amount and the power consumption amount are managed by a HEMS and a smart meter (SM in the figure).
  • the power generation amount and power consumption amount of the entire building and the power generation amount and power consumption amount of each area in the building are managed by a BEMS (Building and Energy Management System) and a smart meter.
  • the power generation amount and the power consumption amount are managed by a FEMS (Factory Energy Management System) and a smart meter.
  • the charging station 500 manages the power generation amount and the power consumption amount by an EV-EMS (Electric Vehicle Management System) and a smart meter.
  • EV-EMS Electric Vehicle Management System
  • the smart meter is connected to an MDMS (Meter Data Management System) 80 of an AMI (Advanced Metering Infrastructure) 80 via a communication line 810.
  • the CEMS 10 is connected to the MDMS 80, and acquires data (actually measured values) related to the power generation amount and the power consumption amount from the smart meter of each consumer via the MDMS 80.
  • the CEMS 10 is connected to the HEMS, BEMS, FEMS, and EV-EMS via another communication line 820.
  • the CEMS 10 uses other communication lines 820 to receive supply / demand information described later from HEMS, BEMS, FEMS, and EV-EMS, and to transmit planning information (request information) described later to HEMS, BEMS, FEMS, and EV-EMS. Or send.
  • At least one distributed power source (customer-side distributed power source) 60 that uses natural energy can be provided in the area that the distribution substation 5 is in charge of.
  • the distributed power source 60 include a wind power plant 61, a power storage plant 62, and a solar power plant 63.
  • the power storage station 62 stores renewable power generated by the wind power plant 61, the solar power plant 63, and the like.
  • the power storage 62 may be configured to convert electrical energy into other energy such as heat energy and store the energy.
  • the CEMS 10 is also connected to a distributed power source 60 provided in the area, and can manage the power generation amount, the power storage amount, and the like of the distributed power source 60.
  • FIG. 3 shows the configuration of the CEMS 10.
  • the CEMS 10 is provided for each predetermined area, and manages the power state of each consumer belonging to the predetermined area.
  • the power state includes a state of power generation and / or a state of power consumption.
  • the CEMS 10 includes, for example, a supply and demand adjustment function 110 as a “control unit” and an EMS information control hub function 120.
  • the EMS information control hub function 120 includes, for example, a common adapter I / F 121, a common API (Application Programming Interface) 122, a common data processing function 123, a common data management function 124, a database group 125, and a security function 126. It has.
  • the supply and demand adjustment function 110 predicts the amount of surplus power generated in the area in charge of the CEMS 10, and creates information for reducing the surplus power.
  • the supply and demand adjustment function 110 includes, for example, a power supply and demand prediction unit 111, a request destination selection unit 112, a request information generation unit 113, and a performance determination unit 114. Details of each function 111, 112, 113, 114 will be described later.
  • the EMS information control hub function 120 processes and stores data collected from the HEMS 20, BEMS 30, FEMS 40, EV-EMS 50, power generation and power storage station 60, and provides it to an external device as necessary.
  • the common adapter I / F 121 is an interface for bidirectional communication with the common adapter CA included in each customer-side device 20, 30, 40, 50, 60.
  • each of these devices is provided with a common adapter CA for performing standardized communication.
  • the common API 122 is an interface for two-way communication with a computer owned by an external company such as the service provider 90A or the application developer 90B.
  • the EMS information control hub 120 provides data regarding the local EMS to the external vendors 90A and 90B.
  • the service provider 90A and the application developer 90B may be referred to as external contractors 90.
  • Examples of the external supplier 90 include a manufacturer or a seller of various products used by each consumer, a weather forecaster that provides weather information, and a consultant company that provides advice on electric power.
  • the common data processing function 123 processes the data acquired from each customer side device 20, 30, 40, 50, 60, etc. as predefined common data.
  • the common data management function 124 stores common data in the database group 125.
  • the database group 125 stores various types of information related to EMS in the area.
  • the security function 126 ensures the reliability and safety of communication between the CEMS and each customer-side device 20, 30, 40, 50, 60, and the like.
  • the security function 126 authenticates a communication partner, encrypts communication contents, and decrypts encrypted communication.
  • FIG. 4 schematically shows an electrical configuration of a general detached house 200.
  • the house 200 includes a HEMS 20, a smart meter 21, a distribution board 22 with a meter, a PCS (Power Conditioning System) 23, a PV (PhotoVoltaic) 24, a battery 25, a plurality of electrical devices 26A-26H, PLC (Power Line Communications) 27 is provided.
  • the HEMS 20 manages the power state (both power generation and power consumption) in the house 200 and is connected to the CEMS 10.
  • the HEMS 20 can be configured as a microcomputer system including, for example, a microprocessor, a memory, and a communication interface (all not shown).
  • the BEMS 30, FEMS 40, and EV-EMS 50 can also be configured as a microcomputer system.
  • the HEMS 20 has a monitor display 20A.
  • the monitor display 20A may be integrated with the HEMS 20, or may be formed separately from the HEMS 20. Furthermore, the structure which utilizes the display apparatus which displays a television broadcast etc. as a monitor display of HEMS20 may be sufficient.
  • the policy 20B is stored in the memory of the HEMS 20.
  • the policy 20B is information for determining whether or not to accept the request information (plan information) from the CEMS 10.
  • the policy 20B can be manually set by the user, an initial policy registered in advance can be used as it is, or the initial policy can be manually changed by the user.
  • the smart meter 21 communicates with the purchased power meter for measuring the power purchased from the power system 1, the sold power meter for measuring the power sold to the power system 1, and the MDMS 80 in FIG. 2.
  • the smart meter 21 and the HEMS 20 may be configured to communicate with each other.
  • the distribution board 22 with a meter is a device for distributing electric power to each room of the house 200, and includes an earth leakage breaker and the like.
  • the distribution board 22 is connected to the HEMS 20.
  • the PCS 23 controls a PV (solar power generation device) 24 and a battery 25.
  • the PCS 23 is connected to the distribution board 22. Further, the PCS 23 is also connected to the HEMS 20.
  • the electric power generated by the PV 24 is stored in the home battery 25 or an electric vehicle battery (not shown).
  • the PCS 23 supplies the power stored in the battery 25 to each device 26A-26H in the house 200 or sells the power to the power system 1 via the smart meter 21 so that voltage fluctuation does not occur. To do.
  • excess power generated in the house 200 can be supplied to other customers managed by the same CEMS 10.
  • a plurality of CEMSs 10 cooperate to supply surplus power in one house to another house 200 or building 300A managed by another CEMS 10 belonging to the same distribution substation 5 You can also.
  • Examples of the electrical equipment in the house 200 include a fuel cell 26A, a heat pump water heater 26B, an air conditioner 26C, a refrigerator 26D, a dryer 26E, a blind 26F, a lighting S6G, and an electric vehicle (EV / PHV). ) 26H.
  • a fuel cell 26A a heat pump water heater 26B, an air conditioner 26C, a refrigerator 26D, a dryer 26E, a blind 26F, a lighting S6G, and an electric vehicle (EV / PHV). ) 26H.
  • Blind 26F is provided with an actuator such as an electric motor and opens and closes manually or automatically.
  • the electric vehicle includes, for example, an EV (Electric Vehicle) that runs only with a battery and an electric motor, and a PHV (Plug-in Hybrid Vehicle) that can be charged from an electric outlet of the house 200.
  • EV Electric Vehicle
  • PHV Plug-in Hybrid Vehicle
  • the PLC 27 is a device for using the power wiring in the house 200 as a communication line to communicate between the HEMS 20 and each device 26A-26H.
  • FIG. 5 shows power supply and demand information D10 transmitted from each customer to the CEMS 10.
  • Supply / demand information D ⁇ b> 10 is created from each consumer for each device that the consumer has, and is transmitted to CEMS 10.
  • the supply and demand information D10 is transmitted periodically, for example, every 30 minutes.
  • the supply and demand information D10 includes, for example, a customer ID C100, a device ID C101, a power consumption / power generation amount C102, a time C103, an operation C104, and a state C105. Items other than these may be included.
  • the customer ID C100 is information for identifying each customer.
  • the device ID C101 is information for identifying each electric device (PV, battery, home appliance, etc.).
  • the power consumption / power generation amount C102 is information indicating the amount of power consumed by the device specified by C101, or information indicating the amount of power generated from the device specified by C101.
  • the time C103 is information indicating the time when the supply and demand information D100 is created.
  • the operation C104 is information related to the operation of the device such as “operated on”, “operated off”, and “set temperature has been changed to 18 degrees”.
  • the state C105 is information indicating various states of the device such as “power generation”, “power consumption”, “charging”, “maintenance”, “error occurrence”, and the like.
  • FIG. 6 shows a state in which power demand and power supply in a region are predicted, surplus power is calculated, and information for consuming the surplus power in the region is created.
  • the process of FIG. 6 is executed by the supply and demand adjustment function 110.
  • the supply and demand prediction unit 111 predicts the supply and demand of power every predetermined cycle (for example, every 30 minutes) based on, for example, the actual value of power supply and demand obtained from the supply and demand information D10, the weather forecast, and the calendar.
  • the power supply and demand refers to power demand and power supply.
  • the supply and demand prediction unit 111 compares the predicted value of power supply with the predicted value of power demand for each time zone, and predicts whether the demand and supply are balanced for each time zone.
  • a graph G10 illustrated in FIG. 8 is a power supply prediction graph illustrating changes in power supply for each time period.
  • the graph G11 is a demand prediction graph showing changes in power demand for each time zone.
  • the graph G12 shows the difference between the power supply prediction (G10) and the power demand prediction (G11). When the power supply exceeds the power demand, surplus power SP is generated.
  • Surplus power SP is generated in a time zone in which the predicted power supply is more than the predicted power demand.
  • plan information (request information) for encouraging consumption of surplus power SP is distributed to each predetermined consumer in the area before the time zone when surplus power SP occurs. To do.
  • the request destination selection unit 112 selects a plurality of predetermined consumers from the respective consumers 200, 300, 400, and 500 in the area under the control of the CEMS 10 based on a predetermined selection criterion.
  • the request destination selection unit 112 uses the table T10 that manages the reliability of the customer, and preferentially selects from the customers who are likely to fulfill the promise.
  • the reliability of the customer means the possibility that the customer will execute a request for power consumption from the CEMS 10. More specifically, the reliability of the consumer means that if the devices 20, 30, 40, 50, 60 that manage the energy of the consumer accept the request for power consumption from the CEMS 10, the power is consumed as promised. It is possible to do.
  • the request destination selection unit 112 uses a table T30 for managing the transmission distance from the substation 5 (or the transmission station 4) to each consumer, and gives priority to consumers with a short transmission distance. select.
  • the request destination selection unit 112 selects a plurality of highly reliable customers and registers them in the request destination management table T20.
  • the request destination management table T20 manages customers who request consumption of surplus power.
  • the request information generation unit 113 creates information (also referred to as plan information) for consuming surplus power, and transmits the information from the common adapter interface 121 to each predetermined consumer selected as a request destination.
  • the configuration of the request information D20 will be described with reference to FIG.
  • the request information D20 is created and transmitted for each selected predetermined consumer.
  • the request information D20 includes, for example, customer ID C200, time zone C201, point C202, upper limit value C203 of total power consumption, lower limit value C204 of total power consumption, device ID C205, and upper limit value of power consumption. C206 and the lower limit C207 of power consumption are included. Items other than these may be provided.
  • the customer ID C200 is information for identifying a predetermined customer.
  • the time zone C201 is information indicating a time zone to which the incentive is applied, that is, a time zone in which surplus power is generated in the region.
  • Point C202 is information indicating the contents of the incentive.
  • An incentive is a benefit given to the consumption of surplus power.
  • incentives for example, consumers who cooperate in the consumption of surplus power are given a discount on the electricity rate than the normal rate, are granted electronic money that can be used to pay for electricity, etc. Preferential right to use a car is given. Such an incentive is digitized and recorded in the point C202.
  • the point value (incentive) varies depending on the performance of each customer. For example, more points are given to consumers who promise and consume surplus power. Even if it is a consumer who promised consumption of surplus electric power, the point (including 0) lower than the point initially shown is given to the consumer who did not perform it.
  • the upper limit value C203 of the total power consumption is information indicating the upper limit value of surplus power that can be consumed by the consumer.
  • an upper limit value is set for each consumer so that surplus power generated in the region can be used fairly by each selected consumer.
  • the lower limit value C204 of the total power consumption is information indicating the lower limit value of surplus power that should be consumed by the consumer.
  • the lower limit value C204 may be an effort goal or a required obligation.
  • a penalty such as a point reduction is imposed on a consumer who has not consumed power (surplus power) equal to or higher than the lower limit C204 in a designated time zone.
  • the consumer that has not consumed the electric power of the lower limit value 204 or more is set to be low in reliability, and thus is less likely to be selected as a predetermined consumer that consumes surplus power. Therefore, there is a penalty that the opportunity to consume surplus power is reduced.
  • the device ID C205 is information for identifying a device owned by a consumer.
  • the upper limit value C206 of power consumption indicates the upper limit value of surplus power that can be used in the device.
  • the lower limit value C207 of power consumption indicates the lower limit value of surplus power that should be consumed by the device.
  • surplus power allocated to a consumer is reassigned for each device that the consumer has. That is, when the upper limit value C206 of power consumption allocated to each device of the consumer is summed, the upper limit value C203 of total power consumption is obtained. Similarly, when the lower limit value C207 of the power consumption of each device is summed, the lower limit value C204 of the total power consumption is obtained.
  • FIG. 7 only one device ID is shown, but in reality, an upper limit value and a lower limit value of power consumption are set for each device (device to be managed by CEMS) possessed by the customer identified by the customer ID. Is done.
  • the configuration of the request information D20 shown in FIG. 7 is an example, and other configurations may be used.
  • the upper limit value C206 and the lower limit value C207 of power consumption for each electrical device may not be present.
  • the power consumption value may not be indicated by a specific numerical value, but may be relatively indicated such as “10% increase in power consumption”.
  • a configuration that indicates an increment from the power consumed in the same time zone yesterday may be used.
  • a condition (execution condition) that permits the consumption of surplus power, created by the condition setting unit 115, is added to the request information D20.
  • the fulfillment determination unit 114 determines whether a predetermined consumer has consumed surplus power according to the instruction of the request information D20. Based on the determination result for each customer, the value of the reliability C11 in the table T20 for managing the reliability of the customer is updated (see FIG. 8).
  • the reliability management table T10 manages the customer ID C10 and the reliability C11 in association with each other.
  • the customer ID C10 is identification information for identifying each customer managed by the CEMS 10.
  • the reliability C11 manages a value indicating the reliability of the customer.
  • FIG. 9 is a flowchart showing a process for requesting consumption of surplus power.
  • Each process described below is executed by the supply and demand adjustment function 111 as a “control unit” of the CEMS 10. More specifically, the microprocessor 111 of the CEMS 10 executes predetermined computer programs stored in the memory, thereby realizing the functions 111 to 114, and the following processes are executed by these functions. Therefore, the operation subject of each process may be any of CEMS 10, supply and demand adjustment function 110, functions 111 to 114, and a microprocessor.
  • the request destination selection part 112 acquires the prediction about the supply and demand of electric power from the electric power supply and demand prediction part 111 (S10).
  • the request destination selection unit 112 refers to the customer reliability management table T10 (S11), and selects one determination target customer ID (S12).
  • the request destination selection unit 112 determines whether or not the value of the reliability C11 for the determination target customer ID is equal to or greater than a predetermined reliability threshold Th1 (S13). When the reliability value is less than the threshold value Th1 (S13: NO), the request destination selection unit 112 returns to S12 and selects the next consumer ID as a determination target.
  • the request destination selection unit 112 inquires the power management devices 20 to 60 having the customer ID whether to participate in the surplus power consumption activity, and manages the power. It is determined whether or not the device has promised to consume surplus power (S14).
  • the request destination selection unit 112 returns to S12 and selects the next consumer ID as the determination target. .
  • the request destination selection unit 112 registers the customer ID in the request destination management table T20 (S15).
  • the request destination management table T20 will be described later with reference to FIG.
  • the request destination selection unit 112 determines whether there is surplus power (S16). In other words, the request destination selection unit 112 determines whether the gap (surplus power) between the power demand and the power supply is within a predetermined range. For example, it is possible to determine whether or not the supply-demand gap has been eliminated by comparing the total power consumption amount allocated to a predetermined consumer with the surplus power value. When the supply and demand gap is eliminated (S16: NO), this means that the consumer required to consume surplus power has been selected, and thus this process ends.
  • the request destination selection unit 112 determines whether all customer IDs under the management of the CEMS 10 have been determined (S17). When the undetermined customer ID remains (S17: NO), the request destination selecting unit 112 returns to S12 and selects one undetermined customer ID.
  • the request destination selection unit 112 decreases the value of the reliability threshold Th1 by one level (S18). For example, when the initial value of the reliability threshold value Th1 is 80% and one stage is 10%, the request destination selection unit 112 reduces the value of the reliability threshold value Th1 to 70%.
  • the reliability threshold value Th1 may be decreased by 1%.
  • the request destination selection unit 112 repeats the steps S12 to S17 based on the lowered reliability threshold Th1. In other words, the request destination selection unit 112 selects as many consumers as necessary in the order of high reliability in fulfilling the promise.
  • a configuration may be adopted in which a predetermined small number of consumers are randomly selected from unreliable consumers and the consumption of surplus power is requested. Thereby, the opportunity to participate in the consumption activity of surplus electric power can be given to the consumer with low reliability. Unreliable consumers can take advantage of this opportunity to increase their credibility.
  • FIG. 10 shows the configuration of the request destination management table T20.
  • the request destination management table T20 manages customers who request consumption of surplus power.
  • the request destination management table T20 manages, for example, the request destination customer ID C20, the promised flag C21, and the performance level C22 in association with each other.
  • the requested customer ID C20 is information for identifying a customer who requests consumption of surplus power.
  • the promised flag C21 is information indicating that it is promised to consume surplus power according to the request information. When only the promised customer is recorded in the table T20, the promised flag C21 can be omitted.
  • the performance level C22 indicates how much surplus power is actually consumed. When power is consumed as instructed in the request information, the performance level is 100%. If no surplus power is consumed, the performance level is 0%. There are several ways to calculate the performance level.
  • One method is, for example, the value of power consumed exceeding the normal power consumption of the consumer (referred to as an increase value) and the amount of power consumption requested by the consumer (referred to as the requested value). Compare. If the increase value matches the request value, it is determined that the promise has been fulfilled 100%. When the increase value is less than the requested value, the fulfillment degree becomes a value smaller than 100%. Even if the consumer consumes power during the time when surplus power is generated, if the power consumption does not differ from the normal power consumption, it is determined that the promise specified in the request information is not fulfilled. .
  • FIG. 11 is a flowchart showing a process for generating the request information D20.
  • the request information generation unit 113 refers to the request destination management table T20 (S20), and executes the following steps S21 to S24 for each request destination customer ID described therein (S21).
  • the request information generation unit 113 sets the power consumption amount requested to the customer having the processing target customer ID in the request information D20 (S22). For example, when the surplus power consumption is evenly distributed to each consumer registered in the request destination management table T20, the equal distribution amount is set in the request information.
  • the upper limit value and the lower limit value can be calculated with the uniform distribution amount as a central value.
  • the request information generation unit 113 acquires the value of the reliability C11 for the processing target customer ID from the reliability management table T10, and sets an incentive according to the reliability in the request information D20 (S23).
  • the request information generation unit 113 transmits the request information D20 generated in this way to the management device that manages the request-destination customer (S24).
  • FIG. 12 is a flowchart showing a process in which the CEMS 10 and the consumer management device promise about the consumption of surplus power.
  • the request destination selection unit 112 of the CEMS 10 inquires of the power management apparatus (HEMS 20 in FIG. 12) of the target customer whether surplus power can be consumed according to the request information (S40).
  • This inquiry information can include information such as a time zone in which surplus power should be consumed, for example. If the amount of power consumption requested is almost determined, the inquiry information may include the time zone and the power consumption.
  • the power management apparatus of the consumer determines whether to accept the request based on the policy 20B (S31).
  • the policy 20B for example, (1) Accepting a request from CEMS unconditionally, (2) Accept if the power consumption of the electrical equipment specified in advance by the user satisfies the request from CEMS, (3) If the given incentive is greater than the user's desired value, accept the CEMS request, (4) Accept the CEMS request only for the time period specified in advance by the user. Etc. are considered. Other policies may be used.
  • the customer's power management apparatus returns to the CEMS 10 whether or not to receive the request (S32).
  • the consumer's power management apparatus displays on the monitor display 20A whether or not the request has been accepted (S33). For example, the power management apparatus displays a message such as “accepting request from CEMS” on the monitor display 20A.
  • the power management device acquires the request information D20, “300 points are obtained by operating the ice maker, the hot water heater, and the air conditioner in the living room from 2 pm to 5 pm on the monitor display 20A. You can also display a message such as
  • the request destination selection unit 112 of the CEMS 10 determines whether or not the consumer's power management apparatus has accepted the request (S41). When the power management apparatus of the consumer accepts the request (S41: YES), the request destination selecting unit 112 registers the accepted consumer ID in the request destination management table T20 (S42). When the customer's power management apparatus declines the request (S41: NO), S42 is skipped and the process is terminated.
  • the request destination selection unit 112 transmits inquiry information to the power management apparatus of the target consumer, and confirms in advance whether or not to participate in the surplus power consumption activity.
  • the request destination selection unit 112 can register the ID of the customer who promises to participate in the surplus power consumption activity in the request destination management table T20. Therefore, only the ID of the customer who promises to consume more power than normal can be stored in the request destination management table T20 in a predetermined time zone.
  • FIG. 13 is a flowchart showing the performance determination process.
  • the performance determination unit 114 of the CEMS 10 executes the following steps S51 to S55 for each supply and demand information D10 acquired from each customer's power management apparatus (S50).
  • the performance determination unit 114 refers to the request destination management table T20 (S51), and determines whether the supply / demand information to be processed is the supply / demand information acquired from the power management apparatus of the request destination consumer (S52). . Specifically, the fulfillment determination unit 114 determines whether or not the value of the customer ID C100 in the supply and demand information D10 matches the value of any requested customer ID C20 registered in the requested customer management table T20. judge.
  • the performance determination unit 114 returns to S50 and selects the next supply and demand information as a processing target.
  • the fulfillment determination unit 114 calculates the degree of fulfillment of the promise (performance level) by the requested customer (S53).
  • the performance determination unit 114 stores the calculated performance level in the performance level C22 of the request destination management table T20 corresponding to the processing target customer ID (S54).
  • the performance determination unit 114 updates the value of the reliability C11 of the reliability management table T10 based on the calculated performance level (C55).
  • the CEMS 10 can request the power management device of a predetermined consumer to consume surplus power. Instead of predicting tomorrow's power consumption based on the previous day's supply and demand results and notifying each customer, the customer can be asked to consume power in a predetermined time zone on that day. In other words, in this embodiment, a consumer is selected almost in real time, and the selected consumer is inquired whether to accept the request, and the consumer who has accepted the request can be asked to consume surplus power. Since the generation time of surplus power and the request time can be brought close to each other, it is possible to accurately select the consumers participating in the surplus power consumption activity in consideration of the convenience of each customer.
  • the second embodiment will be described with reference to FIGS.
  • Each of the following embodiments including this embodiment corresponds to a modification of the first embodiment. Therefore, the difference from the first embodiment will be mainly described.
  • the consumer who participates in the consumption activity of surplus electric power is selected based on the transmission distance from the substation 5 to a consumer.
  • FIG. 14 is a graph showing the relationship between the voltage change and the transmission distance.
  • shaft in FIG. 14 shows the value of the voltage supplied to a consumer's power receiving installation.
  • the horizontal axis in FIG. 14 indicates the power transmission distance.
  • the reference point of the power transmission distance may be, for example, the substation 5, the power transmission station 4, or the power stations 2 and 3.
  • the voltage value is controlled so as to be within a range from the lower limit value VL to the upper limit value VU with the predetermined reference value VS as the center. Since the transmission line has a resistance value, the voltage drops as the transmission distance increases. In other words, the shorter the power transmission distance, the higher the voltage value.
  • the voltage value increases. If the increased voltage value exceeds the upper limit value VU, the quality of the power is lowered, which may affect the operation of the electric device. As described above, since the voltage value is higher as the power transmission distance is shorter, the margin dV to the upper limit value VU is smaller.
  • a consumer located at the shortest power transmission distance L1 has the smallest margin dV1 up to the upper limit value VU.
  • the margin dV2 up to the upper limit value VU is larger than dV1 (dv1 ⁇ dV2).
  • the margin dV3 to the upper limit value VU is larger than dV2 (dV1 ⁇ dV2 ⁇ dV3).
  • FIG. 15 is a table T30 for managing the transmission distance to each customer.
  • This table T30 manages, for example, the customer ID C30 and the transmission distance C31 from the substation in association with each other.
  • FIG. 16 is a flowchart showing a request destination selection process according to this embodiment.
  • the request destination selection process of this embodiment differs from the request destination selection process described in FIG. 9 in steps S11A, S13A, and S18A.
  • the request destination selection unit 112 of the present embodiment refers to the transmission distance management table T30 (S11A), and selects a customer whose transmission distance is equal to or less than a predetermined transmission distance threshold Th2 (S12A).
  • the request destination selection unit 112 decreases the transmission distance threshold Th2 in a stepwise manner until only as many customers as necessary for eliminating excess power are selected (S18A).
  • the request destination selection unit 112 acquires a prediction about the supply and demand of power from the power supply and demand prediction unit 111 (S10), and further refers to the transmission distance management table T30 (S11A) to determine the consumer to be determined One ID is selected (S12).
  • the request destination selection unit 112 determines whether the value of the transmission distance C31 for the determination target customer ID is equal to or less than a predetermined transmission distance threshold Th2 (S13A). When the value of the power transmission distance exceeds the threshold Th2 (S13A: NO), the request destination selection unit 112 returns to S12 and selects the next consumer ID as a determination target.
  • the request destination selection unit 112 inquires the power management devices 20 to 60 having the customer ID whether to participate in the surplus power consumption activity, and the power management device. It is determined whether or not has promised the consumption of surplus power (S14).
  • the request destination selection unit 112 returns to S12 and selects the next consumer ID as the determination target. .
  • the request destination selection unit 112 registers the customer ID in the request destination management table T20 (S15).
  • the request destination selection unit 112 determines whether the surplus power has been eliminated (S15). When the supply and demand gap is eliminated (S16: NO), this process ends.
  • the request destination selection unit 112 determines whether all customer IDs under the management of the CEMS 10 have been determined (S17). When the undetermined customer ID remains (S17: NO), the request destination selecting unit 112 returns to S12 and selects one undetermined customer ID.
  • the request destination selection unit 112 increases the value of the power transmission distance threshold Th2 by one step (S18A). The request destination selection unit 112 repeats the steps S12 to S17 based on the increased power transmission distance threshold Th2.
  • This embodiment configured as described above also has the same effect as the first embodiment. Furthermore, in this embodiment, since a consumer with a small margin for voltage rise is preferentially selected, the reliability of the electrode system can be further maintained.
  • a third embodiment will be described with reference to FIGS.
  • conditions are set for the implementation of the surplus power consumption activity indicated by the request information D20.
  • FIG. 17 is a flowchart showing request information generation processing according to this embodiment. This process is different from the process shown in FIG. 11 in step S25.
  • the request information generation unit 113 of this embodiment sets the requested power consumption (S22), determines the incentive (S23), and then sets execution conditions (S25).
  • the request information generation unit 113 transmits the request information D20 with execution conditions to the power management apparatus of a predetermined consumer (S24).
  • the execution condition is a condition for permitting consumption of surplus power.
  • the amount of power generation during rainy weather is less than during sunny weather. Accordingly, when unexpected rain falls due to sudden weather changes, the value of surplus power becomes smaller than the initial predicted value. In some cases, surplus power may not be generated. In such a situation, if the consumer consumes electric power as planned according to the request information D20, private power generation is not sufficient, and it is necessary to purchase additional electricity from the electric power company.
  • an execution condition is attached to the request information D20, and the request information is transmitted to the power management apparatus of a predetermined consumer (S24).
  • the execution condition may be described in the request information D20, or may be transmitted to the power management apparatus separately from the request information D20. Or the structure which memorize
  • an execution condition for example, (1) Consumes surplus power in fine weather, (2) Consuming surplus power when it is not raining, (3) Consuming surplus power when the wind speed is equal to or higher than a predetermined value; Etc.
  • FIG. 18 is a flowchart showing a process in which a consumer's power management apparatus consumes surplus power after waiting for an execution instruction from the CEMS 10.
  • the CEMS 10 determines whether or not the remaining time until the consumption of surplus power is equal to or less than the predetermined value Th3 (S60). In other words, the CEMS 10 determines whether it is a time when surplus power is predicted to be generated.
  • the CEMS 10 determines whether or not the execution condition is satisfied based on the weather information or the like (S61).
  • the execution condition is defined as a condition regarding the weather, and the information regarding the weather can be appropriately acquired from a server or the like that distributes the weather data.
  • the CEMS 10 can calculate the execution degree (S62).
  • the CEMS 10 transmits an execution instruction to the power management apparatus of the requested customer (S63).
  • the execution instruction can include the degree of execution. Instead of the degree of execution, a configuration of simply executing or not transmitting to the power management apparatus may be used.
  • the customer's power management apparatus determines whether the execution timing instructed by the request information D20 has arrived (S71). When the execution timing arrives (S71: YES), the power management apparatus checks whether or not the state of the electric device that consumes the surplus power is normal (S72).
  • the power management apparatus When the electrical device that is scheduled to use surplus power is in a normal state (S72: YES), the power management apparatus operates the electrical device to consume surplus power (S73). When the electrical device to be actuated is not in a normal state (S72: NO), this process ends. Note that the CEMS 10 may be notified that the electric device to be activated cannot participate in the surplus power consumption activity due to a malfunction.
  • step S72 the case where it is determined whether or not the electric device to be operated is in a normal state has been described. Instead, it is determined whether or not the electric device to be operated is in an operable state. You may do it. For example, in a water heater, when the hot water in the tank is full, no more hot water can be produced. Therefore, in step S72, it may be determined whether the operation is possible.
  • the present embodiment configured as described above can be applied to either the first embodiment or the second embodiment.
  • a condition is set for execution of surplus power consumption defined by the request information D20, and surplus power is consumed when the condition is satisfied. Therefore, in this embodiment, it is possible to control the supply and demand of electric power in response to a rapid environmental change (for example, a change in weather), and the reliability of the system is improved.
  • the CEMS 10 determines whether or not the execution condition is satisfied and transmits it to the power management apparatus of each consumer. Therefore, each power management apparatus does not need to store execution conditions or determine whether or not the execution conditions are satisfied.
  • FIG. 19 is a flowchart illustrating surplus power consumption processing executed by the consumer's power management apparatus.
  • the power management apparatus determines whether the execution timing instructed by the request information D20 has arrived (S80). When the execution timing has arrived (S80: YES), the power management apparatus determines whether the execution condition set in advance or notified by the request information D20 is satisfied (S81).
  • the power management apparatus can determine whether or not the execution condition is satisfied based on the information obtained from the electrical equipment under the management. For example, in the case of a solar power generation device, when the power generation amount is larger than a predetermined reference value, it can be determined that the sky is clear. Or when the blind control apparatus which controls opening and closing of a blind according to the intensity
  • the power management device determines that the execution condition is satisfied (S81: YES)
  • the power management device checks whether the electrical device to be actuated is normal (S82). If it is normal (S82: YES), the electrical device to be actuated Is used to consume surplus power. In step S82, it may be determined whether or not the electrical device to be actuated is in an operable state.
  • This embodiment which is configured in this way, also has the same operational effects as the third embodiment.
  • whether or not the execution condition is satisfied is determined by the power management apparatus of the consumer, so that it is not necessary to transmit an execution instruction from the CEMS 10 to each power management apparatus, and mixing of communication networks can be suppressed. .
  • the operation target device can be operated according to the actual situation of each consumer, and surplus power can be suppressed.
  • the requested customer is selected in consideration of both the reliability of the customer and the transmission distance.
  • FIG. 20 is a flowchart showing a request destination selection process according to this embodiment.
  • the request destination selection unit 112 acquires a prediction of power supply and demand from the power supply and demand prediction unit 111 (S100).
  • the request destination selection unit 112 selects one determination target customer ID (S101).
  • the request destination selection unit 112 determines whether the value of the transmission distance C31 for the determination target customer ID is equal to or less than the transmission distance threshold Th2 (S102).
  • the request destination selection unit 112 determines whether the value of the reliability C11 of the customer ID is equal to or greater than a predetermined reliability threshold Th1 (S103). ).
  • the request destination selecting unit 112 When the transmission distance is equal to or greater than the threshold Th2 (S102: NO) and when the reliability value is less than the threshold Th1 (S103: NO), the request destination selecting unit 112 returns to S101 and sets the next customer ID. Select as a judgment target.
  • the request destination selection unit 112 inquires of the power management apparatus having the consumer ID whether to participate in the surplus power consumption activity, and the power management apparatus surplus. It is determined whether or not power consumption has been promised (S104).
  • the request destination selection unit 112 returns to S101 and selects the next consumer ID as the determination target. .
  • the request destination selection unit 112 registers the customer ID in the request destination management table T20 (S105).
  • the request destination selection unit 112 determines whether there is surplus power (S106). When the surplus power is eliminated (S106: NO), this process ends. When the supply-demand gap remains (S106: YES), the request destination selection unit 112 determines whether all customer IDs under management have been determined (S107). When the undetermined customer ID remains (S107: NO), the request destination selecting unit 112 returns to S101 and selects one undetermined customer ID.
  • the request destination selection unit 112 changes the power transmission distance threshold Th2 and / or the reliability threshold Th1 (S108), and returns to step S101.
  • Threshold value changing methods include, for example, a method that prioritizes transmission distance and a method that prioritizes reliability.
  • the reliability threshold Th1 is lowered stepwise without changing the transmission distance threshold Th2 as much as possible. According to this method, a consumer with a short transmission distance is preferentially selected.
  • the power transmission distance threshold Th2 is increased stepwise without changing the reliability threshold Th1 as much as possible. According to this method, a highly reliable consumer is preferentially selected.
  • This embodiment can obtain the effects of the first embodiment or the second embodiment. Furthermore, this embodiment can be combined with the third embodiment or the fourth embodiment.
  • the consumer who requests consumption of surplus electric power can be selected based on the viewpoint of both power transmission distance and reliability. Therefore, in the present embodiment, a more appropriate consumer can be selected, and supply and demand can be adjusted with high accuracy.
  • FIG. 21 shows a table T10A for managing the reliability of consumers.
  • This table T10A manages customer ID C10, reliability C11, and power consumption value C12 in association with each other.
  • the power consumption value C12 indicates a power value that can be consumed by the consumer. For example, consumers who have a plurality of electric vehicles and consumers who have large-capacity water heaters or ice makers have a large amount of power that can be consumed.
  • the amount of power that can be consumed by each consumer is set in the column C12, and the consumption of surplus power is calculated based on the value. assign.
  • This embodiment can be applied to any of the embodiments described above. This embodiment can obtain the same effects as those of the first embodiment.
  • the present invention can also be expressed as an invention of a computer program or a recording medium on which a computer program is recorded and which can be read and executed by a computer as follows.
  • Expression 1 A computer program for operating a computer as a regional power management system that manages each consumer-side power management device for monitoring the power state of each customer in a predetermined area,
  • the power management information indicating the power consumption and power generation amount of each consumer is obtained from each consumer side power management device,
  • the acquired power management information is managed by an information management unit, Based on the power management information, the surplus power generated in the predetermined area at a predetermined time in the future is predicted, From among each of the above consumers, select a predetermined consumer that requests consumption of surplus power, Generating request information for requesting consumption of the surplus power;
  • the request information is transmitted to the consumer-side power management device of the predetermined consumer, Based on the power management information acquired from the consumer-side power management device of the predetermined consumer, it is determined whether the predetermined consumer has followed the request information.
  • Computer program

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

Provided are a regional electric power control system and a regional electric power control method for controlling regional power demand and supply by allowing surplus electric power generated in a region to be consumed within the region. A control unit is provided with a demand and supply estimation unit for estimating surplus electric power generated in a prescribed region at a prescribed future time on the basis of electric power control information, a customer selection unit for selecting from among respective customers a customer as a prescribed customer that will be requested to consume the surplus power, a request information generation unit for generating request information that requests the consumption of surplus electric power and sending the information to a customer-side electric power control device owned by the prescribed customer, and a performance determination unit for determining on the basis of electric power control information acquired from the customer-side electric power control device owned by the prescribed customer, whether or not the prescribed customer has performed the consumption of electric power in accordance with the request information.

Description

地域電力管理システム及び地域電力管理方法Regional power management system and regional power management method
 本発明は、地域電力管理システム及び地域電力管理方法に関する。 The present invention relates to a regional power management system and a regional power management method.
 電力会社等の電力供給者から各需要家(個人住宅、ビルディング、工場等)に商用電源を供給するための経路及び電気設備を、電力系統と呼ぶ。通常の場合、一部の大規模需要家を除いて、各需要家は、電力系統からの商用電源のみを使用していた。 A path and electrical equipment for supplying commercial power from a power supplier such as an electric power company to each consumer (personal house, building, factory, etc.) are called a power system. In normal cases, except for some large-scale customers, each customer used only commercial power from the power grid.
 しかし、近年は、低炭素社会への対応が急がれており、太陽光発電、風力発電、ヒートポンプ、燃料電池等の、自然環境への負荷が少ないエネルギ源の普及が望まれている。それらの電源は各需要家毎に設けられるため、都市から離れた場所に設けられる従来の大規模発電所に対して、分散電源と呼ばれる(特許文献1,2)。 However, in recent years, there has been an urgent need to respond to a low-carbon society, and the spread of energy sources with low impact on the natural environment, such as solar power generation, wind power generation, heat pumps, and fuel cells, is desired. Since these power sources are provided for each consumer, they are called distributed power sources for conventional large-scale power plants that are located away from the city (Patent Documents 1 and 2).
特開2007-336796号公報JP 2007-336796 A 特開2008-271777号公報JP 2008-271777 A
 分散電源の普及率が低く、その発電量も比較的少なかった頃は、電力系統から供給される電力の消費量を抑制するために、分散電源が補助的に用いられていた。これに対し、近年では、分散電源の普及率も増大しており、かつ、その発電量も増加している。 When the spread rate of the distributed power source was low and the amount of power generation was relatively small, the distributed power source was used as an auxiliary to suppress the consumption of power supplied from the power system. On the other hand, in recent years, the penetration rate of distributed power sources has increased and the amount of power generation has also increased.
 従って、例えば、昼間の時間帯には、各需要家で消費される電力よりも各需要家で発電される電力の方が大きくなり、余剰電力が生じる場合がある。例えば、日中の住宅街等では、家族の一部が外出するため、その家の電力消費量は低下する。しかし、太陽光発電装置は、住人の有無とは無関係に発電する。従って、太陽光発電装置の発電量が、その住宅の電力消費量を上回ると、余剰電力が生じる。 Therefore, for example, during the daytime hours, the power generated by each consumer is larger than the power consumed by each consumer, and surplus power may be generated. For example, in a residential area during the day, since a part of the family goes out, the power consumption of the house decreases. However, the photovoltaic power generator generates power regardless of the presence or absence of a resident. Therefore, surplus power is generated when the amount of power generated by the photovoltaic power generator exceeds the power consumption of the house.
 余剰電力は、電力供給者に売却することもできる。しかし、一般的に、自然エネルギを利用する分散電源は、発電量の変動が大きい。従って、電力系統が分散電源からの電力を受け入れるためには、変電設備及び配電網等を改善したり、または、補強したりする必要がある。各分散電源から電力系統に流れ込む電力量が変動すると、電力系統から各需要家に供給される電力の周波数が変動し、品質が低下するためである。 Surplus power can be sold to power suppliers. However, in general, a distributed power source that uses natural energy has a large amount of power generation. Therefore, in order for the power system to receive power from the distributed power source, it is necessary to improve or reinforce the substation equipment and the distribution network. This is because if the amount of power flowing from each distributed power source into the power system varies, the frequency of the power supplied from the power system to each consumer varies and the quality deteriorates.
 このように、従来技術では、地域内の各分散電源から出力される電力を有効に利用することができず、電力系統への売却も既存設備の許容範囲内に止められている。つまり、地域内の余剰電力は、無駄に捨てられることが多く、有効利用されていない。 Thus, in the conventional technology, the power output from each distributed power source in the region cannot be used effectively, and the sale to the power system is also stopped within the allowable range of the existing facilities. That is, surplus power in the region is often wasted and is not effectively used.
 そこで、本発明の目的は、余剰電力を低減させるために、複数の需要家の中から所定の需要家を選択して電力の消費を依頼できるようにした地域電力管理システム及び地域電力管理方法を提供することにある。本発明の他の目的は、所定の需要家による電力消費の実行可能性を高めることにより、余剰電力を効果的に解消できるようにした地域電力管理システム及び地域電力管理方法を提供することにある。発明の更なる目的は、後述する実施形態の記載から明らかになるであろう。 Therefore, an object of the present invention is to provide a local power management system and a local power management method that can request a consumption of power by selecting a predetermined consumer from a plurality of consumers in order to reduce surplus power. It is to provide. Another object of the present invention is to provide a regional power management system and a regional power management method that can effectively eliminate surplus power by increasing the feasibility of power consumption by a predetermined consumer. . Further objects of the invention will become clear from the description of the embodiments described later.
 上記課題を解決すべく、本発明に係る地域電力管理システムは、所定地域内の各需要家の電力状態をそれぞれ監視するための各需要家側電力管理装置を管理する地域電力管理システムであって、各需要家側電力管理装置との間で通信するための通信インターフェース部と、通信インターフェース部を介して各需要家側電力管理装置から受信した情報を記憶して管理するための情報管理部と、情報管理部で管理される情報に基づいて所定の処理を実行する制御部と、を備える。制御部は、各需要家の電力消費量及び発電量を示す電力管理情報を各需要家側電力管理装置から通信インターフェース部を介して取得し、取得した電力管理情報を情報管理部により管理する。さらに、制御部は、電力管理情報に基づいて、所定地域において将来の所定時期に発生する余剰電力を予測するための需給予測部と、各需要家の中から、余剰電力の消費を依頼する所定の需要家を選択するための依頼先選択部と、余剰電力の消費を依頼するための依頼情報を生成し、通信インターフェース部を介して、依頼情報を所定の需要家の有する需要家側電力管理装置に送信させる依頼情報生成部と、所定の需要家の有する需要家側電力管理装置から通信インターフェース部を介して取得される電力管理情報に基づいて、所定の需要家が依頼情報に従って電力を消費したかを判定するための履行判定部と、を備える。 In order to solve the above problems, a regional power management system according to the present invention is a regional power management system that manages each consumer-side power management device for monitoring the power state of each consumer in a predetermined region. A communication interface unit for communicating with each consumer side power management device; and an information management unit for storing and managing information received from each consumer side power management device via the communication interface unit; A control unit that executes predetermined processing based on information managed by the information management unit. The control unit acquires power management information indicating the power consumption and power generation amount of each consumer from each consumer side power management apparatus via the communication interface unit, and manages the acquired power management information by the information management unit. Further, the control unit, based on the power management information, a supply and demand prediction unit for predicting surplus power generated at a predetermined time in a predetermined region, and a predetermined request for consumption of surplus power from each consumer. A request destination selection unit for selecting a customer and a request information for requesting consumption of surplus power are generated, and the customer-side power management that the predetermined customer has the request information through the communication interface unit A predetermined consumer consumes power according to the request information based on the request information generation unit to be transmitted to the device and the power management information acquired from the consumer-side power management device of the predetermined customer via the communication interface unit A performance determination unit for determining whether or not
 少なくとも所定の需要家の有する需要家側電力管理装置から取得される電力管理情報には、依頼情報に対応することを示す対応情報が含まれており、履行判定部は、対応情報に基づいて、所定の需要家が依頼情報に従って電力を消費したかを判定するように構成してもよい。 The power management information acquired from the consumer-side power management device of at least a predetermined consumer includes correspondence information indicating that the request information is supported, and the performance determination unit is based on the correspondence information, You may comprise so that a predetermined consumer may determine whether electric power was consumed according to request information.
 依頼先選択部は、各需要家の有する需要家側電力管理装置に、依頼情報に従って余剰電力を消費できるかを問い合わせ、その問い合わせに対して肯定的な応答を返した需要家側電力管理装置を有する需要家を所定の需要家として選択してもよい。 The request destination selection unit inquires of the consumer-side power management device of each consumer whether the surplus power can be consumed according to the request information, and returns a positive response to the query. You may select the consumer to have as a predetermined consumer.
 各需要家側電力管理装置は、予め設定されるポリシに基づいて、問い合わせに対する応答を決定することができる。 Each customer-side power management apparatus can determine a response to an inquiry based on a preset policy.
 依頼先選択部は、履行判定部による判定結果に基づいて更新される、各需要家の信頼性に関する情報を、管理するための信頼性管理部から信頼性に関する情報を取得し、信頼性に関する情報に基づいて、各需要家の中から所定の信頼性閾値以上の信頼性を有する需要家を所定の需要家として選択することができる。 The request destination selection unit obtains information on reliability from the reliability management unit for managing the information on the reliability of each customer, which is updated based on the determination result by the performance determination unit, and information on the reliability Based on the above, a consumer having reliability equal to or higher than a predetermined reliability threshold value can be selected as a predetermined consumer from each consumer.
 依頼先選択部は、各需要家に電力を供給する変電所から各需要家までの送電距離に関する情報を管理するための距離管理部から送電距離に関する情報を取得し、送電距離に関する情報に基づいて、各需要家の中から所定値の距離閾値以下の送電距離を有する需要家を所定の需要家として選択することもできる。 The request destination selection unit acquires information on the transmission distance from the distance management unit for managing information on the transmission distance from the substation that supplies power to each consumer to each customer, and based on the information on the transmission distance A consumer having a power transmission distance equal to or less than a distance threshold of a predetermined value can be selected as a predetermined consumer from each consumer.
 依頼先選択部は、各需要家に電力を供給する変電所から各需要家までの送電距離に関する情報を管理するための距離管理部から送電距離に関する情報を取得し、さらに、履行判定部による判定結果に基づいて更新される、各需要家の信頼性に関する情報を、管理するための信頼性管理部から信頼性に関する情報を取得し、各需要家の中から、所定の距離閾値以下の送電距離と、所定の信頼性閾値以上の信頼性とを有する需要家を、所定の需要家として選択することもできる。 The request destination selection unit acquires information on the transmission distance from the distance management unit for managing information on the transmission distance from the substation that supplies power to each consumer to each customer, and further, the determination by the performance determination unit Obtain information on reliability from the reliability management section for managing the information on the reliability of each customer, which is updated based on the results, and from each customer, the transmission distance below the predetermined distance threshold And a consumer having reliability equal to or higher than a predetermined reliability threshold can be selected as the predetermined consumer.
 依頼情報生成部は、予め設定される所定の実行条件が成立した場合に、所定の需要家において余剰電力の消費を許可するように、所定の実行条件を含ませて依頼情報を生成してもよい。 The request information generation unit may generate the request information including the predetermined execution condition so that consumption of surplus power is permitted in a predetermined consumer when a predetermined execution condition set in advance is satisfied. Good.
 本発明の構成の少なくとも一部は、コンピュータプログラムまたはハードウェア回路として実現できるであろう。コンピュータプログラムは、例えば、インターネットのような通信媒体、ハードディスクまたはフラッシュメモリデバイスのような記録媒体を介して、配布することができる。 At least a part of the configuration of the present invention can be realized as a computer program or a hardware circuit. The computer program can be distributed, for example, via a communication medium such as the Internet, a recording medium such as a hard disk or a flash memory device.
図1は、地域電力管理システムの全体構成図である。FIG. 1 is an overall configuration diagram of a regional power management system. 図2は、配電用変電所と各需要家との電気的接続関係を示す。FIG. 2 shows the electrical connection relationship between the distribution substation and each customer. 図3は、地域電力管理システム(CEMS:Community Energy Management System)のブロック図である。FIG. 3 is a block diagram of a community power management system (CEMS). 図4は、需要家側電力管理装置の一例としてのHEMS(Home Energy Management System)を備える住宅の電気的構成を示す。FIG. 4 shows an electrical configuration of a house including a HEMS (Home Energy Management System) as an example of a consumer side power management apparatus. 図5は、HEMS等からCEMSに送信される電力管理情報としての需給情報の構成を示す。FIG. 5 shows a configuration of supply and demand information as power management information transmitted from the HEMS or the like to the CEMS. 図6は、地域内の電力の需給を予測し、余剰電力を解消させるための依頼情報を生成して、所定の需要家に送信する様子を示す説明図である。FIG. 6 is an explanatory diagram showing a situation in which demand information for predicting the supply and demand of electric power in a region is generated, request information for eliminating surplus electric power is generated, and transmitted to a predetermined consumer. 図7は、所定のHEMS等に送信される依頼情報の構成を示す。FIG. 7 shows a configuration of request information transmitted to a predetermined HEMS or the like. 図8は、需要家の信頼性を管理するテーブルである。FIG. 8 is a table for managing customer reliability. 図9は、電力消費を依頼する需要家を選択する処理を示すフローチャートである。FIG. 9 is a flowchart illustrating a process of selecting a consumer who requests power consumption. 図10は、依頼先の需要家を管理するテーブルである。FIG. 10 is a table for managing requested customers. 図11は、依頼情報を生成する処理を示すフローチャートである。FIG. 11 is a flowchart illustrating processing for generating request information. 図12は、依頼の受諾を検出する処理を示すフローチャートである。FIG. 12 is a flowchart showing processing for detecting acceptance of a request. 図13は、依頼された電力消費が履行されたかを判定する処理を示すフローチャートである。FIG. 13 is a flowchart illustrating a process for determining whether the requested power consumption has been implemented. 図14は、第2実施例に係り、送電距離と電圧変動に対する余裕度との関係を示す説明図である。FIG. 14 is an explanatory diagram illustrating a relationship between a power transmission distance and a margin for voltage fluctuation according to the second embodiment. 図15は、変電所と需要家の間の距離を管理するテーブルである。FIG. 15 is a table for managing the distance between the substation and the customer. 図16は、電力消費を依頼する需要家を選択する処理を示すフローチャートである。FIG. 16 is a flowchart illustrating a process of selecting a consumer who requests power consumption. 図17は、第3実施例に係り、実行条件を付けて電力消費を依頼するための処理を示すフローチャート。FIG. 17 is a flowchart illustrating processing for requesting power consumption with execution conditions according to the third embodiment. 図18は、実行条件の成立を確認して電力を消費する処理を示すフローチャート。FIG. 18 is a flowchart illustrating a process of consuming electric power after confirming that the execution condition is satisfied. 図19は、第4実施例に係り、HEMSが実行条件の成立したかを判定する処理を示すフローチャート。FIG. 19 is a flowchart illustrating processing for determining whether or not the execution condition is satisfied in the HEMS according to the fourth embodiment. 図20は、第5実施例に係り、電力消費を依頼する需要家を選択する処理を示すフローチャート。FIG. 20 is a flowchart illustrating processing for selecting a consumer who requests power consumption according to the fifth embodiment. 図21は、第6実施例に係り、各需要家の信頼性及び予測消費電力を管理するテーブル。FIG. 21 is a table for managing the reliability and predicted power consumption of each customer according to the sixth embodiment.
 以下、図面に基づいて、本発明の実施の形態を説明する。本実施形態では、以下に詳述するように、地域電力管理システムとしてのCEMS10は、所定地域内の各需要家における電力の消費及び発電を監視し、電力の需給状態を予測する。CEMS10は、余剰電力の発生を予測すると、その余剰電力を消費させるための所定の需要家を選択する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In this embodiment, as will be described in detail below, the CEMS 10 as a regional power management system monitors power consumption and power generation in each consumer in a predetermined region, and predicts the power supply and demand state. When the generation of surplus power is predicted, the CEMS 10 selects a predetermined consumer for consuming the surplus power.
 CEMS10は、余剰電力の発生する時間帯に電力を通常時よりも余分に消費することを約束した需要家を、所定の需要家として選択することができる。CEMS10は、所定の需要家に対して、電力の消費を依頼するための依頼情報を送信する。 The CEMS 10 can select, as a predetermined consumer, a customer who promises to consume more power than usual in a time zone where surplus power is generated. The CEMS 10 transmits request information for requesting power consumption to a predetermined consumer.
 所定の需要家を管理する装置(HEMS等)は、依頼された時間になると、管理下にある電気機器を作動させて(または電気機器を停止させて)、余剰電力を低減させる。CEMS10は、依頼情報の実行に関する約束が守られたか否かを判定し、その約束の履行の程度に応じて、需要家の信頼性を更新する。 The apparatus (HEMS or the like) that manages a predetermined consumer operates the electrical equipment under management (or stops the electrical equipment) at the requested time, and reduces surplus power. The CEMS 10 determines whether or not the promise regarding the execution of the request information has been kept, and updates the reliability of the customer according to the degree of fulfillment of the promise.
 これにより、本実施例では、比較的簡易な構成でありながら、所定地域内の余剰電力を比較的高い信頼性で抑制できる。所定地域内の全ての需要家に電力の消費を依頼するのではなく、所定の基準(信頼性、送電距離)を満たす需要家に対してのみ電力消費を依頼するためである。従って、本実施例では、複雑な予測アルゴリズム等を用いずに、所定地域内の電力需給を調整できる。 Thereby, in this embodiment, it is possible to suppress the surplus power in the predetermined area with relatively high reliability while having a relatively simple configuration. This is because the power consumption is not requested to all the consumers in the predetermined area, but only the consumers satisfying the predetermined criteria (reliability, power transmission distance) are requested. Therefore, in this embodiment, it is possible to adjust the power supply and demand in a predetermined area without using a complicated prediction algorithm or the like.
 図1は、各地域毎の電力管理システムと電力系統との関係を模式的に示す全体構成図である。電力系統の構成は、各国毎に相違する。図1に示す構成は、一つの例であり、本発明は、図1に示す構成以外の構成にも適用できる。 FIG. 1 is an overall configuration diagram schematically showing a relationship between a power management system and a power system for each region. The configuration of the power system varies from country to country. The configuration shown in FIG. 1 is an example, and the present invention can be applied to configurations other than the configuration shown in FIG.
 電力系統システム1は、発電所2,3で生成された電力を各需要家に供給するためのシステムであり、発電機能、変電機能、送電機能及び配電機能を含む。本実施例では、電力系統システム1は、交流電力を各需要家に供給する場合を説明する。しかし、交流電力を供給するシステムに代えて、直流電力を各需要家に供給するシステムでもよい。 The electric power system 1 is a system for supplying electric power generated at the power plants 2 and 3 to each consumer, and includes a power generation function, a substation function, a power transmission function, and a power distribution function. In the present embodiment, the power system 1 describes a case where AC power is supplied to each consumer. However, instead of a system that supplies AC power, a system that supplies DC power to each consumer may be used.
 集中電源2は、例えば、火力発電所、水力発電所、原子力発電所のような大規模発電所である。分散電源3は、例えば、比較的大規模な風力発電所または太陽光発電所あるいは太陽熱発電所等である。図1に示す分散電源3は、系統側に属するため、系統側分散電源と呼ぶことができる。分散電源3は、比較的大規模な蓄電池3Aを備える。風力発電機等で発電された電力を蓄電池3Aに蓄えることにより、電力を有効に利用できる。 The central power supply 2 is a large-scale power plant such as a thermal power plant, a hydro power plant, or a nuclear power plant. The distributed power source 3 is, for example, a relatively large-scale wind power plant, solar power plant, solar thermal power plant, or the like. Since the distributed power source 3 shown in FIG. 1 belongs to the system side, it can be called a system side distributed power source. The distributed power supply 3 includes a relatively large-scale storage battery 3A. By storing the power generated by a wind power generator or the like in the storage battery 3A, the power can be used effectively.
 集中電源2及び分散電源3で生成された電力は、送電所4に送られて、所定の高電圧に昇圧される。送電所4は、蓄電池4Aを備えることもできる。その蓄電池4Aに、集中電源2または分散電源3からの電力の一部を蓄えることができる。 The electric power generated by the centralized power supply 2 and the distributed power supply 3 is sent to the power transmission station 4 and boosted to a predetermined high voltage. The power transmission station 4 can also include a storage battery 4A. A part of the power from the centralized power supply 2 or the distributed power supply 3 can be stored in the storage battery 4A.
 送電所4は、送電網6を介して、各配電用変電所5(1),5(2)に接続されており、高電圧の交流電力を各配電用変電所5(1),5(2)に供給する。送電網6は、一つまたは複数の変電所を備えることができるが、図1では省略している。 The power transmission station 4 is connected to each distribution substation 5 (1), 5 (2) via a power transmission network 6, and high-voltage AC power is supplied to each distribution substation 5 (1), 5 ( 2). The power transmission network 6 may include one or a plurality of substations, but is omitted in FIG.
 配電用変電所5(1),5(2)は、送電所4からの電力の電圧値を低下させて、各需要家に所定電圧の電力を供給する。特に区別しない場合は、配電用変電所5と呼ぶ。各配電用変電所5は、複数の電力供給線7を介して、各需要家に電力を供給する。 The distribution substations 5 (1) and 5 (2) reduce the voltage value of the power from the power transmission station 4 and supply power of a predetermined voltage to each consumer. When not particularly distinguished, it is referred to as a distribution substation 5. Each distribution substation 5 supplies electric power to each consumer via a plurality of power supply lines 7.
 図1の例では、一方の配電用変電所5(1)は、複数の電力供給線7(1a),7(1n)を備えている。他方の配電用変電所5(2)は、他の複数の電力供給線7(2a),7(2n)を備えている。特に区別しない場合は、電力供給線7と呼ぶ。 1, one distribution substation 5 (1) includes a plurality of power supply lines 7 (1a) and 7 (1n). The other distribution substation 5 (2) includes a plurality of other power supply lines 7 (2a) and 7 (2n). When not particularly distinguished, it is referred to as a power supply line 7.
 各電力供給線7には、CEMS10が一つずつ設けられる。具体的には、電力供給線7(1a)にはCEMS10(1a)が、電力供給線7(1n)にはCEMS10(1n)が、電力供給線7(2a)にはCEMS10(2a)が、電力供給線7(2n)にはCEMS(2n)が、設けられている。特に区別しない場合、CEMS10と呼ぶ。なお、複数の電力供給線7に対して一つのCEMS10を設ける構成でもよい。 Each power supply line 7 is provided with one CEMS 10. Specifically, the CEMS 10 (1a) is provided for the power supply line 7 (1a), the CEMS 10 (1n) is provided for the power supply line 7 (1n), and the CEMS 10 (2a) is provided for the power supply line 7 (2a). A CEMS (2n) is provided in the power supply line 7 (2n). Unless otherwise distinguished, it is called CEMS10. A configuration in which one CEMS 10 is provided for a plurality of power supply lines 7 may be employed.
 図1に示すHEMS(Home Energy Management System)20、BEMS(Building and Energy Management System)30、FEMS(Factory Energy Management
System)40、EV-EMS(Electric Vehicle-Energy Management System)50は、各需要家に設けられる装置であり、「需要家側電力管理装置」に該当する。それら各装置20,30,40,50は、CEMS10により管理される。なお、各需要家には、図2で後述するように、符号200,300A,300B,400,500が与えられる。
HEMS (Home Energy Management System) 20, BEMS (Building and Energy Management System) 30, FEMS (Factory Energy Management) shown in FIG.
System) 40 and EV-EMS (Electric Vehicle-Energy Management System) 50 are devices provided in each consumer, and correspond to a “customer-side power management device”. Each of these devices 20, 30, 40, 50 is managed by the CEMS 10. Each consumer is given reference numerals 200, 300A, 300B, 400, and 500, as will be described later with reference to FIG.
 図2は、電力管理システムの物理的構成の一例を示す全体図である。以下に述べる他の図面でも同様であるが、各図面には、本発明を適用可能な構成の例が開示されている。本発明の範囲は、図面に記載された構成に限られない。 FIG. 2 is an overall view showing an example of a physical configuration of the power management system. Although the same applies to other drawings described below, examples of configurations to which the present invention can be applied are disclosed in the respective drawings. The scope of the present invention is not limited to the configuration described in the drawings.
 先に配電網について説明する。送電網6には、配電用変電所5と高圧用変電所5Hとが接続されている。配電用変電所5は、例えば、数万キロボルトの交流電力を数千キロボルトの交流電力に変換して、各電力供給線7(1),7(2)に供給する。高圧用変電所5Hは、配電用変電所5の出力電圧よりも高い電圧の交流電力を生成し、高圧用の電力供給線7Hに供給する。以下、特に区別しない場合、電力供給線7と呼ぶ。 First, the distribution network will be explained. A distribution substation 5 and a high-voltage substation 5H are connected to the power transmission network 6. For example, the distribution substation 5 converts AC power of tens of thousands of kilovolts into AC power of several thousand kilovolts and supplies the AC power to the power supply lines 7 (1) and 7 (2). The high voltage substation 5H generates AC power having a voltage higher than the output voltage of the distribution substation 5 and supplies the AC power to the high voltage power supply line 7H. Hereinafter, when not particularly distinguished, it is referred to as a power supply line 7.
 各電力供給線7には、例えば、区分開閉器71と、自動電圧調整器(SVR:Step Voltage Regulator)72Aと、静止型無効電力補償装置(SVC:Static Var Compensator)72Bと、電圧調整器72Cとが設けられている。特に区別しない場合、電圧調整器72と呼ぶ。図2の例では、高圧用の電力供給線7Hには電圧調整器72Cが設けられており、電力供給線7(1)にはSVR72A及びSVC72Bが設けられている。さらに、各電力供給線7間には、連系開閉器73が設けられている。 Each power supply line 7 includes, for example, a section switch 71, an automatic voltage regulator (SVR) 72A, a static reactive power compensator (SVC) 72B, and a voltage regulator 72C. And are provided. Unless otherwise distinguished, it is called a voltage regulator 72. In the example of FIG. 2, the voltage regulator 72C is provided in the high-voltage power supply line 7H, and the SVR 72A and the SVC 72B are provided in the power supply line 7 (1). Further, an interconnection switch 73 is provided between the power supply lines 7.
 区分開閉器71は、電力供給線7を開閉するスイッチ回路である。SVR72A及びSVC72Bは、電圧を自動的に調整する回路である。連系開閉器73は、各電力供給線7同士を接続したり、各電力供給線7間を遮断させたりするためのスイッチ回路である。連系開閉器73を制御することにより、一方の電力供給線7に断線等が生じた場合でも、他方の電力供給線7から各需要家に電力を供給できる。 The segment switch 71 is a switch circuit that opens and closes the power supply line 7. The SVR 72A and the SVC 72B are circuits that automatically adjust the voltage. The interconnection switch 73 is a switch circuit for connecting the power supply lines 7 to each other and blocking the power supply lines 7. By controlling the interconnection switch 73, even when a disconnection or the like occurs in one power supply line 7, power can be supplied from the other power supply line 7 to each consumer.
 電力供給線7に設けられる各回路71,72A,72B,73は、通信親局(RTU:Remote Terminal Unit)710,720に接続されている。通信親局710,720は、図示せぬ通信子局(FTU:Feeder Terminal Units)を介して、電力供給線7上の各回路71,72A,72B,73に接続される。 Each circuit 71, 72A, 72B, 73 provided in the power supply line 7 is connected to a communication master station (RTU: Remote Terminal Unit) 710, 720. The communication master stations 710 and 720 are connected to the circuits 71, 72A, 72B, and 73 on the power supply line 7 via communication slave stations (FTU: Feeder Terminal Units) (not shown).
 一方の通信親局710は、通信線711を介して、高圧の電力供給線7Hに設けられている回路72Cに接続される。他方の通信親局720は、通信線721を介して、電力供給線7(1)に設けられている回路71,72A,72Bと、電力供給線7(1)と電力供給線7(2)とを接続する連系開閉器73とに接続される。さらに、他方の通信親局720は、他の通信線722を介して、電力供給線7(2)に設けられている回路71と、電力供給線7(2)と電力供給線7Hとを接続する連系開閉器73とに接続される。 One communication master station 710 is connected via a communication line 711 to a circuit 72C provided in the high-voltage power supply line 7H. The other communication master station 720 includes circuits 71, 72A, 72B provided in the power supply line 7 (1), the power supply line 7 (1), and the power supply line 7 (2) via the communication line 721. Are connected to the interconnection switch 73 that connects the two. Further, the other communication master station 720 connects the circuit 71 provided in the power supply line 7 (2), the power supply line 7 (2), and the power supply line 7H through another communication line 722. Connected to the interconnection switch 73.
 各通信親局710,720は、CEMS10に接続される。これにより、CEMS10は、各回路71,72A,72B,73の状態を遠隔監視することができる。 The communication master stations 710 and 720 are connected to the CEMS 10. Thereby, the CEMS 10 can remotely monitor the states of the circuits 71, 72A, 72B, 73.
 電力供給線7は、複数の柱上変圧器74に接続されている。各需要家200,300A,300B,400,500の受電設備は、最寄りの柱上変圧器74を介して、電力供給線7から電力が供給される。なお、全ての需要家が柱上変圧器74を介して電力を受け取るとは限らない。例えば、地中に設けられた電力ケーブルが使用される場合もあるし、電力供給線7から直接電力を受け取る場合もあり得る。 The power supply line 7 is connected to a plurality of pole transformers 74. The power receiving equipment of each customer 200, 300 </ b> A, 300 </ b> B, 400, 500 is supplied with power from the power supply line 7 via the nearest pole transformer 74. Not all consumers receive power via the pole transformer 74. For example, a power cable provided in the ground may be used, or power may be received directly from the power supply line 7.
 図2には、複数種類の需要家、つまり、戸建て住宅200と、ビルディング300Aと、集合住宅300Bと、工場400と、充電ステーション500とが示されている。 FIG. 2 shows a plurality of types of consumers, that is, a detached house 200, a building 300A, an apartment house 300B, a factory 400, and a charging station 500.
 戸建て住宅200は、HEMS及びスマートメータ(図中、SM)により、発電量及び電力消費量が管理されている。ビルディング300A及び集合住宅300Bは、BEMS(Building and Energy Management System)及びスマートメータにより、建物全体の発電量及び電力消費量と、建物内の各区域の発電量及び電力消費量とが管理されている。工場400は、FEMS(Factory Energy Management System)及びスマートメータにより、発電量及び電力消費量が管理される。充電ステーション500は、EV-EMS(Electric Vehicle-Energy Management System)及びスマートメータにより、発電量及び電力消費量が管理される。 In the detached house 200, the power generation amount and the power consumption amount are managed by a HEMS and a smart meter (SM in the figure). In the building 300A and the apartment house 300B, the power generation amount and power consumption amount of the entire building and the power generation amount and power consumption amount of each area in the building are managed by a BEMS (Building and Energy Management System) and a smart meter. . In the factory 400, the power generation amount and the power consumption amount are managed by a FEMS (Factory Energy Management System) and a smart meter. The charging station 500 manages the power generation amount and the power consumption amount by an EV-EMS (Electric Vehicle Management System) and a smart meter.
 スマートメータは、通信線810を介して、AMI(Advanced Metering Infrastructure)の有するMDMS(Meter Data Management System)80に接続されている。CEMS10は、MDMS80に接続されており、MDMS80を介して各需要家のスマートメータから発電量及び電力消費量に関するデータ(実測値)を取得する。 The smart meter is connected to an MDMS (Meter Data Management System) 80 of an AMI (Advanced Metering Infrastructure) 80 via a communication line 810. The CEMS 10 is connected to the MDMS 80, and acquires data (actually measured values) related to the power generation amount and the power consumption amount from the smart meter of each consumer via the MDMS 80.
 CEMS10は、他の通信線820を介して、HEMS、BEMS、FEMS、EV-EMSに接続されている。CEMS10は、他の通信線820を用いて、HEMS、BEMS、FEMS、EV-EMSから後述の需給情報を受信したり、後述の計画情報(依頼情報)をHEMS、BEMS、FEMS、EV-EMSに送信したりする。 The CEMS 10 is connected to the HEMS, BEMS, FEMS, and EV-EMS via another communication line 820. The CEMS 10 uses other communication lines 820 to receive supply / demand information described later from HEMS, BEMS, FEMS, and EV-EMS, and to transmit planning information (request information) described later to HEMS, BEMS, FEMS, and EV-EMS. Or send.
 なお、配電用変電所5が担当する地域には、自然エネルギーを利用する分散電源(需要家側分散電源)60を少なくとも一つ設けることができる。分散電源60としては、例えば、風力発電所61と、蓄電所62と、太陽光発電所63が挙げられる。さらに、例えば、太陽熱発電所、ヒートポンプ等の装置を備えてもよい。蓄電所62は、風力発電所61及び太陽光発電所63等で発電された、再生可能電力を蓄積する。蓄電所62は、電気エネルギを、例えば、熱エネルギ等の他のエネルギに変換して蓄える構成でもよい。 It should be noted that at least one distributed power source (customer-side distributed power source) 60 that uses natural energy can be provided in the area that the distribution substation 5 is in charge of. Examples of the distributed power source 60 include a wind power plant 61, a power storage plant 62, and a solar power plant 63. Furthermore, you may provide apparatuses, such as a solar thermal power plant and a heat pump, for example. The power storage station 62 stores renewable power generated by the wind power plant 61, the solar power plant 63, and the like. The power storage 62 may be configured to convert electrical energy into other energy such as heat energy and store the energy.
 CEMS10は、地域に設けられた分散電源60とも接続されており、分散電源60の発電量及び蓄電量等を管理することができる。 The CEMS 10 is also connected to a distributed power source 60 provided in the area, and can manage the power generation amount, the power storage amount, and the like of the distributed power source 60.
 図3は、CEMS10の構成を示す。CEMS10は、所定地域毎に設けられ、所定地域に属する各需要家での電力状態を管理する。電力状態には、発電の状態、及び/または、電力消費の状態が含まれる。 FIG. 3 shows the configuration of the CEMS 10. The CEMS 10 is provided for each predetermined area, and manages the power state of each consumer belonging to the predetermined area. The power state includes a state of power generation and / or a state of power consumption.
 CEMS10は、例えば、「制御部」としての需給調整機能110と、EMS情報制御ハブ機能120とを備える。EMS情報制御ハブ機能120は、例えば、共通アダプタI/F121と、共通API(Application Programming Interface)122と、共通データ処理機能123と、共通データ管理機能124と、データベース群125と、セキュリティ機能126とを備えている。 The CEMS 10 includes, for example, a supply and demand adjustment function 110 as a “control unit” and an EMS information control hub function 120. The EMS information control hub function 120 includes, for example, a common adapter I / F 121, a common API (Application Programming Interface) 122, a common data processing function 123, a common data management function 124, a database group 125, and a security function 126. It has.
 需給調整機能110は、CEMS10の担当する地域で生じる余剰電力量を予測し、その余剰電力を少なくさせるための情報を作成する。需給調整機能110は、例えば、電力需給予測部111と、依頼先選択部112と、依頼情報生成部113と、履行判定部114とを備える。各機能111,112,113,114の詳細は後述する。 The supply and demand adjustment function 110 predicts the amount of surplus power generated in the area in charge of the CEMS 10, and creates information for reducing the surplus power. The supply and demand adjustment function 110 includes, for example, a power supply and demand prediction unit 111, a request destination selection unit 112, a request information generation unit 113, and a performance determination unit 114. Details of each function 111, 112, 113, 114 will be described later.
 EMS情報制御ハブ機能120は、HEMS20,BEMS30,FEMS40,EV-EMS50,発電及び蓄電ステーション60から収集されるデータを処理し、保存し、必要に応じて外部の装置に提供する。 The EMS information control hub function 120 processes and stores data collected from the HEMS 20, BEMS 30, FEMS 40, EV-EMS 50, power generation and power storage station 60, and provides it to an external device as necessary.
 共通アダプタI/F121は、各需要家側の装置20,30,40,50,60が有する共通アダプタCAと双方向通信するためのインターフェースである。異なるベンダにより製造された装置20,30,40,50,60との間で円滑に通信するために、それら各装置には、標準化された通信を行うための共通アダプタCAが設けられている。 The common adapter I / F 121 is an interface for bidirectional communication with the common adapter CA included in each customer- side device 20, 30, 40, 50, 60. In order to smoothly communicate with the devices 20, 30, 40, 50, 60 manufactured by different vendors, each of these devices is provided with a common adapter CA for performing standardized communication.
 共通API122は、サービス提供者90Aまたはアプリケーション開発者90Bのような外部業者の有するコンピュータと双方向通信するためのインターフェースである。EMS情報制御ハブ120は、地域のEMSに関するデータを、外部業者90A,90Bに提供する。サービス提供者90Aとアプリケーション開発者90Bを、外部業者90と呼ぶ場合がある。 The common API 122 is an interface for two-way communication with a computer owned by an external company such as the service provider 90A or the application developer 90B. The EMS information control hub 120 provides data regarding the local EMS to the external vendors 90A and 90B. The service provider 90A and the application developer 90B may be referred to as external contractors 90.
 外部業者90としては、例えば、各需要家で使用されている各種製品の製造者または販売者、天候情報を提供する天気予報業者、電力に関する助言を行うコンサルタント会社、などを挙げることができる。 Examples of the external supplier 90 include a manufacturer or a seller of various products used by each consumer, a weather forecaster that provides weather information, and a consultant company that provides advice on electric power.
 共通データ処理機能123は、各需要家側の装置20,30,40,50,60等から取得したデータを、予め定義された共通データとして処理する。共通データ管理機能124は、共通データをデータベース群125に記憶させる。データベース群125は、地域のEMSに関する各種情報を記憶する。 The common data processing function 123 processes the data acquired from each customer side device 20, 30, 40, 50, 60, etc. as predefined common data. The common data management function 124 stores common data in the database group 125. The database group 125 stores various types of information related to EMS in the area.
 セキュリティ機能126は、CEMSと各需要家側の装置20,30,40,50,60等の通信の信頼性及び安全性を確保する。セキュリティ機能126は、通信相手を認証したり、通信内容を暗号化したり、暗号化された通信を復号したりする。 The security function 126 ensures the reliability and safety of communication between the CEMS and each customer- side device 20, 30, 40, 50, 60, and the like. The security function 126 authenticates a communication partner, encrypts communication contents, and decrypts encrypted communication.
 図4は、一般の戸建て住宅200の電気的構成を模式的に示す。住宅200には、HEMS20と、スマートメータ21と、メータ付き分電盤22と、PCS(Power Conditioning System)23と、PV(PhotoVoltaic)24と、バッテリ25と、複数の電気機器26A-26Hと、PLC(Power Line Communications)27とを備える。 FIG. 4 schematically shows an electrical configuration of a general detached house 200. The house 200 includes a HEMS 20, a smart meter 21, a distribution board 22 with a meter, a PCS (Power Conditioning System) 23, a PV (PhotoVoltaic) 24, a battery 25, a plurality of electrical devices 26A-26H, PLC (Power Line Communications) 27 is provided.
 HEMS20は、住宅200内の電力状態(発電と電力消費の両方の状態)を管理しており、CEMS10と接続されている。HEMS20は、例えば、マイクロプロセッサと、メモリと、通信インターフェース(いずれも不図示)を含むマイクロコンピュータシステムとして構成することができる。BEMS30,FEMS40,EV-EMS50も、マイクロコンピュータシステムとして構成できる。 The HEMS 20 manages the power state (both power generation and power consumption) in the house 200 and is connected to the CEMS 10. The HEMS 20 can be configured as a microcomputer system including, for example, a microprocessor, a memory, and a communication interface (all not shown). The BEMS 30, FEMS 40, and EV-EMS 50 can also be configured as a microcomputer system.
 HEMS20は、モニタディスプレイ20Aを有する。モニタディスプレイ20Aは、HEMS20に一体化させてもよいし、HEMS20とは別に形成してもよい。さらに、テレビジョン放送等を表示するディスプレイ装置をHEMS20のモニタディスプレイとして利用する構成でもよい。 The HEMS 20 has a monitor display 20A. The monitor display 20A may be integrated with the HEMS 20, or may be formed separately from the HEMS 20. Furthermore, the structure which utilizes the display apparatus which displays a television broadcast etc. as a monitor display of HEMS20 may be sufficient.
 HEMS20のメモリには、ポリシ20Bが記憶されている。ポリシ20Bは、CEMS10からの依頼情報(計画情報)を受諾するか否かを決定するための情報である。ポリシ20Bは、ユーザが手動で設定することもできるし、予め登録された初期ポリシをそのまま使用することもできるし、初期ポリシをユーザが手動で変更することもできる。 The policy 20B is stored in the memory of the HEMS 20. The policy 20B is information for determining whether or not to accept the request information (plan information) from the CEMS 10. The policy 20B can be manually set by the user, an initial policy registered in advance can be used as it is, or the initial policy can be manually changed by the user.
 スマートメータ21は、電力系統システム1から購入した電力を計測するための買電電力計と、電力系統システム1に売却した電力を計測するための売電電力計と、図2のMDMS80と通信するための通信回路と、を備える。スマートメータ21とHEMS20とが通信可能な構成でもよい。 The smart meter 21 communicates with the purchased power meter for measuring the power purchased from the power system 1, the sold power meter for measuring the power sold to the power system 1, and the MDMS 80 in FIG. 2. A communication circuit. The smart meter 21 and the HEMS 20 may be configured to communicate with each other.
 メータ付き分電盤22は、住宅200の各部屋に電力を分配するための装置であり、漏電ブレーカ等を備える。分電盤22は、HEMS20に接続されている。 The distribution board 22 with a meter is a device for distributing electric power to each room of the house 200, and includes an earth leakage breaker and the like. The distribution board 22 is connected to the HEMS 20.
 PCS23は、PV(太陽光発電装置)24とバッテリ25を制御する。PCS23は、分電盤22に接続されている。さらに、PCS23は、HEMS20にも接続されている。PV24で発電された電力は、家庭内バッテリ25または電気自動車のバッテリ(図示せず)に蓄積される。PCS23は、電圧変動が生じないように、バッテリ25で蓄積された電力を住宅200内の各機器26A-26Hに供給したり、あるいは、スマートメータ21を介して電力系統システム1に売電したりする。 The PCS 23 controls a PV (solar power generation device) 24 and a battery 25. The PCS 23 is connected to the distribution board 22. Further, the PCS 23 is also connected to the HEMS 20. The electric power generated by the PV 24 is stored in the home battery 25 or an electric vehicle battery (not shown). The PCS 23 supplies the power stored in the battery 25 to each device 26A-26H in the house 200 or sells the power to the power system 1 via the smart meter 21 so that voltage fluctuation does not occur. To do.
 さらに、住宅200で発電された余分な電力は、同一のCEMS10で管理されている他の需要家に供給できる。または、例えば、複数のCEMS10が連携することにより、ある住宅で余った電力を、同一の配電用変電所5に属する他のCEMS10で管理されている他の住宅200またはビルディング300A等に供給することもできる。 Furthermore, excess power generated in the house 200 can be supplied to other customers managed by the same CEMS 10. Or, for example, a plurality of CEMSs 10 cooperate to supply surplus power in one house to another house 200 or building 300A managed by another CEMS 10 belonging to the same distribution substation 5 You can also.
 住宅200内の電気機器としては、例えば、燃料電池26Aと、ヒートポンプ給湯機26Bと、空調機26Cと、冷蔵庫26Dと、乾燥機26Eと、ブラインド26Fと、照明S6Gと、電気自動車(EV/PHV)26Hとを挙げることができる。 Examples of the electrical equipment in the house 200 include a fuel cell 26A, a heat pump water heater 26B, an air conditioner 26C, a refrigerator 26D, a dryer 26E, a blind 26F, a lighting S6G, and an electric vehicle (EV / PHV). ) 26H.
 ブラインド26Fは、電気モータ等のアクチュエータを備えており、手動または自動的に開閉する。電気自動車には、例えば、バッテリと電気モータだけで走行するEV(Electric Vehicle)と、住宅200の電気コンセントから充電可能なPHV(Plug-in Hybrid Vehicle)とが含まれる。なお、電気自動車に限らず、電気自動二輪車等でもよい。 Blind 26F is provided with an actuator such as an electric motor and opens and closes manually or automatically. The electric vehicle includes, for example, an EV (Electric Vehicle) that runs only with a battery and an electric motor, and a PHV (Plug-in Hybrid Vehicle) that can be charged from an electric outlet of the house 200. In addition, not only an electric vehicle but an electric motorcycle may be used.
 PLC27は、住宅200内の電力配線を通信回線として利用し、HEMS20と各機器26A-26Hとを通信させるための装置である。 The PLC 27 is a device for using the power wiring in the house 200 as a communication line to communicate between the HEMS 20 and each device 26A-26H.
 図5は、各需要家からCEMS10に送信される電力の需給情報D10を示す。各需要家から、その需要家の有する各機器毎に需給情報D10が作成されて、CEMS10に送信される。需給情報D10は、例えば、30分ごと等のように定期的に送信される。 FIG. 5 shows power supply and demand information D10 transmitted from each customer to the CEMS 10. Supply / demand information D <b> 10 is created from each consumer for each device that the consumer has, and is transmitted to CEMS 10. The supply and demand information D10 is transmitted periodically, for example, every 30 minutes.
 需給情報D10は、例えば、需要家ID C100と、機器ID C101と、消費電力/発電量C102と、時刻C103と、操作C104と、状態C105とを備える。これら以外の項目を含んでも良い。 The supply and demand information D10 includes, for example, a customer ID C100, a device ID C101, a power consumption / power generation amount C102, a time C103, an operation C104, and a state C105. Items other than these may be included.
 需要家ID C100は、各需要家を識別するための情報である。機器ID C101は、各電気機器(PV、バッテリ、家電製品等)を識別するための情報である。消費電力/発電量C102は、C101で特定される機器で消費された電力量を示す情報、または、C101で特定される機器から発電される電力量を示す情報である。 The customer ID C100 is information for identifying each customer. The device ID C101 is information for identifying each electric device (PV, battery, home appliance, etc.). The power consumption / power generation amount C102 is information indicating the amount of power consumed by the device specified by C101, or information indicating the amount of power generated from the device specified by C101.
 時刻C103は、需給情報D100の作成された時刻を示す情報である。操作C104は、例えば、「オン操作された」、「オフ操作された」、「設定温度が18度に変更された」等の、機器の操作に関する情報である。状態C105は、例えば、「発電中」、「電力消費中」、「充電中」、「メンテナンス中」、「エラー発生」等の、機器の各種状態を示す情報である。 The time C103 is information indicating the time when the supply and demand information D100 is created. The operation C104 is information related to the operation of the device such as “operated on”, “operated off”, and “set temperature has been changed to 18 degrees”. The state C105 is information indicating various states of the device such as “power generation”, “power consumption”, “charging”, “maintenance”, “error occurrence”, and the like.
 図6は、地域の電力需要と電力供給とを予測して、余剰電力を算出し、その余剰電力を地域内で消費させるための情報を作成する様子を示す。図6の処理は、需給調整機能110により実行される。 FIG. 6 shows a state in which power demand and power supply in a region are predicted, surplus power is calculated, and information for consuming the surplus power in the region is created. The process of FIG. 6 is executed by the supply and demand adjustment function 110.
 需給予測部111は、例えば、需給情報D10から得られる電力需給の実績値と、天気予報及びカレンダ等とに基づいて、の電力の需給を所定周期毎(例えば30分毎)に予測する。電力の需給とは、電力需要と電力供給を示す。 The supply and demand prediction unit 111 predicts the supply and demand of power every predetermined cycle (for example, every 30 minutes) based on, for example, the actual value of power supply and demand obtained from the supply and demand information D10, the weather forecast, and the calendar. The power supply and demand refers to power demand and power supply.
 需給予測部111は、各時間帯毎に、電力供給の予測値と電力需要の予測値とを比較し、各時間帯毎に需要と供給とがバランスするかを予測する。図8に示すグラフG10は、時間帯毎の電力供給の変化を示す電力供給予測グラフである。グラフG11は、時間帯毎の電力需要の変化を示す需要予測グラフである。グラフG12は、電力供給の予測(G10)と電力需要の予測(G11)との差分を示す。電力需要を電力供給が上回る場合に、余剰電力SPが生じる。 The supply and demand prediction unit 111 compares the predicted value of power supply with the predicted value of power demand for each time zone, and predicts whether the demand and supply are balanced for each time zone. A graph G10 illustrated in FIG. 8 is a power supply prediction graph illustrating changes in power supply for each time period. The graph G11 is a demand prediction graph showing changes in power demand for each time zone. The graph G12 shows the difference between the power supply prediction (G10) and the power demand prediction (G11). When the power supply exceeds the power demand, surplus power SP is generated.
 予測される電力需要と予測される電力供給とが一致する時間帯では、電力の需給がバランスしている。この場合、地域内の各需要家が必要とする電力は、その地域内の分散電源から供給されるため、電力系統システム1から電力供給を受ける必要はない。 Demand and supply of power are balanced in a time zone where the predicted power demand and the predicted power supply coincide. In this case, since the electric power required by each consumer in the area is supplied from the distributed power supply in the area, it is not necessary to receive power supply from the power system 1.
 予測される電力需要よりも、予測される電力供給の方が多い時間帯では、余剰電力SPが生じる。この場合は、後述のように、余剰電力SPの消費を促すための計画情報(依頼情報)を、余剰電力SPの生じる時間帯が始まる前に、地域内の所定の各需要家に向けて配信する。 Surplus power SP is generated in a time zone in which the predicted power supply is more than the predicted power demand. In this case, as described later, plan information (request information) for encouraging consumption of surplus power SP is distributed to each predetermined consumer in the area before the time zone when surplus power SP occurs. To do.
 依頼先選択部112は、CEMS10の管轄する地域内の各需要家200,300,400,500の中から、予め定められている選択基準に基づいて、所定の需要家を複数選択する。本実施例では、依頼先選択部112は、需要家の信頼性を管理するテーブルT10を使用して、約束を履行する可能性の高い需要家から優先的に選択する。 The request destination selection unit 112 selects a plurality of predetermined consumers from the respective consumers 200, 300, 400, and 500 in the area under the control of the CEMS 10 based on a predetermined selection criterion. In the present embodiment, the request destination selection unit 112 uses the table T10 that manages the reliability of the customer, and preferentially selects from the customers who are likely to fulfill the promise.
 需要家の信頼性とは、需要家がCEMS10からの電力消費の依頼を実行する可能性を意味する。より詳しくは、需要家の信頼性とは、需要家のエネルギを管理する装置20,30,40,50,60がCEMS10からの電力消費の依頼を受諾した場合に、その約束通りに電力を消費する可能性である。 The reliability of the customer means the possibility that the customer will execute a request for power consumption from the CEMS 10. More specifically, the reliability of the consumer means that if the devices 20, 30, 40, 50, 60 that manage the energy of the consumer accept the request for power consumption from the CEMS 10, the power is consumed as promised. It is possible to do.
 後述する他の実施例では、依頼先選択部112は、変電所5(または送電所4)から各需要家までの送電距離を管理するテーブルT30を用い、送電距離の短い需要家を優先的に選択する。 In another embodiment to be described later, the request destination selection unit 112 uses a table T30 for managing the transmission distance from the substation 5 (or the transmission station 4) to each consumer, and gives priority to consumers with a short transmission distance. select.
 依頼先選択部112は、信頼性の高い需要家を複数選び出して、依頼先管理テーブルT20に登録する。依頼先管理テーブルT20は、余剰電力の消費を依頼する需要家を管理する。 The request destination selection unit 112 selects a plurality of highly reliable customers and registers them in the request destination management table T20. The request destination management table T20 manages customers who request consumption of surplus power.
 依頼情報生成部113は、余剰電力を消費させるための情報(計画情報とも言う)を作成し、共通アダプタインターフェース121から、依頼先として選択された所定の各需要家に送信させる。 The request information generation unit 113 creates information (also referred to as plan information) for consuming surplus power, and transmits the information from the common adapter interface 121 to each predetermined consumer selected as a request destination.
 図7を参照して依頼情報D20の構成を説明する。依頼情報D20は、選択された所定の需要家毎に作成されて、送信される。依頼情報D20は、例えば、需要家ID C200と、時間帯C201と、ポイントC202と、合計消費電力の上限値C203と、合計消費電力の下限値C204と、機器ID C205と、消費電力の上限値C206と、消費電力の下限値C207とを含む。これら以外の項目を備えても良い。 The configuration of the request information D20 will be described with reference to FIG. The request information D20 is created and transmitted for each selected predetermined consumer. The request information D20 includes, for example, customer ID C200, time zone C201, point C202, upper limit value C203 of total power consumption, lower limit value C204 of total power consumption, device ID C205, and upper limit value of power consumption. C206 and the lower limit C207 of power consumption are included. Items other than these may be provided.
 需要家ID C200は、所定の需要家を識別するための情報である。時間帯C201は、インセンティブの適用される時間帯、つまり、地域で余剰電力が発生する時間帯を示す情報である。 The customer ID C200 is information for identifying a predetermined customer. The time zone C201 is information indicating a time zone to which the incentive is applied, that is, a time zone in which surplus power is generated in the region.
 ポイントC202は、インセンティブの内容を示す情報である。インセンティブとは、余剰電力の消費について与えられる利益である。インセンティブとして、例えば、余剰電力の消費に協力した需要家には、電力料金が通常料金よりも割り引かれたり、電気料金等の支払に充てることのできる電子マネーが付与されたり、地域で共有する電気自動車の優先的使用権が与えられたりする。ポイントC202には、そのようなインセンティブが数値化されて記録される。 Point C202 is information indicating the contents of the incentive. An incentive is a benefit given to the consumption of surplus power. As incentives, for example, consumers who cooperate in the consumption of surplus power are given a discount on the electricity rate than the normal rate, are granted electronic money that can be used to pay for electricity, etc. Preferential right to use a car is given. Such an incentive is digitized and recorded in the point C202.
 ポイントの値(インセンティブ)は、各需要家の実績等に応じて変化する。例えば、余剰電力の消費を約束し、かつ、それを実行した需要家には、より多くのポイントが与えられる。余剰電力の消費を約束した需要家であっても、それを実行しなかった需要家には、当初提示されたポイントよりも低いポイント(0を含む)が与えられる。 The point value (incentive) varies depending on the performance of each customer. For example, more points are given to consumers who promise and consume surplus power. Even if it is a consumer who promised consumption of surplus electric power, the point (including 0) lower than the point initially shown is given to the consumer who did not perform it.
 合計消費電力の上限値C203は、その需要家が消費できる余剰電力の上限値を示す情報である。本実施例では、地域で生じた余剰電力を、選択された各需要家が公平に使用できるように、需要家毎に上限値を設定している。 The upper limit value C203 of the total power consumption is information indicating the upper limit value of surplus power that can be consumed by the consumer. In the present embodiment, an upper limit value is set for each consumer so that surplus power generated in the region can be used fairly by each selected consumer.
 合計消費電力の下限値C204は、その需要家が消費すべき余剰電力の下限値を示す情報である。本実施例では、各需要家が消費すべき余剰電力の量を提示している。下限値C204は、努力目標としてもよいし、必達義務としてもよい。本実施例では、指定した時間帯に下限値C204以上の電力(余剰電力)を消費しなかった需要家に対して、ポイントを下げる等のペナルティを課す。さらに、本実施例では、下限値204以上の電力を消費しなかった需要家については、その信頼性が低く設定されるため、余剰電力を消費する所定の需要家として選択されにくくなる。従って、余剰電力を消費する機会が少なくなるというペナルティも与えられる。 The lower limit value C204 of the total power consumption is information indicating the lower limit value of surplus power that should be consumed by the consumer. In this embodiment, the amount of surplus power that each consumer should consume is presented. The lower limit value C204 may be an effort goal or a required obligation. In the present embodiment, a penalty such as a point reduction is imposed on a consumer who has not consumed power (surplus power) equal to or higher than the lower limit C204 in a designated time zone. Furthermore, in the present embodiment, the consumer that has not consumed the electric power of the lower limit value 204 or more is set to be low in reliability, and thus is less likely to be selected as a predetermined consumer that consumes surplus power. Therefore, there is a penalty that the opportunity to consume surplus power is reduced.
 機器ID C205は、需要家の有する機器を識別する情報である。消費電力の上限値C206は、その機器で使用可能な余剰電力の上限値を示す。消費電力の下限値C207は、その機器で消費すべき余剰電力の下限値を示す。 The device ID C205 is information for identifying a device owned by a consumer. The upper limit value C206 of power consumption indicates the upper limit value of surplus power that can be used in the device. The lower limit value C207 of power consumption indicates the lower limit value of surplus power that should be consumed by the device.
 本実施例では、需要家に割り当てられた余剰電力を、その需要家の有する各機器毎に再割当てする。つまり、需要家の有する各機器に割り当てられた消費電力の上限値C206を合計すると、合計消費電力の上限値C203となる。同様に、各機器の消費電力の下限値C207を合計すると、合計消費電力の下限値C204となる。 In this embodiment, surplus power allocated to a consumer is reassigned for each device that the consumer has. That is, when the upper limit value C206 of power consumption allocated to each device of the consumer is summed, the upper limit value C203 of total power consumption is obtained. Similarly, when the lower limit value C207 of the power consumption of each device is summed, the lower limit value C204 of the total power consumption is obtained.
 図7では、一つの機器IDのみを示すが、実際には、需要家IDで特定される需要家の有する各機器(CEMSによる管理対象の機器)について、消費電力の上限値及び下限値が設定される。 In FIG. 7, only one device ID is shown, but in reality, an upper limit value and a lower limit value of power consumption are set for each device (device to be managed by CEMS) possessed by the customer identified by the customer ID. Is done.
 図7に示す依頼情報D20の構成は例示であり、それ以外の構成でもよい。例えば、電気機器毎の消費電力の上限値C206及び下限値C207は無くてもよい。また、電力消費量の値を具体的数値で指示するのではなく、「電力消費量10%アップ」等のように相対的に指示する構成でもよい。例えば、昨日の同じ時間帯で消費した電力からの増分を、指示する構成でもよい。 The configuration of the request information D20 shown in FIG. 7 is an example, and other configurations may be used. For example, the upper limit value C206 and the lower limit value C207 of power consumption for each electrical device may not be present. Further, the power consumption value may not be indicated by a specific numerical value, but may be relatively indicated such as “10% increase in power consumption”. For example, a configuration that indicates an increment from the power consumed in the same time zone yesterday may be used.
 なお、後述の実施例では、条件設定部115により作成される、余剰電力の消費を許可する条件(実行条件)が、依頼情報D20に追加される。 In the embodiment described later, a condition (execution condition) that permits the consumption of surplus power, created by the condition setting unit 115, is added to the request information D20.
 図6に戻る。履行判定部114は、所定の需要家が依頼情報D20の指示に従って余剰電力を消費したかを判定する。需要家毎の判定結果に基づいて、需要家の信頼性を管理するテーブルT20内の信頼性C11の値が更新される(図8参照)。 Return to FIG. The fulfillment determination unit 114 determines whether a predetermined consumer has consumed surplus power according to the instruction of the request information D20. Based on the determination result for each customer, the value of the reliability C11 in the table T20 for managing the reliability of the customer is updated (see FIG. 8).
 図8を参照して、需要家の信頼性を管理するテーブルT10の構成を説明する。信頼性管理テーブルT10は、例えば、需要家ID C10と、信頼性C11とを対応付けて管理する。需要家ID C10は、CEMS10で管理する各需要家を識別するための識別情報である。信頼性C11は、需要家の信頼性を示す値を管理する。 Referring to FIG. 8, the configuration of table T10 for managing the reliability of the customer will be described. For example, the reliability management table T10 manages the customer ID C10 and the reliability C11 in association with each other. The customer ID C10 is identification information for identifying each customer managed by the CEMS 10. The reliability C11 manages a value indicating the reliability of the customer.
 図9は、余剰電力の消費を依頼する処理を示すフローチャートである。以下に述べる各処理は、CEMS10の「制御部」としての需給調整機能111により実行される。より詳しくは、CEMS10の有するマイクロプロセッサがメモリに記憶された所定のコンピュータプログラムを実行することで、各機能111~114が実現され、それら機能により以下の各処理が実行される。従って、各処理の動作主体は、CEMS10,需給調整機能110,各機能111~114、マイクロプロセッサのいずれでもよい。 FIG. 9 is a flowchart showing a process for requesting consumption of surplus power. Each process described below is executed by the supply and demand adjustment function 111 as a “control unit” of the CEMS 10. More specifically, the microprocessor 111 of the CEMS 10 executes predetermined computer programs stored in the memory, thereby realizing the functions 111 to 114, and the following processes are executed by these functions. Therefore, the operation subject of each process may be any of CEMS 10, supply and demand adjustment function 110, functions 111 to 114, and a microprocessor.
 依頼先選択部112は、電力需給予測部111から電力の需給についての予測を取得する(S10)。依頼先選択部112は、需要家信頼性管理テーブルT10を参照し(S11)、判定対象の需要家IDを一つ選択する(S12)。 The request destination selection part 112 acquires the prediction about the supply and demand of electric power from the electric power supply and demand prediction part 111 (S10). The request destination selection unit 112 refers to the customer reliability management table T10 (S11), and selects one determination target customer ID (S12).
 依頼先選択部112は、判定対象の需要家IDについての信頼性C11の値が所定の信頼性閾値Th1以上であるかを判定する(S13)。信頼性の値が閾値Th1未満の場合(S13:NO)、依頼先選択部112は、S12に戻って、次の需要家IDを判定対象として選択する。 The request destination selection unit 112 determines whether or not the value of the reliability C11 for the determination target customer ID is equal to or greater than a predetermined reliability threshold Th1 (S13). When the reliability value is less than the threshold value Th1 (S13: NO), the request destination selection unit 112 returns to S12 and selects the next consumer ID as a determination target.
 信頼性の値が閾値Th1以上である場合(S13:YES)、依頼先選択部112は、需要家IDを有する電力管理装置20~60に余剰電力の消費活動に参加するかを問い合わせ、電力管理装置が余剰電力の消費を約束したか否かを判定する(S14)。 When the reliability value is equal to or greater than the threshold Th1 (S13: YES), the request destination selection unit 112 inquires the power management devices 20 to 60 having the customer ID whether to participate in the surplus power consumption activity, and manages the power. It is determined whether or not the device has promised to consume surplus power (S14).
 判定対象の需要家IDを有する電力管理装置が余剰電力の消費を約束しなかった場合(S14:NO)、依頼先選択部112は、S12に戻り、次の需要家IDを判定対象として選択する。 When the power management device having the determination target consumer ID has not promised the consumption of surplus power (S14: NO), the request destination selection unit 112 returns to S12 and selects the next consumer ID as the determination target. .
 判定対象の需要家IDを有する電力管理装置が余剰電力の消費を約束した場合(S14:YES)、依頼先選択部112は、その需要家IDを依頼先管理テーブルT20に登録する(S15)。依頼先管理テーブルT20については、図10で後述する。 When the power management apparatus having the determination target customer ID promises to consume surplus power (S14: YES), the request destination selection unit 112 registers the customer ID in the request destination management table T20 (S15). The request destination management table T20 will be described later with reference to FIG.
 依頼先選択部112は、余剰電力が有るかを判定する(S16)。つまり、依頼先選択部112は、電力需要と電力供給とのギャップ(余剰電力)が所定の範囲内に収まったかを判定する。例えば、所定の需要家に割り当てる電力消費量の合計値と余剰電力値とを比較することで、需給ギャップが解消したか否かを判定できる。需給ギャップが解消した場合(S16:NO)、余剰電力を消費するのに必要な需要家を選択したことになるため、本処理は終了する。 The request destination selection unit 112 determines whether there is surplus power (S16). In other words, the request destination selection unit 112 determines whether the gap (surplus power) between the power demand and the power supply is within a predetermined range. For example, it is possible to determine whether or not the supply-demand gap has been eliminated by comparing the total power consumption amount allocated to a predetermined consumer with the surplus power value. When the supply and demand gap is eliminated (S16: NO), this means that the consumer required to consume surplus power has been selected, and thus this process ends.
 需給ギャップが残っている場合(S16:YES)、依頼先選択部112は、CEMS10の管理下にある全ての需要家IDについて判定したかを判断する(S17)。未判定の需要家IDが残っている場合(S17:NO)、依頼先選択部112は、S12に戻って、未判定の需要家IDを一つ選択する。 When the supply and demand gap remains (S16: YES), the request destination selection unit 112 determines whether all customer IDs under the management of the CEMS 10 have been determined (S17). When the undetermined customer ID remains (S17: NO), the request destination selecting unit 112 returns to S12 and selects one undetermined customer ID.
 全ての需要家IDを判定した場合(S17:YES)、依頼先選択部112は、信頼性閾値Th1の値を1段階低下させる(S18)。例えば、信頼性閾値Th1の初期値が80%であり、1段階が10%である場合、依頼先選択部112は、信頼性閾値Th1の値を70%に低下させる。信頼性閾値Th1を1%ずつ低下させる構成でもよい。 If all customer IDs have been determined (S17: YES), the request destination selection unit 112 decreases the value of the reliability threshold Th1 by one level (S18). For example, when the initial value of the reliability threshold value Th1 is 80% and one stage is 10%, the request destination selection unit 112 reduces the value of the reliability threshold value Th1 to 70%. The reliability threshold value Th1 may be decreased by 1%.
 依頼先選択部112は、低下させた信頼性閾値Th1に基づいて、S12~S17のステップを繰り返す。つまり、依頼先選択部112は、約束を履行する信頼性の高い順番に、必要なだけの需要家を選択する。 The request destination selection unit 112 repeats the steps S12 to S17 based on the lowered reliability threshold Th1. In other words, the request destination selection unit 112 selects as many consumers as necessary in the order of high reliability in fulfilling the promise.
 なお、信頼性の低い需要家の中から所定の少数の需要家をランダムに選択し、余剰電力の消費を依頼する構成でもよい。これにより、信頼性の低い需要家に、余剰電力の消費活動に参加する機会を与えることができる。信頼性の低い需要家は、その機会を利用して、自らの信頼性を高めることができる。 It should be noted that a configuration may be adopted in which a predetermined small number of consumers are randomly selected from unreliable consumers and the consumption of surplus power is requested. Thereby, the opportunity to participate in the consumption activity of surplus electric power can be given to the consumer with low reliability. Unreliable consumers can take advantage of this opportunity to increase their credibility.
 図10は、依頼先管理テーブルT20の構成を示す。依頼先管理テーブルT20は、余剰電力の消費を依頼する需要家を管理する。 FIG. 10 shows the configuration of the request destination management table T20. The request destination management table T20 manages customers who request consumption of surplus power.
 依頼先管理テーブルT20は、例えば、依頼先需要家ID C20と、約束済フラグC21と、履行度C22とを対応付けて管理する。依頼先需要家ID C20は、余剰電力の消費を依頼する需要家を識別するための情報である。約束済フラグC21は、依頼情報に従って余剰電力を消費することを約束したことを示す情報である。なお、約束した需要家だけをテーブルT20に記録する場合、約束済フラグC21は省略できる。 The request destination management table T20 manages, for example, the request destination customer ID C20, the promised flag C21, and the performance level C22 in association with each other. The requested customer ID C20 is information for identifying a customer who requests consumption of surplus power. The promised flag C21 is information indicating that it is promised to consume surplus power according to the request information. When only the promised customer is recorded in the table T20, the promised flag C21 can be omitted.
 履行度C22は、余剰電力を実際にどの程度消費したかを示す。依頼情報で指示された通りに電力を消費した場合、履行度は100%となる。余剰電力を全く消費しなかった場合、履行度は0%となる。履行度を算出する方法は、複数通り考えられる。 The performance level C22 indicates how much surplus power is actually consumed. When power is consumed as instructed in the request information, the performance level is 100%. If no surplus power is consumed, the performance level is 0%. There are several ways to calculate the performance level.
 一つの方法は、例えば、需要家の通常の消費電力を超えて消費された電力の値(増加値と呼ぶ)と、その需要家に依頼されていた電力消費量(依頼値と呼ぶ)とを比較する。増加値が依頼値と一致する場合、約束が100%履行されたと判定する。増加値が依頼値に満たない場合は、履行度は100%よりも小さい値になる。余剰電力の生じる時間帯に、需要家が電力を消費している場合でも、その消費電力量が通常時の消費電力量と変わらない場合は、依頼情報に規定する約束を果たしていないと判断される。 One method is, for example, the value of power consumed exceeding the normal power consumption of the consumer (referred to as an increase value) and the amount of power consumption requested by the consumer (referred to as the requested value). Compare. If the increase value matches the request value, it is determined that the promise has been fulfilled 100%. When the increase value is less than the requested value, the fulfillment degree becomes a value smaller than 100%. Even if the consumer consumes power during the time when surplus power is generated, if the power consumption does not differ from the normal power consumption, it is determined that the promise specified in the request information is not fulfilled. .
 図11は、依頼情報D20を生成する処理を示すフローチャートである。依頼情報生成部113は、依頼先管理テーブルT20を参照し(S20)、そこに記載された依頼先需要家ID毎に以下の各ステップS21~S24を実行する(S21)。 FIG. 11 is a flowchart showing a process for generating the request information D20. The request information generation unit 113 refers to the request destination management table T20 (S20), and executes the following steps S21 to S24 for each request destination customer ID described therein (S21).
 依頼情報生成部113は、処理対象の需要家IDを有する需要家に依頼する電力消費量を依頼情報D20に設定する(S22)。例えば、余剰電力の消費を、依頼先管理テーブルT20に登録された各需要家に均等に配分する場合、その均等な配分量が依頼情報に設定される。電力消費の上限値と下限値を設定する場合、均等な配分量を中心値として、上限値及び下限値を算出することができる。 The request information generation unit 113 sets the power consumption amount requested to the customer having the processing target customer ID in the request information D20 (S22). For example, when the surplus power consumption is evenly distributed to each consumer registered in the request destination management table T20, the equal distribution amount is set in the request information. When setting an upper limit value and a lower limit value of power consumption, the upper limit value and the lower limit value can be calculated with the uniform distribution amount as a central value.
 依頼情報生成部113は、信頼性管理テーブルT10から、処理対象の需要家IDについての信頼性C11の値を取得し、その信頼性に応じたインセンティブを依頼情報D20に設定する(S23)。 The request information generation unit 113 acquires the value of the reliability C11 for the processing target customer ID from the reliability management table T10, and sets an incentive according to the reliability in the request information D20 (S23).
 依頼情報生成部113は、このようにして生成された依頼情報D20を、依頼先の需要家を管理する管理装置に送信する(S24)。 The request information generation unit 113 transmits the request information D20 generated in this way to the management device that manages the request-destination customer (S24).
 図12は、CEMS10と需要家の管理装置とが余剰電力の消費について約束する処理を示すフローチャートである。 FIG. 12 is a flowchart showing a process in which the CEMS 10 and the consumer management device promise about the consumption of surplus power.
 CEMS10の依頼先選択部112は、対象の需要家が有する電力管理装置(図12では、HEMS20)に対して、依頼情報に従って余剰電力を消費できるか否かを問い合わせる(S40)。この問い合わせ情報には、例えば、余剰電力を消費すべき時間帯などの情報を含めることができる。依頼する消費電力の量がほぼ決まっている場合には、問い合わせ情報に、時間帯と消費電力量を含めてもよい。 The request destination selection unit 112 of the CEMS 10 inquires of the power management apparatus (HEMS 20 in FIG. 12) of the target customer whether surplus power can be consumed according to the request information (S40). This inquiry information can include information such as a time zone in which surplus power should be consumed, for example. If the amount of power consumption requested is almost determined, the inquiry information may include the time zone and the power consumption.
 需要家の電力管理装置は、CEMS10からの問合せを受信すると、ポリシ20Bに基づいて、依頼を受諾するか否かを判定する(S31)。ポリシ20Bとしては、例えば、 (1)CEMSからの依頼を無条件で受諾する、
 (2)ユーザが予め指定した電気機器の消費電力がCEMSからの依頼を満たす場合は受諾する、
 (3)与えられるインセンティブがユーザの希望値以上の場合はCEMSの依頼を受諾する、
 (4)ユーザが予め指定する時間帯についてのみCEMSの依頼を受諾する、
等が考えられる。上記以外のポリシでも構わない。
When receiving the inquiry from the CEMS 10, the power management apparatus of the consumer determines whether to accept the request based on the policy 20B (S31). As the policy 20B, for example, (1) Accepting a request from CEMS unconditionally,
(2) Accept if the power consumption of the electrical equipment specified in advance by the user satisfies the request from CEMS,
(3) If the given incentive is greater than the user's desired value, accept the CEMS request,
(4) Accept the CEMS request only for the time period specified in advance by the user.
Etc. are considered. Other policies may be used.
 需要家の電力管理装置は、依頼を受けるか否かをCEMS10に返信する(S32)。需要家の電力管理装置は、依頼を受諾したか否かをモニタディスプレイ20Aに表示させる(S33)。電力管理装置は、例えば、「CEMSからの依頼を受諾しました」等のメッセージをモニタディスプレイ20Aに表示させる。電力管理装置が依頼情報D20を取得した場合は、モニタディスプレイ20Aに「午後2時から午後5時までの間、製氷器と、温水給湯機と、居間の空調装置を作動させて、300ポイント獲得します。」のようなメッセージを表示させることもできる。 The customer's power management apparatus returns to the CEMS 10 whether or not to receive the request (S32). The consumer's power management apparatus displays on the monitor display 20A whether or not the request has been accepted (S33). For example, the power management apparatus displays a message such as “accepting request from CEMS” on the monitor display 20A. When the power management device acquires the request information D20, “300 points are obtained by operating the ice maker, the hot water heater, and the air conditioner in the living room from 2 pm to 5 pm on the monitor display 20A. You can also display a message such as
 CEMS10の依頼先選択部112は、需要家の電力管理装置が依頼を受諾したか否かを判定する(S41)。需要家の電力管理装置が依頼を受諾した場合(S41:YES)、依頼先選択部112は、受諾した需要家のIDを依頼先管理テーブルT20に登録する(S42)。需要家の電力管理装置が依頼を断った場合(S41:NO)、S42をスキップして本処理を終了する。 The request destination selection unit 112 of the CEMS 10 determines whether or not the consumer's power management apparatus has accepted the request (S41). When the power management apparatus of the consumer accepts the request (S41: YES), the request destination selecting unit 112 registers the accepted consumer ID in the request destination management table T20 (S42). When the customer's power management apparatus declines the request (S41: NO), S42 is skipped and the process is terminated.
 このように、依頼先選択部112は、対象の需要家の電力管理装置に問い合わせ情報を送信して、余剰電力の消費活動に参加するか否かを事前に確認する。依頼先選択部112は、余剰電力の消費活動に参加すると約束した需要家のIDを、依頼先管理テーブルT20に登録することができる。従って、依頼先管理テーブルT20には、所定の時間帯に、通常時よりも多くの電力を消費することを約束した需要家のIDだけを記憶させることができる。 In this way, the request destination selection unit 112 transmits inquiry information to the power management apparatus of the target consumer, and confirms in advance whether or not to participate in the surplus power consumption activity. The request destination selection unit 112 can register the ID of the customer who promises to participate in the surplus power consumption activity in the request destination management table T20. Therefore, only the ID of the customer who promises to consume more power than normal can be stored in the request destination management table T20 in a predetermined time zone.
 図13は、履行判定処理を示すフローチャートである。CEMS10の履行判定部114は、各需要家の電力管理装置から取得される需給情報D10毎に、以下の各ステップS51~S55を実行する(S50)。 FIG. 13 is a flowchart showing the performance determination process. The performance determination unit 114 of the CEMS 10 executes the following steps S51 to S55 for each supply and demand information D10 acquired from each customer's power management apparatus (S50).
 履行判定部114は、依頼先管理テーブルT20を参照して(S51)、処理対象の需給情報が、依頼先の需要家の電力管理装置から取得された需給情報であるかを判定する(S52)。具体的には、履行判定部114は、需給情報D10の需要家ID C100の値と依頼先管理テーブルT20に登録されたいずれかの依頼先需要家ID C20の値とが一致するか否かを判定する。 The performance determination unit 114 refers to the request destination management table T20 (S51), and determines whether the supply / demand information to be processed is the supply / demand information acquired from the power management apparatus of the request destination consumer (S52). . Specifically, the fulfillment determination unit 114 determines whether or not the value of the customer ID C100 in the supply and demand information D10 matches the value of any requested customer ID C20 registered in the requested customer management table T20. judge.
 需給情報に記載の需要家IDが依頼先管理テーブルT20に登録されていない場合(S52:NO)、その需給情報は、依頼先需要家の電力管理装置から取得された需給情報ではない。そこで、履行判定部114は、S50に戻り、次の需給情報を処理対象として選択する。 When the customer ID described in the supply and demand information is not registered in the request destination management table T20 (S52: NO), the supply and demand information is not the supply and demand information acquired from the power management apparatus of the request destination customer. Accordingly, the performance determination unit 114 returns to S50 and selects the next supply and demand information as a processing target.
 需給情報の需要家IDが依頼先管理テーブルT20に登録されている場合(S52:YES)、その需給情報は、依頼先需要家の電力管理装置から取得されたものである。そこで、履行判定部114は、その依頼先需要家が約束を履行した程度(履行度)を算出する(S53)。履行度は、例えば、通常時よりも多く需要家で消費された電力の増加分(増加値)を、その需要家に割り当てられていた電力消費量(依頼値)で除算することで、求めることができる(履行度=増加値/依頼値)。 When the customer ID of the supply and demand information is registered in the request destination management table T20 (S52: YES), the supply and demand information is obtained from the power management apparatus of the request destination customer. Therefore, the fulfillment determination unit 114 calculates the degree of fulfillment of the promise (performance level) by the requested customer (S53). The degree of fulfillment is obtained, for example, by dividing the increase (increase value) of power consumed by the consumer more than usual at the amount of power consumption (request value) allocated to the consumer. (Fulfillment level = Increase value / Request value).
 履行判定部114は、算出された履行度を、処理対象の需要家IDに対応する、依頼先管理テーブルT20の履行度C22に記憶させる(S54)。履行判定部114は、算出された履行度に基づいて、信頼性管理テーブルT10の信頼性C11の値を更新させる(C55)。 The performance determination unit 114 stores the calculated performance level in the performance level C22 of the request destination management table T20 corresponding to the processing target customer ID (S54). The performance determination unit 114 updates the value of the reliability C11 of the reliability management table T10 based on the calculated performance level (C55).
 このように構成される本実施例では、CEMS10の管理下にある各需要家に対して一律に余剰電力の消費を呼びかけるのではなく、所定値以上の信頼性を有する需要家を選択して、余剰電力の消費を依頼する。従って、本実施例では、CEMS10からの依頼に従わない需要家を排除して、信頼できる需要家だけで余剰電力を消費することができ、比較的高精度で電力の需給ギャップを調整できる。 In this embodiment configured as described above, instead of calling for consumption of surplus power uniformly to each consumer under the management of the CEMS 10, select a consumer having reliability equal to or higher than a predetermined value, Request consumption of surplus power. Therefore, in this embodiment, consumers who do not follow the request from the CEMS 10 can be excluded, and surplus power can be consumed only by reliable customers, and the power supply / demand gap can be adjusted with relatively high accuracy.
 さらに、本実施例では、CEMS10からの依頼を受諾するか否かを、信頼性の高い需要家の電力管理装置に対して事前に問い合わせるため、高度な予測アルゴリズムなどを用いなくとも、より一層高精度に、電力の需給ギャップ(余剰電力)を解消できる。 Furthermore, in this embodiment, whether or not to accept a request from the CEMS 10 is inquired in advance to a highly reliable consumer's power management apparatus, so even without using an advanced prediction algorithm or the like. Accurately eliminates the power supply-demand gap (surplus power).
 本実施例では、余剰電力が発生すると予測される時間帯よりも前であれば、CEMS10から所定の需要家の電力管理装置に、余剰電力の消費を依頼できる。前日の需給実績に基づいて明日の電力消費を予測し、各需要家に通知するのではなく、当日になってから、その日の所定時間帯での電力消費を需要家に依頼できる。つまり、本実施例では、ほぼリアルタイムで、需要家を選択し、選択した需要家に依頼を受諾するか問い合わせ、依頼を受諾した需要家に余剰電力の消費を依頼できる。余剰電力の発生時期と依頼時期とを近づけることができるため、各需要家の都合等を考慮して、余剰電力の消費活動に参加する需要家を精度良く選択できる。 In this embodiment, if it is before the time zone in which surplus power is predicted to be generated, the CEMS 10 can request the power management device of a predetermined consumer to consume surplus power. Instead of predicting tomorrow's power consumption based on the previous day's supply and demand results and notifying each customer, the customer can be asked to consume power in a predetermined time zone on that day. In other words, in this embodiment, a consumer is selected almost in real time, and the selected consumer is inquired whether to accept the request, and the consumer who has accepted the request can be asked to consume surplus power. Since the generation time of surplus power and the request time can be brought close to each other, it is possible to accurately select the consumers participating in the surplus power consumption activity in consideration of the convenience of each customer.
 図14~図16を参照して第2実施例を説明する。本実施例を含む以下の各実施例は、第1実施例の変形例に相当する。従って、第1実施例との差異を中心に説明する。本実施例では、変電所5から需要家までの送電距離に基づいて、余剰電力の消費活動に参加する需要家を選択する。 The second embodiment will be described with reference to FIGS. Each of the following embodiments including this embodiment corresponds to a modification of the first embodiment. Therefore, the difference from the first embodiment will be mainly described. In a present Example, the consumer who participates in the consumption activity of surplus electric power is selected based on the transmission distance from the substation 5 to a consumer.
 図14は、電圧変化と送電距離との関係を示すグラフである。図14中の縦軸は、需要家の受電設備に供給される電圧の値を示す。図14中の横軸は、送電距離を示す。送電距離の基準点は、例えば、変電所5でもよいし、送電所4でもよいし、または、発電所2,3でもよい。 FIG. 14 is a graph showing the relationship between the voltage change and the transmission distance. The vertical axis | shaft in FIG. 14 shows the value of the voltage supplied to a consumer's power receiving installation. The horizontal axis in FIG. 14 indicates the power transmission distance. The reference point of the power transmission distance may be, for example, the substation 5, the power transmission station 4, or the power stations 2 and 3.
 電圧値は、所定の基準値VSを中心として、下限値VLから上限値VUまでの範囲内に収まるように制御される。送電線には抵抗値があるため、送電距離が長くなるほど電圧は降下する。換言すれば、送電距離が短いほど、電圧値が高い。 The voltage value is controlled so as to be within a range from the lower limit value VL to the upper limit value VU with the predetermined reference value VS as the center. Since the transmission line has a resistance value, the voltage drops as the transmission distance increases. In other words, the shorter the power transmission distance, the higher the voltage value.
 余剰電力が発生すると、電圧値は上昇する。上昇した電圧値が上限値VUを超えると、電力の品質が低下し、電気機器の作動に影響を与える可能性がある。上述の通り、送電距離が短いほど電圧値が高いため、上限値VUまでの余裕dVは小さくなる。 When the surplus power is generated, the voltage value increases. If the increased voltage value exceeds the upper limit value VU, the quality of the power is lowered, which may affect the operation of the electric device. As described above, since the voltage value is higher as the power transmission distance is shorter, the margin dV to the upper limit value VU is smaller.
 例えば、図14の例では、最も短い送電距離L1に位置する需要家では、上限値VUまでの余裕dV1は最も小さい。中程度の送電距離L2に位置する需要家では、上限値VUまでの余裕dV2はdV1よりも大きい(dv1<dV2)。最も長い送電距離L3に位置する需要家では、上限値VUまでの余裕dV3はdV2よりも大きい(dV1<dV2<dV3)。 For example, in the example of FIG. 14, a consumer located at the shortest power transmission distance L1 has the smallest margin dV1 up to the upper limit value VU. In the consumer located at the medium transmission distance L2, the margin dV2 up to the upper limit value VU is larger than dV1 (dv1 <dV2). In the consumer located at the longest transmission distance L3, the margin dV3 to the upper limit value VU is larger than dV2 (dV1 <dV2 <dV3).
 上述のように、余裕の小さい需要家において、例えば太陽光発電装置が余剰電力を発生させると、その需要家での系統電圧値が上限値VUを超える可能性がある。従って、送電距離の短い需要家ほど、優先的に余剰電力を低減させる必要がある。 As described above, in a consumer with a small margin, for example, when a photovoltaic power generation device generates surplus power, the system voltage value at the consumer may exceed the upper limit value VU. Therefore, it is necessary to reduce the surplus power preferentially as the customer has a shorter transmission distance.
 図15は、各需要家までの送電距離を管理するテーブルT30である。このテーブルT30は、例えば、需要家ID C30と、変電所からの送電距離C31とを対応付けて管理する。 FIG. 15 is a table T30 for managing the transmission distance to each customer. This table T30 manages, for example, the customer ID C30 and the transmission distance C31 from the substation in association with each other.
 図16は、本実施例による依頼先選択処理を示すフローチャートである。本実施例の依頼先選択処理は、図9で述べた依頼先選択処理と比較して、ステップS11A,S13A,S18Aが異なる。 FIG. 16 is a flowchart showing a request destination selection process according to this embodiment. The request destination selection process of this embodiment differs from the request destination selection process described in FIG. 9 in steps S11A, S13A, and S18A.
 本実施例の依頼先選択部112は、送電距離管理テーブルT30を参照し(S11A)、送電距離が所定の送電距離閾値Th2以下の需要家を選択する(S12A)。余剰電力の解消に必要なだけの需要家を選択するまで、依頼先選択部112は、送電距離閾値Th2を段階的に低下させていく(S18A)。 The request destination selection unit 112 of the present embodiment refers to the transmission distance management table T30 (S11A), and selects a customer whose transmission distance is equal to or less than a predetermined transmission distance threshold Th2 (S12A). The request destination selection unit 112 decreases the transmission distance threshold Th2 in a stepwise manner until only as many customers as necessary for eliminating excess power are selected (S18A).
 詳しく述べると、依頼先選択部112は、電力需給予測部111から電力の需給についての予測を取得し(S10)、さらに、送電距離管理テーブルT30を参照して(S11A)、判定対象の需要家IDを一つ選択する(S12)。 More specifically, the request destination selection unit 112 acquires a prediction about the supply and demand of power from the power supply and demand prediction unit 111 (S10), and further refers to the transmission distance management table T30 (S11A) to determine the consumer to be determined One ID is selected (S12).
 依頼先選択部112は、判定対象の需要家IDについての送電距離C31の値が所定の送電距離閾値Th2以下であるかを判定する(S13A)。送電距離の値が閾値Th2を超える場合(S13A:NO)、依頼先選択部112は、S12に戻って、次の需要家IDを判定対象として選択する。 The request destination selection unit 112 determines whether the value of the transmission distance C31 for the determination target customer ID is equal to or less than a predetermined transmission distance threshold Th2 (S13A). When the value of the power transmission distance exceeds the threshold Th2 (S13A: NO), the request destination selection unit 112 returns to S12 and selects the next consumer ID as a determination target.
 送電距離の値が閾値Th2以下の場合(S13A:YES)、依頼先選択部112は、需要家IDを有する電力管理装置20~60に余剰電力の消費活動に参加するかを問い合わせ、電力管理装置が余剰電力の消費を約束したか否かを判定する(S14)。 When the value of the transmission distance is equal to or less than the threshold Th2 (S13A: YES), the request destination selection unit 112 inquires the power management devices 20 to 60 having the customer ID whether to participate in the surplus power consumption activity, and the power management device. It is determined whether or not has promised the consumption of surplus power (S14).
 判定対象の需要家IDを有する電力管理装置が余剰電力の消費を約束しなかった場合(S14:NO)、依頼先選択部112は、S12に戻り、次の需要家IDを判定対象として選択する。 When the power management device having the determination target consumer ID has not promised the consumption of surplus power (S14: NO), the request destination selection unit 112 returns to S12 and selects the next consumer ID as the determination target. .
 判定対象の需要家IDを有する電力管理装置が余剰電力の消費を約束した場合(S14:YES)、依頼先選択部112は、その需要家IDを依頼先管理テーブルT20に登録する(S15)。 When the power management apparatus having the determination target customer ID promises to consume surplus power (S14: YES), the request destination selection unit 112 registers the customer ID in the request destination management table T20 (S15).
 依頼先選択部112は、余剰電力が解消したか否かを判定する(S15)。需給ギャップが解消した場合(S16:NO)、本処理は終了する。 The request destination selection unit 112 determines whether the surplus power has been eliminated (S15). When the supply and demand gap is eliminated (S16: NO), this process ends.
 需給ギャップが残っている場合(S16:YES)、依頼先選択部112は、CEMS10の管理下にある全ての需要家IDについて判定したかを判断する(S17)。未判定の需要家IDが残っている場合(S17:NO)、依頼先選択部112は、S12に戻って、未判定の需要家IDを一つ選択する。 When the supply and demand gap remains (S16: YES), the request destination selection unit 112 determines whether all customer IDs under the management of the CEMS 10 have been determined (S17). When the undetermined customer ID remains (S17: NO), the request destination selecting unit 112 returns to S12 and selects one undetermined customer ID.
 全ての需要家IDを判定した場合(S17:YES)、依頼先選択部112は、送電距離閾値Th2の値を1段階増加させる(S18A)。依頼先選択部112は、増加させた送電距離閾値Th2に基づいて、S12~S17のステップを繰り返す。 If all customer IDs have been determined (S17: YES), the request destination selection unit 112 increases the value of the power transmission distance threshold Th2 by one step (S18A). The request destination selection unit 112 repeats the steps S12 to S17 based on the increased power transmission distance threshold Th2.
 このように構成される本実施例も第1実施例と同様の効果を奏する。さらに、本実施例では、電圧上昇についての余裕の少ない需要家を優先的に選択するため、より一層、電極系統の信頼性を維持することができる。 This embodiment configured as described above also has the same effect as the first embodiment. Furthermore, in this embodiment, since a consumer with a small margin for voltage rise is preferentially selected, the reliability of the electrode system can be further maintained.
 図17,図18を参照して第3実施例を説明する。本実施例では、依頼情報D20で指示する余剰電力の消費活動の実施について、条件を設定する。 A third embodiment will be described with reference to FIGS. In the present embodiment, conditions are set for the implementation of the surplus power consumption activity indicated by the request information D20.
 図17は、本実施例による依頼情報生成処理を示すフローチャートである。本処理は、図11に示す処理と比べて、ステップS25が相違する。本実施例の依頼情報生成部113は、依頼する電力消費量を設定し(S22)、インセンティブを決定した後(S23)、実行条件を設定する(S25)。依頼情報生成部113は、実行条件付きの依頼情報D20を所定の需要家の電力管理装置に送信させる(S24)。 FIG. 17 is a flowchart showing request information generation processing according to this embodiment. This process is different from the process shown in FIG. 11 in step S25. The request information generation unit 113 of this embodiment sets the requested power consumption (S22), determines the incentive (S23), and then sets execution conditions (S25). The request information generation unit 113 transmits the request information D20 with execution conditions to the power management apparatus of a predetermined consumer (S24).
 実行条件とは、余剰電力の消費を許可するための条件である。例えば、太陽光発電装置の場合、雨天時の発電量は晴天時よりも少ない。従って、急な天候変化で、予期せぬ雨が降ったような場合、余剰電力の値は最初の予測値よりも少なくなる。場合によっては、余剰電力が発生しないこともあり得る。そのような状況で、需要家が依頼情報D20で指示された計画通りに電力を消費すると、自家発電だけでは足りなくなり、電力会社から電気を追加購入する必要が生じる。 The execution condition is a condition for permitting consumption of surplus power. For example, in the case of a solar power generation device, the amount of power generation during rainy weather is less than during sunny weather. Accordingly, when unexpected rain falls due to sudden weather changes, the value of surplus power becomes smaller than the initial predicted value. In some cases, surplus power may not be generated. In such a situation, if the consumer consumes electric power as planned according to the request information D20, private power generation is not sufficient, and it is necessary to purchase additional electricity from the electric power company.
 そこで、本実施例では、依頼情報D20に実行条件を付けて、所定の需要家の電力管理装置に送信する(S24)。実行条件は、依頼情報D20の中に記載してもよいし、依頼情報D20とは別に電力管理装置に送信してもよい。あるいは、需要家の電力管理装置内に予め実行条件を記憶させておく構成でもよい。あるいは、実行条件は需要家の電力管理装置に送信せず、CEMS10内でのみ管理する構成でもよい。図18で後述するように、CEMS10からの実行指示を待って余剰電力を消費するように電力管理装置を構成しておけば、電力管理装置に実行条件を記憶させる必要はない。 Therefore, in the present embodiment, an execution condition is attached to the request information D20, and the request information is transmitted to the power management apparatus of a predetermined consumer (S24). The execution condition may be described in the request information D20, or may be transmitted to the power management apparatus separately from the request information D20. Or the structure which memorize | stores execution conditions beforehand in a power management apparatus of a consumer may be sufficient. Alternatively, the execution condition may be managed only within the CEMS 10 without being transmitted to the consumer's power management apparatus. As will be described later with reference to FIG. 18, if the power management apparatus is configured to wait for an execution instruction from the CEMS 10 and consume surplus power, it is not necessary to store execution conditions in the power management apparatus.
 実行条件としては、例えば、
 (1)晴天時に余剰電力を消費する、
 (2)雨天時以外に余剰電力を消費する、
 (3)風速が所定値以上の場合に余剰電力を消費する、
等が挙げられる。
As an execution condition, for example,
(1) Consumes surplus power in fine weather,
(2) Consuming surplus power when it is not raining,
(3) Consuming surplus power when the wind speed is equal to or higher than a predetermined value;
Etc.
 図18は、CEMS10からの実行指示を待って、需要家の電力管理装置が余剰電力を消費する処理を示すフローチャートである。 FIG. 18 is a flowchart showing a process in which a consumer's power management apparatus consumes surplus power after waiting for an execution instruction from the CEMS 10.
 CEMS10は、余剰電力の消費を実行するまでの残り時間が所定値Th3以下になったか否かを判定する(S60)。つまり、CEMS10は、余剰電力が発生すると予測された時間になったかを判定する。 The CEMS 10 determines whether or not the remaining time until the consumption of surplus power is equal to or less than the predetermined value Th3 (S60). In other words, the CEMS 10 determines whether it is a time when surplus power is predicted to be generated.
 実行時間が閾値Th3以下になった場合(S60:YES)、CEMS10は、天気情報等に基づいて、実行条件が成立したか否かを判定する(S61)。ここでは、実行条件は天候に関する条件として定義されており、天候に関する情報は気象データを配信するサーバ等から適宜取得できるものとする。 When the execution time becomes equal to or less than the threshold Th3 (S60: YES), the CEMS 10 determines whether or not the execution condition is satisfied based on the weather information or the like (S61). Here, the execution condition is defined as a condition regarding the weather, and the information regarding the weather can be appropriately acquired from a server or the like that distributes the weather data.
 CEMS10は、実行度合を算出することができる(S62)。実行度合とは、依頼情報D20で指示した電力消費量のうち実際に消費させる電力消費量の割合である。例えば、依頼情報D20で指示した電力消費量が晴天時の受光量を基準にする場合、CEMS10は、現在の受光量に基づいて実行度合を算出する(実行度合=現在の状況に基づく値/依頼情報生成時に基準とした値)。悪天候の場合には、実行度合が0%に設定される可能性もある。実行度合が0%に設定された場合、依頼されていた余剰電力の消費活動は取り止めとなる。 The CEMS 10 can calculate the execution degree (S62). The execution degree is a ratio of the power consumption actually consumed in the power consumption instructed by the request information D20. For example, when the power consumption indicated by the request information D20 is based on the amount of light received in fine weather, the CEMS 10 calculates the execution degree based on the current light reception amount (execution degree = value based on current situation / request). (Value used as reference when generating information). In the case of bad weather, the execution degree may be set to 0%. If the execution degree is set to 0%, the requested surplus power consumption activity is canceled.
 CEMS10は、依頼先の需要家の電力管理装置に実行指示を送信する(S63)。その実行指示には、実行度合を含ませることができる。実行度合に代えて、単純に、実行する、または、実行しないだけを電力管理装置に送信する構成でもよい。 The CEMS 10 transmits an execution instruction to the power management apparatus of the requested customer (S63). The execution instruction can include the degree of execution. Instead of the degree of execution, a configuration of simply executing or not transmitting to the power management apparatus may be used.
 需要家の電力管理装置は、CEMS10から実行指示を受信すると(S70:YES)、依頼情報D20で指示された実行タイミングが到来したかを判定する(S71)。実行タイミングが到来すると(S71:YES)、電力管理装置は、余剰電力を消費させる電気機器の状態が正常であるか否かをチェックする(S72)。 When receiving the execution instruction from the CEMS 10 (S70: YES), the customer's power management apparatus determines whether the execution timing instructed by the request information D20 has arrived (S71). When the execution timing arrives (S71: YES), the power management apparatus checks whether or not the state of the electric device that consumes the surplus power is normal (S72).
 余剰電力の利用を予定していた電気機器が正常状態である場合(S72:YES)、電力管理装置は、その電気機器を作動させて余剰電力を消費させる(S73)。作動対象の電気機器が正常状態ではない場合(S72:NO)、本処理を終了する。なお、作動対象の電気機器が不調のため余剰電力の消費活動に参加できない旨をCEMS10に通知してもよい。 When the electrical device that is scheduled to use surplus power is in a normal state (S72: YES), the power management apparatus operates the electrical device to consume surplus power (S73). When the electrical device to be actuated is not in a normal state (S72: NO), this process ends. Note that the CEMS 10 may be notified that the electric device to be activated cannot participate in the surplus power consumption activity due to a malfunction.
 なお、ステップS72では、作動対象の電気機器が正常状態であるか否かを判定する場合を述べたが、これに代えて、作動対象の電気機器が作動可能状態であるか否かを判定するようにしてもよい。例えば、給湯機では、タンクの湯が満杯の場合、それ以上湯を生産することができない。そこで、ステップS72では、作動が可能か否かを判定するようにしてもよい。 In step S72, the case where it is determined whether or not the electric device to be operated is in a normal state has been described. Instead, it is determined whether or not the electric device to be operated is in an operable state. You may do it. For example, in a water heater, when the hot water in the tank is full, no more hot water can be produced. Therefore, in step S72, it may be determined whether the operation is possible.
 このように構成される本実施例は、第1実施例または第2実施例のいずれにも適用することができる。本実施例では、依頼情報D20で規定する余剰電力の消費の実行について条件を設定し、その条件が成立した場合に余剰電力を消費させる。従って、本実施例では、急激な環境変化(例えば、天候の変化)に対応して、電力の需給を制御することができ、システムの信頼性が高まる。 The present embodiment configured as described above can be applied to either the first embodiment or the second embodiment. In this embodiment, a condition is set for execution of surplus power consumption defined by the request information D20, and surplus power is consumed when the condition is satisfied. Therefore, in this embodiment, it is possible to control the supply and demand of electric power in response to a rapid environmental change (for example, a change in weather), and the reliability of the system is improved.
 さらに、本実施例では、実行条件が成立したか否かをCEMS10が統一的に判定して各需要家の電力管理装置に送信する。従って、各電力管理装置は、実行条件を記憶したり、実行条件が成立したか否かを自分で判断したりする必要がない。 Furthermore, in this embodiment, the CEMS 10 determines whether or not the execution condition is satisfied and transmits it to the power management apparatus of each consumer. Therefore, each power management apparatus does not need to store execution conditions or determine whether or not the execution conditions are satisfied.
 図19を参照して第4実施例を説明する。本実施例では、実行条件が成立したか否かを需要家の電力管理装置で判断する。図19は、需要家の電力管理装置で実行される、余剰電力の消費処理を示すフローチャートである。 A fourth embodiment will be described with reference to FIG. In the present embodiment, the consumer's power management device determines whether or not the execution condition is satisfied. FIG. 19 is a flowchart illustrating surplus power consumption processing executed by the consumer's power management apparatus.
 電力管理装置は、依頼情報D20で指示された実行タイミングが到来したかを判定する(S80)。実行タイミングが到来した場合(S80:YES)、電力管理装置は、事前に設定された、または、依頼情報D20で通知された、実行条件が成立したか否かを判定する(S81)。 The power management apparatus determines whether the execution timing instructed by the request information D20 has arrived (S80). When the execution timing has arrived (S80: YES), the power management apparatus determines whether the execution condition set in advance or notified by the request information D20 is satisfied (S81).
 電力管理装置は、その管理下にある電気機器から得られる情報に基づいて、実行条件が成立したか否かを判定できる。例えば、太陽光発電装置の場合、その発電量が所定の基準値よりも大きい場合は、晴天であると判定できる。または、窓から入射する太陽光の強さに応じてブラインドの開閉を制御するブラインド制御装置が電力管理装置に接続されている場合、ブラインド制御装置の作動状態から天候を推定することもできる。このように、電力管理装置は、作動対象の電気機器、または、作動対象の電気機器以外の電気機器から、実行条件が成立したかを判定するために必要な情報を得ることができる。 The power management apparatus can determine whether or not the execution condition is satisfied based on the information obtained from the electrical equipment under the management. For example, in the case of a solar power generation device, when the power generation amount is larger than a predetermined reference value, it can be determined that the sky is clear. Or when the blind control apparatus which controls opening and closing of a blind according to the intensity | strength of the sunlight which injects from a window is connected to the power management apparatus, a weather can also be estimated from the operating state of a blind control apparatus. As described above, the power management apparatus can obtain information necessary for determining whether or not the execution condition is satisfied from the electrical device to be actuated or the electrical device other than the electrical device to be actuated.
 電力管理装置は、実行条件が成立したと判定すると(S81:YES)、作動対象の電気機器が正常であるかをチェックし(S82)、正常な場合(S82:YES)、作動対象の電気機器を作動させて余剰電力を消費させる。なお、ステップS82では、作動対象の電気機器が作動可能状態であるか否かを判定してもよい。 When the power management device determines that the execution condition is satisfied (S81: YES), the power management device checks whether the electrical device to be actuated is normal (S82). If it is normal (S82: YES), the electrical device to be actuated Is used to consume surplus power. In step S82, it may be determined whether or not the electrical device to be actuated is in an operable state.
 このように構成される本実施例も第3実施例と同様の作用効果を奏する。本実施例では、実行条件が成立した否かを需要家の電力管理装置で判断するため、CEMS10から各電力管理装置に実行指示を送信する必要がなく、通信ネットワークの混在を抑制することができる。さらに、天候状態が局地的に急変するような場合に、各需要家の実際の状況に応じて作動対象機器を作動させ、余剰電力の抑制を図ることができる。 This embodiment, which is configured in this way, also has the same operational effects as the third embodiment. In this embodiment, whether or not the execution condition is satisfied is determined by the power management apparatus of the consumer, so that it is not necessary to transmit an execution instruction from the CEMS 10 to each power management apparatus, and mixing of communication networks can be suppressed. . Furthermore, when the weather condition suddenly changes locally, the operation target device can be operated according to the actual situation of each consumer, and surplus power can be suppressed.
 図20を参照して第5実施例を説明する。本実施例では、需要家の信頼性及び送電距離の両方を考慮して、依頼先の需要家を選択する。 The fifth embodiment will be described with reference to FIG. In the present embodiment, the requested customer is selected in consideration of both the reliability of the customer and the transmission distance.
 図20は、本実施例による依頼先選択処理を示すフローチャートである。本実施例の依頼先選択部112は、電力需給予測部111から電力の需給の予測を取得する(S100)。依頼先選択部112は、判定対象の需要家IDを一つ選択する(S101)。 FIG. 20 is a flowchart showing a request destination selection process according to this embodiment. The request destination selection unit 112 according to the present embodiment acquires a prediction of power supply and demand from the power supply and demand prediction unit 111 (S100). The request destination selection unit 112 selects one determination target customer ID (S101).
 依頼先選択部112は、判定対象の需要家IDについての送電距離C31の値が送電距離閾値Th2以下であるかを判定する(S102)。 The request destination selection unit 112 determines whether the value of the transmission distance C31 for the determination target customer ID is equal to or less than the transmission distance threshold Th2 (S102).
 需要家の送電距離が閾値Th2以下の場合(S102:YES)、依頼先選択部112は、その需要家IDの信頼性C11の値が所定の信頼性閾値Th1以上であるかを判定する(S103)。 When the power transmission distance of the customer is equal to or less than the threshold Th2 (S102: YES), the request destination selection unit 112 determines whether the value of the reliability C11 of the customer ID is equal to or greater than a predetermined reliability threshold Th1 (S103). ).
 送電距離が閾値Th2以上の場合(S102:NO)、及び、信頼性の値が閾値Th1未満の場合(S103:NO)、依頼先選択部112は、S101に戻って、次の需要家IDを判定対象として選択する。 When the transmission distance is equal to or greater than the threshold Th2 (S102: NO) and when the reliability value is less than the threshold Th1 (S103: NO), the request destination selecting unit 112 returns to S101 and sets the next customer ID. Select as a judgment target.
 信頼性の値が閾値Th1以上である場合(S103:YES)、依頼先選択部112は、需要家IDを有する電力管理装置に余剰電力の消費活動に参加するかを問い合わせ、電力管理装置が余剰電力の消費を約束したか否かを判定する(S104)。 When the reliability value is greater than or equal to the threshold Th1 (S103: YES), the request destination selection unit 112 inquires of the power management apparatus having the consumer ID whether to participate in the surplus power consumption activity, and the power management apparatus surplus. It is determined whether or not power consumption has been promised (S104).
 判定対象の需要家IDを有する電力管理装置が余剰電力の消費を約束しなかった場合(S104:NO)、依頼先選択部112は、S101に戻り、次の需要家IDを判定対象として選択する。 When the power management apparatus having the determination target consumer ID has not promised the consumption of surplus power (S104: NO), the request destination selection unit 112 returns to S101 and selects the next consumer ID as the determination target. .
 判定対象の需要家IDを有する電力管理装置が余剰電力の消費を約束した場合(S104:YES)、依頼先選択部112は、その需要家IDを依頼先管理テーブルT20に登録する(S105)。 When the power management apparatus having the determination target consumer ID promises to consume surplus power (S104: YES), the request destination selection unit 112 registers the customer ID in the request destination management table T20 (S105).
 依頼先選択部112は、余剰電力が有るかを判定する(S106)。余剰電力が解消した場合(S106:NO)、本処理は終了する。需給ギャップが残っている場合(S106:YES)、依頼先選択部112は、管理下にある全ての需要家IDについて判定したかを判断する(S107)。未判定の需要家IDが残っている場合(S107:NO)、依頼先選択部112は、S101に戻って、未判定の需要家IDを一つ選択する。 The request destination selection unit 112 determines whether there is surplus power (S106). When the surplus power is eliminated (S106: NO), this process ends. When the supply-demand gap remains (S106: YES), the request destination selection unit 112 determines whether all customer IDs under management have been determined (S107). When the undetermined customer ID remains (S107: NO), the request destination selecting unit 112 returns to S101 and selects one undetermined customer ID.
 全ての需要家IDを判定した場合(S107:YES)、依頼先選択部112は、送電距離閾値Th2、及び/または、信頼性閾値Th1を変化させて(S108)、ステップS101に戻る。 If all customer IDs have been determined (S107: YES), the request destination selection unit 112 changes the power transmission distance threshold Th2 and / or the reliability threshold Th1 (S108), and returns to step S101.
 閾値の変更方法としては、例えば、送電距離を優先する方法と、信頼性を優先する方法とがある。送電距離の短いことを優先して需要家を選択する方法では、送電距離閾値Th2をできるだけ変化させずに、信頼性閾値Th1を段階的に低下させる。この方法によれば、送電距離の短い需要家が優先的に選択される。 Threshold value changing methods include, for example, a method that prioritizes transmission distance and a method that prioritizes reliability. In the method of selecting a consumer with priority on a short transmission distance, the reliability threshold Th1 is lowered stepwise without changing the transmission distance threshold Th2 as much as possible. According to this method, a consumer with a short transmission distance is preferentially selected.
 信頼性を優先する方法では、信頼性閾値Th1をできるだけ変化させずに、送電距離閾値Th2を段階的に増加させる。この方法によれば、信頼性の高い需要家が優先的に選択される。 In the method of giving priority to reliability, the power transmission distance threshold Th2 is increased stepwise without changing the reliability threshold Th1 as much as possible. According to this method, a highly reliable consumer is preferentially selected.
 本実施例は、第1実施例または第2実施例の作用効果を得ることができる。さらに、本実施例は、第3実施例または第4実施例と組み合わせることもできる。本実施例では、送電距離及び信頼性の両方の観点に基づいて、余剰電力の消費を依頼する需要家を選択することができる。従って、本実施例では、より一層適切な需要家を選択することができ、高い精度で需給を調整することができる。 This embodiment can obtain the effects of the first embodiment or the second embodiment. Furthermore, this embodiment can be combined with the third embodiment or the fourth embodiment. In a present Example, the consumer who requests consumption of surplus electric power can be selected based on the viewpoint of both power transmission distance and reliability. Therefore, in the present embodiment, a more appropriate consumer can be selected, and supply and demand can be adjusted with high accuracy.
 図21を参照して第6実施例を説明する。本実施例では、選択された需要家で消費可能な電力量を考慮して、余剰電力の消費量を割り当てる。図21は、需要家の信頼性を管理するテーブルT10Aを示す。このテーブルT10Aは、需要家ID C10と、信頼性C11と、消費電力値C12とを対応付けて管理する。 The sixth embodiment will be described with reference to FIG. In the present embodiment, the amount of surplus power consumption is allocated in consideration of the amount of power that can be consumed by the selected consumer. FIG. 21 shows a table T10A for managing the reliability of consumers. This table T10A manages customer ID C10, reliability C11, and power consumption value C12 in association with each other.
 消費電力値C12は、その需要家で消費可能な電力値を示す。例えば、複数台の電気自動車を保有する需要家、大容量の給湯機または製氷機を有する需要家は、消費可能な電力量も多い。 The power consumption value C12 indicates a power value that can be consumed by the consumer. For example, consumers who have a plurality of electric vehicles and consumers who have large-capacity water heaters or ice makers have a large amount of power that can be consumed.
 そこで、本実施例では、例えば、各需要家での電力消費の履歴データに基づいて、各需要家で消費可能な電力量を欄C12に設定し、その値に基づいて余剰電力の消費量を割り当てる。 Therefore, in this embodiment, for example, based on the historical data of power consumption at each consumer, the amount of power that can be consumed by each consumer is set in the column C12, and the consumption of surplus power is calculated based on the value. assign.
 本実施例は、上述した各実施例のいずれにも適用できる。本実施例も第1実施例等と同様の効果を得ることができる。 This embodiment can be applied to any of the embodiments described above. This embodiment can obtain the same effects as those of the first embodiment.
 なお、本発明は、上述した実施例に限定されない。当業者であれば、本発明の範囲内で、種々の追加や変更等を行うことができる。 In addition, this invention is not limited to the Example mentioned above. A person skilled in the art can make various additions and changes within the scope of the present invention.
 例えば、本発明は、以下のように、コンピュータプログラムの発明、またはコンピュータプログラムを記録した、コンピュータが読取り及び実行可能な記録媒体の発明として表現することもできる。
 表現1.コンピュータを、所定地域内の各需要家の電力状態をそれぞれ監視するための各需要家側電力管理装置を管理する地域電力管理システムとして作動させるためのコンピュータプログラムであって、
 前記コンピュータに、
  前記各需要家の電力消費量及び発電量を示す電力管理情報を前記各需要家側電力管理装置から取得させ、
  取得した前記電力管理情報を情報管理部により管理させ、
  前記電力管理情報に基づいて、前記所定地域において将来の所定時期に発生する余剰電力を予測させ、
  前記各需要家の中から、余剰電力の消費を依頼する所定の需要家を選択させ、
  前記余剰電力の消費を依頼するための依頼情報を生成させ、
  前記依頼情報を前記所定の需要家の有する前記需要家側電力管理装置に送信させ、
  前記所定の需要家の有する前記需要家側電力管理装置から取得される前記電力管理情報に基づいて、前記所定の需要家が前記依頼情報に従ったかを判定させる、
コンピュータプログラム。
For example, the present invention can also be expressed as an invention of a computer program or a recording medium on which a computer program is recorded and which can be read and executed by a computer as follows.
Expression 1. A computer program for operating a computer as a regional power management system that manages each consumer-side power management device for monitoring the power state of each customer in a predetermined area,
In the computer,
The power management information indicating the power consumption and power generation amount of each consumer is obtained from each consumer side power management device,
The acquired power management information is managed by an information management unit,
Based on the power management information, the surplus power generated in the predetermined area at a predetermined time in the future is predicted,
From among each of the above consumers, select a predetermined consumer that requests consumption of surplus power,
Generating request information for requesting consumption of the surplus power;
The request information is transmitted to the consumer-side power management device of the predetermined consumer,
Based on the power management information acquired from the consumer-side power management device of the predetermined consumer, it is determined whether the predetermined consumer has followed the request information.
Computer program.
 1:電力系統システム、5:配電用変電所、10:CEMS、20:HEMS、30:BEMS、40:FEMS、50:EV-EMS 1: Power system, 5: Distribution substation, 10: CEMS, 20: HEMS, 30: BEMS, 40: FEMS, 50: EV-EMS

Claims (13)

  1.  所定地域内の各需要家の電力状態をそれぞれ監視するための各需要家側電力管理装置を管理する地域電力管理システムであって、
     前記各需要家側電力管理装置との間で通信するための通信インターフェース部と、
     前記通信インターフェース部を介して前記各需要家側電力管理装置から受信した情報を記憶して管理するための情報管理部と、
     前記情報管理部で管理される情報に基づいて所定の処理を実行する制御部と、
    を備えており、
     前記制御部は、
      前記各需要家の電力消費量及び発電量を示す電力管理情報を前記各需要家側電力管理装置から前記通信インターフェース部を介して取得し、取得した前記電力管理情報を前記情報管理部により管理し、さらに、
     前記制御部は、
     前記電力管理情報に基づいて、前記所定地域において将来の所定時期に発生する余剰電力を予測するための需給予測部と、
      前記各需要家の中から、余剰電力の消費を依頼する所定の需要家を選択するための依頼先選択部と、
      前記余剰電力の消費を依頼するための依頼情報を生成し、前記通信インターフェース部を介して、前記依頼情報を前記所定の需要家の有する前記需要家側電力管理装置に送信させる依頼情報生成部と、
      前記所定の需要家の有する前記需要家側電力管理装置から前記通信インターフェース部を介して取得される前記電力管理情報に基づいて、前記所定の需要家が前記依頼情報に従って電力を消費したかを判定するための履行判定部と、
    を備える地域電力管理システム。
     
    A regional power management system that manages each customer-side power management device for monitoring the power status of each customer in a predetermined area,
    A communication interface unit for communicating with each consumer-side power management device;
    An information management unit for storing and managing information received from each consumer-side power management device via the communication interface unit;
    A control unit that executes predetermined processing based on information managed by the information management unit;
    With
    The controller is
    The power management information indicating the power consumption amount and the power generation amount of each consumer is obtained from each consumer side power management device via the communication interface unit, and the obtained power management information is managed by the information management unit. ,further,
    The controller is
    Based on the power management information, a supply and demand prediction unit for predicting surplus power generated at a predetermined future time in the predetermined region,
    A request destination selection unit for selecting a predetermined consumer who requests consumption of surplus power from each of the consumers,
    A request information generation unit that generates request information for requesting consumption of the surplus power, and transmits the request information to the consumer-side power management device of the predetermined consumer via the communication interface unit; ,
    Based on the power management information acquired via the communication interface unit from the consumer-side power management device of the predetermined consumer, it is determined whether the predetermined consumer has consumed power according to the request information. A performance determination unit for
    Regional power management system with.
  2.  少なくとも前記所定の需要家の有する前記需要家側電力管理装置から取得される電力管理情報には、前記依頼情報に対応することを示す対応情報が含まれており、
     前記履行判定部は、前記対応情報に基づいて、前記所定の需要家が前記依頼情報に従って電力を消費したかを判定する、
    請求項1に記載の地域電力管理システム。
     
    The power management information acquired from at least the customer-side power management device of the predetermined consumer includes correspondence information indicating that it corresponds to the request information,
    The fulfillment determination unit determines whether the predetermined consumer has consumed power according to the request information based on the correspondence information.
    The regional power management system according to claim 1.
  3.  前記依頼先選択部は、
      前記各需要家の有する前記需要家側電力管理装置に、前記依頼情報に従って前記余剰電力を消費できるかを問い合わせ、
      その問い合わせに対して肯定的な応答を返した需要家側電力管理装置を有する需要家を前記所定の需要家として選択する、
    請求項2に記載の地域電力管理システム。
     
    The request destination selection unit
    Inquiring to the consumer-side power management device of each consumer whether the surplus power can be consumed according to the request information,
    Selecting a consumer having a consumer-side power management apparatus that has returned a positive response to the inquiry as the predetermined consumer;
    The regional power management system according to claim 2.
  4.  前記各需要家側電力管理装置は、予め設定されるポリシに基づいて、前記問い合わせに対する応答を決定する、
    請求項3に記載の地域電力管理システム。
     
    Each of the customer-side power management devices determines a response to the inquiry based on a preset policy.
    The regional power management system according to claim 3.
  5.  前記依頼先選択部は、
      前記履行判定部による判定結果に基づいて更新される、前記各需要家の信頼性に関する情報を、管理するための信頼性管理部から前記信頼性に関する情報を取得し、
      前記信頼性に関する情報に基づいて、前記各需要家の中から所定の信頼性閾値以上の信頼性を有する需要家を前記所定の需要家として選択する、
    請求項4に記載の地域電力管理システム。
     
    The request destination selection unit
    The information on the reliability is updated from the determination result by the performance determination unit, the information on the reliability of each customer is acquired from the reliability management unit for managing the information,
    Based on the information on the reliability, a consumer having reliability equal to or higher than a predetermined reliability threshold value is selected as the predetermined consumer from the consumers.
    The regional power management system according to claim 4.
  6.  前記依頼先選択部は、
      前記各需要家に電力を供給する変電所から前記各需要家までの送電距離に関する情報を管理するための距離管理部から前記送電距離に関する情報を取得し、
      前記送電距離に関する情報に基づいて、前記各需要家の中から所定値の距離閾値以下の送電距離を有する需要家を前記所定の需要家として選択する、
    請求項4に記載の地域電力管理システム。
     
    The request destination selection unit
    Obtaining information on the power transmission distance from a distance management unit for managing information on power transmission distance from the substation supplying power to each consumer to each customer;
    Based on the information related to the power transmission distance, a consumer having a power transmission distance equal to or smaller than a predetermined distance threshold is selected as the predetermined consumer from the respective consumers.
    The regional power management system according to claim 4.
  7.  前記依頼先選択部は、
      前記各需要家に電力を供給する変電所から前記各需要家までの送電距離に関する情報を管理するための距離管理部から前記送電距離に関する情報を取得し、
      さらに、前記履行判定部による判定結果に基づいて更新される、前記各需要家の信頼性に関する情報を、管理するための信頼性管理部から前記信頼性に関する情報を取得し、
      前記各需要家の中から、所定の距離閾値以下の送電距離と、所定の信頼性閾値以上の信頼性とを有する需要家を、前記所定の需要家として選択する、
    請求項4に記載の地域電力管理システム。
     
    The request destination selection unit
    Obtaining information on the power transmission distance from a distance management unit for managing information on power transmission distance from the substation supplying power to each consumer to each customer;
    Furthermore, the information on the reliability is updated from the determination result by the performance determination unit, the information on the reliability of each customer is acquired from the reliability management unit for managing the information,
    From among the consumers, a consumer having a power transmission distance that is equal to or less than a predetermined distance threshold and reliability that is equal to or greater than a predetermined reliability threshold is selected as the predetermined consumer.
    The regional power management system according to claim 4.
  8.  前記依頼先選択部は、選択された前記所定の需要家で消費される電力量の合計が前記余剰電力に到達するまで、前記各需要家の中から前記所定の需要家を選択する、
    請求項5~請求項7のいずれか一項に記載の地域電力管理システム。
     
    The request destination selection unit selects the predetermined consumer from each of the consumers until the total amount of power consumed by the selected predetermined consumer reaches the surplus power.
    The regional power management system according to any one of claims 5 to 7.
  9.  前記依頼情報生成部は、予め設定される所定の実行条件が成立した場合に、前記所定の需要家において前記余剰電力の消費を許可するように、前記所定の実行条件を含ませて前記依頼情報を生成する、
    請求項4に記載の地域電力管理システム。
     
    The request information generation unit includes the predetermined execution condition so as to permit consumption of the surplus power in the predetermined consumer when a predetermined execution condition set in advance is satisfied. Generate
    The regional power management system according to claim 4.
  10.  前記制御部は、前記実行条件が成立したかを判定し、前記実行条件が成立したと判定した場合には、前記実行条件が成立したことを示す情報を、前記所定の需要家の有する前記需要家側電力管理装置に送信する、
    請求項9に記載の地域電力管理システム。
     
    The control unit determines whether or not the execution condition is satisfied, and when it is determined that the execution condition is satisfied, information indicating that the execution condition is satisfied includes information indicating that the predetermined consumer has the demand. Send to home power management device,
    The regional power management system according to claim 9.
  11.  前記所定の需要家の有する前記需要家側電力管理装置は、その管理下にある電気機器の作動状態に基づいて、前記実行条件が成立したかを判定し、前記実行条件が成立したと判定した場合には、前記依頼情報に従って電力を消費させる、
    請求項9に記載の地域電力管理システム。
     
    The consumer-side power management device of the predetermined consumer determines whether the execution condition is satisfied based on an operating state of an electric device under the management, and determines that the execution condition is satisfied. In this case, power is consumed according to the request information.
    The regional power management system according to claim 9.
  12.  前記電力管理情報には、前記各需要家を識別するための需要家識別情報と、前記需要家側電力管理装置の管理下にある電気機器を識別するための機器識別情報と、前記電気機器での電力消費量又は発電量を示す消費電力情報と、時刻情報とを含んでおり、
     前記対応情報には、少なくとも前記需要家識別情報が含まれており、
     前記履行判定部は、
      前記電力管理情報の中から抽出される前記需要家識別情報と前記所定の需要家の需要家識別情報とが一致するか否かを判定し、
      前記各需要家識別情報が一致する場合は、前記所定の需要家の有する前記需要家側電力管理装置から取得される前記電力管理情報に含まれる前記消費電力情報の値と、前記消費電力情報の履歴とに基づいて、前記所定の需要家が前記依頼情報に従って電力を消費したかを判定する、
    請求項2に記載の地域電力管理システム。
     
    The power management information includes customer identification information for identifying each consumer, device identification information for identifying an electrical device under the control of the consumer side power management device, and the electrical device. Power consumption information indicating the amount of power consumption or power generation, and time information,
    The correspondence information includes at least the customer identification information,
    The performance determination unit includes:
    Determining whether or not the customer identification information extracted from the power management information matches the customer identification information of the predetermined consumer;
    When the customer identification information matches, the value of the power consumption information included in the power management information acquired from the consumer side power management device of the predetermined consumer, and the power consumption information Based on the history, it is determined whether the predetermined consumer has consumed power according to the request information,
    The regional power management system according to claim 2.
  13.  所定地域内の各需要家の電力状態をそれぞれ監視するための各需要家側電力管理装置を地域電力管理システムにより管理するための地域電力管理方法であって、
     前記地域電力管理システムは、
      前記各需要家の電力消費量及び発電量を示す電力管理情報を前記各需要家側電力管理装置から取得し、
      取得した前記電力管理情報を情報管理部により管理し、
      前記電力管理情報に基づいて、前記所定地域において将来の所定時期に発生する余剰電力を予測し、
      前記各需要家の中から、余剰電力の消費を依頼する所定の需要家を選択し、
      前記余剰電力の消費を依頼するための依頼情報を生成し、
      前記依頼情報を前記所定の需要家の有する前記需要家側電力管理装置に送信し、
      前記所定の需要家の有する前記需要家側電力管理装置から取得される前記電力管理情報に基づいて、前記所定の需要家が前記依頼情報に従ったかを判定する、
    地域電力管理方法。
    A regional power management method for managing each consumer-side power management device for monitoring the power status of each consumer in a predetermined area by a regional power management system,
    The regional power management system is:
    Obtain power management information indicating the power consumption and power generation amount of each consumer from each consumer-side power management device,
    The acquired power management information is managed by an information management unit,
    Based on the power management information, predict surplus power generated at a predetermined time in the predetermined area,
    From among each of the above consumers, select a predetermined consumer that requests consumption of surplus power,
    Generating request information for requesting consumption of the surplus power;
    Transmitting the request information to the consumer-side power management device of the predetermined consumer;
    Based on the power management information acquired from the consumer-side power management device of the predetermined consumer, it is determined whether the predetermined consumer has followed the request information.
    Regional power management method.
PCT/JP2011/069493 2011-08-29 2011-08-29 Regional electric power control system and regional electric power control method WO2013030937A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/069493 WO2013030937A1 (en) 2011-08-29 2011-08-29 Regional electric power control system and regional electric power control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/069493 WO2013030937A1 (en) 2011-08-29 2011-08-29 Regional electric power control system and regional electric power control method

Publications (1)

Publication Number Publication Date
WO2013030937A1 true WO2013030937A1 (en) 2013-03-07

Family

ID=47755490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069493 WO2013030937A1 (en) 2011-08-29 2011-08-29 Regional electric power control system and regional electric power control method

Country Status (1)

Country Link
WO (1) WO2013030937A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050849A (en) * 2013-09-02 2015-03-16 株式会社東芝 Energy management system and method, and program therefor
JP2015056977A (en) * 2013-09-12 2015-03-23 パナソニック株式会社 Apparatus operation analysis system and information communication system
JP2015122836A (en) * 2013-12-20 2015-07-02 積水化学工業株式会社 Power management device, power management method and program
JP2015126554A (en) * 2013-12-25 2015-07-06 積水化学工業株式会社 Power management system, power management device, power management method, and program
WO2016017426A1 (en) * 2014-07-31 2016-02-04 日本電気株式会社 Control device, apparatus control device, control method, report reception method, reporting method, and recording medium
WO2016017424A1 (en) * 2014-07-31 2016-02-04 日本電気株式会社 Control device, apparatus control device, reporting method, and recording medium
JP2016523480A (en) * 2013-06-13 2016-08-08 アストロリンク インターナショナル エルエルシー Non-technical losses in distribution grids
WO2016135771A1 (en) 2015-02-23 2016-09-01 Nec Corporation Electric energy adjustment apparatus, system, method and program
TWI559648B (en) * 2014-01-21 2016-11-21 台達電子工業股份有限公司 Charging apparatus with dynamical charging power and method of operating the same
JP2017127085A (en) * 2016-01-13 2017-07-20 株式会社日立製作所 Power demand/response management device, power demand/response management method, power demand/response management system, and power demand management device
JP2018107981A (en) * 2016-12-28 2018-07-05 積水化学工業株式会社 Tidal current control method for power distribution system and power distribution system
US10079765B2 (en) 2014-10-30 2018-09-18 Astrolink International Llc System and methods for assigning slots and resolving slot conflicts in an electrical distribution grid
US10097240B2 (en) 2013-02-19 2018-10-09 Astrolink International, Llc System and method for inferring schematic and topological properties of an electrical distribution grid
US10356055B2 (en) 2011-06-09 2019-07-16 Astrolink International Llc System and method for grid based cyber security
US10459411B2 (en) 2011-04-15 2019-10-29 Astrolink International Llc System and method for single and multizonal optimization of utility services delivery and utilization
US10749571B2 (en) 2013-06-13 2020-08-18 Trc Companies, Inc. System and methods for inferring the feeder and phase powering an on-grid transmitter
EP3920371A4 (en) * 2019-01-30 2022-12-21 Kyocera Corporation Power supply method and power management device
JP7491272B2 (en) 2021-07-08 2024-05-28 トヨタ自動車株式会社 Server, method, and program
JP7565230B2 (en) 2021-02-10 2024-10-10 日産自動車株式会社 Method for controlling charging and discharging of charging and discharging elements, and device for controlling charging and discharging of charging and discharging elements

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252924A (en) * 2001-02-26 2002-09-06 Toshiba Corp Power transaction system and method
JP2002369385A (en) * 2001-06-06 2002-12-20 Toshiba Eng Co Ltd Power transmission control system, power reception control system and power transmission and reception control system
JP2003132121A (en) * 2001-10-22 2003-05-09 Tokyo Gas Co Ltd Consumptive medium supply system and consumptive medium supply method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252924A (en) * 2001-02-26 2002-09-06 Toshiba Corp Power transaction system and method
JP2002369385A (en) * 2001-06-06 2002-12-20 Toshiba Eng Co Ltd Power transmission control system, power reception control system and power transmission and reception control system
JP2003132121A (en) * 2001-10-22 2003-05-09 Tokyo Gas Co Ltd Consumptive medium supply system and consumptive medium supply method

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10459411B2 (en) 2011-04-15 2019-10-29 Astrolink International Llc System and method for single and multizonal optimization of utility services delivery and utilization
US10356055B2 (en) 2011-06-09 2019-07-16 Astrolink International Llc System and method for grid based cyber security
US10097240B2 (en) 2013-02-19 2018-10-09 Astrolink International, Llc System and method for inferring schematic and topological properties of an electrical distribution grid
US10554257B2 (en) 2013-02-19 2020-02-04 Dominion Energy Technologies, Inc. System and method for inferring schematic and topological properties of an electrical distribution grid
US10541724B2 (en) 2013-02-19 2020-01-21 Astrolink International Llc Methods for discovering, partitioning, organizing, and administering communication devices in a transformer area network
JP2016523480A (en) * 2013-06-13 2016-08-08 アストロリンク インターナショナル エルエルシー Non-technical losses in distribution grids
US10749571B2 (en) 2013-06-13 2020-08-18 Trc Companies, Inc. System and methods for inferring the feeder and phase powering an on-grid transmitter
US10564196B2 (en) 2013-06-13 2020-02-18 Astrolink International Llc System and method for detecting and localizing non-technical losses in an electrical power distribution grid
JP2015050849A (en) * 2013-09-02 2015-03-16 株式会社東芝 Energy management system and method, and program therefor
JP2015056977A (en) * 2013-09-12 2015-03-23 パナソニック株式会社 Apparatus operation analysis system and information communication system
JP2015122836A (en) * 2013-12-20 2015-07-02 積水化学工業株式会社 Power management device, power management method and program
JP2015126554A (en) * 2013-12-25 2015-07-06 積水化学工業株式会社 Power management system, power management device, power management method, and program
TWI559648B (en) * 2014-01-21 2016-11-21 台達電子工業股份有限公司 Charging apparatus with dynamical charging power and method of operating the same
JPWO2016017426A1 (en) * 2014-07-31 2017-05-18 日本電気株式会社 Control device, device control device, control method, notification receiving method, notification method, and recording medium
WO2016017424A1 (en) * 2014-07-31 2016-02-04 日本電気株式会社 Control device, apparatus control device, reporting method, and recording medium
WO2016017426A1 (en) * 2014-07-31 2016-02-04 日本電気株式会社 Control device, apparatus control device, control method, report reception method, reporting method, and recording medium
JPWO2016017424A1 (en) * 2014-07-31 2017-05-18 日本電気株式会社 CONTROL DEVICE, DEVICE CONTROL DEVICE, NOTIFICATION METHOD, AND RECORDING MEDIUM
US10079765B2 (en) 2014-10-30 2018-09-18 Astrolink International Llc System and methods for assigning slots and resolving slot conflicts in an electrical distribution grid
US10417719B2 (en) 2015-02-23 2019-09-17 Nec Corporation Electric energy adjustment apparatus, system, method and program
WO2016135771A1 (en) 2015-02-23 2016-09-01 Nec Corporation Electric energy adjustment apparatus, system, method and program
JP2017127085A (en) * 2016-01-13 2017-07-20 株式会社日立製作所 Power demand/response management device, power demand/response management method, power demand/response management system, and power demand management device
JP2018107981A (en) * 2016-12-28 2018-07-05 積水化学工業株式会社 Tidal current control method for power distribution system and power distribution system
EP3920371A4 (en) * 2019-01-30 2022-12-21 Kyocera Corporation Power supply method and power management device
JP7565230B2 (en) 2021-02-10 2024-10-10 日産自動車株式会社 Method for controlling charging and discharging of charging and discharging elements, and device for controlling charging and discharging of charging and discharging elements
JP7491272B2 (en) 2021-07-08 2024-05-28 トヨタ自動車株式会社 Server, method, and program

Similar Documents

Publication Publication Date Title
WO2013030937A1 (en) Regional electric power control system and regional electric power control method
US11715952B2 (en) System and method of managing energy distribution using a distributed ledger
JP5576498B2 (en) Power management system and power management method
US9960637B2 (en) Renewable energy integrated storage and generation systems, apparatus, and methods with cloud distributed energy management services
US11757304B2 (en) Versatile site energy router
US8548638B2 (en) Energy management system and method
JP5530314B2 (en) Regional power interchange system
JP6249895B2 (en) Power control system, method, and power control apparatus
US20150326015A1 (en) Methods, apparatus and systems for managing energy assets
WO2014034391A1 (en) Energy control system, server, energy control method and storage medium
US20130026986A1 (en) Transformer-level management of power consumption by one or more consumers
WO2011042787A1 (en) Electric power distribution system
CN104517240A (en) Method and system for managing devices in micro-grids
WO2012145563A1 (en) Methods, apparatus and systems for managing energy assets
US20160126734A1 (en) A Microgrid Control Apparatus, Method and System for Controlling Energy Flow within a Microgrid
JP7461769B2 (en) Energy supply system and energy supply method
Dao et al. Intensive quadratic programming approach for home energy management systems with power utility requirements
JP2013188031A (en) Energy management system, energy management control device, and energy management method and program
Wei et al. Two-stage cooperative intelligent home energy management system for optimal scheduling
JP2021164405A (en) Distributed resource integration management system of demand management board
JP5847650B2 (en) Energy management system, server device, energy management method and program
Bessler et al. Using flexibility information for energy demand optimization in the low voltage grid
US11646582B2 (en) System and method for distributing electrical power
JP5609082B2 (en) Electric power trading system, electric power purchase device and electric power sale device
JP7328803B2 (en) Power management system and power management method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP