WO2012062142A1 - 动力电池组单体电池的电压差异参数采集方法与采集装置 - Google Patents
动力电池组单体电池的电压差异参数采集方法与采集装置 Download PDFInfo
- Publication number
- WO2012062142A1 WO2012062142A1 PCT/CN2011/078424 CN2011078424W WO2012062142A1 WO 2012062142 A1 WO2012062142 A1 WO 2012062142A1 CN 2011078424 W CN2011078424 W CN 2011078424W WO 2012062142 A1 WO2012062142 A1 WO 2012062142A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- difference
- actual
- relative
- cell
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/165—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
- G01R19/16533—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
- G01R19/16538—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
- G01R19/16542—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
- G01R31/3835—Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/396—Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
Definitions
- the present invention relates to the technical field of power battery management, and particularly relates to a method and a device for collecting voltage difference parameters of a single battery of a power battery.
- BACKGROUND OF THE INVENTION In order to meet the requirements of voltage, power and energy during operation of high-power equipment such as electric vehicles, battery packs are often composed of a large number of power batteries connected in series. Although the difference between the batteries is gradually reduced as the technical process is improved, it is still difficult to ensure that the characteristics of each battery are completely uniform at the current manufacturing level.
- Battery equalization must start when the cell voltage difference is much larger than the measurement error. Therefore, the error is too large and the effective equalization time is too short. As a result, the equalization can only be started when the battery is fast or fast, which makes the equalization effect poor. Therefore, it is necessary to balance the difference between the cell voltages and the measurement error. For example, the measurement error of the single cell is larger than the actual voltage difference between the cells, and the balance is often measured instead of The actual difference can only play a deteriorating role for the battery pack and cannot achieve the purpose of extending the life. Therefore, it is crucial to detect the difference between individual cells in a timely and accurate manner.
- the method for measuring the voltage difference of the power battery cells is based on measuring the absolute value of the voltage across each cell, and then calculating the difference between the numbers by software, for example: 1. Using high withstand voltage Switching network (commonly used for relays), sequentially connecting the voltage acquisition modules Into each cell, or transfer the voltage of each cell to a sampling capacitor, and then connect this sampling capacitor to the voltage measurement module to achieve direct measurement of the cell voltage, and then calculate the software through the software.
- the difference between the body batteries Due to the large number of series cells, the high-end cell voltage is superimposed on a high common-mode voltage, and the pressure drop of the changing operating current on the internal resistance of the cell makes it impossible to accurately measure each single in the prior art.
- the terminal voltage of the body Due to the large number of series cells, the high-end cell voltage is superimposed on a high common-mode voltage, and the pressure drop of the changing operating current on the internal resistance of the cell makes it impossible to accurately measure each single in the prior art. The terminal voltage of the body.
- the switching network has high cost and low speed, the passive switch has poor durability, and the active switch has large leakage and poor reliability. Therefore, the above method cannot be widely applied in an actual power battery system.
- the power battery components composed of a large number of monomers are connected in series into a plurality of modules, and each module contains only 4 to 16 monomers in series. In this way, the total mode voltage in the module is limited, and a differential amplifier with a withstand voltage is not particularly high (generally lower than 60V) can be used to remove the common mode voltage to obtain the voltage value of each cell, and then pass the time-lapse inspection.
- the analog to digital converter ADC converts the digital signal to a processor of the battery module for processing.
- the results obtained by the time-sharing patrol detection hide a large number of different types of random interference, which can not be completely eliminated at all, only through statistical methods, through multiple times A complex analysis of the measurement results in order to obtain a monomer voltage measurement that is still not accurate enough.
- the complexity of the system software is greatly improved, resulting in increased system cost, reduced reliability, increased power consumption, and reduced technical and economic value of the entire management system.
- the actual differential circuit effect is limited by component accuracy and parameter drift, and it does not guarantee long-term, accurate measurement of the cell voltage.
- a first object of the embodiments of the present invention is to provide a method for collecting voltage difference parameters of a single battery of a power battery, which has higher accuracy and lower cost of the single battery, and is more convenient to follow.
- the voltage difference parameter effectively and timely balances the power battery pack.
- a second object of the embodiments of the present invention is to provide a device for collecting voltage difference parameters of a single battery of a power battery pack, and the difference characterization parameters of the single battery obtained by using the device are higher in accuracy and lower in cost, and are more convenient for subsequent According to the voltage difference parameter, the power battery pack is effectively and timely balancedly managed.
- the technical solution adopted is as follows:
- a method for collecting a voltage difference parameter of a single battery of a power battery pack characterized in that: at the same time, a reference voltage is provided, and an actual difference between the reference voltage and each single battery is compared;
- the actual voltage of each unit cell is determined as a characteristic of all the single cells: the voltage difference parameter of the unit cell relative to the power battery system.
- determining, according to each of the relative voltage differences, each of the actual voltage difference values which are:
- the average value is obtained as a relative voltage average difference; respectively, the absolute difference between each of the relative voltage difference and the relative voltage average difference is taken, and each actual voltage difference is obtained.
- determining an actual voltage difference between each cell voltage and an actual average voltage value of all cell voltages according to each of the relative voltage differences specifically: Adding a relative voltage difference of each cell voltage to the reference voltage to obtain an actual voltage value of each cell voltage;
- the reference voltage is: a dynamic average voltage parameter preset according to the charging and discharging state of the power battery pack and the charging and discharging time.
- the technical solution adopted is as follows:
- a device for collecting voltage difference parameters of a power battery unit battery comprising: at least one comparison amplifying circuit, and a reference voltage power source electrically connected to each of the comparison amplifying circuits, and a main controller; a reference voltage supply for providing a reference voltage at the same time, and pulling the reference voltage into the second comparison voltage input terminal of each comparison amplification circuit;
- the number of the comparison amplifying circuits is the same as the number of the single cells included in the power battery pack, and the first comparison voltage input end of each of the comparison amplifying circuits is respectively connected to the positive electrode or the negative electrode of one single cell for collecting a voltage of each cell, the comparison amplifying circuit is configured to compare actual voltages of the single cells input by the first comparison voltage input terminal and the second comparison voltage input terminal
- the main controller is electrically connected to each of the comparison amplifying circuits for determining an actual voltage difference between the respective relative voltages.
- an analog-to-digital conversion (A/D) and a communication circuit are further connected in series between each of the comparison amplifying circuit and the main controller;
- the analog to digital converter (A / D) via the communication circuit is connected to the main t electrically serial bus controller
- the main controller includes: a first computing unit electrically connected, and a second computing unit; the first calculating unit is electrically connected to each of the comparing and amplifying circuits, and is configured to take all the single cells An arithmetic mean of the relative voltage difference between the actual voltage and the reference voltage as the average difference of the relative voltages;
- the second calculating unit is electrically connected to each of the comparison amplifying circuit and the first calculating unit, respectively, for respectively taking an absolute difference between each of the relative voltage difference and the relative voltage average difference Actual voltage difference.
- the main controller includes: a third calculating unit, a fourth calculating unit, and a fifth calculating unit that are electrically connected to each other; the third calculating unit is respectively configured with an output end of each of the comparing and amplifying circuits, and The reference voltage source is electrically connected, and is used for adding a relative voltage difference of each cell voltage to the reference voltage to obtain an actual voltage value of each cell; the fourth calculating unit,
- the third computing unit is electrically connected for taking an arithmetic average of the actual voltage values of all the single cells to obtain an actual average voltage value; the fifth calculating unit is respectively electrically connected to the third calculating unit and the fourth calculating unit Connect,
- the reference voltage is: a dynamic average voltage parameter preset according to the charging and discharging state of the power battery pack and the charging and discharging time. It can be seen from the above that at the same time, all the single cells are compared with a common reference voltage, and the relative voltage difference of the single cell relative to the common reference voltage at the current time is obtained, and the relative voltage difference reflects The current individual case of the single cell, the actual average voltage value of the actual voltage of all the cells reflects the overall state in the current power battery system, and then the phase The actual voltage difference between the voltage difference and the actual average voltage value of the actual voltage of all the cells in the current power battery system, so the actual voltage difference is used as the current single cell and the current power battery system.
- the quantized voltage parameter is used as the voltage difference parameter of each unit battery relative to the power battery system in the embodiment, and the power battery management system can perform the quantification according to the voltage difference management of the power battery system.
- the voltage difference parameter of each single cell is very intuitive to determine which voltage of the single cell is high or low, and the single cell with a deviation exceeding a predetermined range is used as the cell to be balanced at present, so this embodiment is adopted.
- the technical solution has lower cost and is more convenient for subsequent effective and balanced management of the power battery pack according to the voltage difference parameter.
- the actual voltage values of the individual cells and the common reference voltage are specifically compared at the same time (ie, synchronously).
- the invention directly measures the relative voltage difference corresponding to each single cell in the local measurement of each single cell, and makes all the cell voltage difference measuring circuits (a reference voltage source and a plurality of voltages which are electrically connected to the reference voltage source)
- the comparison circuit works at the same time, and the influence of the variation of the bus ripple current in the background art on the measurement result is eliminated.
- the technical solution of the embodiment can eliminate the influence of the common mode voltage in the prior art time division measurement. Applying the technical solution of the embodiment, the actual voltages of the respective single cells are respectively measured synchronously at the same time, wherein each of the single cell measuring circuits can be very close to the corresponding tested single cells in space, which is compared with the prior art.
- the unified time-sharing detection technology solution can greatly weaken the electromagnetic interference induction
- only the comparative amplifier circuit amplifies the difference between the voltage and the average value of each single cell, which greatly reduces the accuracy requirements of the circuit, component, and ADC, and overcomes In the background art, it is necessary to use a high-precision analog circuit and a high-digit ADC to ensure the defect of accuracy, thereby greatly reducing the cost of the embodiment.
- FIG. 1 is a schematic block diagram showing a method for collecting voltage difference parameters of a single battery of a power battery pack according to Embodiment 1 of the present invention.
- Embodiment 1 This embodiment discloses a method for collecting a voltage difference of a single battery of a power battery, which is used for measuring and determining a voltage difference of each single battery in the power battery system, so as to facilitate subsequent voltage according to the single battery.
- the difference is voltage equalization management in the overall power battery system.
- the main process is as follows: Provide a reference voltage, and at the same time (ie synchronously) the reference voltage and each Comparing the actual voltage values of the single cells, the difference between the respective current cells at the same current time and the common reference voltage is obtained, and the difference is used as a parameter for characterizing the individual condition of the current time of the single cell, in this embodiment.
- the difference is the relative voltage difference of each single cell; then according to the predetermined algorithm, according to the relative voltage difference of each single cell, the actual voltage of each single cell at the current moment and the actual voltage of all the single cells are averaged.
- the actual voltage difference between the values (denoted as the actual average voltage value) is used to characterize the resulting actual voltage difference: the voltage difference parameter of each cell relative to the overall condition of the power cell system.
- the power battery voltage equalization system is used to perform balanced management of the power battery system quickly, timely and effectively.
- the reference voltage can be provided by various power sources in the prior art, such as a constant current power supply, a constant voltage power supply, and even any other power supply whose output voltage or current changes with time.
- Algorithm 1 All the cells of the single battery The relative voltage difference takes the arithmetic mean value to obtain a relative voltage average difference; then the relative voltage difference of each unit cell (the difference between the actual voltage value of the single cell and the reference voltage) is obtained from the current calculation.
- the absolute difference of the relative voltage average difference is used as a parameter for characterizing the voltage parameter of the current time of each unit cell relative to the power battery system.
- Algorithm 2 Step 1: Add the relative voltage difference of each cell voltage to the reference voltage to obtain the actual voltage value of each cell voltage; Step 2: Take all the cells of step 1 The arithmetic mean value of the actual voltage value is obtained as an actual average voltage value; Step 3: taking the absolute difference between the actual voltage value of each of the single cells obtained in step 1 and the actual average voltage value obtained in step 2, which is used for characterization Voltage difference parameters of the current time of each unit cell relative to the power battery system:
- a single battery pack consists of five single cells.
- the reference voltage supply provides a reference voltage of 2.5V.
- the relative voltage differences collected are 0.40 V, 0.48 V, 0.51 V, 0.52 V, and 0.53 V, respectively.
- the actual voltage differences corresponding to the individual cells obtained are:
- I 0.51V-0.488V I 0.022V
- I 0.52V-0.488V I 0.032V
- the single cell with the largest difference is the cell with a difference value of 0.088V, which is equalization measure.
- the single cell with the largest difference is a single cell with a difference value of 0.088V, so the battery management system can take accurate equalization measures according to the above results.
- a dynamic average voltage parameter, that is, the reference voltage is approximately equal to the total average of all series cell voltages.
- the charge and discharge states include: a state of charge, a state of discharge, and a period of charge and discharge silence (neither charging nor intermediate state of silence when discharging).
- the present invention is not limited to the above two algorithms, and other algorithms may be used, as long as the battery having a large difference in the power battery pack can be found according to the algorithm. Even, it is not the voltage difference of the power battery unit cell, but other values reflecting the difference between the individual cells, such as the square root value of the cell voltage difference, etc., as long as it adopts: "In the same At the moment, providing a reference voltage to compare with each cell voltage to obtain a relative voltage difference between each cell and a reference voltage at the current time "this measurement method belongs to the protection range of the present invention.
- Embodiment 2 This embodiment discloses a device for collecting a voltage difference of a power battery unit cell corresponding to Embodiment 1.
- FIG. 1 it includes a comparison amplifying circuit 2, a reference voltage source 3, an A/D and communication circuit 4, and a communication bus 5 and a main controller 6.
- the number of the comparison amplifying circuit 2, the A/D and the communication circuit 4 is compared with that in the power battery pack 1
- the number of the single cells 11 included is the same, and only the case of six single cells is schematically illustrated in FIG. 1; the first comparison voltage input terminal 21 of each of the comparison amplifying circuits 2 is connected to the positive or negative electrode of one unit cell 11.
- reference voltage source 3 At the same time provide a reference voltage to the second comparison voltage input 22 of all the comparison amplifier circuit 2; compare the amplification circuit 2, will be compared, to obtain each cell The relative voltage difference between the voltage and the reference voltage; the main controller 6 calculates according to a predetermined algorithm, and obtains the voltage difference between each cell voltage and all cells at the current time relative to the power battery system according to the relative voltage difference obtained above. Parameter); between each of the comparison amplifying circuit 2 and the battery management system main controller 6, an A/D and communication circuit 4 may be connected in series; the main control of the A/D and the communication circuit 4 through the serial bus 5 The device 6 is connected.
- the reference voltage source 3 provides a reference voltage to the second comparison voltage input terminal 22 of all the comparison amplifier circuits 2 at the same time.
- constant current power supply constant current power supply, constant voltage power supply, and even any other power source whose output voltage or current changes with time.
- the first comparison voltage input terminal 21 of the comparison amplifier circuit 2 collects the actual voltage of the single battery of each unit cell 11, and inputs the first comparison voltage input terminal 21 and the second comparison voltage input terminal 22. The parameters are compared to obtain a relative voltage difference between the actual voltage of each unit cell and the current common reference voltage;
- A/D and communication circuit 4 After the above-mentioned relative difference modulus is converted, it is transmitted to the battery management system main controller 6 through the communication bus to perform calculation processing and operation according to a predetermined algorithm.
- the main controller 6 further includes: a first calculating unit 61 and a second calculating unit 62 electrically connected to each other.
- the first calculating unit 61 is electrically connected to each of the comparing and amplifying circuits 2 and the reference voltage source 3 (may be, but not limited to, through the communication bus 5 and the A/D and the communication circuit 4), for respectively taking the actual contents of the respective cells.
- An arithmetic mean of the relative voltage difference between the voltage and the common reference voltage as a relative voltage average difference; a second calculating unit 62, and a respective comparison amplifying circuit 2 (maybe, but not limited to, via the communication bus 5 and the A/D And the communication circuit 4)) and the first calculating unit 61 are electrically connected, respectively for respectively taking the absolute difference between the relative voltage difference obtained by each of the comparison amplifying circuits 2 and the relative voltage average difference obtained by the first calculating unit 61
- the value, the obtained absolute difference is taken as the actual voltage difference between the actual voltage of each unit cell and the actual average voltage value, as a parameter for characterizing the voltage difference of each unit cell with respect to the power battery system.
- Embodiment 2 The main controller 6 further includes: a third calculation unit 71, a fourth calculation unit 72, and a fifth calculation unit 73 electrically connected to each other; and a third calculation unit 71, respectively, and an output end of each comparison amplification circuit 2
- the reference voltage source 3 is electrically connected (maybe, but not limited to, via the communication bus 5 and the A/D and the communication circuit 4) for adding the relative voltage difference of each cell voltage to the common reference voltage, The sum values obtained by the respective additions are respectively taken as the actual voltage values of the individual cells; the fourth calculating unit 72 is electrically connected to the third calculating unit 71 for taking the arithmetic mean value of the actual voltage values of all the single cells.
- the fifth calculating unit 73 is electrically connected to the third calculating unit 71 and the fourth calculating unit 72, respectively, for taking the actual voltage value of each of the single cells obtained by the third calculating unit 71 and the first
- the absolute difference between the actual average voltage values obtained by the fourth calculating unit 72, and the absolute difference obtained at this time is taken as each of the individual monomers
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
本发明属于动力电池管理技术领域,具体公开了一种动力电池组单体电池的电压差异参数采集方法与采集装置。本发明在同一时刻,提供一参考电压,分别比较该一参考电压与各单体电池的实际电压,得到当前时刻各单体电池的实际电压与该共同的参考电压的相对电压差值;根据各相对电压差值,确定各单体电池的实际电压与所有单体电池的实际电压的实际平均电压值之间的实际电压差值,将各实际电压差值作为表征:本单体电池相对于动力电池系统的电压差异参数。应用本技术方案得到的单体电池的差异表征参数精度更高、成本更低,更加方便后续根据该电压差异参数对动力电池组进行有效及时的均衡管理。
Description
说 明 书
动力电池组单体电池的电压差异参数采集方法与采集装置 技术领域 本发明属于动力电池管理技术领域, 具体涉及一种动力电池组单体电池 的电压差异参数采集方法与采集装置。 背景技术 为达到电动汽车等大功率设备运行时电压、 功率及能量的要求, 电池组 多由大量动力电池串接组成使用。 虽然随着技术工艺的提高, 电池之间的差 异逐渐减小, 但是, 在当前制作工艺水平下, 仍难保证每节电池特性完全一 致。 尤其是在工况运行条件下, 频繁地进行不规则的充电、 放电, 电池组工 作一段时间后电池之间的差异会恶化, 从而, 使得电池组的使用效率降低, 寿命减小。 电池之间的不一致性不可能完全消除, 尤其这种不一致性是在其生产之 初便已存在。 为了保障电池组的应用寿命, 电池管理系统就应运而生, 它主 要工作就是发现电池之间的差异并缩小, 也就是通常所称的电池均衡技术。
电池均衡, 必须在单体电压差异远大于测量误差的情况下开始, 所以误 差大了有效均衡时间就过短, 结果只能在快充满或快放空时启动均衡, 使得 均衡效果很差。 因此, 必须在单体电池电压差异远大于测量误差的情况下均 衡才有意义, 比如: 单体电池的测量误差比单体电池之间的实际电压差异还 大, 往往均衡的是测量差异而非实际差异, 对电池组而言只能起到恶化的作 用而不能达到延长寿命的目的。 因此, 及时、 准确的检测出各个单体电池之间的差异是至关重要的。 目前, 测量动力电池组单体电池电压差值的方法都是基于测量每个单体 电池两端电压的绝对值, 然后通过软件计算各个数字之间的差异, 比如: 一、 使用高耐压的开关网络(常用继电器组成), 将电压采集模块顺序接
入到每颗单体、 或将每颗单体的电压顺序传递到一个采样电容, 然后再将此 采样电容接到电压测量模块上, 实现对单体电压的直接测量, 再通过软件计 算出单体电池之间的差异。 由于串联单体数量很多, 使得高端单体电压叠加在很高的共模电压下, 加上不断变化的工作电流在单体内阻上的压降, 使得现有技术不可能准确测 量出每颗单体的端电压。 同时, 开关网络成本高、 速度低, 无源开关耐用性 差, 有源开关漏电大、 可靠性差, 因此, 上述方法无法在实际的动力电池系 统中广泛应用。 二、 将大量单体串联组成的动力电池组分成多个模块, 每个模块内仅包 含 4〜16颗串联的单体。 这样模块内的总共模电压得到了限制, 可以采用耐压 不是特别高 (一般低于 60V ) 的差分放大器, 将共模电压去除, 得到每颗单 体的电压值, 再经过分时巡检的模拟到数字转换器 ADC转换成数字信号, 交 给电池模块的处理器进行处理。 在充满电磁干扰和动态电流内阻压降的实际环境中, 分时巡检测量得到 的结果中隐藏着大量不同类型的随机干扰, 根本没办法彻底消除, 只有通过 统计学方法, 通过对多次测量结果的复杂分析, 才能得到仍不够精确的单体 电压测量结果。 这样一来, 系统软件的复杂性大大提高, 造成系统成本提高、 可靠性降低、 功耗加大, 降低了整个管理系统的技术经济价值。 同时, 实际 的差分电路效果受到元件精度和参数漂移的制约, 也不能保证长期、 精确地 测量单体电压。 综上, 现有单体电池差异的采集方法, 都是采用常规思维: 首先采集每 个单体电池两端的绝对电压值, 然后再在该绝对电压值基础上计算获取各个 单体电池之间的差异。 这不仅仅使采集的数据误差大, 而且采集该数据的成 本也较高, 不利于电池管理系统对单体电池进行均衡管理。 发明内容
本发明实施例的第一目的在于: 提供一种动力电池组单体电池的电压差 异参数的采集方法, 其得到的单体电池的差异表征参数精度更高、 成本更低, 更加方便后续根据该电压差异参数对动力电池组进行有效及时的均衡管理。 本发明实施例的第二目的在于: 提供一种动力电池组单体电池的电压差 异参数的采集装置, 应用该装置得到的单体电池的差异表征参数精度更高、 成本更低, 更加方便后续根据该电压差异参数对动力电池组进行有效及时的 均衡管理。 为实现本发明第一目的, 所采用技术方案如下:
一种动力电池组单体电池的电压差异参数的采集方法, 其特征在于: 在同一时刻, 提供一参考电压, 比较所述参考电压与各单体电池的实际 差值;
根据各所述相对电压差值, 确定各单体电池的实际电压与所有单体电池 作为表征: 本所述单体电池相对于动力电池系统的电压差异参数。 可选的, 根据各所述相对电压差值, 分别确定各所述实际电压差值, 具 体是:
平均值, 得到一相对电压平均差值; 分别取各所述相对电压差值与所述相对电压平均差值的绝对差值, 将各 实际电压差值。 可选的, 根据各所述相对电压差值, 确定各单体电池电压与所有单体电 池电压的实际平均电压值之间的实际电压差值, 具体是:
将每个单体电池电压的相对电压差值与所述参考电压相加, 分别得每个 单体电池电压的实际电压值;
可选的, 所述参考电压为: 根据所述动力电池组充放电状态、 以及充放 电时间预先设定的一动态平均电压参数。 为实现本发明第二目的, 所采用技术方案如下:
一种动力电池组单体电池的电压差异参数的采集装置, 其特征在于: 包括至少一个比较放大电路、 以及与各所述比较放大电路电连接的一参 考电压电源、 以及主控制器; 所述参考电压电源, 用于在同一时刻提供一参考电压, 并将参考电压牵 1'J 入至各比较放大电路的第二比较电压输入端;
所述比较放大电路的数目与所述动力电池组中包含的单体电池数目相 同, 每个所述比较放大电路的第一比较电压输入端分别连接一个单体电池的 正极或负极, 用于采集各单体电池电压, 所述比较放大电路用于比较所述第 一比较电压输入端、 第二比较电压输入端输入的各单体电池的实际电压、 所
所述主控制器与各所述比较放大电路电连接, 用于根据各所述相对电压 间的实际电压差值。
可选的, 在每个所述比较放大电路与所述主控制器之间还串联有一模数 转换(A/D ) 与通信电路;
所述模数转换(A/D )与通信电路通过串行总线与所述主控制器电连接 t
可选的, 所述主控制器包括: 电连接的第一计算单元、 第二计算单元; 所述第一计算单元, 与各所述比较放大电路电连接, 用于取所有所述单体电 池的实际电压与所述参考电压的相对电压差值的算术平均值, 作为所述相对 电压平均差值;
所述第二计算单元, 分别与各所述比较放大电路以及所述第一计算单元 电连接, 用于分别取各所述相对电压差值与所述相对电压平均差值的绝对差 值之间的实际电压差值。 可选的, 所述主控制器包括: 互相电连接的第三计算单元、 第四计算单 元、 第五计算单元; 所述第三计算单元, 分别与各所述比较放大电路的输出端、 以及所述参 考电压电源电连接, 用于将各单体电池电压的相对电压差值与所述参考电压 相加, 分别得每个单体电池的实际电压值; 所述第四计算单元, 与所述第三计算单元电连接, 用于取所有单体电池 的实际电压值算术平均, 得到一实际平均电压值; 所述第五计算单元, 分别与所述第三计算单元、 第四计算单元电连接,
际电压差值。 可选的, 所述参考电压为: 根据所述动力电池组充放电状态、 以及充放 电时间所预设定的一动态平均电压参数。 由上可见, 本发明在同一时刻, 将所有单体电池与一个共同的参考电压 进行比较, 得到本单体电池在当前时刻相对该共同参考电压的相对电压差值, 该相对电压差值反映了当前该单体电池的个体情况, 该所有单体电池的实际 电压的实际平均电压值反映了当前动力电池系统中的总体状态, 然后将该相
对电压差值与当前本动力电池系统中所有单体电池的实际电压的实际平均电 压值之间的实际电压差值, 故将该实际电压差值作为本各单体电池与当前动 力电池系统的总体情况差异性, 将该量化的电压参数作为本实施例中表征各 单体电池相对于动力电池系统的电压差异参数, 在进行后续的动力电池电压 均衡管理时, 动力电池管理系统可根据该量化的各单体电池的电压差异参数, 非常直观地确定哪些单体电池的电压是偏高还是偏低, 将偏差超过预定范围 的单体电池作为当前需均衡的单体电池, 故采用本实施例技术方案成本更低, 更加方便后续根据该电压差异参数对对动力电池组进行有效及时的均衡管 理。 另外, 在本实施例中, 在获取各单体电池的个体情况时, 在本实施例中, 具体在同一时刻 (即同步地) 比较各单体电池的实际电压值与该共同的参考 电压, 将比较得到的量化的差值作为表征该单体电池的个体情况量化参数, 确定各单体电池在当前的状态, 相对于现有技术中采用的分时巡检测量各单 体电池的电压状态的技术方案 (现有技术中得到的各单体电池的状态实际是 不同时刻各单体电池的状态, 参考价值较低), 本实施例得到的个体情况量化 参数更加准确, 可比性更强, 从而保证后续得到的各单体电池的电压差异参 数的精确性更强, 进一步使后续对动力电池组进行的电压均衡更加准确、 更 加有效及时。 本发明直接在各单体电池的本地测量得到各单体电池对应的相对电压差 值, 让所有单体电压差值测量电路(一个参考电压电源以及均与该参考电压 电源电连接的多个电压比较电路)在同一时刻工作, 消除了背景技术中母线 脉动电流变化对测量结果的影响, 采用本实施例技术方案可以消除现有技术 分时测量中共模电压的影响。 应用本实施例技术方案, 在同一时刻同步地分别测定各单体电池的实际 电压, 其中各单体电池测量电路在空间上可以非常靠近相应被测的单体电池, 其相对于现有技术中中的统一分时检测技术方案可以大大削弱电磁干扰感应
电流对测量结果的影响; 另外, 在本发明实施方式中, 仅采用比较放大电路 放大了各单体电池的电压与平均值的差值部分, 大大降低了电路、元件、 ADC 的精度要求,克服了背景技术中必须使用高精度模拟电路和高位数 ADC才能 保证精度的缺陷, 从而大大降低了本实施例的成本。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 并不构成对本发明的不当限定, 在附图中:
图 1为本发明实施例 1提供的一种动力电池组单体电池的电压差异参数 的采集方法的原理示意框图。
图中:
1、 动力电池组; 11、 单体电池
2、 比较放大电路; 21、 第一比较电压输入端;
22、 第二比较电压输入端; 3、 参考电压电源;
4、 A/D与通信电路; 5、 通信总线; 6、 主控制器; 具体实施方式 下面将结合附图以及具体实施例来详细说明本发明, 在此本发明的示意 性实施例以及说明用来解释本发明, 但并不作为对本发明的限定。 实施例 1 本实施例公开了一种动力电池组单体电池电压差值的采集方法, 用于测 量确定动力电池系统中的各单体电池的电压差异, 以便于后续根据该单体电 池的电压差异在整体动力电池系统中进行电压均衡管理。 其主要的流程如下: 提供一个参考电压, 在同一时刻 (即同步地)将该参考电压分别与每个
单体电池的实际电压值进行比较, 得到各单体电池在同一当前时刻相对该共 同的参考电压的差值, 将该差值作为表征本单体电池当前时刻个体状况的参 数, 在本实施例中记为各单体电池的相对电压差值; 然后按照预定的算法, 根据各单体电池的相对电压差值, 得到当前时刻各单体电池的实际电压与所 有单体电池的实际电压的平均值(记为实际平均电压值)之间的实际电压差 值, 将得到的各实际电压差值作为表征: 各单体电池相对于动力电池系统整 体状况的电压差异参数。 以便后续根据该量化的电压差异参数, 采用动力电 池电压均衡系统快速、 及时、 有效地对动力电池系统进行均衡管理。 其中该参考电压可以由现有技术中的各种电源提供, 比如恒流电源、 恒 压电源, 甚至输出电压或电流随时间变化的其他任意电源。 在本实施例中, 可以但不限于采用以下的两种技术方案, 根据各相对电 压差值, 确定各单体电池相对于动力电池系统的电压差异参数: 算法一: 将所有单体电池的所述相对电压差值取算术平均值, 得一相对 电压平均差值; 然后取每个单体电池的相对电压差值(单体电池的实际电压 值与参考电压的差值) 与当前计算获得的相对电压平均差值的绝对差值, 将 各绝对差值作为表征各单体电池当前时刻相对于动力电池系统的电压参数差 异参数。 算法二: 步骤 1 : 将每个单体电池电压的相对电压差值与参考电压相加, 分别得每个单体电池电压的实际电压值; 步骤 2: 取步骤 1得到的所有单体电 池的实际电压值的算术平均值, 得一实际平均电压值; 步骤 3: 取步骤 1得到 的每个单体电池的实际电压值与步骤 2得到的实际平均电压值的绝对差值, 得到用于表征各单体电池当前时刻相对于动力电池系统的电压差异参数: 各
例如: 一个单体电池组由五个单体电池构成, 某一时刻, 参考电压电源 提供的参考电压为 2.5V , 各个单体电池实际电压分别为: V1=2.90V、 V2=2.98V、 V3=3.01V、 V4=3.02V、 V5=3.03V; 那么按照本实施例方法所采
集到的相对电压差值分别为 0.40 V、 0.48 V、 0.51 V、 0.52 V、 0.53V。
根据算法一计算知:
相对电压平均差值是: ( 0.40 V+0.48 V+0.51V+0.52 V+0.53V ) /5=0.488 V。 最终得到的各单体电池对应的实际电压差值分别为:
I 0.40V-0.488V I =0.088V, I 0.48V-0.488V I =0.008V ,
I 0.51V-0.488V I =0.022V, I 0.52V-0.488V I =0.032V ,
I 0.53V-0.488V I =0.042V。
由上可知, 最大差异的单体电池就是差异值为 0.088V对应的单体电池, 均衡措施。
根据算法二计算知:
采集到的每个单体电池电压的实际电压值为: Vl=0.40 V+2.5V=2.90V , V2=0.48 V+2.5V=2.98V,
V3=0.51 V+2.5V=3.01V , V4=0.52 V+2.5V=3.02V,
V5=0.53V+2.5V=3.03V;
实际平均电压值: 2.988V;
最终得到的各单体电池对应的实际电压差值为:
I 2.90V-2.988V I =0.088V, I 2.98V-2.988V I =0.008V ,
I 3.01V-2.988V I =0.022V, I 3.02V-2.988V I =0.032V ,
I 3.03V-2.988V I =0.042V。
由上可知, 最大差异的单体电池就是差异值为 0.088V的单体电池, 那么 电池管理系统就可以根据上述结果采取准确的均衡措施。
当然, 在实际采集过程中设定的参考电压越接近真实电压的平均值, 测 量精度就更高, 因此, 最好将参考电压为根据动力电池组充放电状态、 以及 充放电时间所设定的一个动态平均电压参数, 也即是使得参考电压近似等于 所有串联单体电池电压的总平均值。 充放电状态包括: 充电状态、 放电状态、 以及充放电静默期间 (既不是充电、 也不是放电的静默时的中间状态)。 它可 通过直接对电池组总电压, 按照串联的节数进行分压得到。 需要说明的是, 本发明不限于上述两种算法, 还可以有其他算法, 只要 根据该算法能够找出动力电池组中差异较大的电池即可。 甚至, 采集的不是 动力电池组单体电池电压差值, 而是其他反映各个单体电池之间差异的值, 比如单体电池电压差值的平方根值等等, 只要其采用了: "在同一时刻, 提供 一参考电压与每个单体电池电压进行比较, 得到各单体电池与当前时刻的参 考电压的相对电压差值"这种测量方法, 都属于本发明的保护范围。 需要说明的是, 在本实施例中, 由于本发明实施例在同一时刻 (即同步 地) 比较各单体电池与唯一的一参考电压的差值, 确定各单体电池在同一时 刻的状态, 而由于采用唯一的共同参考电压, 该共同参考电压在同一时刻的 电压唯一确定, 即参考电压的变化(比如波动或者干扰) 均不会对测量结果 产生影响, 故在本实施例中该动态电压的提供源可以为动态电压源, 即提供 的电压可以随时间变化, 进一步在保证测量稳定性以及精确性的基础上可有 效降低设备成本。 实施例 2 本实施例公开了与实施 1 相对应的动力电池组单体电池电压差值的采集 装置。 如图 1所示, 它包括比较放大电路 2、 参考电压电源 3、 A/D与通信电 路 4、 以及通信总线 5、 主控制器 6。 其中, 比较放大电路 2、 A/D与通信电路 4的数目与所述动力电池组 1中
包含的单体电池 11数目相同,图 1中仅仅示意性画出了 6个单体电池的情况; 每个比较放大电路 2的第一比较电压输入端 21连接一个单体电池 11的正极 或负极, 以采集每个单体电池电压; 参考电压电源 3 , 在同一时刻提供一参考 电压给所有比较放大电路 2的第二比较电压输入端 22; 比较放大电路 2, 将 较, 得到各单体电池电压与所述参考电压的相对电压差值; 主控制器 6按照 预定的算法计算, 根据上述得到的相对电压差值得到各单体电池电压与所有 池在当前时刻相对于动力电池系统的电压差异参数); 在每个比较放大电路 2 与所述电池管理系统主控制器 6之间还可以串联有一 A/D与通信电路 4; A/D 与通信电路 4通过串行总线 5与的主控制器 6连接。
如图 1所示, 本装置工作时:
1、 参考电压电源 3 , 在同一时刻提供一个参考电压给所有比较放大电路 2的第二比较电压输入端 22。
比如恒流电源、 恒压电源, 甚至输出电压或电流随时间变化的其他任意 电源。
2、 同时, 比较放大电路 2的第一比较电压输入端 21采集每个单体电池 11的单体电池的实际电压, 并将第一比较电压输入端 21、 以及第二比较电压 输入端 22输入的参数进行比较, 得到各单体电池的实际电压与当前共同的参 考电压的相对电压差值;
3、 A/D与通信电路 4, 将上述相对差值模数转换后, 通过通信总线传输 给电池管理系统主控制器 6按照预定的算法进行计算处理以及运用。
本实施例所采用的根据各相对电压差值, 确定表征各单体电池相对于动 力电池系统的电压差异参数的技术方案原理与实施例 1 提供的相同, 其在实 际的实施中可以但不限于分别采用图 2、 3所示的实施结构。
可选的实施方案一: 主控制器 6还进一步包括: 互相电连接的第一计算 单元 61、 第二计算单元 62。 其中, 第一计算单元 61与各比较放大电路 2以及参考电压电源 3分别电 连接 (可以但不限于通过通信总线 5以及 A/D与通信电路 4 ), 用于分别取各 单体电池的实际电压与该共同参考电压的相对电压差值的算术平均值, 作为 相对电压平均差值; 第二计算单元 62, 分别与各比较放大电路 2 ( (可以但不限于通过通信总 线 5以及 A/D与通信电路 4 ) ) 以及所述第一计算单元 61电连接, 用于分别 取各各比较放大电路 2得到的各相对电压差值与第一计算单元 61得到的相对 电压平均差值的绝对差值, 将各得到的绝对差值作为各单体电池的实际电压 与实际平均电压值之间的实际电压差值, 作为表征各单体电池相对于动力电 池系统的电压差异参数。 实施方案二: 主控制器 6还进一步包括: 互相电连接的第三计算单元 71、 第四计算单 元 72、 第五计算单元 73; 第三计算单元 71 , 分别与各比较放大电路 2的输出端、 以及参考电压电 源 3电连接 (可以但不限于通过通信总线 5以及 A/D与通信电路 4 ), 用于将 各单体电池电压的相对电压差值与该共同的参考电压相加, 将各相加得到的 和值, 分别作为各个单体电池的实际电压值; 第四计算单元 72, 与第三计算单元 71电连接, 用于取所有单体电池的实 际电压值的算术平均值, 得到一实际平均电压值; 第五计算单元 73 , 分别与第三计算单元 71、 第四计算单元 72电连接, 用于取第三计算单元 71得到的每个单体电池的实际电压值与第四计算单元 72 得到的实际平均电压值的绝对差值, 将此时得到的绝对差值作为各所述单体
电池在当前时刻相对于动力电池系统的电压差异参数。 以上对本发明实施例所提供的技术方案进行了详细介绍, 本文中应用了 明只适用于帮助理解本发明实施例的原理; 同时, 对于本领域的一般技术人 员, 依据本发明实施例, 在具体实施方式以及应用范围上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。
Claims
权 利 要 求 书
提供一相参考电压, 在同一时刻: 比较所述参考电压与各单体电池的实 际电压, 得到各所述单体电池在当前时刻的实际电压与所述参考电压的相对 电压差值;
根据各所述相对电压差值, 确定各单体电池的实际电压与所有单体电池 作为表征: 本所述单体电池相对于动力电池系统的电压差异参数。
2、据权利要求 1所述的动力电池组中单体电池的电压差异参数采集方法, 其特征在于:
根据各所述相对电压差值, 分别确定各所述实际电压差值, 具体是: 平均值, 得到一相对电压平均差值;
分别取各所述相对电压差值与所述相对电压平均差值的绝对差值, 将各 实际电压差值。
3、根据权利要求 1所述的动力电池组单体电池的电压差异参数采集方法, 其特征在于:
根据各所述相对电压差值, 确定各单体电池电压与所有单体电池电压的 实际平均电压值之间的实际电压差值, 具体是:
将每个单体电池电压的相对电压差值与所述参考电压相加, 分别得每个 单体电池电压的实际电压值;
4、 根据权利要求 1至 3任一项所述的动力电池组单体电池的电压差异参 所述参考电压为: 根据所述动力电池组充放电状态、 以及充放电时间预 先设定的一随时间变化的电压参数。
5、 一种动力电池组单体电池的电压差异参数的采集装置, 其特征在于: 包括至少一个比较放大电路、 以及与各所述比较放大电路电连接的一参 考电压电源、 以及主控制器;
所述参考电压电源, 用于提供一个参考电压, 并将参考电压输入至各比 较放大电路的第二比较电压输入端;
所述比较放大电路的数目与所述动力电池组中包含的单体电池数目相 同, 各个所述比较放大电路的第一比较电压输入端分别连接一个单体电池的 正极或负极, 用于采集各单体电池电压,
各所述比较放大电路分别用于同一时刻比较所述第一比较电压输入端、 第二比较电压输入端输入的各单体电池的实际电压、 所述参考电压, 得到各 单体电池在当前时刻的实际电压与所述参考电压的相对电压差值;
所述主控制器与各所述比较放大电路电连接, 用于根据各所述相对电压 间的实际电压差值。
6、 根据权利要求 5所述的动力电池组单体电池的电压差异参数的采集装 置, 其特征在于:
在每个所述比较放大电路与所述主控制器之间还串联有一模数转换 ( A/D ) 与通信电路;
所述模数转换(A/D )与通信电路通过串行总线与所述主控制器电连接。
7、 根据权利要求 6所述的动力电池组单体电池的电压差异参数的采集装 置, 其特征在于:
所述主控制器包括: 电连接的第一计算单元、 第二计算单元; 所述第一 计算单元, 与各所述比较放大电路电连接, 用于取所有所述单体电池的实际 电压与所述参考电压的相对电压差值的算术平均值, 作为所述相对电压平均 差值; 电连接, 用于分别取各所述相对电压差值与所述相对电压平均差值的绝对差 值,
值之间的实际电压差值。
8、 根据权利要求 6所述的动力电池组单体电池的电压差异参数的采集装 置, 其特征在于:
所述主控制器包括: 互相电连接的第三计算单元、 第四计算单元、 第五 计算单元;
所述第三计算单元, 分别与各所述比较放大电路的输出端、 以及所述参 考电压电源电连接, 用于将各单体电池电压的相对电压差值与所述参考电压 相加, 分别得每个单体电池的实际电压值;
所述第四计算单元, 与所述第三计算单元电连接, 用于取所有单体电池 的实际电压值算术平均, 得到一实际平均电压值;
际电压差值。
9、 根据权利要求 5至 8任一项所述的动力电池组单体电池的电压差异参 数的采集装置, 其特征在于:
所述参考电压为: 根据所述动力电池组充放电状态、 以及充放电时间而 预先设定的一随时间变化的电压参数。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/883,853 US9417289B2 (en) | 2010-11-09 | 2011-08-15 | Method and apparatus for collecting voltage differential parameters of individual battery cells in battery pack |
EP11839045.9A EP2639592A1 (en) | 2010-11-09 | 2011-08-15 | Method and apparatus for collecting voltage differential parameters of individual battery cells in battery pack |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010538921.5 | 2010-11-09 | ||
CN2010105389215A CN102466785A (zh) | 2010-11-09 | 2010-11-09 | 动力电池组单体电池电压差值的采集方法与采集装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012062142A1 true WO2012062142A1 (zh) | 2012-05-18 |
Family
ID=46050380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/078424 WO2012062142A1 (zh) | 2010-11-09 | 2011-08-15 | 动力电池组单体电池的电压差异参数采集方法与采集装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9417289B2 (zh) |
EP (1) | EP2639592A1 (zh) |
CN (1) | CN102466785A (zh) |
WO (1) | WO2012062142A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102866358A (zh) * | 2012-08-03 | 2013-01-09 | 惠州市蓝微电子有限公司 | 高串数锂电池包电压检测电路及应用其的电池包保护电路 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102981041B (zh) * | 2012-11-10 | 2015-05-27 | 中山普润斯电源设备技术有限公司 | 一种单体电池监控系统 |
CN103837829B (zh) * | 2012-11-27 | 2016-08-31 | 上海航天有线电厂 | 一种智能补偿两线式动力锂离子电池测量系统 |
CN104050728A (zh) * | 2014-05-29 | 2014-09-17 | 国家电网公司 | 基于无线互联网的电动汽车充换桩巡检系统 |
CN105548907B (zh) * | 2016-01-15 | 2018-11-06 | 北京交通大学 | 基于电池管理系统的新能源车辆数据记录方法 |
US20170338674A1 (en) * | 2016-05-19 | 2017-11-23 | Brocere Electronics company limited | Method for controlling charge states of battery cells connected in series and associated charge system |
CN106300548A (zh) * | 2016-09-27 | 2017-01-04 | 北海益生源农贸有限责任公司 | 一种电池智能管理系统 |
CN107221719A (zh) * | 2017-06-26 | 2017-09-29 | 苏州英诺威新能源有限公司 | 一种电池电压采集系统、采集控制系统及采集控制方法 |
US10921381B2 (en) | 2017-07-28 | 2021-02-16 | Northstar Battery Company, Llc | Systems and methods for monitoring and presenting battery information |
CN108196195B (zh) * | 2017-12-27 | 2020-12-22 | 银隆新能源股份有限公司 | 电池组装方法、装置及设备 |
CN108110345A (zh) * | 2018-01-29 | 2018-06-01 | 吉林龙璟科技有限公司 | 可任意配置串联蓄电池组蓄电池单体个数的装置及方法 |
CN110888074B (zh) * | 2018-08-15 | 2022-02-01 | 上海汽车集团股份有限公司 | 用于soc初始值计算的电压确定方法及装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4647860A (en) * | 1984-05-15 | 1987-03-03 | Marshall James A | Apparatus for automating standard voltage reference cell intercomparisons |
JP2004080909A (ja) * | 2002-08-19 | 2004-03-11 | Honda Motor Co Ltd | 組電池の残容量均等化装置 |
JP2006284538A (ja) * | 2005-04-05 | 2006-10-19 | Nissan Motor Co Ltd | 電圧検出装置 |
CN101144850A (zh) * | 2007-10-29 | 2008-03-19 | 清华大学 | 燃料电池电压衰减快速测量方法及装置 |
CN101196540A (zh) * | 2006-12-07 | 2008-06-11 | 三洋电机株式会社 | 电压检测电路 |
CN201174408Y (zh) * | 2004-10-04 | 2008-12-31 | 布莱克和戴克公司 | 监视电池组电池的设备及在充电期间平衡电池电压的装置 |
TW201029289A (en) * | 2009-01-23 | 2010-08-01 | O2Micro Inc | System and method for balancing battery cells |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2319983A1 (fr) * | 1975-07-30 | 1977-02-25 | Procede et dispositif de controle d'une batterie d'accumulateurs | |
WO1997036182A1 (en) * | 1996-03-27 | 1997-10-02 | Battery & Electrochemical Research Institute, S.A. | Energy device analysis and evaluation |
JP2002204537A (ja) * | 2000-12-28 | 2002-07-19 | Japan Storage Battery Co Ltd | 組電池装置 |
FR2852149B1 (fr) * | 2003-03-04 | 2005-04-08 | Cit Alcatel | Dispositif et procede perfectionnes de controle de tension de generateurs electrochimiques de batterie rechargeable |
JP4283615B2 (ja) * | 2003-08-14 | 2009-06-24 | パナソニックEvエナジー株式会社 | 二次電池の電圧補正方法および装置、並びに二次電池の残存容量推定方法および装置 |
FR2899340B1 (fr) * | 2006-03-31 | 2008-05-23 | Atmel Grenoble Soc Par Actions | Circuit de mesure et controle de tensions differentielles |
CN201038268Y (zh) * | 2007-01-19 | 2008-03-19 | 华南理工大学 | 一种集散式动力电池组动态均衡管理器 |
EP2110679B1 (en) * | 2007-02-08 | 2013-04-10 | Panasonic EV Energy Co., Ltd. | Device and method for detecting abnormality of electric storage device |
-
2010
- 2010-11-09 CN CN2010105389215A patent/CN102466785A/zh active Pending
-
2011
- 2011-08-15 WO PCT/CN2011/078424 patent/WO2012062142A1/zh active Application Filing
- 2011-08-15 US US13/883,853 patent/US9417289B2/en active Active
- 2011-08-15 EP EP11839045.9A patent/EP2639592A1/en not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4647860A (en) * | 1984-05-15 | 1987-03-03 | Marshall James A | Apparatus for automating standard voltage reference cell intercomparisons |
JP2004080909A (ja) * | 2002-08-19 | 2004-03-11 | Honda Motor Co Ltd | 組電池の残容量均等化装置 |
CN201174408Y (zh) * | 2004-10-04 | 2008-12-31 | 布莱克和戴克公司 | 监视电池组电池的设备及在充电期间平衡电池电压的装置 |
JP2006284538A (ja) * | 2005-04-05 | 2006-10-19 | Nissan Motor Co Ltd | 電圧検出装置 |
CN101196540A (zh) * | 2006-12-07 | 2008-06-11 | 三洋电机株式会社 | 电压检测电路 |
CN101144850A (zh) * | 2007-10-29 | 2008-03-19 | 清华大学 | 燃料电池电压衰减快速测量方法及装置 |
TW201029289A (en) * | 2009-01-23 | 2010-08-01 | O2Micro Inc | System and method for balancing battery cells |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102866358A (zh) * | 2012-08-03 | 2013-01-09 | 惠州市蓝微电子有限公司 | 高串数锂电池包电压检测电路及应用其的电池包保护电路 |
CN102866358B (zh) * | 2012-08-03 | 2015-07-15 | 惠州市蓝微电子有限公司 | 高串数锂电池包电压检测电路及应用其的电池包保护电路 |
Also Published As
Publication number | Publication date |
---|---|
CN102466785A (zh) | 2012-05-23 |
US20130245974A1 (en) | 2013-09-19 |
EP2639592A1 (en) | 2013-09-18 |
US9417289B2 (en) | 2016-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012062142A1 (zh) | 动力电池组单体电池的电压差异参数采集方法与采集装置 | |
CN103344921B (zh) | 锂离子动力电池健康状态评估系统及方法 | |
CN102269798B (zh) | 一种检测故障电池的方法及装置 | |
CN108459278B (zh) | 一种锂离子电池内阻与荷电状态同步估算方法 | |
TWI491901B (zh) | Battery metering method, metering device and battery-powered equipment | |
CN110361653B (zh) | 一种基于混合储能装置的soc估算方法及系统 | |
CN104242393A (zh) | 基于动态soc估算系统的电池管理系统 | |
WO2023207404A1 (zh) | 一种电池内阻检测方法和电池内阻检测电路 | |
CN107290669A (zh) | 一种退役电动汽车动力电池箱的诊断方法 | |
CN109085505A (zh) | 一种动力电池充放电状态估算方法 | |
CN109752660B (zh) | 一种无电流传感器的电池荷电状态估计方法 | |
CN102967831B (zh) | 一种铅酸蓄电池性能在线检测系统及检测方法 | |
CN110632520A (zh) | 一种动力电池soc的估算装置及其估算方法 | |
CN108693483A (zh) | 一种电池包荷电状态的计算方法及系统 | |
CN105738828B (zh) | 一种电池容量精准测量方法 | |
CN110133528B (zh) | 一种在线自学习锂电池的内阻测量装置及其测量方法 | |
CN204030697U (zh) | 基于动态soc估算系统的电池管理系统 | |
CN103135057B (zh) | 一种电池自放电性能的快速测量方法 | |
CN105044440A (zh) | 一种基于ltc6803的燃料电池单片电压巡检系统 | |
CN112379271B (zh) | 一种考虑钝化的碳包式锂亚硫酰氯电池容量检测方法 | |
CN107402356B (zh) | 一种基于动态参数辨识的ekf估算铅酸电池soc方法 | |
CN117872189A (zh) | 一种用于并联电池簇的阻抗在线监测系统及方法 | |
CN108710085A (zh) | 一种动力电池的待均衡单体筛选方法及系统 | |
CN103823118A (zh) | 一种均衡过程中的单体电池内阻测量装置及方法 | |
CN106646260A (zh) | 一种基于遗传神经网络的bms系统的soc的估算方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11839045 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2011839045 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13883853 Country of ref document: US Ref document number: 2011839045 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |