WO2012065315A1 - 局部加强散热的侧入式背光模块 - Google Patents

局部加强散热的侧入式背光模块 Download PDF

Info

Publication number
WO2012065315A1
WO2012065315A1 PCT/CN2010/079166 CN2010079166W WO2012065315A1 WO 2012065315 A1 WO2012065315 A1 WO 2012065315A1 CN 2010079166 W CN2010079166 W CN 2010079166W WO 2012065315 A1 WO2012065315 A1 WO 2012065315A1
Authority
WO
WIPO (PCT)
Prior art keywords
backlight module
heat dissipation
light
enhanced
heat
Prior art date
Application number
PCT/CN2010/079166
Other languages
English (en)
French (fr)
Inventor
郭仪正
方林冬
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/000,912 priority Critical patent/US20120127749A1/en
Publication of WO2012065315A1 publication Critical patent/WO2012065315A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0085Means for removing heat created by the light source from the package
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • G02B6/009Positioning aspects of the light source in the package
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133628Illuminating devices with cooling means

Definitions

  • the invention relates to a side-inward backlight module with localized heat dissipation, in particular to a side-in backlight module having a partially enhanced heat dissipation region including a reinforced thermal conductive coating and a three-dimensional heat dissipation configuration.
  • Liquid crystal display Display LCD
  • LCD Liquid crystal display Display
  • FPD Fluorescence Deformation
  • the liquid crystal material of the liquid crystal display cannot be self-illuminated, and the light source must be externally provided. Therefore, a backlight module is additionally provided in the liquid crystal display to provide a desired light source.
  • the backlight module can be divided into a side-in type backlight module and a direct-lit backlight module. It is known that the backlight module mainly uses a cold cathode fluorescent lamp (CCFL), a hot cathode fluorescent lamp (HCFL) or a light emitting diode (LED) as a light source.
  • CCFL cold cathode fluorescent lamp
  • HCFL hot cathode fluorescent lamp
  • LED light emitting diode
  • FIG. 1 is a partial side cross-sectional view of a conventional side-lit backlight module.
  • the one-side backlight module 90 includes a back plate 91. At least one side wall portion 911 is disposed on at least one side edge of the back plate 91, and a light guide plate 92 is disposed at the center of the back plate 91.
  • An optical film set 93 is disposed on the light guide plate 92, and another plastic frame 94 is wrapped around the outer edge of the back plate 91, and the optical film set 93 and the light guide plate are fixed from top to bottom. 92 to form the side-entry backlight module 90.
  • a liquid crystal panel 80 (shown as an imaginary line) is further disposed on the side-lit backlight module 90, and the liquid crystal panel 80 and the cover are covered and fixed by a casing 70 (shown as an imaginary line).
  • the side-lit backlight module 90 constitutes a liquid crystal display (not shown).
  • a light source group 95 is disposed on an inner surface of the side wall portion 911 of the back plate 91 of the side-lit backlight module 90, and the light source group 95 has at least one light-emitting device 951.
  • the light-emitting device 951 may be a light-emitting diode (LED) light-emitting device, and its light source direction is directed to the light guide plate 92.
  • the light-emitting device 951 is generally fixed to the side wall portion 911 by screwing or thermal tape bonding. Since heat energy is generated during the operation of the light source group 95, the heat energy is firstly directed downwardly and inwardly from the side wall portion 911 to the center of the back plate 91 in the direction of the arrow in the figure. For heat dissipation.
  • FIG. 2 is a partial side cross-sectional view of another conventional side-lit backlight module.
  • the side-entry backlight module 90 of FIG. 2 is similar to the side-entry backlight module 90 of FIG. 1 except that the side-entry backlight module 90 of FIG. 2 is between the light source group 95 and the backplane 91.
  • a heat conducting block 96 is disposed, and the heat conducting block 96 is approximately L-shaped and is respectively attached to the back plate 91 and the sidewall portion 911 thereof, and the heat conducting block 96 is generally selected from aluminum (Al).
  • Al aluminum
  • the contact area of the aluminum heat conductive block 96 with the back plate 91 is further increased. Therefore, the thermal energy generated by the light source group 95 can be conducted faster from the side wall portion 911 to the center direction of the back plate 91 for heat dissipation.
  • the backplane 91 is close to the area of the light source group 95, that is, The area of the backing plate 91 adjacent to the side wall portion 911 (i.e., the area of the backing plate 91 corresponding to the arrow) exhibits a temperature distribution unevenness due to a certain length: in the region of the backing plate 91, The temperature near the central portion is higher, and the temperature near the two sides is lower, that is, the phenomenon of heat accumulation occurs near the central portion in the region of the back plate 91, and also causes the light source group adjacent to the central portion.
  • the heat-dissipating effect of the light-emitting device 951 of 95 is poor, thus causing the light-emitting device 951 (LED) to be affected by high temperature to cause unevenness in chromaticity and luminance, thereby causing uneven brightness and chromaticity of the entire liquid crystal display. , affecting the client's visual effect on the product.
  • the main object of the present invention is to provide a side-inward type backlight module with localized heat dissipation, which is provided with a localized heat dissipation area at a position adjacent to the light incident side edge of the back plate, and the surface of the partially enhanced heat dissipation area has a reinforced thermal conductive coating. Since the thermal diffusion coefficient of the thermally conductive coating is increased, the temperature can be uniformly distributed and reduced, so that the chromaticity and luminance of the illuminating device can be effectively avoided due to the high temperature, thereby improving the uniformity of chromaticity and luminance of the overall liquid crystal display module. Sex and improve light efficiency.
  • a secondary object of the present invention is to provide a side-enhanced backlight module with locally enhanced heat dissipation, which has a three-dimensional heat dissipation configuration by partially reinforcing the heat dissipation area, thereby increasing the heat exchange area and allowing the temperature to pass through the natural convection quickly. Spread into the air.
  • the present invention provides a side-inward-type backlight module that partially enhances heat dissipation.
  • the edge-lit backlight module includes a back plate and at least one light source group, and the back plate is provided with at least one light-incident side edge.
  • the at least one light source group is adjacent to the at least one light-incident side edge
  • the back plate is adjacent to the at least one light-incident side edge to be provided with a partially-enhanced heat-dissipating area, and the surface of the partially-enhanced heat-dissipating area has a surface Strengthen the thermal conductive coating.
  • the material of the reinforced thermally conductive coating has a thermal diffusivity greater than a thermal diffusivity of the substrate of the backsheet.
  • the reinforced thermally conductive coating is a copper plating; the substrate of the backing is aluminum or an alloy thereof.
  • the surface of the locally reinforced heat dissipation region has a three-dimensional heat dissipation configuration.
  • the three-dimensional heat dissipation configuration is wavy.
  • the backing plate is provided with the partially reinforced heat dissipation zone at least at a central position adjacent to the light incident side edge.
  • the length of the locally reinforced heat dissipation zone is equal to or greater than one third of the length of the at least one light entrance side wall portion.
  • the backplane has at least one light-incident sidewall portion extending perpendicularly to the at least one light-incident side edge, and the partial-enhanced heat-dissipating region extends to the at least one light-incident sidewall. Ministry.
  • the present invention provides a side-inward backlight module that partially enhances heat dissipation.
  • the edge-lit backlight module includes a backboard and at least one light source group, and the back panel is provided with at least one light-incident side.
  • the at least one light source group is adjacent to the at least one light-incident side edge
  • the back plate is adjacent to the at least one light-incident side edge to be provided with a partially-enhanced heat-dissipating area, and the surface of the partially-enhanced heat-dissipating area It has a three-dimensional heat dissipation configuration.
  • the partially enhanced heat-dissipating edge-lit backlight module of the present invention is provided with a partially-enhanced heat-dissipating area at a position adjacent to the light-incident side edge of the backing plate, and the surface thereof has a heat-conductive plating layer and/or a three-dimensional heat-dissipating configuration. Due to the large thermal diffusivity of the thermally conductive coating, the temperature can be uniformly distributed and diffused outward, and the three-dimensional heat dissipation configuration can increase the heat exchange area with the surrounding air, so that the temperature can pass the natural convection faster. Spread into the air. Therefore, the present invention can effectively avoid the chromaticity and luminance of the light-emitting device due to the high temperature, thereby improving the uniformity of the chromaticity and luminance of the overall liquid crystal display module and improving the light-emitting efficiency.
  • Figure 1 A partial side cross-sectional view of a prior art side-lit backlight module.
  • FIG. 2 is a partial side cross-sectional view of another prior art side-lit backlight module.
  • FIG. 3 is an exploded perspective view of a partially enhanced heat sinking edge-lit backlight module according to a first embodiment of the present invention.
  • FIG. 4 is a perspective view of a back plate of a partially-enhanced heat-dissipating side-entry backlight module according to a first embodiment of the present invention.
  • Fig. 5 is a partially enlarged plan view showing the partially reinforced heat dissipating region of the backing plate of Fig. 4 in the first embodiment of the present invention.
  • FIG. 6 is a perspective view of a back plate of a partially-enhanced heat-dissipating side-entry backlight module according to a second embodiment of the present invention.
  • FIG. 3 is a perspective exploded view of a partially enhanced heat sinking edge-lit backlight module according to a first embodiment of the present invention.
  • the side-lit backlight module 10 of the present invention mainly includes a back plate 11 , and a light guide plate 12 is disposed at the center of the back plate 11 , and a reflective sheet (not labeled) may be disposed between the back plate 11 and the light guide plate 12 .
  • An optical film group 13 is disposed on the light guide plate 12, and a plastic frame 14 is disposed. The optical film group 13 and the light guide plate 12 are fixed in the back plate 11 from top to bottom.
  • a liquid crystal panel module is further stacked on the side-lit backlight module 10 to form a liquid crystal display (not shown).
  • the side-entry backlight module 10 of the present invention mainly includes at least one light source group 15. At least one light-incident side wall portion 111 is vertically disposed on at least one light-incident side edge 110 of the back plate 11 (the two corresponding light-incident side edges 110 and the light-incident side wall portion 111 are shown).
  • the light source group 15 is disposed on an inner surface of the light incident wall portion 111 adjacent to the light incident side edge 110.
  • the light source group 15 has at least one light emitting device 151, and the light emitting device 151 may be LED light emitting.
  • the device has its light source direction directed to the light guide plate 12.
  • the light-emitting device 151 is generally fixed to at least one heat-conducting block 16 having an L-shaped cross section by screwing or thermal tape bonding, and then fixed to the back plate 11.
  • the light-emitting device 151 may alternatively be directly fixed to the side wall portion 111. Therefore, the heat energy generated during the operation of the light source group 15 is conducted to the back plate 11 through the side wall portion 111 of the back plate 11 or the heat conducting block 16 for heat dissipation.
  • FIG. 4 is a perspective view of a backplane of a partially-enhanced heat-dissipating side-entry backlight module according to a first embodiment of the present invention.
  • the back plate 11 of the present invention is adjacent to the at least one
  • a centrally-enhanced heat-dissipating region 112 is disposed at a central portion of the light-incident side edge 110.
  • the surface of the partially-enhanced heat-dissipating region 112 has a reinforced thermal conductive coating 112a; and the surface of the partially-enhanced heat-dissipating region 112 has a three-dimensional heat dissipating configuration 112b. Details are as follows:
  • the heat dissipation process of the side-entry backlight module 10 actually includes two modes of thermal energy propagation:
  • Heat conduction thermal energy emitted from the light-emitting device 151 (LED) is conducted to the back of the back plate 11 through a circuit board (not labeled) of the light source group 15 and/or the heat-conducting block 16 The surface is then conducted to the outer surface of the backing plate 11.
  • LED light-emitting device
  • Thermal convection Thermal energy is generally radiated from the outer surface of the backing plate 11 to the outside air in a natural convection manner.
  • the backing plate 11 is generally aluminum, and the surface-enhanced thermally conductive plating layer 112a of the partially-enhanced heat-dissipating region 112 of the aluminum backing plate 11 is preferably copper-plated (using vacuum sputtering or other methods) because of the copper layer.
  • the thickness (35 ⁇ m) is much smaller than the thickness of the back sheet 11 (usually 0.8 mm or 1 mm), so that the thermal resistance generated by the heat-conductive plating layer 112a (copper plating) is negligible.
  • the diffusion coefficient of copper is 117x10-6m2/s, it is larger than the diffusion coefficient of aluminum by 70x10-6m2/s.
  • the temperature in the partially strengthened heat-dissipation zone 112 of the copper plating can be reached more quickly. Homogenize. The greater the thermal diffusivity, the faster the heat transfer rate inside the material, ie the faster the temperature rises. It can also be understood that the temperature difference in the same direction and the same distance of the partially reinforced heat dissipation zone 112 of copper plating is smaller than that of the conventional backplane.
  • FIG. 5 discloses a partial enlarged view of a partially reinforced heat dissipation area of the backing plate 11 of FIG. 4. Because the factors affecting the surface coefficient h are temperature differences, surface areas in which solids are in contact with fluids, and the like.
  • the copper plating layer (reinforcing heat conductive plating layer 112a) of the localized heat dissipation region 112 causes thermal energy to spread to the surface more quickly and uniformly, the localized heat dissipation region 112 is in an initial state. The temperature is higher than the temperature in the same position area of the conventional back sheet, so the surface coefficient h is larger. As shown in FIG.
  • the partially reinforced heat dissipation region 112 of the back sheet 11 of the first embodiment of the present invention has a three-dimensional heat dissipation configuration 112b in addition to the surface of the reinforced heat-conductive plating layer 112a.
  • the three-dimensional heat dissipation configuration 112b is preferably wavy, and the undulating design can increase the heat exchange area of the localized heat dissipation region 112 so that the temperature can be diffused into the air by natural convection faster. Since the surface area is greatly increased, the surface coefficient h also increases, so the evaluation coefficient Nu becomes large. Convection will be enhanced according to the definition of Nu.
  • the temperature of the back plate 11 is lowered, and the evaluation coefficients Nu and Gr due to the temperature difference will become smaller, and the natural convection will be weak until the backlight module 10 is When the surrounding air reaches a steady state (that is, the heat energy generated by the LED is equal to the heat energy taken by the convection), the temperature of the back plate 11 is not only uniformly distributed, but also the average temperature is lower than that of the conventional back plate. Conducive to LED light uniformity, uniformity of color, and improve light extraction efficiency.
  • the localized heat dissipation region 112 has a thermal diffusion coefficient larger than that of the copper plating layer (the thermally conductive plating layer 112a), so that the temperature can be uniformly distributed in the copper plating region. Since the copper plating layer can enhance natural convection, the temperature of the partially reinforced heat dissipation region 112 and the vicinity of the back plate 11 will be lowered. Thus, the junction temperature of the light-emitting device 151 (LED) at different positions on the light source group 15 will be lowered and relatively uniform, so that the luminance of the light-emitting device 151 at different positions on the light source group 15 will become More uniform, the chromaticity will become uniform, so the brightness and chromaticity uniformity of the entire liquid crystal display will increase. And because the junction temperature of the light-emitting device 151 is lowered, the light-emitting efficiency will be improved.
  • the present invention does not limit the material of the reinforced thermal conductive coating 112a.
  • the material of the reinforced thermal conductive coating 112a may be other plating layers having a thermal diffusion coefficient greater than the thermal diffusion coefficient of the backing plate 11. .
  • the present invention does not limit the shape of the three-dimensional heat dissipation configuration 112b.
  • the three-dimensional heat dissipation configuration 112b may be in the form of a wave, or may have other shapes such as fins that can increase the surface area and assist heat dissipation. shape.
  • the present invention discloses that the surface of the partially reinforced heat dissipation region 112 has both the reinforced thermally conductive plating layer 112a and the three-dimensional heat dissipation configuration 112b, the present invention is not limited thereto.
  • the user can select one of the technical features to implement according to actual needs, and can achieve a certain degree of heat dissipation effect.
  • the surface of the localized heat dissipation region 112 has the reinforced thermal conductive coating 112a but does not have the three-dimensional heat dissipation configuration 112b; or the surface of the localized heat dissipation region 112 has the three-dimensional heat dissipation configuration 112b but does not have The heat conductive plating layer 112a is reinforced.
  • the present invention does not limit the proportional relationship occupied by the localized heat dissipation area 121 in the backboard 11, and the user can set according to actual needs.
  • the length of the locally enhanced heat sink region 112 can be designed to be equal to or greater than one third of the length of the at least one light incident side edge 110.
  • the width of the localized heat dissipation region 112 (the other direction with respect to the length) is approximately equal to or greater than a quarter of the width of the backing plate 11.
  • the back plate 11 vertically extends (integrally formed or non-integrally formed) to the at least one light-incident side edge 110, and the at least one light-incident sidewall portion 111 may also extend. To the at least one light incident side wall portion 111 (not shown).
  • FIG. 6 is a perspective view of a backplane of a partially enhanced heat sinking side-lit backlight module according to a second embodiment of the present invention.
  • the partial reinforced heat dissipation region 112 of the back sheet 11 of the second embodiment of the present invention is similar to the partial reinforced heat dissipation region 112 of the first embodiment of the present invention, and thus the same component symbols and names are used, but the difference is:
  • the length of the localized heat dissipation region 112 is equal to the length of the at least one light-incident side edge 110, that is, the localized heat dissipation region 112 occupies the entire side of the back plate 11 adjacent to the at least one light source group 15.
  • the temperature distribution of the back plate 11 is not uniform, but the local heat is dissipated.
  • the reinforcing conductive plating layer 112a of the region 112 can enhance the heat convection, so that the overall temperature of the backing plate 11 can be lowered, which is advantageous for reducing the junction temperature of the light-emitting device 151 and enhancing the light-emitting efficiency of the light-emitting device 151.
  • the area of the back plate adjacent to the light-incident side edge exhibits a higher temperature at the central portion and a lower temperature distribution at a lower temperature on both sides.
  • the phenomenon causes the chromaticity and luminance of the illuminating device to be uneven, thereby causing uneven brightness and chromaticity of the overall liquid crystal display.
  • the present invention is provided with the localized heat dissipation area 112 at a central position of the back plate 11 adjacent to the at least one light-incident side edge 110.
  • the surface of the partial reinforcement heat dissipation area 112 has a heat-conductive plating layer 112a and a three-dimensional heat dissipation.
  • the partially-enhanced heat-dissipating edge-lit backlight module of the present invention can ensure uniformity of chromaticity and luminance of the light-emitting device, thereby improving uniformity of chromaticity and luminance of the entire liquid crystal display module and improving light-emitting efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Description

局部加强散热的侧入式背光模块 技术领域
本发明涉及一种局部加强散热的侧入式背光模块,特别是涉及一种具有包含加强导热镀层及立体散热构形的局部加强散热区的侧入式背光模块
背景技术
液晶显示器(liquid crystal display,LCD)是利用液晶材料的特性来显示图像的一种平板显示装置(flat panel display,FPD),其相较于其他显示装置而言更具轻薄、低驱动电压及低功耗等优点,已经成为整个消费市场上的主流产品。然而,液晶显示器的液晶材料无法自主发光,必须借助外在提供光源,因此液晶显示器中又另外设有背光模块以提供所需的光源。
一般而言,背光模块可分为侧入式背光模块和直下式背光模块两种形式。已知背光模块主要是以冷阴极荧光灯管(CCFL)、热阴极荧光灯管(HCFL)或发光二极管(LED)作为光源。
请参照图1所示,图1是一种现有侧入式背光模块的局部侧剖视图。一侧入式背光模块90包含一背板91,所述背板91的至少一侧缘上设有至少一侧壁部911,且所述背板91中央承载一导光板92。所述导光板92上设有一光学膜片组93,另有一胶框94包覆于所述背板91的外缘,且由上而下的固定所述光学膜片组93及所述导光板92以形成所述侧入式背光模块90。另外,于所述侧入式背光模块90上再迭设一液晶面板80(如假想线所示),并且以一外壳70(如假想线所示)包覆及固定所述液晶面板80及所述侧入式背光模块90,即组成一液晶显示器(未标示)。
如图1所示,在所述侧入式背光模块90的所述背板91的所述侧壁部911内表面上设有一光源组95,所述光源组95具有至少一发光装置951,所述发光装置951可以是发光二极管(LED)发光装置,且其光源方向指向所述导光板92。所述发光装置951一般通过螺丝锁附或导热胶带粘贴等方式来固定于所述侧壁部911上。由于所述光源组95运作的过程中会产生热能,这些热能会沿着图示中箭头的方向,由所述侧壁部911先向下再向内传导至所述背板91的中心位置,以进行散热。
请再参照图2所示,图2是另一种现有侧入式背光模块的局部侧剖视图。图2的侧入式背光模块90相似于图1的侧入式背光模块90,不同之处在于:图2的侧入式背光模块90在所述光源组95与所述背板91之间另设有一导热块96,且所述导热块96约呈L型的分别贴设于所述背板91及其侧壁部911上,而所述导热块96一般是选自铝(Al)质的材料,以挤出成型的工艺来制作。由于铝质的导热块96具有更好的导热特性,并且所述铝质的导热块96与所述背板91的接触面积更为加大。因此,所述光源组95所产生的热能能够更快的由所述侧壁部911传导至所述背板91的中心方向,以进行散热。
然而,上述的两种现有侧入式背光模块90仍存在一问题,就是在此一通过所述背板91的散热过程中,所述背板91靠近所述光源组95的区域,也就是邻接于所述侧壁部911的背板91区域(即对应于箭头所示的背板91区域)因为具有一定的长度而呈现出一种温度分布不均匀现象:在此背板91区域中相对靠近中央部位的温度较高,而相对靠近两边部位的温度则较低,也就是在此背板91区域中靠近中央部位会产生热聚集的现象,同时也造成邻近此中央部位的所述光源组95的所述发光装置951的散热效果较差,因此导致所述发光装置951(LED)受到高温影响而造成其色度与辉度不均匀,从而造成整体液晶显示器的辉度与色度不均匀,影响客户端对产品的视觉效果。
因此,有必要提供一种局部加强散热的侧入式背光模块,以解决现有技术所存在的问题。
技术问题
本发明的主要目的是提供一种局部加强散热的侧入式背光模块,通过在背板邻接于入光侧缘的位置设有局部加强散热区,局部加强散热区的表面具有加强导热镀层。由于加强导热镀层的热扩散系数较大,能使温度迅速地分布均匀及降低,因此能够有效避免因高温影响发光装置的色度与辉度,从而改善整体液晶显示模块色度与辉度的均匀性并提高出光效率。
本发明的次要目的是提供一种局部加强散热的侧入式背光模块,通过局部加强散热区具有立体散热构形,用以增大热交换面积,使温度能够较快地通过自然对流的方式扩散到空气中。
技术解决方案
为达上述目的,本发明提供一种局部加强散热的侧入式背光模块,所述侧入式背光模块包含一背板及至少一光源组,所述背板设有至少一入光侧缘,所述至少一光源组邻接于所述至少一入光侧缘,所述背板邻接于所述至少一入光侧缘的位置设有一局部加强散热区,所述局部加强散热区的表面具有一加强导热镀层。
在本发明的一实施例中,所述加强导热镀层的材料的热扩散系数大于所述背板的基材的热扩散系数。
在本发明的一实施例中,所述加强导热镀层是一铜镀层;所述背板的基材是铝或其合金。
在本发明的一实施例中,所述局部加强散热区的表面具有一立体散热构形。
在本发明的一实施例中,所述立体散热构形呈波浪状。
在本发明的一实施例中,所述背板至少在邻接于所述入光侧缘的一中央位置设有所述局部加强散热区。所述局部加强散热区的长度等于或大于所述至少一入光侧缘壁部长度的三分之一。
在本发明的一实施例中,所述背板在所述至少一入光侧缘垂直延伸有至少一入光侧壁部,所述局部加强散热区延伸形成到所述至少一入光侧壁部上。
为达上述另一目的,本发明提供一种局部加强散热的侧入式背光模块,所述侧入式背光模块包含一背板及至少一光源组,所述背板设有至少一入光侧缘,所述至少一光源组邻接于所述至少一入光侧缘,所述背板邻接于所述至少一入光侧缘的位置设有一局部加强散热区,所述局部加强散热区的表面具有一立体散热构形。
有益效果
本发明的局部加强散热的侧入式背光模块,通过在背板邻接于入光侧缘的位置设有局部加强散热区,其表面具有加强导热镀层及/或立体散热构形。由于加强导热镀层的热扩散系数较大,能使温度迅速地分布均匀及向外扩散,并且立体散热构形可以增大与周边空气的热交换面积,使温度能够较快地通过自然对流的方式扩散到空气中。因此,本发明能够有效避免因高温影响发光装置的色度与辉度,从而改善整体液晶显示模块色度与辉度的均匀性并提高出光效率。
附图说明
图1:一种现有侧入式背光模块的局部侧剖视图。
图2:另一种现有侧入式背光模块的局部侧剖视图。
图3:本发明第一实施例的一种局部加强散热的侧入式背光模块的立体分解图。
图4:本发明第一实施例的一种局部加强散热的侧入式背光模块的背板立体图。
图5:本发明第一实施例图4中背板局部加强散热区的局部放大视图。
图6:本发明第二实施例的一种局部加强散热的侧入式背光模块的背板立体图。
本发明的最佳实施方式
为让本发明上述目的、特征及优点更明显易懂,下文特举本发明较佳实施例,并配合附图,作详细说明如下:
请参照图3所示,图3揭示本发明第一实施例的一种局部加强散热的侧入式背光模块的立体分解图。本发明的侧入式背光模块10主要包含一背板11,所述背板11中央承载一导光板12,所述背板11与所述导光板12之间可包含一反射片(未标示),所述导光板12上设有一光学膜片组13,另有一胶框14,由上而下的固定所述光学膜片组13及所述导光板12于所述背板11内。另外,于所述侧入式背光模块10上再迭设一液晶面板模块,即组成一液晶显示器(未绘示)。
如图3所示,本发明的侧入式背光模块10主要还包含至少一光源组15。在所述背板11的至少一入光侧缘110上垂直设有至少一入光侧壁部111(图中显示有两个对应设置的入光侧缘110及入光侧壁部111),邻接于所述入光侧缘110的所述入光壁部111的内表面上设有所述光源组15,所述光源组15具有至少一发光装置151,所述发光装置151可以是LED发光装置,且其光源方向指向所述导光板12。所述发光装置151一般通过螺丝锁附或导热胶带粘贴等方式来固定于至少一剖面呈L型的导热块16上,再固定于所述背板11上。或者所述发光装置151也可选择直接固定于所述侧壁部111上。因此,所述光源组15运作的过程中所产生的热能,会通过所述背板11的所述侧壁部111或所述导热块16传导至所述背板11,以进行散热。
请参照图4所示,图4揭示本发明第一实施例的一种局部加强散热的侧入式背光模块的背板立体图。为了消除在先前技术中提及的热集中现象,也就是防止所述背板11靠近所述光源组15的区域呈现温度分布不均匀现象,本发明的所述背板11邻接于所述至少一入光侧缘110的中央位置设有一局部加强散热区112,所述局部加强散热区112的表面具有一加强导热镀层112a;以及所述局部加强散热区112的表面具有一立体散热构形112b。详述如下:
首先说明,在所述侧入式背光模块10的散热过程实际包括两种热能传播方式:
(一)热传导:从所述发光装置151(LED)散发出来的热能,通过所述光源组15的电路板(未标示)及/或所述导热块16传导至所述背板11的背部内表面上,然后传导到所述背板11的外表面。
(二)热对流:一般以自然对流的方式将热能从所述背板11的外表面散发到外部空气中。
接着,请同时参照下列表格之各项数据,再分别描述点亮所述侧入式背光模块10(所述发光装置151)初始状态及稳定状态:
铜与铝的比热容、热传导系数、热扩散系数和密度对比如下表:
材料 热传导系数
K(W/mk) 热扩散系数
α(10-6m2/s) 比热容
Cp[J/(kg.°C)] 密度
ρ(kg/m3)
铜 401 117 0.39x103 6.4
铝 237 70 0.88x103 2.7
热对流过程中,评价热对流快慢的三个参数如下:
评价系数 符号定义 代表意义
Nu = h L/k L:流体的尺寸长度
H:对流系数;表面系数
K:热传导系数
对流与传导的比率
Pr=μCp/k μ:动力黏度
Cp:比热容
K:热传导系数 运动粘度与热扩散率比值
Pr=(μ/ρ)/α=(μ/ρ)/(k/(ρCp))=μCp/k
Gr=gρ2βL3Δt/μ2
g:重力加速度
ρ:流体密度
β:热膨胀系数
L:流体的尺寸长度
Δt:温度变化
μ:动力黏度 流体浮力与黏滞力之比
(一)点亮背光模块10的初始状态:
所述背板11一般是铝质的,所述铝质的背板11的所述局部加强散热区112的表面加强导热镀层112a优选是镀铜(采用真空溅镀或其他方法),因为铜层的厚度(35μm)相对于所述背板11的厚度(通常采用0.8mm或者1mm)小得多,所以加强导热镀层112a(铜镀层)产生的热阻可以忽略不计。但因为铜的扩散系数为117x10-6m2/s,比铝的扩散系数70x10-6m2/s大。因此,依据公式α=k/(ρ*C),若将同样的时间内传统背板与镀铜背板的散热相比,温度在镀铜的所述局部加强散热区112可以更快地达到均匀化。热扩散系数越大,表示热在材料内部的传递速率越快,也就是温度上升越快。也可以这么理解,在镀铜的所述局部加强散热区112的相同方向、相同距离的温差较传统背板来的小。
另外,请再同时参照图4及图5所示,图5揭示图4的背板11的局部加强散热区的局部放大视图。因为影响表面系数h的因素有温度差异、固体与流体接触的表面积等。在本发明的第一实施例中,由于所述局部加强散热区112的镀铜层(加强导热镀层112a)使热能更快更均匀地扩散到表面,在初始状态下所述局部加强散热区112的温度比传统背板相同位置区域的温度要高,所以表面系数h更大。如图4及图5所示,本发明第一实施例的背板11的局部加强散热区112除了表面具有加强导热镀层112a之外,还具有一立体散热构形112b。所述立体散热构形112b优选呈波浪状,这种波浪状的设计可以增大所述局部加强散热区112的热交换面积,使温度能够较快地通过自然对流的方式扩散到空气中。由于表面积大幅增加,因此表面系数h也增大,所以评价系数Nu变大。根据Nu的定义,对流将增强。
同样,初始状态下,因为镀铜的所述局部加强散热区112与周围空气的温度差异和传统背板的差异要大,所以△t增大,Gr越大,亦即流体浮力与黏滞力之比越大,说明所述局部加强散热区112周围的热空气的浮力增加,更有利于产生自然对流,使热空气上升,冷空气下降,进行热交换,使热能更快地散发出去。
(二)点亮背光模块10一段时间后的稳定状态:
因为所述局部加强散热区112能够加快对流散热,所以所述背板11的温度会降低,由温差引起的评价系数Nu与Gr将变小,那么自然对流将变弱,直到所述背光模块10与周围空气达到稳定状态(即LED产生的热能与对流带走的热能相等),此时所述背板11的温度不但分布比较均匀,平均温度也会较传统背板的低。有利于LED出光均匀,色度均匀,并提高出光效率。
综上所述,所述局部加强散热区112因为镀铜层(加强导热镀层112a)的热扩散系数比铝大,所以温度可以快速地在镀铜区域分布均匀。因为镀铜层能够增强自然对流,所以背板11的所述局部加强散热区112及附近区域温度将降低。这样在所述光源组15上不同位置的所述发光装置151(LED)的结温将降低并达到比较均匀,所以所述光源组15上不同位置的所述发光装置151的辉度将变得比较均匀,色度也会变得均匀,所以整个液晶显示器的辉度与色度均匀性将提高。并且因为所述发光装置151的结温降低,出光效率将提高。
再者,本发明并不限制所述加强导热镀层112a的材质,除了镀铜之外,所述加强导热镀层112a的材质可以是其他镀层,其热扩散系数大于所述背板11的热扩散系数。
另外,本发明并不限制所述立体散热构形112b的形状,所述立体散热构形112b除了可以是呈波浪状之外,也可以是其他具有能增加表面积及辅助散热的外形,例如鳍片状。
并且,虽然本发明第一实施例揭露的是所述局部加强散热区112的表面同时具有所述加强导热镀层112a以及所述立体散热构形112b,但是,本发明并不限于此。在本发明中,使用者能依照实际的需求而选用其中的一种技术特征来实施,亦能达成的一定程度的散热效果。例如:所述局部加强散热区112的表面具有所述加强导热镀层112a但不具有所述立体散热构形112b;或者所述局部加强散热区112的表面具有所述立体散热构形112b但不具有所述加强导热镀层112a。
再者,本发明并不限制所述局部加强散热区121在所述背板11中所占有的比例关系,使用者可依据实际需求来设定。例如,依据物体的中央概念及所欲达到的基本效果,所述局部加强散热区112的长度可设计成等于或大于所述至少一入光侧缘110长度的三分之一。另外,所述局部加强散热区112的宽度(相对于长度的另一方向)约等于或大于所述背板11宽度的四分之一。
另外,所述背板11在所述至少一入光侧缘110垂直延伸(一体成型或非一体成型)有所述至少一入光侧壁部111,所述局部加强散热区112也可延伸形成到所述至少一入光侧壁部上111(未绘示)。
请参照图6所示,图6揭示本发明第二实施例的一种局部加强散热的侧入式背光模块的背板立体图。本发明第二实施例的背板11的局部加强散热区112相似于本发明第一实施例的所述局部加强散热区112,因此沿用相同的组件符号与名称,但其不同之处在于:所述局部加强散热区112的长度等于所述至少一入光侧缘110的长度,也就是所述局部加强散热区112占满所述背板11邻接所述至少一光源组15的全部侧边。在这样的设计中,由于不同位置所述局部加强散热区112对热传导与热对流的积极作用是相同的,所以所述背板11的温度分布虽然还是不均匀的,但是因为所述局部加强散热区112有所述加强导热镀层112a可以增强热对流,所以所述背板11的整体温度可以降低,这样有利于降低所述发光装置151结温,增强所述发光装置151出光效率。
综上所述,相较于现有的侧入式背光模块的散热过程中,背板邻接于入光侧缘的区域会呈现中央部位的温度较高及两边部位温度较低的温度分布不均匀现象,导致发光装置的色度与辉度不均匀,从而造成整体液晶显示器的辉度与色度不均匀。本发明通过在所述背板11邻接于所述至少一入光侧缘110的中央位置设有所述局部加强散热区112,所述局部加强散热区112的表面具有加强导热镀层112a及立体散热构形112b,由于所述加强导热镀层112a的热扩散系数较大,能使温度迅速地分布均匀,并且所述立体散热构形112b可以增大热交换面积,使温度能够较快地通过自然对流的方式扩散到空气中。因此,本发明的局部加强散热的侧入式背光模块能够确保发光装置的色度与辉度均匀,从而改善整体液晶显示模块色度与辉度的均匀性并提高出光效率。
本发明已由上述相关实施例加以描述,然而上述实施例仅为实施本发明的范例。必需指出的是,已公开的实施例并未限制本发明的范围。相反地,包含于权利要求书的精神及范围的修改及均等设置均包括于本发明的范围内。
本发明的实施方式
工业实用性
序列表自由内容

Claims (18)

  1. 一种局部加强散热的侧入式背光模块,所述侧入式背光模块包含一背板及至少一光源组,所述背板设有至少一入光侧缘,所述至少一光源组邻接于所述至少一入光侧缘,其特征在于:所述背板邻接于所述至少一入光侧缘的一中央位置设有一局部加强散热区,所述局部加强散热区的表面具有一加强导热镀层及一立体散热构形,所述加强导热镀层的材料的热扩散系数大于所述背板的基材的热扩散系数。
  2. 如权利要求1所述的局部加强散热的侧入式背光模块,其特征在于:所述加强导热镀层的材料的热扩散系数大于所述背板的基材的热扩散系数。
  3. 如权利要求1所述的局部加强散热的侧入式背光模块,其特征在于:所述加强导热镀层是一铜镀层;所述背板的基材是铝或其合金。
  4. 如权利要求1所述的局部加强散热的侧入式背光模块,其特征在于:所述立体散热构形呈波浪状或鳍片状。
  5. 如权利要求1所述的局部加强散热的侧入式背光模块,其特征在于:所述局部加强散热区的长度等于或大于所述至少一入光侧缘长度的三分之一。
  6. 一种局部加强散热的侧入式背光模块,所述侧入式背光模块包含一背板及至少一光源组,所述背板设有至少一入光侧缘,所述至少一光源组邻接于所述至少一入光侧缘,其特征在于:所述背板邻接于所述至少一入光侧缘的位置设有一局部加强散热区,所述局部加强散热区的表面具有一加强导热镀层。
  7. 如权利要求6所述的局部加强散热的侧入式背光模块,其特征在于:所述加强导热镀层的材料的热扩散系数大于所述背板的基材的热扩散系数。
  8. 如权利要求7所述的局部加强散热的侧入式背光模块,其特征在于:所述加强导热镀层是一铜镀层;所述背板的基材是铝或其合金。
  9. 如权利要求6所述的局部加强散热的侧入式背光模块,其特征在于:所述局部加强散热区的表面具有一立体散热构形。
  10. 如权利要求9所述的局部加强散热的侧入式背光模块,其特征在于:所述立体散热构形呈波浪状或鳍片状。
  11. 如权利要求6所述的局部加强散热的侧入式背光模块,其特征在于:所述背板至少在邻接于所述入光侧缘的一中央位置设有所述局部加强散热区。
  12. 如权利要求6所述的局部加强散热的侧入式背光模块,其特征在于:所述局部加强散热区的长度等于或大于所述至少一入光侧缘长度的三分之一。
  13. 一种局部加强散热的侧入式背光模块,所述侧入式背光模块包含一背板及至少一光源组,所述背板设有至少一入光侧缘,所述至少一光源组邻接于所述至少一入光侧缘,其特征在于:所述背板邻接于所述至少一入光侧缘的位置设有一局部加强散热区,所述局部加强散热区的表面具有一立体散热构形。
  14. 如权利要求13所述的局部加强散热的侧入式背光模块,其特征在于:所述立体散热构形呈波浪状或鳍片状。
  15. 如权利要求13所述的局部加强散热的侧入式背光模块,其特征在于:所述局部加强散热区的表面具有一加强导热镀层,所述加强导热镀层的材料的热扩散系数大于所述背板的基材的热扩散系数。
  16. 如权利要求15所述的局部加强散热的侧入式背光模块,其特征在于:所述加强导热镀层是一铜镀层;所述背板的基材是铝或其合金。
  17. 如权利要求13所述的局部加强散热的侧入式背光模块,其特征在于:所述背板至少在邻接于所述入光侧缘的一中央位置设有所述局部加强散热区。
  18. 如权利要求13所述的局部加强散热的侧入式背光模块,其特征在于:所述局部加强散热区的长度等于或大于所述至少一入光侧缘长度的三分之一。
PCT/CN2010/079166 2010-11-18 2010-11-26 局部加强散热的侧入式背光模块 WO2012065315A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/000,912 US20120127749A1 (en) 2010-11-18 2010-11-26 Side-light type backlight module with local heat-dissipation enhancement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010553851.0 2010-11-18
CN2010105538510A CN102003662A (zh) 2010-11-18 2010-11-18 局部加强散热的侧入式背光模块

Publications (1)

Publication Number Publication Date
WO2012065315A1 true WO2012065315A1 (zh) 2012-05-24

Family

ID=43811246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079166 WO2012065315A1 (zh) 2010-11-18 2010-11-26 局部加强散热的侧入式背光模块

Country Status (2)

Country Link
CN (1) CN102003662A (zh)
WO (1) WO2012065315A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102155666A (zh) * 2011-04-18 2011-08-17 黄晓华 高效散热led灯具
CN102155667A (zh) * 2011-04-18 2011-08-17 黄晓华 两侧散热并防尘的led灯具
US8752997B2 (en) 2011-04-28 2014-06-17 Shenzhen China Star Optoelectronics Technology Co., Ltd. Backlight module and method for coating a thermal conducting material on the backlight module
CN102620182B (zh) * 2011-04-28 2014-04-23 深圳市华星光电技术有限公司 背光模块及其背板的涂布方式
CN102231015B (zh) * 2011-06-16 2013-04-24 深圳市华星光电技术有限公司 一种液晶背板及制作方法
KR20130040661A (ko) * 2011-10-14 2013-04-24 삼성전자주식회사 백라이트 유닛과 이를 포함한 디스플레이 장치
CN108769556B (zh) * 2018-05-02 2021-07-13 惠州市华星光电技术有限公司 一种大尺寸液晶电视及其散热结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101017282A (zh) * 2007-02-27 2007-08-15 友达光电股份有限公司 液晶显示器及其使用的背光模块
CN200993712Y (zh) * 2006-12-27 2007-12-19 上海广电光电子有限公司 背光模组
CN101476683A (zh) * 2008-01-04 2009-07-08 亿光电子工业股份有限公司 侧射型发光二极管背光模块
CN201354986Y (zh) * 2009-01-04 2009-12-02 东莞市奕东电子有限公司 一种广告灯箱光源
CN101842631A (zh) * 2007-12-21 2010-09-22 夏普株式会社 背光源模块、液晶背光源单元和电视机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590977B2 (ja) * 2004-08-18 2010-12-01 ソニー株式会社 バックライト装置及び透過型液晶表示装置
CN101556024B (zh) * 2008-04-09 2011-05-04 荣晋精密科技股份有限公司 侧光式背光模组的灯反射器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200993712Y (zh) * 2006-12-27 2007-12-19 上海广电光电子有限公司 背光模组
CN101017282A (zh) * 2007-02-27 2007-08-15 友达光电股份有限公司 液晶显示器及其使用的背光模块
CN101842631A (zh) * 2007-12-21 2010-09-22 夏普株式会社 背光源模块、液晶背光源单元和电视机
CN101476683A (zh) * 2008-01-04 2009-07-08 亿光电子工业股份有限公司 侧射型发光二极管背光模块
CN201354986Y (zh) * 2009-01-04 2009-12-02 东莞市奕东电子有限公司 一种广告灯箱光源

Also Published As

Publication number Publication date
CN102003662A (zh) 2011-04-06

Similar Documents

Publication Publication Date Title
WO2012065315A1 (zh) 局部加强散热的侧入式背光模块
US10712610B2 (en) Liquid crystal display device having improved cooling efficiency
KR200401354Y1 (ko) 액정표시장치의 방열구조
CN101949526B (zh) 侧入式背光模块及其背板散热构造
JP4352038B2 (ja) バックライトユニットおよび液晶表示装置
US7570341B2 (en) Heat-dissipating display device and method of manufacturing thereof
US8814415B2 (en) Light-emitting module and display device having the same
EP1918769B1 (en) Backlight unit and liquid crystal display device including the same
CN103363397B (zh) 背光组件及使用该背光组件的液晶显示装置
US7850360B2 (en) Backlight assembly, liquid crystal display having the same, and method thereof
EP1717632A1 (en) Cooling arrangement for a liquid crystal display
US7436468B2 (en) Liquid crystal display having an LED and a thermal conductive sheet
US20130094246A1 (en) Backlight unit and display device having the same
WO2009082871A1 (fr) Module de source de lumière à del ayant un système de conduction thermique et un système de rayonnement thermique
JP2007219075A (ja) バックライト装置
KR101238873B1 (ko) 열전도부재 및 이를 포함하는 액정표시장치
US20120127749A1 (en) Side-light type backlight module with local heat-dissipation enhancement
US20130265520A1 (en) Display device
JP2004055182A (ja) バックライト装置及び液晶表示装置
WO2019134198A1 (zh) 背板、背光模组及液晶显示装置
KR101262508B1 (ko) 백라이트 유닛 및 이를 구비한 표시 장치
TWM309684U (en) Backlight module and display device
US8752997B2 (en) Backlight module and method for coating a thermal conducting material on the backlight module
US8567978B2 (en) Backlight module having a light guide plate and a heat dissipation frame and display apparatus having the same
JP2012093490A (ja) 照明装置及びそれを備えた画像表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13000912

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10859817

Country of ref document: EP

Kind code of ref document: A1