WO2012064220A1 - Procédé de production d'aluminium par réduction métallo-thermique de trichlorure de magnésium, et dispositif de mise en oeuvre - Google Patents

Procédé de production d'aluminium par réduction métallo-thermique de trichlorure de magnésium, et dispositif de mise en oeuvre Download PDF

Info

Publication number
WO2012064220A1
WO2012064220A1 PCT/RU2011/000676 RU2011000676W WO2012064220A1 WO 2012064220 A1 WO2012064220 A1 WO 2012064220A1 RU 2011000676 W RU2011000676 W RU 2011000676W WO 2012064220 A1 WO2012064220 A1 WO 2012064220A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
aluminum
reactor
reduction
chloride
Prior art date
Application number
PCT/RU2011/000676
Other languages
English (en)
Russian (ru)
Inventor
Альберт Иванович БЕГУНОВ
Original Assignee
Begunov Albert Ivanovich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from RU2010145493/02A external-priority patent/RU2478126C2/ru
Priority claimed from RU2011102356/02A external-priority patent/RU2476613C2/ru
Application filed by Begunov Albert Ivanovich filed Critical Begunov Albert Ivanovich
Priority to BR112013000737A priority Critical patent/BR112013000737A2/pt
Priority to KR1020127028895A priority patent/KR101491891B1/ko
Priority to JP2013537634A priority patent/JP2014502307A/ja
Priority to CA2794546A priority patent/CA2794546A1/fr
Priority to AU2011326897A priority patent/AU2011326897A1/en
Priority to CN2011800230756A priority patent/CN102959104A/zh
Priority to EP20110839007 priority patent/EP2639320A4/fr
Priority to US13/641,725 priority patent/US20130036869A1/en
Publication of WO2012064220A1 publication Critical patent/WO2012064220A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/02Obtaining aluminium with reducing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0038Obtaining aluminium by other processes
    • C22B21/0046Obtaining aluminium by other processes from aluminium halides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/04Obtaining aluminium with alkali metals earth alkali metals included
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/04Crucible or pot furnaces adapted for treating the charge in vacuum or special atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/06Crucible or pot furnaces heated electrically, e.g. induction crucible furnaces with or without any other source of heat

Definitions

  • the invention relates to non-ferrous metallurgy, in particular, to the technology of aluminum production.
  • electrolyzers are not hermetic, and the process is accompanied by the emission into the atmosphere of sodium fluorides, aluminum, hydrogen, carcinogenic polyaromatic compounds, large volumes of greenhouse gases and, in particular, carbon dioxide and perfluorocarbons.
  • sodium fluorides aluminum, hydrogen, carcinogenic polyaromatic compounds, large volumes of greenhouse gases and, in particular, carbon dioxide and perfluorocarbons.
  • SUBSTITUTE SHEET (RULE 26) is archaic and does not correspond to the prevalence of aluminum in the earth's crust (first place among all metals), nor a unique set of its physical and structural properties.
  • Fluorides are more refractory compounds and the reduction process, as well as a device for implementing this method are more complex.
  • the only deposit of Greenland cryolite was practically developed in the 19th century.
  • the closest prototype of the proposed method is to obtain metallic titanium by reducing it from metallic tetrachloride with magnesium (V. A. Garmat and others. Titanium metallurgy. M., Metallurgy, 1968, p. 237-238, p. 241):
  • the technical result is an increase in productivity due to the continuity of the recovery process, and high environmental performance by ensuring the tightness of the equipment.
  • the consumption of magnesium will be only 1.35 kg per 1 kg of aluminum, and the need for electricity for electrolytic magnesium will be about 17.9 kWh per 1 kg of aluminum.
  • SUBSTITUTE SHEET ferro-silicon according to the Pidgen method (V. A. Lebedev, V. I. Sedykh. Metallurgy of magnesium. Irkutsk, 2010, p. 149).
  • the total energy consumption of the reaction (3) then does not exceed ⁇ 13 kWh / kg of aluminum, which is comparable with the flow rates in the Eru-Hall method and at the stage of the birth of the magnesium-thermal method of producing aluminum can be considered an excellent indicator.
  • reaction (3) The reduction of aluminum from trichloride with magnesium according to reaction (3) is, however, an independent scientific and engineering problem.
  • the reaction (3) underlying the invention is much simpler to perform than the reaction (4) of the prototype magnesium thermal reduction of titanium. It is paradoxical that for this, in the method of aluminum production by its reduction with magnesium from trichloride, higher temperatures and pressures are needed.
  • magnesium as a reducing agent has a boiling point of ⁇ 1103 ° - 1 107 ° C (vapor pressure is 1 at) with a melting point of 651 ° C.
  • aluminum melts at 660 ° C. It is extremely characteristic a wide range of liquid state with a boiling point of 2497 ° C, i.e. at the boiling points of magnesium (-1107 ° C) aluminum practically does not evaporate at all.
  • Magnesium chloride melts at 708 - 714 ° ⁇ and boils only at 1412 - 1417 ° ⁇ , i.e. also has a relatively wide temperature range of the liquid state.
  • aluminum trichloride is sublimated at a temperature of 179.7 ° C and does not have a liquid state at atmospheric pressure.
  • the raw materials — aluminum trichloride and magnesium — are in a gaseous state, and aluminum metal and magnesium chloride are in liquid, which is convenient for organizing continuous high-performance production.
  • reaction (3) where the indices “g” and “g” correspond to the gaseous and liquid state, according to the Le Chatelier rule and II, under the conditions of high pressure, the law of thermodynamics will have an equilibrium significantly shifted to the right. In the kinetic relation, the reaction can proceed with an explosion and for the possibilities of flexible control of its speed, the initial components — aluminum chloride and magnesium — should be supplied in separate streams of inert gas with a temperature lower than that maintained in the reactor.
  • the recovery process can be carried out already at a temperature of 900 ° C, since for these conditions, the elasticity of saturated vapor of magnesium is significant and amounts, for example, to 9 at .9 at. for 927 ° C. At the same time, it is impractical to rise significantly above the boiling point of magnesium (1,103–1107 ° C), since this will be accompanied by unnecessarily high values of the speed of the process and it is possible to set its upper limit to a temperature of 1,150 ° C.
  • the total pressure of the gas phase in the reactor will be determined in the range from 0.01 at. To 5.0 at at the optimum partial pressures of aluminum and magnesium chloride in the gas phase, determined by experienced
  • composition of the gas mixture supplied to the reduction it is possible to follow the stoichiometric mass ratio of the reaction (3), which should be when the aluminum and magnesium trichloride mass flows are fed to the reactor as 3.69 to 1.
  • SUBSTITUTE SHEET (RULE 26) magnesium thermal method of producing titanium from tetrachloride, as well as the existence of successfully implemented methods for producing zirconium and hafnium by magnesium thermal reduction from chlorides.
  • cylindrical steel vessels for example, made of chromium-nickel steel lined with a molybdenum sheet, were originally used as recovery devices. Later, the inner layer was learned to perform from mild steel. The process is carried out at temperatures lower than the melting point of the metal and titanium is obtained in the solid-phase state in the form of a so-called sponge, for the extraction of which the reactor must be cooled, and the process is inevitably realized as periodic. This, in turn, necessitates the use of manual labor, reduces the productivity of the reactor, increases energy consumption and degrades the environmental characteristics of production.
  • the device for metallothermic reduction of aluminum with magnesium is carried out at higher temperatures, reaching 1,100-1,150 ° C, at which both the resulting reduction products-aluminum and magnesium chloride are in liquid form and flow to the bottom of the reactor.
  • the melting point of aluminum is 660 ° C
  • magnesium chloride is -708 - 714 ° C at boiling points, respectively, 2497 ° C and 1412 - 1417 ° C.
  • the upper part of the reactor is cylindrical to increase the effective volume of the reactor, and the lower part is tapered to collect liquid aluminum and magnesium chloride.
  • the main reaction zone is hollow in the area of the introduction of gaseous aluminum chloride and magnesium for better mixing, but the volume attached to the conical part is filled
  • SUBSTITUTE SHEET (RULE 26) thin-walled hollow ceramics such as nozzles from Raschig rings. The use of nozzles is necessary to accelerate the processes of condensation and coalescence of the resulting aluminum and magnesium chloride droplets.
  • the reactor is connected by a stream of inert gas with a boiler - magnesium evaporator and with a liquid magnesium separation apparatus from a waste residual mixture of magnesium vapor and aluminum chloride.
  • the boiler - magnesium evaporator and liquid magnesium separation apparatus are an integral part of the device, but are located separately from the reactor, near it.
  • the reduction of aluminum from its chloride with magnesium in the gas phase is exothermic, proceeds with the release of a large amount of heat, and the process is autogenous.
  • the reactor and the magnesium separation apparatus are supplied with an evaporative water cooling system.
  • the proposed invention uses fluid phases (liquids and gases) that react in turbulent flows at high temperatures, which ensures a high unit productivity of the process.
  • capital costs for the construction of production facilities, as well as equipment maintenance costs, are significantly reduced.
  • FIG. 1 shows a general view of the reactor; in Figure 2, the boiler is an evaporator; in FIG. 3, a separation apparatus in vertical sections.
  • the reactor (Fig. 1) is made in the form of a steel cylinder 1, passing into the lower conical part 2, designed to collect the products of the reduction - aluminum and magnesium chloride.
  • SUBSTITUTE SHEET (RULE 26)
  • the cylindrical and conical parts have a false bottom 3.
  • the reactor is sealed with a lid 4. All internal surfaces of the reactor are lined with refractory ceramics 5, which can be magnesite, graphite and other resistant materials.
  • nozzles made of thin-walled ceramics of the Raschig 6 type are used, which are used in chemical absorption technologies.
  • Nozzles are made of refractory materials, for example, magnesite, carbonitrides, etc.
  • nozzles or nozzles 7 and 8 installed in the upper hollow part of the reactor tangent to the circumference of the horizontal section of the reaction zone and directed towards each other.
  • the reduced aluminum 9 and magnesium chloride 10 are collected in the conical part 2 of the reactor and after being discharged through a tapping point 11, magnesium chloride 12 and aluminum 13 are collected in a mold 14.
  • a branch pipe 15 is installed in the reactor cover.
  • the boiler - evaporator ( Figure 2) is a steel hemisphere 16, hermetically closed by a cover 17, lined with the same materials as the reactor. Magnesium is fed to the boiler in liquid form. An electric heater 18, made, for example, in the form of rods of silicon carbide, is lowered into the metal. The heater may be enclosed in a magnesite protective sheath. An inert gas (argon or nitrogen) is fed to the evaporator boiler and the magnesium in the form of steam, together with the inert gas, is sent to the reactor.
  • the boiler - the evaporator can be supplied with a water evaporative cooling system, as well as other elements of the device shown in Fig. 1 and Fig. 3.
  • the separation apparatus (Fig. 3), designed to separate liquid magnesium from its residual gaseous mixture with aluminum chloride, is in the form of a reduced size reactor lined with refractory ceramics 19.
  • the gas mixture is introduced into the apparatus through pipe 20, the magnesium condensate is collected at the bottom apparatus, and not reacted aluminum chloride through the pipe 21 is removed from the apparatus and returned to the reactor.
  • the separation apparatus like a reactor, is equipped with a shut-off device 22 and an evaporative cooling system 23. Magnesium condensate is returned to the boiler-evaporator and then to the reactor.
  • the device operates with continuous supply of aluminum chloride and magnesium gas to the reactor, obtained in a single evaporator boiler or in a battery of such evaporators.
  • Aluminum chloride and magnesium gas are transported and fed into the reactor in opposing turbulent flows of an inert carrier gas, which provides ideal contact conditions for the reacting particles, removes diffusion barriers and ensures high speeds of the reduction process.
  • an inert carrier gas which provides ideal contact conditions for the reacting particles, removes diffusion barriers and ensures high speeds of the reduction process.
  • the aluminum 13 discharged from the reactor in continuous or batch mode is protected by an upper layer of molten magnesium chloride 12. Separation of the reduction products is not difficult. For example, when the temperature drops to 6
  • SUBSTITUTE SHEET (RULE 26) magnesium is converted into a solid phase, and liquid aluminum can be easily sent for further technological operations.
  • a separation apparatus designed to separate aluminum chloride and magnesium in their residual gas mixture works by reducing the pressure in the system and the temperature below the boiling point of magnesium. Liquid magnesium - condensate is sent to the refining or, with its sufficient purity, directly to the recovery process through the boiler - evaporator.
  • aluminum chloride is supplied in a gaseous form through nozzles (nozzles) 7 to the upper part of the steel cylinder 1 of the reactor ( Figure 1).
  • nozzles nozzles
  • This mixture is preliminarily prepared in a boiler-evaporator ( Figure 2), into which the initial inert gas (for example, argon) and liquid magnesium are introduced separately, and a two-component stream of magnesium and inert gas is fed to the reactor ( Figure 1).
  • the proposed invention provides the following advantages of new technology and technology for the production of aluminum. This is an unlimited high unit capacity of the device and a low level of capital expenditures during the construction of new capacities. Provided tightness and environmental cleanliness of production.
  • the device eliminates the cost of manual labor and possible full automation of the process.
  • Aluminum recovery in the device occurs with a significant positive thermochemical thermal effect and proceeds in an autogenous mode, with virtually no energy from the outside.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

L0invention concerne un procédé de production d'aluminium par la réduction métallo-thermique de trichlorure de magnésium dans un flux de gaz inerte, à une température de 900-1150°C, à une pression globale de 0,01 à 5 atmosphères, et selon un rapport en poids de chlorure d'aluminium et de magnésium dans le mélange initial de 3,69 pour 1,00. Le processus est mené dans un réacteur cylindrique (1) comportant des buses cylindriques à parois fines (6) et une partie inférieure conique (2). En amont du réacteur se trouve une chaudière d'évaporation de magnésium dans le flux de gaz inerte, tandis qu'en aval se trouve un appareil pour séparer le magnésium liquide du mélange restant de celui-ci avec le chlorure d'aluminium. Toutes les parties constituantes du dispositif sont recouvertes à l'intérieur de matériaux réfractaires (5). Le résultat technique consiste en une augmentation de la productivité du fait de la continuité du processus de réduction, et en de meilleures caractéristiques écologiques.
PCT/RU2011/000676 2010-11-08 2011-09-06 Procédé de production d'aluminium par réduction métallo-thermique de trichlorure de magnésium, et dispositif de mise en oeuvre WO2012064220A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112013000737A BR112013000737A2 (pt) 2010-11-08 2011-09-06 método de produção de alumínio por redução metalotérmica com magnésio e dispositivo para efetuar o método referido
KR1020127028895A KR101491891B1 (ko) 2010-11-08 2011-09-06 마그네슘을 이용한 삼염화 알루미늄의 금속열 회수에 의해 알루미늄을 생산하는 방법 및 이의 실시 장치
JP2013537634A JP2014502307A (ja) 2010-11-08 2011-09-06 マグネシウムを用いた三塩化アルミニウムの金属熱還元によるアルミニウム製造方法及びその実施のための装置
CA2794546A CA2794546A1 (fr) 2010-11-08 2011-09-06 Procede de production d'aluminium par reduction metallo-thermique de trichlorure de magnesium, et dispositif de mise en ƒuvre
AU2011326897A AU2011326897A1 (en) 2010-11-08 2011-09-06 Method for producing aluminium by metallothermic reduction of trichloride with magnesium and apparatus for carrying out said method
CN2011800230756A CN102959104A (zh) 2010-11-08 2011-09-06 用镁将三氯化铝进行金属热还原生产铝的方法及其实施装置
EP20110839007 EP2639320A4 (fr) 2010-11-08 2011-09-06 Procédé de production d'aluminium par réduction métallo-thermique de trichlorure de magnésium, et dispositif de mise en uvre
US13/641,725 US20130036869A1 (en) 2010-11-08 2011-09-06 Method for producing aluminum by means of metallothermic recovery of aluminum trichloride with magnesium and a device for its realization

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
RU2010145493 2010-11-08
RU2010145493/02A RU2478126C2 (ru) 2010-11-08 2010-11-08 Способ производства алюминия металлотермическим восстановлением
RU2011102356/02A RU2476613C2 (ru) 2011-01-21 2011-01-21 Устройство для металлотермического восстановления алюминия из его трихлорида магнием
RU2011102356 2011-01-21

Publications (1)

Publication Number Publication Date
WO2012064220A1 true WO2012064220A1 (fr) 2012-05-18

Family

ID=46051174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2011/000676 WO2012064220A1 (fr) 2010-11-08 2011-09-06 Procédé de production d'aluminium par réduction métallo-thermique de trichlorure de magnésium, et dispositif de mise en oeuvre

Country Status (9)

Country Link
US (1) US20130036869A1 (fr)
EP (1) EP2639320A4 (fr)
JP (1) JP2014502307A (fr)
KR (1) KR101491891B1 (fr)
CN (1) CN102959104A (fr)
AU (1) AU2011326897A1 (fr)
BR (1) BR112013000737A2 (fr)
CA (1) CA2794546A1 (fr)
WO (1) WO2012064220A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3828136A1 (fr) * 2014-09-12 2021-06-02 Usalco LLC Dérivés de chlorure d'aluminium
CN111118354A (zh) * 2020-03-13 2020-05-08 青海大学 金属镁还原法回收废铝屑的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2205854A (en) 1937-07-10 1940-06-25 Kroll Wilhelm Method for manufacturing titanium and alloys thereof
AT282210B (de) * 1966-08-29 1970-06-25 Conzinc Riotinto Ltd Verfahren und Vorrichtung zur Herstellung von Aluminium und Aluminiumlegierungen
SU456414A3 (ru) * 1971-04-29 1975-01-05 Апплайд Алюминиум Рисерч Корпорейшн (Фирма) Способ получени алюмини из треххлористого алюмини восстановлением его металлическим марганцем
CN1196398A (zh) * 1997-04-12 1998-10-21 钟正伟 热还原法生产金属铝

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE657186A (fr) * 1963-12-16
US3918960A (en) * 1969-09-29 1975-11-11 Applied Aluminum Res Corp Method for the production of aluminum
US3844771A (en) * 1970-01-06 1974-10-29 Dow Chemical Co Method for condensing metal vapor mixtures
US3661558A (en) * 1970-02-16 1972-05-09 Dorr Oliver Inc Process and apparatus for distributing slurry to a reaction furnance
US3775093A (en) * 1971-12-27 1973-11-27 Dow Chemical Co Ebullient cooling of high temperature metalliferous vapors
DE2318262A1 (de) * 1973-04-11 1974-10-31 Halomet Ag Verfahren zur gewinnung von metallen aus halogeniden mittels reduktionsmetallen
CA1092787A (fr) * 1976-03-15 1981-01-06 Westinghouse Electric Corporation Procede de chloruration pour la production d'aluminium
JPS5818142B2 (ja) * 1976-03-29 1983-04-11 日本鉱業株式会社 固体状昇華性物質の高温部への供給装置
LU81469A1 (fr) * 1979-07-05 1981-02-03 Luniversite Libre Bruxelles Procede et installation pour la production de metaux reactifs par reduction de leurs halogenures
CA2240450A1 (fr) * 1998-06-12 1999-12-12 Michael Mourad Hanna Procede pour le traitement de ferrites et de minerais sulfures metalliques grilles
JP2002539595A (ja) * 1999-03-15 2002-11-19 ケース ウェスタン リザーブ ユニバーシティ 迅速な表面化学反応用の金属スポンジ
AU2003270305A1 (en) * 2002-10-07 2004-05-04 International Titanium Powder, Llc. System and method of producing metals and alloys
CN100559125C (zh) 2007-05-25 2009-11-11 北京航空航天大学 一种基于Euler-q算法和DD2滤波的航天器姿态确定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2205854A (en) 1937-07-10 1940-06-25 Kroll Wilhelm Method for manufacturing titanium and alloys thereof
AT282210B (de) * 1966-08-29 1970-06-25 Conzinc Riotinto Ltd Verfahren und Vorrichtung zur Herstellung von Aluminium und Aluminiumlegierungen
SU456414A3 (ru) * 1971-04-29 1975-01-05 Апплайд Алюминиум Рисерч Корпорейшн (Фирма) Способ получени алюмини из треххлористого алюмини восстановлением его металлическим марганцем
CN1196398A (zh) * 1997-04-12 1998-10-21 钟正伟 热还原法生产金属铝

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
"Spravotchnik chemica// Pod red. B.P. Nikolskogo", CHEMIA, M., vol. T II, 1964, pages 1168
A.I. BEGUNOV: "Problems modernizathii aluminum electrolizerov", IRKUTSK, 2000, pages 105
A.N. ZELICHMAN; G.A. MEERSON: "Metallurgia redkich metallov", M., METALLURGIA, 1973, pages 607
G.V. SAMSONOV ET AL.: "Metallurgiya", MARNIETERIYAM. MOSCOW, IZDATELSTVO, 1971, pages 140, XP008161292 *
K. GRJOTHEIM; Q. ZHUXIAN: "Molten Salt Technology", SHENYANG, CHINA, vol. VII, 1991, pages 435
KROLL W.J., METALLS, vol. 5, no. ? 9-10, 1955, pages 336
KROLL W.J., TRANS. ELECTROCHEM. SOC., 1947, pages 41
KROLL W.J., TRANS. ELECTROCHEM. SOC., vol. 78, 1940, pages 35
M. GIUA, ISTORIA CHEMIE, 1975, pages 477
M.M. VETUKOV; A.M. TSIPLAKOV; S.N. SCHKOLNICOV: "Electrometallurgia aluminia i magnia", M., METALLURGIA, 1987, pages 320
See also references of EP2639320A4
V.A. GARMATA ET AL., METALLURGIYA TITANA. MOSCOW, METALLURGIYA, 1968, pages 236 - 243, XP008161294 *
V.A. GARMATA ET AL.: "Metallurgia titana. M.", METALLURGIA, 1968, pages 643
V.A. LEBEDEV; V.I. SEDYKH: "Metallurgia magnia", IRKUTSK, 2010, pages 175
V.A.LEBEDEV; V.I.SEDYKH: "Metallurgy of Magnesium", IRKUTSK, 2010, pages 149
V.P. MASHOVETS: "Electrometallurgia aluminia", ONTI-NKTP, 1938, pages 345

Also Published As

Publication number Publication date
EP2639320A4 (fr) 2015-04-29
EP2639320A1 (fr) 2013-09-18
JP2014502307A (ja) 2014-01-30
CN102959104A (zh) 2013-03-06
CA2794546A1 (fr) 2012-05-18
KR101491891B1 (ko) 2015-02-11
US20130036869A1 (en) 2013-02-14
BR112013000737A2 (pt) 2017-01-31
KR20130020675A (ko) 2013-02-27
AU2011326897A1 (en) 2013-02-07

Similar Documents

Publication Publication Date Title
US4401467A (en) Continuous titanium process
NZ212867A (en) Ladle for removing magnesium from molten aluminium
Zhang et al. A perspective on thermochemical and electrochemical processes for titanium metal production
CN111304696B (zh) 电化学法净化再生失活熔盐并回收其中有价金属的方法
Li et al. Behavior of magnesium impurity during carbochlorination of magnesium-bearing titanium slag in chloride media
CN110819822B (zh) 一种电热炼铝的装置
CN104120284B (zh) 从镁电解残渣中回收镁的方法
WO2012064220A1 (fr) Procédé de production d'aluminium par réduction métallo-thermique de trichlorure de magnésium, et dispositif de mise en oeuvre
Sharma A new electrolytic magnesium production process
Yan et al. Molten salt electrolysis for sustainable metals extraction and materials processing—A review
US2621120A (en) Process of refining aluminum
CN107285354B (zh) 铝业炭质危废低温熔融渗透连续分离方法及所得产品
Friedrich et al. Production technologies of magnesium
RU2407816C1 (ru) Способ получения низкоуглеродистого алюминия с использованием карботермического восстановления в одной печи с обработкой и рециклированием отходящих газов
RU2476613C2 (ru) Устройство для металлотермического восстановления алюминия из его трихлорида магнием
US20230041658A1 (en) A method and apparatus to condense magnesium vapor using a fluid-cooled heat exchanger
CN109207738B (zh) 一种铝电解槽废耐火材料的处理方法
RU2478126C2 (ru) Способ производства алюминия металлотермическим восстановлением
Kroll et al. Production of malleable zirconium on a pilot-plant scale
Martin Light Metals 2018
US3685984A (en) Removing metal carbides from furnace systems
NO783972L (no) Fremgangsmaate og apparat til fremstilling av mg ut fra mgo ad kjemisk-termisk vei
Mukhachev et al. Nuclear zirconium–the basis of alloys with improved neutron-physical, radiation, and corrosion properties
Guo et al. Liquid-metal-electrode-assisted electrolysis for the production of sodium and magnesium
Mallikarjunan et al. Pyrometallurgical processes for the separation of hafnium from zirconium

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180023075.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839007

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2794546

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13641725

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127028895

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011839007

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2743/MUMNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2011326897

Country of ref document: AU

Date of ref document: 20110906

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013537634

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013000737

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013000737

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130111