WO2012060051A1 - Ofdm受信装置、ofdm受信回路、ofdm受信方法、及びofdm受信プログラム - Google Patents

Ofdm受信装置、ofdm受信回路、ofdm受信方法、及びofdm受信プログラム Download PDF

Info

Publication number
WO2012060051A1
WO2012060051A1 PCT/JP2011/005571 JP2011005571W WO2012060051A1 WO 2012060051 A1 WO2012060051 A1 WO 2012060051A1 JP 2011005571 W JP2011005571 W JP 2011005571W WO 2012060051 A1 WO2012060051 A1 WO 2012060051A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
signal
orthogonal transform
carrier frequency
output signal
Prior art date
Application number
PCT/JP2011/005571
Other languages
English (en)
French (fr)
Inventor
喜修 松村
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201180005307.5A priority Critical patent/CN102687440B/zh
Priority to EP11837705.0A priority patent/EP2637329B1/en
Priority to US13/519,203 priority patent/US9065713B2/en
Priority to JP2012541719A priority patent/JP5266421B2/ja
Publication of WO2012060051A1 publication Critical patent/WO2012060051A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols

Definitions

  • the present invention relates to a technique for receiving a signal transmitted by multiplexing a plurality of subcarriers orthogonal to each other.
  • the OFDM scheme is a scheme that transmits a plurality of narrowband digitally modulated signals by frequency multiplexing using a plurality of subcarriers orthogonal to each other, and is therefore a transmission scheme with excellent frequency utilization efficiency.
  • one symbol period is composed of an effective symbol period and a guard interval period, and a part of the signal of the effective symbol period is copied and inserted into the guard interval period so as to have periodicity within the symbol. . For this reason, it is possible to reduce the influence of inter-symbol interference caused by multipath interference, and it has excellent resistance to multipath interference.
  • DVB-T2 Digital Video Broadcasting-Terrestrial
  • HD High
  • the guard interval of the P1 symbol is different from the guard interval in the conventional ISDB-T (Integrated Services Digital Broadcasting-Terrestrial) and DVB-T.
  • a signal for 59 ⁇ s of the first half in the effective symbol period is copied and inserted into a guard interval period (hereinafter referred to as “previous guard interval period”) before the effective symbol period, and the effective symbol period is inserted.
  • the signal for the last 53 ⁇ s in the effective symbol section is copied and inserted. Further, when copying and inserting, the copy source signal is frequency-shifted by a predetermined f SH and inserted into the guard interval section (previous guard interval section or rear guard interval section).
  • f SH corresponds to one subcarrier interval of the P1 symbol. That is, the signal in the front guard interval and the signal in the rear guard interval have a frequency corresponding to one subcarrier of the P1 symbol higher than the signal in the effective symbol period.
  • the entire valid symbol is used for the guard interval.
  • the P1 symbol is composed of an Active carrier and a Null carrier (unused carrier).
  • FIG. 29 shows the P1 symbol on the frequency axis.
  • the transmission format of the P2 symbol or data symbol is MISO (Multiple-Input-Single-Output) or SISO (Single-Input-Single-Output) (hereinafter, “MISO / SISO information”). ), Information on what is the FFT size of the P2 symbol and data symbol (hereinafter referred to as “FFT size information”), and information on whether FEF (Future Extension Frames) is included (hereinafter referred to as “FFT size information”). "FEF presence / absence information”), etc. (hereinafter referred to as "P1 transmission information").
  • the FEF is a period for service transmission different from the DVB-T2 in the future, and is inserted between the DVB-T2 frame and the DVB-T2 frame, and there is a P1 symbol at the head of the FEF frame. To do.
  • FIG. 30 is a configuration diagram of the P1 generation unit 1000 that generates a P1 symbol.
  • P1 symbol generation section 1000 includes series conversion section 1001, differential modulation section 1002, scramble section 1003, CDS table generation section 1004, padding section 1005, IFFT section 1006, and GI addition section 1007.
  • P1 transmission information is transmitted by the P1 symbol.
  • These pieces of information are represented as a 3-bit S1 signal and a 4-bit S2 signal.
  • a 3-bit S1 signal and a 4-bit S2 signal are input to the series conversion unit 1001.
  • the sequence conversion unit 1001 holds the conversion table shown in FIG. 31 and converts the 3-bit S1 signal into a 64-bit sequence CSS S1 expressed by the following (Equation 1) using the conversion table.
  • the bit S2 signal is converted into a 256-bit series CSS S2 represented by the following (Equation 2).
  • sequence conversion section 1001 uses a sequence CSS S1 represented by (Equation 1) and a sequence CSS S2 represented by (Equation 2), and a signal sequence of a total of 384 bits shown in (Equation 3) below.
  • MSS_SEQ is configured, and signal sequence MSS_SEQ is output to differential modulation section 1002.
  • the signal sequence MSS_SEQ includes two S1 signals having the same content.
  • the differential modulation unit 1002 performs differential modulation shown in the following (Equation 4) on the signal sequence MSS_SEQ input from the sequence conversion unit 1001, and the differentially modulated signal sequence MSS_DIFF is sent to the scramble unit 1003. Output.
  • the differential modulation performed by the differential modulation unit 1002 is DBPSK (Differential Binary Phase Shift Keying).
  • the scrambler 1003 scrambles the differentially modulated signal sequence MSS_DIFF from the differential modulator 1002 as shown in (Equation 7) below, and outputs the scrambled signal sequence MSS_SCR to the padding unit 1005.
  • PRBS pseudo random binary sequence
  • the scramble shown in (Equation 8) below is performed on i , and the scrambled signal MSS_SCR i is output to the padding section 1005.
  • CDS Carrier Distribution Sequence
  • Padding section 1005 scrambles the subcarrier at subcarrier position k (i) with the subcarrier at subcarrier position k (i) shown in the CDS table (see FIG. 32) of CDS table generation section 1004 as the active carrier.
  • the mapped signal MSS_SCR i is mapped and output to the IFFT unit 1006.
  • padding section 1005 outputs subcarriers at subcarrier positions not listed in FIG. 32 as Null carriers to IFFT section 1006.
  • the IFFT unit 1006 performs an IFFT (Inverse Fast Fourier Transform) on the output signal of the padding unit 1005 with an FFT size of 1k, and the IFFT result (the signal in the time domain of the effective symbol period in FIG. 28) is a GI addition unit. To 1007.
  • IFFT Inverse Fast Fourier Transform
  • GI adding section 1007 uses the signal of the effective symbol period input from IFFT section 1006, inserts the signal of the previous part in the effective symbol period in the previous guard interval period after shifting the frequency by f SH , and The signal in the rear part in the effective symbol period is shifted into the guard interval period by f SH and inserted (see FIG. 28). In this way, the P1 symbol is generated.
  • the common FFT size and guard interval ratio are used for the P2 symbol and the data symbol.
  • the guard interval section in the P2 symbol and the data symbol is provided before the effective symbol section in the same manner as DVB-T and ISDB-T.
  • the guard interval section provided before the effective symbol section the signal of the rear part in the effective symbol section is copied and inserted.
  • FIG. 33 shows combinations of FFT sizes and guard interval ratios used in DVB-T2, and pilot patterns that can be set by these combinations. There are eight types of pilot patterns from PP1 to PP8. In FIG. 33, “NA” indicates a combination of an FFT size and a guard interval ratio that cannot be set in the standard.
  • P2 pilots In the P2 symbol, equally spaced pilots (hereinafter referred to as “P2 pilots”) are inserted.
  • P2 pilots When the FFT size is 32k and in the SISO mode, there are P2 pilots every 6 subcarriers, and there are P2 pilots every 3 subcarriers in other cases.
  • the P2 symbol includes information on what the pilot pattern of the data symbol is (hereinafter referred to as “pilot pattern information”), information on whether the carrier extension mode is the extended mode or the normal mode (hereinafter referred to as “transmission mode information”). ), The number of symbols per frame, the modulation method, the forward error correction (Forward Error Correction: FEC) code coding rate, and other transmission parameter information necessary for reception (hereinafter referred to as “P2 transmission information”). .)It is included. Note that the number of symbols of the P2 symbol is set as shown in FIG. 34 according to the FFT size of the P2 symbol.
  • Non-Patent Document 1 There is a technique disclosed in Non-Patent Document 1 as a P1 symbol demodulation technique in the DVB-T2 transmission format as described above.
  • FIG. 35 shows the configuration of the P1 demodulator 2000 that performs demodulation of the P1 symbol.
  • the P1 demodulation unit 2000 includes a P1 position detection unit 2001, a P1 narrowband fc error detection correction unit 2002, an FFT unit 2003, a CDS table generation unit 2004, a P1 wideband fc error detection correction unit 2005, and a P1 decoding unit 2006. With.
  • the P1 position detection unit 2001 uses the input signal to correlate (guard) the signal in the guard interval section of the P1 symbol (the previous guard interval section and the rear guard interval section) and the signal in a predetermined part of the effective symbol section of the P1 symbol. Correlation) is calculated. Then, the P1 position detection unit 2001 integrates the calculated correlation value with the time width of the guard interval interval (the previous guard interval interval and the subsequent guard interval interval), and detects the peak of the interval integral value to detect the input signal. The position of the P1 symbol at is detected.
  • the correlation calculation process is performed in consideration of the frequency shift of fSH added on the transmission side.
  • the predetermined portion is a front portion in the effective symbol interval for the previous guard interval interval, and a rear portion in the effective symbol interval for the subsequent guard interval interval (see FIG. 28). .
  • the P1 narrowband fc error detection and correction unit 2002 correlates a signal (guard correlation) between a signal in a guard interval section (previous guard interval section and subsequent guard interval section) of the P1 symbol and a signal in a predetermined part of the effective symbol section of the P1 symbol. And a frequency error amount (narrowband carrier frequency error amount) equal to or smaller than the subcarrier interval of the P1 symbol is detected from the correlation. Then, the P1 narrowband fc error detection correction unit 2002 corrects the shift of the narrowband carrier frequency of the P1 symbol based on the detected narrowband carrier frequency error amount, and the P1 symbol in which the shift of the narrowband carrier frequency is corrected Is output to the FFT unit 2003.
  • the FFT unit 2003 performs FFT on the time domain signal in the effective symbol period of the P1 symbol with an FFT size of 1k, and the result of the FFT (frequency domain signal in the effective symbol period of the P1 symbol) to the P1 wideband fc error detection and correction unit 2005. Output.
  • the CDS table generation unit 2004 generates a sequence indicating the position of the active carrier (hereinafter referred to as “active carrier arrangement sequence”), and outputs the generated arrangement sequence of the active carrier to the P1 wideband fc error detection correction unit 2005.
  • active carrier arrangement sequence a sequence in which the positions of the Active carriers shown in FIG. 32 are “1” and the positions of the other Null carriers are “0”.
  • the P1 wideband fc error detection / correction unit 2005 uses the active carrier arrangement sequence input from the CDS table generation unit 2004, and uses a frequency error amount (wideband carrier) in the subcarrier interval unit of the P1 symbol in the output signal of the FFT unit 2003. Frequency error amount) is detected. Then, the P1 wideband fc error detection / correction unit 2005 corrects the shift of the wideband carrier frequency of the P1 symbol based on the detected wideband carrier frequency error amount. The P1 wideband fc error detection / correction unit 2005 extracts only the Active carrier from the P1 symbol in which the shift of the wideband carrier frequency is corrected, and outputs the active carrier to the P1 decoding unit 2006.
  • the detection of the broadband carrier frequency error amount of the P1 symbol will be described.
  • the power of each subcarrier is calculated, and the calculation result is shifted by one subcarrier, and the correlation between the calculation result and the arrangement sequence of known active carriers (input from the CDS table generation unit 2004) ( (Configuration correlation) is calculated.
  • the arrangement correlation value at the shift amount at which the wideband carrier frequency error amount becomes zero is the sum of the powers of all active carriers, and includes the null carrier. This value is larger than the correlation value at the shift amount. From this, the shift amount for obtaining the maximum correlation value becomes the broadband carrier frequency error amount, and the broadband carrier frequency error amount can be detected.
  • the shift amount is based on the shift amount when there is no wideband carrier frequency error in the input signal (shift amount “0”) (the same applies hereinafter).
  • the P1 decoding unit 2006 in FIG. 35 performs P1 symbol decoding processing based on the P1 symbol Active carrier input from the P1 wideband fc error detection and correction unit 2005, and extracts P1 transmission information.
  • FIG. 36 is a block diagram of the P1 decoding unit 2006 of FIG.
  • the P1 decoding unit 2006 includes a descrambling unit 2101, a differential demodulation unit 2102, and a pattern matching unit 2103.
  • the P1 symbol decoding process is performed using only the S1 signal in the low frequency region of the P1 symbol.
  • the descrambler 2101 receives the signal sequence Act of the Active carrier from the P1 broadband fc error detection / correction unit 2005 of FIG.
  • the descrambling unit 2101 performs descrambling shown in the following (Equation 9) on the signal sequence Act of the active carrier, and outputs the descrambled signal sequence DESCR to the differential demodulation unit 2102.
  • the descrambling shown in the following (Equation 10) is performed, and the descrambled signal DESCR i is output to the differential demodulator 2102.
  • the superscript “*” represents a conjugate complex (the same applies hereinafter).
  • the differential demodulator 2102 performs demodulation (hard decision) of the signal DESCR i ⁇ DESCR * i ⁇ 1 from the polarity of the real axis as a result of the differential detection, and the demodulated signal DEMOD i is used as a pattern matching unit. 2103.
  • the processing of the differential demodulation unit 2102 is expressed by the following (Equation 11), and the differential demodulation performed by the differential demodulation unit 2102 is demodulation corresponding to DBPSK.
  • the pattern matching unit 2103 converts the signals DEMOD 0 , DEMOD 1 ,..., DEMOD 319 differentially demodulated by the differential demodulation unit 2102 into signal sequences as shown in the following (Equation 12) and (Equation 13). It is divided into DEMOD_CSS S1 (corresponding to S1 signal) and signal sequence DEMOD_CSS S2 (corresponding to S2 signal).
  • the index k is used to distinguish the eight series CSS S1 shown in FIG. 31 and also to distinguish the 16 series CSS S2 shown in FIG. 31 (in the following, The same).
  • the pattern matching unit 2103 obtains a correlation CORR S1, k between each of the series CSS S1, k and the series DEMOD_CSS S1 in FIG. 31, as shown in the following (Expression 14), and as shown in the following (Expression 15). , The correlation CORR S2, k between each series CSS S2, k and the series DEMOD_CSS S2 in FIG.
  • the pattern matching unit 2103 then outputs a 3-bit S1 signal corresponding to the sequence CSS S1, k that takes the maximum correlation value among the eight correlation values calculated using the above (Equation 14) (FIG. 31). Reference) is estimated as the transmitted S1 signal. Also, the pattern matching unit 2103 has a 4-bit S2 signal corresponding to the sequence CSS S2, k that takes the maximum correlation value among the 16 correlation values calculated using the above (Equation 15) (FIG. 31). Reference) is estimated as the transmitted S2 signal. The pattern matching unit 2103 acquires P1 transmission information using the estimated S1 signal and S2 signal.
  • the P1 symbol is composed of an Active carrier and a Null carrier (see FIG. 29), and as shown in FIG. 37, the signal in the guard interval section is the signal of the effective symbol section as one subcarrier. Since the frequency is shifted so that the frequency becomes higher (the amount equivalent to the above fSH ), the following problems arise in a noise or multipath interference environment.
  • the value described below the frequency axis is the subcarrier number, not the frequency value itself.
  • FIG. 38 shows a schematic diagram of a received signal when multipath interference exists.
  • the first wave is treated as a main wave and the second wave as a delayed wave.
  • the distribution diagram of the subcarriers when FFT is performed on the signal in the effective symbol section of the first wave (main wave) (signal in the effective symbol section of the main wave) is shown in FIG. .
  • the signal component of the previous guard interval interval of the delayed wave of the P1 symbol to be subjected to FFT is included. Also, depending on the delay amount of the delayed wave (when the delay amount exceeds the time width of the previous guard interval section), as shown in FIG. 38, the effective symbol of the main wave of the P1 symbol to be FFT-executed is included in the FFT implementation section. In addition to the signal component of the section, the signal component of the previous guard interval section of the delayed wave of the P1 symbol to be subjected to the FFT and the signal component of the previous OFDM symbol (for example, data symbol) are included.
  • Each signal in the front guard interval section and the rear guard interval section is obtained by frequency-shifting a part of the signal in the effective symbol section so that the frequency is increased by one subcarrier. Therefore, when there is a delayed wave, the signal component of the active carrier in the previous guard interval section is higher in frequency by one subcarrier than the signal component of the active carrier in the effective symbol section, as shown in FIG. Appears in position. Further, although not shown in FIG. 39, signal components of other OFDM symbols (for example, data symbols) appear in all subcarriers.
  • the power of the signal component of the Null carrier is increased, and the arrangement correlation value at the other subcarrier position is compared with the arrangement correlation value at the correct subcarrier position in the arrangement correlation calculation by the P1 wideband fc error detection correction unit 2005.
  • the P1 broadband fc error detection / correction unit 2005 erroneously estimates the broadband carrier frequency error amount.
  • the estimation of the broadband carrier frequency error amount is similarly erroneous due to the preceding wave.
  • the P1 symbol of the DVB-T2 frame is targeted, and the erroneous estimation of the broadband carrier frequency error amount in a multipath interference environment or a noise environment has been described as an issue.
  • the erroneous estimation leads to deterioration of the reception performance of the received signal, which is a serious problem on the receiving side.
  • An object of the present invention is to provide a receiving apparatus, an OFDM receiving circuit, an OFDM receiving method, and an OFDM receiving program.
  • an OFDM receiver of the present invention is an OFDM receiver that receives an OFDM symbol composed of a signal in an effective symbol period and a signal in a guard interval period based on the signal in the effective symbol period.
  • a first orthogonal transform unit that orthogonally transforms the signal in the effective symbol period and outputs the result of the orthogonal transform
  • a second orthogonal transform unit that orthogonally transforms the signal in the guard interval period and outputs the result of the orthogonal transform
  • a correction unit that corrects the shift of the wide band carrier frequency of the OFDM symbol based on the frequency error amount.
  • the OFDM receiver described above detection of a wide band carrier frequency error amount of an OFDM symbol is performed using two signals, a signal in an effective symbol period and a signal in a guard interval period based on the signal in the effective symbol period. Therefore, it is possible to reduce erroneous estimation of the broadband carrier frequency error amount of the OFDM symbol even in a multipath interference environment or a severe noise environment, thereby improving reception performance.
  • the block diagram of the OFDM receiver A of an example of this invention. 1 is a configuration diagram of an OFDM receiver 1 according to a first embodiment.
  • the block diagram of the demodulation part 30 of FIG. The block diagram of the P1 demodulation part 103 of FIG.
  • the schematic diagram for demonstrating the signal part of the P1 symbol which P1 orthogonal transformation part 153U and P1 orthogonal transformation part 153G of FIG. 4 implements orthogonal transformation.
  • FIG. 5 is a configuration diagram of a P1 broadband fc error detection correction unit 155 of FIG. 4.
  • the block diagram of the P1 decoding part 156 of FIG. The schematic diagram in the time-axis of P1 symbol in case a delay wave exists.
  • amendment part 400 which concerns on 6th Embodiment.
  • the block diagram of the selection determination part 413 of FIG. The block diagram of the P1 wideband fc error detection correction
  • the block diagram of the selection determination part 471 of FIG. The block diagram of the P1 wideband fc error detection correction
  • amendment part 550 which concerns on 9th Embodiment.
  • FIG. 26 is a configuration diagram of the selection determination unit 312A of FIG.
  • FIG. FIG. 36 is a configuration diagram of the P1 decoding unit 2006 in FIG. 35.
  • a first OFDM receiver that is an aspect of the present invention is an OFDM receiver that receives an OFDM symbol composed of a signal in an effective symbol period and a signal in a guard interval period based on the signal in the effective symbol period.
  • a first orthogonal transform unit that orthogonally transforms the signal in the effective symbol period and outputs the result of the orthogonal transform
  • a second orthogonal transform unit that orthogonally transforms the signal in the guard interval period and outputs the result of the orthogonal transform
  • a detection unit for detecting a broadband carrier frequency error amount of the OFDM symbol based on an output signal of the first orthogonal transform unit and an output signal of the second orthogonal transform unit, and a broadband carrier detected by the detection unit
  • a correction unit that corrects the shift of the wide band carrier frequency of the OFDM symbol based on the frequency error amount.
  • a first OFDM receiving circuit is an OFDM receiving circuit that receives an OFDM symbol composed of a signal in an effective symbol period and a signal in a guard interval period based on the signal in the effective symbol period.
  • a first orthogonal transform circuit that orthogonally transforms the signal in the effective symbol section and outputs the result of the orthogonal transform; and a second orthogonal transform circuit that orthogonally transforms the signal in the guard interval section and outputs the result of the orthogonal transform
  • a detection circuit for detecting a broadband carrier frequency error amount of the OFDM symbol based on the output signal of the first orthogonal transform circuit and the output signal of the second orthogonal transform circuit, and the broadband carrier detected by the detection circuit
  • a correction circuit that corrects a shift in the broadband carrier frequency of the OFDM symbol based on a frequency error amount. That.
  • a first OFDM receiving method is performed in an OFDM receiving apparatus that receives an OFDM symbol composed of a signal in an effective symbol period and a signal in a guard interval period based on the signal in the effective symbol period.
  • a first orthogonal transform step for orthogonally transforming the signal in the effective symbol interval a second orthogonal transform step for orthogonally transforming the signal in the guard interval interval, and the first orthogonal transform step Based on the result of orthogonal transform and the result of orthogonal transform in the second orthogonal transform step, a detection step for detecting the broadband carrier frequency error amount of the OFDM symbol, and the broadband carrier frequency error amount detected in the detection step Based on the wideband carrier frequency correction of the OFDM symbol based on Includes a correction step that, a.
  • a first OFDM reception program provides an OFDM receiver that receives an OFDM symbol composed of a signal in an effective symbol period and a signal in a guard interval period based on the signal in the effective symbol period.
  • a first orthogonal transform step for orthogonally transforming the signal in the effective symbol period, a second orthogonal transform step for orthogonally transforming the signal in the guard interval period, a result of the orthogonal transform in the first orthogonal transform step, and the second A detection step of detecting a wide band carrier frequency error amount of the OFDM symbol based on an orthogonal transformation result in the orthogonal transformation step, and a wide band carrier of the OFDM symbol based on the wide band carrier frequency error amount detected in the detection step And a correction step for correcting the frequency shift.
  • each of the above-described OFDM receiver, OFDM receiver circuit, OFDM reception method, and OFDM reception program two signals are used: a signal in an effective symbol period and a signal in a guard interval period based on the signal in the effective symbol period.
  • a signal in an effective symbol period and a signal in a guard interval period based on the signal in the effective symbol period.
  • FIG. 1 receives an OFDM symbol composed of a signal in an effective symbol period and a signal in a guard interval period based on the signal in the effective symbol period.
  • the first orthogonal transform unit A1 which corresponds to the first orthogonal transform unit of the first OFDM receiver, orthogonally transforms the signal in the effective symbol period and outputs the result of the orthogonal transform.
  • the second orthogonal transform unit A2 corresponds to the second orthogonal transform unit of the first OFDM receiving apparatus, performs orthogonal transform on the signal in the guard interval section, and outputs the result of the orthogonal transform.
  • the detection unit A3 corresponds to the detection unit of the first OFDM receiver, and calculates the wide band carrier frequency error amount of the OFDM symbol based on the output signal of the first orthogonal transform unit A1 and the output signal of the second orthogonal transform unit A2.
  • the correction unit A4 corresponds to the correction unit of the first OFDM receiver, and corrects the shift of the wide band carrier frequency of the OFDM symbol based on the wide band carrier frequency error amount detected by the detection unit A3.
  • the second OFDM receiver according to an aspect of the present invention is the first OFDM receiver, wherein the signal in the guard interval section is obtained by frequency-shifting the signal in the effective symbol section.
  • the signal in the guard interval section is obtained by frequency-shifting the signal in the effective symbol section, the same signal is transmitted at two different frequencies (transmitted with two different transmission path characteristics), and both signals Is used to detect a wide band carrier frequency error amount of an OFDM symbol. For this reason, erroneous detection of the broadband carrier frequency error amount can be reduced under a severe noise environment or a multipath interference environment, and stable reception is possible.
  • a third OFDM receiver cancels the frequency shift with respect to an input signal of the second orthogonal transform unit or an output signal of the second orthogonal transform unit in the second OFDM receiver.
  • a frequency shift correction unit that performs a correction process related to the implementation of the frequency shift in the reverse direction before or after the second orthogonal transform unit and outputs a result of the correction process, and the detection unit includes the broadband carrier
  • the correction of the frequency shift is performed by orthogonally transforming the output signal of the first orthogonal transform unit and the output signal of the frequency shift correction unit, or the output signal of the second orthogonal transform unit obtained by orthogonal transform Based on the output signal.
  • the signal in the guard interval section is a frequency shift of the signal in the effective symbol section, and in a noisy environment or a multipath interference environment. It is possible to reduce erroneous detection of the wideband carrier frequency error amount, and stable reception becomes possible.
  • the OFDM symbol is a P1 symbol in a DVB-T2 transmission scheme
  • the guard interval period is greater than the effective symbol period. It consists of a front guard interval section in front and a rear guard interval section after the effective symbol section, and the second orthogonal transform unit performs the orthogonal transform on the signal of the previous guard interval section and the rear guard interval section.
  • the signal is combined with the signal.
  • the plurality of subcarriers constituting the OFDM symbol are composed of a plurality of Active carriers and a plurality of Null carriers.
  • the subcarrier position where each of the plurality of Active carriers is arranged is defined by a predetermined arrangement pattern, and the detection unit outputs the output signal of the first orthogonal transformation unit and the output of the second orthogonal transformation unit And adding the value of the signal in the subcarrier corresponding to the position of the plurality of active carriers defined by the arrangement pattern in the plurality of consecutive subcarriers of the signal based on the signal, This is done by sequentially shifting the carrier within the predetermined range in the subcarrier direction in units of one subcarrier. Based on the result of the processing to detect the broadband carrier frequency error amount.
  • the detection of the broadband carrier frequency error amount of the OFDM symbol is performed using the signal of the effective symbol period and the signal of the guard interval period, the multipath interference environment or the environment with severe noise is detected. Even in the lower case, it is possible to reduce erroneous estimation of the broadband carrier frequency error amount of the OFDM symbol, and to improve the reception performance.
  • the detection unit is configured to calculate a complex between an output signal of the first orthogonal transform unit and an output signal of the second orthogonal transform unit.
  • a complex multiplication unit that performs multiplication for each subcarrier, and an addition process for adding complex multiplication values in subcarriers corresponding to the positions of a plurality of active carriers defined by the arrangement pattern in a plurality of consecutive subcarriers,
  • An addition processing unit that outputs the result of the addition processing by sequentially shifting the plurality of consecutive subcarriers in a subcarrier direction within a predetermined range in units of one subcarrier, and each output signal of the addition processing unit Calculating a power and outputting a calculation result; and detecting a maximum value from each output signal of the power calculation unit to detect the wideband carrier frequency error. It includes a maximum value detector for detecting the amount of a.
  • the detection unit calculates the power of the output signal of the first orthogonal transform unit for each subcarrier, and calculates the calculation result.
  • a first power calculation unit that outputs, a second power calculation unit that calculates power of an output signal of the second orthogonal transform unit for each subcarrier, and outputs a calculation result; and an output signal of the first power calculation unit;
  • a multiplication unit that performs multiplication with the output signal of the second power calculation unit for each subcarrier, and a plurality of consecutive subcarriers at subcarriers corresponding to the positions of the plurality of Active carriers defined by the arrangement pattern.
  • the addition process for adding the multiplication values is performed while sequentially shifting the plurality of consecutive subcarriers in the subcarrier direction in the subcarrier direction within a predetermined range, and the result of the addition process is output. That includes an addition unit, and a maximum value detector for detecting the wide band carrier frequency error amount by detecting a maximum value from among the output signal of the adding unit.
  • An eighth OFDM receiver is the fifth OFDM receiver, wherein the detection unit calculates an amplitude of an output signal of the first orthogonal transform unit for each subcarrier, and calculates a calculation result.
  • a first amplitude calculator for outputting, an amplitude of an output signal of the second orthogonal transform unit for each subcarrier, a second amplitude calculator for outputting a calculation result, and an output signal of the first amplitude calculator
  • a multiplication unit that performs multiplication with the output signal of the second amplitude calculation unit for each subcarrier, and a plurality of continuous subcarriers in subcarriers corresponding to the positions of the plurality of Active carriers defined by the arrangement pattern.
  • the addition process for adding the multiplication values is performed while sequentially shifting the plurality of consecutive subcarriers in the subcarrier direction in the subcarrier direction within a predetermined range, and the result of the addition process is output. That includes an addition unit, and a maximum value detector for detecting the wide band carrier frequency error amount by detecting a maximum value from among the output signal of the adding unit.
  • the plurality of subcarriers constituting the OFDM symbol are configured by a plurality of Active carriers and a plurality of Null carriers.
  • the subcarrier position where each of the plurality of Active carriers is arranged is defined by a predetermined arrangement pattern, and the detection unit outputs the output signal of the first orthogonal transformation unit and the output of the second orthogonal transformation unit First detection processing for detecting a first candidate of a wideband carrier frequency error amount using both of the signal and detecting the reliability of the first candidate, an output signal of the first orthogonal transform unit, and the second orthogonal transform
  • the second candidate of the wideband carrier frequency error amount is detected using only the output signal of the first orthogonal transform unit among the output signals of the unit, and the reliability of the second candidate is determined.
  • the second detection processing to be output, and only the output signal of the second orthogonal transform unit out of the output signal of the first orthogonal transform unit and the output signal of the second orthogonal transform unit is used to calculate the wideband carrier frequency error amount.
  • the wideband carrier frequency error amount candidate having the highest reliability is performed by the correction unit using at least two of a third detection process for detecting a third candidate and detecting the reliability of the third candidate. Select as carrier frequency error amount.
  • the detection unit performs the first detection processing on the output signal of the first orthogonal transform unit and the second orthogonal transform.
  • Addition processing for adding the values of the first signals in the subcarriers corresponding to the positions of the plurality of active carriers defined by the arrangement pattern in the plurality of consecutive subcarriers of the first signal based on the output signal of the first part The successive subcarriers are sequentially shifted in the subcarrier direction by one subcarrier within a predetermined range, and the first candidate of the wideband carrier frequency error amount and the first
  • the second detection process is performed by detecting the reliability of one candidate, and the second detection process is performed on a plurality of consecutive subkeys of the second signal based on the output signal of the first orthogonal transform unit.
  • an addition process of adding the values of the second signals in the subcarriers corresponding to the positions of the plurality of active carriers defined by the arrangement pattern is performed, and the consecutive subcarriers are subcarriers within a predetermined range.
  • the third candidate is performed by sequentially shifting the subcarrier in the direction, and detecting the second candidate of the wideband carrier frequency error amount and the reliability of the second candidate based on the result of the addition process, In the detection process, the third signal in the subcarrier corresponding to the position of the plurality of active carriers defined by the arrangement pattern in the plurality of consecutive subcarriers of the third signal based on the output signal of the second orthogonal transform unit
  • the subcarriers in the subcarrier direction within a predetermined range are added to the subcarriers within a predetermined range. Performed while successively shifting the unit is carried out by detecting the reliability of the third candidate and the third candidate of the wide band carrier frequency error amount based on the result of the addition process.
  • each of the first to third reliability values is obtained by dividing the maximum value of the result of the addition process by the second largest value.
  • each of the first to third reliability values is a maximum value of the result of the addition processing, and the higher the value, the more reliable the reliability. High degree.
  • each of the first to third reliability values includes a maximum value and a second largest value as a result of the addition process. The greater the difference, the higher the reliability.
  • a fourteenth OFDM receiving apparatus is the tenth OFDM receiving apparatus, wherein the effective symbol interval signal and the guard interval interval signal are based on the detected reliability of each candidate.
  • a selection unit that selects one of them and outputs the selected signal to the correction unit is further included, and the correction unit corrects the wideband carrier frequency shift with respect to the signal input from the selection unit.
  • wideband carrier frequency shift correction is performed on the signal having the higher reliability among the signal in the effective symbol section and the signal in the guard interval section, so that the reception performance can be improved.
  • an OFDM receiver 1 according to a first embodiment of the present invention will be described with reference to the drawings.
  • an OFDM receiver that operates as a digital broadcast receiver compliant with the DVB-T2 system which is the second generation European terrestrial digital broadcast standard, is taken as an example.
  • the received signal received by the OFDM receiver 1 is an OFDM signal composed of OFDM symbols conforming to the DVB-T2 transmission format.
  • FIG. 2 is a configuration diagram of the OFDM receiver 1 according to the first embodiment.
  • the OFDM receiver 1 includes an antenna 10, a tuner 20, a demodulation unit 30, a decoding unit 40, and a display unit 50.
  • the antenna 10 receives a broadcast wave emitted from a broadcast station (not shown), and outputs the received broadcast wave to the tuner 20.
  • the tuner 20 selects a reception signal of a desired reception channel from a plurality of broadcast waves input from the antenna 10, converts the selected reception signal from an RF (Radio Frequency) band to an IF (Intermediate Frequency) band,
  • the IF band received signal is output to demodulator 30.
  • the demodulator 30 demodulates the received signal input from the tuner 20 and outputs a signal obtained as a result of the demodulation to the decoder 40, as will be described in detail later.
  • the decoding unit 40 is a signal input from the demodulating unit 30, for example, H.264.
  • a signal compressed by H.264 or the like is decoded into a video signal or an audio signal, and the decoded video signal or audio signal is output to the display unit 50.
  • the display unit 50 performs video display based on the video signal input from the decoding unit 40 and performs audio output based on the audio signal input from the decoding unit 40.
  • FIG. 3 is a block diagram of the demodulator 30 of FIG.
  • the demodulation unit 30 includes an A / D conversion unit 60, a demodulation core unit 70, and a control information collection unit 80.
  • the IF band received signal is input to the A / D converter 60 from the tuner 20 of FIG.
  • the A / D converter 60 converts the received signal input from the tuner 20 from an analog signal to a digital signal, and the received signal converted to a digital signal (hereinafter referred to as “digital received signal”) is a demodulation core unit.
  • digital received signal is a demodulation core unit.
  • the data is output to a quadrature demodulator 101 described later.
  • the demodulation core unit 70 includes an orthogonal demodulation unit 101, an fc correction unit 102, a P1 demodulation unit 103, a GI determination unit 104, a narrowband fc error calculation unit 105, an orthogonal transformation unit 106, and a wideband fc error calculation unit. 107, a transmission path characteristic estimation unit 108, an equalization unit 109, and an error correction unit 110.
  • Each unit in the demodulation core unit 70 operates using the control information collected by the control information collection unit 80 as necessary.
  • the quadrature demodulation unit 101 performs quadrature demodulation on the IF band digital reception signal input from the A / D conversion unit 60 with a fixed frequency, and includes a complex baseband signal (consisting of an in-phase component and a quadrature component) obtained as a result of the quadrature demodulation. Signal) to the fc correction unit 102.
  • the fc correction unit 102 has been calculated by the narrowband fc error calculation unit 105 until now, which has been detected by the narrowband carrier frequency error amount (described later) and the wideband carrier frequency error amount (described later) detected by the P1 demodulation unit 103.
  • the corrected carrier frequency is generated based on the narrow-band carrier frequency error amount (described later) and the wide-band carrier frequency error amount (described later) calculated by the wide-band fc error calculation unit 107 so far.
  • the fc correction unit 102 corrects the carrier frequency shift of the complex baseband signal input from the orthogonal demodulation unit 101 based on the corrected carrier frequency, and the complex baseband signal with the corrected carrier frequency shift is corrected to the P1 demodulation unit. 103, the GI determination unit 104, the narrowband fc error calculation unit 105, and the orthogonal transform unit 106.
  • the quadrature demodulation unit 101 performs quadrature demodulation using a fixed frequency, and the fc correction unit 102 corrects the carrier frequency shift.
  • the present invention is not limited to this. It may be.
  • the quadrature demodulator that simultaneously corrects the carrier frequency deviation performs quadrature demodulation using a frequency obtained by adding the fixed frequency and the detected carrier frequency error amount to correct the carrier frequency deviation. A signal may be obtained.
  • the complex baseband signal in which the shift of the carrier frequency is corrected is input from the fc correction unit 102 to the P1 demodulation unit 103.
  • the P1 demodulator 103 detects a P1 symbol included in the DVB-T2 frame from the input complex baseband signal.
  • the P1 demodulator 103 detects, from the P1 symbol, a frequency error amount (narrowband carrier frequency error amount) within the subcarrier interval of the P1 symbol and a frequency error amount (wideband carrier frequency error amount) in the subcarrier interval of the P1 symbol. Then, the deviation of the carrier frequency of the P1 symbol is corrected based on them.
  • the P1 demodulating unit 103 performs a decoding process of the P1 symbol in which the deviation of the carrier frequency is corrected, and the P1 transmission information (FFT size information, MISO / SISO information, FEF presence / absence information, etc.) transmitted with the P1 symbol.
  • the information is output to the control information collecting unit 80 as control information.
  • the P1 demodulating unit 103 outputs the detected narrow band carrier frequency error amount and wide band carrier frequency error amount to the fc correction unit 102. Details of the P1 demodulator 103 will be described later with reference to FIG.
  • the GI determination unit 104 receives information (FFT size information) from the control information collection unit 80 regarding the FFT size of the P2 symbol and data symbol transmitted by the P1 symbol. Based on the received FFT size at each guard interval ratio specified by DVB-T2, the GI determination unit 104 uses the guard interval interval signal and the effective symbol in the P2 symbol or data symbol input from the fc correction unit 102 The correlation (guard correlation) with the signal at the back of the section is calculated. The GI determination unit 104 estimates the guard interval ratio of the P2 symbol and the data symbol used for actual transmission based on the calculation result of the guard correlation, and uses the estimated guard interval ratio as control information. Output to 80.
  • FFT size information information from the control information collection unit 80 regarding the FFT size of the P2 symbol and data symbol transmitted by the P1 symbol. Based on the received FFT size at each guard interval ratio specified by DVB-T2, the GI determination unit 104 uses the guard interval interval signal and the effective symbol in the P2 symbol or data symbol input from the fc correction unit
  • the narrowband fc error calculation unit 105 receives the FFT sizes of the P2 symbol and the data symbol and their guard interval ratios from the control information collection unit 80. Then, the narrowband fc error calculation unit 105 uses the FFT size and the guard interval ratio, and the signal in the guard interval section and the signal in the rear part of the effective symbol section in the P2 symbol and the data symbol input from the fc correction unit 102 (Guard correlation) is calculated. Then, the narrowband fc error calculation unit 105 calculates a frequency error amount (narrowband carrier frequency error amount) within the subcarrier interval between the P2 symbol and the data symbol based on the calculated guard correlation, and calculates the calculated narrowband carrier. The frequency error amount is output to the fc correction unit 102.
  • a frequency error amount narrowband carrier frequency error amount
  • the orthogonal transform unit 106 performs orthogonal transform on the signal (time domain complex baseband signal) in the effective symbol period of the P2 symbol and the data symbol input from the fc correction unit 102, and results of the orthogonal transform (complex baseband in the frequency domain). Signal) to the wideband fc error calculation unit 107, the transmission path characteristic estimation unit 108, and the equalization unit 109. Note that the orthogonal transform unit 106 performs orthogonal transform based on Fourier transform, cosine transform, wavelet transform, Hadamard transform, and the like.
  • the orthogonal transform unit 106 performs orthogonal transform using Fourier transform, and uses FFT for Fourier transform.
  • the orthogonal transform unit 106 performs FFT on the signal in the effective symbol period (time domain complex baseband signal) of the P2 symbol and the data symbol, and uses the FFT result (frequency domain complex baseband signal) as a wideband fc error.
  • the data is output to the calculation unit 107, the transmission path characteristic estimation unit 108, and the equalization unit 109. Note that the processing of the orthogonal transform unit 106 is not limited to this.
  • Wideband fc error calculation section 107 uses the complex baseband signal (signal related to P2 symbol and data symbol) in the frequency domain input from orthogonal transform section 106 to calculate the correlation of the arrangement sequence of pilot signals included therein. Then, the wideband fc error calculation unit 107 calculates a frequency error amount (wideband carrier frequency error amount) in subcarrier interval units of the P2 symbol and the data symbol using the correlation calculation result, and calculates the calculated wideband carrier frequency error. The amount is output to the fc correction unit 102.
  • a wideband fc correction unit is provided between the orthogonal transform unit 106, the transmission path characteristic estimation unit 108, and the equalization unit 109.
  • the wideband fc error calculation unit 107 outputs the calculated wideband carrier frequency error amount to the fc correction unit 102.
  • the wideband fc correction unit corrects the shift of the wideband carrier frequency of the P2 symbol and the data symbol input from the orthogonal transform unit 106 using the wideband carrier frequency error amount calculated by the wideband fc error calculation unit 107, and The P2 symbol and the data symbol whose frequency deviation is corrected are output to the transmission path characteristic estimation unit 108 and the equalization unit 109.
  • the transmission path characteristic estimator 108 receives the frequency domain complex baseband signals (signals related to P2 symbols and data symbols) from the orthogonal transformer 106.
  • the transmission path characteristic estimation unit 108 estimates the amplitude and phase distortion characteristics (transmission path characteristics) received by the input complex baseband signal in the frequency domain in the transmission path by using a pilot signal included therein, The estimated transmission path characteristics are output to the equalization unit 109.
  • the equalization unit 109 receives a frequency domain complex baseband signal (a signal related to P2 symbols and data symbols) from the orthogonal transform unit 106.
  • the equalization unit 109 corrects amplitude and phase distortion of the input complex baseband signal in the frequency domain using the transmission path characteristics estimated by the transmission path characteristic estimation unit 108. Then, equalization section 109 outputs a signal with corrected amplitude and phase distortion to error correction section 110.
  • the error correction unit 110 performs error correction processing on the signal with corrected amplitude and phase distortion input from the equalization unit 109, and outputs a stream such as a transport stream to the decoding unit 40 in FIG.
  • the P2 transmission information (pilot pattern information, transmission mode information, number of symbols per frame, modulation method, FEC code coding rate, etc.) transmitted in the P2 symbol is output to the control information collecting unit 80 as control information.
  • the control information collection unit 80 classifies the transmission parameters from the control information collected from the P1 demodulation unit 103, the GI determination unit 104, and the error correction unit 110, and outputs the transmission parameters to each unit in the demodulation core unit 70. Each unit in the demodulation core unit 70 operates using the control information collected by the control information collection unit 80 as necessary.
  • the P1 demodulating unit 103 in the demodulating unit 30 among the units described in FIG. 2 and FIG.
  • FIG. 4 is a block diagram of the P1 demodulator 103 of FIG.
  • the P1 demodulation unit 103 includes a P1 position detection unit 151, a P1 narrowband fc error detection correction unit 152, a P1 orthogonal transform unit 153U, a P1 orthogonal transform unit 153G, a CDS table generation unit 154, and a P1 wideband fc error detection.
  • a correction unit 155 and a P1 decoding unit 156 are provided.
  • the P1 position detection unit 151 receives the output signal (the complex baseband signal in the time domain) of the fc correction unit 102 in FIG.
  • the P1 position detection unit 151 uses the input time domain complex baseband signal to perform a predetermined interval between a P1 symbol guard interval period (previous guard interval period and rear guard interval period) and a P1 symbol effective symbol period.
  • the correlation (guard correlation) with the partial signal is calculated.
  • the P1 position detection unit 151 inputs the calculated correlation value by integrating the calculated correlation value with the time interval of the guard interval interval (the previous guard interval interval and the subsequent guard interval interval) and detecting the peak of the interval integration value.
  • the position of the P1 symbol in the complex baseband signal is detected.
  • the correlation calculation process is performed in consideration of the frequency shift of fSH added on the transmission side.
  • the predetermined portion is a front portion in the effective symbol interval for the previous guard interval interval, and a rear portion in the effective symbol interval for the subsequent guard interval interval (see FIG. 28). The same applies to correlation calculation processing by the P1 narrowband fc error detection correction unit 152 described later.
  • the P1 narrowband fc error detection / correction unit 152 calculates a correlation (guard correlation) between a signal in the guard interval section (the previous guard interval section and the rear guard interval section) of the P1 symbol and a signal in a predetermined part of the effective symbol section. To go. Then, the P1 narrowband fc error detection and correction unit 152 integrates the calculated correlation value with the time width of the guard interval interval (the previous guard interval interval and the subsequent guard interval interval), and calculates the phase of the interval integration value. To go.
  • a correlation guard correlation
  • the P1 narrowband fc error detection correction unit 152 is configured to detect a frequency error amount (narrowband carrier frequency within the P1 symbol subcarrier interval based on the phase value at the timing of the position of the P1 symbol detected by the P1 position detection unit 151. Error amount) is detected.
  • the P1 narrowband fc error detection correction unit 152 corrects the narrowband carrier frequency shift of the P1 symbol based on the detected narrowband carrier frequency error amount, and the P1 symbol with the narrowband carrier frequency shift corrected is P1.
  • the P1 orthogonal transform unit 153U receives the output signal of the P1 narrowband fc error detection correction unit 152 (P1 symbol time domain complex baseband signal). As illustrated in FIG. 5, the P1 orthogonal transform unit 153U cuts out a signal in the effective symbol period (the signal of the effective symbol (A) in FIG. 5) from the P1 symbol, and extracts the signal in the extracted effective symbol period (a complex base in the time domain). Band signal) is orthogonally transformed, and the result of the orthogonal transformation (frequency domain complex baseband signal) is output to the P1 wideband fc error detection and correction unit 155. Note that the P1 orthogonal transform unit 153U performs orthogonal transform based on Fourier transform, cosine transform, wavelet transform, Hadamard transform, and the like.
  • the P1 orthogonal transform unit 153U performs orthogonal transform using Fourier transform, and uses FFT for Fourier transform.
  • the P1 orthogonal transform unit 153U performs FFT on the signal in the effective symbol period of the P1 symbol (time domain complex baseband signal) with an FFT size of 1k, and the result of the FFT (frequency domain complex baseband signal) is P1.
  • Output to wideband fc error detection and correction unit 155 Note that the processing of the P1 orthogonal transform unit 153U is not limited to this.
  • a signal in an effective symbol section in which the P1 orthogonal transform unit 153U cuts out from the output signal of the P1 narrowband fc error detection correction unit 152 and performs orthogonal transform includes a P1 symbol subject to orthogonal transform in a multipath interference environment or the like.
  • the signal component of the preceding guard interval period of the preceding wave of the P1 symbol to be orthogonally transformed or the preceding guard interval period of the delayed wave may be included.
  • the signal component of an OFDM symbol (eg, data symbol) may be included.
  • a noise component is included in a signal in an effective symbol section in which the P1 orthogonal transform unit 153U cuts out from the output signal of the P1 narrowband fc error detection correction unit 152 and performs orthogonal transform in a noise environment or the like.
  • the output signal (complex baseband signal in the time domain of P1 symbol) of the P1 narrowband fc error detection correction unit 152 is input to the P1 orthogonal transform unit 153G.
  • the P1 orthogonal transform unit 153G performs a signal from the P1 symbol in the previous guard interval section (a signal in the guard interval (C) in FIG. 5) and a signal in the rear guard interval section (the guard interval (B in FIG. 5)). ))) And combine them so as to be continuous in time.
  • a section obtained by combining the front guard interval section and the rear guard interval section is referred to as a “combined guard interval section”.
  • the P1 orthogonal transform unit 153G orthogonally transforms the signal (complex baseband signal in the time domain) in the combined guard interval section, and the result of the orthogonal transform (complex baseband signal in the frequency domain) is a P1 wideband fc error detection correction unit.
  • the P1 orthogonal transform unit 153G performs orthogonal transform based on Fourier transform, cosine transform, wavelet transform, Hadamard transform, and the like.
  • the P1 orthogonal transform unit 153G performs orthogonal transform using Fourier transform, and uses FFT for Fourier transform.
  • the P1 orthogonal transform unit 153G performs FFT on the signal (complex baseband signal in the time domain) in the combined guard interval section with an FFT size of 1k, and the result of the FFT (complex baseband signal in the frequency domain) is P1 wideband fc.
  • the data is output to the error detection correction unit 155. Note that the processing of the P1 orthogonal transform unit 153G is not limited to this.
  • the signal in the combined guard interval section that the P1 orthogonal transform unit 153G cuts out from the output signal of the P1 narrowband fc error detection correction unit 152 and performs orthogonal transform includes the main guard joint interval section of the P1 symbol to be orthogonally transformed.
  • a signal component of an effective symbol period of the preceding wave or delayed wave of the P1 symbol to be orthogonally transformed may be included, and further, a signal component of another OFDM symbol (for example, a data symbol) is included.
  • a signal component of another OFDM symbol for example, a data symbol
  • a noise component is included in a signal in the combined guard interval section in which the P1 orthogonal transform unit 153G cuts out from the output signal of the P1 narrowband fc error detection correction unit 152 and performs orthogonal transform in a noise environment or the like.
  • the CDS table generation unit 154 generates a sequence indicating the position of the active carrier (active carrier arrangement sequence), and outputs the generated active carrier arrangement sequence to the P1 wideband fc error detection correction unit 155.
  • the arrangement sequence of the Active carrier is a sequence in which the position of the Active carrier illustrated in FIG. 32 is “1” and the positions of the other null carriers (unused carriers) are “0”.
  • the CDS table generation unit 154 may hold, for example, a table having the contents shown in FIG. 32 in advance, and may generate an arrangement sequence of Active carriers based on the table, or may be configured with a logic circuit. Then, an arrangement sequence of Active carriers may be generated. Note that the method for generating an arrangement sequence of Active carriers by the CDS table generating unit 154 is not particularly limited.
  • the P1 wideband fc error detection correction unit 155 outputs the output signal of the P1 orthogonal transform unit 153U (complex baseband signal in the frequency domain of the effective symbol period of the P1 symbol) and the output signal of the P1 orthogonal transform unit 153G (the combined guard interval of the P1 symbol)
  • the frequency error amount (wideband carrier frequency error amount) of the subcarrier interval unit of the P1 symbol using the complex baseband signal in the frequency domain of the interval) and the active carrier arrangement sequence input from the CDS table generation unit 154 To detect.
  • the P1 wideband fc error detection correction unit 155 corrects the wideband carrier frequency shift of the P1 symbol based on the detected wideband carrier frequency error amount, and only the active carrier from the P1 symbol in which the wideband carrier frequency shift is corrected. Is extracted and output to the P1 decoding unit 156.
  • the P1 broadband fc error detection / correction unit 155 outputs the detected broadband carrier frequency error amount to the fc correction unit 102 of FIG. Details of the P1 broadband fc error detection correction unit 155 will be described later with reference to FIG.
  • the P1 decoding unit 156 performs P1 symbol decoding processing using the P1 symbol Active carrier input from the P1 wideband fc error detection correction unit 155, and uses the P1 transmission information transmitted by the P1 symbol as control information. 3 is output to the control information collecting unit 80. Details of the P1 decoding unit 156 will be described later with reference to FIG.
  • FIG. 6 is a block diagram of the P1 broadband fc error detection correction unit 155 of FIG. 6 also illustrates a P1 orthogonal transform unit 153U, a P1 orthogonal transform unit 153G, and a CDS table generation unit 154 in order to clarify the input to each unit of the P1 wideband fc error detection correction unit 155.
  • the P1 broadband fc error detection correction unit 155 includes a detection unit 170 and a correction unit 180.
  • the detection unit 170 detects a frequency error amount (wideband carrier frequency error amount) in the P1 symbol subcarrier interval unit in the P1 symbol, and includes a complex multiplication unit 171 and an arrangement correlation calculation unit (addition processing unit). 172, a power calculation unit 173, and a maximum value detection unit 174.
  • the complex multiplier 171 includes an output signal from the P1 orthogonal transform unit 153U (complex baseband signal in the frequency domain of the effective symbol period of the P1 symbol) and an output signal of the P1 orthogonal transform unit 153G (in the combined guard interval period of the P1 symbol). Frequency domain complex baseband signal). For each subcarrier, the complex multiplier 171 outputs the output signal Y U (n) of the P1 orthogonal transform unit 153U and the output signal Y G (n + 1) of the P1 orthogonal transform unit 153G, as shown in (Equation 16) below.
  • the complex multiplication result Y COMB (n) is output to the arrangement correlation calculation unit 172.
  • the variable in () of Y U (n), Y G (n + 1), and Y COMB (n) represents a subcarrier number (hereinafter the same).
  • the complex multiplier 171 instead of the calculation of the above equation (16), the signal of the complex conjugate of the output signal Y U (n) Y U ( n) * and the output signal Y G (n + 1) and multiplying the The multiplication result Y U (n) * ⁇ Y G (n + 1) may be output to the arrangement correlation calculation unit 172.
  • a prior signal of the signal and the rear guard interval of the guard interval section is that the signal of the effective symbol section and a frequency shifted by f SH (one obtained by frequency shifting as subcarriers frequency is increased).
  • the output signal of the P1 orthogonal transform unit 153G is shifted to the high frequency side by one subcarrier with respect to the output signal of the P1 orthogonal transform unit 153U.
  • the output signal Y U (n) of the P1 orthogonal transform unit 153U and the output signal Y G (n + 1) of the P1 orthogonal transform unit 153G having a frequency higher by one subcarrier than that are complex-multiplied.
  • Arrangement correlation calculation section 172 receives an arrangement sequence of Active carriers from CDS table generation section 154 and an output signal of complex multiplication section 171. Arrangement correlation calculation section 172 performs a plurality of consecutive addition processes for adding the value of the output signal of complex multiplication section 171 in the subcarrier whose active carrier arrangement sequence value is “1” in the plurality of consecutive subcarriers. The subcarriers are sequentially shifted in the subcarrier direction within a predetermined range in units of one subcarrier (the arrangement correlation calculation unit 172 calculates the arrangement correlation between the output signal of the complex multiplication unit 171 and the arrangement sequence of the active carriers.
  • the arrangement correlation calculation unit 172 sequentially outputs the addition value (position correlation value) obtained as a result of the addition process to the power calculation unit 173.
  • the arrangement correlation calculation unit 172 outputs the output signals Y COMB (0 + A + i), Y COMB (1 + A + i), Y COMB (2 + A + i),..., Y COMB (852 + A + i) of the complex multiplication unit 171 and the CDS table
  • the output signal C (0), C (1), C (2),..., C (852) of the generation unit 154 is multiplied, and the multiplication result is added, and the calculation result C (0) XY COMB (0 + A + i) + C (1) ⁇ Y COMB (1 + A + i) + C (2) ⁇ Y COMB (2 + A + i) +... + C (852) ⁇ Y COMB (852 + A + i) is output to the power calculation unit 173.
  • C (i) is the value of the arrangement sequence of Active carriers at subcarrier position i (“1” when subcarrier position i is an Active carrier, “0” when Null carrier is used) (see FIG. 32).
  • Y COMB (j) is the value of the subcarrier number j of the output signal of the complex multiplier 171.
  • “852” is a value based on the arrangement of the Active carrier and the Null carrier as shown in FIG. 29, and is appropriately changed according to the range of the subcarrier in which the Active carrier and the Null carrier are arranged. Value.
  • a COM is a reference position for the arrangement correlation calculation, and Y COMB (0 + A), Y COMB (1 + A), Y COMB (2 + A),..., Y COMB (852 + A) are P1 broadband fc error detection and correction unit 155.
  • This is a set of output signals of the complex multiplier 171 that obtains the maximum value of the power of the arrangement correlation when it is assumed that there is no wideband carrier frequency error amount in the input signal.
  • the power calculation unit 173 calculates the power of the arrangement correlation from the arrangement correlation value sequentially input from the arrangement correlation calculation unit 172, and outputs the calculated arrangement correlation power value to the maximum value detection unit 174.
  • Maximum value detection section 174 detects the maximum power value from the power values of the arrangement correlation sequentially input from power calculation section 173, and sets the shift amount for obtaining the maximum power value in units of subcarrier intervals of P1 symbols.
  • the frequency error amount (broadband carrier frequency error amount) is output to the correction unit 180 and the fc correction unit 102 of FIG.
  • correction section 180 Based on the wideband carrier frequency error amount input from maximum value detection section 174, correction section 180 uses the wideband carrier of the output signal of P1 orthogonal transform section 153U (the complex baseband signal in the frequency domain of the effective symbol section of P1 symbols). Perform frequency offset correction. Then, the correction unit 180 uses the active carrier arrangement sequence input from the CDS table generation unit 154 to extract only the active carrier from the complex baseband signal in the frequency domain in which the shift of the wideband carrier frequency is corrected. The extracted active carrier is output to the P1 decoding unit 156 in FIG. 4 (descramble unit 191 in FIG. 7 described later).
  • FIG. 7 is a configuration diagram of the P1 decoding unit 156 of FIG.
  • the P1 decoding unit 156 includes a descrambling unit 191, a differential demodulation unit 192, and a pattern matching unit 193. Note that the P1 decoding unit 156 performs decoding processing of the P1 symbol using only the S1 signal in the low frequency region of the P1 symbol.
  • the descrambler 191 receives the signal sequence Act of the active carrier of the P1 symbol from the P1 broadband fc error detection correction unit 155 (correction unit 180 in FIG. 6) in FIG.
  • the descrambling unit 191 performs the descrambling shown in (Expression 9) above on the signal sequence Act of the active carrier, and outputs the descrambled signal sequence DESCR to the differential demodulation unit 192.
  • the signal Act i is descrambled as shown in (Equation 10) above, and the descrambled signal DESCR i is output to the differential demodulator 192.
  • the processing of the differential demodulation unit 192 is expressed by the above (Equation 11), and the differential demodulation performed by the differential demodulation unit 192 is demodulation corresponding to DBPSK.
  • the signal DEMOD i is output as “0”, but may be output as “1”.
  • the pattern matching unit 193 converts the signals DEMOD 0 , DEMOD 1 ,..., DEMOD 319 differentially demodulated by the differential demodulation unit 192 into signal sequences as shown in the above (Equation 12) and (Equation 13). It is divided into DEMOD_CSS S1 (corresponding to S1 signal) and signal sequence DEMOD_CSS S2 (corresponding to S2 signal).
  • the pattern matching unit 193 obtains a correlation CORR S1, k between each of the series CSS S1, k and the series DEMOD_CSS S1 in FIG. 31, as shown in the above (Expression 14), and as shown in the above (Expression 15). , The correlation CORR S2, k between each series CSS S2, k and the series DEMOD_CSS S2 in FIG.
  • the pattern matching unit 193 outputs a 3-bit S1 signal corresponding to the sequence CSS S1, k having the maximum correlation value among the eight correlation values calculated using the above (Equation 14) (FIG. 31). Reference) is estimated as the transmitted S1 signal. Also, the pattern matching unit 193 generates a 4-bit S2 signal corresponding to the sequence CSS S2, k that takes the maximum correlation value among the 16 correlation values calculated using the above (Equation 15) (FIG. 31). Reference) is estimated as the transmitted S2 signal. The pattern matching unit 193 acquires P1 transmission information using the estimated S1 signal and S2 signal.
  • the P1 decoding unit 156 uses only the S1 signal in the lower frequency domain among the S1 signal in the lower frequency domain and the S1 signal in the higher frequency domain in the P1 symbol decoding process.
  • the present invention is not limited to this, and both may be used, or only the S1 signal in the high frequency region may be used. In the former case, since the S1 signal can be estimated using two S1 signals having different frequency bands, the estimation accuracy of the S1 signal can be improved.
  • the differential demodulation unit 192 in the P1 decoding unit 156 performs the hard decision
  • the present invention is not limited to this, and the hard decision may not be performed.
  • DESCR 0 is output as DEMOD 0 to the pattern matching unit 193.
  • the pattern matching 193 performs correlation calculation using the following (Equation 17) and the following (Equation 18) instead of the above (Equation 14) and the above (Equation 15).
  • the P1 decoding unit 156 performs pattern matching after differential demodulation.
  • the transmission system is subjected to error correction coding.
  • error correction may be performed after differential demodulation, and decoding processing may be performed using the one with the lowest error.
  • the signal in the previous guard interval section and the signal in the rear guard interval section of the P1 symbol are frequency-shifted so that the frequency for one subcarrier is higher than the signal in the effective symbol section of the P1 symbol. is there. That is, the frequency position of the signal in the front guard interval section and the signal in the rear interval section of the P1 symbol is higher by one subcarrier than the frequency position of the signal in the effective symbol section of the P1 symbol (FIG. 37). reference).
  • the output of the P1 narrowband fc error detection correction unit 152 uses the effective symbol period of the main wave of the P1 symbol as the orthogonal transformation execution period.
  • the subcarrier distribution in the frequency domain of a signal (output signal of the P1 orthogonal transform unit 153U) obtained as a result of orthogonal transform (for example, FFT) of the signal is as shown in FIG.
  • orthogonal transform for example, FFT
  • the delayed wave component for the null carrier between the two The subcarrier position where appears is different.
  • the signal component of the Active carrier is strengthened and the signal component of the Null carrier is weakened.
  • the wideband carrier frequency error amount can be accurately estimated to correct the shift of the wideband carrier frequency error, and the S1 signal and the S2 signal can be acquired correctly.
  • the complex conjugate operation it is possible to remove the uncertainty of the polarity of the DBPSK-added signal added to the Active carrier without calculating the power of the subcarrier (Active carrier, Null carrier). And since it is not power calculation, it is possible to suppress noise components having various phase components when integrating each tap in arrangement correlation calculation, and it is possible to accurately estimate the broadband carrier frequency error amount even in a noise environment. It can be carried out.
  • the OFDM receiving apparatus includes an P1 wideband fc error detection correction unit 200 that is different from the P1 wideband fc error detection correction unit 155 of the OFDM reception apparatus 1 described in the first embodiment. Different from 1. However, the P1 broadband fc error detection / correction unit 200 is different from the P1 broadband fc error detection / correction unit 155 of the first embodiment in the mechanism of detecting the broadband carrier frequency error amount.
  • FIG. 11 is a configuration diagram of the P1 broadband fc error detection correction unit 200. 11 also illustrates a P1 orthogonal transform unit 153U, a P1 orthogonal transform unit 153G, and a CDS table generation unit 154 in order to clarify the input to each unit of the P1 wideband fc error detection correction unit 200.
  • the P1 broadband fc error detection / correction unit 200 includes a detection unit 210 and a correction unit 180.
  • the detection unit 210 detects a frequency error amount (broadband carrier frequency error amount) in the P1 symbol subcarrier interval unit in the P1 symbol, and includes a power calculation unit 211U, a power calculation unit 211G, and a multiplication unit 212. And an arrangement correlation calculation unit (addition processing unit) 213 and a maximum value detection unit 214.
  • the power calculation unit 211U calculates the power of the output signal of the P1 orthogonal transform unit 153U (the complex baseband signal in the frequency domain of the effective symbol period of the P1 symbol) for each subcarrier, and outputs the calculated power value to the multiplication unit 212. To do.
  • the power calculation unit 211G calculates the power of the output signal of the P1 orthogonal transform unit 153G (complex baseband signal in the frequency domain of the combined guard interval section of the P1 symbol) for each subcarrier, and outputs the calculated power value to the multiplication unit 212. Output.
  • the multiplication unit 212 For each subcarrier, the multiplication unit 212 outputs the output signal
  • 2 is multiplied, and the multiplication result Y COMB (n) is output to the arrangement correlation calculation unit 213.
  • a prior signal of the signal and the rear guard interval of the guard interval section is that the signal of the effective symbol section and a frequency shifted by f SH (one obtained by frequency shifting as subcarriers frequency is increased). For this reason, the output signal of the power calculation unit 211G is shifted to the high frequency side by one subcarrier with respect to the output signal of the power calculation unit 211U. Considering this, the output signal
  • the arrangement correlation calculation unit 213 receives the arrangement sequence of Active carriers from the CDS table generation unit 154 and the output signal Y COMB of the multiplication unit 212.
  • Arrangement correlation operation section 213 performs addition processing for adding the values of output signals of multiplication section 212 in subcarriers whose active carrier arrangement sequence value is “1” in a plurality of consecutive subcarriers.
  • the subcarriers are sequentially shifted in units of one subcarrier in the subcarrier direction within a predetermined range (the arrangement correlation calculation unit 213 performs arrangement correlation calculation between the output signal of the multiplication unit 212 and the arrangement sequence of the Active carriers.
  • the arrangement correlation calculation unit 213 sequentially outputs the addition value (placement correlation value) obtained as a result of the addition process to the maximum value detection unit 214.
  • the maximum value detection unit 214 detects the maximum arrangement correlation value from the arrangement correlation values sequentially input from the arrangement correlation calculation unit 213, and sets the shift amount for obtaining the maximum arrangement correlation value as a sub-value of the P1 symbol.
  • a frequency error amount in a unit of carrier interval (broadband carrier frequency error amount) is output to the correction unit 180 and the fc correction unit 102 in FIG.
  • the correction unit 180 uses the wideband carrier frequency error amount input from the maximum value detection unit 214 to correct the shift of the wideband carrier frequency of the output signal of the P1 orthogonal transform unit 153U, and then extracts the active carrier. .
  • the present embodiment in a multipath interference environment, it is possible to accurately estimate the wideband carrier frequency error amount to correct the shift of the wideband carrier frequency error, and to correctly acquire the S1 signal and the S2 signal. it can.
  • the OFDM receiver of this embodiment includes a P1 broadband fc error detection correction unit 250 that is different from the P1 broadband fc error detection correction units 155 and 200 of the OFDM receiver described in the first and second embodiments. , Different from those OFDM receivers. However, the P1 wideband fc error detection / correction unit 250 is different from the P1 wideband fc error detection / correction units 155, 200 of the first and second embodiments in the mechanism of detecting the wideband carrier frequency error amount.
  • FIG. 12 is a configuration diagram of the P1 wideband fc error detection correction unit 250.
  • FIG. 12 also illustrates a P1 orthogonal transform unit 153U, a P1 orthogonal transform unit 153G, and a CDS table generation unit 154 in order to clarify the input to each unit of the P1 wideband fc error detection correction unit 250.
  • the P1 broadband fc error detection correction unit 250 includes a detection unit 270 and a correction unit 180.
  • the detection unit 270 detects a frequency error amount (broadband carrier frequency error amount) in the P1 symbol subcarrier interval unit in the P1 symbol, and includes an amplitude calculation unit 271U, an amplitude calculation unit 271G, and a multiplication unit 272. And an arrangement correlation calculation unit (addition processing unit) 273 and a maximum value detection unit 274.
  • the amplitude calculation unit 271U calculates the amplitude of the output signal of the P1 orthogonal transform unit 153U (complex baseband signal in the frequency domain of the effective symbol period of the P1 symbol) for each subcarrier, and outputs the calculated amplitude value to the multiplication unit 272. To do.
  • the amplitude calculator 271G calculates the amplitude of the output signal of the P1 orthogonal transform unit 153G (complex baseband signal in the frequency domain of the combined guard interval section of the P1 symbol) for each subcarrier, and supplies the calculated amplitude value to the multiplier 272. Output.
  • the multiplication unit 272 For each subcarrier, the multiplication unit 272 outputs the output signal
  • a prior signal of the signal and the rear guard interval of the guard interval section is that the signal of the effective symbol section and a frequency shifted by f SH (one obtained by frequency shifting as subcarriers frequency is increased). For this reason, the output signal of the amplitude calculation unit 271G is shifted to the high frequency side by one subcarrier with respect to the output signal of the amplitude calculation unit 271U. Taking this into consideration, the output signal
  • the arrangement correlation calculation unit 273 receives the arrangement sequence of Active carriers from the CDS table generation unit 154 and the output signal Y COMB of the multiplication unit 272. Arrangement correlation calculation section 273 performs addition processing for adding the values of the output signals of multiplication section 272 in subcarriers whose active carrier arrangement sequence value is “1” in a plurality of consecutive subcarriers. The subcarriers are sequentially shifted in units of one subcarrier in the subcarrier direction within a predetermined range (the arrangement correlation calculation unit 273 performs the arrangement correlation calculation between the output signal of the multiplication unit 272 and the arrangement sequence of the active carriers.
  • the arrangement correlation calculation unit 273 sequentially outputs the addition value (placement correlation value) obtained as a result of the addition process to the maximum value detection unit 274.
  • the maximum value detection unit 274 detects the maximum arrangement correlation value from the arrangement correlation values sequentially input from the arrangement correlation calculation unit 273, and sets the shift amount for obtaining the maximum arrangement correlation value as a sub-value of the P1 symbol.
  • a frequency error amount in a unit of carrier interval (broadband carrier frequency error amount) is output to the correction unit 180 and the fc correction unit 102 in FIG.
  • the correction unit 180 uses the wideband carrier frequency error amount input from the maximum value detection unit 274 to correct the shift of the wideband carrier frequency of the output signal of the P1 orthogonal transform unit 153U, and then extracts the active carrier. .
  • the present embodiment in a multipath interference environment, it is possible to accurately estimate the wideband carrier frequency error amount to correct the shift of the wideband carrier frequency error, and to correctly acquire the S1 signal and the S2 signal. it can.
  • the OFDM receiver of this embodiment includes a P1 wideband fc error detection correction unit 300 that is different from the P1 wideband fc error detection correction unit 155 of the OFDM receiver described in the first to third embodiments. Different from those OFDM receivers. However, the P1 wideband fc error detection and correction unit 300 differs from the P1 wideband fc error detection and correction unit 155 and the like in the mechanism of detecting the wideband carrier frequency error amount.
  • FIG. 13 is a configuration diagram of the P1 wideband fc error detection correction unit 300.
  • FIG. 13 also illustrates a P1 orthogonal transform unit 153U, a P1 orthogonal transform unit 153G, and a CDS table generation unit 154 in order to clarify the input to each unit of the P1 wideband fc error detection and correction unit 300.
  • the P1 broadband fc error detection / correction unit 300 includes a detection unit 310 and a correction unit 180.
  • the detection unit 310 detects a frequency error amount (wideband carrier frequency error amount) in the P1 symbol subcarrier interval unit in the P1 symbol, and includes a complex multiplication unit 171 and an arrangement correlation calculation unit (addition processing unit). 172, a power calculation unit 173, a power calculation unit 211U, an arrangement correlation calculation unit (addition processing unit) 311U, a power calculation unit 211G, an arrangement correlation calculation unit (addition processing unit) 311G, and a selection determination unit 312 Is provided.
  • a frequency error amount wideband carrier frequency error amount
  • the complex multiplication unit 171, the arrangement correlation calculation unit 172, and the power calculation unit 173 perform the above-described processing, and the output signal (the power value of the arrangement correlation) of the power calculation unit 173 is the selection determination unit 312 (the maximum value in FIG. 14 described later). Detection unit 331 and reliability detection unit 332).
  • the power calculation unit 211U performs the above-described processing, and the output signal of the power calculation unit 211U is supplied to the arrangement correlation calculation unit 311U.
  • the arrangement correlation calculation unit 311U receives the arrangement sequence of Active carriers from the CDS table generation unit 154 and the output signal
  • the subcarriers are sequentially shifted in units of one subcarrier in the subcarrier direction within a predetermined range (the arrangement correlation calculation unit 311U calculates the arrangement correlation between the output signal of the power calculation unit 211U and the arrangement sequence of the active carriers) Is performed while sequentially shifting the output signal of the power calculation unit 211U used for the arrangement correlation calculation in units of one subcarrier in the subcarrier direction within a predetermined range).
  • the arrangement correlation calculation unit 311U outputs the addition value (placement correlation value) obtained as a result of the addition process to the selection determination unit 312 (maximum value detection unit 331U and reliability detection unit 332U in FIG. 14 described later).
  • the power calculation unit 211G performs the above-described processing, and the output signal of the power calculation unit 211G is supplied to the arrangement correlation calculation unit 311G.
  • the arrangement correlation calculation unit 311G receives the arrangement sequence of Active carriers from the CDS table generation unit 154 and the output signal
  • Arrangement correlation calculation section 311G performs an addition process for adding the values of the output signals of power calculation section 211G in subcarriers whose active carrier arrangement sequence value is “1” in a plurality of consecutive subcarriers.
  • the subcarriers are sequentially shifted in units of one subcarrier in the subcarrier direction within a predetermined range (the arrangement correlation calculation unit 311G calculates the arrangement correlation between the output signal of the power calculation unit 211G and the arrangement sequence of the active carriers) Is performed while sequentially shifting the output signal of the power calculating unit 211G used for the arrangement correlation calculation in units of one subcarrier in the subcarrier direction within a predetermined range).
  • the placement correlation calculation unit 311G outputs the addition value (placement correlation value) obtained as a result of the addition process to the selection determination unit 312 (maximum value detection unit 331G and reliability detection unit 332G in FIG. 14 described later).
  • the selection determination unit 312 uses the output signal of the power calculation unit 173, the output signal of the arrangement correlation calculation unit 311U, and the output signal of the arrangement correlation calculation unit 311G to A frequency error amount (wideband carrier frequency error amount) in units of subcarrier intervals is detected, and the detected wideband carrier frequency error amount is output to the fc correction unit 102 and the correction unit 180 in FIG.
  • the correction unit 180 uses the broadband carrier frequency error amount input from the selection determination unit 312 to correct the shift of the broadband carrier frequency of the output signal of the P1 orthogonal transform unit 153U, and then extracts the active carrier.
  • FIG. 14 is a configuration diagram of the selection determination unit 312 of FIG. FIG. 14 also illustrates a power calculation unit 173, an arrangement correlation calculation unit 311U, and an arrangement correlation calculation unit 311G in order to clarify the input to each unit of the selection determination unit 312.
  • the selection determination unit 312 includes a maximum value detection unit 331, a reliability detection unit 332, a maximum value detection unit 331U, a reliability detection unit 332U, a maximum value detection unit 331G, a reliability detection unit 332G, and a determination unit. 333 and a selection unit 334.
  • the maximum value detection unit 331 detects the maximum power value from the power values of the arrangement correlation sequentially input from the power calculation unit 173, and determines the shift amount for obtaining the maximum power value in units of subcarrier intervals of the P1 symbol. This is output to the selection unit 334 as a frequency error amount candidate (a first candidate for a broadband carrier frequency error amount).
  • the reliability detection unit 332 detects the maximum power value and the second largest power value from the power values of the arrangement correlation sequentially input from the power calculation unit 173, and sets the maximum power value to the second largest power value. And the division value (maximum power value ⁇ second largest power value) is output to the determination unit 333 as the reliability of the first candidate of the broadband carrier frequency error amount.
  • Maximum value detecting section 331U detects the maximum arrangement correlation value from the arrangement correlation values sequentially input from arrangement correlation calculating section 311U, and determines the shift amount for obtaining the maximum arrangement correlation value as the subcarrier interval of P1 symbol. This is output to the selection unit 334 as a unit frequency error amount candidate (second candidate for a wideband carrier frequency error amount).
  • the reliability detection unit 332U detects the maximum arrangement correlation value and the second largest arrangement correlation value from the arrangement correlation values sequentially input from the arrangement correlation calculation unit 311U, and sets the maximum arrangement correlation value to the second value. And the division value (maximum arrangement correlation value ⁇ second largest arrangement correlation value) is output to the determination unit 333 as the reliability of the second candidate for the wideband carrier frequency error amount.
  • the maximum value detection unit 331G detects the maximum arrangement correlation value from the arrangement correlation values sequentially input from the arrangement correlation calculation unit 311G, and sets a shift amount one larger than the shift amount for obtaining the maximum arrangement correlation value to P1. This is output to the selection unit 334 as a frequency error amount candidate (third candidate for a wideband carrier frequency error amount) in symbol subcarrier interval units.
  • the shift amount that is one larger than the shift amount for obtaining the maximum arrangement correlation value is set as the third candidate of the wideband carrier frequency error amount because the correction unit 180 performs correction of the shift of the wideband carrier frequency error.
  • This is a signal related to the effective symbol period, and the signal in the guard interval period is shifted to a higher frequency by one subcarrier than the signal in the effective symbol period.
  • the maximum value detection unit 331G may output the shift amount for obtaining the maximum arrangement correlation value to the selection unit 334 as the third candidate of the wideband carrier frequency error amount.
  • the reliability detection unit 332G detects the maximum arrangement correlation value and the second largest arrangement correlation value from the arrangement correlation values sequentially input from the arrangement correlation calculation unit 311G, and sets the maximum arrangement correlation value to the second value. And the division value (the maximum arrangement correlation value / the second largest arrangement correlation value) is output to the determination unit 333 as the reliability of the third candidate for the wideband carrier frequency error amount.
  • the determination unit 333 includes the reliability of the first candidate, the reliability of the second candidate, and the third reliability of the wideband carrier frequency error amount input from each of the reliability detection unit 332, the reliability detection unit 332U, and the reliability detection unit 332G.
  • the reliability of the candidates is compared, and the candidate of the wideband carrier frequency error amount having the highest reliability (the highest reliability value) is selected from the first candidate, the second candidate, and the third candidate of the wideband carrier frequency error amount. To detect. Then, the determination unit 333 notifies the selection unit 334 of the broadband carrier frequency error amount candidate with the highest reliability.
  • the arrangement correlation calculation an addition value of all the active carriers is obtained at the correct subcarrier position, and an addition value of a part of the active carrier and a part of the null carrier is obtained at the incorrect subcarrier position. For this reason, the power value of the arrangement correlation or the value of the arrangement correlation at the correct subcarrier position is maximized and becomes larger than the power value of the second largest arrangement correlation or the value of the arrangement correlation. It should be noted that half of the total number of active carriers is included at the position including the most active carriers at the wrong subcarrier position. For this reason, in a highly reliable signal, the maximum value is much larger than the second largest value, and as a result, the division value (reliability) obtained by dividing the maximum value by the second largest value is considerably larger than 1.
  • the maximum value of the power of arrangement correlation or the maximum value of arrangement correlation is reduced, and the signal component of the Null carrier is increased.
  • the power value of the second largest arrangement correlation or the value of the arrangement correlation becomes larger, the difference between the maximum value and the second largest value becomes smaller, or the maximum value is taken with an incorrect shift amount.
  • the division value (reliability) obtained by dividing the maximum value by the second largest value is close to 1. Based on this, the reliability of detection of the broadband carrier frequency error amount is estimated based on the size of the division value.
  • the selection unit 334 receives the first candidate, the second candidate, and the first candidate of the broadband carrier frequency error amount input from each of the maximum value detection unit 331, the maximum value detection unit 331U, and the maximum value detection unit 331G. 3 is selected as a broadband carrier frequency error amount candidate having the highest reliability from among the three candidates, and the selected broadband carrier frequency error amount candidate is used for correction. It outputs to the correction
  • the complex multiplier 171, the arrangement correlation calculator 172, the power calculator 173, the maximum value detector 331, and the reliability detector 332 receive both the output signal from the orthogonal transform unit 153 ⁇ / b> U and the output signal from the orthogonal transform unit 153 ⁇ / b> G.
  • This block is used to detect a first candidate for a wideband carrier frequency error amount and to execute a first detection process for detecting the reliability of the first candidate.
  • the power calculation unit 211U, the arrangement correlation calculation unit 311U, the maximum value detection unit 331U, and the reliability detection unit 332U are the output signals of the orthogonal transformation unit 153U among the output signals of the orthogonal transformation unit 153U and the orthogonal transformation unit 153G.
  • This is a block for executing a second detection process for detecting the second candidate of the wideband carrier frequency error amount using only the second candidate and detecting the reliability of the second candidate.
  • the power calculation unit 211G, the arrangement correlation calculation unit 311G, the maximum value detection unit 331G, and the reliability detection unit 332G are the output signals of the orthogonal transformation unit 153G among the output signals of the orthogonal transformation unit 153U and the output signals of the orthogonal transformation unit 153G.
  • (1) detection of a first candidate for a wideband carrier frequency error amount using both a signal in an effective symbol period and a signal in a combined guard interval period, and (2) only a signal in an effective symbol period is used.
  • the detection of the second candidate of the wideband carrier frequency error amount performed, and (3) the detection of the third candidate of the wideband carrier frequency error amount using only the signal in the combined guard interval period, and using these three detection results is used.
  • the broadband carrier frequency error amount is detected.
  • the OFDM receiving apparatus includes a P1 wideband fc error detection correction unit 350 that is different from the P1 wideband fc error detection correction unit 155 of the OFDM receiving apparatus described in the first to fourth embodiments. Different from those OFDM receivers. However, the P1 broadband fc error detection / correction unit 350 differs from the P1 broadband fc error detection / correction unit 155 and the like in the mechanism of detecting the broadband carrier frequency error amount.
  • FIG. 15 is a configuration diagram of the P1 broadband fc error detection correction unit 350. 15 also illustrates a P1 orthogonal transform unit 153U, a P1 orthogonal transform unit 153G, and a CDS table generation unit 154 in order to clarify the input to each unit of the P1 wideband fc error detection correction unit 350.
  • the P1 broadband fc error detection correction unit 350 includes a detection unit 370 and a correction unit 180.
  • the detection unit 370 detects a frequency error amount (broadband carrier frequency error amount) in the P1 symbol subcarrier interval unit in the P1 symbol, and includes a power calculation unit 211U, a power calculation unit 211G, and a multiplication unit 212.
  • the power calculation unit 211U, the power calculation unit 211G, and the placement correlation calculation unit 213 perform the above-described processing, and the output signal (placement correlation value) of the placement correlation calculation unit 213 is a selection determination unit 371 (the maximum value in FIG. 16 described later). Detection unit 391 and reliability detection unit 392).
  • the power calculation unit 211U and the placement correlation calculation unit 311U perform the above-described processing, and the output signal (placement correlation value) of the placement correlation calculation unit 311U is selected and determined by a selection determination unit 371 (a maximum value detection unit 331U and a reliability detection unit 331U in FIG. 16 described later). Degree detector 332U).
  • the power calculation unit 211G and the arrangement correlation calculation unit 311G perform the above-described processing, and the output signal (the arrangement correlation value) of the arrangement correlation calculation unit 311G is selected and determined by a selection determination unit 371 (a maximum value detection unit 331G and a reliability detection unit 331G in FIG. 16 described later). Degree detector 332G).
  • the selection determination unit 371 uses the output signal of the arrangement correlation calculation unit 213, the output signal of the arrangement correlation calculation unit 311U, and the output signal of the arrangement correlation calculation unit 311G to generate a P1 symbol. 3 is detected, and the detected wideband carrier frequency error amount is output to the fc correction unit 102 and the correction unit 180 of FIG.
  • the correction unit 180 extracts the active carrier after correcting the wideband carrier frequency shift of the output signal of the P1 orthogonal transform unit 153U using the wideband carrier frequency error amount input from the selection determining unit 371.
  • FIG. 16 is a block diagram of the selection determining unit 371 in FIG. Note that FIG. 16 also illustrates an arrangement correlation calculation unit 213, an arrangement correlation calculation unit 311U, and an arrangement correlation calculation unit 311G in order to clarify the input to each unit of the selection determination unit 371.
  • the selection determination unit 371 includes a maximum value detection unit 391, a reliability detection unit 392, a maximum value detection unit 331U, a reliability detection unit 332U, a maximum value detection unit 331G, a reliability detection unit 332G, and a determination unit. 393 and a selection unit 394.
  • Maximum value detecting section 391 detects the maximum arrangement correlation value from the arrangement correlation values sequentially input from arrangement correlation calculating section 213, and determines the shift amount for obtaining the maximum arrangement correlation value as the subcarrier interval of P1 symbol. This is output to the selection unit 394 as a unit frequency error amount candidate (a first candidate for a broadband carrier frequency error amount).
  • the reliability detection unit 392 detects the maximum arrangement correlation value and the second largest arrangement correlation value from the arrangement correlation values sequentially input from the arrangement correlation calculation unit 213, and sets the maximum arrangement correlation value to the second value. And the division value (maximum arrangement correlation value ⁇ second largest arrangement correlation value) is output to the determination unit 393 as the reliability of the first candidate of the wideband carrier frequency error amount.
  • the maximum value detection unit 331U and the reliability detection unit 332U perform the above-described processing, respectively, detect the second candidate of the broadband carrier frequency error amount and the reliability thereof, and detect the second candidate of the detected broadband carrier frequency error amount and the second candidate thereof.
  • the reliability is output to the selection unit 394 and the determination unit 393.
  • the maximum value detection unit 331G and the reliability detection unit 332G perform the above-described processing, respectively, detect the third candidate of the wideband carrier frequency error amount and the reliability thereof, and detect the third candidate of the detected wideband carrier frequency error amount and The reliability is output to the selection unit 394 and the determination unit 393.
  • the determination unit 393 includes the reliability of the first candidate, the reliability of the second candidate, and the third reliability of the broadband carrier frequency error amount input from each of the reliability detection unit 392, the reliability detection unit 332U, and the reliability detection unit 332G.
  • the reliability of the candidates is compared, and the candidate of the wideband carrier frequency error amount having the highest reliability (the highest reliability value) is selected from the first candidate, the second candidate, and the third candidate of the wideband carrier frequency error amount. To detect. Then, the determination unit 393 notifies the selection unit 394 of the candidate for the broadband carrier frequency error amount with the highest reliability.
  • the selection unit 394 receives the first candidate, the second candidate, and the first candidate of the wideband carrier frequency error amount input from each of the maximum value detection unit 391, the maximum value detection unit 331U, and the maximum value detection unit 331G. 3 is selected as a broadband carrier frequency error amount candidate having the highest reliability from among the three candidates, and the selected broadband carrier frequency error amount candidate is used for correction. It outputs to the correction
  • the power calculation unit 211U, the power calculation unit 211G, the multiplication unit 212, the arrangement correlation calculation unit 213, the maximum value detection unit 391, and the reliability detection unit 392 are the output signal of the orthogonal transform unit 153U and the output signal of the orthogonal transform unit 153G. And a first detection process for detecting the first candidate of the wideband carrier frequency error amount and detecting the reliability of the first candidate.
  • the power calculation unit 211U, the arrangement correlation calculation unit 311U, the maximum value detection unit 331U, and the reliability detection unit 332U are the output signals of the orthogonal transformation unit 153U among the output signals of the orthogonal transformation unit 153U and the orthogonal transformation unit 153G.
  • This is a block for executing a second detection process for detecting the second candidate of the wideband carrier frequency error amount using only the second candidate and detecting the reliability of the second candidate.
  • the power calculation unit 211G, the arrangement correlation calculation unit 311G, the maximum value detection unit 331G, and the reliability detection unit 332G are the output signals of the orthogonal transformation unit 153G among the output signals of the orthogonal transformation unit 153U and the output signals of the orthogonal transformation unit 153G.
  • wideband carrier frequency error not only in a multipath interference environment or a noise environment, but also in an environment where impulse noise locally exists in the previous guard interval period, the subsequent guard interval period, and the effective symbol period.
  • the quantity can be estimated accurately.
  • a square calculation unit that performs a square calculation of the output signal of the power calculation unit 211U and outputs the result of the square calculation to the arrangement correlation calculation unit 311U is added, and a square calculation of the output signal of the power calculation unit 211G And a square calculation unit that outputs the result of the square calculation to the arrangement correlation calculation unit 311G may be added.
  • the OFDM receiving apparatus includes a P1 wideband fc error detection correction unit 400 that is different from the P1 wideband fc error detection correction unit 155 of the OFDM reception apparatus described in the first to fifth embodiments. Different from those OFDM receivers. However, the P1 broadband fc error detection and correction unit 400 differs from the P1 broadband fc error detection and correction unit 155 and the like in the mechanism of detecting the broadband carrier frequency error amount.
  • FIG. 17 is a configuration diagram of the P1 broadband fc error detection correction unit 400. Note that FIG. 17 also illustrates a P1 orthogonal transform unit 153U, a P1 orthogonal transform unit 153G, and a CDS table generation unit 154 in order to clarify the input to each unit of the P1 wideband fc error detection correction unit 400.
  • the P1 broadband fc error detection correction unit 400 includes a detection unit 410 and a correction unit 180.
  • the detection unit 410 detects a frequency error amount (wideband carrier frequency error amount) in the P1 symbol subcarrier interval unit in the P1 symbol, and includes an amplitude calculation unit 271U, an amplitude calculation unit 271G, and a multiplication unit 272.
  • a selection determination unit 413 is a selection determination unit 413.
  • the amplitude calculation unit 271U, the amplitude calculation unit 271G, the multiplication unit 272, and the arrangement correlation calculation unit 273 perform the above-described processing, and the output signal (the value of the arrangement correlation) of the arrangement correlation calculation unit 273 is a selection determination unit 413 (a figure to be described later). 18 maximum value detectors 431 and reliability detectors 432).
  • the amplitude calculation unit 271U performs the above-described processing, and the output signal of the amplitude calculation unit 271U is supplied to the arrangement correlation calculation unit 411U.
  • the arrangement correlation calculation unit 411U receives an arrangement sequence of Active carriers from the CDS table generation unit 154 and an output signal
  • the subcarriers are sequentially shifted in units of one subcarrier in the subcarrier direction within a predetermined range (the arrangement correlation calculation unit 411U calculates the arrangement correlation between the output signal of the amplitude calculation unit 271U and the arrangement sequence of the active carriers) Is performed while sequentially shifting the output signal of the amplitude calculation unit 271U used for the arrangement correlation calculation in units of one subcarrier in the subcarrier direction within a predetermined range).
  • the arrangement correlation calculation unit 411U outputs the addition value (placement correlation value) obtained as a result of the addition process to the power calculation unit 412U.
  • the power calculation unit 412U calculates the power of the arrangement correlation from the arrangement correlation values sequentially input from the arrangement correlation calculation unit 411U, and selects the calculated arrangement correlation power value by the selection determination unit 413 (maximum value detection in FIG. 18 described later).
  • Unit 431U and reliability detection unit 432U are the power calculation unit 412U.
  • the amplitude calculation unit 271G performs the above-described processing, and the output signal of the amplitude calculation unit 271G is supplied to the arrangement correlation calculation unit 411U.
  • the arrangement correlation calculation unit 411U receives the arrangement sequence of Active carriers from the CDS table generation unit 154 and the output signal
  • Arrangement correlation calculation section 411G performs an addition process of adding the value of the output signal of amplitude calculation section 271G in the subcarrier whose active carrier arrangement sequence value is “1” in a plurality of consecutive subcarriers.
  • the subcarriers are sequentially shifted in units of one subcarrier in the subcarrier direction within a predetermined range (the arrangement correlation calculation unit 411G calculates the arrangement correlation between the output signal of the amplitude calculation unit 271G and the arrangement sequence of the Active carriers) Is performed while sequentially shifting the output signal of the amplitude calculation unit 271G used for the arrangement correlation calculation in units of one subcarrier in the subcarrier direction within a predetermined range).
  • the arrangement correlation calculation unit 411G outputs the addition value (position correlation value) obtained as a result of the addition process to the power calculation unit 412G.
  • the power calculation unit 412G calculates the power of the arrangement correlation from the arrangement correlation values sequentially input from the arrangement correlation calculation unit 411G, and selects the calculated arrangement correlation power value as a selection determination unit 413 (maximum value detection in FIG. 18 described later).
  • Unit 431G and reliability detection unit 432G are examples of the power calculation unit 412G.
  • the selection determination unit 413 uses the output signal of the arrangement correlation calculation unit 273, the output signal of the power calculation unit 412U, and the output signal of the power calculation unit 412G to sub-subscribe the P1 symbol.
  • a frequency error amount (wideband carrier frequency error amount) in units of carrier intervals is detected, and the detected wideband carrier frequency error amount is output to the fc correction unit 102 and the correction unit 180 in FIG.
  • the correction unit 180 uses the broadband carrier frequency error amount input from the selection determination unit 413 to correct the shift of the broadband carrier frequency of the output signal of the P1 orthogonal transform unit 153U, and then extracts the Active carrier.
  • FIG. 18 is a configuration diagram of the selection determining unit 413 in FIG. FIG. 18 also shows an arrangement correlation calculation unit 273, a power calculation unit 412U, and a power calculation unit 412G in order to clarify the input to each unit of the selection determination unit 413.
  • the selection determination unit 413 includes a maximum value detection unit 431, a reliability detection unit 432, a maximum value detection unit 431U, a reliability detection unit 432U, a maximum value detection unit 431G, a reliability detection unit 432G, and a determination unit. 433 and a selection unit 434.
  • the maximum value detection unit 431 detects the maximum arrangement correlation value from the arrangement correlation values sequentially input from the arrangement correlation calculation unit 273, and sets the shift amount for obtaining the maximum arrangement correlation value as a sub-value of the P1 symbol.
  • the result is output to the selection unit 434 as a frequency error amount candidate (first candidate for a wideband carrier frequency error amount) in carrier interval units.
  • the reliability detection unit 432 detects the maximum arrangement correlation value and the second largest arrangement correlation value from the arrangement correlation values sequentially input from the arrangement correlation calculation unit 273, and determines the maximum arrangement correlation value. Divide by the second largest arrangement correlation value, and output the division value (maximum arrangement correlation value ⁇ second largest arrangement correlation value) to determination section 433 as the reliability of the first candidate of the wideband carrier frequency error amount To do.
  • Maximum value detection section 431U detects the maximum arrangement correlation power value from the arrangement correlation power values sequentially input from power calculation section 412U, and sets the shift amount for obtaining the maximum arrangement correlation power value as a sub-value of P1 symbol. This is output to the selection unit 434 as a frequency error amount candidate (second candidate for a wideband carrier frequency error amount) in units of carrier intervals.
  • the reliability detection unit 432U detects the maximum arrangement correlation power value and the second largest arrangement correlation power value from the arrangement correlation power values sequentially input from the power calculation unit 412U, and the maximum arrangement correlation power value. Is divided by the power value of the second largest arrangement correlation, and the division value (the power value of the largest arrangement correlation ⁇ the power value of the second largest arrangement correlation) is determined as the reliability of the second candidate for the wideband carrier frequency error amount. Output to the unit 433.
  • the maximum value detection unit 431G detects the maximum arrangement correlation power value from the arrangement correlation power value sequentially input from the power calculation unit 412G, and shifts by one larger than the shift amount for obtaining the maximum arrangement correlation power value. Is output to the selection unit 434 as a frequency error amount candidate (third candidate of wideband carrier frequency error amount) in P1 symbol subcarrier interval units. Here, the shift amount one larger than the shift amount for obtaining the maximum arrangement correlation power value is set as the third candidate for the wideband carrier frequency error amount.
  • the correction unit 180 performs correction of the shift of the wideband carrier frequency error. Is a signal related to the effective symbol period, and the signal in the guard interval period is shifted to a higher frequency by one subcarrier than the signal in the effective symbol period.
  • the maximum value detection unit 431G may output the shift amount for obtaining the maximum arrangement correlation power value to the selection unit 434 as the third candidate of the wideband carrier frequency error amount.
  • the reliability detection unit 432G detects the maximum arrangement correlation power value and the second largest arrangement correlation power value from the arrangement correlation power values sequentially input from the power calculation unit 412G, and the maximum arrangement correlation power value. Is divided by the power value of the second largest arrangement correlation, and the division value (the power value of the largest arrangement correlation ⁇ the power value of the second largest arrangement correlation) is determined as the reliability of the third candidate for the wideband carrier frequency error amount. Output to the unit 433.
  • the determination unit 433 includes the reliability of the first candidate, the reliability of the second candidate, and the third reliability of the broadband carrier frequency error amount input from each of the reliability detection unit 432, the reliability detection unit 432U, and the reliability detection unit 432G.
  • the reliability of the candidates is compared, and the candidate of the wideband carrier frequency error amount having the highest reliability (the highest reliability value) is selected from the first candidate, the second candidate, and the third candidate of the wideband carrier frequency error amount. To detect. Then, the determination unit 433 notifies the selection unit 434 of the broadband carrier frequency error amount candidate with the highest reliability.
  • the selection unit 434 receives the first candidate, the second candidate, and the first candidate of the wideband carrier frequency error amount input from each of the maximum value detection unit 431, the maximum value detection unit 431U, and the maximum value detection unit 431G according to the notification of the determination unit 433. 3 is selected as a broadband carrier frequency error amount candidate having the highest reliability from among the three candidates, and the selected broadband carrier frequency error amount candidate is used for correction. It outputs to the correction
  • the amplitude calculation unit 271U, the amplitude calculation unit 271G, the multiplication unit 272, the arrangement correlation calculation unit 273, the maximum value detection unit 431, and the reliability detection unit 432 are the output signal of the orthogonal transformation unit 153U and the output signal of the orthogonal transformation unit 153G.
  • a first detection process for detecting the first candidate of the wideband carrier frequency error amount and detecting the reliability of the first candidate is the output signal of the orthogonal transformation unit 153U and the output signal of the orthogonal transformation unit 153G.
  • the amplitude calculation unit 271U, the arrangement correlation calculation unit 411U, the power calculation unit 412U, the maximum value detection unit 431U, and the reliability detection unit 432U are orthogonally transformed among the output signal of the orthogonal transformation unit 153U and the output signal of the orthogonal transformation unit 153G.
  • the amplitude calculation unit 271G, the arrangement correlation calculation unit 411G, the power calculation unit 412G, the maximum value detection unit 431G, and the reliability detection unit 432G are orthogonally transformed among the output signal of the orthogonal transformation unit 153U and the output signal of the orthogonal transformation unit 153G. It is a block for executing a third detection process for detecting a third candidate for the broadband carrier frequency error amount using only the output signal of the unit 153G and detecting the reliability of the third candidate.
  • wideband carrier frequency error not only in a multipath interference environment or a noise environment, but also in an environment where impulse noise locally exists in the previous guard interval period, the subsequent guard interval period, and the effective symbol period.
  • the reception performance can be improved by reducing erroneous estimation of the amount.
  • the OFDM receiver of this embodiment includes a P1 wideband fc error detection correction unit 450 that is different from the P1 wideband fc error detection correction unit 155 of the OFDM receiver described in the first to sixth embodiments. Different from those OFDM receivers. However, the P1 broadband fc error detection and correction unit 450 is different from the P1 broadband fc error detection and correction unit 155 and the like in the mechanism of detecting the broadband carrier frequency error amount.
  • FIG. 19 is a configuration diagram of the P1 broadband fc error detection correction unit 450.
  • FIG. 19 also shows a P1 orthogonal transform unit 153U, a P1 orthogonal transform unit 153G, and a CDS table generation unit 154 in order to clarify the input to each unit of the P1 wideband fc error detection correction unit 450.
  • the P1 broadband fc error detection / correction unit 450 includes a detection unit 470 and a correction unit 180.
  • the detection unit 470 detects a frequency error amount (wideband carrier frequency error amount) in the P1 symbol subcarrier interval unit in the P1 symbol, and includes an amplitude calculation unit 271U, an amplitude calculation unit 271G, and a multiplication unit 272.
  • the amplitude calculation unit 271U, the amplitude calculation unit 271G, the multiplication unit 272, and the arrangement correlation calculation unit 273 perform the above-described processing, and the output signal (the value of the arrangement correlation) of the arrangement correlation calculation unit 273 is a selection determination unit 471 (a diagram to be described later). 20 maximum value detectors 431 and reliability detectors 432).
  • the power calculation unit 211U and the arrangement correlation calculation unit 311U perform the above-described processing, and the output signal (the arrangement correlation value) of the arrangement correlation calculation unit 311U is selected and selected by a selection determination unit 471 (a maximum value detection unit 331U and a reliability detection unit 331U in FIG. 20 described later). Degree detector 332U).
  • the power calculation unit 211G and the placement correlation calculation unit 311G perform the above-described processing, and the output signal (placement correlation value) of the placement correlation calculation unit 311G is selected and selected by a selection determination unit 471 (maximum value detection unit 331G and reliability shown in FIG. 20 described later). Degree detector 332G).
  • the selection determination unit 471 uses the output signal of the arrangement correlation calculation unit 273, the output signal of the arrangement correlation calculation unit 311U, and the output signal of the arrangement correlation calculation unit 311G to generate the P1 symbol. 3 is detected, and the detected wideband carrier frequency error amount is output to the fc correction unit 102 and the correction unit 180 of FIG.
  • the correction unit 180 extracts the active carrier after correcting the wideband carrier frequency shift of the output signal of the P1 orthogonal transform unit 153U using the wideband carrier frequency error amount input from the selection determining unit 471.
  • FIG. 20 is a configuration diagram of the selection determining unit 471 in FIG. Note that FIG. 20 also illustrates an arrangement correlation calculation unit 273, an arrangement correlation calculation unit 311U, and an arrangement correlation calculation unit 311G in order to clarify the input to each unit of the selection determination unit 471.
  • the selection determination unit 471 includes a maximum value detection unit 431, a reliability detection unit 432, a maximum value detection unit 331U, a reliability detection unit 332U, a maximum value detection unit 331G, a reliability detection unit 332G, and a determination unit. 491 and a selection unit 492.
  • the maximum value detection unit 431 and the reliability detection unit 432 perform the above-described processing, respectively, detect the first candidate of the wideband carrier frequency error amount and its reliability, and detect the first candidate of the detected wideband carrier frequency error amount and its The reliability is output to the selection unit 492 and the determination unit 491.
  • the maximum value detection unit 331U and the reliability detection unit 332U perform the above-described processing, respectively, detect the second candidate of the broadband carrier frequency error amount and the reliability thereof, and detect the second candidate of the detected broadband carrier frequency error amount and the second candidate thereof.
  • the reliability is output to the selection unit 492 and the determination unit 491.
  • the maximum value detection unit 331G and the reliability detection unit 332G perform the above-described processing, respectively, detect the third candidate of the wideband carrier frequency error amount and the reliability thereof, and detect the third candidate of the detected wideband carrier frequency error amount and The reliability is output to the selection unit 492 and the determination unit 491.
  • the determination unit 491 includes the reliability of the first candidate, the reliability of the second candidate, and the third reliability of the wideband carrier frequency error amount input from each of the reliability detection unit 432, the reliability detection unit 332U, and the reliability detection unit 332G.
  • the reliability of the candidates is compared, and the candidate of the wideband carrier frequency error amount having the highest reliability (the highest reliability value) is selected from the first candidate, the second candidate, and the third candidate of the wideband carrier frequency error amount. To detect. Then, the determination unit 491 notifies the selection unit 492 of the broadband carrier frequency error amount candidate with the highest reliability.
  • the selection unit 492 follows the notification of the determination unit 491, the first candidate, the second candidate, and the first candidate of the wideband carrier frequency error amount input from each of the maximum value detection unit 431, the maximum value detection unit 331U, and the maximum value detection unit 331G. 3 is selected as a broadband carrier frequency error amount candidate having the highest reliability from among the three candidates, and the selected broadband carrier frequency error amount candidate is used for correction. It outputs to the correction
  • the amplitude calculation unit 271U, the amplitude calculation unit 271G, the multiplication unit 272, the arrangement correlation calculation unit 273, the maximum value detection unit 431, and the reliability detection unit 432 are the output signal of the orthogonal transformation unit 153U and the output signal of the orthogonal transformation unit 153G.
  • a first detection process for detecting the first candidate of the wideband carrier frequency error amount and detecting the reliability of the first candidate is the output signal of the orthogonal transformation unit 153U and the output signal of the orthogonal transformation unit 153G.
  • the power calculation unit 211U, the arrangement correlation calculation unit 311U, the maximum value detection unit 331U, and the reliability detection unit 332U are the output signals of the orthogonal transformation unit 153U among the output signals of the orthogonal transformation unit 153U and the orthogonal transformation unit 153G.
  • This is a block for executing a second detection process for detecting the second candidate of the wideband carrier frequency error amount using only the second candidate and detecting the reliability of the second candidate.
  • the power calculation unit 211G, the arrangement correlation calculation unit 311G, the maximum value detection unit 331G, and the reliability detection unit 332G are the output signals of the orthogonal transformation unit 153G among the output signals of the orthogonal transformation unit 153U and the output signals of the orthogonal transformation unit 153G.
  • wideband carrier frequency error not only in a multipath interference environment or a noise environment, but also in an environment where impulse noise locally exists in the previous guard interval period, the subsequent guard interval period, and the effective symbol period.
  • the quantity can be estimated accurately.
  • the OFDM receiving apparatus includes a P1 wideband fc error detection correction unit 500 that is different from the P1 wideband fc error detection correction unit 155 of the OFDM reception apparatus described in the first to seventh embodiments. Different from those OFDM receivers. However, the P1 broadband fc error detection and correction unit 500 is different from the P1 broadband fc error detection and correction unit 155 and the like in the mechanism of detecting the broadband carrier frequency error amount.
  • FIG. 21 is a configuration diagram of the P1 broadband fc error detection and correction unit 500.
  • FIG. 21 also illustrates a P1 orthogonal transform unit 153U, a P1 orthogonal transform unit 153G, and a CDS table generation unit 154 in order to clarify the input to each unit of the P1 wideband fc error detection correction unit 500.
  • the P1 broadband fc error detection / correction unit 500 includes a detection unit 510 and a correction unit 180.
  • the detection unit 510 detects a frequency error amount (wideband carrier frequency error amount) of the P1 symbol in the P1 symbol subcarrier interval unit, and includes a complex multiplication unit 171 and an arrangement correlation calculation unit (addition processing unit). 172, an amplitude calculation unit 511, a power calculation unit 211U, an arrangement correlation calculation unit (addition processing unit) 311U, a power calculation unit 211G, an arrangement correlation calculation unit (addition processing unit) 311G, and a selection determination unit 512 Is provided.
  • the complex multiplication unit 171 and the arrangement correlation calculation unit 172 perform the above-described processing, and the output signal (position correlation value) of the arrangement correlation calculation unit 172 is supplied to the amplitude calculation unit 511.
  • the amplitude calculation unit 511 performs processing for calculating the amplitude of the arrangement correlation value sequentially input from the arrangement correlation calculation unit 172, and selects the calculated arrangement correlation amplitude value as a selection determination unit 512 (maximum value detection in FIG. 22 described later).
  • the power calculation unit 211U and the arrangement correlation calculation unit 311U perform the above-described processing, and the output signal (the value of the arrangement correlation) of the arrangement correlation calculation unit 311U is a selection determination unit 512 (maximum value detection unit 331U and reliability shown in FIG. 22 described later). Degree detector 332U).
  • the power calculation unit 211G and the placement correlation calculation unit 311G perform the above-described processing, and the output signal (placement correlation value) of the placement correlation calculation unit 311G is selected and selected by the selection determination unit 512 (maximum value detection unit 331G and reliability shown in FIG. 22 described later). Degree detector 332G).
  • the selection determination unit 512 uses the output signal of the amplitude calculation unit 511, the output signal of the arrangement correlation calculation unit 311U, and the output signal of the arrangement correlation calculation unit 311G to A frequency error amount (wideband carrier frequency error amount) in units of subcarrier intervals is detected, and the detected wideband carrier frequency error amount is output to the fc correction unit 102 and the correction unit 180 in FIG.
  • the correction unit 180 extracts the active carrier after correcting the wideband carrier frequency shift of the output signal of the P1 orthogonal transform unit 153U using the wideband carrier frequency error amount input from the selection determination unit 512.
  • FIG. 22 is a configuration diagram of the selection determination unit 512 of FIG. Note that FIG. 22 also illustrates an amplitude calculation unit 511, an arrangement correlation calculation unit 311U, and an arrangement correlation calculation unit 311G in order to clarify the input to each unit of the selection determination unit 512.
  • the selection determination unit 512 includes a maximum value detection unit 531, a reliability detection unit 532, a maximum value detection unit 331U, a reliability detection unit 332U, a maximum value detection unit 331G, a reliability detection unit 332G, and a determination unit. 533 and a selection unit 534.
  • the maximum value detection unit 531 detects the maximum amplitude value from the amplitude values of the arrangement correlation sequentially input from the amplitude calculation unit 511, and determines the shift amount for obtaining the maximum amplitude value as a frequency error in subcarrier interval units of the P1 symbol. This is output to the selection unit 534 as a quantity candidate (a first candidate for the broadband carrier frequency error quantity).
  • the reliability detection unit 532 detects the maximum amplitude value and the second largest amplitude value from the amplitude values of the arrangement correlation sequentially input from the amplitude calculation unit 511, and divides the maximum amplitude value by the second largest amplitude value. Then, the division value (maximum arrangement correlation amplitude value ⁇ second largest arrangement correlation amplitude value) is output to the determination unit 533 as the reliability of the first candidate of the wideband carrier frequency error amount.
  • the maximum value detection unit 331U and the reliability detection unit 332U perform the above-described processing, respectively, detect the second candidate of the broadband carrier frequency error amount and the reliability thereof, and detect the second candidate of the detected broadband carrier frequency error amount and the second candidate thereof.
  • the reliability is output to the selection unit 534 and the determination unit 533.
  • the maximum value detection unit 331G and the reliability detection unit 332G perform the above-described processing, respectively, detect the third candidate of the wideband carrier frequency error amount and the reliability thereof, and detect the third candidate of the detected wideband carrier frequency error amount and The reliability is output to the selection unit 534 and the determination unit 533.
  • the determination unit 533 includes the reliability of the first candidate, the reliability of the second candidate, and the third reliability of the broadband carrier frequency error amount input from each of the reliability detection unit 532, the reliability detection unit 332U, and the reliability detection unit 332G.
  • the reliability of the candidates is compared, and the candidate of the wideband carrier frequency error amount having the highest reliability (the highest reliability value) is selected from the first candidate, the second candidate, and the third candidate of the wideband carrier frequency error amount. To detect. Then, the determination unit 533 notifies the selection unit 534 of the candidate for the broadband carrier frequency error amount with the highest reliability.
  • the selection unit 534 receives the first candidate, the second candidate of the broadband carrier frequency error amount input from each of the maximum value detection unit 531, the maximum value detection unit 331U, and the maximum value detection unit 331G.
  • the fc correction unit 102 in FIG. 3 selects a broadband carrier frequency error amount candidate having the highest reliability from among the third candidates, and uses the selected broadband carrier frequency error amount candidate for correction as a broadband carrier frequency error amount. And it outputs to the correction
  • the complex multiplier 171, the arrangement correlation calculator 172, the amplitude calculator 511, the maximum value detector 531, and the reliability detector 532 receive both the output signal of the orthogonal transform unit 153 ⁇ / b> U and the output signal of the orthogonal transform unit 153 ⁇ / b> G.
  • This block is used to detect a first candidate for a wideband carrier frequency error amount and to execute a first detection process for detecting the reliability of the first candidate.
  • the power calculation unit 211U, the arrangement correlation calculation unit 311U, the maximum value detection unit 331U, and the reliability detection unit 332U are the output signals of the orthogonal transformation unit 153U among the output signals of the orthogonal transformation unit 153U and the orthogonal transformation unit 153G.
  • This is a block for executing a second detection process for detecting the second candidate of the wideband carrier frequency error amount using only the second candidate and detecting the reliability of the second candidate.
  • the power calculation unit 211G, the arrangement correlation calculation unit 311G, the maximum value detection unit 331G, and the reliability detection unit 332G are the output signals of the orthogonal transformation unit 153G among the output signals of the orthogonal transformation unit 153U and the output signals of the orthogonal transformation unit 153G.
  • wideband carrier frequency error not only in a multipath interference environment or a noise environment, but also in an environment where impulse noise locally exists in the previous guard interval period, the subsequent guard interval period, and the effective symbol period.
  • the quantity can be estimated accurately.
  • the OFDM receiver of this embodiment includes a P1 wideband fc error detection correction unit 550 different from the P1 wideband fc error detection correction unit 155 of the OFDM receiver described in the first to eighth embodiments. Different from those OFDM receivers. However, the P1 wideband fc error detection / correction unit 550 is different from the P1 wideband fc error detection / correction unit 155 in the mechanism of detecting the wideband carrier frequency error amount.
  • FIG. 23 is a block diagram of the P1 broadband fc error detection correction unit 550. 23 also illustrates a P1 orthogonal transform unit 153U, a P1 orthogonal transform unit 153G, and a CDS table generation unit 154 in order to clarify the input to each unit of the P1 wideband fc error detection correction unit 550.
  • the P1 broadband fc error detection / correction unit 550 includes a detection unit 570 and a correction unit 180.
  • the detection unit 570 detects a frequency error amount (wideband carrier frequency error amount) in the P1 symbol subcarrier interval unit in the P1 symbol, and includes a complex multiplication unit 171 and an arrangement correlation calculation unit (addition processing unit). 172, a power calculation unit 173, a power calculation unit 211U, an arrangement correlation calculation unit (addition processing unit) 311U, a square calculation unit 571U, a power calculation unit 211G, and an arrangement correlation calculation unit (addition processing unit) 311G. And a square calculation unit 571G and a selection determination unit 572.
  • the complex multiplication unit 171, the arrangement correlation calculation unit 172, and the power calculation unit 173 perform the above-described processing, and the output signal (the power value of the arrangement correlation) of the power calculation unit 173 is the selection determination unit 572 (the maximum value in FIG. 24 described later). Detection unit 331 and reliability detection unit 332).
  • the power calculation unit 211U and the arrangement correlation calculation unit 311U perform the above-described process, and the output signal (value of the arrangement correlation) of the arrangement correlation calculation unit 311U is supplied to the square calculation unit 571U.
  • the square calculation unit 571U performs the square calculation of the arrangement correlation values sequentially input from the arrangement correlation calculation unit 311U, and selects the result of the square calculation as a selection determination unit 572 (maximum value detection unit 591U in FIG. 24 described later). And the reliability detection unit 592U).
  • the power calculation unit 211G and the arrangement correlation calculation unit 311G perform the above-described processing, and the output signal (value of the arrangement correlation) of the arrangement correlation calculation unit 311G is supplied to the square calculation unit 571G.
  • the square calculation unit 571G performs the square calculation of the arrangement correlation values sequentially input from the arrangement correlation calculation unit 311G, and selects the result of the square calculation as a selection determination unit 572 (maximum value detection unit 591G in FIG. 24 described later). And the reliability detection unit 592G).
  • the selection determination unit 572 uses the output signal of the power calculation unit 173, the output signal of the square calculation unit 571U, and the output signal of the square calculation unit 571G to generate the P1 symbol.
  • a frequency error amount (wideband carrier frequency error amount) in units of subcarrier intervals is detected, and the detected wideband carrier frequency error amount is output to the fc correction unit 102 and the correction unit 180 in FIG.
  • the correction unit 180 corrects the wideband carrier frequency shift of the output signal of the P1 orthogonal transform unit 153U using the wideband carrier frequency error amount input from the selection determination unit 572, and then extracts the Active carrier.
  • FIG. 24 is a configuration diagram of the selection determination unit 572 of FIG. 24 also shows a power calculation unit 173, a square calculation unit 571U, and a square calculation unit 571G in order to clarify the input to each unit of the selection determination unit 572.
  • the selection determination unit 572 includes a maximum value detection unit 331, a reliability detection unit 332, a maximum value detection unit 591U, a reliability detection unit 592U, a maximum value detection unit 591G, a reliability detection unit 592G, and a determination unit. 593 and a selection unit 594.
  • the maximum value detection unit 331 and the reliability detection unit 332 perform the above-described processes, respectively, detect the first candidate of the wideband carrier frequency error amount and the reliability thereof, and detect the first candidate of the detected wideband carrier frequency error amount and its The reliability is output to the selection unit 594 and the determination unit 593.
  • the maximum value detection unit 591U detects the square value of the maximum arrangement correlation from the square value of the arrangement correlation sequentially input from the square calculation unit 571U, and calculates the shift amount for obtaining the square value of the maximum arrangement correlation.
  • the result is output to selection section 594 as a frequency error amount candidate (second candidate for wideband carrier frequency error amount) in P1 symbol subcarrier interval units.
  • the reliability detection unit 592U detects the square value of the maximum arrangement correlation and the square value of the second largest arrangement correlation from the square value of the arrangement correlation sequentially input from the square calculation unit 571U, and detects the maximum arrangement.
  • the square value of the correlation is divided by the square value of the second largest arrangement correlation, and the divided value (the square value of the largest arrangement correlation / the square value of the second largest arrangement correlation) is calculated as the broadband carrier frequency error amount.
  • the reliability of the second candidate is output to the determination unit 593.
  • the maximum value detecting unit 591G detects the square value of the maximum arrangement correlation from the square value of the arrangement correlation sequentially input from the square calculation unit 571G, and from the shift amount to obtain the square value of the maximum arrangement correlation.
  • the one larger shift amount is output to selection section 594 as a frequency error amount candidate (third candidate for wideband carrier frequency error amount) in the subcarrier interval unit of P1 symbol.
  • the shift amount one larger than the shift amount for obtaining the maximum arrangement correlation power value is set as the third candidate for the wideband carrier frequency error amount.
  • the correction unit 180 performs correction of the shift of the wideband carrier frequency error. Is a signal related to the effective symbol period, and the signal in the guard interval period is shifted to a higher frequency by one subcarrier than the signal in the effective symbol period.
  • the maximum value detection unit 591G may output the shift amount for obtaining the maximum arrangement correlation power value to the selection unit 594 as the third candidate for the wideband carrier frequency error amount.
  • the reliability detection unit 592G detects the square value of the maximum arrangement correlation and the square value of the second largest arrangement correlation from the square value of the arrangement correlation sequentially input from the square calculation unit 571G, and detects the maximum arrangement.
  • the square value of the correlation is divided by the square value of the second largest arrangement correlation, and the divided value (the square value of the largest arrangement correlation / the square value of the second largest arrangement correlation) is calculated as the broadband carrier frequency error amount.
  • the reliability of the third candidate is output to the determination unit 593.
  • the determination unit 593 includes the reliability of the first candidate, the reliability of the second candidate, and the third reliability of the broadband carrier frequency error amount input from each of the reliability detection unit 332, the reliability detection unit 592U, and the reliability detection unit 592G.
  • the reliability of the candidates is compared, and the candidate of the wideband carrier frequency error amount having the highest reliability (the highest reliability value) is selected from the first candidate, the second candidate, and the third candidate of the wideband carrier frequency error amount. To detect. Then, the determination unit 593 notifies the selection unit 594 of the candidate for the broadband carrier frequency error amount with the highest reliability.
  • the selection unit 594 selects the first candidate, the second candidate, and the first candidate of the wideband carrier frequency error amount input from each of the maximum value detection unit 331, the maximum value detection unit 591U, and the maximum value detection unit 591G. 3 is selected as a broadband carrier frequency error amount candidate having the highest reliability from among the three candidates, and the selected broadband carrier frequency error amount candidate is used for correction. It outputs to the correction
  • the complex multiplier 171, the arrangement correlation calculator 172, the power calculator 173, the maximum value detector 331, and the reliability detector 332 receive both the output signal from the orthogonal transform unit 153 ⁇ / b> U and the output signal from the orthogonal transform unit 153 ⁇ / b> G.
  • This block is used to detect a first candidate for a wideband carrier frequency error amount and to execute a first detection process for detecting the reliability of the first candidate.
  • the power calculation unit 211U, the arrangement correlation calculation unit 311U, the square calculation unit 571U, the maximum value detection unit 591U, and the reliability detection unit 592U are orthogonal among the output signal of the orthogonal transform unit 153U and the output signal of the orthogonal transform unit 153G.
  • the power calculation unit 211G, the arrangement correlation calculation unit 311G, the square calculation unit 571G, the maximum value detection unit 591G, and the reliability detection unit 592G are orthogonal among the output signals of the orthogonal transformation unit 153U and the output signals of the orthogonal transformation unit 153G.
  • wideband carrier frequency error not only in a multipath interference environment or a noise environment, but also in an environment where impulse noise locally exists in the previous guard interval period, the subsequent guard interval period, and the effective symbol period.
  • the quantity can be estimated accurately.
  • the OFDM receiving apparatus includes a P1 wideband fc error detection correction unit 600 that is different from the P1 wideband fc error detection correction unit 155 of the OFDM reception apparatus described in the first to ninth embodiments. Different from those OFDM receivers. However, the P1 wideband fc error detection / correction unit 600 selects and selects one of the output signal of the P1 orthogonal transform unit 153U and the output signal of the P1 orthogonal transform unit 153G with respect to the P1 wideband fc error detection correction unit 155 and the like. This is a function in which a function for correcting a wide band carrier frequency shift is added to a signal.
  • FIG. 25 is a configuration diagram of the P1 broadband fc error detection correction unit 600. 25 also illustrates a P1 orthogonal transform unit 153U, a P1 orthogonal transform unit 153G, and a CDS table generation unit 154 in order to clarify the input to each unit of the P1 wideband fc error detection correction unit 600.
  • the detection unit 610 includes a selection unit 312A instead of the selection determination unit 312 of the detection unit 310 of FIG.
  • the selection unit 312A has the configuration shown in FIG. 26, and includes a determination unit 333A instead of the determination unit 333 of FIG.
  • the determination unit 333A has the following function in addition to the function of the determination unit 333.
  • the determination unit 333A includes the reliability of the first candidate, the reliability of the second candidate, and the third reliability of the wideband carrier frequency error amount input from each of the reliability detection unit 332, the reliability detection unit 332U, and the reliability detection unit 332G. Compare the reliability of the candidates. Then, the determination unit 333A notifies the selection unit 620 to select the output signal of the P1 orthogonal transform unit 153U and output it to the correction unit 180A when the reliability of the first candidate is the highest.
  • the determination unit 333A notifies the selection unit 620 to select the output signal of the P1 orthogonal transform unit 153U and output it to the correction unit 180A. Furthermore, when the reliability of the third candidate is the highest, the determination unit 333A notifies the selection unit 620 to select the output signal of the P1 orthogonal transform unit 153G and output it to the correction unit 180A.
  • the determination unit 333A compares the reliability of the second candidate and the reliability of the third candidate of the broadband carrier frequency error amount input from the reliability detection unit 332U and the reliability detection unit 332G, respectively. Then, when the reliability of the second candidate is higher, the determination unit 333A selects the output signal of the P1 orthogonal transform unit 153U and notifies the selection unit 620 to output it to the correction unit 180A. On the other hand, when the reliability of the third candidate is higher, the determination unit 333A selects the output signal of the P1 orthogonal transform unit 153G and notifies the selection unit 620 to output it to the correction unit 180A. Good.
  • the selection unit 620 in FIG. 25 selects and selects one of the output signal of the first orthogonal transform unit 153U and the output signal of the second orthogonal transform unit 153G according to the notification from the determination unit 333A in the selection determination unit 312A.
  • the signal is output to the correction unit 180A.
  • the correction unit 180A corrects the shift of the wideband carrier frequency of the output signal (complex baseband signal in the frequency domain) of the selection unit 620 based on the wideband carrier frequency error amount output from the selection unit 334 in the selection determination unit 312A. To implement. Then, the correction unit 180A uses the active carrier arrangement sequence input from the CDS table generation unit 154 to extract only the active carrier from the complex baseband signal in the frequency domain in which the shift of the wideband carrier frequency is corrected. The extracted active carrier is output to the P1 decoding unit 156 in FIG. 4 (descramble unit 191 in FIG. 7). Note that the selection unit 334A in the selection unit 312A supplies the correction unit 180A with the broadband carrier frequency error amount of the signal in the frequency region of the effective symbol period.
  • the signal of the coupling guard interval is a signal of the effective symbol section obtained by f SH partial frequency shift (1 those frequency shift as subcarriers frequency is increased). From this, when the output signal of the orthogonal transform unit 180G is selected by the selection unit 620, the correction unit 180A corrects the shift of the wideband carrier frequency by a value smaller than the supplied wideband carrier frequency error amount. It will be.
  • the present embodiment it is possible to perform the P1 symbol decoding process using the signal having the higher reliability among the signal of the effective symbol period and the signal of the combined guard interval period, and the accuracy of decoding of the P1 symbol Can be improved.
  • the present invention is not limited to the contents described in the above embodiment, and can be implemented in any form for achieving the object of the present invention and the object related thereto or incidental thereto. .
  • the signal in the combined guard interval section is shifted to the high frequency side by one subcarrier with respect to the signal in the effective symbol section.
  • the calculation using the above (Formula 16), the above (Formula 19), and the above (Formula 20) is performed.
  • the present invention is not limited to this, and it is sufficient to consider that it is shifted to the high frequency side by one subcarrier. For example, the following may be used.
  • a frequency shift correction unit is provided before the P1 orthogonal transform unit 153G, and the frequency shift correction unit shifts the frequency of the complex baseband signal in the time domain of the combined guard interval section of the P1 symbol by ⁇ f SH (guard interval).
  • Correction processing related to the implementation of the frequency shift in the reverse direction that cancels out the frequency shift of f SH applied to the signal of the section by the amount of f SH ), and the frequency-shifted complex baseband signal in the time domain is P1 Output to the orthogonal transform unit 153G.
  • a frequency shift correction unit is provided in the subsequent stage of the P1 orthogonal transform unit 153G, and this frequency shift correction unit is provided for the output signal of the P1 orthogonal transform unit 153G (complex baseband signal in the frequency domain of the combined guard interval section of P1 symbols). Correction so that the frequency is lowered by one subcarrier (correction processing for performing a frequency shift in the reverse direction that cancels out the frequency shift by f SH applied to the signal in the guard interval section on the transmission side) The complex baseband signal in the frequency domain corrected so that the frequency is lowered by one subcarrier is output to the P1 wideband fc error detection and correction unit 155G.
  • the P1 orthogonal transform unit 153G performs a correction process of shifting the frequency by ⁇ f SH when performing the orthogonal transform.
  • the complex multiplier 171 performs the operation shown in the following (Equation 21) instead of the above (Equation 16), and the multiplier 212 performs the following (Equation 19) instead of the above (Equation 19).
  • the multiplication unit 272 may perform the calculation shown in the following (Equation 23) instead of the above (Equation 20).
  • the complex multiplier 171 instead of the calculation of the above equation (21) is multiplied by a signal of the complex conjugate of the output signal Y U (n) Y U ( n) * and the output signal Y G (n) You may do it.
  • the frequency shift correction unit described above performs correction processing (only ⁇ f X minutes) for performing a frequency shift in the reverse direction that cancels out frequency shifts by f X performed on the transmission side with respect to the signals in the guard interval section.
  • the processing relating to the implementation of the frequency shift may be performed.
  • the signal in the guard interval section is a frequency shift of the signal in the effective symbol section so that the frequency is lowered by ( ⁇ X) subcarriers.
  • the complex multiplier 171 performs the operation shown in the following (Equation 24) instead of the above (Equation 16), and the multiplier 212 performs the operation shown in the following (Equation 25) instead of the above (Equation 19).
  • the multiplication unit 272 may perform the calculation shown in the following (Equation 26) instead of the above (Equation 20).
  • the signal in the guard interval section is a frequency shift of the signal in the effective symbol section so that the frequency is lowered by ( ⁇ X) subcarriers.
  • the complex multiplier 17 instead of the calculation of the above equation (24), multiplies the output signal Y U signal of the complex conjugate of (n) Y U (n) * and the output signal Y G (n + X) You may do it.
  • the division value (maximum value ⁇ second largest value) obtained by dividing the maximum value of the signal input to each reliability detection unit by the second largest value is trusted.
  • the division value (second largest value ⁇ maximum value) obtained by dividing the second largest value by the maximum value of the signal input to each reliability detection unit may be the reliability, and the smaller the value, the higher the reliability may be.
  • the maximum value of the signal input to each reliability detection unit may be the reliability, and the greater the value, the higher the reliability.
  • the difference between the maximum value of the signal input to each reliability detection unit and the second largest value may be used as the reliability, and the higher the value, the higher the reliability.
  • the first detection process, the second detection process, and the third detection process are performed.
  • the present invention is not limited to this. Only two may be performed.
  • Correction of wideband carrier frequency deviation is performed on a signal selected by selecting one of the output signal of the P1 orthogonal transform unit 153U and the output signal of the P1 orthogonal transform unit 153G described in the tenth embodiment.
  • the function to be implemented may be applied to the wideband fc error detection correction units 350, 400, 450, 500, 550 described in the fifth to ninth embodiments.
  • one orthogonal transform unit 106 or one P1 orthogonal transform unit 153U, 153G is provided for each orthogonal transform.
  • the present invention is not limited to this. All or some of them may be shared.
  • the narrow band carrier frequency error amount and the wide band carrier frequency error amount detected by each P1 demodulator are output to the fc correction unit 102, and the fc correction unit 102 These are used when correcting.
  • the present invention is not limited to this, and the fc correction unit 102 performs one of the narrowband carrier frequency error amount and the wideband carrier frequency error amount detected by each P1 demodulation unit when correcting the shift of the carrier frequency. May be used alone, or none of them may be used.
  • the narrowband fc error calculation unit 105 and the wideband fc error calculation unit 107 calculate the narrowband carrier frequency error amount and the wideband carrier frequency error amount in the P2 symbol and the data symbol, and the P1 narrowband fc error detection correction unit 152.
  • the method of detecting the narrow-band carrier frequency error amount in the P1 symbol is not particularly limited, and a known method can be applied.
  • the narrowband carrier frequency error amount may be calculated from the phase difference between the pilot signal symbols included in the P2 symbol or the data symbol for the output signal of the orthogonal transform unit 106.
  • an OFDM receiver conforming to the DVB-T2 transmission standard has been described.
  • the present invention is not limited to this.
  • an FEF period in the DVB-T2 transmission standard is used. Since the P1 symbol is inserted at the beginning of the FEF period in the transmission standard, the present invention can also be applied to an OFDM receiver that complies with the transmission standard using the FEF period.
  • the signal of the guard interval is not intended to be limited signal of the effective symbol period to f SH partial frequency shifted signal may be a signal not frequency-shifted signal of the effective symbol section, f SH It may be a frequency shifted signal other than the fractional frequency shift.
  • the signal in the guard interval section is not limited to the signal obtained by frequency-shifting the entire signal in the effective symbol section, but a part of the signal in the effective symbol section is frequency-shifted and the remaining part is frequency-shifted. There may be no signal.
  • the guard interval section is not limited to the one divided into the previous guard interval section and the rear guard interval section, and may consist of only the previous guard interval section or only the rear guard interval section. It may be. Note that the guard interval section may be divided into three or more. For example, the effective symbol section may be divided and the divided section of the guard interval section may be inserted therebetween.
  • the time width of the guard interval section is not limited to the time width of the effective symbol section, and may be different.
  • the FFT size is 1k, but the present invention is not limited to this, and the FFT size may be other than 1k (for example, 2k, 4k, 8k, etc.).
  • the differential demodulation is demodulation corresponding to DBPSK.
  • DBPSK Downlink Physical Broadcasting
  • DQPSK Downlink Physical Signals Keying
  • Demodulation corresponding to modulation may be used.
  • differential demodulation is described as an example. However, demodulation other than differential demodulation may be used.
  • Each component of the receiving device in each of the above embodiments may be realized by an LSI which is an integrated circuit. At this time, each component may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Further, although it is referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration. Further, the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible. Further, the method of circuit integration is not limited to LSI, but may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor capable of reconfiguring connection and setting of circuit cells inside the LSI may be used. Furthermore, if integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally also possible to carry out function block integration using this technology. Possible applications include biotechnology.
  • At least a part of the operation procedure of the receiving apparatus described in each of the above embodiments is described in the reception program, and for example, a CPU (Central Processing Unit) reads and executes the program stored in the memory.
  • the program may be stored in a recording medium and distributed.
  • a reception device that performs at least a part of the reception processing of the reception device described in each of the above embodiments may be realized.
  • any of the above-described embodiments may be realized by combining any receiving device, receiving method, receiving circuit, or program that performs a part of the receiving process for realizing each of the above-described embodiments.
  • a part of the configuration of the receiving device described in each of the above embodiments is realized by the receiving device or the integrated circuit, and an operation procedure performed by the configuration excluding the part is described in the receiving program. It may be realized by reading out and executing the program stored in.
  • the present invention can be used for an OFDM receiving apparatus that receives an OFDM symbol composed of a signal in an effective symbol period and a signal in a guard interval period based on the signal in the effective symbol period.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Circuits Of Receivers In General (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

 OFDM受信装置Aは有効シンボル区間の信号を直交変換し、直交変換の結果を出力する第1直交変換部A1と、ガードインターバル区間の信号を直交変換し、直交変換の結果を出力する第2直交変換部A2と、第1直交変換部A1の出力信号と第2直交変換部A2の出力信号とに基づいてOFDMシンボルの広帯域キャリア周波数誤差量を検出する検出部A3と、検出部A3により検出された広帯域キャリア周波数誤差量に基づいてOFDMシンボルの広帯域キャリア周波数のずれの補正を実施する補正部と、を備える。

Description

OFDM受信装置、OFDM受信回路、OFDM受信方法、及びOFDM受信プログラム
 本発明は、互いに直交する複数のサブキャリアを多重して送信された信号を受信する技術に関する。
 現在、地上デジタル放送をはじめIEEE802.11aといった様々なデジタル通信において、OFDM(Orthogonal Frequency Division Multiplexing)方式が伝送方式として広く採用されている。OFDM方式は、複数の狭帯域デジタル変調信号を互いに直交する複数のサブキャリアを用いて周波数多重して送信する方式であることから、周波数の利用効率に優れた伝送方式である。
 また、OFDM方式では、1シンボル区間が有効シンボル区間とガードインターバル区間とからなり、シンボル内で周期性を有するように有効シンボル区間の一部の信号がガードインターバル区間に複写して挿入されている。このため、マルチパス干渉によって生じるシンボル間の干渉の影響を削減することが可能であり、マルチパス干渉に対しても優れた耐性を有している。
 近年、各国でアナログテレビ放送が停止され、世界的に周波数再編の動きが活発化しており、欧州では、DVB-T(Digital Video Broadcasting - Terrestrial)によるSD(Standard Definition)放送に加え、HD(High Definition)サービスに対する需要が高まっている。これらのことから、第二世代の欧州地上デジタル放送であるDVB-T2の規格化が進められてきた。DVB-T2方式では、図27に示すような、DVB-T2フレームが用いられ、DVB-T2フレームは、P1シンボルとP2シンボルとデータシンボルとで構成されている。
 まず、P1シンボルについて説明する。
 P1シンボルは、FFT(Fast Fourier Transform)サイズが1k(=1024)で設定されており、図28に示すように、有効シンボル区間の前後にガードインターバル区間が設けられている。なお、図28は、P1シンボルを時間軸で表したものである。P1シンボルのガードインターバルは、これまでのISDB-T(Integrated Services Digital Broadcasting - Terrestrial)やDVB-Tにおけるガードインターバルと異なる。P1シンボルでは、有効シンボル区間より手前のガードインターバル区間(以下、「前ガードインターバル区間」と言う。)には、有効シンボル区間内の前半の59μs分の信号が複写して挿入され、有効シンボル区間より後ろのガードインターバル区間(以下、「後ガードインターバル区間」と言う。)には、有効シンボル区間内の後半の53μs分の信号が複写して挿入される。さらに、複写して挿入する際には、複写元の信号を所定のfSH分だけ周波数シフトさせてガードインターバル区間(前ガードインターバル区間、又は、後ガードインターバル区間)に挿入する。ここで、fSHは、P1シンボルの1サブキャリア間隔に相当する。つまり、前ガードインターバル区間の信号及び後ガードインターバル区間の信号は、有効シンボル区間の信号よりP1シンボルの1サブキャリア分周波数が高くなっている。なお、P1シンボルでは、図28に示すように、有効シンボル全体がガードインターバルに利用されている。
 また、P1シンボルは、図29に示すように、ActiveキャリアとNullキャリア(Unusedキャリア)とで構成されている。なお、図29は、P1シンボルを周波数軸で表したものである。
 P1シンボルには、P2シンボルやデータシンボルの送信フォーマットがMISO(Multiple-Input-Single-Output)であるかSISO(Single-Input-Single-Output)であるかに関する情報(以下、「MISO/SISO情報」と言う。)、P2シンボルやデータシンボルのFFTサイズが何であるかに関する情報(以下、「FFTサイズ情報」と言う。)、FEF(Future Extension Frames)が含まれるか否かに関する情報(以下、「FEF有無情報」と言う。)、等の情報(以下、「P1送信情報」と言う。)が含まれる。ここで、FEFとは、将来のDVB-T2とは異なるサービス伝送のための期間であり、DVB-T2フレームとDVB-T2フレームとの間に挿入され、FEFフレームの先頭にもP1シンボルが存在する。
 以下、P1シンボルの生成について説明する。
 図30は、P1シンボルを生成するP1生成部1000の構成図である。P1シンボル生成部1000は、系列変換部1001と、差動変調部1002と、スクランブル部1003と、CDSテーブル生成部1004と、パディング部1005と、IFFT部1006と、GI付加部1007とを備える。
 上述したように、P1シンボルによってP1送信情報が送信される。これらの情報は、3ビットのS1信号と4ビットのS2信号として表される。系列変換部1001に3ビットのS1信号と4ビットのS2信号とが入力される。系列変換部1001は、例えば、図31に示す変換テーブルを保持し、変換テーブルを用いて3ビットのS1信号を下記の(数1)で表される64ビットの系列CSSS1に変換し、4ビットのS2信号を下記の(数2)で表される256ビットの系列CSSS2に変換する。但し、図31中の「値」が系列変換部1001に入力される値、「系列(16進表示) CSSS1及びCSSS2」が変換後の系列(系列変換部1001から出力される系列)を表す。なお、図31では、便宜上、変換後の系列CSSS1,CSSS2は16進数で表示されている。
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000002
 
 そして、系列変換部1001は、(数1)で表される系列CSSS1と(数2)で表される系列CSSS2とを用いて、下記の(数3)に示す計384ビットの信号系列MSS_SEQを構成し、信号系列MSS_SEQを差動変調部1002へ出力する。なお、信号系列MSS_SEQには同一内容のS1信号が2つ含まれる。
Figure JPOXMLDOC01-appb-M000003
 
 差動変調部1002は、系列変換部1001から入力された信号系列MSS_SEQに対して、下記の(数4)に示す差動変調を実施し、差動変調された信号系列MSS_DIFFをスクランブル部1003へ出力する。但し、差動変調部1002が実施する差動変調はDBPSK(Differential Binary Phase Shift Keying)である。
Figure JPOXMLDOC01-appb-M000004
 
 具体的には、差動変調部1002は、下記の(数5)に示すように基準信号MSS_DIFF-1を1として、系列変換部1001から入力された信号系列MSS_SEQを構成する信号MSS_SEQ(i=0,1,・・・,383)に対して下記の(数6)を基に差動変調を実施し、差動変調された信号MSS_DIFFをスクランブル部1003へ出力する。
Figure JPOXMLDOC01-appb-M000005
 
Figure JPOXMLDOC01-appb-M000006
 
 スクランブル部1003は、差動変調部1002からの差動変調された信号系列MSS_DIFFに対し、下記の(数7)に示すスクランブルを実施し、スクランブルされた信号系列MSS_SCRをパディング部1005へ出力する。
Figure JPOXMLDOC01-appb-M000007
 
 具体的には、スクランブル部1003は、疑似ランダムバイナリシーケンス(Pseudorandom Binary Sequence:PRBS)に基づく信号PRBS(i=0,1,・・・,383)を用いて、差動変調された信号MSS_DIFFに対し、下記の(数8)に示すスクランブルを実施し、スクランブルされた信号MSS_SCRをパディング部1005へ出力する。
Figure JPOXMLDOC01-appb-M000008
 
 CDSテーブル生成部1004は、図32に示す、P1シンボルにおけるActiveキャリアの位置k(i)(i=0,1,・・・,383)を示すCDS(Carrier Distribution Sequence)テーブルを生成する。なお、図32に示す通り、1つのP1シンボルでは、同一内容のS1信号が周波数領域の高い部分と低い部分との2箇所で送信され、S2信号が周波数領域の中央部分で送信される。
 パディング部1005は、CDSテーブル生成部1004のCDSテーブル(図32参照)で示されるサブキャリア位置k(i)のサブキャリアをActiveキャリアとし、サブキャリア位置k(i)のサブキャリアに対してスクランブルされた信号MSS_SCRをマッピングしてIFFT部1006へ出力する。また、パディング部1005は、図32に列挙されていないサブキャリア位置のサブキャリアはNullキャリアとして、IFFT部1006へ出力する。
 IFFT部1006は、パディング部1005の出力信号に対して、FFTサイズ1kでIFFT(Inverse Fast Fourier Transform)を実施し、IFFTの結果(図28の有効シンボル区間の時間領域の信号)をGI付加部1007へ出力する。
 GI付加部1007は、IFFT部1006から入力された有効シンボル区間の信号を用いて、前ガードインターバル区間に有効シンボル区間内の前部分の信号をfSH分だけ周波数シフトした上で挿入し、後ガードインターバル区間に有効シンボル区間内の後ろ部分の信号をfSH分だけ周波数シフトした上で挿入する(図28参照)。このようにして、P1シンボルが生成される。
 続いて、P2シンボルとデータシンボルについて説明する。
 P2シンボルとデータシンボルには、共通のFFTサイズ及びガードインターバル比(有効シンボル区間の時間幅に対するガードインターバル区間の時間幅の比)が用いられる。但し、P2シンボル及びデータシンボルにおけるガードインターバル区間は、DVB-TやISDB-Tと同じく、有効シンボル区間より手前に設けられている。有効シンボル区間の手前に設けられたガードインターバル区間には、有効シンボル区間内の後ろ部分の信号が複写されて挿入される。
 DVB-T2で用いられるFFTサイズとガードインターバル比との組合せ、及びそれらの組合せで設定可能なパイロットパターンを図33に示す。パイロットパターンとして、PP1からPP8までの8種類がある。図33において、「NA」という記載は、規格上設定不可のFFTサイズとガードインターバル比との組合せを示している。
 P2シンボルでは、等間隔のパイロット(以下、「P2パイロット」と言う)が挿入されている。FFTサイズが32kで、SISOモードである場合には、6サブキャリア毎にP2パイロットが存在し、それ以外では3サブキャリア毎にP2パイロットが存在する。
 P2シンボルには、データシンボルのパイロットパターンが何であるかに関する情報(以下、「パイロットパターン情報」と言う。)、キャリア拡張モードがExtendedモードかNormalモードかに関する情報(以下、「伝送モード情報」と言う。)、フレーム当たりのシンボル数、変調方法、前方誤り訂正(Forward Error Correction:FEC)符号の符号化率等、受信のために必要なあらゆる送信パラメータ情報(以下、「P2送信情報」と言う。)が含まれている。なお、P2シンボルのシンボル数は、P2シンボルのFFTサイズによって、図34に示すように設定される。
 以上のようなDVB-T2伝送フォーマットにおけるP1シンボルの復調技術として、非特許文献1に開示されている手法がある。
 P1シンボルの復調を実施するP1復調部2000の構成を図35に示す。P1復調部2000は、P1位置検出部2001と、P1狭帯域fc誤差検出補正部2002と、FFT部2003と、CDSテーブル生成部2004と、P1広帯域fc誤差検出補正部2005と、P1デコード部2006とを備える。
 P1位置検出部2001は、入力信号を用いて、P1シンボルのガードインターバル区間(前ガードインターバル区間、後ガードインターバル区間)の信号とP1シンボルの有効シンボル区間の所定の部分の信号との相関(ガード相関)を算出していく。そして、P1位置検出部2001は、算出した相関値をガードインターバル区間(前ガードインターバル区間、後ガードインターバル区間)の時間幅で区間積分していき、区間積分値のピークを検出することによって入力信号でのP1シンボルの位置を検出する。
 但し、相関の算出処理は、送信側で付加されたfSH分の周波数シフトを考慮して行われる。また、所定の部分とは、前ガードインターバル区間に対しては、有効シンボル区間内の前部分であり、後ガードインターバル区間に対しては、有効シンボル区間内の後ろ部分である(図28参照)。なお、後述するP1狭帯域fc誤差検出補正部2002による相関の算出処理においても同様である。
 P1狭帯域fc誤差検出補正部2002は、P1シンボルのガードインターバル区間(前ガードインターバル区間、後ガードインターバル区間)の信号とP1シンボルの有効シンボル区間の所定の部分の信号との相関(ガード相関)を算出していき、その相関からP1シンボルのサブキャリア間隔以下の周波数誤差量(狭帯域キャリア周波数誤差量)を検出する。そして、P1狭帯域fc誤差検出補正部2002は、検出した狭帯域キャリア周波数誤差量に基づいて、P1シンボルの狭帯域キャリア周波数のずれを補正し、狭帯域キャリア周波数のずれが補正されたP1シンボルをFFT部2003へ出力する。
 FFT部2003は、P1シンボルの有効シンボル区間の時間領域の信号をFFTサイズ1kでFFTし、FFTの結果(P1シンボルの有効シンボル区間の周波数領域の信号)をP1広帯域fc誤差検出補正部2005へ出力する。
 CDSテーブル生成部2004は、Activeキャリアの位置を示す系列(以下、「Activeキャリアの配置系列」と言う。)を生成し、生成したActiveキャリアの配置系列をP1広帯域fc誤差検出補正部2005へ出力する。ここで、Activeキャリアの配置系列は、図32に示すActiveキャリアの位置を「1」とし、それ以外のNullキャリアの位置を「0」とした系列である。
 P1広帯域fc誤差検出補正部2005は、CDSテーブル生成部2004から入力されたActiveキャリアの配置系列を用いて、FFT部2003の出力信号でのP1シンボルのサブキャリア間隔単位の周波数誤差量(広帯域キャリア周波数誤差量)を検出する。そして、P1広帯域fc誤差検出補正部2005は、検出した広帯域キャリア周波数誤差量に基づいて、P1シンボルの広帯域キャリア周波数のずれを補正する。P1広帯域fc誤差検出補正部2005は、広帯域キャリア周波数のずれが補正されたP1シンボルからActiveキャリアのみを抽出してP1デコード部2006へ出力する。
 ここで、P1シンボルの広帯域キャリア周波数誤差量の検出について説明する。P1シンボルを構成するサブキャリアには、上述したように、ActiveキャリアとNullキャリアとが存在する。これを利用し、各サブキャリアのパワーを演算し、その演算結果を1サブキャリアずつシフトしながら、演算結果と既知のActiveキャリアの配置系列(CDSテーブル生成部2004からの入力)との相関(配置相関)を算出する。
 ActiveキャリアにはDBPSKされた信号がマッピングされているため、広帯域キャリア周波数誤差量が0となるシフト量での配置相関値は、全てのActiveキャリアのパワーの総和となり、Nullキャリアを含んでしまう他のシフト量での相関値に比べて大きな値になる。このことから、最大となる相関値を得るシフト量が広帯域キャリア周波数誤差量となり、広帯域キャリア周波数誤差量の検出が可能である。ここで、シフト量は、入力信号に広帯域キャリア周波数誤差がない場合のシフト量を基準(シフト量「0」)とする(以下において、同様)。
 図35のP1デコード部2006は、P1広帯域fc誤差検出補正部2005から入力されたP1シンボルのActiveキャリアを基にP1シンボルのデコード処理を実施し、P1送信情報を取り出す。
 ここで、P1デコード部2006について図36を参照して説明する。図36は図35のP1デコード部2006の構成図である。P1デコード部2006は、デスクランブル部2101と、差動復調部2102と、パターンマッチング部2103とを備える。なお、ここでは、P1シンボルの低い周波数領域のS1信号のみを用いてP1シンボルのデコード処理を実施するものとする。
 デスクランブル部2101には、図35のP1広帯域fc誤差検出補正部2005からActiveキャリアの信号系列Actが入力される。デスクランブル部2101は、Activeキャリアの信号系列Actに対して、下記の(数9)に示すデスクランブルを実施し、デスクランブルされた信号系列DESCRを差動復調部2102へ出力する。
Figure JPOXMLDOC01-appb-M000009
 
 具体的には、デスクランブル部2101は、送信側で乗算された、PRBSに基づく信号PRBS(i=0,1,2,・・・,319)を用いて、Activeキャリアの信号Actに対して、下記の(数10)に示すデスクランブルを実施し、デスクランブルされた信号DESCRを差動復調部2102へ出力する。
Figure JPOXMLDOC01-appb-M000010
 
 差動復調部2102には、デスクランブル部2101から信号DESCR(i=0,1,・・・,319)が入力される。差動復調部2102は、信号DESCR(i=1,2,・・・,319)と、1Activeキャリアずらした信号DESCRi-1の共役複素の信号DESCR i-1との複素乗算を実施することで差動検波を実施する。なお、上付きの添え字「*」は共役複素を表す(以下において、同様)。そして、差動復調部2102は、差動検波の結果の実軸の極性から、信号DESCR・DESCR i-1の復調(硬判定)を実施し、復調された信号DEMODをパターンマッチング部2103へ出力する。この差動復調部2102の処理は、下記の(数11)で表され、差動復調部2102が実施する差動復調はDBPSKに対応する復調である。
Figure JPOXMLDOC01-appb-M000011
 
 但し、差動復調部2102は、i=0は基準であるため、信号DESCRの実軸の極性から復調(硬判定)を実施し、復調された信号DEMODをパターンマッチング部2103へ出力する。
 パターンマッチング部2103は、差動復調部2102によって差動復調された信号DEMOD,DEMOD,・・・,DEMOD319を、下記の(数12)及び(数13)に示すように、信号系列DEMOD_CSSS1(S1信号に対応)と信号系列DEMOD_CSSS2(S2信号に対応)とに分ける。
Figure JPOXMLDOC01-appb-M000012
 
Figure JPOXMLDOC01-appb-M000013
 
 そして、パターンマッチング部2103は、図31に示した系列CSSS1,k(k=0,1,・・・,7)のうちどれが一番確からしいかを求めるために、また、図31に示した系列CSSS2,k(k=0,1,・・・,15)のうちどれが一番確からしいかを求めるために、次の処理を行う。ここでは、インデックスkは、図31に示した8個の系列CSSS1を区別するために、また、図31に示した16個の系列CSSS2を区別するために、用いている(以下において、同様)。
 パターンマッチング部2103は、下記の(数14)に示すように、図31の各系列CSSS1,kと系列DEMOD_CSSS1との相関CORRS1,kを求め、下記の(数15)に示すように、図31の各系列CSSS2,kと系列DEMOD_CSSS2との相関CORRS2,kを求める。
Figure JPOXMLDOC01-appb-M000014
 
Figure JPOXMLDOC01-appb-M000015
 
 そして、パターンマッチング部2103は、上記の(数14)を用いて算出された8個の相関値のうちの最大の相関値をとる系列CSSS1,kに対応する3ビットのS1信号(図31参照)を送信されたS1信号と推定する。また、パターンマッチング部2103は、上記の(数15)を用いて算出された16個の相関値のうちの最大の相関値をとる系列CSSS2,kに対応する4ビットのS2信号(図31参照)を送信されたS2信号と推定する。パターンマッチング部2103は、推定したS1信号とS2信号とを用いてP1送信情報を取得する。
Draft ETSI TR 102 831 v0.10.04 Digital Video Broadcasting(DVB);Implementation guidelines for a second generation digital terrestrial television broadcasting system(DVB-T2)
 しかしながら、P1シンボルは、上述したように、ActiveキャリアとNullキャリアとで構成されており(図29参照)、図37に示すように、ガードインターバル区間の信号は有効シンボル区間の信号を1サブキャリア(上記のfSH相当量)分周波数が高くなるように周波数シフトしたものであることから、ノイズやマルチパス干渉環境下において、以下の課題を有する。なお、図37において、周波数軸の下に記載した値は、サブキャリア番号であり、周波数の値そのものではない。
 マルチパス干渉が存在した場合の受信信号の模式図を図38に示す。ここでは、1波目を主波、2波目を遅延波として扱う。1波目(主波)の有効シンボル区間の信号(主波の有効シンボル区間の信号)に対して、図38に示すように、FFTを実施した場合のサブキャリアの分布図を図39に示す。
 マルチパス干渉が存在すると、FFT実施区間には、FFT実施対象のP1シンボルの主波の有効シンボル区間の信号成分に加え、当該FFT実施対象のP1シンボルの遅延波の前ガードインターバル区間の信号成分が含まれる。また、遅延波の遅延量によっては(遅延量が前ガードインターバル区間の時間幅を超える場合)、図38に示すように、FFT実施区間には、FFT実施対象のP1シンボルの主波の有効シンボル区間の信号成分に加え、当該FFT実施対象のP1シンボルの遅延波の前ガードインターバル区間の信号成分及び1つ前のOFDMシンボル(例えば、データシンボル)の信号成分が含まれる。
 前ガードインターバル区間及び後ガードインターバル区間の夫々の信号は有効シンボル区間の一部の信号を1サブキャリア分周波数が高くなるように周波数シフトしたものである。このことから、遅延波が存在する場合、前ガードインターバル区間のActiveキャリアの信号成分は、図39に示すように、有効シンボル区間のActiveキャリアの信号成分に対して、1サブキャリア分周波数が高い位置に現れる。また、他のOFDMシンボル(例えば、データシンボル)の信号成分は、図39に図示していないが、全サブキャリアに現れる。
 このため、Nullキャリアの信号成分の電力が大きくなり、P1広帯域fc誤差検出補正部2005による配置相関演算において、正しいサブキャリア位置での配置相関値に比べ、他のサブキャリア位置での配置相関値が小さくならずに、逆に大きくなってしまうことがある。この場合には、P1広帯域fc誤差検出補正部2005は広帯域キャリア周波数誤差量の推定を誤ってしまう。なお、先行波が存在する場合も同様に先行波に起因して広帯域キャリア周波数誤差量の推定を誤ってしまう。
 また、ノイズ環境下においても、全サブキャリアにノイズ成分が現れてしまい、Nullキャリアの信号成分の電力が大きくなり、P1広帯域fc誤差検出補正部2005は広帯域キャリア周波数誤差量の推定を誤ってしまうことがある。
 広帯域キャリア周波数誤差量の推定を誤ると、誤ったサブキャリアを用いた差動復調が実施されてしまい、正しくP1送信情報を得ることができず、安定して受信ができなくなってしまうという問題がある。
 なお、上記では、DVB-T2フレームのP1シンボルを対象とし、マルチパス干渉環境下やノイズ環境下での広帯域キャリア周波数誤差量の誤推定を課題として説明したが、これに限らず、広帯域キャリア周波数の誤推定は受信信号の受信性能の劣化につながり、受信側において大きな問題である。
 そこで、本発明は、有効シンボル区間の信号と、当該有効シンボル区間の信号に基づくガードインターバル区間の信号とから構成されたOFDMシンボルの広帯域キャリア周波数誤差量の推定精度の向上を図ることができるOFDM受信装置、OFDM受信回路、OFDM受信方法、及びOFDM受信プログラムを提供することを目的とする。
 上記目的を達成するために本発明のOFDM受信装置は、有効シンボル区間の信号と、当該有効シンボル区間の信号に基づくガードインターバル区間の信号とから構成されたOFDMシンボルを受信するOFDM受信装置であって、前記有効シンボル区間の信号を直交変換し、直交変換の結果を出力する第1直交変換部と、前記ガードインターバル区間の信号を直交変換し、直交変換の結果を出力する第2直交変換部と、前記第1直交変換部の出力信号と前記第2直交変換部の出力信号とに基づいて前記OFDMシンボルの広帯域キャリア周波数誤差量を検出する検出部と、前記検出部により検出された広帯域キャリア周波数誤差量に基づいて前記OFDMシンボルの広帯域キャリア周波数のずれの補正を実施する補正部と、を備える。
 上記のOFDM受信装置によれば、有効シンボル区間の信号と当該有効シンボル区間の信号に基づくガードインターバル区間の信号との2つの信号を用いてOFDMシンボルの広帯域キャリア周波数誤差量の検出を行っているため、マルチパス干渉環境下やノイズの厳しい環境下においても、OFDMシンボルの広帯域キャリア周波数誤差量の誤推定を低減でき、受信性能の向上が図られる。
本発明の一例のOFDM受信装置Aの構成図。 第1の実施の形態に係るOFDM受信装置1の構成図。 図2の復調部30の構成図。 図3のP1復調部103の構成図。 図4のP1直交変換部153U及びP1直交変換部153Gが直交変換を実施するP1シンボルの信号部分を説明するための模式図。 図4のP1広帯域fc誤差検出補正部155の構成図。 図4のP1デコード部156の構成図。 遅延波が存在する場合のP1シンボルの時間軸での模式図。 遅延波が存在する場合のP1シンボルの周波数軸での模式図。 遅延波が存在する場合のP1シンボルの周波数軸での模式図。 第2の実施の形態に係るP1広帯域fc誤差検出補正部200の構成図。 第3の実施の形態に係るP1広帯域fc誤差検出補正部250の構成図。 第4の実施の形態に係るP1広帯域fc誤差検出補正部300の構成図。 図13の選択決定部312の構成図。 第5の実施の形態に係るP1広帯域fc誤差検出補正部350の構成図。 図15の選択決定部371の構成図。 第6の実施の形態に係るP1広帯域fc誤差検出補正部400の構成図。 図17の選択決定部413の構成図。 第7の実施の形態に係るP1広帯域fc誤差検出補正部450の構成図。 図19の選択決定部471の構成図。 第8の実施の形態に係るP1広帯域fc誤差検出補正部500の構成図。 図21の選択決定部512の構成図。 第9の実施の形態に係るP1広帯域fc誤差検出補正部550の構成図。 図23の選択決定部572の構成図。 第10の実施の形態に係るP1広帯域fc誤差検出補正部600の構成図。 図25の選択決定部312Aの構成図。 DVB-T2伝送規格のフレーム構造を表す模式図。 P1シンボルの時間軸の送信フォーマットを表す模式図。 P1シンボルの周波数軸の送信フォーマットを表す模式図。 P1シンボルを生成するP1生成部1000の構成図。 S1信号及びS2信号の値に対する変換系列を表す図。 P1シンボルにおけるActiveキャリア位置を表す図。 DVB-T2伝送規格で許容されるFFTサイズとガードインターバル比とパイロットパターンの組合せを示す図。 FFTサイズに対する1フレーム当たりのP2シンボルのシンボル数を示す図。 従来のP1復調部2000の構成図。 図35のP1デコード部2006の構成図。 P1シンボルの有効シンボル区間の信号の周波数位置とP1シンボルのガードインターバル区間の信号の周波数位置とを比較するための模式図。 遅延波が存在する場合のP1シンボルの時間軸での模式図。 遅延波が存在する場合のP1シンボルの周波数軸での模式図。
 本発明の一態様である第1のOFDM受信装置は、有効シンボル区間の信号と、当該有効シンボル区間の信号に基づくガードインターバル区間の信号とから構成されたOFDMシンボルを受信するOFDM受信装置であって、前記有効シンボル区間の信号を直交変換し、直交変換の結果を出力する第1直交変換部と、前記ガードインターバル区間の信号を直交変換し、直交変換の結果を出力する第2直交変換部と、前記第1直交変換部の出力信号と前記第2直交変換部の出力信号とに基づいて前記OFDMシンボルの広帯域キャリア周波数誤差量を検出する検出部と、前記検出部により検出された広帯域キャリア周波数誤差量に基づいて前記OFDMシンボルの広帯域キャリア周波数のずれの補正を実施する補正部と、を備える。
 本発明の一態様である第1のOFDM受信回路は、有効シンボル区間の信号と、当該有効シンボル区間の信号に基づくガードインターバル区間の信号とから構成されたOFDMシンボルを受信するOFDM受信回路であって、前記有効シンボル区間の信号を直交変換し、直交変換の結果を出力する第1直交変換回路と、前記ガードインターバル区間の信号を直交変換し、直交変換の結果を出力する第2直交変換回路と、前記第1直交変換回路の出力信号と前記第2直交変換回路の出力信号とに基づいて前記OFDMシンボルの広帯域キャリア周波数誤差量を検出する検出回路と、前記検出回路により検出された広帯域キャリア周波数誤差量に基づいて前記OFDMシンボルの広帯域キャリア周波数のずれの補正を実施する補正回路と、を備える。
 本発明の一態様である第1のOFDM受信方法は、有効シンボル区間の信号と、当該有効シンボル区間の信号に基づくガードインターバル区間の信号とから構成されたOFDMシンボルを受信するOFDM受信装置において行われるOFDM受信方法であって、前記有効シンボル区間の信号を直交変換する第1直交変換ステップと、前記ガードインターバル区間の信号を直交変換する第2直交変換ステップと、前記第1直交変換ステップでの直交変換の結果と前記第2直交変換ステップでの直交変換の結果とに基づいて前記OFDMシンボルの広帯域キャリア周波数誤差量を検出する検出ステップと、前記検出ステップで検出された広帯域キャリア周波数誤差量に基づいて前記OFDMシンボルの広帯域キャリア周波数のずれの補正を実施する補正ステップと、を備える。
 本発明の一態様である第1のOFDM受信プログラムは、有効シンボル区間の信号と、当該有効シンボル区間の信号に基づくガードインターバル区間の信号とから構成されたOFDMシンボルを受信するOFDM受信装置に、前記有効シンボル区間の信号を直交変換する第1直交変換ステップと、前記ガードインターバル区間の信号を直交変換する第2直交変換ステップと、前記第1直交変換ステップでの直交変換の結果と前記第2直交変換ステップでの直交変換の結果とに基づいて前記OFDMシンボルの広帯域キャリア周波数誤差量を検出する検出ステップと、前記検出ステップで検出された広帯域キャリア周波数誤差量に基づいて前記OFDMシンボルの広帯域キャリア周波数のずれの補正を実施する補正ステップと、を実行させる。
 上記のOFDM受信装置、OFDM受信回路、OFDM受信方法、及びOFDM受信プログラムの夫々によれば、有効シンボル区間の信号と当該有効シンボル区間の信号に基づくガードインターバル区間の信号との2つの信号を用いてOFDMシンボルの広帯域キャリア周波数誤差量の検出を行っているため、マルチパス干渉環境下やノイズの厳しい環境下においても、OFDMシンボルの広帯域キャリア周波数誤差量の誤推定を低減でき、受信性能の向上が図られる。
 ここで、第1のOFDM受信装置の一構成例を図1に示す。図1のOFDM受信装置Aは、有効シンボル区間の信号と、当該有効シンボル区間の信号に基づくガードインターバル区間の信号とから構成されたOFDMシンボルを受信する。第1直交変換部A1は、第1のOFDM受信装置の第1直交変換部に当たり、有効シンボル区間の信号を直交変換し、直交変換の結果を出力する。また、第2直交変換部A2は、第1のOFDM受信装置の第2直交変換部に当たり、ガードインターバル区間の信号を直交変換し、直交変換の結果を出力する。更に、検出部A3は、第1のOFDM受信装置の検出部に当たり、第1直交変換部A1の出力信号と第2直交変換部A2の出力信号とに基づいてOFDMシンボルの広帯域キャリア周波数誤差量を検出する。更に、補正部A4は、第1のOFDM受信装置の補正部に当たり、検出部A3により検出された広帯域キャリア周波数誤差量に基づいてOFDMシンボルの広帯域キャリア周波数のずれの補正を実施する。
 本発明の一態様である第2のOFDM受信装置は、第1のOFDM受信装置において、前記ガードインターバル区間の信号は、前記有効シンボル区間の信号を周波数シフトしたものである。
 これによれば、ガードインターバル区間の信号は有効シンボル区間の信号を周波数シフトしたものであるため、同じ信号が異なる2つの周波数で送信され(異なる2つの伝送路特性で送信され)、両方の信号を用いてOFDMシンボルの広帯域キャリア周波数誤差量の検出が実施されている。このため、ノイズの厳しい環境やマルチパス干渉環境下において広帯域キャリア周波数誤差量の誤検出を低減でき、安定した受信が可能になる。
 本発明の一態様である第3のOFDM受信装置は、第2のOFDM受信装置において、前記第2直交変換部の入力信号又は前記第2直交変換部の出力信号に対して前記周波数シフトを相殺する逆方向の周波数シフトの実施に係る補正処理を前記第2直交変換部の前段又は後段において実施し、補正処理の結果を出力する周波数シフト補正部を更に備え、前記検出部は、前記広帯域キャリア周波数のずれの補正を、前記第1直交変換部の出力信号と、前記周波数シフト補正部の出力信号を直交変換して得られた前記第2直交変換部の出力信号又は前記周波数シフト補正部の出力信号と、に基づいて行う。
 これによれば、ガードインターバル区間の信号は有効シンボル区間の信号を周波数シフトしたものであることを考慮した広帯域キャリア周波数誤差量の検出処理を実施でき、ノイズの厳しい環境やマルチパス干渉環境下において広帯域キャリア周波数誤差量の誤検出を低減でき、安定した受信が可能になる。
 本発明の一態様である第4のOFDM受信装置は、第1のOFDM受信装置において、前記OFDMシンボルは、DVB-T2伝送方式におけるP1シンボルであり、前記ガードインターバル区間は、前記有効シンボル区間より手前の前ガードインターバル区間と、前記有効シンボル区間より後ろの後ガードインターバル区間とからなり、前記第2直交変換部は、前記直交変換を、前記前ガードインターバル区間の信号と前記後ガードインターバル区間の信号とを結合した信号を用いて行う。
 これによれば、DVB-T2伝送方式におけるP1シンボルの広帯域キャリア周波数誤差量の誤検出を低減することができる。
 本発明の一態様である第5のOFDM受信装置は、第1のOFDM受信装置において、前記OFDMシンボルを構成する複数のサブキャリアは、複数のActiveキャリアと複数のNullキャリアとで構成されており、前記複数のActiveキャリアの各々が配置されるサブキャリア位置は、所定の配置パターンによって規定されており、前記検出部は、前記第1直交変換部の出力信号と前記第2直交変換部の出力信号とに基づく信号の連続する複数のサブキャリアにおいて前記配置パターンで規定された複数のActiveキャリアの位置に対応するサブキャリアでの当該信号の値を加算する加算処理を、前記連続する複数のサブキャリアを所定の範囲内でサブキャリア方向に1サブキャリア単位で順次シフトしながら実施し、加算処理の結果に基づいて、前記広帯域キャリア周波数誤差量を検出する。
 これによれば、有効シンボル区間の信号とガードインターバル区間の信号との2つの信号を用いてOFDMシンボルの広帯域キャリア周波数誤差量の検出を行っているため、マルチパス干渉環境下やノイズの厳しい環境下においても、OFDMシンボルの広帯域キャリア周波数誤差量の誤推定を低減でき、受信性能の向上が図られる。
 本発明の一態様である第6のOFDM受信装置は、第5のOFDM受信装置において、前記検出部は、前記第1直交変換部の出力信号と前記第2直交変換部の出力信号との複素乗算をサブキャリア毎に実施する複素乗算部と、連続する複数のサブキャリアにおいて前記配置パターンで規定された複数のActiveキャリアの位置に対応するサブキャリアでの複素乗算値を加算する加算処理を、前記連続する複数のサブキャリアを所定の範囲内でサブキャリア方向に1サブキャリア単位で順次シフトしながら実施して加算処理の結果を出力する加算処理部と、前記加算処理部の各出力信号の電力を算出し、算出結果を出力する電力算出部と、前記電力算出部の各出力信号の中から最大値を検出することによって前記広帯域キャリア周波数誤差量を検出する最大値検出部と、を備える。
 本発明の一態様である第7のOFDM受信装置は、第5のOFDM受信装置において、前記検出部は、前記第1直交変換部の出力信号の電力をサブキャリア毎に算出し、算出結果を出力する第1電力算出部と、前記第2直交変換部の出力信号の電力をサブキャリア毎に算出し、算出結果を出力する第2電力算出部と、前記第1電力算出部の出力信号と前記第2電力算出部の出力信号との乗算をサブキャリア毎に実施する乗算部と、連続する複数のサブキャリアにおいて前記配置パターンで規定された複数のActiveキャリアの位置に対応するサブキャリアでの乗算値を加算する加算処理を、前記連続する複数のサブキャリアを所定の範囲内でサブキャリア方向に1サブキャリア単位で順次シフトしながら実施して加算処理の結果を出力する加算処理部と、前記加算処理部の各出力信号の中から最大値を検出することによって前記広帯域キャリア周波数誤差量を検出する最大値検出部と、を備える。
 本発明の一態様である第8のOFDM受信装置は、第5のOFDM受信装置において、前記検出部は、前記第1直交変換部の出力信号の振幅をサブキャリア毎に算出し、算出結果を出力する第1振幅算出部と、前記第2直交変換部の出力信号の振幅をサブキャリア毎に算出し、算出結果を出力する第2振幅算出部と、前記第1振幅算出部の出力信号と前記第2振幅算出部の出力信号との乗算をサブキャリア毎に実施する乗算部と、連続する複数のサブキャリアにおいて前記配置パターンで規定された複数のActiveキャリアの位置に対応するサブキャリアでの乗算値を加算する加算処理を、前記連続する複数のサブキャリアを所定の範囲内でサブキャリア方向に1サブキャリア単位で順次シフトしながら実施して加算処理の結果を出力する加算処理部と、前記加算処理部の各出力信号の中から最大値を検出することによって前記広帯域キャリア周波数誤差量を検出する最大値検出部と、を備える。
 これらによれば、有効シンボル区間の信号とガードインターバル区間の信号との2つの信号を用いてOFDMシンボルの広帯域キャリア周波数誤差量の検出を行う構成を提供することができる。
 本発明の一態様である第9のOFDM受信装置は、第1のOFDM受信装置において、前記OFDMシンボルを構成する複数のサブキャリアは、複数のActiveキャリアと複数のNullキャリアとで構成されており、前記複数のActiveキャリアの各々が配置されるサブキャリア位置は、所定の配置パターンによって規定されており、前記検出部は、前記第1直交変換部の出力信号と前記第2直交変換部の出力信号との双方を用いて広帯域キャリア周波数誤差量の第1候補を検出し、前記第1候補の信頼度を検出する第1検出処理、前記第1直交変換部の出力信号及び前記第2直交変換部の出力信号のうちの前記第1直交変換部の出力信号のみを用いて広帯域キャリア周波数誤差量の第2候補を検出し、前記第2候補の信頼度を検出する第2検出処理、及び、前記第1直交変換部の出力信号及び前記第2直交変換部の出力信号のうちの前記第2直交変換部の出力信号のみを用いて広帯域キャリア周波数誤差量の第3候補を検出し、前記第3候補の信頼度を検出する第3検出処理、の少なくとも2つを実施し、信頼度が最も高い広帯域キャリア周波数誤差量の候補を前記補正部が用いる前記広帯域キャリア周波数誤差量として選択する。
 これによれば、使用する信号の組合せが異なる複数種類の広帯域キャリア周波数誤差量の検出処理を実施しているため、補正部が用いる広帯域キャリア周波数誤差量の検出精度の向上を図ることができる。
 本発明の一態様である第10のOFDM受信装置は、第9のOFDM受信装置において、前記検出部は、前記第1検出処理を、前記第1直交変換部の出力信号と前記第2直交変換部の出力信号とに基づく第1信号の連続する複数のサブキャリアにおいて前記配置パターンで規定された複数のActiveキャリアの位置に対応するサブキャリアでの当該第1信号の値を加算する加算処理を、前記連続する複数のサブキャリアを所定の範囲内でサブキャリア方向に1サブキャリア単位で順次シフトしながら実施し、加算処理の結果に基づいて前記広帯域キャリア周波数誤差量の第1候補及び前記第1候補の信頼度を検出することによって実施し、前記第2検出処理を、前記第1直交変換部の出力信号に基づく第2信号の連続する複数のサブキャリアにおいて前記配置パターンで規定された複数のActiveキャリアの位置に対応するサブキャリアでの当該第2信号の値を加算する加算処理を、前記連続する複数のサブキャリアを所定の範囲内でサブキャリア方向に1サブキャリア単位で順次シフトしながら実施し、加算処理の結果に基づいて前記広帯域キャリア周波数誤差量の第2候補及び前記第2候補の信頼度を検出することによって実施し、前記第3検出処理を、前記第2直交変換部の出力信号に基づく第3信号の連続する複数のサブキャリアにおいて前記配置パターンで規定された複数のActiveキャリアの位置に対応するサブキャリアでの当該第3信号の値を加算する加算処理を、前記連続する複数のサブキャリアを所定の範囲内でサブキャリア方向に1サブキャリア単位で順次シフトしながら実施し、加算処理の結果に基づいて前記広帯域キャリア周波数誤差量の第3候補及び前記第3候補の信頼度を検出することによって実施する。
 これによれば、使用する信号の組合せが異なる複数種類の広帯域キャリア周波数誤差量の検出処理を実施しているため、補正部が用いる広帯域キャリア周波数誤差量の検出精度の向上を図ることができる。
 本発明の一態様である第11のOFDM受信装置は、第10のOFDM受信装置において、前記第1から第3の各信頼度は前記加算処理の結果の最大値を2番目に大きい値で除算した値であって値が大きい程信頼度が高い、又は、前記第1から第3の各信頼度は前記加算処理の結果の最大値で2番目に大きい値を除算した値であって値が小さい程信頼度が高い。
 本発明の一態様である第12のOFDM受信装置は、第10のOFDM受信装置において、前記第1から第3の各信頼度は前記加算処理の結果の最大値であって値が大きい程信頼度が高い。
 本発明の一態様である第13のOFDM受信装置は、第10のOFDM受信装置において、前記第1から第3の各信頼度は前記加算処理の結果の最大値と2番目に大きい値との差であって値が大きい程信頼度が高い。
 これらによれば、信頼度の具体例を提供することができる。
 本発明の一態様である第14のOFDM受信装置は、第10のOFDM受信装置において、検出された前記各候補の信頼度に基づいて、前記有効シンボル区間の信号と前記ガードインターバル区間の信号の一方を選択し、選択した信号を前記補正部へ出力する選択部を更に備え、前記補正部は、前記選択部から入力された信号に対して前記広帯域キャリア周波数ずれの補正を実施する。
 これによれば、有効シンボル区間の信号とガードインターバル区間の信号のうちで信頼度の高い方の信号に対して広帯域キャリア周波数のずれの補正が実施されるため、受信性能の向上が図られる。
 以下、本発明の実施の形態について、図面を参照しつつ説明する。
 ≪第1の実施の形態≫
 以下、本発明の第1の実施の形態に係るOFDM受信装置1について、図面を参照しつつ説明する。但し、第1の実施の形態及び後述する各実施の形態では、第二世代の欧州地上デジタル放送規格であるDVB-T2方式に準拠したデジタル放送の受像機として動作するOFDM受信装置を例に挙げて説明を行う。なお、OFDM受信装置1が受信する受信信号は、DVB-T2伝送フォーマットに則ったOFDMシンボルから構成されるOFDM信号である。
 図2は、第1の実施の形態に係るOFDM受信装置1の構成図である。OFDM受信装置1は、アンテナ10と、チューナ20と、復調部30と、デコード部40と、表示部50とを備える。
 アンテナ10は、不図示の放送局から発せられた放送波を受信し、受信した放送波をチューナ20へ出力する。チューナ20は、アンテナ10から入力された複数の放送波の中から所望の受信チャンネルの受信信号を選択し、選択した受信信号をRF(Radio Frequency)帯からIF(Intermediate Frequency)帯に変換し、IF帯の受信信号を復調部30へ出力する。復調部30は、後に詳述するように、チューナ20から入力された受信信号を復調し、復調の結果得られた信号をデコード部40へ出力する。
 デコード部40は、復調部30から入力された信号、例えばH.264等で圧縮された信号を映像信号や音声信号にデコードし、デコードした映像信号や音声信号を表示部50へ出力する。表示部50は、デコード部40から入力された映像信号に基づいて映像表示を行い、デコード部40から入力された音声信号に基づいて音声出力を行う。
 以下、図2の復調部30について図3を参照しつつ説明する。図3は図2の復調部30の構成図である。復調部30は、A/D変換部60と、復調中核部70と、制御情報収集部80とを備える。
 A/D変換部60には、図2のチューナ20からIF帯の受信信号が入力される。A/D変換部60は、チューナ20から入力された受信信号をアナログ信号からデジタル信号に変換し、デジタル信号に変換された受信信号(以下、「デジタル受信信号」と言う。)を復調中核部70内の後述する直交復調部101へ出力する。
 復調中核部70は、直交復調部101と、fc補正部102と、P1復調部103と、GI判定部104と、狭帯域fc誤差算出部105と、直交変換部106と、広帯域fc誤差算出部107と、伝送路特性推定部108と、等化部109と、誤り訂正部110とを備える。復調中核部70内の各部は、必要に応じて制御情報収集部80によって収集された制御情報を用いて動作する。
 直交復調部101は、A/D変換部60から入力されたIF帯のデジタル受信信号を固定周波数により直交復調し、直交復調の結果得られた複素ベースバンド信号(同相成分と直交成分とからなる信号)をfc補正部102へ出力する。
 fc補正部102は、これまでに、P1復調部103によって検出された狭帯域キャリア周波数誤差量(後述)及び広帯域キャリア周波数誤差量(後述)、これまでに狭帯域fc誤差算出部105によって算出された狭帯域キャリア周波数誤差量(後述)、及び、これまでに広帯域fc誤差算出部107によって算出された広帯域キャリア周波数誤差量(後述)に基づいて、補正キャリア周波数を発生する。fc補正部102は、補正キャリア周波数を基に、直交復調部101から入力された複素ベースバンド信号のキャリア周波数のずれを補正し、キャリア周波数のずれが補正された複素ベースバンド信号をP1復調部103、GI判定部104、狭帯域fc誤差算出部105、及び直交変換部106へ出力する。
 なお、直交復調部101で固定周波数を用いた直交復調を行い、fc補正部102でキャリア周波数のずれを補正するようにしているが、これに限定されるものではなく、例えば次のようなものであってもよい。キャリア周波数のずれの補正を同時に行う直交復調部は、固定周波数と検出されたキャリア周波数の誤差量とを足し合わせた周波数を用いた直交復調を行い、キャリア周波数のずれが補正された複素ベースバンド信号を得るようにしてもよい。
 P1復調部103にはfc補正部102からキャリ周波数のずれが補正された複素ベースバンド信号が入力される。P1復調部103は、入力された複素ベースバンド信号から、DVB-T2フレームに含まれるP1シンボルを検出する。P1復調部103は、P1シンボルから、P1シンボルのサブキャリア間隔以内の周波数誤差量(狭帯域キャリア周波数誤差量)及びP1シンボルのサブキャリア間隔単位の周波数誤差量(広帯域キャリア周波数誤差量)を検出し、それらを基にP1シンボルのキャリア周波数のずれを補正する。そして、P1復調部103は、キャリア周波数のずれが補正されたP1シンボルのデコード処理を実施し、P1シンボルで送信されたP1送信情報(FFTサイズ情報、MISO/SISO情報、FEF有無情報など)を制御情報として制御情報収集部80へ出力する。また、P1復調部103は、検出した狭帯域キャリア周波数誤差量及び広帯域キャリア周波数誤差量をfc補正部102へ出力する。なお、P1復調部103の詳細については図4等を参照して後述する。
 GI判定部104は、P1シンボルで送信されたP2シンボルやデータシンボルのFFTサイズが何であるかに関する情報(FFTサイズ情報)を制御情報収集部80から受け取る。GI判定部104は、DVB-T2で規定されている各ガードインターバル比で、受け取ったFFTサイズを基に、fc補正部102から入力されたP2シンボル又はデータシンボルにおけるガードインターバル区間の信号と有効シンボル区間の後ろ部分の信号との相関(ガード相関)を算出する。GI判定部104は、ガード相関の算出結果を基に、実際の送信に用いられている、P2シンボル及びデータシンボルのガードインターバル比を推定し、推定したガードインターバル比を制御情報として制御情報収集部80へ出力する。
 なお、GI判定部104におけるガード相関の算出対象を、DVB-T2で規定されているガードインターバル比の全てとする代わりに、例えば、FFTサイズを基に特定できる実際の送信に用いられる可能性があるガードインターバル比(図33参照)のみとしてもよく、FFTサイズ及びMISOかSISOかを基に特定できる実際の送信に用いられる可能性があるガードインターバル比(図33参照)のみとしてもよい。
 狭帯域fc誤差算出部105は、制御情報収集部80からP2シンボル及びデータシンボルのFFTサイズやそれらのガードインターバル比を受け取る。そして、狭帯域fc誤差算出部105は、FFTサイズとガードインターバル比とを用いて、fc補正部102から入力されたP2シンボル及びデータシンボルにおけるガードインターバル区間の信号と有効シンボル区間の後ろ部分の信号との相関(ガード相関)を算出する。そして、狭帯域fc誤差算出部105は、算出したガード相関に基づいて、P2シンボル及びデータシンボルのサブキャリア間隔以内の周波数誤差量(狭帯域キャリア周波数誤差量)を算出し、算出した狭帯域キャリア周波数誤差量をfc補正部102へ出力する。
 直交変換部106は、fc補正部102から入力されたP2シンボル及びデータシンボルの有効シンボル区間の信号(時間領域の複素ベースバンド信号)を直交変換し、直交変換の結果(周波数領域の複素ベースバンド信号)を、広帯域fc誤差算出部107、伝送路特性推定部108及び等化部109へ出力する。なお、直交変換部106は、フーリエ変換、コサイン変換、ウェーブレット変換、アダマール変換などに基づいて直交変換を行う。
 ここでは、一例として、直交変換部106は、フーリエ変換を用いて直交変換を行うものとし、フーリエ変換にFFTを用いるものとする。直交変換部106は、P2シンボル及びデータシンボルの有効シンボル区間の信号(時間領域の複素ベースバンド信号)に対してFFTを実施し、FFTの結果(周波数領域の複素ベースバンド信号)を広帯域fc誤差算出部107、伝送路特性推定部108、及び等化部109へ出力する。なお、直交変換部106の処理はこれに限定されるものではない。
 広帯域fc誤差算出部107は、直交変換部106から入力された周波数領域の複素ベースバンド信号(P2シンボル及びデータシンボルに関する信号)を用いて、それに含まれるパイロット信号の配置系列の相関を算出する。そして、広帯域fc誤差算出部107は、相関の算出結果を利用して、P2シンボル及びデータシンボルのサブキャリア間隔単位の周波数誤差量(広帯域キャリア周波数誤差量)を算出し、算出した広帯域キャリア周波数誤差量をfc補正部102へ出力する。
 なお、復調部30を、例えば、次のような構成に変更してもよい。直交変換部106と伝送路特性推定部108及び等化部109との間に広帯域fc補正部を設け、広帯域fc誤差算出部107は算出した広帯域キャリア周波数誤差量をfc補正部102へ出力する代わりに広帯域fc補正部へ出力する。広帯域fc補正部は、広帯域fc誤差算出部107によって算出された広帯域キャリア周波数誤差量を用いて、直交変換部106から入力されるP2シンボル及びデータシンボルの広帯域キャリア周波数のずれを補正し、広帯域キャリア周波数のずれが補正されたP2シンボルやデータシンボルを伝送路特性推定部108と等化部109とへ出力する。
 伝送路特性推定部108には、直交変換部106から周波数領域の複素ベースバンド信号(P2シンボル及びデータシンボルに関する信号)が入力される。伝送路特性推定部108は、入力された周波数領域の複素ベースバンド信号が伝送路で受けた振幅及び位相の歪みの特性(伝送路特性)を、それに含まれるパイロット信号を利用して推定し、推定した伝送路特性を等化部109へ出力する。
 等化部109には、直交変換部106から周波数領域の複素ベースバンド信号(P2シンボル及びデータシンボルに関する信号)が入力される。等化部109は、入力された周波数領域の複素ベースバンド信号に対して、伝送路特性推定部108によって推定された伝送路特性を用いて、振幅及び位相の歪みの補正を実施する。そして、等化部109は、振幅及び位相の歪みが補正された信号を誤り訂正部110へ出力する。
 誤り訂正部110は、等化部109から入力された振幅及び位相の歪みが補正された信号に対し誤り訂正処理を実施し、例えばトランスポートストリーム等のストリームを図2のデコード部40へ出力し、P2シンボルで送信されたP2送信情報(パイロットパターン情報、伝送モード情報、フレーム当たりのシンボル数、変調方法、FEC符号の符号化率など)を制御情報として制御情報収集部80へ出力する。
 制御情報収集部80は、P1復調部103、GI判定部104、及び誤り訂正部110から収集した制御情報から送信パラメータを分類して復調中核部70内の各部へ出力する。復調中核部70内の各部は、必要に応じて制御情報収集部80によって収集された制御情報を用いて動作する。
 なお、第1の実施の形態のOFDM受信装置1では、図2及び図3で説明した各部のうち復調部30内のP1復調部103が従来技術と大きく異なる。
 以下、図3のP1復調部103について図4を参照して説明する。
 図4は図3のP1復調部103の構成図である。P1復調部103は、P1位置検出部151と、P1狭帯域fc誤差検出補正部152と、P1直交変換部153Uと、P1直交変換部153Gと、CDSテーブル生成部154と、P1広帯域fc誤差検出補正部155と、P1デコード部156とを備える。
 P1位置検出部151には、図3のfc補正部102の出力信号(時間領域の複素ベースバンド信号)が入力される。P1位置検出部151は、入力された時間領域の複素ベースバンド信号を用いて、P1シンボルのガードインターバル区間(前ガードインターバル区間、後ガードインターバル区間)の信号とP1シンボルの有効シンボル区間の所定の部分の信号との相関(ガード相関)を算出していく。そして、P1位置検出部151は、算出した相関値をガードインターバル区間(前ガードインターバル区間、後ガードインターバル区間)の時間幅で区間積分していき、区間積分値のピークを検出することによって入力された複素ベースバンド信号でのP1シンボルの位置を検出する。
 但し、相関の算出処理は、送信側で付加されたfSH分の周波数シフトを考慮して行われる。所定の部分とは、前ガードインターバル区間に対しては、有効シンボル区間内の前部分であり、後ガードインターバル区間に対しては、有効シンボル区間内の後ろ部分である(図28参照)。なお、後述するP1狭帯域fc誤差検出補正部152による相関の算出処理においても同様である。
 P1狭帯域fc誤差検出補正部152は、P1シンボルのガードインターバル区間(前ガードインターバル区間、後ガードインターバル区間)の信号と有効シンボル区間の所定の部分の信号との相関(ガード相関)を算出していく。そして、P1狭帯域fc誤差検出補正部152は、算出した相関値をガードインターバル区間(前ガードインターバル区間、後ガードインターバル区間)の時間幅で区間積分していき、区間積分値の位相を算出していく。P1狭帯域fc誤差検出補正部152は、P1位置検出部151により検出されたP1シンボルの位置のタイミングでの位相の値を基にP1シンボルのサブキャリア間隔以内の周波数誤差量(狭帯域キャリア周波数誤差量)を検出する。P1狭帯域fc誤差検出補正部152は、検出した狭帯域キャリア周波数誤差量に基づいて、P1シンボルの狭帯域キャリア周波数のずれを補正し、狭帯域キャリア周波数のずれが補正されたP1シンボルをP1直交変換部153U及びP1直交変換部153Gへ出力する。また、P1狭帯域fc誤差検出補正部152は、検出した狭帯域キャリア周波数誤差量を図3のfc補正部102へ出力する。
 P1直交変換部153Uには、P1狭帯域fc誤差検出補正部152の出力信号(P1シンボルの時間領域の複素ベースバンド信号)が入力される。P1直交変換部153Uは、図5に示すように、P1シンボルから有効シンボル区間の信号(図5の有効シンボル(A)の信号)を切り出し、切り出した有効シンボル区間の信号(時間領域の複素ベースバンド信号)を直交変換し、直交変換の結果(周波数領域の複素ベースバンド信号)をP1広帯域fc誤差検出補正部155へ出力する。なお、P1直交変換部153Uは、フーリエ変換、コサイン変換、ウェーブレット変換、アダマール変換などに基づいて直交変換を行う。
 ここでは、一例として、P1直交変換部153Uは、フーリエ変換を用いて直交変換を行うものとし、フーリエ変換にFFTを用いるものとする。P1直交変換部153Uは、P1シンボルの有効シンボル区間の信号(時間領域の複素ベースバンド信号)に対してFFTサイズ1kでFFTを実施し、FFTの結果(周波数領域の複素ベースバンド信号)をP1広帯域fc誤差検出補正部155へ出力する。なお、P1直交変換部153Uの処理はこれに限定されるものではない。
 但し、P1直交変換部153UがP1狭帯域fc誤差検出補正部152の出力信号から切り出して直交変換を実施する有効シンボル区間の信号には、マルチパス干渉環境下等では、直交変換対象のP1シンボルの主波の有効シンボル区間の信号成分に加え、当該直交変換対象のP1シンボルの先行波の後ガードインターバル区間又は遅延波の前ガードインターバル区間の信号成分が含まれることがあり、更に、他のOFDMシンボル(例えば、データシンボル)の信号成分が含まれることがある。また、P1直交変換部153UがP1狭帯域fc誤差検出補正部152の出力信号から切り出して直交変換を実施する有効シンボル区間の信号には、ノイズ環境下等では、ノイズ成分が含まれる。
 P1直交変換部153Gには、P1狭帯域fc誤差検出補正部152の出力信号(P1シンボルの時間領域の複素ベースバンド信号)が入力される。P1直交変換部153Gは、図5に示すように、P1シンボルから前ガードインターバル区間の信号(図5のガードインターバル(C)の信号)及び後ガードインターバル区間の信号(図5のガードインターバル(B)の信号)を切り出し、時間的に連続となるようにそれらを結合する。なお、前ガードインターバル区間と後ガードインターバル区間とを結合した区間を、「結合ガードインターバル区間」と呼ぶことにする。そして、P1直交変換部153Gは、結合ガードインターバル区間の信号(時間領域の複素ベースバンド信号)を直交変換し、直交変換の結果(周波数領域の複素ベースバンド信号)をP1広帯域fc誤差検出補正部155へ出力する。なお、P1直交変換部153Gは、フーリエ変換、コサイン変換、ウェーブレット変換、アダマール変換などに基づいて直交変換を行う。
 ここでは、一例として、P1直交変換部153Gは、フーリエ変換を用いて直交変換を行うものとし、フーリエ変換にFFTを用いるものとする。P1直交変換部153Gは、結合ガードインターバル区間の信号(時間領域の複素ベースバンド信号)に対してFFTサイズ1kでFFTを実施し、FFTの結果(周波数領域の複素ベースバンド信号)をP1広帯域fc誤差検出補正部155へ出力する。なお、P1直交変換部153Gの処理はこれに限定されるものではない。
 但し、P1直交変換部153GがP1狭帯域fc誤差検出補正部152の出力信号から切り出して直交変換する結合ガードインターバル区間の信号には、直交変換対象のP1シンボルの主波の結合ガードインターバル区間の信号成分に加え、当該直交変換対象のP1シンボルの先行波又は遅延波の有効シンボル区間の信号成分が含まれることがあり、更に、他のOFDMシンボル(例えば、データシンボル)の信号成分が含まれることがある。また、P1直交変換部153GがP1狭帯域fc誤差検出補正部152の出力信号から切り出して直交変換を実施する結合ガードインターバル区間の信号には、ノイズ環境下等では、ノイズ成分が含まれる。
 CDSテーブル生成部154は、Activeキャリアの位置を示す系列(Activeキャリアの配置系列)を生成し、生成したActiveキャリアの配置系列をP1広帯域fc誤差検出補正部155へ出力する。ここで、Activeキャリアの配置系列は、図32に示すActiveキャリアの位置を「1」とし、それ以外のNullキャリア(Unusedキャリア)の位置を「0」とした系列である。
 なお、CDSテーブル生成部154は、例えば、図32に示す内容のテーブルを予め保持しておき、そのテーブルを基にActiveキャリアの配置系列を生成するようにしてもよく、また、論理回路で構成してActiveキャリアの配置系列を生成するようにしてもよい。なお、CDSテーブル生成部154によるActiveキャリアの配置系列の生成方法は特に限定されるものではない。
 P1広帯域fc誤差検出補正部155は、P1直交変換部153Uの出力信号(P1シンボルの有効シンボル区間の周波数領域の複素ベースバンド信号)及びP1直交変換部153Gの出力信号(P1シンボルの結合ガードインターバル区間の周波数領域の複素ベースバンド信号)と、CDSテーブル生成部154から入力されたActiveキャリアの配置系列とを用いて、P1シンボルのサブキャリア間隔単位の周波数誤差量(広帯域キャリア周波数誤差量)を検出する。そして、P1広帯域fc誤差検出補正部155は、検出した広帯域キャリア周波数誤差量に基づいて、P1シンボルの広帯域キャリア周波数のずれを補正し、広帯域キャリア周波数のずれが補正されたP1シンボルからActiveキャリアのみを抽出してP1デコード部156へ出力する。P1広帯域fc誤差検出補正部155は、検出した広帯域キャリア周波数誤差量を図3のfc補正部102へ出力する。なお、P1広帯域fc誤差検出補正部155の詳細については図6を参照して後述する。
 P1デコード部156は、P1広帯域fc誤差検出補正部155から入力されたP1シンボルのActiveキャリアを用いて、P1シンボルのデコード処理を実施し、P1シンボルで送信されたP1送信情報を制御情報として図3の制御情報収集部80へ出力する。なお、P1デコード部156の詳細については図7を参照して後述する。
 以下、図4のP1広帯域fc誤差検出補正部155について図6を参照しつつ説明する。図6は図4のP1広帯域fc誤差検出補正部155の構成図である。なお、図6には、P1広帯域fc誤差検出補正部155の各部への入力を明確にするため、P1直交変換部153U、P1直交変換部153G及びCDSテーブル生成部154も図示している。
 P1広帯域fc誤差検出補正部155は、検出部170と補正部180とを備える。
 検出部170は、P1シンボルでのP1シンボルのサブキャリア間隔単位の周波数誤差量(広帯域キャリア周波数誤差量)の検出を行うものであり、複素乗算部171と、配置相関演算部(加算処理部)172と、電力算出部173と、最大値検出部174とを備える。
 複素乗算部171には、P1直交変換部153Uの出力信号(P1シンボルの有効シンボル区間の周波数領域の複素ベースバンド信号)と、P1直交変換部153Gの出力信号(P1シンボルの結合ガードインターバル区間の周波数領域の複素ベースバンド信号)が入力される。複素乗算部171は、サブキャリア毎に、下記の(数16)に示すように、P1直交変換部153Uの出力信号Y(n)とP1直交変換部153Gの出力信号Y(n+1)との複素乗算を実施し、複素乗算の結果YCOMB(n)を配置相関演算部172へ出力する。なお、Y(n)、Y(n+1)、YCOMB(n)の( )内の変数はサブキャリア番号を表す(以下、同様)。
Figure JPOXMLDOC01-appb-M000016
 
 なお、複素乗算部171は、上記の(数16)の演算の代わりに、出力信号Y(n)の複素共役の信号Y(n)と出力信号Y(n+1)とを乗算して、乗算の結果Y(n)・Y(n+1)を配置相関演算部172へ出力するようにしてもよい。
 ここで、前ガードインターバル区間の信号及び後ガードインターバル区間の信号は有効シンボル区間の信号をfSH分だけ周波数シフトしたもの(1サブキャリア分周波数が高くなるように周波数シフトしたもの)である。このため、P1直交変換部153Gの出力信号は、P1直交変換部153Uの出力信号に対して、1サブキャリア分高周波側にずれている。これを考慮し、P1直交変換部153Uの出力信号Y(n)と、それより1サブキャリア分周波数が高いP1直交変換部153Gの出力信号Y(n+1)とを複素乗算している。
 配置相関演算部172には、CDSテーブル生成部154からActiveキャリアの配置系列が入力されるとともに、複素乗算部171の出力信号が入力される。配置相関演算部172は、連続する複数のサブキャリアにおいてActiveキャリアの配置系列の値が「1」であるサブキャリアでの複素乗算部171の出力信号の値を加算する加算処理を、連続する複数のサブキャリアを所定の範囲内でサブキャリア方向に1サブキャリア単位で順次シフトしながら実施する(配置相関演算部172は、複素乗算部171の出力信号とActiveキャリアの配置系列との配置相関演算を、配置相関演算に使用する複素乗算部171の出力信号を所定の範囲内でサブキャリア方向に1サブキャリア単位で順次シフトしながら実施する)。配置相関演算部172は、加算処理の結果得られた加算値(配置相関の値)を順次電力算出部173へ出力する。
 具体的には、配置相関演算部172は、複素乗算部171の出力信号YCOMB(0+A+i),YCOMB(1+A+i),YCOMB(2+A+i),・・・,YCOMB(852+A+i)と、CDSテーブル生成部154の出力信号C(0),C(1),C(2),・・・,C(852)とを乗算し、乗算結果を加算する演算を行い、演算の結果C(0)×YCOMB(0+A+i)+C(1)×YCOMB(1+A+i)+C(2)×YCOMB(2+A+i)+・・・+C(852)×YCOMB(852+A+i)を電力算出部173へ出力する。
 但し、C(i)は、サブキャリア位置iにおけるActiveキャリアの配置系列の値(サブキャリア位置iがActiveキャリアの場合「1」、Nullキャリアの場合「0」)である(図32参照)。また、YCOMB(j)は複素乗算部171の出力信号のサブキャリア番号jの値である。また、「852」は、図29に示すようにActiveキャリアとNullキャリアが配置されていることを踏まえた値であり、Activeキャリア及びNullキャリアを配置するサブキャリアの範囲に応じて適宜変更される値である。
 なお、配置相関演算部172は、iの値を所定の範囲(例えば、-M~N;M,Nは正の整数;M=Nの場合を含む。)内で1ずつ変更しながら、上記の演算を行う。なお、Aは配置相関演算の基準位置であり、YCOMB(0+A),YCOMB(1+A),YCOMB(2+A),・・・,YCOMB(852+A)は、P1広帯域fc誤差検出補正部155への入力信号に広帯域キャリア周波数誤差量がないと仮定した場合に配置相関の電力の最大値を得る複素乗算部171の出力信号の集合である。
 電力算出部173は、配置相関演算部172から順次入力される配置相関の値から配置相関の電力を算出し、算出した配置相関の電力値を最大値検出部174へ出力する。
 最大値検出部174は、電力算出部173から順次入力される配置相関の電力値の中から最大の電力値の検出を行い、最大の電力値を得るシフト量をP1シンボルのサブキャリア間隔単位の周波数誤差量(広帯域キャリア周波数誤差量)として補正部180及び図3のfc補正部102へ出力する。
 補正部180は、最大値検出部174から入力された広帯域キャリア周波数誤差量に基づいて、P1直交変換部153Uの出力信号(P1シンボルの有効シンボル区間の周波数領域の複素ベースバンド信号)の広帯域キャリア周波数のずれの補正を実施する。そして、補正部180は、CDSテーブル生成部154から入力されたActiveキャリアの配置系列を利用して、広帯域キャリア周波数のずれが補正された周波数領域の複素ベースバンド信号から、Activeキャリアのみを抽出し、抽出したActiveキャリアを図4のP1デコード部156(後述する図7のデスクランブル部191)へ出力する。
 以下、図4のP1デコード部156について図7を参照しつつ説明する。図7は図4のP1デコード部156の構成図である。P1デコード部156は、デスクランブル部191と、差動復調部192と、パターンマッチング部193とを備える。なお、P1デコード部156では、P1シンボルの低い周波数領域のS1信号のみを用いてP1シンボルのデコード処理を実施するものとする。
 デスクランブル部191には、図4のP1広帯域fc誤差検出補正部155(図6の補正部180)から、P1シンボルのActiveキャリアの信号系列Actが入力される。デスクランブル部191は、Activeキャリアの信号系列Actに対して、上記の(数9)に示すデスクランブルを実施し、デスクランブルされた信号系列DESCRを差動復調部192へ出力する。
 具体的には、デスクランブル部191は、送信側で乗算された、PRBSに基づく信号PRBS(i=0,1,・・・,319)を用いて、Activeキャリアの信号系列Actを構成する信号Actに対して、上記の(数10)に示すデスクランブルを実施し、デスクランブルされた信号DESCRを差動復調部192へ出力する。
 差動復調部192には、デスクランブル部191からデスクランブルされた信号DESCR(i=0,1,・・・,319)が入力される。差動復調部192は、信号DESCR(i=1,2,・・・,319)と、1Activeキャリアずらした信号DESCRi-1の共役複素の信号DESCR i-1との複素乗算を実施することで差動検波を実施する。そして、差動復調部192は、差動検波の結果の実軸の極性から、信号DESCR・DESCR i-1の復調(硬判定)を実施し、復調された信号DEMODをパターンマッチング部193へ出力する。この差動復調部192の処理は、上記の(数11)で表され、差動復調部192が実施する差動復調はDBPSKに対応する復調である。但し、差動復調部192は、i=0は基準であるため、信号DESCRの実軸の極性から復調(硬判定)を実施し、復調された信号DEMODをパターンマッチング部193へ出力する。なお、硬判定として、信号DESCR・DESCR i-1が「0」である場合、信号DEMODを「0」として出力しているが、「1」として出力してもよい。
 パターンマッチング部193は、差動復調部192によって差動復調された信号DEMOD,DEMOD,・・・,DEMOD319を、上記の(数12)及び(数13)に示すように、信号系列DEMOD_CSSS1(S1信号に対応)と信号系列DEMOD_CSSS2(S2信号に対応)とに分ける。
 そして、パターンマッチング部193は、図31に示した系列CSSS1,k(k=0,1,・・・,7)のうちどれが一番確からしいかを求めるために、また、図31に示した系列CSSS2,k(k=0,1,・・・,15)のうちどれが一番確からしいかを求めるために、次の処理を行う。
 パターンマッチング部193は、上記の(数14)に示すように、図31の各系列CSSS1,kと系列DEMOD_CSSS1との相関CORRS1,kを求め、上記の(数15)に示すように、図31の各系列CSSS2,kと系列DEMOD_CSSS2との相関CORRS2,kを求める。
 そして、パターンマッチング部193は、上記の(数14)を用いて算出された8個の相関値のうちの最大の相関値をとる系列CSSS1,kに対応する3ビットのS1信号(図31参照)を送信されたS1信号と推定する。また、パターンマッチング部193は、上記の(数15)を用いて算出された16個の相関値のうちの最大の相関値をとる系列CSSS2,kに対応する4ビットのS2信号(図31参照)を送信されたS2信号と推定する。パターンマッチング部193は、推定したS1信号とS2信号とを用いてP1送信情報を取得する。
 なお、P1デコード部156は、P1シンボルのデコード処理の際に、低い周波数領域のS1信号と周波数領域の高い周波数領域のS1信号のうち低い周波数領域のS1信号のみを利用しているが、これに限定されるものではなく、双方を利用するようにしてもよく、また、高い周波数領域のS1信号のみを利用するようにしてもよい。前者の場合には、周波数帯域の異なる2つのS1信号を用いてS1信号の推定を行うことができるので、S1信号の推定精度の向上が図られる。
 また、P1デコード部156内の差動復調部192は硬判定を実施するものとしたが、これに限定されるものではなく、硬判定を実施しなくてもよい。この場合、例えば、差動復調部192は差動検波の結果DESCR・DESCR i-1をDEMODとしてパターンマッチング部193へ出力し(i=1,・・・,319)、i=0ではDESCRをDEMODとしてパターンマッチング部193へ出力する。パターンマッチング193は、上記の(数14)及び上記の(数15)の代わりに、下記の(数17)及び下記の(数18)を用いて相関演算を実施する。
Figure JPOXMLDOC01-appb-M000017
 
Figure JPOXMLDOC01-appb-M000018
 
 また、DVB-T2伝送規格を対象として説明しているため、P1デコード部156は差動復調後にパターンマッチングを実施するものとしているが、例えば、誤り訂正符号化されている伝送方式を対象とする場合には、差動復調後に誤り訂正を実施して、誤りの最も低いものを用いてデコード処理を実施するようにしてもよい。
 上記のP1復調部103での広帯域キャリア周波数誤差量の検出精度が向上する理由を記載する。
 上述したように、P1シンボルの前ガードインターバル区間の信号及び後ガードインターバル区間の信号は、P1シンボルの有効シンボル区間の信号に対して、1サブキャリア分周波数が高くなるように周波数シフトしたものである。つまり、P1シンボルの前ガードインターバル区間の信号及び後インターバル区間の信号の周波数位置は、P1シンボルの有効シンボル区間の信号の周波数位置に対して、1サブキャリア分周波数が高くなっている(図37参照)。
 このため、OFDM受信装置1の受信信号に図8に示すような遅延波が存在した場合、P1シンボルの主波の有効シンボル区間を直交変換実施区間としてP1狭帯域fc誤差検出補正部152の出力信号を直交変換(例えば、FFT)した結果得られた信号(P1直交変換部153Uの出力信号)の周波数領域のサブキャリア分布は、図9に示すようになる。また、P1シンボルの主波の結合ガードインターバル区間を直交変換実施区間としてP1狭帯域fc誤差検出補正部152の出力信号を直交変換(例えば、FFT)した結果得られた信号(P1直交変換部153Gの出力信号)の周波数領域のサブキャリア分布は、図10に示すようになる。
 図9に示すように、P1シンボルの主波の有効シンボル区間を直交変換実施区間とした場合、遅延波の前ガードインターバル区間の信号成分を含むため、主波のActiveキャリアの1サブキャリア分高周波側に遅延波のActiveキャリアが現れる。一方、図10に示すように、P1シンボルの主波の結合ガードインターバル区間を直交変換実施区間とした場合、遅延波の有効シンボル区間の信号成分を含むため、主波のActiveキャリアの1サブキャリア分低周波側に遅延波のActiveキャリアが現れる。
 P1直交変換部153Gの周波数領域の出力信号は、P1直交変換部153Gの周波数領域の出力信号に対して全体的に1サブキャリアずれていることを考慮すると、両者間でNullキャリアに対する遅延波成分が現れるサブキャリア位置が異なる。
 このため、上記の(数16)の演算を実施することで、Activeキャリアの信号成分は強めあい、Nullキャリアの信号成分は弱めあうことになる。これにより、配置相関において、誤ったシフト量(広帯域キャリア周波数誤差量)における配置相関の値が大きくなることを抑制でき、正しいシフト量(広帯域キャリア周波数誤差量)を検出することができる。従って、マルチパス干渉環境下においても、広帯域キャリア周波数誤差量の推定を精度よく行って広帯域キャリア周波数誤差のずれの補正が実施でき、正しくS1信号及びS2信号を取得することができる。
 更に、複素共役演算を実施することによって、サブキャリア(Activeキャリア、Nullキャリア)のパワーを算出することなく、Activeキャリアに付加されたDBPSKされた信号の極性の不確かさを取り除くことができる。そして、パワー算出でないため、配置相関算出における各タップの積算の際に、様々な位相成分を有するノイズ成分を抑制することが可能となり、ノイズ環境下においても広帯域キャリア周波数誤差量の推定を精度よく行うことができる。
 ≪第2の実施の形態≫
 以下、本発明の第2の実施の形態について図面を参照しつつ説明する。但し、本実施の形態において、第1の実施の形態の構成要素と実質的に同じ構成要素には同じ符号を付し、その説明が適用できるため、本実施の形態ではその説明を省略する。
 本実施の形態のOFDM受信装置は、第1の実施の形態で説明したOFDM受信装置1のP1広帯域fc誤差検出補正部155と異なるP1広帯域fc誤差検出補正部200を備える点で、OFDM受信装置1と異なる。但し、P1広帯域fc誤差検出補正部200は、第1の実施の形態のP1広帯域fc誤差検出補正部155と広帯域キャリア周波数誤差量の検出の仕組みが異なる。
 以下、第2の実施の形態に係るP1広帯域fc誤差検出補正部200について図11を参照しつつ説明する。図11はP1広帯域fc誤差検出補正部200の構成図である。なお、図11には、P1広帯域fc誤差検出補正部200の各部への入力を明確にするため、P1直交変換部153U、P1直交変換部153G及びCDSテーブル生成部154も図示している。
 P1広帯域fc誤差検出補正部200は、検出部210と補正部180とを備える。
 検出部210は、P1シンボルでのP1シンボルのサブキャリア間隔単位の周波数誤差量(広帯域キャリア周波数誤差量)の検出を行うものであり、電力算出部211Uと、電力算出部211Gと、乗算部212と、配置相関演算部(加算処理部)213と、最大値検出部214とを備える。
 電力算出部211Uは、P1直交変換部153Uの出力信号(P1シンボルの有効シンボル区間の周波数領域の複素ベースバンド信号)の電力をサブキャリア毎に算出し、算出した電力値を乗算部212へ出力する。
 電力算出部211Gは、P1直交変換部153Gの出力信号(P1シンボルの結合ガードインターバル区間の周波数領域の複素ベースバンド信号)の電力をサブキャリア毎に算出し、算出した電力値を乗算部212へ出力する。
 乗算部212は、サブキャリア毎に、下記の(数19)に示すように、電力算出部211Uの出力信号|Y(n)|と電力算出部211Gの出力信号|Y(n+1)|との乗算を実施し、乗算の結果YCOMB(n)を配置相関演算部213へ出力する。
Figure JPOXMLDOC01-appb-M000019
 
 ここで、前ガードインターバル区間の信号及び後ガードインターバル区間の信号は有効シンボル区間の信号をfSH分だけ周波数シフトしたもの(1サブキャリア分周波数が高くなるように周波数シフトしたもの)である。このため、電力算出部211Gの出力信号は、電力算出部211Uの出力信号に対して、1サブキャリア分高周波側にずれている。これを考慮し、電力算出部211Uの出力信号|Y(n)|と、それより1サブキャリア分周波数が高い電力算出部211Gの出力信号|Y(n+1)|とを乗算している。
 配置相関演算部213には、CDSテーブル生成部154からActiveキャリアの配置系列が入力されるとともに、乗算部212の出力信号YCOMBが入力される。配置相関演算部213は、連続する複数のサブキャリアにおいてActiveキャリアの配置系列の値が「1」であるサブキャリアでの乗算部212の出力信号の値を加算する加算処理を、連続する複数のサブキャリアを所定の範囲内でサブキャリア方向に1サブキャリア単位で順次シフトしながら実施する(配置相関演算部213は、乗算部212の出力信号とActiveキャリアの配置系列との配置相関演算を、配置相関演算に使用する乗算部212の出力信号を所定の範囲内でサブキャリア方向に1サブキャリア単位で順次シフトしながら実施する)。配置相関演算部213は、加算処理の結果得られた加算値(配置相関の値)を順次最大値検出部214へ出力する。
 最大値検出部214は、配置相関演算部213から順次入力される配置相関の値の中から最大の配置相関の値の検出を行い、最大の配置相関の値を得るシフト量をP1シンボルのサブキャリア間隔単位の周波数誤差量(広帯域キャリア周波数誤差量)として補正部180及び図3のfc補正部102へ出力する。
 補正部180は、最大値検出部214から入力された広帯域キャリア周波数誤差量を用いて、P1直交変換部153Uの出力信号の広帯域キャリア周波数のずれの補正を行った上でActiveキャリアの抽出を行う。
 本実施の形態によれば、マルチパス干渉環境下において、広帯域キャリア周波数誤差量の推定を精度よく行って広帯域キャリア周波数誤差のずれの補正が実施でき、正しくS1信号及びS2信号を取得することができる。
 ≪第3の実施の形態≫
 以下、本発明の第3の実施の形態について図面を参照しつつ説明する。但し、本実施の形態において、第1から第2の実施の形態の構成要素と実質的に同じ構成要素には同じ符号を付し、その説明が適用できるため、本実施の形態ではその説明を省略する。
 本実施の形態のOFDM受信装置は、第1及び第2の実施の形態で説明したOFDM受信装置のP1広帯域fc誤差検出補正部155,200と異なるP1広帯域fc誤差検出補正部250を備える点で、それらのOFDM受信装置と異なる。但し、P1広帯域fc誤差検出補正部250は、第1及び第2の実施の形態のP1広帯域fc誤差検出補正部155,200と広帯域キャリア周波数誤差量の検出の仕組みが異なる。
 以下、第3の実施の形態に係るP1広帯域fc誤差検出補正部250について図12を参照しつつ説明する。図12はP1広帯域fc誤差検出補正部250の構成図である。なお、図12には、P1広帯域fc誤差検出補正部250の各部への入力を明確にするため、P1直交変換部153U、P1直交変換部153G及びCDSテーブル生成部154も図示している。
 P1広帯域fc誤差検出補正部250は、検出部270と補正部180とを備える。
 検出部270は、P1シンボルでのP1シンボルのサブキャリア間隔単位の周波数誤差量(広帯域キャリア周波数誤差量)の検出を行うものであり、振幅算出部271Uと、振幅算出部271Gと、乗算部272と、配置相関演算部(加算処理部)273と、最大値検出部274とを備える。
 振幅算出部271Uは、P1直交変換部153Uの出力信号(P1シンボルの有効シンボル区間の周波数領域の複素ベースバンド信号)の振幅をサブキャリア毎に算出し、算出した振幅値を乗算部272へ出力する。
 振幅算出部271Gは、P1直交変換部153Gの出力信号(P1シンボルの結合ガードインターバル区間の周波数領域の複素ベースバンド信号)の振幅をサブキャリア毎に算出し、算出した振幅値を乗算部272へ出力する。
 乗算部272は、サブキャリア毎に、下記の(数20)に示すように、振幅算出部271Uの出力信号|Y(n)|と振幅算出部271Gの出力信号|Y(n+1)|とを乗算し、乗算の結果YCOMB(n)を配置相関演算部273へ出力する。
Figure JPOXMLDOC01-appb-M000020
 
 ここで、前ガードインターバル区間の信号及び後ガードインターバル区間の信号は有効シンボル区間の信号をfSH分だけ周波数シフトしたもの(1サブキャリア分周波数が高くなるように周波数シフトしたもの)である。このため、振幅算出部271Gの出力信号は、振幅算出部271Uの出力信号に対して、1サブキャリア分高周波側にずれている。これを考慮し、振幅算出部271Uの出力信号|Y(n)|と、それより1サブキャリア分周波数が高い振幅算出部271Gの出力信号|Y(n+1)|とを乗算している。
 配置相関演算部273には、CDSテーブル生成部154からActiveキャリアの配置系列が入力されるとともに、乗算部272の出力信号YCOMBが入力される。配置相関演算部273は、連続する複数のサブキャリアにおいてActiveキャリアの配置系列の値が「1」であるサブキャリアでの乗算部272の出力信号の値を加算する加算処理を、連続する複数のサブキャリアを所定の範囲内でサブキャリア方向に1サブキャリア単位で順次シフトしながら実施する(配置相関演算部273は、乗算部272の出力信号とActiveキャリアの配置系列との配置相関演算を、配置相関演算に使用する乗算部272の出力信号を所定の範囲内でサブキャリア方向に1サブキャリア単位で順次シフトしながら実施する)。配置相関演算部273は、加算処理の結果得られた加算値(配置相関の値)を順次最大値検出部274へ出力する。
 最大値検出部274は、配置相関演算部273から順次入力される配置相関の値の中から最大の配置相関の値の検出を行い、最大の配置相関の値を得るシフト量をP1シンボルのサブキャリア間隔単位の周波数誤差量(広帯域キャリア周波数誤差量)として補正部180及び図3のfc補正部102へ出力する。
 補正部180は、最大値検出部274から入力された広帯域キャリア周波数誤差量を用いて、P1直交変換部153Uの出力信号の広帯域キャリア周波数のずれの補正を行った上でActiveキャリアの抽出を行う。
 本実施の形態によれば、マルチパス干渉環境下において、広帯域キャリア周波数誤差量の推定を精度よく行って広帯域キャリア周波数誤差のずれの補正が実施でき、正しくS1信号及びS2信号を取得することができる。
 ≪第4の実施の形態≫
 以下、本発明の第4の実施の形態について図面を参照しつつ説明する。但し、本実施の形態において、第1から第3の実施の形態の構成要素と実質的に同じ構成要素には同じ符号を付し、その説明が適用できるため、本実施の形態ではその説明を省略する。
 本実施の形態のOFDM受信装置は、第1から第3の実施の形態で説明したOFDM受信装置のP1広帯域fc誤差検出補正部155などと異なるP1広帯域fc誤差検出補正部300を備える点で、それらのOFDM受信装置と異なる。但し、P1広帯域fc誤差検出補正部300は、P1広帯域fc誤差検出補正部155などと広帯域キャリア周波数誤差量の検出の仕組みが異なる。
 以下、第4の実施の形態に係るP1広帯域fc誤差検出補正部300について図13を参照しつつ説明する。図13はP1広帯域fc誤差検出補正部300の構成図である。なお、図13には、P1広帯域fc誤差検出補正部300の各部への入力を明確にするため、P1直交変換部153U、P1直交変換部153G及びCDSテーブル生成部154も図示している。
 P1広帯域fc誤差検出補正部300は、検出部310と補正部180とを備える。
 検出部310は、P1シンボルでのP1シンボルのサブキャリア間隔単位の周波数誤差量(広帯域キャリア周波数誤差量)の検出を行うものであり、複素乗算部171と、配置相関演算部(加算処理部)172と、電力算出部173と、電力算出部211Uと、配置相関演算部(加算処理部)311Uと、電力算出部211Gと、配置相関演算部(加算処理部)311Gと、選択決定部312とを備える。
 複素乗算部171、配置相関演算部172及び電力算出部173は上述した処理を実施し、電力算出部173の出力信号(配置相関の電力値)は選択決定部312(後述する図14の最大値検出部331及び信頼度検出部332)に供給される。
 電力算出部211Uは上述した処理を実施し、電力算出部211Uの出力信号は配置相関演算部311Uに供給される。
 配置相関演算部311Uには、CDSテーブル生成部154からActiveキャリアの配置系列が入力されるとともに、電力算出部211Uの出力信号|Yが入力される。配置相関演算部311Uは、連続する複数のサブキャリアにおいてActiveキャリアの配置系列の値が「1」であるサブキャリアでの電力算出部211Uの出力信号の値を加算する加算処理を、連続する複数のサブキャリアを所定の範囲内でサブキャリア方向に1サブキャリア単位で順次シフトしながら実施する(配置相関演算部311Uは、電力算出部211Uの出力信号とActiveキャリアの配置系列との配置相関演算を、配置相関演算に使用する電力算出部211Uの出力信号を所定の範囲内でサブキャリア方向に1サブキャリア単位で順次シフトしながら実施する)。配置相関演算部311Uは、加算処理の結果得られた加算値(配置相関の値)を選択決定部312(後述する図14の最大値検出部331U及び信頼度検出部332U)へ出力する。
 電力算出部211Gは上述した処理を実施し、電力算出部211Gの出力信号は配置相関演算部311Gに供給される。
 配置相関演算部311Gには、CDSテーブル生成部154からActiveキャリアの配置系列が入力されるとともに、電力算出部211Gの出力信号|Yが入力される。配置相関演算部311Gは、連続する複数のサブキャリアにおいてActiveキャリアの配置系列の値が「1」であるサブキャリアでの電力算出部211Gの出力信号の値を加算する加算処理を、連続する複数のサブキャリアを所定の範囲内でサブキャリア方向に1サブキャリア単位で順次シフトしながら実施する(配置相関演算部311Gは、電力算出部211Gの出力信号とActiveキャリアの配置系列との配置相関演算を、配置相関演算に使用する電力算出部211Gの出力信号を所定の範囲内でサブキャリア方向に1サブキャリア単位で順次シフトしながら実施する)。配置相関演算部311Gは、加算処理の結果得られた加算値(配置相関の値)を選択決定部312(後述する図14の最大値検出部331G及び信頼度検出部332G)へ出力する。
 選択決定部312は、図14を参照して後述するように、電力算出部173の出力信号、配置相関演算部311Uの出力信号、及び配置相関演算部311Gの出力信号を用いて、P1シンボルのサブキャリア間隔単位の周波数誤差量(広帯域キャリア周波数誤差量)を検出し、検出した広帯域キャリア周波数誤差量を図3のfc補正部102及び補正部180へ出力する。
 補正部180は、選択決定部312から入力された広帯域キャリア周波数誤差量を用いて、P1直交変換部153Uの出力信号の広帯域キャリア周波数のずれの補正を行った上でActiveキャリアの抽出を行う。
 以下、図13の選択決定部312について図14を参照しつつ説明する。図14は図13の選択決定部312の構成図である。なお、図14には、選択決定部312の各部への入力を明確にするため、電力算出部173、配置相関演算部311U及び配置相関演算部311Gも図示している。
 選択決定部312は、最大値検出部331と、信頼度検出部332と、最大値検出部331Uと、信頼度検出部332Uと、最大値検出部331Gと、信頼度検出部332Gと、判定部333と、選択部334とを備える。
 最大値検出部331は、電力算出部173から順次入力される配置相関の電力値の中から最大の電力値の検出を行い、最大の電力値を得るシフト量をP1シンボルのサブキャリア間隔単位の周波数誤差量の候補(広帯域キャリア周波数誤差量の第1候補)として選択部334へ出力する。
 信頼度検出部332は、電力算出部173から順次入力される配置相関の電力値の中から最大の電力値と2番目に大きい電力値を検出し、最大の電力値を2番目に大きい電力値で除算し、除算値(最大の電力値÷2番目に大きい電力値)を広帯域キャリア周波数誤差量の第1候補の信頼度として判定部333へ出力する。
 最大値検出部331Uは、配置相関演算部311Uから順次入力される配置相関の値から最大の配置相関の値の検出を行い、最大の配置相関の値を得るシフト量をP1シンボルのサブキャリア間隔単位の周波数誤差量の候補(広帯域キャリア周波数誤差量の第2候補)として選択部334へ出力する。
 信頼度検出部332Uは、配置相関演算部311Uから順次入力される配置相関の値から最大の配置相関の値と2番目に大きい配置相関の値を検出し、最大の配置相関の値を2番目に大きい配置相関の値で除算し、除算値(最大の配置相関の値÷2番目に大きい配置相関の値)を広帯域キャリア周波数誤差量の第2候補の信頼度として判定部333へ出力する。
 最大値検出部331Gは、配置相関演算部311Gから順次入力される配置相関の値から最大の配置相関の値の検出を行い、最大の配置相関の値を得るシフト量より1大きいシフト量をP1シンボルのサブキャリア間隔単位の周波数誤差量の候補(広帯域キャリア周波数誤差量の第3候補)として選択部334へ出力する。ここで、最大の配置相関の値を得るシフト量より1大きいシフト量を広帯域キャリア周波数誤差量の第3候補とするのは、補正部180が広帯域キャリア周波数誤差のずれの補正を実施する対象が有効シンボル区間に関する信号であり、ガードインターバル区間の信号は有効シンボル区間の信号より1サブキャリア分周波数が高い方にシフトされていることによる。なお、例えば、直交変換部153Gの前段又は後段においてガードインターバル区間の信号に対して-fSHの周波数シフトを施している場合には(1サブキャリア分周波数が低くなるように周波数シフトを施している場合には)、最大値検出部331Gは、最大の配置相関の値を得るシフト量を広帯域キャリア周波数誤差量の第3候補として選択部334へ出力すればよい。
 信頼度検出部332Gは、配置相関演算部311Gから順次入力される配置相関の値から最大の配置相関の値と2番目に大きい配置相関の値を検出し、最大の配置相関の値を2番目に大きい配置相関の値で除算し、除算値(最大の配置相関の値÷2番目に大きい配置相関の値)を広帯域キャリア周波数誤差量の第3候補の信頼度として判定部333へ出力する。
 判定部333は、信頼度検出部332、信頼度検出部332U及び信頼度検出部332Gの夫々から入力される広帯域キャリア周波数誤差量の第1候補の信頼度、第2候補の信頼度及び第3候補の信頼度を比較し、広帯域キャリア周波数誤差量の第1候補、第2候補及び第3候補の中から最も信頼度が高い(信頼度の値が最も大きい)広帯域キャリア周波数誤差量の候補を検出する。そして、判定部333は、最も信頼度が高い広帯域キャリア周波数誤差量の候補を選択部334へ通知する。
 ここで、配置相関演算では、正しいサブキャリア位置では全てのActiveキャリアの加算値となり、誤ったサブキャリア位置ではActiveキャリアの一部とNullキャリアの一部との加算値となる。このため、正しサブキャリア位置での配置相関の電力値又は配置相関の値が最大となり、2番目に大きい配置相関の電力値又は配置相関の値より大きくなる。なお、誤ったサブキャリア位置で最もActiveキャリアを多く含む位置では、Activeキャリアの全数の半分を含むことになる。このため、信頼度の高い信号では、最大値が2番目に大きい値よりも非常に大きくなり、結果、最大値を2番目に大きな値で割った除算値(信頼度)は1よりもかなり大きくなる。一方、ノイズやインパルス雑音、マルチパス干渉等の外乱の影響を受けた場合、配置相関の電力の最大値又は配置相関の最大値が小さくなり、また、Nullキャリアの信号成分が大きくなることに起因して2番目に大きな配置相関の電力値又は配置相関の値が大きくなり、最大値と2番目に大きな値との差が小さくなったり、間違ったシフト量で最大値をとってしまったりする。これらの場合は、最大値を2番目に大きな値で割った除算値(信頼度)は1に近い値となる。このことを踏まえ、除算値の大きさにより、広帯域キャリア周波数誤差量の検出の信頼度の推定を行うものである。
 選択部334は、判定部333の通知に従い、最大値検出部331、最大値検出部331U及び最大値検出部331Gの夫々から入力される広帯域キャリア周波数誤差量の第1候補、第2候補及び第3候補の中から最も信頼度が高い広帯域キャリア周波数誤差量の候補を選択して、選択した広帯域キャリア周波数誤差量の候補を補正に利用する広帯域キャリア周波数誤差量として図3のfc補正部102及び図13の補正部180へ出力する。
 なお、複素乗算部171、配置相関演算部172、電力算出部173、最大値検出部331及び信頼度検出部332が、直交変換部153Uの出力信号と直交変換部153Gの出力信号との双方を用いて広帯域キャリア周波数誤差量の第1候補を検出し、第1候補の信頼度を検出する第1検出処理を実行するブロックである。
 また、電力算出部211U、配置相関演算部311U、最大値検出部331U及び信頼度検出部332Uが、直交変換部153Uの出力信号及び直交変換部153Gの出力信号のうち直交変換部153Uの出力信号のみを用いて広帯域キャリア周波数誤差量の第2候補を検出し、第2候補の信頼度を検出する第2検出処理を実行するブロックである。
 更に、電力算出部211G、配置相関演算部311G、最大値検出部331G及び信頼度検出部332Gが、直交変換部153Uの出力信号及び直交変換部153Gの出力信号のうち直交変換部153Gの出力信号のみを用いて広帯域キャリア周波数誤差量の第3候補を検出し、第3候補の信頼度を検出する第3検出処理を実行するブロックである。
 本実施の形態よれば、(1)有効シンボル区間の信号及び結合ガードインターバル区間の信号の双方を利用した広帯域キャリア周波数誤差量の第1候補の検出、(2)有効シンボル区間の信号のみを利用した広帯域キャリア周波数誤差量の第2候補の検出、(3)結合ガードインターバル区間の信号のみを利用した広帯域キャリア周波数誤差量の第3候補の検出、を実施して、これら3つの検出結果を利用して広帯域キャリア周波数誤差量の検出を行う。これにより、マルチパス干渉環境やノイズ環境下だけでなく、前ガードインターバル区間、後ガードインターバル区間、有効シンボル区間において局所的にインパルス雑音が存在した環境下においても、広帯域キャリア周波数誤差量の誤推定を低減して、受信性能の向上を図ることができる。
 ≪第5の実施の形態≫
 以下、本発明の第5の実施の形態について図面を参照しつつ説明する。但し、本実施の形態において、第1から第4の実施の形態の構成要素と実質的に同じ構成要素には同じ符号を付し、その説明が適用できるため、本実施の形態ではその説明を省略する。
 本実施の形態のOFDM受信装置は、第1から第4の実施の形態で説明したOFDM受信装置のP1広帯域fc誤差検出補正部155などと異なるP1広帯域fc誤差検出補正部350を備える点で、それらのOFDM受信装置と異なる。但し、P1広帯域fc誤差検出補正部350は、P1広帯域fc誤差検出補正部155などと広帯域キャリア周波数誤差量の検出の仕組みが異なる。
 以下、第5の実施の形態に係るP1広帯域fc誤差検出補正部350について図15を参照しつつ説明する。図15はP1広帯域fc誤差検出補正部350の構成図である。なお、図15には、P1広帯域fc誤差検出補正部350の各部への入力を明確にするため、P1直交変換部153U、P1直交変換部153G及びCDSテーブル生成部154も図示している。
 P1広帯域fc誤差検出補正部350は、検出部370と補正部180とを備える。
 検出部370は、P1シンボルでのP1シンボルのサブキャリア間隔単位の周波数誤差量(広帯域キャリア周波数誤差量)の検出を行うものであり、電力算出部211Uと、電力算出部211Gと、乗算部212と、配置相関演算部(加算処理部)213と、配置相関演算部(加算処理部)311Uと、配置相関演算部(加算処理部)311Gと、選択決定部371とを備える。
 電力算出部211U、電力算出部211G及び配置相関演算部213は上述した処理を実施し、配置相関演算部213の出力信号(配置相関の値)は選択決定部371(後述する図16の最大値検出部391及び信頼度検出部392)に供給される。
 電力算出部211U及び配置相関演算部311Uは上述した処理を実施し、配置相関演算部311Uの出力信号(配置相関の値)は選択決定部371(後述する図16の最大値検出部331U及び信頼度検出部332U)に供給される。
 電力算出部211G及び配置相関演算部311Gは上述した処理を実施し、配置相関演算部311Gの出力信号(配置相関の値)は選択決定部371(後述する図16の最大値検出部331G及び信頼度検出部332G)に供給される。
 選択決定部371は、図16を参照して後述するように、配置相関演算部213の出力信号、配置相関演算部311Uの出力信号、及び配置相関演算部311Gの出力信号を用いて、P1シンボルのサブキャリア間隔単位の周波数誤差量(広帯域キャリア周波数誤差量)を検出し、検出した広帯域キャリア周波数誤差量を図3のfc補正部102及び補正部180へ出力する。
 補正部180は、選択決定部371から入力された広帯域キャリア周波数誤差量を用いて、P1直交変換部153Uの出力信号の広帯域キャリア周波数ずれの補正を行った上でActiveキャリアの抽出を行う。
 以下、図15の選択決定部371について図16を参照しつつ説明する。図16は図15の選択決定部371の構成図である。なお、図16には、選択決定部371の各部への入力を明確にするため、配置相関演算部213、配置相関演算部311U及び配置相関演算部311Gも図示している。
 選択決定部371は、最大値検出部391と、信頼度検出部392と、最大値検出部331Uと、信頼度検出部332Uと、最大値検出部331Gと、信頼度検出部332Gと、判定部393と、選択部394とを備える。
 最大値検出部391は、配置相関演算部213から順次入力される配置相関の値から最大の配置相関の値の検出を行い、最大の配置相関の値を得るシフト量をP1シンボルのサブキャリア間隔単位の周波数誤差量の候補(広帯域キャリア周波数誤差量の第1候補)として選択部394へ出力する。
 信頼度検出部392は、配置相関演算部213から順次入力される配置相関の値から最大の配置相関の値と2番目に大きい配置相関の値を検出し、最大の配置相関の値を2番目に大きい配置相関の値で除算し、除算値(最大の配置相関の値÷2番目に大きい配置相関の値)を広帯域キャリア周波数誤差量の第1候補の信頼度として判定部393へ出力する。
 最大値検出部331U及び信頼度検出部332Uは夫々上述した処理を行い、広帯域キャリア周波数誤差量の第2候補及びその信頼度の検出を行い、検出した広帯域キャリア周波数誤差量の第2候補及びその信頼度を選択部394及び判定部393へ出力する。
 最大値検出部331G及び信頼度検出部332Gは夫々上述した処理を行い、広帯域キャリア周波数誤差量の第3候補及びその信頼度の検出を行い、検出した広帯域キャリア周波数誤差量の第3候補及びその信頼度を選択部394及び判定部393へ出力する。
 判定部393は、信頼度検出部392、信頼度検出部332U及び信頼度検出部332Gの夫々から入力される広帯域キャリア周波数誤差量の第1候補の信頼度、第2候補の信頼度及び第3候補の信頼度を比較し、広帯域キャリア周波数誤差量の第1候補、第2候補及び第3候補の中から最も信頼度が高い(信頼度の値が最も大きい)広帯域キャリア周波数誤差量の候補を検出する。そして、判定部393は、最も信頼度が高い広帯域キャリア周波数誤差量の候補を選択部394へ通知する。
 選択部394は、判定部393の通知に従い、最大値検出部391、最大値検出部331U及び最大値検出部331Gの夫々から入力される広帯域キャリア周波数誤差量の第1候補、第2候補及び第3候補の中から最も信頼度が高い広帯域キャリア周波数誤差量の候補を選択して、選択した広帯域キャリア周波数誤差量の候補を補正に利用する広帯域キャリア周波数誤差量として図3のfc補正部102及び図15の補正部180へ出力する。
 なお、電力算出部211U、電力算出部211G、乗算部212、配置相関演算部213、最大値検出部391及び信頼度検出部392が、直交変換部153Uの出力信号と直交変換部153Gの出力信号との双方を用いて広帯域キャリア周波数誤差量の第1候補を検出し、第1候補の信頼度を検出する第1検出処理を実行するブロックである。
 また、電力算出部211U、配置相関演算部311U、最大値検出部331U及び信頼度検出部332Uが、直交変換部153Uの出力信号及び直交変換部153Gの出力信号のうち直交変換部153Uの出力信号のみを用いて広帯域キャリア周波数誤差量の第2候補を検出し、第2候補の信頼度を検出する第2検出処理を実行するブロックである。
 更に、電力算出部211G、配置相関演算部311G、最大値検出部331G及び信頼度検出部332Gが、直交変換部153Uの出力信号及び直交変換部153Gの出力信号のうち直交変換部153Gの出力信号のみを用いて広帯域キャリア周波数誤差量の第3候補を検出し、第3候補の信頼度を検出する第3検出処理を実行するブロックである。
 本実施の形態よれば、マルチパス干渉環境やノイズ環境下だけでなく、前ガードインターバル区間、後ガードインターバル区間、有効シンボル区間において局所的にインパルス雑音が存在した環境下においても、広帯域キャリア周波数誤差量の推定を精度よく行うことができる。
 なお、電力算出部211Uの出力信号の2乗演算を実施して2乗演算の結果を配置相関演算部311Uへ出力する2乗演算部を追加し、電力算出部211Gの出力信号の2乗演算を実施して2乗演算の結果を配置相関演算部311Gへ出力する2乗演算部を追加するようにしてもよい。
 ≪第6の実施の形態≫
 以下、本発明の第6の実施の形態について図面を参照しつつ説明する。但し、本実施の形態において、第1から第5の実施の形態の構成要素と実質的に同じ構成要素には同じ符号を付し、その説明が適用できるため、本実施の形態ではその説明を省略する。
 本実施の形態のOFDM受信装置は、第1から第5の実施の形態で説明したOFDM受信装置のP1広帯域fc誤差検出補正部155などと異なるP1広帯域fc誤差検出補正部400を備える点で、それらのOFDM受信装置と異なる。但し、P1広帯域fc誤差検出補正部400は、P1広帯域fc誤差検出補正部155などと広帯域キャリア周波数誤差量の検出の仕組みが異なる。
 以下、第6の実施の形態に係るP1広帯域fc誤差検出補正部400について図17を参照しつつ説明する。図17はP1広帯域fc誤差検出補正部400の構成図である。なお、図17には、P1広帯域fc誤差検出補正部400の各部への入力を明確にするため、P1直交変換部153U、P1直交変換部153G及びCDSテーブル生成部154も図示している。
 P1広帯域fc誤差検出補正部400は、検出部410と補正部180とを備える。
 検出部410は、P1シンボルでのP1シンボルのサブキャリア間隔単位の周波数誤差量(広帯域キャリア周波数誤差量)の検出を行うものであり、振幅算出部271Uと、振幅算出部271Gと、乗算部272と、配置相関演算部(加算処理部)273と、配置相関演算部(加算処理部)411Uと、電力算出部412Uと、配置相関演算部(加算処理部)411Gと、電力算出部412Gと、選択決定部413とを備える。
 振幅算出部271U、振幅算出部271G、乗算部272及び配置相関演算部273は上述した処理を実施し、配置相関演算部273の出力信号(配置相関の値)は選択決定部413(後述する図18の最大値検出部431及び信頼度検出部432)に供給される。
 振幅算出部271Uは上述した処理を実施し、振幅算出部271Uの出力信号は配置相関演算部411Uに供給される。
 配置相関演算部411Uには、CDSテーブル生成部154からActiveキャリアの配置系列が入力されるとともに、振幅算出部271Uの出力信号|Y|が入力される。配置相関演算部411Uは、連続する複数のサブキャリアにおいてActiveキャリアの配置系列の値が「1」であるサブキャリアでの振幅算出部271Uの出力信号の値を加算する加算処理を、連続する複数のサブキャリアを所定の範囲内でサブキャリア方向に1サブキャリア単位で順次シフトしながら実施する(配置相関演算部411Uは、振幅算出部271Uの出力信号とActiveキャリアの配置系列との配置相関演算を、配置相関演算に使用する振幅算出部271Uの出力信号を所定の範囲内でサブキャリア方向に1サブキャリア単位で順次シフトしながら実施する)。配置相関演算部411Uは、加算処理の結果得られた加算値(配置相関の値)を電力算出部412Uへ出力する。
 電力算出部412Uは、配置相関演算部411Uから順次入力される配置相関の値から配置相関の電力を算出し、算出した配置相関の電力値を選択決定部413(後述する図18の最大値検出部431U及び信頼度検出部432U)へ出力する。
 振幅算出部271Gは上述した処理を実施し、振幅算出部271Gの出力信号は配置相関演算部411Uに供給される。
 配置相関演算部411Uには、CDSテーブル生成部154からActiveキャリアの配置系列が入力されるとともに、振幅算出部271Gの出力信号|Y|が入力される。配置相関演算部411Gは、連続する複数のサブキャリアにおいてActiveキャリアの配置系列の値が「1」であるサブキャリアでの振幅算出部271Gの出力信号の値を加算する加算処理を、連続する複数のサブキャリアを所定の範囲内でサブキャリア方向に1サブキャリア単位で順次シフトしながら実施する(配置相関演算部411Gは、振幅算出部271Gの出力信号とActiveキャリアの配置系列との配置相関演算を、配置相関演算に使用する振幅算出部271Gの出力信号を所定の範囲内でサブキャリア方向に1サブキャリア単位で順次シフトしながら実施する)。配置相関演算部411Gは、加算処理の結果得られた加算値(配置相関の値)を電力算出部412Gへ出力する。
 電力算出部412Gは、配置相関演算部411Gから順次入力される配置相関の値から配置相関の電力を算出し、算出した配置相関の電力値を選択決定部413(後述する図18の最大値検出部431G及び信頼度検出部432G)へ出力する。
 選択決定部413は、図18を参照して後述するように、配置相関演算部273の出力信号、電力算出部412Uの出力信号、及び電力算出部412Gの出力信号を用いて、P1シンボルのサブキャリア間隔単位の周波数誤差量(広帯域キャリア周波数誤差量)を検出し、検出した広帯域キャリア周波数誤差量を図3のfc補正部102及び補正部180へ出力する。
 補正部180は、選択決定部413から入力された広帯域キャリア周波数誤差量を用いて、P1直交変換部153Uの出力信号の広帯域キャリア周波数のずれの補正を行った上でActiveキャリアの抽出を行う。
 以下、図17の選択決定部413について図18を参照しつつ説明する。図18は図17の選択決定部413の構成図である。なお、図18には、選択決定部413の各部への入力を明確にするため、配置相関演算部273、電力算出部412U及び電力算出部412Gも図示している。
 選択決定部413は、最大値検出部431と、信頼度検出部432と、最大値検出部431Uと、信頼度検出部432Uと、最大値検出部431Gと、信頼度検出部432Gと、判定部433と、選択部434とを備える。
 最大値検出部431は、配置相関演算部273から順次入力される配置相関の値の中から最大の配置相関の値の検出を行い、最大の配置相関の値を得るシフト量をP1シンボルのサブキャリア間隔単位の周波数誤差量の候補(広帯域キャリア周波数誤差量の第1候補)として選択部434へ出力する。
 信頼度検出部432は、配置相関演算部273から順次入力される配置相関の値の中から最大の配置相関の値と2番目に大きい配置相関の値を検出し、最大の配置相関の値を2番目に大きい配置相関の値で除算し、除算値(最大の配置相関の値÷2番目に大きい配置相関の値)を広帯域キャリア周波数誤差量の第1候補の信頼度として判定部433へ出力する。
 最大値検出部431Uは、電力算出部412Uから順次入力される配置相関の電力値から最大の配置相関の電力値の検出を行い、最大の配置相関の電力値を得るシフト量をP1シンボルのサブキャリア間隔単位の周波数誤差量の候補(広帯域キャリア周波数誤差量の第2候補)として選択部434へ出力する。
 信頼度検出部432Uは、電力算出部412Uから順次入力される配置相関の電力値から最大の配置相関の電力値と2番目に大きい配置相関の電力値を検出し、最大の配置相関の電力値を2番目に大きい配置相関の電力値で除算し、除算値(最大の配置相関の電力値÷2番目に大きい配置相関の電力値)を広帯域キャリア周波数誤差量の第2候補の信頼度として判定部433へ出力する。
 最大値検出部431Gは、電力算出部412Gから順次入力される配置相関の電力値から最大の配置相関の電力値の検出を行い、最大の配置相関の電力値を得るシフト量より1大きいシフト量をP1シンボルのサブキャリア間隔単位の周波数誤差量の候補(広帯域キャリア周波数誤差量の第3候補)として選択部434へ出力する。ここで、最大の配置相関の電力値を得るシフト量より1大きいシフト量を広帯域キャリア周波数誤差量の第3候補とするのは、補正部180が広帯域キャリア周波数誤差のずれの補正を実施する対象が有効シンボル区間に関する信号であり、ガードインターバル区間の信号は有効シンボル区間の信号より1サブキャリア分周波数が高い方にシフトされていることによる。なお、例えば、直交変換部153Gの前段又は後段においてガードインターバル区間の信号に対して-fSHの周波数シフトを施している場合には(1サブキャリア分周波数が低くなるように周波数シフトを施している場合には)、最大値検出部431Gは、最大の配置相関の電力値を得るシフト量を広帯域キャリア周波数誤差量の第3候補として選択部434へ出力すればよい。
 信頼度検出部432Gは、電力算出部412Gから順次入力される配置相関の電力値から最大の配置相関の電力値と2番目に大きい配置相関の電力値を検出し、最大の配置相関の電力値を2番目に大きい配置相関の電力値で除算し、除算値(最大の配置相関の電力値÷2番目に大きい配置相関の電力値)を広帯域キャリア周波数誤差量の第3候補の信頼度として判定部433へ出力する。
 判定部433は、信頼度検出部432、信頼度検出部432U及び信頼度検出部432Gの夫々から入力される広帯域キャリア周波数誤差量の第1候補の信頼度、第2候補の信頼度及び第3候補の信頼度を比較し、広帯域キャリア周波数誤差量の第1候補、第2候補及び第3候補の中から最も信頼度が高い(信頼度の値が最も大きい)広帯域キャリア周波数誤差量の候補を検出する。そして、判定部433は、最も信頼度が高い広帯域キャリア周波数誤差量の候補を選択部434へ通知する。
 選択部434は、判定部433の通知に従い、最大値検出部431、最大値検出部431U及び最大値検出部431Gの夫々から入力される広帯域キャリア周波数誤差量の第1候補、第2候補及び第3候補の中から最も信頼度が高い広帯域キャリア周波数誤差量の候補を選択して、選択した広帯域キャリア周波数誤差量の候補を補正に利用する広帯域キャリア周波数誤差量として図3のfc補正部102及び図17の補正部180へ出力する。
 なお、振幅算出部271U、振幅算出部271G、乗算部272、配置相関演算部273、最大値検出部431及び信頼度検出部432が、直交変換部153Uの出力信号と直交変換部153Gの出力信号との双方を用いて広帯域キャリア周波数誤差量の第1候補を検出し、第1候補の信頼度を検出する第1検出処理を実行するブロックである。
 また、振幅算出部271U、配置相関演算部411U、電力算出部412U、最大値検出部431U及び信頼度検出部432Uが、直交変換部153Uの出力信号及び直交変換部153Gの出力信号のうち直交変換部153Uの出力信号のみを用いて広帯域キャリア周波数誤差量の第2候補を検出し、第2候補の信頼度を検出する第2検出処理を実行するブロックである。
 更に、振幅算出部271G、配置相関演算部411G、電力算出部412G、最大値検出部431G及び信頼度検出部432Gが、直交変換部153Uの出力信号及び直交変換部153Gの出力信号のうち直交変換部153Gの出力信号のみを用いて広帯域キャリア周波数誤差量の第3候補を検出し、第3候補の信頼度を検出する第3検出処理を実行するブロックである。
 本実施の形態よれば、マルチパス干渉環境やノイズ環境下だけでなく、前ガードインターバル区間、後ガードインターバル区間、有効シンボル区間において局所的にインパルス雑音が存在した環境下においても、広帯域キャリア周波数誤差量の誤推定を低減して、受信性能の向上を図ることができる。
 ≪第7の実施の形態≫
 以下、本発明の第7の実施の形態について図面を参照しつつ説明する。但し、本実施の形態において、第1から第6の実施の形態の構成要素と実質的に同じ構成要素には同じ符号を付し、その説明が適用できるため、本実施の形態ではその説明を省略する。
 本実施の形態のOFDM受信装置は、第1から第6の実施の形態で説明したOFDM受信装置のP1広帯域fc誤差検出補正部155などと異なるP1広帯域fc誤差検出補正部450を備える点で、それらのOFDM受信装置と異なる。但し、P1広帯域fc誤差検出補正部450は、P1広帯域fc誤差検出補正部155などと広帯域キャリア周波数誤差量の検出の仕組みが異なる。
 以下、第7の実施の形態に係るP1広帯域fc誤差検出補正部450について図19を参照しつつ説明する。図19はP1広帯域fc誤差検出補正部450の構成図である。なお、図19には、P1広帯域fc誤差検出補正部450の各部への入力を明確にするため、P1直交変換部153U、P1直交変換部153G及びCDSテーブル生成部154も図示している。
 P1広帯域fc誤差検出補正部450は、検出部470と補正部180とを備える。
 検出部470は、P1シンボルでのP1シンボルのサブキャリア間隔単位の周波数誤差量(広帯域キャリア周波数誤差量)の検出を行うものであり、振幅算出部271Uと、振幅算出部271Gと、乗算部272と、配置相関演算部(加算処理部)273と、電力算出部211Uと、配置相関演算部(加算処理部)311Uと、電力算出部211Gと、配置相関演算部(加算処理部)311Gと、選択決定部471とを備える。
 振幅算出部271U、振幅算出部271G、乗算部272及び配置相関演算部273は上述した処理を実施し、配置相関演算部273の出力信号(配置相関の値)は選択決定部471(後述する図20の最大値検出部431及び信頼度検出部432)に供給される。
 電力算出部211U及び配置相関演算部311Uは上述した処理を実施し、配置相関演算部311Uの出力信号(配置相関の値)は選択決定部471(後述する図20の最大値検出部331U及び信頼度検出部332U)に供給される。
 電力算出部211G及び配置相関演算部311Gは上述した処理を実施し、配置相関演算部311Gの出力信号(配置相関の値)は選択決定部471(後述する図20の最大値検出部331G及び信頼度検出部332G)に供給される。
 選択決定部471は、図20を参照して後述するように、配置相関演算部273の出力信号、配置相関演算部311Uの出力信号、及び配置相関演算部311Gの出力信号を用いて、P1シンボルのサブキャリア間隔単位の周波数誤差量(広帯域キャリア周波数誤差量)を検出し、検出した広帯域キャリア周波数誤差量を図3のfc補正部102及び補正部180へ出力する。
 補正部180は、選択決定部471から入力された広帯域キャリア周波数誤差量を用いて、P1直交変換部153Uの出力信号の広帯域キャリア周波数ずれの補正を行った上でActiveキャリアの抽出を行う。
 以下、図19の選択決定部471について図20を参照しつつ説明する。図20は図19の選択決定部471の構成図である。なお、図20には、選択決定部471の各部への入力を明確にするため、配置相関演算部273、配置相関演算部311U及び配置相関演算部311Gも図示している。
 選択決定部471は、最大値検出部431と、信頼度検出部432と、最大値検出部331Uと、信頼度検出部332Uと、最大値検出部331Gと、信頼度検出部332Gと、判定部491と、選択部492とを備える。
 最大値検出部431及び信頼度検出部432は夫々上述した処理を行い、広帯域キャリア周波数誤差量の第1候補及びその信頼度の検出を行い、検出した広帯域キャリア周波数誤差量の第1候補及びその信頼度を選択部492及び判定部491へ出力する。
 最大値検出部331U及び信頼度検出部332Uは夫々上述した処理を行い、広帯域キャリア周波数誤差量の第2候補及びその信頼度の検出を行い、検出した広帯域キャリア周波数誤差量の第2候補及びその信頼度を選択部492及び判定部491へ出力する。
 最大値検出部331G及び信頼度検出部332Gは夫々上述した処理を行い、広帯域キャリア周波数誤差量の第3候補及びその信頼度の検出を行い、検出した広帯域キャリア周波数誤差量の第3候補及びその信頼度を選択部492及び判定部491へ出力する。
 判定部491は、信頼度検出部432、信頼度検出部332U及び信頼度検出部332Gの夫々から入力される広帯域キャリア周波数誤差量の第1候補の信頼度、第2候補の信頼度及び第3候補の信頼度を比較し、広帯域キャリア周波数誤差量の第1候補、第2候補及び第3候補の中から最も信頼度が高い(信頼度の値が最も大きい)広帯域キャリア周波数誤差量の候補を検出する。そして、判定部491は、最も信頼度が高い広帯域キャリア周波数誤差量の候補を選択部492へ通知する。
 選択部492は、判定部491の通知に従い、最大値検出部431、最大値検出部331U及び最大値検出部331Gの夫々から入力される広帯域キャリア周波数誤差量の第1候補、第2候補及び第3候補の中から最も信頼度が高い広帯域キャリア周波数誤差量の候補を選択して、選択した広帯域キャリア周波数誤差量の候補を補正に利用する広帯域キャリア周波数誤差量として図3のfc補正部102及び図19の補正部180へ出力する。
 なお、振幅算出部271U、振幅算出部271G、乗算部272、配置相関演算部273、最大値検出部431及び信頼度検出部432が、直交変換部153Uの出力信号と直交変換部153Gの出力信号との双方を用いて広帯域キャリア周波数誤差量の第1候補を検出し、第1候補の信頼度を検出する第1検出処理を実行するブロックである。
 また、電力算出部211U、配置相関演算部311U、最大値検出部331U及び信頼度検出部332Uが、直交変換部153Uの出力信号及び直交変換部153Gの出力信号のうち直交変換部153Uの出力信号のみを用いて広帯域キャリア周波数誤差量の第2候補を検出し、第2候補の信頼度を検出する第2検出処理を実行するブロックである。
 更に、電力算出部211G、配置相関演算部311G、最大値検出部331G及び信頼度検出部332Gが、直交変換部153Uの出力信号及び直交変換部153Gの出力信号のうち直交変換部153Gの出力信号のみを用いて広帯域キャリア周波数誤差量の第3候補を検出し、第3候補の信頼度を検出する第3検出処理を実行するブロックである。
 本実施の形態よれば、マルチパス干渉環境やノイズ環境下だけでなく、前ガードインターバル区間、後ガードインターバル区間、有効シンボル区間において局所的にインパルス雑音が存在した環境下においても、広帯域キャリア周波数誤差量の推定を精度よく行うことができる。
 ≪第8の実施の形態≫
 以下、本発明の第8の実施の形態について図面を参照しつつ説明する。但し、本実施の形態において、第1から第7の実施の形態の構成要素と実質的に同じ構成要素には同じ符号を付し、その説明が適用できるため、本実施の形態ではその説明を省略する。
 本実施の形態のOFDM受信装置は、第1から第7の実施の形態で説明したOFDM受信装置のP1広帯域fc誤差検出補正部155などと異なるP1広帯域fc誤差検出補正部500を備える点で、それらのOFDM受信装置と異なる。但し、P1広帯域fc誤差検出補正部500は、P1広帯域fc誤差検出補正部155などと広帯域キャリア周波数誤差量の検出の仕組みが異なる。
 以下、第8の実施の形態に係るP1広帯域fc誤差検出補正部500について図21を参照しつつ説明する。図21はP1広帯域fc誤差検出補正部500の構成図である。なお、図21には、P1広帯域fc誤差検出補正部500の各部への入力を明確にするため、P1直交変換部153U、P1直交変換部153G及びCDSテーブル生成部154も図示している。
 P1広帯域fc誤差検出補正部500は、検出部510と補正部180とを備える。
 検出部510は、P1シンボルでのP1シンボルのサブキャリア間隔単位の周波数誤差量(広帯域キャリア周波数誤差量)の検出を行うものであり、複素乗算部171と、配置相関演算部(加算処理部)172と、振幅算出部511と、電力算出部211Uと、配置相関演算部(加算処理部)311Uと、電力算出部211Gと、配置相関演算部(加算処理部)311Gと、選択決定部512とを備える。
 複素乗算部171及び配置相関演算部172は上述した処理を実施し、配置相関演算部172の出力信号(配置相関の値)が振幅算出部511に供給される。振幅算出部511は、配置相関演算部172から順次入力される配置相関の値の振幅の算出処理を実施し、算出した配置相関の振幅値を選択決定部512(後述する図22の最大値検出部531及び信頼度検出部532)へ出力する。
 電力算出部211U及び配置相関演算部311Uは上述した処理を実施し、配置相関演算部311Uの出力信号(配置相関の値)は選択決定部512(後述する図22の最大値検出部331U及び信頼度検出部332U)に供給される。
 電力算出部211G及び配置相関演算部311Gは上述した処理を実施し、配置相関演算部311Gの出力信号(配置相関の値)は選択決定部512(後述する図22の最大値検出部331G及び信頼度検出部332G)に供給される。
 選択決定部512は、図22を参照して後述するように、振幅算出部511の出力信号、配置相関演算部311Uの出力信号、及び配置相関演算部311Gの出力信号を用いて、P1シンボルのサブキャリア間隔単位の周波数誤差量(広帯域キャリア周波数誤差量)を検出し、検出した広帯域キャリア周波数誤差量を図3のfc補正部102及び補正部180へ出力する。
 補正部180は、選択決定部512から入力された広帯域キャリア周波数誤差量を用いて、P1直交変換部153Uの出力信号の広帯域キャリア周波数ずれの補正を行った上でActiveキャリアの抽出を行う。
 以下、図21の選択決定部512について図22を参照しつつ説明する。図22は図21の選択決定部512の構成図である。なお、図22には、選択決定部512の各部への入力を明確にするため、振幅算出部511、配置相関演算部311U及び配置相関演算部311Gも図示している。
 選択決定部512は、最大値検出部531と、信頼度検出部532と、最大値検出部331Uと、信頼度検出部332Uと、最大値検出部331Gと、信頼度検出部332Gと、判定部533と、選択部534とを備える。
 最大値検出部531は、振幅算出部511から順次入力される配置相関の振幅値から最大の振幅値の検出を行い、最大の振幅値を得るシフト量をP1シンボルのサブキャリア間隔単位の周波数誤差量の候補(広帯域キャリア周波数誤差量の第1候補)として選択部534へ出力する。
 信頼度検出部532は、振幅算出部511から順次入力される配置相関の振幅値から最大の振幅値と2番目に大きい振幅値を検出し、最大の振幅値を2番目に大きい振幅値で除算し、除算値(最大の配置相関の振幅値÷2番目に大きい配置相関の振幅値)を広帯域キャリア周波数誤差量の第1候補の信頼度として判定部533へ出力する。
 最大値検出部331U及び信頼度検出部332Uは夫々上述した処理を行い、広帯域キャリア周波数誤差量の第2候補及びその信頼度の検出を行い、検出した広帯域キャリア周波数誤差量の第2候補及びその信頼度を選択部534及び判定部533へ出力する。
 最大値検出部331G及び信頼度検出部332Gは夫々上述した処理を行い、広帯域キャリア周波数誤差量の第3候補及びその信頼度の検出を行い、検出した広帯域キャリア周波数誤差量の第3候補及びその信頼度を選択部534及び判定部533へ出力する。
 判定部533は、信頼度検出部532、信頼度検出部332U及び信頼度検出部332Gの夫々から入力される広帯域キャリア周波数誤差量の第1候補の信頼度、第2候補の信頼度及び第3候補の信頼度を比較し、広帯域キャリア周波数誤差量の第1候補、第2候補及び第3候補の中から最も信頼度が高い(信頼度の値が最も大きい)広帯域キャリア周波数誤差量の候補を検出する。そして、判定部533は、最も信頼度が高い広帯域キャリア周波数誤差量の候補を選択部534へ通知する。
 選択部534は、判定部533の通知に従い、最大値検出部531、最大値検出部331U、及び最大値検出部331Gの夫々から入力される広帯域キャリア周波数誤差量の第1候補、第2候補及び第3候補の中から最も信頼度が高い広帯域キャリア周波数誤差量の候補を選択して、選択した広帯域キャリア周波数誤差量の候補を補正に利用する広帯域キャリア周波数誤差量として図3のfc補正部102及び図21の補正部180へ出力する。
 なお、複素乗算部171、配置相関演算部172、振幅算出部511、最大値検出部531及び信頼度検出部532が、直交変換部153Uの出力信号と直交変換部153Gの出力信号との双方を用いて広帯域キャリア周波数誤差量の第1候補を検出し、第1候補の信頼度を検出する第1検出処理を実行するブロックである。
 また、電力算出部211U、配置相関演算部311U、最大値検出部331U及び信頼度検出部332Uが、直交変換部153Uの出力信号及び直交変換部153Gの出力信号のうち直交変換部153Uの出力信号のみを用いて広帯域キャリア周波数誤差量の第2候補を検出し、第2候補の信頼度を検出する第2検出処理を実行するブロックである。
 更に、電力算出部211G、配置相関演算部311G、最大値検出部331G及び信頼度検出部332Gが、直交変換部153Uの出力信号及び直交変換部153Gの出力信号のうち直交変換部153Gの出力信号のみを用いて広帯域キャリア周波数誤差量の第3候補を検出し、第3候補の信頼度を検出する第3検出処理を実行するブロックである。
 本実施の形態よれば、マルチパス干渉環境やノイズ環境下だけでなく、前ガードインターバル区間、後ガードインターバル区間、有効シンボル区間において局所的にインパルス雑音が存在した環境下においても、広帯域キャリア周波数誤差量の推定を精度よく行うことができる。
 ≪第9の実施の形態≫
 以下、本発明の第9の実施の形態について図面を参照しつつ説明する。但し、本実施の形態において、第1から第8の実施の形態の構成要素と実質的に同じ構成要素には同じ符号を付し、その説明が適用できるため、本実施の形態ではその説明を省略する。
 本実施の形態のOFDM受信装置は、第1から第8の実施の形態で説明したOFDM受信装置のP1広帯域fc誤差検出補正部155などと異なるP1広帯域fc誤差検出補正部550を備える点で、それらのOFDM受信装置と異なる。但し、P1広帯域fc誤差検出補正部550は、P1広帯域fc誤差検出補正部155などと広帯域キャリア周波数誤差量の検出の仕組みが異なる。
 以下、第9の実施の形態に係るP1広帯域fc誤差検出補正部550について図23を参照しつつ説明する。図23はP1広帯域fc誤差検出補正部550の構成図である。なお、図23には、P1広帯域fc誤差検出補正部550の各部への入力を明確にするため、P1直交変換部153U、P1直交変換部153G及びCDSテーブル生成部154も図示している。
 P1広帯域fc誤差検出補正部550は、検出部570と補正部180とを備える。
 検出部570は、P1シンボルでのP1シンボルのサブキャリア間隔単位の周波数誤差量(広帯域キャリア周波数誤差量)の検出を行うものであり、複素乗算部171と、配置相関演算部(加算処理部)172と、電力算出部173と、電力算出部211Uと、配置相関演算部(加算処理部)311Uと、2乗算出部571Uと、電力算出部211Gと、配置相関演算部(加算処理部)311Gと、2乗算出部571Gと、選択決定部572とを備える。
 複素乗算部171、配置相関演算部172及び電力算出部173は上述した処理を実施し、電力算出部173の出力信号(配置相関の電力値)は選択決定部572(後述する図24の最大値検出部331及び信頼度検出部332)に供給される。
 電力算出部211U及び配置相関演算部311Uは上述した処理を実施し、配置相関演算部311Uの出力信号(配置相関の値)は2乗算出部571Uに供給される。2乗算出部571Uは、配置相関演算部311Uから順次入力される配置相関の値の2乗演算を実施し、2乗演算の結果を選択決定部572(後述する図24の最大値検出部591U及び信頼度検出部592U)へ出力する。
 電力算出部211G及び配置相関演算部311Gは上述した処理を実施し、配置相関演算部311Gの出力信号(配置相関の値)は2乗算出部571Gに供給される。2乗算出部571Gは、配置相関演算部311Gから順次入力される配置相関の値の2乗演算を実施し、2乗演算の結果を選択決定部572(後述する図24の最大値検出部591G及び信頼度検出部592G)へ出力する。
 選択決定部572は、図24を参照して後述するように、電力算出部173の出力信号、2乗算出部571Uの出力信号、及び2乗算出部571Gの出力信号を用いて、P1シンボルのサブキャリア間隔単位の周波数誤差量(広帯域キャリア周波数誤差量)を検出し、検出した広帯域キャリア周波数誤差量を図3のfc補正部102及び補正部180へ出力する。
 補正部180は、選択決定部572から入力された広帯域キャリア周波数誤差量を用いて、P1直交変換部153Uの出力信号の広帯域キャリア周波数ずれの補正を行った上でActiveキャリアの抽出を行う。
 以下、図23の選択決定部572について図24を参照しつつ説明する。図24は図23の選択決定部572の構成図である。なお、図24には、選択決定部572の各部への入力を明確にするため、電力算出部173、2乗算出部571U及び2乗算出部571Gも図示している。
 選択決定部572は、最大値検出部331と、信頼度検出部332と、最大値検出部591Uと、信頼度検出部592Uと、最大値検出部591Gと、信頼度検出部592Gと、判定部593と、選択部594とを備える。
 最大値検出部331及び信頼度検出部332は夫々上述した処理を行い、広帯域キャリア周波数誤差量の第1候補及びその信頼度の検出を行い、検出した広帯域キャリア周波数誤差量の第1候補及びその信頼度を選択部594及び判定部593へ出力する。
 最大値検出部591Uは、2乗算出部571Uから順次入力される配置相関の2乗値から最大の配置相関の2乗値の検出を行い、最大の配置相関の2乗値を得るシフト量をP1シンボルのサブキャリア間隔単位の周波数誤差量の候補(広帯域キャリア周波数誤差量の第2候補)として選択部594へ出力する。
 信頼度検出部592Uは、2乗算出部571Uから順次入力される配置相関の2乗値から最大の配置相関の2乗値と2番目に大きい配置相関の2乗値を検出し、最大の配置相関の2乗値を2番目に大きい配置相関の2乗値で除算し、除算値(最大の配置相関の2乗値÷2番目に大きい配置相関の2乗値)を広帯域キャリア周波数誤差量の第2候補の信頼度として判定部593へ出力する。
 最大値検出部591Gは、2乗算出部571Gから順次入力される配置相関の2乗値から最大の配置相関の2乗値の検出を行い、最大の配置相関の2乗値を得るシフト量より1大きいシフト量をP1シンボルのサブキャリア間隔単位の周波数誤差量の候補(広帯域キャリア周波数誤差量の第3候補)として選択部594へ出力する。ここで、最大の配置相関の電力値を得るシフト量より1大きいシフト量を広帯域キャリア周波数誤差量の第3候補とするのは、補正部180が広帯域キャリア周波数誤差のずれの補正を実施する対象が有効シンボル区間に関する信号であり、ガードインターバル区間の信号は有効シンボル区間の信号より1サブキャリア分周波数が高い方にシフトされていることによる。なお、例えば、直交変換部153Gの前段又は後段においてガードインターバル区間の信号に対して-fSHの周波数シフトを施している場合には(1サブキャリア分周波数が低くなるように周波数シフトを施している場合には)、最大値検出部591Gは、最大の配置相関の電力値を得るシフト量を広帯域キャリア周波数誤差量の第3候補として選択部594へ出力すればよい。
 信頼度検出部592Gは、2乗算出部571Gから順次入力される配置相関の2乗値から最大の配置相関の2乗値と2番目に大きい配置相関の2乗値を検出し、最大の配置相関の2乗値を2番目に大きい配置相関の2乗値で除算し、除算値(最大の配置相関の2乗値÷2番目に大きい配置相関の2乗値)を広帯域キャリア周波数誤差量の第3候補の信頼度として判定部593へ出力する。
 判定部593は、信頼度検出部332、信頼度検出部592U及び信頼度検出部592Gの夫々から入力される広帯域キャリア周波数誤差量の第1候補の信頼度、第2候補の信頼度及び第3候補の信頼度を比較し、広帯域キャリア周波数誤差量の第1候補、第2候補及び第3候補の中から最も信頼度が高い(信頼度の値が最も大きい)広帯域キャリア周波数誤差量の候補を検出する。そして、判定部593は、最も信頼度が高い広帯域キャリア周波数誤差量の候補を選択部594へ通知する。
 選択部594は、判定部593の通知に従い、最大値検出部331、最大値検出部591U及び最大値検出部591Gの夫々から入力される広帯域キャリア周波数誤差量の第1候補、第2候補及び第3候補の中から最も信頼度が高い広帯域キャリア周波数誤差量の候補を選択して、選択した広帯域キャリア周波数誤差量の候補を補正に利用する広帯域キャリア周波数誤差量として図3のfc補正部102及び図23の補正部180へ出力する。
 なお、複素乗算部171、配置相関演算部172、電力算出部173、最大値検出部331及び信頼度検出部332が、直交変換部153Uの出力信号と直交変換部153Gの出力信号との双方を用いて広帯域キャリア周波数誤差量の第1候補を検出し、第1候補の信頼度を検出する第1検出処理を実行するブロックである。
 また、電力算出部211U、配置相関演算部311U、2乗算出部571U、最大値検出部591U及び信頼度検出部592Uが、直交変換部153Uの出力信号及び直交変換部153Gの出力信号のうち直交変換部153Uの出力信号のみを用いて広帯域キャリア周波数誤差量の第2候補を検出し、第2候補の信頼度を検出する第2検出処理を実行するブロックである。
 更に、電力算出部211G、配置相関演算部311G、2乗算出部571G、最大値検出部591G及び信頼度検出部592Gが、直交変換部153Uの出力信号及び直交変換部153Gの出力信号のうち直交変換部153Gの出力信号のみを用いて広帯域キャリア周波数誤差量の第3候補を検出し、第3候補の信頼度を検出する第3検出処理を実行するブロックである。
 本実施の形態よれば、マルチパス干渉環境やノイズ環境下だけでなく、前ガードインターバル区間、後ガードインターバル区間、有効シンボル区間において局所的にインパルス雑音が存在した環境下においても、広帯域キャリア周波数誤差量の推定を精度よく行うことができる。
 ≪第10の実施の形態≫
 以下、本発明の第10の実施の形態について図面を参照しつつ説明する。但し、本実施の形態において、第1から第9の実施の形態の構成要素と実質的に同じ構成要素には同じ符号を付し、その説明が適用できるため、本実施の形態ではその説明を省略する。
 本実施の形態のOFDM受信装置は、第1から第9の実施の形態で説明したOFDM受信装置のP1広帯域fc誤差検出補正部155などと異なるP1広帯域fc誤差検出補正部600を備える点で、それらのOFDM受信装置と異なる。但し、P1広帯域fc誤差検出補正部600は、P1広帯域fc誤差検出補正部155などに対して、P1直交変換部153Uの出力信号及びP1直交変換部153Gの出力信号の一方を選択して選択した信号に対して広帯域キャリア周波数ずれの補正を実施する機能を付加したものである。
 以下、第10の実施の形態に係るP1広帯域fc誤差検出補正部600について図25を参照しつつ説明する。図25はP1広帯域fc誤差検出補正部600の構成図である。なお、図25には、P1広帯域fc誤差検出補正部600の各部への入力を明確にするため、P1直交変換部153U、P1直交変換部153G及びCDSテーブル生成部154も図示している。
 検出部610は、図13の検出部310の選択決定部312の代わりに選択部312Aを備える。選択部312Aは、図26に示す構成をしており、図14の判定部333の代わりに判定部333Aを備える。
 判定部333Aは、判定部333の機能に加え、次の機能を有する。判定部333Aは、信頼度検出部332、信頼度検出部332U及び信頼度検出部332Gの夫々から入力される広帯域キャリア周波数誤差量の第1候補の信頼度、第2候補の信頼度及び第3候補の信頼度を比較する。そして、判定部333Aは、第1候補の信頼度が最も高い場合にはP1直交変換部153Uの出力信号を選択して補正部180Aへ出力するように選択部620へ通知する。また、判定部333Aは、第2候補の信頼度が最も高い場合にはP1直交変換部153Uの出力信号を選択して補正部180Aへ出力するように選択部620へ通知する。さらに、判定部333Aは、第3候補の信頼度が最も高い場合には、P1直交変換部153Gの出力信号を選択して補正部180Aへ出力するように選択部620へ通知する。
 なお、判定部333Aは、信頼度検出部332U及び信頼度検出部332Gの夫々から入力される広帯域キャリア周波数誤差量の第2候補の信頼度及び第3候補の信頼度を比較する。そして、判定部333Aは、第2候補の信頼度の方が高い場合にはP1直交変換部153Uの出力信号を選択して補正部180Aへ出力するように選択部620へ通知する。一方、判定部333Aは、第3候補の信頼度の方が高い場合にはP1直交変換部153Gの出力信号を選択して補正部180Aへ出力するように選択部620へ通知するようにしてもよい。
 図25の選択部620は、選択決定部312A内の判定部333Aからの通知に従い、第1直交変換部153Uの出力信号及び第2直交変換部153Gの出力信号から一方を選択して、選択した信号を補正部180Aへ出力する。
 補正部180Aは、選択決定部312A内の選択部334から出力された広帯域キャリア周波数誤差量に基づいて、選択部620の出力信号(周波数領域の複素ベースバンド信号)の広帯域キャリア周波数のずれの補正を実施する。そして、補正部180Aは、CDSテーブル生成部154から入力されたActiveキャリアの配置系列を利用して、広帯域キャリア周波数のずれが補正された周波数領域の複素ベースバンド信号から、Activeキャリアのみを抽出し、抽出したActiveキャリアを図4のP1デコード部156(図7のデスクランブル部191)へ出力する。なお、選択部312A内の選択部334Aは、有効シンボル区間の周波数領域の信号の広帯域キャリア周波数誤差量を補正部180Aに供給している。そして、結合ガードインターバル区間の信号は有効シンボル区間の信号をfSH分周波数シフトしたもの(1サブキャリア分周波数が高くなるように周波数シフトしたもの)である。このことから、直交変換部180Gの出力信号が選択部620に選択された場合には、補正部180Aは、供給される広帯域キャリア周波数誤差量より1小さい値分の広帯域キャリア周波数のずれを補正することになる。
 本実施の形態によれば、有効シンボル区間の信号及び結合ガードインターバル区間の信号のうち信頼度の高い方の信号を利用したP1シンボルのデコード処理を実施することができ、P1シンボルのデコードの精度の向上を図ることができる。
 ≪補足≫
 本発明は上記の実施の形態で説明した内容に限定されず、本発明の目的とそれに関連又は付随する目的を達成するためのいかなる形態においても実施可能であり、例えば、以下であってもよい。
 (1)上記の実施の形態で説明した複素乗算部171、乗算部212、乗算部272は、結合ガードインターバル区間の信号が有効シンボル区間の信号に対して1サブキャリア分高周波側にずれていることを考慮して上記の(数16)、上記の(数19)、上記の(数20)を用いた演算を行っている。しかしながら、これに限定されるものではなく、1サブキャリア分高周波側にずれていることを考慮したものであればよく、例えば次のようなものであってもよい。
 P1直交変換部153Gの前段に周波数シフト補正部を設け、この周波数シフト補正部はP1シンボルの結合ガードインターバル区間の時間領域の複素ベースバンド信号に対して-fSH分だけ周波数シフトさせ(ガードインターバル区間の信号に対して送信側で施されたfSH分だけの周波数シフトを相殺する逆方向の周波数シフトの実施に係る補正処理を行い)、周波数シフトさせた時間領域の複素ベースバンド信号をP1直交変換部153Gへ出力する。或いは、P1直交変換部153Gの後段に周波数シフト補正部を設け、この周波数シフト補正部はP1直交変換部153Gの出力信号(P1シンボルの結合ガードインターバル区間の周波数領域の複素ベースバンド信号)に対して1サブキャリア分だけ周波数が低くなるように補正し(ガードインターバル区間の信号に対して送信側で施されたfSH分だけの周波数シフトを相殺する逆方向の周波数シフトの実施に係る補正処理を行い)、1サブキャリア分だけ周波数が低くなるように補正された周波数領域の複素ベースバンド信号をP1広帯域fc誤差検出補正部155Gへ出力する。或いは、P1直交変換部153Gは直交変換を実施する際に-fSH分だけ周波数シフトする補正処理を行う。
 これらの場合には、複素乗算部171は上記の(数16)の代わりに下記の(数21)に示す演算を実施し、乗算部212は上記の(数19)の代わりに下記の(数22)に示す演算を実施し、乗算部272は上記の(数20)の代わりに下記の(数23)に示す演算を実施すればよい。
Figure JPOXMLDOC01-appb-M000021
 
Figure JPOXMLDOC01-appb-M000022
 
Figure JPOXMLDOC01-appb-M000023
 
 なお、複素乗算部171は、上記の(数21)の演算の代わりに、出力信号Y(n)の複素共役の信号Y(n)と出力信号Y(n)とを乗算するようにしてもよい。
 また、ガードインターバル区間(前ガードインターバル区間、後ガードインターバル区間)の信号が有効シンボル区間の信号をX(Xは整数)サブキャリア分に相当するf分周波数シフトしたものである場合には、上記の周波数シフト補正部は、ガードインターバル区間の信号に対して送信側で施されたf分だけの周波数シフトを相殺する逆方向の周波数シフトの実施に係る補正処理(-f分だけの周波数シフトの実施に係る処理)を行うようにすればよい。
 ここで、Xが負の値の場合には、ガードインターバル区間の信号が有効シンボル区間の信号を(-X)サブキャリ分だけ周波数が低くなるように周波数シフトしたものと言うことになる。
 (2)上記の実施の形態では、結合ガードインターバル区間の信号が有効シンボル区間の信号に対して1サブキャリア分高周波側にずれていることから、複素乗算部171、乗算部212、乗算部272は、上記の(数16)、上記の(数19)、上記の(数20)を用いた演算を行うようにしている。しかしながら、ガードインターバル区間(前ガードインターバル区間、後ガードインターバル区間)の信号が有効シンボル区間の信号をX(Xは整数)サブキャリ分だけ周波数が高くなるように周波数シフトしたものである場合には、複素乗算部171は上記の(数16)の代わりに下記の(数24)に示す演算を実施し、乗算部212は上記の(数19)の代わりに下記の(数25)に示す演算を実施し、乗算部272は上記の(数20)の代わりに下記の(数26)に示す演算を実施すればよい。
Figure JPOXMLDOC01-appb-M000024
 
Figure JPOXMLDOC01-appb-M000025
 
Figure JPOXMLDOC01-appb-M000026
 
 ここで、Xが負の値の場合には、ガードインターバル区間の信号が有効シンボル区間の信号を(-X)サブキャリ分だけ周波数が低くなるように周波数シフトしたものと言うことになる。
 なお、複素乗算部171は、上記の(数24)の演算の代わりに、出力信号Y(n)の複素共役の信号Y(n)と出力信号Y(n+X)とを乗算するようにしてもよい。
 (3)上記の第4以降の実施の形態では、各信頼度検出部に入力される信号の最大値を2番目に大きい値で割った除算値(最大値÷2番目に大きい値)を信頼度として用いているが、これに限定されるものではなく、ActiveキャリアとNullキャリアの信号品質によって配置相関が受ける影響を利用した信頼性を測定することができるものであればよく、例えば次のようなものであってもよい。各信頼度検出部に入力される信号の最大値で2番目に大きい値を割った除算値(2番目に大きい値÷最大値)を信頼度とし、値が小さい程信頼度が高いとしても良い。或いは、各信頼度検出部に入力される信号の最大値を信頼度とし、値が大きい程信頼度が高いとしても良い。或いは、各信頼度検出部に入力される信号の最大値と2番目に大きい値の差を信頼度とし、値が大きい程信頼度が高いとしても良い。
 (4)上記の第4以降の実施の形態では、第1検出処理、第2検出処理、第3検出処理の3つを行うとしているが、これに限定されるものではなく、これらのうちの2つだけを行うようにしてもよい。
 (5)上記の第10の実施の形態で説明したP1直交変換部153Uの出力信号及びP1直交変換部153Gの出力信号の一方を選択して選択した信号に対して広帯域キャリア周波数ずれの補正を実施する機能を、第5から第9の実施の形態で説明した広帯域fc誤差検出補正部350,400,450,500,550に適用するようにしてもよい。
 (6) 上記の各実施の形態では、各直交変換に対して1つの直交変換部106又は1つのP1直交変換部153U,153Gを備えるようになっているが、これに限定されるものではなく、それらの全て又は一部を共用するようにしてもよい。
 (7) 上記の各実施の形態では、各P1復調部で検出した狭帯域キャリア周波数誤差量及び広帯域キャリア周波数誤差量をfc補正部102へ出力して、fc補正部102は、キャリア周波数のずれを補正する際にこれらを利用している。しかしながら、これに限定されるものではなく、fc補正部102は、キャリア周波数のずれの補正を実施する際に、各P1復調部で検出した狭帯域キャリア周波数誤差量及び広帯域キャリア周波数誤差量の一方のみを用いるようにしてもよく、いずれも用いなくてもよい。
 また、狭帯域fc誤差算出部105や広帯域fc誤差算出部107によるP2シンボルやデータシンボルでの狭帯域キャリア周波数誤差量や広帯域キャリア周波数誤差量の算出の仕方、P1狭帯域fc誤差検出補正部152によるP1シンボルでの狭帯域キャリア周波数誤差量の検出の仕方は、特に限定されるものではなく、公知の手法を適用することができる。例えば、直交変換部106の出力信号に対し、P2シンボルやデータシンボル中に含まれるパイロット信号のシンボル間の位相差から狭帯域キャリア周波数誤差量の算出を行うようにしてもよい。
 (8)上記の各実施の形態では、DVB-T2伝送規格に則ったOFDM受信装置などについて説明したが、これに限定されるものではなく、例えば、DVB-T2伝送規格におけるFEF期間を用いた伝送規格においてP1シンボルがFEF期間の先頭に挿入されるため、FEF期間を用いた伝送規格に則ったOFDM受信装置などに対しても適用可能である。
 (9)上記の各実施の形態では、DVB-T2伝送フォーマットに則ったP1シンボルを用いて説明したが、P1シンボルに限定されるものではなく、有効シンボル区間の信号と、当該有効シンボル区間の信号に基づくガードインターバル区間の信号とを含むOFDMシンボルに対して適用可能である。
 例えば、ガードインターバル区間の信号は、有効シンボル区間の信号をfSH分周波数シフトした信号に限定されるものではなく、有効シンボル区間の信号を周波数シフトしていない信号であってもよく、fSH分周波数シフト以外の周波数シフトした信号であってもよい。また、ガードインターバル区間の信号は、有効シンボル区間の信号の全体を周波数シフトした信号に限定されるものではなく、有効シンボル区間の信号の一部を周波数シフトし、残りの部分を周波数シフトしていない信号であってもよい。
 ガードインターバル区間は、前ガードインターバル区間と後ガードインターバル区間とに分割されたものに限定されるものではなく、前ガードインターバル区間のみからなるものであってもよく、後ガードインターバル区間のみからなるものであってもよい。なお、ガードインターバル区間は3つ以上に分割されていてもよく、例えば、有効シンボル区間を分割してその間にガードインターバル区間の分割された区間を挿入するようにしてもよい。
 ガードインターバル区間の時間幅は、有効シンボル区間の時間幅に一致しているものに限定されず、異なっていても良い。
 (10)上記の各実施の形態では、FFTサイズが1kとしたが、これに限定されるものではなく、FFTサイズが1k以外(例えば、2k、4k、8kなど)であってもよい。
 (11)上記の各実施の形態では、差動復調はDBPSKに対応する復調であるとしたが、これに限定されず、DQPSK(Differential Quadrature Phase Shift Keying)に対応する復調などDBPSK以外の差動変調に対応する復調であってもよい。また、上記の各実施の形態では、差動復調を例に挙げて説明したが、差動復調以外の復調であってもよい。
 (12)上記の各実施の形態では、DVB-T2伝送規格に則って説明したため、Activeキャリアの配置は図32であるとしたが、これに限定されるものではなく、Activeキャリアの配置は使用する伝送規格に則ったものを利用するようにすればよい。
 (13)上記の各実施の形態における受信装置の各構成要素は、集積回路であるLSIで実現してもよい。このとき、各構成要素は、個別に1チップ化されてもよいし、一部もしくは全てを含むように1チップ化されてもよい。また、ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセサで実現してもよい。また、集積回路化の手法はLSIに限られるものではなく、専用回路又は汎用プロセサで実現してもよい。FPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセサを利用してもよい。さらに、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてあげられる。
 (14)上記の各実施の形態で示した受信装置の動作の手順の少なくとも一部を受信プログラムに記載し、例えばCPU(Central Processing Unit)がメモリに記憶された当該プログラムを読み出して実行するようにしてもよいし、上記プログラムを記録媒体に保存して頒布等するようにしてもよい。
 (15)上記の各実施の形態で示した受信装置の受信処理の少なくとも一部を行う受信装置を実現してもよい。
 (16)上記の各実施の形態を実現する受信処理の一部を行ういかなる受信装置、又は受信方法、又は受信回路、又はプログラムを組み合わせて上記の各実施の形態を実現してもよい。例えば、上記の各実施の形態で説明した受信装置の構成の一部を受信装置又は集積回路で実現し、その一部を除く構成が行う動作の手順を受信プログラムに記載し、例えばCPUがメモリに記憶された当該プログラムを読み出して実行することによって実現してもよい。
 (17)上記の各実施の形態などで説明した内容を適宜組み合わせるようにしてもよい。
 本発明は、有効シンボル区間の信号と、当該有効シンボル区間の信号に基づくガードインターバル区間の信号とから構成されたOFDMシンボルを受信するOFDM受信装置に利用できる。
 30 復調部
 103 P1復調部
 151 P1位置検出部
 152 P1狭帯域fc誤差検出補正部
 153U P1直交変換部
 153G P1直交変換部
 154 CDSテーブル生成部
 155 P1広帯域fc誤差検出補正部
 170 検出部
 171 複素乗算部
 172 配置相関部
 173 電力算出部
 174 最大値検出部
 180 補正部

Claims (17)

  1.  有効シンボル区間の信号と、当該有効シンボル区間の信号に基づくガードインターバル区間の信号とから構成されたOFDMシンボルを受信するOFDM受信装置であって、
     前記有効シンボル区間の信号を直交変換し、直交変換の結果を出力する第1直交変換部と、
     前記ガードインターバル区間の信号を直交変換し、直交変換の結果を出力する第2直交変換部と、
     前記第1直交変換部の出力信号と前記第2直交変換部の出力信号とに基づいて前記OFDMシンボルの広帯域キャリア周波数誤差量を検出する検出部と、
     前記検出部により検出された広帯域キャリア周波数誤差量に基づいて前記OFDMシンボルの広帯域キャリア周波数のずれの補正を実施する補正部と、
     を備えるOFDM受信装置。
  2.  前記ガードインターバル区間の信号は、前記有効シンボル区間の信号を周波数シフトしたものである
     請求項1記載のOFDM受信装置。
  3.  前記第2直交変換部の入力信号又は前記第2直交変換部の出力信号に対して前記周波数シフトを相殺する逆方向の周波数シフトの実施に係る補正処理を前記第2直交変換部の前段又は後段において実施し、補正処理の結果を出力する周波数シフト補正部
     を更に備え、
     前記検出部は、前記広帯域キャリア周波数のずれの補正を、前記第1直交変換部の出力信号と、前記周波数シフト補正部の出力信号を直交変換して得られた前記第2直交変換部の出力信号又は前記周波数シフト補正部の出力信号と、に基づいて行う
     請求項2記載のOFDM受信装置。
  4.  前記OFDMシンボルは、DVB-T2伝送方式におけるP1シンボルであり、
     前記ガードインターバル区間は、前記有効シンボル区間より手前の前ガードインターバル区間と、前記有効シンボル区間より後ろの後ガードインターバル区間とからなり、
     前記第2直交変換部は、前記直交変換を、前記前ガードインターバル区間の信号と前記後ガードインターバル区間の信号とを結合した信号を用いて行う
     請求項1記載のOFDM受信装置。
  5.  前記OFDMシンボルを構成する複数のサブキャリアは、複数のActiveキャリアと複数のNullキャリアとで構成されており、
     前記複数のActiveキャリアの各々が配置されるサブキャリア位置は、所定の配置パターンによって規定されており、
     前記検出部は、
     前記第1直交変換部の出力信号と前記第2直交変換部の出力信号とに基づく信号の連続する複数のサブキャリアにおいて前記配置パターンで規定された複数のActiveキャリアの位置に対応するサブキャリアでの当該信号の値を加算する加算処理を、前記連続する複数のサブキャリアを所定の範囲内でサブキャリア方向に1サブキャリア単位で順次シフトしながら実施し、加算処理の結果に基づいて、前記広帯域キャリア周波数誤差量を検出する
     請求項1記載のOFDM受信装置。
  6.  前記検出部は、
     前記第1直交変換部の出力信号と前記第2直交変換部の出力信号との複素乗算をサブキャリア毎に実施する複素乗算部と、
     連続する複数のサブキャリアにおいて前記配置パターンで規定された複数のActiveキャリアの位置に対応するサブキャリアでの複素乗算値を加算する加算処理を、前記連続する複数のサブキャリアを所定の範囲内でサブキャリア方向に1サブキャリア単位で順次シフトしながら実施して加算処理の結果を出力する加算処理部と、
     前記加算処理部の各出力信号の電力を算出し、算出結果を出力する電力算出部と、
     前記電力算出部の各出力信号の中から最大値を検出することによって前記広帯域キャリア周波数誤差量を検出する最大値検出部と、
     を備える請求項5記載のOFDM受信装置。
  7.  前記検出部は、
     前記第1直交変換部の出力信号の電力をサブキャリア毎に算出し、算出結果を出力する第1電力算出部と、
     前記第2直交変換部の出力信号の電力をサブキャリア毎に算出し、算出結果を出力する第2電力算出部と、
     前記第1電力算出部の出力信号と前記第2電力算出部の出力信号との乗算をサブキャリア毎に実施する乗算部と、
     連続する複数のサブキャリアにおいて前記配置パターンで規定された複数のActiveキャリアの位置に対応するサブキャリアでの乗算値を加算する加算処理を、前記連続する複数のサブキャリアを所定の範囲内でサブキャリア方向に1サブキャリア単位で順次シフトしながら実施して加算処理の結果を出力する加算処理部と、
     前記加算処理部の各出力信号の中から最大値を検出することによって前記広帯域キャリア周波数誤差量を検出する最大値検出部と、
     を備える請求項5記載のOFDM受信装置。
  8.  前記検出部は、
     前記第1直交変換部の出力信号の振幅をサブキャリア毎に算出し、算出結果を出力する第1振幅算出部と、
     前記第2直交変換部の出力信号の振幅をサブキャリア毎に算出し、算出結果を出力する第2振幅算出部と、
     前記第1振幅算出部の出力信号と前記第2振幅算出部の出力信号との乗算をサブキャリア毎に実施する乗算部と、
     連続する複数のサブキャリアにおいて前記配置パターンで規定された複数のActiveキャリアの位置に対応するサブキャリアでの乗算値を加算する加算処理を、前記連続する複数のサブキャリアを所定の範囲内でサブキャリア方向に1サブキャリア単位で順次シフトしながら実施して加算処理の結果を出力する加算処理部と、
     前記加算処理部の各出力信号の中から最大値を検出することによって前記広帯域キャリア周波数誤差量を検出する最大値検出部と、
     を備える請求項5記載のOFDM受信装置。
  9.  前記OFDMシンボルを構成する複数のサブキャリアは、複数のActiveキャリアと複数のNullキャリアとで構成されており、
     前記複数のActiveキャリアの各々が配置されるサブキャリア位置は、所定の配置パターンによって規定されており、
     前記検出部は、
     前記第1直交変換部の出力信号と前記第2直交変換部の出力信号との双方を用いて広帯域キャリア周波数誤差量の第1候補を検出し、前記第1候補の信頼度を検出する第1検出処理、
     前記第1直交変換部の出力信号及び前記第2直交変換部の出力信号のうちの前記第1直交変換部の出力信号のみを用いて広帯域キャリア周波数誤差量の第2候補を検出し、前記第2候補の信頼度を検出する第2検出処理、及び、
     前記第1直交変換部の出力信号及び前記第2直交変換部の出力信号のうちの前記第2直交変換部の出力信号のみを用いて広帯域キャリア周波数誤差量の第3候補を検出し、前記第3候補の信頼度を検出する第3検出処理、の少なくとも2つを実施し、
     信頼度が最も高い広帯域キャリア周波数誤差量の候補を前記補正部が用いる前記広帯域キャリア周波数誤差量として選択する
     請求項1記載のOFDM受信装置。
  10.  前記検出部は、
     前記第1検出処理を、
     前記第1直交変換部の出力信号と前記第2直交変換部の出力信号とに基づく第1信号の連続する複数のサブキャリアにおいて前記配置パターンで規定された複数のActiveキャリアの位置に対応するサブキャリアでの当該第1信号の値を加算する加算処理を、前記連続する複数のサブキャリアを所定の範囲内でサブキャリア方向に1サブキャリア単位で順次シフトしながら実施し、加算処理の結果に基づいて前記広帯域キャリア周波数誤差量の第1候補及び前記第1候補の信頼度を検出することによって実施し、
     前記第2検出処理を、
     前記第1直交変換部の出力信号に基づく第2信号の連続する複数のサブキャリアにおいて前記配置パターンで規定された複数のActiveキャリアの位置に対応するサブキャリアでの当該第2信号の値を加算する加算処理を、前記連続する複数のサブキャリアを所定の範囲内でサブキャリア方向に1サブキャリア単位で順次シフトしながら実施し、加算処理の結果に基づいて前記広帯域キャリア周波数誤差量の第2候補及び前記第2候補の信頼度を検出することによって実施し、
     前記第3検出処理を、
     前記第2直交変換部の出力信号に基づく第3信号の連続する複数のサブキャリアにおいて前記配置パターンで規定された複数のActiveキャリアの位置に対応するサブキャリアでの当該第3信号の値を加算する加算処理を、前記連続する複数のサブキャリアを所定の範囲内でサブキャリア方向に1サブキャリア単位で順次シフトしながら実施し、加算処理の結果に基づいて前記広帯域キャリア周波数誤差量の第3候補及び前記第3候補の信頼度を検出することによって実施する
     請求項9記載のOFDM受信装置。
  11.  前記第1から第3の各信頼度は前記加算処理の結果の最大値を2番目に大きい値で除算した値であって値が大きい程信頼度が高い、又は、前記第1から第3の各信頼度は前記加算処理の結果の最大値で2番目に大きい値を除算した値であって値が小さい程信頼度が高い
     請求項10記載のOFDM受信装置。
  12.  前記第1から第3の各信頼度は前記加算処理の結果の最大値であって値が大きい程信頼度が高い
     請求項10記載のOFDM受信装置。
  13.  前記第1から第3の各信頼度は前記加算処理の結果の最大値と2番目に大きい値との差であって値が大きい程信頼度が高い
     請求項10記載のOFDM受信装置。
  14.  検出された前記各候補の信頼度に基づいて、前記有効シンボル区間の信号と前記ガードインターバル区間の信号の一方を選択し、選択した信号を前記補正部へ出力する選択部を更に備え、
     前記補正部は、前記選択部から入力された信号に対して前記広帯域キャリア周波数ずれの補正を実施する
     請求項10記載のOFDM受信装置。
  15.  有効シンボル区間の信号と、当該有効シンボル区間の信号に基づくガードインターバル区間の信号とから構成されたOFDMシンボルを受信するOFDM受信回路であって、
     前記有効シンボル区間の信号を直交変換し、直交変換の結果を出力する第1直交変換回路と、
     前記ガードインターバル区間の信号を直交変換し、直交変換の結果を出力する第2直交変換回路と、
     前記第1直交変換回路の出力信号と前記第2直交変換回路の出力信号とに基づいて前記OFDMシンボルの広帯域キャリア周波数誤差量を検出する検出回路と、
     前記検出回路により検出された広帯域キャリア周波数誤差量に基づいて前記OFDMシンボルの広帯域キャリア周波数のずれの補正を実施する補正回路と、
     を備えるOFDM受信回路。
  16.  有効シンボル区間の信号と、当該有効シンボル区間の信号に基づくガードインターバル区間の信号とから構成されたOFDMシンボルを受信するOFDM受信装置において行われるOFDM受信方法であって、
     前記有効シンボル区間の信号を直交変換する第1直交変換ステップと、
     前記ガードインターバル区間の信号を直交変換する第2直交変換ステップと、
     前記第1直交変換ステップでの直交変換の結果と前記第2直交変換ステップでの直交変換の結果とに基づいて前記OFDMシンボルの広帯域キャリア周波数誤差量を検出する検出ステップと、
     前記検出ステップで検出された広帯域キャリア周波数誤差量に基づいて前記OFDMシンボルの広帯域キャリア周波数のずれの補正を実施する補正ステップと、
     を備えるOFDM受信方法。
  17.  有効シンボル区間の信号と、当該有効シンボル区間の信号に基づくガードインターバル区間の信号とから構成されたOFDMシンボルを受信するOFDM受信装置に、
     前記有効シンボル区間の信号を直交変換する第1直交変換ステップと、
     前記ガードインターバル区間の信号を直交変換する第2直交変換ステップと、
     前記第1直交変換ステップでの直交変換の結果と前記第2直交変換ステップでの直交変換の結果とに基づいて前記OFDMシンボルの広帯域キャリア周波数誤差量を検出する検出ステップと、
     前記検出ステップで検出された広帯域キャリア周波数誤差量に基づいて前記OFDMシンボルの広帯域キャリア周波数のずれの補正を実施する補正ステップと、
     を実行させるOFDM受信プログラム。
PCT/JP2011/005571 2010-11-02 2011-10-03 Ofdm受信装置、ofdm受信回路、ofdm受信方法、及びofdm受信プログラム WO2012060051A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180005307.5A CN102687440B (zh) 2010-11-02 2011-10-03 Ofdm接收装置、ofdm接收电路以及ofdm接收方法
EP11837705.0A EP2637329B1 (en) 2010-11-02 2011-10-03 Ofdm receiver, ofdm reception circuit, ofdm reception method, and ofdm reception program
US13/519,203 US9065713B2 (en) 2010-11-02 2011-10-03 OFDM reception device, OFDM reception circuit, OFDM reception method, and OFDM reception program
JP2012541719A JP5266421B2 (ja) 2010-11-02 2011-10-03 Ofdm受信装置、ofdm受信回路、ofdm受信方法、及びofdm受信プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-246493 2010-11-02
JP2010246493 2010-11-02

Publications (1)

Publication Number Publication Date
WO2012060051A1 true WO2012060051A1 (ja) 2012-05-10

Family

ID=46024179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005571 WO2012060051A1 (ja) 2010-11-02 2011-10-03 Ofdm受信装置、ofdm受信回路、ofdm受信方法、及びofdm受信プログラム

Country Status (5)

Country Link
US (1) US9065713B2 (ja)
EP (1) EP2637329B1 (ja)
JP (1) JP5266421B2 (ja)
CN (1) CN102687440B (ja)
WO (1) WO2012060051A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211435A (ja) * 2014-04-30 2015-11-24 日本放送協会 送信装置、受信装置、チップ及びデジタル放送システム
WO2017167011A1 (zh) * 2016-03-31 2017-10-05 华为技术有限公司 信息的传输方法及相关装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2747305A1 (en) * 2012-12-21 2014-06-25 Nxp B.V. RF repeater circuit
TWI623217B (zh) * 2016-05-09 2018-05-01 晨星半導體股份有限公司 處理載波頻率偏移的裝置及方法
CN116346556B (zh) * 2023-05-26 2023-07-25 高拓讯达(北京)微电子股份有限公司 一种多模接收机中信号模式检测方法、装置、设备及介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304152A (ja) * 2005-04-25 2006-11-02 Fujitsu Ltd 受信処理方法及び受信装置
JP2011023993A (ja) * 2009-07-16 2011-02-03 Sony Corp 信号処理装置、信号処理方法、及び、受信システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3924430B2 (ja) 1999-02-26 2007-06-06 富士通株式会社 超伝導フィルタモジュール及び超伝導フィルタ並びに熱遮断型同軸ケーブル
US7613101B2 (en) * 2001-07-26 2009-11-03 Fujitsu Limited Receiving processing method and apparatus
EP1618696B1 (en) * 2003-03-31 2007-05-09 Matsushita Electric Industrial Co., Ltd. Frequency synchronization apparatus and frequency synchronization method
JP4849329B2 (ja) * 2006-10-06 2012-01-11 ソニー株式会社 受信装置および受信方法、並びに、プログラム
US8208522B2 (en) * 2008-03-07 2012-06-26 Nokia Corporation System and methods for receiving OFDM symbols having timing and frequency offsets
US20100290449A1 (en) * 2008-08-20 2010-11-18 Qualcomm Incorporated Preamble extensions
US8112439B2 (en) * 2008-09-24 2012-02-07 Mediatek Inc. Data processing method and system capable of reducing required memory
WO2012046393A1 (ja) * 2010-10-05 2012-04-12 パナソニック株式会社 Ofdm受信装置、ofdm受信回路、ofdm受信方法、及びofdm受信プログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304152A (ja) * 2005-04-25 2006-11-02 Fujitsu Ltd 受信処理方法及び受信装置
JP2011023993A (ja) * 2009-07-16 2011-02-03 Sony Corp 信号処理装置、信号処理方法、及び、受信システム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANDREAS WAADT ET AL.: "An Implementation-friendly Synchronization Algorithm for Multimedia HDTV Receivers", APPLIED SCIENCES IN BIOMEDICAL AND COMMUNICATION TECHNOLOGIES, 27 November 2009 (2009-11-27), XP031596096 *
FINAL DRAFT ETSI EN 302 755 V1.2.1, October 2010 (2010-10-01), pages 57 - 61, 118-123, XP014061309 *
JONATHAN STOTT, THE P1 SYMBOL, DTG DVB-T2 IMPLEMENTERS' SEMINAR, 9 October 2008 (2008-10-09), pages 1 - 16, XP008153634, Retrieved from the Internet <URL:http://www.dtg.org.uk/dtg/t2docs/P1- Jonathon Stott BBC.pdf> *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211435A (ja) * 2014-04-30 2015-11-24 日本放送協会 送信装置、受信装置、チップ及びデジタル放送システム
WO2017167011A1 (zh) * 2016-03-31 2017-10-05 华为技术有限公司 信息的传输方法及相关装置
CN107295649A (zh) * 2016-03-31 2017-10-24 华为技术有限公司 信息的传输方法及相关装置

Also Published As

Publication number Publication date
CN102687440B (zh) 2015-06-24
JPWO2012060051A1 (ja) 2014-05-12
CN102687440A (zh) 2012-09-19
JP5266421B2 (ja) 2013-08-21
EP2637329B1 (en) 2020-08-19
EP2637329A4 (en) 2017-07-26
US9065713B2 (en) 2015-06-23
US20120321021A1 (en) 2012-12-20
EP2637329A1 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5462260B2 (ja) 受信装置、集積回路、受信方法、及び受信プログラム
JP5617010B2 (ja) Ofdm送信装置、ofdm送信方法、ofdm受信装置及びofdm受信方法
US8358722B2 (en) Signal processing apparatus, signal processing method, and reception system
JP4938679B2 (ja) キャリア間干渉除去装置及びこれを用いた受信装置
US7693039B2 (en) Apparatus and method for carrier frequency synchronization in an OFDM system
US9742530B2 (en) Receiver and method of receiving
JP5266421B2 (ja) Ofdm受信装置、ofdm受信回路、ofdm受信方法、及びofdm受信プログラム
JP5379310B2 (ja) Ofdm受信装置、ofdm受信回路、ofdm受信方法、及びofdm受信プログラム
JP3793534B2 (ja) Ofdm受信装置およびofdm信号の受信方法
JP3757144B2 (ja) Ofdm受信装置およびofdm信号の受信方法
JP2009284436A (ja) Ofdm受信装置
JP2007228248A (ja) Ofdm通信装置
JP2009218701A (ja) 受信装置及びチャネルスキャン方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180005307.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011837705

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13519203

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837705

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012541719

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE