WO2012060516A1 - 폴리카보네이트 수지 및 상기 폴리카보네이트 수지를 포함하는 열가소성 수지 조성물 - Google Patents

폴리카보네이트 수지 및 상기 폴리카보네이트 수지를 포함하는 열가소성 수지 조성물 Download PDF

Info

Publication number
WO2012060516A1
WO2012060516A1 PCT/KR2010/009595 KR2010009595W WO2012060516A1 WO 2012060516 A1 WO2012060516 A1 WO 2012060516A1 KR 2010009595 W KR2010009595 W KR 2010009595W WO 2012060516 A1 WO2012060516 A1 WO 2012060516A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
group
formula
resin composition
polycarbonate
Prior art date
Application number
PCT/KR2010/009595
Other languages
English (en)
French (fr)
Inventor
김미옥
배진용
권오성
장복남
Original Assignee
제일모직주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직주식회사 filed Critical 제일모직주식회사
Priority to EP10859318.7A priority Critical patent/EP2636695A4/en
Priority to CN201080069971.1A priority patent/CN103201312B/zh
Publication of WO2012060516A1 publication Critical patent/WO2012060516A1/ko
Priority to US13/887,348 priority patent/US8871875B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • C08G64/186Block or graft polymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/445Block-or graft-polymers containing polysiloxane sequences containing polyester sequences
    • C08G77/448Block-or graft-polymers containing polysiloxane sequences containing polyester sequences containing polycarbonate sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • C08G77/52Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences

Definitions

  • the present invention relates to a polycarbonate resin and a thermoplastic resin composition comprising the polycarbonate resin. More specifically, the present invention relates to a polycarbonate resin excellent in impact resistance, chemical resistance and transparency, and a thermoplastic resin composition comprising the polycarbonate resin.
  • Polycarbonate is a thermoplastic resin having an aromatic polycarbonate ester bond. It is excellent in mechanical properties, self-extinguishing, dimensional stability, heat resistance and transparency. Engineering plastics. In recent years, the use of such polycarbonate has been further expanded, and many researches for improving the properties of the polycarbonate for various applications. In particular, there have been many reports on studies of controlling various properties by copolymerizing with diols of two or more different structures and including polymers having different structures in the polycarbonate backbone. For example, Patent Application No. 2009-0035031 discloses an attempt to improve chemical resistance and flame retardant properties by copolymerizing a specific structure with polycarbonate.
  • US Pat. No. 4,188,314 discloses moldings having improved chemical resistance, including polycarbonates and copolyesters, but sufficient impact strength cannot be obtained by this method, and US Pat. No. 4,634,737 is 25-90.
  • a resin composition comprising a copolymerized polycarbonate having a mole% ester bond and a copolyester and an olefin acrylate copolymer is disclosed, but such compositions have improved chemical resistance and very low transparency.
  • Another technical attempt has been to increase chemical resistance by introducing other polymers into the polycarbonate backbone. In particular, studies have been made on polycarbonates including polysiloxane structures, but most of them have increased chemical resistance and impact resistance. Transparency is lowered.
  • Patent applications 2006-0058195 and 2007-0071592 attempt to improve chemical resistance through blending with polyester or polysulfone resins.
  • U.S. Patent 5,401,826 attempts to improve by copolymerizing certain chemical structures into polycarbonates.
  • An object of the present invention is to provide a polycarbonate resin excellent in impact resistance and chemical resistance.
  • Another object of the present invention is to provide a polycarbonate resin having excellent impact resistance and chemical resistance while having high transparency.
  • Still another object of the present invention is to provide a thermoplastic resin composition comprising a polycarbonate resin having excellent impact resistance and chemical resistance while having high transparency.
  • the present invention provides a polycarbonate resin comprising a repeating unit structure of the formula (1) in the main chain.
  • R, R 1 to R 8 are, each independently, C 1 -C 10 alkyl, C 6 -C 18 aryl group, a halogen atom and a C 1 -C 10 alkoxy substituted with one or more selected from the group consisting of C 1 -C 10 alkyl group or C 6 -C 18 aryl group
  • a and B are each independently a C 1 -C 10 alkylene group, C 6 -C 18 arylene group, -O- or -S-
  • Z is A C 1 -C 18 alkylene group or a C 6 -C 18 cycloalkylene group or a substituted or unsubstituted C 6 -C 18 arylene group
  • X and Y are each independently a hydrogen atom, a halogen atom, a C 1 -C 18 alkoxy Group, a C 1 -C 10 alkyl group or a C 6 -C 18 aryl group
  • n and m are positive integers,
  • the repeating unit of Formula 1 is 2.8 to 3.4% by weight of the total polycarbonate resin.
  • the content of Si is 4.7 to 4.9% by weight of the total polycarbonate resin.
  • the repeating unit of Formula 1 is 2.3 to 2.5% by weight of the total polycarbonate resin, while at the same time the content of Si is 5.5 to 7.0% by weight of the total polycarbonate resin.
  • Z is a substituted or unsubstituted C 1 -C 18 alkylene group, a substituted or unsubstituted C 6 -C 18 cycloalkylene group, or a substituted or unsubstituted C 6 -C 18 arylene group.
  • Z is preferably a substituted or unsubstituted C 1 -C 10 alkylene group, a substituted or unsubstituted C 6 -C 10 cycloalkylene group, or a substituted or unsubstituted C 6 -C 10 arylene group.
  • the substituent may include a C 1 -C 6 alkyl group, a C 6 -C 18 aryl group or a halogen.
  • the substituent is preferably a preferably C 1 -C 3 alkyl group than the C 1 -C 6 alkyl group.
  • Si may be bonded to a Z group itself or a substituent included in the Z group.
  • X and Y are each independently H, halogen, C 1 -C 18 alkoxy, C 1 -C 10 alkyl group or C 6 -C 18 aryl group.
  • X and Y are each independently H or C 1 -C 3 alkoxy, more preferably H or methoxy.
  • X and Y may be each independently present in one to four, preferably one to two, benzene moieties.
  • the bonding positions of X and Y may be independently bonded at any one of 2,3,5,6 of benzene. Preferably it may be bonded at the 3 position of benzene.
  • the present invention provides a thermoplastic resin composition comprising the polycarbonate resin and the additive according to the present invention.
  • Z in the compound of Formula 1 is a C 3 -C 12 cycloalkylene group, the notched IZOD impact strength of the 1/4 "thickness specimen measured by ASTM D256 60 To 90 kgfcm / cm.
  • Z in the compound of Formula 1 is a linear C 1 -C 10 alkyl group, the haze (Hz) measured by a haze meter (Haze meter) for the specimen extruded to a thickness of 2.5 mm 0.1-10%, combat overlight (TT) 85-99%.
  • Z in the compound of Formula 1 is a C 6 -C 18 arylene group, the tensile strength change of 7-25 days before and after immersing ASTM No. 1 dumbbell specimens in gasoline.
  • the present invention provides a molded article prepared from the thermoplastic resin composition according to the present invention.
  • the present invention is to provide a polycarbonate resin having a high transparency and at the same time excellent in impact properties and chemical resistance to organic solvents by introducing a polysiloxane repeating unit in the backbone of the polycarbonate.
  • the present invention is to develop a polycarbonate resin composition that has improved chemical resistance and impact resistance and at the same time maintain transparency, the polysiloxane polymer having a specific chemical structure that can be effective in improving the chemical resistance and impact resistance This subject was achieved by introducing into a carbonate backbone.
  • the present invention is formed by introducing a repeating unit of the formula (1) to the polycarbonate in the main chain.
  • R, R 1 to R 8 are, each independently, C 1 -C 10 alkyl, C 6 -C 18 aryl group, a halogen atom and a C 1 -C 10 alkoxy substituted with one or more selected from the group consisting of C 1 -C 10 alkyl group or C 6 -C 18 aryl group
  • a and B are each independently a C 1 -C 10 alkylene group, C 6 -C 18 arylene group, -O- or -S-
  • Z is A C 1 -C 18 alkylene group or a C 6 -C 18 cycloalkylene group or a substituted or unsubstituted C 6 -C 18 arylene group
  • X and Y are each independently a hydrogen atom, a halogen atom, a C 1 -C 18 alkoxy Group, a C 1 -C 10 alkyl group or a C 6 -C 18 aryl group
  • n and m are positive integers,
  • Z is a substituted or unsubstituted C 1 -C 18 alkylene group, a substituted or unsubstituted C 6 -C 18 cycloalkylene group, or a substituted or unsubstituted C 6 -C 18 arylene group.
  • Z is preferably a substituted or unsubstituted C 1 -C 10 alkylene group, a substituted or unsubstituted C 6 -C 10 cycloalkylene group, or a substituted or unsubstituted C 6 -C 10 arylene group.
  • the substituent may include a C 1 -C 6 alkyl group, a C 6 -C 18 aryl group or a halogen.
  • the substituent is preferably a preferably C 1 -C 3 alkyl group than the C 1 -C 6 alkyl group.
  • Si may be bonded to a Z group itself or a substituent included in the Z group.
  • X and Y are each independently H, halogen, C 1 -C 18 alkoxy, C 1 -C 10 alkyl group or C 6 -C 18 aryl group.
  • X and Y are each independently H or C 1 -C 3 alkoxy, more preferably H or methoxy.
  • X and Y may be each independently present in one to four, preferably one to two, benzene moieties.
  • the bonding positions of X and Y may be independently bonded at any one of 2,3,5,6 of benzene. Preferably it may be bonded at the 3 position of benzene.
  • the polycarbonate resin which may include the polysiloxane repeating unit of Formula 1 may be prepared by reacting a diphenol represented by Formula 2 with at least one compound selected from the group consisting of phosgene, halogen esters, and carbonate esters.
  • A is a single bond, substituted or unsubstituted C 1 to C 30 linear or branched alkylene group, substituted or unsubstituted C 2 to C 5 alkenylene group, substituted or unsubstituted C 2 to C 5 alkylidene group, substituted or unsubstituted C 1 to C 30 straight or branched haloalkylene group, substituted or unsubstituted C 5 to C 6 cycloalkylene group, substituted or unsubstituted C 5 to C 6 cycloalkenylene group, substituted or unsubstituted C 5 to C 10 cycloalkylidene group, substituted or unsubstituted C 6 to C 30 arylene group, substituted or unsubstituted C 1 to C 20 is a linear or branched alkoxylene group, a halogen acid ester group, a carbonate ester group, a linking group selected from the group consisting of CO, S and SO 2 ,
  • substituted means that the hydrogen atom is a halogen group, C 1 to C 30 alkyl group, C 1 to C 30 haloalkyl group, C 6 to C 30 aryl group, C 1 to C 20 alkoxy group and combinations thereof Mean substituted by a substituent selected from the group consisting of.
  • the diphenols represented by the formula (2) may combine two or more kinds to constitute a repeating unit of the polycarbonate resin.
  • Specific examples of the diphenols include hydroquinone, resorcinol, 4,4'-dihydroxydiphenyl, 2,2-bis (4-hydroxyphenyl) propane (also called 'bisphenol-A'), 2, 4-bis (4-hydroxyphenyl) -2-methylbutane, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 2,2-bis (3-chloro 4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl) propane, 2 , 2-bis (3,5-dibromo-4-hydroxyphenyl) propane, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) ketone, bis (4-hydroxyphenyl) Ether and the like.
  • diphenols specifically 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl) propane or 1,1-bis (4- Hydroxyphenyl) cyclohexane can be used. Moreover, 2, 2-bis (4-hydroxyphenyl) propane can be used more specifically among these.
  • the polycarbonate resin may be a mixture of copolymers prepared from two or more kinds of diphenols. Also, the polycarbonate resin may be a linear polycarbonate resin, a branched polycarbonate resin, a polyester carbonate copolymer resin, or the like.
  • group polycarbonate resin etc. are mentioned as said linear polycarbonate resin.
  • the branched polycarbonate resins include those produced by reacting polyfunctional aromatic compounds such as trimellitic anhydride, trimellitic acid, and the like with diphenols and carbonates.
  • the polyfunctional aromatic compound may be included in an amount of 0.05 to 2 mol% based on the total amount of the branched polycarbonate resin.
  • said polyester carbonate copolymer resin what was manufactured by making bifunctional carboxylic acid react with diphenols and a carbonate is mentioned. In this case, a diaryl carbonate such as diphenyl carbonate may be used as the carbonate.
  • Polycarbonate resin of the present invention is formed by copolymerizing together the siloxane polymer of the formula (3) in addition to the diphenols represented by the formula (2). That is, the polycarbonate resin of the present invention may be prepared by copolymerizing a compound of Formula 3 with at least one compound selected from the group consisting of diphenols represented by Formula 2, phosgene, halogen acid esters, and carbonate esters.
  • R, R 1 to R 8 are, each independently, C 1 -C 10 alkyl, C 6 -C 18 aryl group, a halogen atom and a C 1 -C 10 alkoxy substituted with one or more selected from the group consisting of C 1 -C 10 alkyl group or C 6 -C 18 aryl group
  • a and B are each independently a C 1 -C 10 alkylene group, C 6 -C 18 arylene group, -O- or -S-
  • Z is A C 1 -C 18 alkylene group or a C 6 -C 18 cycloalkylene group or a substituted or unsubstituted C 6 -C 18 arylene group
  • X and Y are each independently a hydrogen atom, a halogen atom, a C 1 -C 18 alkoxy Group, a C 1 -C 10 alkyl group or a C 6 -C 18 aryl group
  • n and m are positive integers,
  • the siloxane polymer production method of the present invention is as follows.
  • bishydroxyarylsiloxane represented by Formula 4 may be reacted with a phenol derivative represented by Formula 6 to a siloxane terminated with a hydride represented by Formula 5 below: Synthesizing the monohydroxysiloxane represented by (first step); And
  • It may be prepared including a step (second step) of reacting the monohydroxysiloxane and the diene.
  • R 1 and R 2 are each independently a C 1 -C 10 alkyl group, a C 6 -C 18 aryl group, or a C 1 -C 10 alkyl group or a C 6 -C 18 aryl group having a halogen or alkoxy group,
  • A is a C 1 -C 10 alkylene group, a C 6 -C 18 arylene group, or a C 1 -C 10 alkylene group or a C 6 -C 18 arylene group having -O- or -S-,
  • B is a C 1 -C 10 alkylene group or C 6 -C 18 arylene group having a double bond at the terminal, or a C 1 -C 10 alkylene group having a double bond at the terminal and -O- or -S- or C 6 -C 18 arylene group,
  • Z is a substituted or unsubstituted C 1 -C 18 alkylene group, a substituted or unsubstituted C 6 -C 18 cycloalkylene group, or a substituted or unsubstituted C 6 -C 18 arylene group,
  • Y is H, halogen, C 1 -C 18 alkoxy, C 1 -C 10 alkyl group or C 6 -C 18 aryl group,
  • n is an integer of 4 to 100.
  • the first step is a step of synthesizing the monohydroxysiloxane represented by the formula (7) by reacting the siloxane terminated with the hydride represented by the formula (5) and the phenol derivative represented by the formula (6) in the presence of a catalyst.
  • a catalyst containing platinum may be used.
  • the catalyst may be a platinum element itself or a compound comprising platinum.
  • the catalyst may be used at 10 to 500 ppm, preferably 50 to 150 ppm.
  • the reaction can be carried out in an organic solvent, for example, but not limited to 1,2-dichloroethane, toluene, xylene, dichlorobenzene or a mixed solvent thereof.
  • organic solvent for example, but not limited to 1,2-dichloroethane, toluene, xylene, dichlorobenzene or a mixed solvent thereof.
  • toluene Preferably in toluene.
  • the reaction may control the reaction temperature and reaction time according to the reactivity of the formula (5) and 6.
  • the reaction may be performed at a reaction temperature of 60 to 140 ° C., preferably 110 to 120 ° C., for 2 to 12 hours and preferably for 3 to 5 hours.
  • the compound of formula 7 prepared in the first step can be purified and used in the next step or in situ in the next step without further purification.
  • the second step is to prepare a bishydroxyarylsiloxane by reacting a monohydroxysiloxane represented by the formula (7) with a diene.
  • the diene may be a diene including a substituted or unsubstituted C 1 -C 18 alkyl group, a substituted or unsubstituted C 6 -C 18 cycloalkyl group, or a substituted or unsubstituted C 6 -C 18 aryl group.
  • the substituent may include a C 1 -C 6 alkyl group, a C 6 -C 18 aryl group or a halogen.
  • the substituent is preferably a C 1 -C 6 alkyl group, more preferably a C 1 -C 3 alkyl group.
  • the bishydroxyarylsiloxane may be prepared by reacting in situ by adding diene without purifying the compound of Formula 7.
  • reaction temperature and reaction time in the reaction of the monohydroxyarylsiloxane and the diene can be appropriately controlled.
  • the reaction temperature and reaction time used in the first step may be used as they are, but are not limited thereto.
  • the bishydroxyarylsiloxane thus prepared can be purified and obtained through conventional methods. For example, after completion of the second step, the reaction is filtered to remove the catalyst. The obtained filtrate is concentrated to remove the reaction solvent and the by-product of low molecular weight, thereby obtaining bishydroxyarylsiloxane represented by the formula (4). Depending on the purity of the bishydroxyarylsiloxanes, further purification can be carried out.
  • the polycarbonate resin of the present invention may be modified in the siloxane polymer moiety chain since Z is present in the siloxane polymer moiety.
  • Z is present in the siloxane polymer moiety.
  • Z it is possible to control the physical properties of the polycarbonate resin to suit the desired use. For example, when Z is arylene, transparency and chemical resistance may be improved compared to linear alkylene.
  • the repeating unit of Formula 1 is 1 to 20% by weight of the total polycarbonate resin.
  • Transparency and impact properties can be controlled by adjusting the content of polysiloxane represented by Chemical Formula 1 in the entire polycarbonate resin. At 20% by weight or more, the impact properties are excellent, but it is difficult to secure transparency.
  • the content of Si is 0.3 to 10% by weight of the total polycarbonate resin.
  • the content of Si and transparency can be adjusted by controlling the content of Si in the entire polycarbonate resin.
  • the repeating unit of Formula 1 is 1.0 to 13% by weight of the total polycarbonate resin, while at the same time the content of Si is 0.3 to 7% by weight of the total polycarbonate resin.
  • a polycarbonate resin capable of satisfying both impact resistance and transparency at a content satisfying the numerical range can be obtained.
  • n is an integer of 1-60. More preferably, m + n is an integer of 8-100.
  • the polycarbonate resin according to the present invention may have a weight average molecular weight (Mw) of 10,000 to 200,000, specifically 20,000 to 50,000 may be used.
  • the present invention also provides a thermoplastic resin composition comprising the polycarbonate resin and the additive according to the present invention.
  • thermoplastic resin composition may be prepared by further adding a specific antioxidant, lubricant, impact modifier, filler, inorganic additives, pigments and / or dyes, etc. according to each use.
  • thermoplastic resin composition of the present invention when Z is a C 3 -C 12 cycloalkylene group among the repeating units of Formula 1 included in the polycarbonate resin included in the thermoplastic resin composition of the present invention may have excellent impact strength characteristics.
  • the notched IZOD impact strength of the 1/4 "thick specimen measured by ASTM D256 may be 60-90 kgfcm / cm.
  • thermoplastic resin composition of the present invention when Z is a linear C 3 -C 12 alkyl group among the repeating units of Formula 1 included in the polycarbonate resin included in the thermoplastic resin composition of the present invention may be characterized by excellent transparency.
  • the haze (Hz) measured by a haze meter (Hz) is 0.1 to 10%
  • the combat light (TT) may be 85 to 99% for a specimen extruded to a thickness of 2.5 mm.
  • thermoplastic resin composition of the present invention when Z is a C 3 -C 12 arylene group among the repeating units of Formula 1 included in the polycarbonate resin included in the thermoplastic resin composition of the present invention has chemical resistance. This excellent, preferably, tensile strength change before and after immersing the ASTM No. 1 dumbbell specimen in gasoline for 7 days may be less than 25%.
  • the molded article prepared from the thermoplastic resin composition of the present invention is excellent in impact characteristics, chemical resistance and high transparency.
  • siloxane polymers A, B, C, D, E, and F have the following substituents in the compound of Formula 1.
  • the siloxane polymer of A to F is a first step of synthesizing monohydroxysiloxane (monohydroxyarylsilxoane) by reacting a hydride terminated siloxane (hydride terminated siloxane) in the presence of a phenol derivative and a catalyst (Pt); And a second step of reacting the monohydroxysiloxane and diene.
  • siloxane polymer A (14.3 g, 6.9 mmol) dissolved in 15 ml of methylene chloride was added thereto, followed by stirring for 10 minutes with a pH of 10 to 12 with a 50% NaOH solution. Thereafter, 2,2-bis (4-hydroxyphenyl) propane (BPA) (84.7 g, 371.0 mmol), 150 ml of water and 150 ml of methylene chloride were added thereto, and the mixture was stirred for 1 hour.
  • BPA 2,2-bis (4-hydroxyphenyl) propane
  • Triethylamine (1.0 g, 9.9 mmol) and para-cumylphenol (3.8 g, 17.9 mmol) were added thereto, followed by triphosphene (40.7 g, 411.6 mmol) with a 50% NaOH solution at a pH of 10-12.
  • 200 ml of this dissolved methylene chloride solution was slowly stirred into the reactor for 1 hour. After the stirring was completed, the mixture was stirred for 1 hour, and then the organic layer was separated, neutralized by adding 200 ml of 10% HCl solution, and washed with water several times until pH neutrality was reached. After washing, the solvent of the organic layer was partially removed, and then a polymer was precipitated using methanol.
  • the precipitate was filtered and dried to obtain a polymer in a powder state.
  • DOSY analysis of the polymer confirmed that the silicone polymer was present in the main chain of the polycarbonate.
  • Si content was 2.5 wt% based on 1 H NMR.
  • Gw analysis showed a Mw of 21,248.
  • Example 2 The same procedure as in Example 1 was carried out except that polysiloxane B (13.1 g, 2.6 mmol) was used. DOSY analysis of the polymer confirmed that the siloxane polymer was present in the main chain of the polycarbonate, and the Si content was 2.6 wt%. Gw analysis showed a Mw of 21,169.
  • Example 2 The same procedure as in Example 1 was carried out except that polysiloxane C (13.9 g, 6.9 mmol) was used. DOSY analysis of the polymer confirmed that the siloxane polymer was present in the main chain of the polycarbonate, and the Si content was 2.6 wt%. Gw analysis showed a Mw of 25,609.
  • Example 2 The same procedure as in Example 1 was carried out except that polysiloxane D (5.0 g, 2.5 mmol) was used. DOSY analysis of the polymer confirmed that the siloxane polymer was present in the main chain of the polycarbonate, and the Si content was 1.2 wt%. Gw analysis showed a Mw of 22,565.
  • Example 2 The same procedure as in Example 1 was carried out except that polysiloxane D (12.7 g, 6.3 mmol) was used. DOSY analysis of the polymer confirmed that the siloxane polymer was present in the backbone of the polycarbonate. Si content was 2.7 wt% based on 1 H NMR. Gw analysis showed a Mw of 22,117.
  • Example 2 The same procedure as in Example 1 was carried out except that polysiloxane D (18.9 g, 9.4 mmol) was used. DOSY analysis of the polymer confirmed that the siloxane polymer was present in the main chain of the polycarbonate, and the Si content was 3.9 wt% by 1 H NMR. Gw analysis showed a Mw of 22,732.
  • Example 2 The same procedure as in Example 1 was carried out except that polysiloxane E (11.02 g, 3.15 mmol) was used. DOSY analysis of the polymer confirmed that the siloxane polymer was present in the main chain of the polycarbonate, and the Si content was 2.4 wt%. Gw analysis showed Mw of 23,754.
  • Example 2 The same procedure as in Example 1 was carried out except that polysiloxane E (14.7 g, 4.19 mmol) was used. DOSY analysis of the polymer confirmed that the siloxane polymer was present in the main chain of the polycarbonate, and Si content was 3.2 wt% by 1 H NMR. Gw analysis showed a Mw of 22,538.
  • Example 2 The same procedure as in Example 1 was carried out except that polysiloxane E (18.2 g, 5.2 mmol) was used. DOSY analysis of the polymer confirmed that the siloxane polymer was present in the main chain of the polycarbonate, and the Si content was 4.8 wt% by 1 H NMR. Gw analysis showed a Mw of 20,841.
  • Example 2 The same procedure as in Example 1 was carried out except that polysiloxane F (14.4 g, 6.9 mmol) was used. DOSY analysis of the polymer confirmed that the siloxane polymer was present in the main chain of the polycarbonate, and the Si content was 2.5 wt% by 1 H NMR. Gw analysis showed Mw of 21,645.
  • Example 8 Evaluation was performed by blending the polymer obtained in Example 8 and SC-1190 (BPA-PC) of Cheil Industries in a weight ratio of 50:50.
  • BPA 2,2-bis (4-hydroxyphenyl) propane
  • the organic layer was separated, neutralized by adding 200 ml of 10% HCl solution and washed several times with water until pH neutral was reached. After washing, the solvent of the organic layer was partially removed, and then a polymer was precipitated using methanol. The precipitate was filtered and dried to obtain a polymer in a powder state. Gw analysis showed a Mw of 21,920.
  • Cheil Industries' polycarbonate SC-1100 was blended and evaluated by blending 20% of JN100 of SK Chemicals as a copolyester.
  • the polymers produced by the methods of Examples 1 to 11 and Comparative Examples 1 to 6 were dried at 120 ° C. for 4 hours, and then injected into a 10 Oz injection molding machine at a molding temperature of 290 ° C. and a mold temperature of 70 ° C. to prepare a 3 mm thick specimen. .
  • Notches were made in the 1/8 "Izod specimens and the 1/4" Izod specimens by ASTM D256 evaluation method and evaluated at 25 ° C and -30 ° C.
  • Hazeness and permeability were measured for 3 mm thick specimens using a Haze Meter (YDPO2-0D) from NIPPON DENSHOKU.
  • the polycarbonate resin according to the present invention of Examples 1 to 11 is excellent in impact strength and chemical resistance while maintaining high transparency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 특정 반복단위 구조를 주쇄 내에 포함하는 폴리카보네이트 수지를 제공한다. 본 발명에 따른 폴리카보네이트 수지는 충격특성과 내화학성이 우수함과 동시에 높은 투명성을 유지할 수 있다.

Description

폴리카보네이트 수지 및 상기 폴리카보네이트 수지를 포함하는 열가소성 수지 조성물
본 발명은 폴리카보네이트 수지 및 상기 폴리카보네이트 수지를 포함하는 열가소성 수지 조성물에 관한 것이다. 보다 구체적으로, 본 발명은 내충격성, 내화학성 및 투명성이 우수한 폴리카보네이트 수지 및 이 폴리카보네이트 수지를 포함하는 열가소성 수지 조성물에 관한 것이다.
폴리카보네이트는 방향족 폴리탄산 에스테르 결합을 갖는 열가소성 수지로 뛰어난 기계적 성질, 자기소화성, 치수안정성, 내열성 및 투명성이 우수하여 전기전자 제품 외장제, 광학 디스크, 자동차 부품 등 그 활용 범위가 날로 증가하고 있는 대표적인 엔지니어링 플라스틱이다. 최근 이러한 폴리카보네이트의 용도는 더욱 확대되고 있으며 다양한 적용을 위하여 폴리카보네이트의 특성 향상을 위한 연구가 많이 진행되고 있다. 특히 2종 이상의 서로 다른 구조의 디올을 이용한 공중합과 구조가 다른 폴리머를 폴리카보네이트 주쇄에 포함시킴으로써 다양한 특성을 조절하는 연구에 대한 예가 많이 보고되고 있다. 예를 들어 특허출원 제2009-0035031호에서는 특정 구조를 폴리카보네이트로 공중합시킴으로써 내화학성 및 난연성 특성을 향상시키고자 한 것을 개시하고 있다.
특히 폴리카보네이트 수지의 제한된 내화학성을 증가시키고자 하는 많은 연구들이 진행되어 왔는데 이는 전기전자 제품의 외장제로 폴리카보네이트 수지를 사용하는 경우 도장중 도료의 희석 용매가 폴리카보네이트 수지내로 침투하여 기계적 물성을 저하시키는 문제점으로 적용에 한계가 있기 때문이다. 이를 해결하고자 폴리카보네이트와 다른 열가소성 수지를 블랜드하여 폴리카보네이트의 물성을 개선하려는 노력이 있어 왔다. 그러나 이러한 기술적 시도에서는 내화학성이 개선되는 반면 내충격성 또는 투명성이 확보되지 못하는 문제점이 있었다.
예를 들어 미국특허 제4,188,314호에는 폴리카보네이트와 코폴리에스테르를 포함하여 향상된 내화학성을 가지는 성형물을 개시하고 있으나 이러한 방법으로는 충분한 충격강도를 얻을 수 없었으며, 미국특허 제4,634,737호에는 25∼90 몰%의 에스테르 결합을 가지는 공중합 폴리카보네이트와 코폴리에스테르 및 올레핀 아크릴레이트 공중합제로 이루어진 수지 조성물을 개시하고 있으나 이러한 조성물은 내화학성이 개선되는 반면 투명도가 매우 낮아진다. 또 다른 기술적 시도로는 폴리카보네이트 주쇄에 다른 폴리머를 도입함으로써 내화학성을 증가시키고자 하는 시도가 있으며 특히 폴리실록산 구조를 포함하는 폴리카보네이트에 대한 연구가 진행되어 왔으나 대부분 내화학성 및 내충격성이 증가되는 반면 투명성이 저하된다.
특허출원 제2006-0058195호 및 제2007-0071592호에서는 폴리에스테르 또는 폴리술폰계 수지와의 블랜드를 통한 내화학성의 개선하고자 시도하였다. 미국특허 제5,401,826호에서는 특정한 화학 구조를 공중합시켜 폴리카보네이트에 포함시킴으로써 개선을 시도하였다.
본 발명의 목적은 내충격성 및 내화학성이 우수한 폴리카보네이트 수지를 제공하는 것이다.
본 발명의 다른 목적은 내충격성 및 내화학성이 우수하면서도 높은 투명성 특성을 갖는 폴리카보네이트 수지를 제공하는 것이다.
본 발명의 또 다른 목적은 내충격성 및 내화학성이 우수하면서도 높은 투명성 특성을 갖는 폴리카보네이트 수지를 포함하는 열가소성 수지 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 내충격성 및 내화학성이 우수하면서도 높은 투명성 특성을 갖는 폴리카보네이트 수지를 포함하는 열가소성 수지 조성물로부터 제조된 성형품을 제공하는 것이다.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.
상기 기술적 과제를 해결하기 위하여, 본 발명은 하기 화학식 1의 반복단위 구조를 주쇄 내에 포함하는 폴리카보네이트 수지를 제공한다.
[화학식 1]
Figure PCTKR2010009595-appb-I000001
상기 식에서, R1 내지 R8은, 각각 독립적으로, C1-C10 알킬기, C6-C18 아릴기, 할로겐 원자 및 C1-C10 알콕시기로 이루어진 군으로부터 선택된 하나 이상으로 치환된 C1-C10 알킬기 또는 C6-C18 아릴기이고, A 및 B는, 각각 독립적으로, C1-C10 알킬렌기, C6-C18 아릴렌기, -O- 또는 -S-이고, Z는 C1-C18 알킬렌기 또는 C6-C18 시클로알킬렌기 또는 치환 또는 비치환 C6-C18 아릴렌기이고, X 및 Y는 각각 독립적으로, 수소 원자, 할로겐 원자, C1-C18 알콕시기, C1-C10 알킬기 또는 C6-C18 아릴기이고, n 및 m은 양의 정수이고, n+m은 8 내지 100의 정수임.
본 발명의 일 구체예에서, 상기 화학식 1의 반복단위가 전체 폴리카보네이트 수지 중 2.8 내지 3.4 중량%이다.
본 발명의 다른 구체예에서, 상기 Si의 함량이 전체 폴리카보네이트 수지 중 4.7 내지 4.9 중량%이다.
본 발명의 또 다른 구체예에서, 상기 화학식 1의 반복단위가 전체 폴리카보네이트 수지 중 2.3 내지 2.5 중량%이면서, 동시에 상기 Si의 함량이 전체 폴리카보네이트 수지 중 5.5 내지 7.0 중량%이다.
본 발명에서 Z는 치환 또는 비치환 C1-C18 알킬렌기, 치환 또는 비치환 C6-C18 시클로알킬렌기, 또는 치환 또는 비치환 C6-C18 아릴렌기이다.
Z는 바람직하게는 치환 또는 비치환 C1-C10 알킬렌기, 치환 또는 비치환 C6-C10 시클로알킬렌기, 또는 치환 또는 비치환 C6-C10 아릴렌기이다.
상기 치환기는 C1-C6 알킬기, C6-C18 아릴기 또는 할로겐 등을 포함할 수 있다. 상기 치환기는 바람직하게는 C1-C6 알킬기 보다 바람직하게는 C1-C3 알킬기이다.
상기 화학식 1 중 Si-Z-Si 결합에 있어서, Si는 Z기 자체 또는 Z기에 포함된 치환기와 결합될 수 있다.
본 발명에서 X 및 Y는 각각 독립적으로, H, 할로겐, C1-C18 알콕시, C1-C10 알킬기 또는 C6-C18 아릴기이다.
바람직하게는 X 및 Y는 각각 독립적으로 H 또는 C1-C3 알콕시이고, 보다 바람직하게는 H 또는 메톡시이다.
상기 화학식 1에서 X 및 Y는 각각 독립적으로, 벤젠 모이어티(moiety)에 1개 내지 4개, 바람직하게는 1개 내지 2개 존재할 수 있다.
상기 화학식 1에서 X 및 Y의 결합 위치는 각각 독립적으로 벤젠의 2,3,5,6 중 어느 하나에서 결합될 수 있다. 바람직하게는 벤젠의 3번 위치에 결합될 수 있다.
상기 다른 기술적 과제를 해결하기 위하여, 본 발명은 상기 본 발명에 따른 폴리카보네이트 수지 및 첨가제를 포함하는 열가소성 수지 조성물을 제공한다.
본 발명의 또 다른 구체예에서, 상기 화학식 1의 화합물 중 Z는 C3-C12 시클로알킬렌기이고, ASTM D256에 의해 측정한 1/4" 두께 시편의 노치 아이조드(notched IZOD) 충격강도가 60 내지 90 kgfcm/cm이다.
본 발명의 또 다른 구체예에서, 상기 화학식 1의 화합물 중 Z는 선형 C1-C10 알킬기이고, 2.5 mm 두께로 압출한 시편에 대해 헤이즈 미터(Haze meter)에 의해 측정된 헤이즈(Hz)가 0.1 내지 10 %이며, 전투과광(TT)이 85 내지 99 %이다.
본 발명의 또 다른 구체예에서, 상기 화학식 1의 화합물 중 Z는 C6-C18 아릴렌기이고, ASTM No.1 덤벨 시편을 가솔린에 7일간 침지 전후의 인장강도 변화가 0∼25 %이다.
상기 또 다른 기술적 과제를 해결하기 위하여, 본 발명은 상기 본 발명에 따른 열가소성 수지 조성물로부터 제조된 성형품을 제공한다.
이하, 본 발명을 보다 상세하게 설명하기로 한다.
본 발명은 폴리실록산 반복단위를 폴리카보네이트의 주쇄 내에 도입하여 충격특성과 유기 용매에 대한 내화학성이 우수함과 동시에 투명성이 높은 폴리카보네이트 수지를 제공하고자 한다.
기존의 폴리카보네이트 수지의 내화학성 및 내충격성 개선 기술의 경우 내화학성과 내충격성이 개선되는 반면 투명성 저하의 문제가 있었다. 이에 본 발명은 개선된 내화학성과 내충격성을 가짐과 동시에 투명성을 유지하는 폴리카보네이트 수지 조성물의 개발하고 한 것으로서, 내화학성과 내충격 특성 개선에 효과를 줄 수 있는 특정한 화학 구조를 갖는 실록산 폴리머를 폴리카보네이트 주쇄에 도입함으로써 본 과제를 달성하였다.
본 발명은 폴리카보네이트에 하기 화학식 1의 반복단위를 주쇄 내에 도입하여 형성된다.
[화학식 1]
Figure PCTKR2010009595-appb-I000002
상기 식에서, R1 내지 R8은, 각각 독립적으로, C1-C10 알킬기, C6-C18 아릴기, 할로겐 원자 및 C1-C10 알콕시기로 이루어진 군으로부터 선택된 하나 이상으로 치환된 C1-C10 알킬기 또는 C6-C18 아릴기이고, A 및 B는, 각각 독립적으로, C1-C10 알킬렌기, C6-C18 아릴렌기, -O- 또는 -S-이고, Z는 C1-C18 알킬렌기 또는 C6-C18 시클로알킬렌기 또는 치환 또는 비치환 C6-C18 아릴렌기이고, X 및 Y는 각각 독립적으로, 수소 원자, 할로겐 원자, C1-C18 알콕시기, C1-C10 알킬기 또는 C6-C18 아릴기이고, n 및 m은 양의 정수이고, n+m은 8 내지 100의 정수임.
본 발명에서 Z는 치환 또는 비치환 C1-C18 알킬렌기, 치환 또는 비치환 C6-C18 시클로알킬렌기, 또는 치환 또는 비치환 C6-C18 아릴렌기이다.
Z는 바람직하게는 치환 또는 비치환 C1-C10 알킬렌기, 치환 또는 비치환 C6-C10 시클로알킬렌기, 또는 치환 또는 비치환 C6-C10 아릴렌기이다.
상기 치환기는 C1-C6 알킬기, C6-C18 아릴기 또는 할로겐 등을 포함할 수 있다. 상기 치환기는 바람직하게는 C1-C6 알킬기 보다 바람직하게는 C1-C3 알킬기이다.
상기 화학식 1 중 Si-Z-Si 결합에 있어서, Si는 Z기 자체 또는 Z기에 포함된 치환기와 결합될 수 있다.
본 발명에서 X 및 Y는 각각 독립적으로, H, 할로겐, C1-C18 알콕시, C1-C10 알킬기 또는 C6-C18 아릴기이다.
바람직하게는 X 및 Y는 각각 독립적으로 H 또는 C1-C3 알콕시이고, 보다 바람직하게는 H 또는 메톡시이다.
상기 화학식 1에서 X 및 Y는 각각 독립적으로, 벤젠 모이어티(moiety)에 1개 내지 4개, 바람직하게는 1개 내지 2개 존재할 수 있다.
상기 화학식 1에서 X 및 Y의 결합 위치는 각각 독립적으로 벤젠의 2,3,5,6 중 어느 하나에서 결합될 수 있다. 바람직하게는 벤젠의 3번 위치에 결합될 수 있다.
상기 화학식 1의 폴리실록산 반복단위가 포함될 수 있는 폴리카보네이트 수지는 하기 화학식 2로 표시되는 디페놀류와, 포스겐, 할로겐산 에스테르 및 탄산 에스테르로 이루어진 군으로부터 선택된 하나 이상의 화합물을 반응시켜 제조될 수 있다.
[화학식 2]
Figure PCTKR2010009595-appb-I000003
상기 화학식 2에서, A는 단일 결합, 치환 또는 비치환된 C1 내지 C30의 직쇄상 또는 분지상의 알킬렌기, 치환 또는 비치환된 C2 내지 C5의 알케닐렌기, 치환 또는 비치환된 C2 내지 C5의 알킬리덴기, 치환 또는 비치환된 C1 내지 C30의 직쇄상 또는 분지상의 할로알킬렌기, 치환 또는 비치환된 C5 내지 C6의 사이클로알킬렌기, 치환 또는 비치환된 C5 내지 C6의 사이클로알케닐렌기, 치환 또는 비치환된 C5 내지 C10의 사이클로알킬리덴기, 치환 또는 비치환된 C6 내지 C30의 아릴렌기, 치환 또는 비치환된 C1 내지 C20의 직쇄상 또는 분지상의 알콕실렌기, 할로겐산 에스테르기, 탄산 에스테르기, CO, S 및 SO2로 이루어진 군에서 선택되는 연결기이고, 각각의 R1 및 R2는 각각 독립적으로 치환 또는 비치환된 C1 내지 C30의 알킬기 또는 치환 또는 비치환된 C6 내지 C30의 아릴기이고, n1 및 n2는 각각 독립적으로 0 내지 4의 정수이다.
상기 "치환된"이란 수소 원자가 할로겐기, C1 내지 C30의 알킬기, C1 내지 C30의 할로알킬기, C6 내지 C30의 아릴기, C1 내지 C20의 알콕시기 및 이들의 조합으로 이루어진 군에서 선택되는 치환기로 치환된 것을 의미한다.
상기 화학식 2로 표시되는 디페놀류는 2종 이상이 조합되어 폴리카보네이트 수지의 반복단위를 구성할 수도 있다. 상기 디페놀류의 구체적인 예로는, 히드로퀴논, 레조시놀, 4,4'-디히드록시디페닐, 2,2-비스(4-히드록시페닐)프로판('비스페놀-A'라고도 함), 2,4-비스(4-히드록시페닐)-2-메틸부탄, 비스(4-히드록시페닐)메탄, 1,1-비스(4-히드록시페닐)사이클로헥산, 2,2-비스(3-클로로-4-히드록시페닐)프로판, 2,2-비스(3,5-디메틸-4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판, 2,2-비스(3,5-디브로모-4-히드록시페닐)프로판, 비스(4-히드록시페닐)술폭사이드, 비스(4-히드록시페닐)케톤, 비스(4-히드록시페닐)에테르 등을 들 수 있다. 상기 디페놀류 중에서, 구체적으로는 2,2-비스(4-히드록시페닐)프로판, 2,2-비스(3,5-디클로로-4-히드록시페닐)프로판 또는 1,1-비스(4-히드록시페닐)사이클로헥산을 사용할 수 있다. 또한 이들 중 더욱 구체적으로는 2,2-비스(4-히드록시페닐)프로판을 사용할 수 있다.
상기 폴리카보네이트 수지는 두 종류 이상의 디페놀류로부터 제조된 공중합체의 혼합물일 수도 있다. 또한 상기 폴리카보네이트 수지는 선형 폴리카보네이트 수지, 분지형(Branched) 폴리카보네이트 수지, 폴리에스테르카보네이트 공중합체 수지 등을 사용할 수 있다.
상기 선형 폴리카보네이트 수지로는 비스페놀-A계 폴리카보네이트 수지 등을 들 수 있다. 상기 분지형 폴리카보네이트 수지로는 트리멜리틱 무수물, 트리멜리틱산 등과 같은 다관능성 방향족 화합물을 디페놀류 및 카보네이트와 반응시켜 제조한 것을 들 수 있다. 상기 다관능성 방향족 화합물은 분지형 폴리카보네이트 수지 총량에 대하여 0.05 내지 2 몰%로 포함될 수 있다. 상기 폴리에스테르카보네이트 공중합체 수지로는 이관능성 카르복실산을 디페놀류 및 카보네이트와 반응시켜 제조한 것을 들 수 있다. 이때 상기 카보네이트로는 디페닐카보네이트와 같은 디아릴카보네이트 등을 사용할 수 있다.
본 발명의 폴리카보네이트 수지는 상기 화학식 2로 표시되는 디페놀류에 더하여 하기 화학식 3의 실록산 폴리머가 함께 공중합되어 형성된다. 즉, 본 발명의 폴리카보네이트 수지는 화학식 3의 화합물을 상기 화학식 2로 표시되는 디페놀류와 포스겐, 할로겐산 에스테르 및 탄산 에스테르로 이루어진 군으로부터 선택된 하나 이상의 화합물과 공중합 반응시켜 제조될 수 있다.
[화학식 3]
Figure PCTKR2010009595-appb-I000004
상기 식에서, R1 내지 R8은, 각각 독립적으로, C1-C10 알킬기, C6-C18 아릴기, 할로겐 원자 및 C1-C10 알콕시기로 이루어진 군으로부터 선택된 하나 이상으로 치환된 C1-C10 알킬기 또는 C6-C18 아릴기이고, A 및 B는, 각각 독립적으로, C1-C10 알킬렌기, C6-C18 아릴렌기, -O- 또는 -S-이고, Z는 C1-C18 알킬렌기 또는 C6-C18 시클로알킬렌기 또는 치환 또는 비치환 C6-C18 아릴렌기이고, X 및 Y는 각각 독립적으로, 수소 원자, 할로겐 원자, C1-C18 알콕시기, C1-C10 알킬기 또는 C6-C18 아릴기이고, n 및 m은 양의 정수이고, n+m 은 8 내지 100의 정수임.
본 발명의 실록산 폴리머 제조방법은 다음과 같다. 상기 화학식 3의 실록산 폴리머의 일구체예로서 하기 화학식 4로 표시되는 비스하이드록시아릴실록산은 하기 화학식 5로 표시되는 하이드라이드로 종결된 실록산을 하기 화학식 6으로 표시되는 페놀 유도체와 반응시켜 하기 화학식 7로 표시되는 모노하이드록시실록산을 합성하는 단계(제1 단계); 및
상기 모노하이드록시실록산과 다이엔을 반응시키는 단계(제2 단계)를 포함하여 제조될 수 있다.
[화학식 4]
Figure PCTKR2010009595-appb-I000005
[화학식 5]
Figure PCTKR2010009595-appb-I000006
[화학식 6]
Figure PCTKR2010009595-appb-I000007
[화학식 7]
Figure PCTKR2010009595-appb-I000008
(상기 식에서, R1 및 R2은 각각 독립적으로 C1-C10 알킬기, C6-C18 아릴기, 또는 할로겐 또는 알콕시기를 가지는 C1-C10 알킬기 또는 C6-C18 아릴기이고,
A는 C1-C10 알킬렌기, C6-C18 아릴렌기, 또는 -O- 또는 -S-를 갖는 C1-C10 알킬렌기 또는 C6-C18 아릴렌기이고,
B는 말단에 이중 결합을 가지는 C1-C10 알킬렌기 또는 C6-C18 아릴렌기, 또는 말단에 이중 결합을 갖고 -O- 또는 -S-를 갖는 C1-C10 알킬렌기 또는 C6-C18 아릴렌기이고,
Z는 치환 또는 비치환 C1-C18 알킬렌기, 치환 또는 비치환 C6-C18 시클로알킬렌기, 또는 치환 또는 비치환 C6-C18 아릴렌기이고,
Y는 H, 할로겐, C1-C18 알콕시, C1-C10 알킬기 또는 C6-C18 아릴기이고,
n은 4 내지 100의 정수이다.)
제1 단계
상기 제1 단계는 상기 화학식 5로 표시되는 하이드라이드로 종결된 실록산과 화학식 6으로 표시되는 페놀 유도체를 촉매 존재 하에서 반응시켜 상기 화학식 7로 표시되는 모노하이드록시실록산을 합성하는 단계이다.
상기 촉매로는 백금을 포함하는 촉매를 사용할 수 있다. 예를 들면, 촉매는 백금 원소 자체 또는 백금을 포함하는 화합물일 수 있다. 바람직하게는, 촉매는 H2PtCl6, Pt2{[(CH2=CH)Me2Si]2O}3, Rh[(cod)2]BF4, Rh(PPh3)4Cl 또는 Pt/C 등을 단독 또는 혼합하여 사용할 수 있지만, 이들에 제한되는 것은 아니다. 더 바람직하게는, 촉매는 Pt/C, 예를 들면 10% Pt/C을 사용할 수 있다.
상기 촉매는 10∼500 ppm, 바람직하게는 50∼150 ppm으로 사용될 수 있다.
상기 반응은 유기 용매에서 수행될 수 있는데, 예를 들면, 1,2-디클로로에탄, 톨루엔, 자일렌, 디클로로벤젠 또는 이들의 혼합 용매에서 수행될 수 있지만, 이들에 제한되는 것은 아니다. 바람직하게는 톨루엔에서 수행될 수 있다.
상기 반응은 화학식 5와 6의 반응성에 따라 반응 온도와 반응 시간을 조절할 수 있다. 예를 들면, 상기 반응은 반응 온도 60∼140 ℃ 바람직하게는 110∼120 ℃에서, 2∼12 시간 바람직하게는 3∼5 시간 동안 수행될 수 있다.
상기 제1 단계에서 제조된 화학식 7의 화합물은 정제시켜 다음 단계에 사용하거나 또는 추가적인 정제없이 다음 단계에서 인 시투(in situ)로 사용될 수 있다.
제2 단계
제2 단계는 화학식 7로 표시되는 모노하이드록시실록산과 다이엔을 반응시켜 비스하이드록시아릴실록산을 제조하는 단계이다.
상기 다이엔은 치환 또는 비치환 C1-C18 알킬기, 치환 또는 비치환 C6-C18 시클로알킬기 또는 치환 또는 비치환 C6-C18 아릴기를 포함하는 다이엔일 수 있다. 상기 치환기는 C1-C6 알킬기, C6-C18 아릴기 또는 할로겐 등을 포함할 수 있다. 상기 치환기는 바람직하게는 C1-C6 알킬기, 더 바람직하게는 C1-C3 알킬기이다.
제1 단계를 완료한 후, 화학식 7의 화합물을 정제하지 않고 다이엔을 첨가하여 인 시투로 반응시켜 비스하이드록시아릴실록산을 제조할 수 있다.
모노하이드록시아릴실록산과 다이엔의 반응시 반응 온도와 반응 시간은 적절하게 조절할 수 있다. 예를 들면, 상기 제1 단계에서 사용된 반응 온도와 반응 시간을 그대로 사용할 수 있지만, 이들에 제한되는 것은 아니다.
제조된 비스하이드록시아릴실록산은 통상의 방법을 통하여 정제 및 수득될 수 있다. 예를 들면, 제2 단계 완료 후 반응물을 여과하여 촉매를 제거한다. 얻은 여과액을 농축하여 반응 용매와 저 분자량의 부산물을 제거함으로써 화학식 4로 표시되는 비스하이드록시아릴실록산을 얻을 수 있다. 비스하이드록시아릴실록산의 순도에 따라 추가적인 정제 과정을 수행할 수 있다.
본 발명의 폴리카보네이트 수지는 실록산 폴리머 모이어티, 상기 화학식 1 중 Z가 존재하기 때문에 실록산 폴리머 모이어티 사슬 내에 변형을 줄 수 있다. 상기 Z를 조절하여 원하는 용도에 적합하도록 폴리카보네이트 수지의 물성 조절이 가능하다. 예를 들면, Z가 아릴렌인 경우 선형 알킬렌 대비 투명성과 내화학성이 향상될 수 있다.
바람직하게는, 상기 화학식 1의 반복단위가 전체 폴리카보네이트 수지 중 1 내지 20 중량%이다. 전체 폴리카보네이트 수지 중 상기 화학식 1로 표시되는 폴리실록산의 함량을 조절하여 투명성과 충격특성을 조절할 수 있다. 20 중량% 이상에서는 충격 특성은 우수하나 투명성을 확보하기가 어렵다.
또한, 바람직하게는, 상기 Si의 함량이 전체 폴리카보네이트 수지 중 0.3 내지 10 중량%이다. 전체 폴리카보네이트 수지 중 Si의 함량을 조절하여 투명성과 충격특성을 특성을 조절할 수 있다.
더욱 바람직하게는, 상기 화학식 1의 반복단위가 전체 폴리카보네이트 수지 중 1.0 내지 13 중량%이면서, 동시에 상기 Si의 함량이 전체 폴리카보네이트 수지 중 0.3 내지 7 중량%이다. 상기 수치 범위를 만족하는 함량에서 내충격성과 투명성을 모두 만족할 수 있는 폴리카보네이트 수지를 얻을 수 있다.
또한, 바람직하게는, m은 1 내지 60의 정수이고, n은 1 내지 60의 정수이다. 더욱 바람직하게는, m+n은 8 내지 100의 정수이다. Z의 양 옆에 존재하게 되는 폴리실록산 모이어티의 사슬 길이를 상기 범위와 같이 적절히 조절함에 따라서 원하는 충격 특성 및 투명성의 밸런스를 조절할 수 있다.
상기 본 발명에 따른 폴리카보네이트 수지는 중량평균분자량(Mw)이 10,000 내지 200,000일 수 있으며, 구체적으로는 20,000 내지 50,000인 것을 사용할 수 있다.
본 발명은 또한, 상기 본 발명에 따른 폴리카보네이트 수지는 및 첨가제를 포함하는 열가소성 수지 조성물을 제공한다.
상기 열가소성 수지 조성물은 각각의 용도에 따라 선택적으로 특정한 산화방지제, 활제, 충격보강제, 충진제, 무기물 첨가제, 안료 및/또는 염료 등을 더 첨가하여 제조될 수 있다.
본 발명의 열가소성 수지 조성물에 포함되는 폴리카보네이트 수지 내에 포함된 상기 화학식 1의 반복단위 중 Z가 C3-C12 시클로알킬렌기인 경우의 상기 본 발명의 열가소성 수지 조성물은 우수한 충격 강도 특성을 가질 수 있고, 바람직하게는, ASTM D256에 의해 측정한 1/4" 두께 시편의 상온 노치 아이조드(notched IZOD) 충격강도가 60∼90 kgfcm/cm일 수 있다.
본 발명의 열가소성 수지 조성물에 포함되는 폴리카보네이트 수지 내에 포함된 상기 화학식 1의 반복단위 중 Z가 선형 C3-C12 알킬기인 경우의 상기 본 발명의 열가소성 수지 조성물은 우수한 투명성을 특징으로 할 수 있고, 바람직하게는, 2.5 mm 두께로 압출한 시편에 대해 헤이즈 미터(Haze meter)에 의해 측정된 헤이즈(Hz)가 0.1 내지 10 %이며, 전투과광(TT)이 85 내지 99 %일 수 있다.
본 발명의 열가소성 수지 조성물에 포함되는 폴리카보네이트 수지 내에 포함된 상기 화학식 1의 반복단위 중 상기 화학식 1의 화합물 중 Z는 C3-C12 아릴렌기인 경우의 상기 본 발명의 열가소성 수지 조성물은 내화학성이 뛰어나고, 바람직하게는, ASTM No.1 덤벨 시편을 가솔린에 7일간 침지 전후의 인장강도 변화가 25 % 미만일 수 있다.
상기 본 발명의 열가소성 수지 조성물로부터 제조된 성형품은 충격특성, 내화학성이 우수하면서 동시에 투명성이 높다.
본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시를 위한 것이며 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.
실시예
하기 실시예에서 실록산 폴리머 A, B, C, D, E, F는 상기 화학식 1의 화합물에서 치환기가 다음과 같다.
표 1
Figure PCTKR2010009595-appb-T000001
표 2
Figure PCTKR2010009595-appb-T000002
상기 A 내지 F의 실록산 폴리머는 하이드라이드로 종결된 실록산(hydride terminated siloxane)을 페놀 유도체와 촉매(Pt)의 존재 하에서 반응시켜 모노하이드록시실록산(monohydroxyarylsilxoane)을 합성하는 제1 단계; 및 상기 모노하이드록시실록산과 다이엔(diene)을 반응시키는 제2 단계를 거쳐 제조되었다.
실시예 1 내지 11 및 비교예 1 내지 6
실시예 1
9.1% NaOH 수용액 130 ml, 2,2-비스(4-히드록시 페닐)프로판(BPA)(21.1 g, 92.4 mmol), 메틸트리부틸암모늄클로라이드(1.3 g, 5.3 mmol), 메틸렌 클로라이드 150 ml를 첨가한 후 강하게 교반하고 용액의 온도를 20∼25 ℃로 유지하면서 트리포스젠(10.1 g, 101.7 mmol)이 녹아 있는 메틸렌 클로라이드 용액 50 ml를 투입하고 pH 6∼7을 유지하면서 10분간 교반하였다. 이 후 메틸렌클로라이드 15 ml에 용해된 실록산 폴리머 A(14.3 g, 6.9 mmol)를 투입한 후 50% NaOH 용액으로 pH를 10∼12 사이가 되도록 하면서 10분 동안 교반한다. 이 후 2,2-비스(4-히드록시 페닐)프로판(BPA)(84.7 g, 371.0 mmol), 물 150 ml, 메틸렌클로라이드 150 ml를 투입하고 1시간 동안 교반하였다. 여기에 트리에틸아민(1.0 g, 9.9 mmol), 파라-큐밀페놀(3.8 g, 17.9 mmol)을 첨가한 후 50% NaOH 용액으로 pH를 10∼12 사이로 하면서 트리포스젠(40.7 g, 411.6 mmol)이 녹아 있는 메틸렌클로라이드 용액 200 ml를 1시간 동안 천천히 반응기에 투입하면서 교반하였다. 교반이 완료된 후 1시간 동안 교반을 진행한 후 유기층을 분리하여 10% HCl 용액 200 ml를 가하여 중화하고 pH 중성에 도달할 때까지 물로 여러 번에 걸쳐 세정한다. 세정 후 유기층의 용매를 일부 제거한 후 메탄올을 이용하여 중합물을 침전시키고 이 침전물을 여과 후, 건조하여 분말 상태의 중합물을 얻었다. 중합체의 DOSY 분석 결과 실리콘 폴리머가 폴리카보네이트의 주쇄 안에 결합되어 존재함을 확인하였으며 1H NMR로 분석한 결과 Si 함량은 2.5 wt%이었다. GPC 분석 결과 Mw는 21,248이었다.
실시예 2
폴리 실록산 B(13.1 g, 2.6 mmol)를 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다. 중합체의 DOSY 분석 결과 실록산 폴리머가 폴리카보네이트의 주쇄 안에 결합되어 존재함을 확인하였으며 1H NMR로 분석한 결과 Si 함량은 2.6 wt%이었다. GPC 분석 결과 Mw는 21,169이었다.
실시예 3
폴리 실록산 C(13.9 g, 6.9 mmol)를 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다. 중합체의 DOSY 분석 결과 실록산 폴리머가 폴리카보네이트의 주쇄 안에 결합되어 존재함을 확인하였으며 1H NMR로 분석한 결과 Si 함량은 2.6 wt%이었다. GPC 분석 결과 Mw는 25,609이었다.
실시예 4
폴리 실록산 D(5.0 g, 2.5 mmol)를 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다. 중합체의 DOSY 분석 결과 실록산 폴리머가 폴리카보네이트의 주쇄 안에 결합되어 존재함을 확인하였으며 1H NMR로 분석한 결과 Si 함량은 1.2 wt%이었다. GPC 분석 결과 Mw는 22,565이었다.
실시예 5
폴리 실록산 D(12.7 g, 6.3 mmol)를 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다. 중합체의 DOSY 분석 결과 실록산 폴리머가 폴리카보네이트의 주쇄 안에 결합되어 존재함을 확인하였으며 1H NMR로 분석한 결과 Si 함량은 2.7 wt%이었다. GPC 분석 결과 Mw는 22,117이었다.
실시예 6
폴리 실록산 D(18.9 g, 9.4 mmol)를 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다. 중합체의 DOSY 분석 결과 실록산 폴리머가 폴리카보네이트의 주쇄 안에 결합되어 존재함을 확인하였으며 1H NMR로 분석한 결과 Si 함량은 3.9 wt%이었다. GPC 분석 결과 Mw는 22,732이었다.
실시예 7
폴리 실록산 E(11.02 g, 3.15 mmol)를 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다. 중합체의 DOSY 분석 결과 실록산 폴리머가 폴리카보네이트의 주쇄 안에 결합되어 존재함을 확인하였으며 1H NMR로 분석한 결과 Si 함량은 2.4 wt%이었다. GPC 분석 결과 Mw는 23,754이었다.
실시예 8
폴리 실록산 E(14.7 g, 4.19 mmol)를 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다. 중합체의 DOSY 분석 결과 실록산 폴리머가 폴리카보네이트의 주쇄 안에 결합되어 존재함을 확인하였으며 1H NMR로 분석한 결과 Si 함량은 3.2 wt%이었다. GPC 분석 결과 Mw는 22,538이었다.
실시예 9
폴리 실록산 E(18.2 g, 5.2 mmol)를 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다. 중합체의 DOSY 분석 결과 실록산 폴리머가 폴리카보네이트의 주쇄 안에 결합되어 존재함을 확인하였으며 1H NMR로 분석한 결과 Si 함량은 4.8 wt%이었다. GPC 분석 결과 Mw는 20,841이었다.
실시예 10
폴리 실록산 F(14.4 g, 6.9 mmol)를 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하였다. 중합체의 DOSY 분석 결과 실록산 폴리머가 폴리카보네이트의 주쇄 안에 결합되어 존재함을 확인하였으며 1H NMR로 분석한 결과 Si 함량은 2.5 wt%이었다. GPC 분석 결과 Mw는 21,645이었다.
실시예 11
실시예 8에서 얻어진 중합체와 제일모직의 SC-1190(BPA-PC)을 중량비 50:50으로 블렌드하여 평가를 진행하였다.
비교예 1
9.1% NaOH 수용액 400 ml에 2,2-비스(4-히드록시 페닐)프로판(BPA)(45.66 g, 200 mmol)을 용해시킨 후 메틸렌클로라이드 200 ml를 가한 후 강하게 교반하고 용액의 온도를 20∼25 ℃로 유지하면서 트리포스젠(22.95 g, 77.3 mmol)이 녹아 있는 메틸렌클로라이드 용액 250 ml를 1시간 동안 천천히 투입하였다. 파라-큐밀페놀(0.99 mmol)을 첨가하고 5분간 강하게 교반시킨 후 트리에틸아민(0.28 g, 2 mmol)을 첨가한 후 50% NaOH 용액으로 pH를 11 이상이 되도록 하면서 1시간 30분 동안 교반하였다. 유기층을 분리하여 10% HCl 용액 200 ml를 가하여 중화하고 pH 중성에 도달할 때까지 물로 여러 번에 걸쳐 세정하였다. 세정 후 유기층의 용매를 일부 제거한 후 메탄올을 이용하여 중합물을 침전시키고 이 침전물을 여과 후, 건조하여 분말 상태의 중합물을 얻었다. GPC 분석 결과 Mw는 21,920이었다.
비교예 2
제일모직의 폴리카보네이트 SC-1100을 사용하여 평가 진행하였다.
비교예 3
제일모직의 폴리카보네이트 SC-1100에 코폴리에스테르(copolyester)로서 에스케이케미칼의 JN100 10%를 블렌드하여 평가 진행하였다.
비교예 4
제일모직의 폴리카보네이트 SC-1100에 코폴리에스테르로서 에스케이케미칼의 JN100 20%를 블렌드하여 평가 진행하였다.
비교예 5
제일모직의 폴리카보네이트 SC-1100에 코폴리에스테르로서 에스케이케미칼의 JN100 30%를 블렌드하여 평가 진행하였다.
비교예 6
제일모직의 폴리카보네이트 SC-1100에 코폴리에스테르로서 에스케이케미칼의 JN100 40%를 블렌드하여 평가 진행하였다.
※ 물성평가
(1) 시편의 제작
실시예 1 내지 11과 비교예 1 내지 6의 방법으로 제작한 폴리머를 120 ℃에서 4시간 건조 후 10 Oz 사출기에서 성형 온도 290 ℃, 금형 온도 70 ℃ 조건으로 사출하여 3 mm 두께의 시편을 제조하였다.
(2) 내충격성 평가
ASTM D256 평가 방법에 의하여 1/8" 아이조드 시편과 1/4" 아이조드 시편에 노치(Notch)를 만들어 25 ℃ 및 -30 ℃에서 평가하였다.
(3) 내화학성 평가
ASTM No.1 덤벨 시편을 가솔리에 7일간 침지 전후 인장강도의 변화를 측정하였다.
(4) Haze 및 투과도 평가
Hazeness와 투과도는 NIPPON DENSHOKU사의 Haze Meter(YDPO2-0D)를 사용하여 3 mm 두께의 시편에 대해 측정하였다.
상기와 같이 각각의 실시예 1 내지 11 및 비교예 1 내지 6의 시편에 대하여 측정한 물성을 하기 표 3에 나타내었다.
표 3
Figure PCTKR2010009595-appb-T000003
상기 표 3으로부터 알 수 있듯이, 실시예 1 내지 11의 본 발명에 따른 폴리카보네이트 수지는 충격강도와 내화학성이 우수하면서도 동시에 높은 투명성을 유지할 수 있다.

Claims (14)

  1. 하기 화학식 1의 반복단위 구조를 주쇄 내에 포함하는 폴리카보네이트 수지:
    [화학식 1]
    Figure PCTKR2010009595-appb-I000009
    상기 식에서, R1 내지 R8은, 각각 독립적으로, C1-C10 알킬기, C6-C18 아릴기, 할로겐 원자 및 C1-C10 알콕시기로 이루어진 군으로부터 선택된 하나 이상으로 치환된 C1-C10 알킬기 또는 C6-C18 아릴기이고, A 및 B는, 각각 독립적으로, C1-C10 알킬렌기, C6-C18 아릴렌기, -O- 또는 -S-이고, Z는 C1-C18 알킬렌기 또는 C6-C18 시클로알킬렌기 또는 치환 또는 비치환 C6-C18 아릴렌기이고, X 및 Y는 각각 독립적으로, 수소 원자, 할로겐 원자, C1-C18 알콕시기, C1-C10 알킬기 또는 C6-C18 아릴기이고, n 및 m은 양의 정수이고, n+m은 8 내지 100의 정수임.
  2. 제1항에 있어서, 상기 화학식 1의 반복단위가 전체 폴리카보네이트 수지 중 1 내지 20 중량%인 것을 특징으로 하는 폴리카보네이트 수지.
  3. 제1항에 있어서, 상기 Si의 함량이 전체 폴리카보네이트 수지 중 0.3 내지 10 중량%인 것을 특징으로 하는 폴리카보네이트 수지.
  4. 제1항에 있어서, 상기 화학식 1의 반복단위가 전체 폴리카보네이트 수지 중 1 내지 20 중량%이면서, 동시에 상기 Si의 함량이 전체 폴리카보네이트 수지 중 0.3 내지 10 중량%인 것을 특징으로 하는 폴리카보네이트 수지.
  5. 제1항에 있어서, 상기 Z는 선형의 아릴렌기를 포함하거나 포함하지 않는 C1-C12 알킬렌기인 것을 특징으로 하는 폴리카보네이트 수지.
  6. 제1항에 있어서, 상기 Z는 선형 알킬렌인 것을 특징으로 하는 폴리카보네이트 수지.
  7. 제1항에 있어서, m은 1 내지 60의 정수이고, n은 1 내지 60의 정수인 것을 특징으로 하는 폴리카보네이트 수지.
  8. 제1항 내지 제7항 중 어느 한 항의 폴리카보네이트 수지 및 첨가제를 포함하는 열가소성 수지 조성물.
  9. 제8항에 있어서, 상기 화학식 1의 화합물 중 Z는 C3-C12 시클로알킬렌기이고, ASTM D256에 의해 측정한 1/4" 두께 시편의 상온 노치 아이조드(notched IZOD) 충격강도가 60 내지 90 kgfcm/cm인 것을 특징으로 하는 열가소성 수지 조성물.
  10. 제8항에 있어서, 상기 화학식 1의 화합물 중 Z는 선형 C1-C10 알킬기이고, 2.5 mm 두께로 압출한 시편에 대해 헤이즈 미터(Haze meter)에 의해 측정된 헤이즈(Hz)가 0.1 내지 10 %이며, 전투과광(TT)이 85 내지 99 %인 것을 특징으로 하는 열가소성 수지 조성물.
  11. 제8항에 있어서, 상기 화학식 1의 화합물 중 Z는 C6-C18 아릴렌기이고, ASTM No.1 덤벨 시편을 가솔린에 7일간 침지 전후의 인장강도 변화가 0 내지 25 %인 것을 특징으로 하는 열가소성 수지 조성물.
  12. 제8항에 따른 열가소성 수지 조성물로부터 제조된 성형품.
  13. 제1항 내지 제7항 중 어느 한 항의 폴리카보네이트 수지 및 Si를 포함하지 않는 폴리카보네이트 수지를 포함하는 것을 특징으로 하는 폴리카보네이트 수지 조성물.
  14. 제13항에 있어서, 상기 폴리카보네이트 수지 및 상기 Si를 포함하지 않는 폴리카보네이트 수지는 40:60 내지 60:40의 함량비로 포함되는 것을 특징으로 하는 폴리카보네이트 수지 조성물.
PCT/KR2010/009595 2010-11-05 2010-12-30 폴리카보네이트 수지 및 상기 폴리카보네이트 수지를 포함하는 열가소성 수지 조성물 WO2012060516A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10859318.7A EP2636695A4 (en) 2010-11-05 2010-12-30 POLYCARBONATE RESIN AND THERMOPLASTIC RESIN COMPOSITION CONTAINING THE SAME
CN201080069971.1A CN103201312B (zh) 2010-11-05 2010-12-30 聚碳酸酯树脂和包含其的热塑性树脂组合物
US13/887,348 US8871875B2 (en) 2010-11-05 2013-05-05 Polycarbonate resin and thermoplastic resin composition including polycarbonate resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100109520A KR101281575B1 (ko) 2010-11-05 2010-11-05 폴리카보네이트 수지 및 상기 폴리카보네이트 수지를 포함하는 열가소성 수지 조성물
KR10-2010-0109520 2010-11-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/887,348 Continuation-In-Part US8871875B2 (en) 2010-11-05 2013-05-05 Polycarbonate resin and thermoplastic resin composition including polycarbonate resin

Publications (1)

Publication Number Publication Date
WO2012060516A1 true WO2012060516A1 (ko) 2012-05-10

Family

ID=46024618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009595 WO2012060516A1 (ko) 2010-11-05 2010-12-30 폴리카보네이트 수지 및 상기 폴리카보네이트 수지를 포함하는 열가소성 수지 조성물

Country Status (5)

Country Link
US (1) US8871875B2 (ko)
EP (1) EP2636695A4 (ko)
KR (1) KR101281575B1 (ko)
CN (1) CN103201312B (ko)
WO (1) WO2012060516A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8871875B2 (en) 2010-11-05 2014-10-28 Cheil Industries Inc. Polycarbonate resin and thermoplastic resin composition including polycarbonate resin
US9580597B2 (en) 2014-12-04 2017-02-28 Lg Chem, Ltd. Polycarbonate composition and article comprising the same
US9732186B2 (en) 2014-09-05 2017-08-15 Lg Chem, Ltd. Copolycarbonate and composition comprising the same
US9969841B2 (en) 2014-12-04 2018-05-15 Lg Chem, Ltd. Copolycarbonate and composition comprising the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101674246B1 (ko) * 2013-11-19 2016-11-08 롯데첨단소재(주) 폴리카보네이트계 열가소성 수지 조성물 및 이를 포함하는 성형품
US9365683B2 (en) * 2013-12-10 2016-06-14 Idemitsu Kosan Co., Ltd. Polycarbonate-polyorganosiloxane copolymer and method for producing same
EP3194472B1 (en) * 2014-09-18 2018-07-11 Momentive Performance Materials Inc. Functionalized polyoxyalkylene-siloxane polymers and copolymers made therefrom
WO2016044695A1 (en) * 2014-09-18 2016-03-24 Momentive Performance Materials Inc. Polysiloxane co-or terpolymers and polymers made therefrom
US9334372B1 (en) * 2015-02-25 2016-05-10 Momentive Performance Materials Inc. Reactive polysiloxanes and copolymers made therefrom

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188314A (en) 1976-12-14 1980-02-12 General Electric Company Shaped article obtained from a carbonate-polyester composition
US4634737A (en) 1984-12-19 1987-01-06 General Electric Company Copolyester-carbonate composition
US5401826A (en) 1991-10-29 1995-03-28 General Electric Plastics Japan Method for the preparation, of copolymeric polycarbonates
US5767219A (en) * 1996-04-01 1998-06-16 Shin-Etsu Chemical Co., Ltd. Polysiloxane-polyether block copolymer and method for the preraration thereof
WO1999050327A1 (en) * 1998-03-31 1999-10-07 Cardiac Crc Nominees Pty. Ltd. Non-elastomeric polyurethane compositions
US6072011A (en) * 1991-07-01 2000-06-06 General Electric Company Polycarbonate-polysiloxane block copolymers
US6080829A (en) * 1998-06-24 2000-06-27 Medtronic, Inc. Silalkylenesiloxane copolymer materials and methods for their preparation
US6414175B1 (en) * 1997-03-29 2002-07-02 Th. Goldschmidt Agh Innovative siloxane block copolymers with rigid spacers and their use
WO2004026935A1 (en) * 2002-09-17 2004-04-01 Medtronic, Inc. Compounds containing silicon-containing groups, medical devices, and methods
KR20060058195A (ko) 2004-11-24 2006-05-30 제일모직주식회사 내화학성과 내충격성이 우수한 폴리카보네이트 수지조성물
KR20070071592A (ko) 2005-12-30 2007-07-04 에스케이케미칼주식회사 공중합 폴리에스테르/폴리카보네이트 수지 조성물 및 이의제품
KR20090035031A (ko) 2006-08-01 2009-04-08 사빅 이노베이티브 플라스틱스 아이피 비.브이. 열가소성 폴리카보네이트 조성물

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070208144A1 (en) * 2006-03-02 2007-09-06 General Electric Company Poly(arylene ether) block copolymer compositions, methods, and articles
US8962770B2 (en) * 2009-12-30 2015-02-24 Sabic Global Technologies B.V. Blends of isosorbide-based copolycarbonate, method of making, and articles formed therefrom
KR101332434B1 (ko) * 2010-08-26 2013-11-22 제일모직주식회사 비스하이드록시아릴실록산 및 그의 제조 방법
KR101281575B1 (ko) 2010-11-05 2013-07-03 제일모직주식회사 폴리카보네이트 수지 및 상기 폴리카보네이트 수지를 포함하는 열가소성 수지 조성물

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4188314A (en) 1976-12-14 1980-02-12 General Electric Company Shaped article obtained from a carbonate-polyester composition
US4634737A (en) 1984-12-19 1987-01-06 General Electric Company Copolyester-carbonate composition
US6072011A (en) * 1991-07-01 2000-06-06 General Electric Company Polycarbonate-polysiloxane block copolymers
US5401826A (en) 1991-10-29 1995-03-28 General Electric Plastics Japan Method for the preparation, of copolymeric polycarbonates
US5767219A (en) * 1996-04-01 1998-06-16 Shin-Etsu Chemical Co., Ltd. Polysiloxane-polyether block copolymer and method for the preraration thereof
US6414175B1 (en) * 1997-03-29 2002-07-02 Th. Goldschmidt Agh Innovative siloxane block copolymers with rigid spacers and their use
WO1999050327A1 (en) * 1998-03-31 1999-10-07 Cardiac Crc Nominees Pty. Ltd. Non-elastomeric polyurethane compositions
US6080829A (en) * 1998-06-24 2000-06-27 Medtronic, Inc. Silalkylenesiloxane copolymer materials and methods for their preparation
WO2004026935A1 (en) * 2002-09-17 2004-04-01 Medtronic, Inc. Compounds containing silicon-containing groups, medical devices, and methods
KR20060058195A (ko) 2004-11-24 2006-05-30 제일모직주식회사 내화학성과 내충격성이 우수한 폴리카보네이트 수지조성물
KR20070071592A (ko) 2005-12-30 2007-07-04 에스케이케미칼주식회사 공중합 폴리에스테르/폴리카보네이트 수지 조성물 및 이의제품
KR20090035031A (ko) 2006-08-01 2009-04-08 사빅 이노베이티브 플라스틱스 아이피 비.브이. 열가소성 폴리카보네이트 조성물

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIM S.H. ET AL.: "Synthesis and Properties of Allyl-Terminated and Silicon-Containing Polycarbonates.", MACROMOLECULES, vol. 32, 1999, pages 6363 - 6366, XP055085906 *
See also references of EP2636695A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8871875B2 (en) 2010-11-05 2014-10-28 Cheil Industries Inc. Polycarbonate resin and thermoplastic resin composition including polycarbonate resin
US9732186B2 (en) 2014-09-05 2017-08-15 Lg Chem, Ltd. Copolycarbonate and composition comprising the same
US9745418B2 (en) 2014-09-05 2017-08-29 Lg Chem, Ltd. Copolycarbonate and composition comprising the same
US9840585B2 (en) 2014-12-04 2017-12-12 Lg Chem, Ltd. Polycarbonate resin composition
US9902853B2 (en) 2014-12-04 2018-02-27 Lg Chem, Ltd. Copolycarbonate and composition comprising the same
US9745417B2 (en) 2014-12-04 2017-08-29 Lg Chem, Ltd. Copolycarbonate and composition comprising the same
US9718958B2 (en) 2014-12-04 2017-08-01 Lg Chem, Ltd. Copolycarbonate and composition containing the same
US9751979B2 (en) 2014-12-04 2017-09-05 Lg Chem, Ltd. Copolycarbonate and composition containing the same
US9777112B2 (en) 2014-12-04 2017-10-03 Lg Chem, Ltd. Copolycarbonate resin composition
US9809677B2 (en) 2014-12-04 2017-11-07 Lg Chem, Ltd. Polycarbonate composition and article comprising the same
US9580597B2 (en) 2014-12-04 2017-02-28 Lg Chem, Ltd. Polycarbonate composition and article comprising the same
US9868818B2 (en) * 2014-12-04 2018-01-16 Lg Chem, Ltd. Copolycarbonate and composition containing the same
US9745466B2 (en) 2014-12-04 2017-08-29 Lg Chem, Ltd. Copolycarbonate and composition containing the same
US9969841B2 (en) 2014-12-04 2018-05-15 Lg Chem, Ltd. Copolycarbonate and composition comprising the same
US10011716B2 (en) 2014-12-04 2018-07-03 Lg Chem, Ltd. Copolycarbonate composition and article containing the same
US10081730B2 (en) 2014-12-04 2018-09-25 Lg Chem, Ltd. Polycarbonate-based resin composition and molded article thereof
US10174194B2 (en) 2014-12-04 2019-01-08 Lg Chem, Ltd. Copolycarbonate and composition comprising the same
US10196516B2 (en) 2014-12-04 2019-02-05 Lg Chem, Ltd. Copolycarbonate resin composition and article including the same
US10240037B2 (en) 2014-12-04 2019-03-26 Lg Chem, Ltd. Polycarbonate-based resin composition and molded article thereof
US10240038B2 (en) 2014-12-04 2019-03-26 Lg Chem, Ltd. Flame resistant polycarbate based resin composition and molded articles thereof
US10294365B2 (en) 2014-12-04 2019-05-21 Lg Chem, Ltd. Polycarbonate-based resin composition and molded article thereof

Also Published As

Publication number Publication date
EP2636695A1 (en) 2013-09-11
KR20120048090A (ko) 2012-05-15
CN103201312B (zh) 2015-07-22
US20140148559A1 (en) 2014-05-29
US8871875B2 (en) 2014-10-28
KR101281575B1 (ko) 2013-07-03
EP2636695A4 (en) 2014-04-16
CN103201312A (zh) 2013-07-10

Similar Documents

Publication Publication Date Title
WO2012060516A1 (ko) 폴리카보네이트 수지 및 상기 폴리카보네이트 수지를 포함하는 열가소성 수지 조성물
WO2011122767A2 (ko) 히드록시 말단 실록산, 폴리실록산-폴리카보네이트 공중합체 및 그 제조 방법
WO2015002427A1 (ko) 폴리오르가노실록산 화합물, 제조방법 및 이를 포함하는 코폴리카보네이트 수지
EP2773689A1 (en) Polysiloxane-polycarbonate copolymer and method of manufacturing the same
WO2013066000A1 (en) Polycarbonate resin composition having improved low-temperature impact resistance and method of manufacturing the same
WO2015041441A1 (ko) 코폴리카보네이트 수지 및 이를 포함하는 물품
WO2013100494A1 (en) Method of preparing polysiloxane-polycarbonate copolymer
WO2020055178A1 (ko) 디올 화합물, 폴리카보네이트 및 이의 제조방법
WO2013100606A1 (en) Flame-retardant thermoplastic resin composition and molded article thereof
WO2014204146A1 (ko) 난연성과 투명성이 우수한 열가소성 공중합체 수지 및 그 제조방법
WO2018105907A1 (ko) 내열성과 유동성이 우수한 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품
WO2012091293A2 (ko) 내화학성이 우수한 폴리카보네이트 수지 조성물
WO2020159282A1 (ko) 폴리카보네이트-나노셀룰로오스 복합소재 및 이의 제조방법
WO2013047955A1 (ko) 폴리카보네이트 및 그의 제조 방법
WO2014119827A9 (ko) 폴리카보네이트계 열가소성 수지 조성물 및 성형품
WO2020060148A1 (ko) 내충격성, 난연성 및 투명도가 우수한 폴리실록산-폴리카보네이트 공중합체 및 그 제조방법
WO2013100288A1 (ko) 분지상 폴리카보네이트-폴리실록산 공중합체 및 그 제조방법
WO2012091308A2 (ko) 폴리카보네이트-폴리실록산 공중합체 및 그의 제조 방법
WO2014092243A1 (ko) 폴리카보네이트 수지, 그 제조방법 및 이를 포함하는 성형품
WO2015178676A1 (ko) 투명성 및 내충격성이 향상된 폴리실록산-폴리카보네이트 공중합체 및 그 제조방법
WO2013137531A1 (ko) 폴리카보네이트-폴리실록산 공중합체 및 그의 제조 방법
WO2013176349A1 (ko) 신규 폴리실록산, 그 제조방법 및 이를 포함하는 폴리카보네이트-폴리실록산 공중합체
WO2016195312A1 (ko) 폴리카보네이트 수지 및 이의 제조방법
WO2016003132A1 (ko) 투명성 및 저온 내충격성이 향상된 폴리실록산-폴리카보네이트 공중합체 및 그 제조방법
WO2014104655A1 (ko) 복합시트 및 이를 포함하는 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859318

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010859318

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE