WO2012065455A1 - 镁及镁合金用铝-锆-钛-碳晶粒细化剂及其制备方法 - Google Patents

镁及镁合金用铝-锆-钛-碳晶粒细化剂及其制备方法 Download PDF

Info

Publication number
WO2012065455A1
WO2012065455A1 PCT/CN2011/077428 CN2011077428W WO2012065455A1 WO 2012065455 A1 WO2012065455 A1 WO 2012065455A1 CN 2011077428 W CN2011077428 W CN 2011077428W WO 2012065455 A1 WO2012065455 A1 WO 2012065455A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
aluminum
zirconium
titanium
grain refiner
Prior art date
Application number
PCT/CN2011/077428
Other languages
English (en)
French (fr)
Inventor
陈学敏
叶清东
余跃明
李建国
Original Assignee
新星化工冶金材料(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新星化工冶金材料(深圳)有限公司 filed Critical 新星化工冶金材料(深圳)有限公司
Priority to US13/254,533 priority Critical patent/US20120039746A1/en
Priority to ES11811508.8T priority patent/ES2535634T3/es
Priority to EP11811508.8A priority patent/EP2487273B1/en
Publication of WO2012065455A1 publication Critical patent/WO2012065455A1/zh
Priority to US14/521,569 priority patent/US9957588B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/20Measures not previously mentioned for influencing the grain structure or texture; Selection of compositions therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium

Definitions

  • the present invention relates to an intermediate alloy for improving the properties of metals and alloys by refining crystal grains, and more particularly to a grain refiner for magnesium and magnesium alloys and a process for the preparation thereof.
  • magnesium and magnesium alloys are the lightest metal structural materials, they have low density, high specific strength and specific stiffness, good damping and shock absorption, good thermal conductivity, and electromagnetic
  • the wrought magnesium alloy refers to a magnesium alloy which can be formed by a plastic forming method such as extrusion, rolling, or forging.
  • the application of magnesium alloys, especially wrought magnesium alloys lags far behind steel and aluminum alloys. There is no such material in the field of metal materials. As with magnesium, there is such a big difference between its development potential and its actual application status.
  • Magnesium is different from commonly used metals such as iron, copper and aluminum.
  • Magnesium alloy is a hexagonal crystal structure with only three independent slip systems at room temperature. The alloy has poor plastic deformation ability, and its grain size has a great influence on mechanical properties.
  • Magnesium alloy has a wide crystallization temperature range, low thermal conductivity, large body shrinkage, serious grain coarsening tendency, and defects such as shrinkage and thermal cracking during solidification; fine grains help to reduce shrinkage, Reducing the size of the second phase and improving the casting defects; the grain refinement of the magnesium alloy can shorten the diffusion distance required for solid solution of the intergranular phase and improve the heat treatment efficiency; in addition, the fine grains can also help to improve the resistance of the magnesium alloy. Corrosion properties and processability.
  • grain refiner to refine the magnesium alloy melt is an important means to improve the overall performance of the magnesium alloy and improve the forming properties of the magnesium alloy.
  • the strength of the magnesium alloy material can be improved, and the magnesium alloy material can be greatly improved.
  • Plasticity and toughness make it possible to achieve large-scale plastic processing and low-cost industrialization of magnesium alloy materials.
  • Zr The element that has a significant refinement effect on pure magnesium grains is Zr, which was discovered in 1937. Studies have shown that Zr can effectively inhibit the growth of magnesium alloy grains, thereby refining the grains. Zr can be used in pure Mg, Mg-Zn and Mg-RE systems; however, the solubility of Zr in liquid magnesium is very small. In the case of peritectic reaction, only 0.6 wt% Zr can be dissolved in the magnesium solution, and Zr and Al, Mn forms a stable compound and precipitates, and does not have the effect of refining crystal grains. Therefore, Zr cannot be added to the Mg-AI system and the Mg-Mn alloy. Mg-AI alloy is currently the most popular commercial magnesium alloy.
  • Mg-AI alloys have coarse as-cast grains, sometimes even coarse columnar crystals and fan-shaped crystals, which deforms the ingot. Difficulty in processing, easy to crack, low yield, low mechanical properties, and low rate of plastic deformation, seriously affecting industrial production. Therefore, in order to achieve large-scale production, it is necessary to first solve the problem of as-cast grain refinement of magnesium alloy.
  • the grain refining methods of the Mg-AI alloy mainly include a superheating method, a rare earth element addition method, and a carbonaceous growth method. Although the superheating method has a certain effect, the melt oxidation is more serious. The addition of the rare earth element method is not stable or desirable.
  • the carbonaceous inoculation method has a wide range of raw materials and low operating temperature, and has become the most important grain refining method for Mg-AI alloys.
  • the traditional carbon inoculation method uses MgCO 3 or C 2 CI 6 , etc.
  • a large amount of dispersed AI 4 C 3 particles are formed in the melt, and AI 4 C 3 is a better heterogeneous crystal nucleus of the magnesium alloy, so that a large amount of dispersed AI 4 C 3 nucleus refines the grain of the magnesium alloy.
  • the refiner is added, the melt is easily boiled, so that it is rarely used in production.
  • the general grain intermediate alloy has not been found in the magnesium alloy industry, and the range of use of various grain refining methods depends on the alloy system or alloy composition. Therefore, inventing a grain refiner which is versatile when magnesium and magnesium alloys are solidified and can effectively refine the as-cast grains is one of the keys to the current industrialization of magnesium alloys.
  • the present invention provides an aluminum-zirconium-titanium-carbon intermediate alloy for grain refinement of magnesium and magnesium alloys, which has a strong nucleation to magnesium and magnesium alloys. ability.
  • the invention also provides a process for the preparation of such an intermediate alloy.
  • AI 4 C 3 and ZrC have the ability to form crystal nuclei in a large number of magnesium alloy grain refinement experiments, and ZrC is a crystal nucleus whose nucleation ability is several times stronger than that of AI 4 C 3 .
  • AI 4 C 3 and ZrC are not easily available.
  • the inventors made it easier to obtain Al-Zr-Ti-C master alloy.
  • the scanning electron micrograph and energy spectrum analysis showed that there were a large number of mAI 4 C 3 'nZrC>pTiC polymeric particles in the metallographic phase, Al-Zr-Ti-C.
  • the intermediate alloy has a lower melting point and can form a large amount of dispersed AI 4 C 3 and ZrC after melting in magnesium or magnesium alloy, and becomes the best heterogeneous crystal nucleus of the magnesium alloy.
  • the technical solution adopted by the invention is: an aluminum-zirconium-titanium-carbon grain refiner for magnesium and magnesium alloy, the aluminum-zirconium-titanium-carbon (Al-Zr-Ti-C) crystal grain is fine
  • Al-Zr-Ti-C aluminum-zirconium-titanium-carbon
  • the chemical composition of the chemical in weight percent is: 0.01% ⁇ 10% Zr, 0.01% ⁇ 10% Ti, 0.01% ⁇ 0.3% C, the balance is AL
  • the chemical composition of the aluminum-zirconium-titanium-carbon (Al-Zr-Ti-C) master alloy in weight percentage is: 0.1% ⁇ 10° / ⁇ Zr, 0.1% ⁇ 10% of 11, 0.01 % ⁇ 0.3% C, the balance is AL.
  • the more preferable chemical composition is: 1% ⁇ 5% Zr, 1% ⁇ 5% Ti, 0.1% ⁇ 0.3% C, the balance is AL.
  • the preparation method of the aluminum-zirconium-titanium-carbon grain refiner for magnesium and magnesium alloy of the present invention comprises the following steps:
  • the invention has the beneficial effects of: inventing an Al-Zr-Ti-C master alloy having strong nucleation ability and excellent grain refining ability of magnesium and magnesium alloys, and a large amount of mAI 4 C 3 -nZrC exists in the alloy -pTiC polymerized particle group, wherein m:n:p is about (0.6 ⁇ 0.75): (0.1 ⁇ 0.2): (0.1 ⁇ 0.2), which can form a large amount of dispersion after melting in magnesium or magnesium alloy.
  • the AI 4 C 3 and ZrC particles of the nucleus have a good grain refinement effect on the microstructure of the magnesium or magnesium alloy; this alloy has good deformation processing properties and can be easily rolled into a common ⁇ 9 ⁇ 10mm wire is convenient for industrial production; as a grain refiner, it can be industrially used in the casting and rolling of magnesium and magnesium alloy profiles, which provides a possibility for the wide application of magnesium in industry.
  • Figure 1 is an SEM image of an Al-Zr-Ti-C alloy at 3000 times
  • Figure 2 is an energy spectrum diagram of the area shown by A in Figure 1;
  • Figure 3 is a grain structure diagram of pure magnesium
  • Fig. 4 is a grain structure diagram of pure Mg added to an Al-Zr-Ti-C alloy for grain refinement.
  • the gray plate is large particles, and the large particle size is between 20 ⁇ ⁇ ⁇ 1 00 ⁇ ⁇ . Polygonal flakes, small particles The diameter is between 1 ⁇ 10 ⁇ .
  • Fig. 2 it is a spectral line diagram of the area shown in Fig. 1.
  • the standard samples used in the test are Al: Al 2 0 3 , Zr: Zr, Ti: Ti, C: CaC0 3 , Percent atomic percentage: C is 51.56%, Al is 37.45%, Zr is 7.52%, and Ti is 3.47%.
  • the Waffle ingot is an aluminum-zirconium-titanium-carbon (Al-Zr-Ti-C) master alloy.
  • Example 7 The pure magnesium was melted in an induction furnace under the protection of SF 6 and CO 2 mixed gas, and the temperature was raised to 710 ° C, and 1% of the Al-Zr-Ti-C master alloys obtained in Examples 1 to 6 were respectively added to carry out the crystal grains. After refining, heat preservation and mechanical stirring for 30 minutes, it was directly cast into ingots to obtain six sets of grain-refined magnesium alloy samples.
  • the grain size of the sample was evaluated according to the national standard GB/T 6394-2002, and the determined area was within the range of the circle from the center of the circle to the radius of 1/2 to 3/4.
  • the four quadrants in this ring range each take 8 fields of view, and the grain size is calculated by the intercept method.
  • the microstructure of pure magnesium grains without grain refinement is shown.
  • the pure magnesium structure without grain refinement is as follows: columnar crystals with a width between 300 ⁇ and 2000 ⁇ are scattered. See Figure 4 for the grain structure of the grained magnesium alloy.
  • the six groups of magnesium alloys refined by grain refinement are: equiaxed grains with a grain size between 50 ⁇ and 200 ⁇ .
  • the test results show that the Al-Zr-Ti-C master alloy of the present invention has a ⁇ grain ⁇ county for pure magnesium.
  • Al-Zr-Ti-C alloy is an intermediate alloy with strong nucleation ability and excellent grain refinement ability of magnesium and magnesium alloy. This alloy has good deformation processing properties and can be easily rolled into a universal alloy. (D9 ⁇ 10mm wire is convenient for industrial production, as grain refiner can be industrially applied to casting and rolling of magnesium and magnesium alloy profiles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Metal Rolling (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种镁及镁合金用铝-锆-钛-碳(Al-Zr-Ti-C)晶粒细化剂,其以重量百分比计的化学成分为:0.01%〜10%的Zr、0.01%〜10%的Ti、0.01%〜0.3%的C,余量为Al。本发明还提供了该晶粒细化剂的制备方法。该晶粒细化剂是一种形核能力强从而具有优良的细化镁及镁合金晶粒能力的Al-Zr-Ti-C中间合金,这种晶粒细化剂可工业应用于镁及镁合金型材的铸造轧制,为镁在工业上的广泛应用提供了可能。

Description

镁及镁合金用铝-锆 -钛-碳晶粒细化剂及其制备方法 技术领域
本发明涉及一种通过细化晶粒来改善金属及合金性能的中间合金, 尤 其是一种用于镁及镁合金的晶粒细化剂及其制备方法。
背景技术
镁及镁合金的工业应用始于 20世纪 30年代, 由于镁及镁合金是目前 最轻的金属结构材料, 具有密度低、 比强度和比刚度高、 阻尼减震性好、 导热性好、 电磁屏蔽效果佳、 机加工性能优良、 零件尺寸稳定、 易回收等 优点, 使镁及镁合金特别是变形镁合金在交通工具、 工程结构材料和电子 领域等中的应用潜力非常巨大。 变形镁合金是指可用挤压、 轧制、 锻造等 塑性成型方法加工成形的镁合金。 然而, 由于受到材料制备、 加工技术、 抗腐蚀性能以及价格等因素制约, 镁合金尤其是变形镁合金的应用量远远 落后于钢铁和铝合金, 在金属材料领域里还没有任何一种材料像镁那样, 其发展潜力和实际应用现状之间存在如此大的差异。
镁与铁、 铜、 铝等常用的金属不同, 镁合金是密排六方晶体结构, 室 温下只有 3个独立的滑移系, 合金的塑性变形能力较差, 其晶粒大小对力 学性能影响十分显著。 镁合金结晶温度范围较宽, 热导率较低, 体收缩较 大, 晶粒粗化倾向严重, 凝固过程中易产生缩松、 热裂等缺陷; 细小的晶 粒有助于减少缩松、 减小第二相的大小和改善铸造缺陷; 镁合金晶粒细化 能缩短晶间相固溶所需的扩散距离, 提高热处理效率; 另外, 细小的晶粒 还有助于改善镁合金的耐腐蚀性能和加工性能。 应用晶粒细化剂对镁合金 熔体进行细化处理是提高镁合金综合性能和改善镁合金成形性能的重要手 段, 通过细化晶粒不仅可以提高镁合金材料的强度, 还可以大大改善其塑 性和韧性, 使镁合金材料的塑性加工大规模化、 低成本产业化成为可能。
对纯镁晶粒有明显细化效果的元素是 Zr, 这是 1937年发现的。 有研究 表明 Zr能有效抑制镁合金晶粒的生长, 从而细化晶粒。 Zr可以在纯 Mg、 Mg-Zn系和 Mg-RE系中使用; 但是 Zr在液态镁中的溶解度很小, 发生包 晶反应时镁液中仅能溶解 0.6wt%Zr, 而且 Zr与 Al、 Mn会形成稳定的化合 物而沉淀, 不能起到细化晶粒的效果, 因此, 在 Mg-AI系和 Mg-Mn系合金 中不能加入 Zr。 Mg-AI系合金是目前最流行的商用镁合金, Mg-AI系合金 铸态晶粒比较粗大, 有时甚至呈粗大的柱状晶和扇状晶, 这使得铸锭变形 加工困难、 易开裂、 成材率低、 力学性能低下, 且塑性变形时速率 ^艮低, 严重影响了工业化生产。 因此要实现规模化生产, 必须首先解决镁合金铸 态晶粒细化的问题。 Mg-AI系合金的晶粒细化方法主要有过热法、添加稀土 元素法和碳质孕育法等。 过热法虽有一定效果, 但熔体氧化更严重。 添加 稀土元素法, 其效果既不稳定也不理想。 而碳质孕育法原料来源广泛, 操 作温度较低, 已成为 Mg-AI系合金最主要的晶粒细化方法, 传统的碳质孕 育法采用添加 MgC03或 C2CI6等,其原理是在熔体中形成大量弥散的 AI4C3 质点, 而 AI4C3是镁合金较好的非均质晶核, 因而大量弥散的 AI4C3晶核使 镁合金晶粒细化。 但是这种细化剂加入时熔体易沸腾, 因此生产上也很少 采用。 总之, 与铝合金工业相比, 镁合金工业目前尚未发现通用的晶粒中 间合金, 各种晶粒细化方法的使用范围还取决于合金系或合金成分。 因此, 发明一种镁及镁合金凝固时可通用且能有效细化铸态晶粒的晶粒细化剂是 当前实现镁合金产业化的关键之一。
发明内容
为了克服上述现有技术不足, 本发明提供了一种用于镁及镁合金晶粒 细化的铝-锆-钛 -碳中间合金, 这种中间合金对镁及镁合金具有很强的形核 能力。 本发明还提供了这种中间合金的制备方法。
发明人在大量的镁合金晶粒细化试验研究中惊奇地发现 AI4C3、 ZrC都 具有形成晶核的能力, 且 ZrC是一种形核能力比 AI4C3强数倍的晶核, 但 AI4C3、 ZrC均不易获得。 发明人较容易地制得了 Al-Zr-Ti-C中间合金, 经 扫描电镜图及能谱图分析发现金相中存在大量的 mAI4C3'nZrC>pTiC聚合颗 粒团, Al-Zr-Ti-C中间合金具有较低的熔点, 在镁或镁合金中熔融后能形成 大量弥散的 AI4C3和 ZrC, 成为镁合金最好的非均质晶核。
本发明所采用的技术方案是: 一种镁及镁合金用铝-锆-钛 -碳晶粒细化 剂, 所述铝 -锆-钛-碳( Al-Zr-Ti-C ) 晶粒细化剂以重量百分比计的化学成分 为: 0.01 % ~ 10%的 Zr、 0.01 % ~ 10%的 Ti、 0.01 % ~ 0.3%的 C, 余量为 AL
优选的, 所述铝 -锆-钛-碳( Al-Zr-Ti-C ) 中间合金以重量百分比计的化 学成分为: 0.1 % ~ 10°/ 々Zr、 0.1 % ~ 10%的11、 0.01 % ~ 0.3%的 C, 余量 为 AL 更优选的化学成分为: 1 % ~ 5%的 Zr、 1 % ~ 5%的 Ti、 0.1 % ~ 0.3% 的 C, 余量为 AL 优选的, 所述铝 -锆-钛-碳 ( Al-Zr-Ti-C ) 晶粒细化剂中杂质含量(重量 百分比): Fe≤0.5%、 Si≤0.3%、 Cu≤0.2%、 Cr<0.2% , 其他任一种杂质含 量≤0.2%。
本发明的镁及镁合金用铝 -锆-钛-碳晶粒细化剂的制备方法, 包括如下 步骤:
a、 按各成分的重量比准备好各原料, 将工业纯铝熔化并升温至 1000°C ~ 1300°C , 再加入钛屑、 锆屑和石墨粉使之溶化; b、 保温并搅拌 15 ~ 120min后浇铸成型。
本发明的有益效果是: 发明了一种形核能力强从而具有优良的细化镁 及镁合金晶粒能力的 Al-Zr-Ti-C 中间合金, 合金中存在大量的 mAI4C3-nZrC-pTiC 聚合颗粒团 , 经分析其中 m:n:p 约为(0.6 ~ 0.75):(0.1 ~0.2):(0.1 ~0.2) , 其在镁或镁合金中熔融后能形成大量弥散的可 成为晶核的 AI4C3和 ZrC质点, 对镁或镁合金组织产生了 4艮好的晶粒细化 作用; 这种合金具有较好的变形加工性能, 可容易地轧制成通用的 Φ9 ~ 10mm 的线材而方便应用于工业生产; 作为晶粒细化剂可工业应用于镁及 镁合金型材的铸造轧制, 为镁在工业上的广泛应用提供了可能。
附图说明
图 1是 Al-Zr-Ti-C合金 3000倍下的 SEM图;
图 2是图 1 中 A所示区域的能谱谱线图;
图 3是纯镁的晶粒组织图;
图 4是纯 Mg加入 Al-Zr-Ti-C合金进行晶粒细化后的晶粒组织图。
具体实施方式
通过下面给出的本发明的具体实施例可以进一步清楚地了解本发明。 但它们不是对本发明的限定。
实施例 1
称取 948.5kg工业纯铝(Al )、 30kg锆(Zr )屑、 20kg钛(Ti )屑和 1.5kg石墨粉,将铝加入感应炉中熔化并升温至 1050°C±10°C ,再加入锆屑、 钛屑和石墨粉使之溶于铝液中, 保温并机械搅拌 100分钟后, 直接浇铸成 华夫(Waffle )锭, 即得铝 -锆-钛-碳( Al-Zr-Ti-C ) 中间合金。 参看图 1 , 其为 Al-Zr-Ti-C中间合金 3000倍下的 SEM图,图中灰色板块状是大颗粒, 大颗粒粒径介于 20 μ ΠΊ ~ 1 00 μ ηΐ 间, 小颗粒呈多边形薄片状, 小颗粒粒 径介于 1 ~ 10 μΓΠ之间。 参看图 2, 它是图 1 中的 Α所示区域打能语得到 谱线图, 测试所使用的标准样品分别为 Al: Al203、 Zr: Zr、 Ti: Ti、 C: CaC03, 各原子百分数: C为 51.56%、 Al为 37.45%、 Zr为 7.52%、 Ti 为 3.47% 。
实施例 2
称取 942.3kg工业纯铝( Al )、 45kg锆( Zr )屑、 10kg钛( Ti )屑和
2.7kg石墨粉,将铝加入感应炉中熔化并升温至 1200°C±10°C ,再加入锆屑、 钛屑和石墨粉使之溶于铝液中, 保温并机械搅拌 30分钟后, 直接浇铸成华 夫(Waffle)锭, 即得铝 -锆-钛-碳 ( Al-Zr-Ti-C ) 中间合金。
实施例 3
称取 978kg工业纯铝(Al)、 10kg锆(Zr)屑、 11kg钛( Ti )屑和 1kg 石墨粉, 将铝加入感应炉中熔化并升温至 1100°C±10°C, 再加入锆屑、 钛 屑和石墨粉使之溶于铝液中, 保温并机械搅拌 45分钟后, 直接浇铸成华夫 (Waffle)锭, 即得铝 -锆-钛-碳( Al-Zr-Ti-C ) 中间合金。
实施例 4
称取 972.6kg工业纯铝( Al )、 25kg锆( Zr )屑、 1.4kg钛( Ti )屑和
1kg石墨粉, 将铝加入感应炉中熔化并升温至 1300°C±10°C, 再加入锆屑、 钛屑和石墨粉使之溶于铝液中, 保温并机械搅拌 25分钟后, 直接浇铸成华 夫(Waffle)锭, 即得铝 -锆-钛-碳 ( Al-Zr-Ti-C ) 中间合金。
实施例 5
称取 817kg工业纯铝( Al )、 97kg锆( Zr )屑、 83kg钛( Ti )屑和 3kg 石墨粉, 将铝加入感应炉中熔化并升温至 1270°C±10°C, 再加入锆屑、 钛 屑和石墨粉使之溶于铝液中, 保温并机械搅拌 80分钟后, 直接浇铸成华夫 (Waffle)锭, 即得铝 -锆-钛-碳( Al-Zr-Ti-C ) 中间合金。
实施例 6
称取 997.5kg工业纯铝(Al)、 1kg锆(Zr)屑、 1.2kg钛(Ti)屑和 0.3kg石墨粉,将铝加入感应炉中熔化并升温至 1270°C±10°C ,再加入锆屑、 钛屑和石墨粉使之溶于铝液中, 保温并机械搅拌 120分钟后, 采用连铸连 轧工艺加工成直径为 9.5mm的成盘线材得到铝-锆 -钛碳( Al-Zr-Ti-C )中间 合金。
实施例 7 将纯镁在 SF6和 C02混合气体保护下于感应炉中熔融,升温至 710°C, 分别加入 1%的实施例 1 ~6制得的 Al-Zr-Ti-C中间合金进行晶粒细化, 保 温并机械搅拌 30分钟后, 直接浇铸成锭, 得到六组经晶粒细化的镁合金试 样。
试样的晶粒尺寸评定按照国标 GB/T 6394-2002进行判定,判定的区域 为样品从圓心向外 1/2至 3/4半径的圓环范围内。在此圓环范围内的四个象 限各取两个视场共 8个, 用截点法计算晶粒度。
参见图 3,为未经过晶粒细化的纯镁晶粒组织图。 未经过晶粒细化的纯 镁组织为: 宽度在 300μΓη~2000 μΓΤΊ之间的柱状晶, 呈散射状态。 参见 图 4,为经过晶粒细化的镁合金晶粒组织图。经过晶粒细化的六组镁合金组 织为: 等轴晶粒, 晶粒大小在 50μηι~200 μηΊ之间。
测试结果表明本发明的 Al-Zr-Ti-C 中间合金对纯镁具有 ^々晶粒 匕 縣。
Al-Zr-Ti-C合金是一种形核能力强从而具有优良的细化镁及镁合金晶 粒能力的中间合金, 这种合金具有较好的变形加工性能, 可容易地轧制成 通用的(D9~10mm的线材而方便应用于工业生产,作为晶粒细化剂可工业 应用于镁及镁合金型材的铸造轧制。

Claims

权利要求书
、 一种镁及镁合金用铝 -锆-钛-碳晶粒细化剂, 其特征在于: 所述铝-锆- 钛 -碳晶粒细化剂以重量百分比计的化学成分为: 0.01% ~ 10%的 Zr、 0.01%~10%的 0.01% ~ 0.3%的 C, 余量为 AL
、 根据权利要求 1所述的镁及镁合金用铝-锆 -钛-碳晶粒细化剂,其特征 在于: 所述铝-锆-钛 -碳晶粒细化剂以重量百分比计的化学成分为: 0.1%~10。/ 々Zr、 0.1%~10%的 0.01% ~ 0.3%的 C,余量为 AL 、 根据权利要求 2所述的镁及镁合金用铝-锆 -钛-碳晶粒细化剂,其特征 在于: 所述铝-锆-钛 -碳晶粒细化剂以重量百分比计的化学成分为: 1%~5%的 Zr、 1%~5%的 Ti、 0.1%~0.3%的 C, 余量为 AL 、 根据权利要求 1、 2或 3所述的镁及镁合金用铝-锆 -钛-碳晶粒细化剂, 其特征在于: 所述铝-锆-钛 -碳晶粒细化剂中杂质含量(重量百分比) 为: Fe≤0.5%、 Si≤0.3%、 Cu≤0.2%、 Cr<0.2%, 其他单个杂质元素 <0.2% 。
、 一种如权利要求 1至 4任一项所述的镁及镁合金用铝 -锆-钛-碳晶粒细 化剂的制备方法, 包括如下步骤:
a、 将工业纯铝熔化并升温至 1000°C ~ 1300°C, 再加入钛屑、锆屑和石 墨粉使之溶化;
b、 保温并搅拌 15~120min后浇铸成型。
PCT/CN2011/077428 2011-06-10 2011-07-21 镁及镁合金用铝-锆-钛-碳晶粒细化剂及其制备方法 WO2012065455A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/254,533 US20120039746A1 (en) 2011-06-10 2011-07-21 Aluminum-zirconium-titanium-carbon grain refiner for magnesium and magnesium alloys and method for producing the same
ES11811508.8T ES2535634T3 (es) 2011-06-10 2011-07-21 Afinador de granos cristalinos de aluminio-circonio-titanio-carbono para el magnesio y las aleaciones de magnesio y procedimiento de preparación del mismo
EP11811508.8A EP2487273B1 (en) 2011-06-10 2011-07-21 Aluminum-zirconium-titanium-carbon crystal grain refiner for magnesium and magnesium alloys and preparation method thereof
US14/521,569 US9957588B2 (en) 2011-06-10 2014-10-23 Aluminum-zirconium-titanium-carbon grain refiner and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011101558327A CN102225464B (zh) 2011-06-10 2011-06-10 镁及镁合金用铝-锆-钛-碳晶粒细化剂及其制备方法
CN201110155832.7 2011-06-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/254,533 A-371-Of-International US20120039746A1 (en) 2011-06-10 2011-07-21 Aluminum-zirconium-titanium-carbon grain refiner for magnesium and magnesium alloys and method for producing the same
US14/521,569 Division US9957588B2 (en) 2011-06-10 2014-10-23 Aluminum-zirconium-titanium-carbon grain refiner and method for producing the same

Publications (1)

Publication Number Publication Date
WO2012065455A1 true WO2012065455A1 (zh) 2012-05-24

Family

ID=44806481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077428 WO2012065455A1 (zh) 2011-06-10 2011-07-21 镁及镁合金用铝-锆-钛-碳晶粒细化剂及其制备方法

Country Status (5)

Country Link
US (2) US20120039746A1 (zh)
EP (1) EP2487273B1 (zh)
CN (1) CN102225464B (zh)
ES (1) ES2535634T3 (zh)
WO (1) WO2012065455A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102886511B (zh) * 2012-10-25 2016-10-05 江西理工大学 一种制备Al-Ti-C晶粒细化剂的方法
CN105002389B (zh) * 2015-07-22 2017-05-24 内蒙古工业大学 Al‑TiO2‑C晶粒细化剂及其制备方法及工业纯铝细化方法
CN113512675B (zh) * 2021-06-04 2022-06-03 上海航天精密机械研究所 一种Ti-Zr-RE-Mg稀土镁合金晶粒细化剂及其制备方法
CN113444909B (zh) * 2021-06-08 2022-03-04 上海航天精密机械研究所 一种用于大规格半连铸镁合金锭的晶粒细化方法
CN113444910B (zh) * 2021-06-08 2022-05-24 上海航天精密机械研究所 一种镁合金晶粒细化剂及制备方法
CN115652155B (zh) * 2022-10-31 2024-05-14 上海航天精密机械研究所 一种稀土镁合金用晶粒细化剂、制备方法及其使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1290760A (zh) * 2000-10-20 2001-04-11 山东大学 一种铝-钛-碳中间合金的制备方法
EP1205567A2 (en) * 2000-11-10 2002-05-15 Alcoa Inc. Production of ultra-fine grain structure in as-cast aluminium alloys
CN1847423A (zh) * 2005-10-21 2006-10-18 兰州理工大学 用于铝及铝合金的Al-Ti-C系复合晶粒细化剂的制备方法
WO2006120322A1 (fr) * 2005-05-06 2006-11-16 Bernard Closset Agent d’affinage de grain comportant du nitrure de titane et procede de fabrication d’un tel agent

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4612073A (en) * 1984-08-02 1986-09-16 Cabot Corporation Aluminum grain refiner containing duplex crystals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1290760A (zh) * 2000-10-20 2001-04-11 山东大学 一种铝-钛-碳中间合金的制备方法
EP1205567A2 (en) * 2000-11-10 2002-05-15 Alcoa Inc. Production of ultra-fine grain structure in as-cast aluminium alloys
WO2006120322A1 (fr) * 2005-05-06 2006-11-16 Bernard Closset Agent d’affinage de grain comportant du nitrure de titane et procede de fabrication d’un tel agent
CN1847423A (zh) * 2005-10-21 2006-10-18 兰州理工大学 用于铝及铝合金的Al-Ti-C系复合晶粒细化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI JIANGUO ET AL.: "Recent Development in Research of AITiC Master Alloy.", LIGHT ALLOY FABRICATION TECHNOLOGY., vol. 31, no. 3, 2003, pages 7 - 11 *

Also Published As

Publication number Publication date
EP2487273A4 (en) 2013-05-15
ES2535634T3 (es) 2015-05-13
US20120039746A1 (en) 2012-02-16
CN102225464B (zh) 2013-07-10
US9957588B2 (en) 2018-05-01
CN102225464A (zh) 2011-10-26
US20150041095A1 (en) 2015-02-12
EP2487273B1 (en) 2015-04-01
EP2487273A1 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
EP2479304B1 (en) Preparation method for aluminum-zirconium-titanium-carbon intermediate alloy
EP2455503B1 (en) Grain refiner for magnesium and magnesium alloy and preparation method thereof
US8752613B2 (en) Use of aluminum—zirconium—titanium—carbon intermediate alloy in wrought processing of magnesium and magnesium alloys
WO2012065455A1 (zh) 镁及镁合金用铝-锆-钛-碳晶粒细化剂及其制备方法
CN106435314B (zh) 一种锆/氧化镁晶粒细化剂及其制备方法和应用
WO2014026446A1 (zh) 一种用于镁及其合金晶粒细化的合金及其制备方法
EP2465955B1 (en) Application of aluminium-zirconium-carbon master alloy in deforming process of magnesium or magnesium alloy
EP2476764B1 (en) Preparation method of al-zr-c master alloy
CN108179338B (zh) 高强度镁合金及其压铸方法
CN102418008B (zh) 一种用HfC去除夹杂的高强度铝合金及其制备方法
US8672020B2 (en) Method for producing aluminum-zirconium-carbon intermediate alloy
CN106916981A (zh) 一种镁合金制备方法
CN118639067A (zh) 一种稀土镁合金板材及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13254533

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011811508

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11811508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE