WO2012059872A1 - Systeme de commande d'un pied stabilisateur, dispositif de stabilisation et vehicule comprenant un dispositif de stabilisation - Google Patents

Systeme de commande d'un pied stabilisateur, dispositif de stabilisation et vehicule comprenant un dispositif de stabilisation Download PDF

Info

Publication number
WO2012059872A1
WO2012059872A1 PCT/IB2011/054873 IB2011054873W WO2012059872A1 WO 2012059872 A1 WO2012059872 A1 WO 2012059872A1 IB 2011054873 W IB2011054873 W IB 2011054873W WO 2012059872 A1 WO2012059872 A1 WO 2012059872A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
cylinder
hydraulic fluid
valve
chamber
Prior art date
Application number
PCT/IB2011/054873
Other languages
English (en)
Inventor
Didier Camus
Original Assignee
Egi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Egi filed Critical Egi
Priority to DK11799822.9T priority Critical patent/DK2635518T3/en
Priority to EP20110799822 priority patent/EP2635518B1/fr
Priority to ES11799822.9T priority patent/ES2546252T3/es
Priority to CA2816431A priority patent/CA2816431A1/fr
Priority to US13/883,174 priority patent/US20130213216A1/en
Publication of WO2012059872A1 publication Critical patent/WO2012059872A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/003Systems with load-holding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/62Constructional features or details
    • B66C23/72Counterweights or supports for balancing lifting couples
    • B66C23/78Supports, e.g. outriggers, for mobile cranes
    • B66C23/80Supports, e.g. outriggers, for mobile cranes hydraulically actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/044Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the return line, i.e. "meter out"
    • F15B11/0445Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the return line, i.e. "meter out" with counterbalance valves, e.g. to prevent overrunning or for braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/01Locking-valves or other detent i.e. load-holding devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/029Counterbalance valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/005Fault detection or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • F15B20/008Valve failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30505Non-return valves, i.e. check valves
    • F15B2211/30515Load holding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50545Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using braking valves to maintain a back pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50563Pressure control characterised by the type of pressure control means the pressure control means controlling a differential pressure
    • F15B2211/50581Pressure control characterised by the type of pressure control means the pressure control means controlling a differential pressure using counterbalance valves
    • F15B2211/5059Pressure control characterised by the type of pressure control means the pressure control means controlling a differential pressure using counterbalance valves using double counterbalance valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/632Electronic controllers using input signals representing a flow rate
    • F15B2211/6326Electronic controllers using input signals representing a flow rate the flow rate being an output member flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6336Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/85Control during special operating conditions
    • F15B2211/853Control during special operating conditions during stopping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/857Monitoring of fluid pressure systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/86Control during or prevention of abnormal conditions
    • F15B2211/863Control during or prevention of abnormal conditions the abnormal condition being a hydraulic or pneumatic failure
    • F15B2211/8636Circuit failure, e.g. valve or hose failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/87Detection of failures

Definitions

  • the present invention relates to a control system of a stabilizing foot, a stabilization device comprising a stabilizing foot and a vehicle, in particular a hoist, comprising a stabilizing device.
  • This stabilizing device 10 for lifting gear as shown in Figure 1.
  • This stabilizing device 10 comprises a stabilizing foot 12 attached to the rod 14 of a double-acting hydraulic cylinder 16.
  • the cylinder 16 thus comprises two hydraulic chambers 18, 20 separated by a piston 22 integral with the rod 14.
  • a piston seal is provided at the piston 22 to seal the hydraulic fluid between the two chambers 18, 20.
  • the stabilization device 10 further comprises a circuit 24 for supplying hydraulic fluid to each of the chambers 18, 20 of the hydraulic cylinder.
  • This supply circuit 24 can be selectively connected to a source of pressurized hydraulic fluid P and / or to a reservoir of hydraulic fluid R.
  • This supply circuit 24 comprises two branches 26, 28, each of these branches 26, 28 being provided with a nonreturn valve 30, 32 controlled, to prevent the evacuation of the hydraulic fluid out of one or the other of the two chambers 18, 20.
  • Each non-return valve may be formed of a shutter member elastically constrained in a closed position of a hydraulic fluid passage opening.
  • the supply circuit 24 further comprises a valve 34 with three positions. Two positions of this valve 34 make it possible to fill one 18, 20 of the two chambers while permitting the emptying of the other 20, 18. In the third position of the valve 34, the supply circuit 24 is isolated from the source of pressurized hydraulic fluid P. The two branches 26, 28 of the hydraulic circuit are then in fluid communication with the hydraulic fluid reservoir R, thus allowing the nonreturn valves to be in their closed position, preventing the flow of hydraulic fluid.
  • Such a stabilizing device operates as follows. To ensure the stability of the hoist, it controls a supply of the chamber 18 in hydraulic fluid via the branch 26 of the hydraulic circuit. Simultaneously, a derivative (illustrated by the dashed lines in FIG. 1) of a quantity of hydraulic fluid under pressure from the branch 26 towards the nonreturn valve 32 is carried out. This makes it possible to maintain this non-return valve 32 in its position where it passes the hydraulic fluid from the hydraulic chamber 20 to the hydraulic fluid reservoir R. As a result, the hydraulic fluid chamber 18 fills with hydraulic fluid and simultaneously the hydraulic fluid chamber 20 is empty. The combination of these two phenomena causes the exit of the stem cylinder 14 outside the cylinder body 15, until a stabilized position of the hoist is reached.
  • Such a device effectively ensures the stability of a hoist in most cases.
  • a failure of the hydraulic cylinder related to a defect of piston seal for example, a deformation of the cylinder body can occur.
  • hydraulic fluid escapes from the hydraulic chamber 18 to the hydraulic chamber 20.
  • the pressure is equalized between the two chambers and increases in the ratio of the sections of the piston surfaces.
  • An unexpected hydraulic overload appears in the cylinder. Such a failure can lead to the destruction of the hydraulic cylinder itself by bursting.
  • FIG. 2 To prevent this destruction of the jack, there is known a stabilizing device 50 as illustrated in FIG. 2.
  • the stabilizing device 50 comprises, in parallel with the non-return valve 30, a balancing valve 36.
  • This balancing valve allows the evacuation of a quantity of hydraulic fluid from the chamber. 18 of the cylinder 16 in the case where the fluid in this chamber reaches a predetermined pressure value.
  • the balancing valve opens and thus avoids a deterioration of the cylinder 16 by an excessive increase in the pressure of the hydraulic fluid in the hydraulic chamber of the cylinder.
  • these balancing valves are set inappropriately.
  • these balancing valves can allow a discharge of hydraulic fluid at a too low pressure.
  • the hydraulic chamber empties while the cylinder could withstand the pressure of the hydraulic fluid in the hydraulic chamber.
  • the stabilization device is no longer functional, the stability of the hoist is then no longer ensured.
  • the present invention provides a control system of a stabilizing foot comprising a hydraulic cylinder and a hydraulic hydraulic fluid supply circuit of the hydraulic cylinder, the hydraulic cylinder having a cylinder rod, at the end of which the stabilizing foot can be fixed, and at least one hydraulic chamber controlling the position of the cylinder rod, the hydraulic supply circuit comprising a supply branch of the hydraulic chamber comprising:
  • first selectively activatable means for preventing a flow of hydraulic fluid from the hydraulic cylinder
  • the invention includes one or more of the following features:
  • the first means are activated after the second means have allowed the flow of a quantity of hydraulic fluid out of the hydraulic chamber;
  • the control system further comprises means for determining the position of the hydraulic cylinder rod
  • the first means are activated when the rod of the hydraulic jack has reached a predetermined limit position
  • the first means comprise a first selectively activatable non-return valve
  • the second means comprise a balancing valve and, preferably, a second non-return valve mounted in parallel with the balancing valve;
  • the cylinder is a double-acting cylinder, the supply circuit further comprising a second hydraulic fluid supply branch of a second chamber of the double-acting cylinder;
  • a third non-return valve is provided on the second hydraulic fluid supply branch of the double cylinder, the third non-return valve being controlled as a function of the second means.
  • the invention also relates to a stabilizing device comprising at least one stabilizing foot and a control system of said stabilizing foot as described above in all its combinations, the stabilizing foot being hingedly attached to the end of the rod of the cylinder.
  • the invention also relates to a vehicle, in particular a lifting vehicle, comprising a stabilization device as described above.
  • a vehicle in particular a lifting vehicle, comprising a stabilization device as described above.
  • Figure 1 shows schematically a known stabilizing device in the transport position.
  • FIG. 2 schematically represents a second known stabilization device, in the transport position.
  • Figure 3 schematically shows a third stabilizing device in the transport position.
  • FIG. 4 diagrammatically represents the stabilization device of FIG. 3 during a deployment phase.
  • FIG. 5 diagrammatically represents the stabilization device of FIG. 3, in the operative position.
  • FIG. 6 schematically represents the stabilization device of FIG. 3, during a first failure step.
  • FIG. 7 diagrammatically represents the stabilization device of FIG. 6, during a second failure stage.
  • a stabilizing device 110 includes a stabilizing foot 112 and a stabilizing foot control system.
  • This stabilizer foot control system comprises a hydraulic cylinder 116, the stabilizing foot 112 being fixed to the end of the rod 114 of the cylinder 116 in an articulated manner.
  • the hydraulic fluid used is oil.
  • the hydraulic jack 116 double acting, comprises a first hydraulic chamber 118 and a second hydraulic chamber 120 separated by a piston 122 secured to the rod 114.
  • a piston seal is provided at the piston 122 to seal the hydraulic fluid between the two chambers 118, 120.
  • the control system further comprises a circuit 124 for supplying hydraulic fluid to each of the hydraulic chambers 118, 120 of the hydraulic cylinder 116.
  • This supply circuit 124 can be selectively connected to a source of hydraulic fluid under pressure P and / or to a reservoir of hydraulic fluid R.
  • the supply circuit comprises a first leg 126 and a second leg 128.
  • the first leg 126 is provided with a first non-return valve 130 and the second leg 128 is provided with a second non-return valve 132.
  • check valves 130, 132 are of the controlled type and are adapted to prevent a flow of hydraulic fluid from either of the two chambers 118, 120 of the hydraulic cylinder 116, respectively.
  • Each check valve 130, 132 may be formed of a shutter member elastically constrained in a closed position of a passage hole for the hydraulic fluid.
  • the power supply circuit 124 is provided with a control valve 134 in three positions 134 h 134 2, 134 3.
  • a first position 134 ls the valve 134 allows the supply of hydraulic fluid to the first hydraulic chamber 118. To do this, the first hydraulic chamber is placed in fluid communication with the source of hydraulic fluid under pressure P. Still in this first position 134 ls the valve 134 allows the emptying of the second hydraulic chamber 120, the second hydraulic chamber 120 being in fluid communication with the hydraulic fluid reservoir R. As a result, this first position 134i of the control valve 134 controls the output of the cylinder rod 114 from the cylinder body 115.
  • valve 134 controls an isolation of the hydraulic fluid source of pressure P with respect to the supply circuit 124. Also in this second position 134 2 of the valve 134, the two branches 126, 128 of the supply circuit are in fluid communication with the hydraulic fluid reservoir R. This reduces the pressure of the hydraulic fluid in the branches 126, 128 of the hydraulic circuit. Following this reduction in pressure, the non-return valves 130, 132 are closed and thus prevent the discharge of hydraulic fluid from the two hydraulic chambers 118, 120 to the supply circuit 124 and the hydraulic fluid reservoir R.
  • the valve 134 In its third position 134 3 , the valve 134 allows the supply of hydraulic fluid to the second hydraulic chamber 120. To do this, the second hydraulic chamber 120 is placed in fluid communication with the source of hydraulic fluid under pressure P. Always in this third position 134 3 , the valve 134 allows the emptying of the first hydraulic chamber 118, the first hydraulic chamber 118 being in fluid communication with the hydraulic fluid reservoir R. As a result, this third position 134 3 of the valve control 134 controls the retraction of the cylinder rod 114 into the cylinder body 115.
  • balancing valve 136 prevents a flow of hydraulic fluid from the hydraulic cylinder as long as the pressure of the hydraulic fluid is below a predetermined threshold value. It is known that such a valve balancing device 136 allows the passage of hydraulic fluid only in one direction. This is why it is connected in parallel with the first non-return valve 130, which allows a flow of hydraulic fluid under pressure in the direction opposite to the flow allowed by the balancing valve 136.
  • the first branch 126 of the supply circuit 124 is also provided with an electro-safety valve 138.
  • This electro-safety valve 138 is selectively electrically controlled between two positions. In a first position 138i, the safety solenoid valve 138 behaves like a single conduit and allows the passage of hydraulic fluid in both directions. In a second position 138 2 , the safety solenoid valve 138 behaves like a check valve 139. When the safety solenoid valve 138 is controlled in this second position 138 2 , it prevents a flow of hydraulic fluid from the hydraulic cylinder .
  • the assembly formed by the first non-return valve 130 and the balancing valve 136 is arranged in series between the first hydraulic chamber 118 of the hydraulic cylinder 116 and the safety solenoid valve 138.
  • the stabilizing device 110 furthermore comprises control means for the control solenoid valve 138, means for determining the position of the hydraulic cylinder rod and a memory for storing the information relative to the position of the hydraulic rod. hydraulic cylinder, not shown.
  • control means for the control solenoid valve 138 means for determining the position of the hydraulic cylinder rod
  • a memory for storing the information relative to the position of the hydraulic rod. hydraulic cylinder, not shown.
  • the operation of the stabilizing device 110 is described later.
  • the stabilizer 110 is in its transport position. In this transport position, the cylinder rod 114 is fully retracted into the cylinder body 115. In other words, the hydraulic chamber 120 is filled with hydraulic fluid while the chamber 118 is virtually empty.
  • the valve 134 is in its second position 134 2 , in which the supply circuit 124 is cut off from the hydraulic fluid supply source under pressure P, the two branches 126, 128 of the supply circuit being in fluid communication. With the reservoir of hydraulic fluid R. As a result, the pressure of the hydraulic fluid in the branches 126, 128 being small, the non-return valves 130, 132 and 139 are in their closed position, prestressed position, and thus prevent any hydraulic fluid leak out of the hydraulic chambers 118, 120.
  • FIG. 4 illustrates the positioning of the stabilization device 110.
  • the valve 134 is in its position 134i which allows the filling of the first chamber 118 with hydraulic fluid coming from the source of hydraulic fluid under pressure P, and emptying the chamber 120 in the hydraulic fluid reservoir R.
  • the safety solenoid valve 138 is in its position 138 2 where it behaves as a non-return valve 139.
  • the electro safety valve 138 is thus also in its rest position which corresponds to a position where it allows the filling of the first chamber 118.
  • the second hydraulic chamber 120 of the hydraulic cylinder is in fluid communication with the hydraulic fluid reservoir R, via the second non-return valve 132.
  • the second non-return valve 132 allows the passage of hydraulic fluid from the second hydraulic chamber 120 to the hydraulic fluid reservoir R, a quantity of hydraulic fluid from the source of hydraulic fluid under pressure P is derived from the first branch 126 of the supply circuit. This amount of fluid is intended to provide sufficient pressure at the second check valve 132 to keep the shutter member away from its closed position, preventing the flow of hydraulic fluid.
  • the shutter position of the shutter element corresponds to the state of the second non-return valve 132 in which it prevents a flow of hydraulic fluid from the second hydraulic chamber 120 in the second branch 128 of the supply circuit 124.
  • Feeding the first hydraulic chamber 118 and emptying the second hydraulic chamber causes the cylinder rod 114 to exit the cylinder body until the stabilizing foot 112 reaches the ground 140 (visible in FIG. 5).
  • the exit of the cylinder rod 114 from the cylinder body can be continued to reach a stability position of the vehicle on which the stabilizer device is mounted.
  • FIG. 5 illustrates the stabilizing device in its stabilizing position.
  • the stabilizing foot 112 rests on the floor 140.
  • the valve 134 is in its position 134 2 in which the supply circuit is separated from the source of hydraulic fluid under pressure P, the two branches 126, 128 of the hydraulic circuit being in communication of fluid with the hydraulic fluid reservoir R.
  • the pressure in the branches 126, 128 between the hydraulic fluid reservoir and the first and second non-return valves 130, 132 is reduced.
  • the non-return valves 130 and 132 are closed, because of the prestressed mounting of the shutter member, in a position where they prevent hydraulic fluid from escaping from the hydraulic chambers 118, 120.
  • the valve of Equilibration 136 is set to prevent hydraulic fluid leakage at the hydraulic fluid pressure level in that position.
  • the electro safety valve 138 is in turn controlled in its first position 138i in which it behaves as a pipe section, allowing the flow of hydraulic fluid in both directions.
  • the position of the cylinder rod is then measured and this information is recorded in the storage memory.
  • Figure 6 illustrates the occurrence of a failure of the hydraulic cylinder of the stabilization device, for example due to overload.
  • This overload results in an increase in the force applied by the ground 140 on the stabilizing foot 112 and thus on the piston cylinder 122 via the cylinder rod 114.
  • This increase in soil reaction therefore causes an increase in the pressure of the hydraulic fluid in the first hydraulic chamber 118.
  • a predetermined threshold value as being critical for the integrity of the hydraulic fluid.
  • hydraulic cylinder, the balancing valve, calibrated to this predetermined threshold value allows a leakage of hydraulic fluid from the first hydraulic chamber 118.
  • ⁇ safety solenoid valve 138 is controlled in its position 138 2 in which it behaves as a non-return valve, preventing the flow of hydraulic fluid from the first hydraulic chamber do not continue. This control of the safety solenoid valve 138 thus occurs after the balancing valve has allowed the flow of a quantity of hydraulic fluid out of the first hydraulic chamber 118.
  • the cylinder rod 114 then stabilizes in this new equilibrium position.
  • the safety solenoid valve 138 being controlled in its second position 138 2 , it is possible to warn the user that the stabilization device is faulty or at least not perfectly functional. This allows the user to take the necessary measures to avoid a total failure of the stabilization device, which is not possible in the case of the assembly of Figure 1, with two check valves, for example.
  • the stabilization device makes it possible to prevent the first hydraulic chamber 118 from emptying completely, rendering the balancing device non-functional. It should be noted that in this case, the total emptying of the first balancing chamber is a priori not desired since the pressure in the first hydraulic chamber 118 is not such as to call into question the integrity of the hydraulic cylinder.
  • the stabilization device can be mounted on any type of vehicle requiring stabilization, whether automotive or not.
  • this stabilizing device is particularly interesting when mounted on a construction machine, a hoist or a fire truck including a ladder or an elevator arm, for example.
  • the stabilizing device therefore finds a particularly advantageous application when it is implemented on a vehicle requiring a stabilized position on the ground to ensure the safety of its users.
  • the two branches of the hydraulic circuit can also be identical and have the same combination of a safety solenoid valve (or a selectively activatable check valve) with a balancing valve connected in parallel with a non-return valve.
  • a safety solenoid valve or a selectively activatable check valve
  • a balancing valve connected in parallel with a non-return valve.
  • the hydraulic cylinder may be a single-acting cylinder, the supply circuit of the stabilization device then comprising a single branch on which is mounted the combination of a safety solenoid valve and a balancing valve in parallel of a non-return valve.
  • this position can be deduced from a measurement of a flow rate or a volume of hydraulic fluid supplied to one or the other of the hydraulic chambers, or flowing to or from this hydraulic chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Vehicle Body Suspensions (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

Le système de commande d'un pied stabilisateur (112) comporte un vérin hydraulique (116) et un circuit hydraulique (124) d'alimentation en fluide hydraulique du vérin hydraulique, le vérin hydraulique (116) comportant une tige de vérin (114), l'extrémité de laquelle peut être fixé le pied stabilisateur (112), et au moins une chambre hydraulique (118) commandant la position de la tige de vérin (114), le circuit hydraulique d'alimentation (124) 10 comportant une branche d'alimentation (126) de la chambre hydraulique (118) comprenant des premiers moyens (138) sélectivement activables pour empêcher un écoulement du fluide hydraulique depuis le vérin hydraulique, et des seconds moyens (130, 136) pour empêcher un écoulement du fluide hydraulique depuis le vérin hydraulique tant que la pression du fluide hydraulique dans la chambre hydraulique est inférieure une valeur de seuil prédéterminée, les seconds moyens (136) tant disposés entre les premiers moyens (138) et la chambre hydraulique (118).

Description

SYSTEME DE COMMANDE D'UN PIED STABILISATEUR, DISPOSITIF DE STABILISATION ET VEHICULE COMPRENANT UN DISPOSITIF DE
STABILISATION La présente invention concerne un système de commande d'un pied stabilisateur, un dispositif de stabilisation comportant un pied stabilisateur et un véhicule, notamment un engin de levage, comprenant un dispositif de stabilisation.
Il est connu un dispositif de stabilisation 10 pour engin de levage tel que représenté à la figure 1. Ce dispositif de stabilisation 10 comporte un pied stabilisateur 12 fixé à la tige 14 d'un vérin hydraulique double effet 16. Le vérin 16 comporte ainsi deux chambres hydrauliques 18, 20 séparées par un piston 22 solidaire de la tige 14. Un joint de piston est prévu au niveau du piston 22 pour assurer l'étanchéité au fluide hydraulique entre les deux chambre 18, 20.
Le dispositif de stabilisation 10 comporte encore un circuit 24 d'alimentation en fluide hydraulique de chacune des chambres 18, 20 du vérin hydraulique. Ce circuit d'alimentation 24 peut être sélectivement relié à une source de fluide hydraulique sous pression P et/ou à un réservoir de fluide hydraulique R.
Ce circuit d'alimentation 24 comporte deux branches 26, 28, chacune de ces branches 26, 28 étant munie d'un clapet anti-retour 30, 32 commandé, permettant d'empêcher l'évacuation du fluide hydraulique hors de l'une ou l'autre des deux chambres 18, 20. Chaque clapet anti-retour peut être formé d'un élément obturateur contraint élastiquement dans une position d'obturation d'un orifice de passage du fluide hydraulique.
Le circuit d'alimentation 24 comporte encore une vanne 34 à trois positions. Deux positions de cette vanne 34 permettent de remplir l'une 18, 20 des deux chambres tout en autorisant le vidage de l'autre 20, 18. Dans la troisième position de la vanne 34, le circuit d'alimentation 24 est isolé de la source de fluide hydraulique sous pression P. Les deux branches 26, 28 du circuit hydraulique sont alors en communication de fluide avec le réservoir de fluide hydraulique R, permettant ainsi aux clapets anti-retours d'être dans leur position d'obturation, empêchant l'écoulement de fluide hydraulique.
Un tel dispositif de stabilisation fonctionne comme suit. Pour assurer la stabilité de l'engin de levage, on commande une alimentation de la chambre 18 en fluide hydraulique via la branche 26 du circuit hydraulique. De manière simultanée, on procède à une dérivation (illustrée par les pointillés sur la figure 1) d'une quantité de fluide hydraulique sous pression depuis la branche 26 vers le clapet anti-retour 32. Ceci permet de maintenir ce clapet anti- retour 32 dans sa position où il laisse passer le fluide hydraulique depuis la chambre hydraulique 20 vers le réservoir de fluide hydraulique R. Par suite, la chambre de fluide hydraulique 18 se remplit de fluide hydraulique et, simultanément la chambre de fluide hydraulique 20 se vide. La combinaison de ces deux phénomènes provoque la sortie de la tige de vérin 14 hors du corps de vérin 15, jusqu'à ce qu'une position stabilisée de l'engin de levage soit atteinte. Dans cette position le pied stabilisateur 12 est en contact avec le sol. On ferme alors la vanne 34, dans la position représentée à la figure 1. Les deux clapets 30, 32 reviennent alors automatiquement dans leur position d'obturation, empêchant l'écoulement de fluide hydraulique depuis les chambres hydrauliques 18, 20. La quantité de fluide hydraulique contenue dans chacune des chambres 18, 20 ne varie plus alors et la position de la tige est assurée.
Un tel dispositif permet effectivement d'assurer la stabilité d'un engin de levage dans la plupart des cas. Cependant, dans le cas d'une défaillance du vérin hydraulique, liée à un défaut de joint de piston par exemple, une déformation du corps du vérin peut intervenir. Dans ce cas, en effet, du fluide hydraulique s'échappe de la chambre hydraulique 18 vers la chambre hydraulique 20. La pression s'égalise entre les deux chambres et augmente dans le rapport des sections des surfaces du piston. Il apparaît alors une surcharge hydraulique non prévue dans le vérin. Une telle défaillance peut conduire à la destruction même du vérin hydraulique par éclatement.
Pour éviter cette destruction du vérin, il est connu un dispositif de stabilisation 50 tel qu'illustré à la figure 2. Sur cette figure 2, les éléments identiques ou de fonction identique aux éléments du dispositif de stabilisation 10 de la figure 1 porte le même signe de référence.
Tel qu'illustré sur cette figure 2, le dispositif de stabilisation 50 comporte en parallèle du clapet anti-retour 30 une valve d'équilibrage 36. Cette valve d'équilibrage permet l'évacuation d'une quantité de fluide hydraulique hors de la chambre 18 du vérin 16 dans le cas où le fluide dans cette chambre atteint une valeur de pression prédéterminée.
Ainsi, si une augmentation de la pression du fluide hydraulique apparaît par suite d'une charge non prévue sur le dispositif stabilisateur - par exemple en cas de dépassement du diagramme d'utilisation de l'engin de levage - alors la valve d'équilibrage s'ouvre et évite ainsi une détérioration du vérin 16 par une augmentation excessive de la pression du fluide hydraulique dans la chambre hydraulique du vérin.
Cependant, il peut arriver que ces valves d'équilibrage soient réglées de manière inappropriée. Notamment, ces valves d'équilibrage peuvent permettre une évacuation de fluide hydraulique à une pression trop faible. Dans ce cas, la chambre hydraulique se vide alors que le vérin pourrait supporter la pression du fluide hydraulique dans la chambre hydraulique. Par suite, le dispositif de stabilisation n'est plus fonctionnel, la stabilité de l'engin de levage n'étant alors plus assurée.
Il existe donc un besoin pour un dispositif de stabilisation ne présentant pas les inconvénients susmentionnés. En particulier, il existe un besoin pour un système de commande d'un pied stabilisateur permettant d'accroître la sécurité des dispositifs de stabilisation connus. A cette fin, la présente invention propose un système de commande d'un pied stabilisateur comportant un vérin hydraulique et un circuit hydraulique d'alimentation en fluide hydraulique du vérin hydraulique, le vérin hydraulique comportant une tige de vérin, à l'extrémité de laquelle peut être fixé le pied stabilisateur, et au moins une chambre hydraulique commandant la position de la tige de vérin, le circuit hydraulique d'alimentation comportant une branche d'alimentation de la chambre hydraulique comprenant :
- des premiers moyens sélectivement activables pour empêcher un écoulement du fluide hydraulique depuis le vérin hydraulique, et
- des seconds moyens pour empêcher un écoulement du fluide hydraulique depuis le vérin hydraulique tant que la pression du fluide hydraulique dans la chambre hydraulique est inférieure à une valeur de seuil prédéterminée, les seconds moyens étant disposés entre les premiers moyens et la chambre hydraulique.
Suivant des modes de réalisation préférés, l'invention comprend une ou plusieurs des caractéristiques suivantes :
- les premiers moyens sont activés après que les seconds moyens ont permis l'écoulement d'une quantité de fluide hydraulique hors de la chambre hydraulique ;
- le système de commande comprend en outre des moyens de détermination de la position de la tige du vérin hydraulique ;
- les premiers moyens sont activés lorsque la tige du vérin hydraulique a atteint une position limite prédéterminée ;
- les premiers moyens comportent un premier clapet anti-retour sélectivement activable ;
- les seconds moyens comportent une valve d'équilibrage et, de préférence, un second clapet anti-retour monté en parallèle de la valve d'équilibrage ;
- le vérin est un vérin double effet, le circuit d'alimentation comportant en outre une deuxième branche d'alimentation en fluide hydraulique d'une deuxième chambre du vérin double effet ; et
- un troisième clapet anti-retour est ménagé sur la deuxième branche d'alimentation en fluide hydraulique du vérin double, le troisième clapet anti-retour étant commandé en fonction des seconds moyens.
L'invention se rapporte également à un dispositif de stabilisation comprenant au moins un pied stabilisateur et un système de commande dudit pied stabilisateur tel que décrit ci- avant dans toutes ses combinaisons, le pied stabilisateur étant fixé de manière articulée à l'extrémité de la tige du vérin.
L'invention se rapporte encore à un véhicule, notamment engin de levage, comprenant un dispositif de stabilisation tel que décrit ci-avant. D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui suit d'un mode de réalisation préféré de l'invention, donnée à titre d'exemple et en référence au dessin annexé.
La figure 1 représente schématiquement un dispositif de stabilisation connu, en position de transport.
La figure 2 représente schématiquement un deuxième dispositif de stabilisation connu, en position de transport.
La figure 3 représente schématiquement un troisième dispositif de stabilisation, en position de transport.
La figure 4 représente schématiquement le dispositif de stabilisation de la figure 3, durant une phase de déploiement.
La figure 5 représente schématiquement le dispositif de stabilisation de la figure 3, en position fonctionnelle.
La figure 6 représente schématiquement le dispositif de stabilisation de la figure 3, au cours d'une première étape de défaillance.
La figure 7 représente schématiquement le dispositif de stabilisation de la figure 6, au cours d'une deuxième étape de défaillance.
Dans la suite de la description, les éléments identiques ou de fonction identique du dispositif de stabilisation des figures 3 à 7 portent le même signe de référence que l'élément correspondant du dispositif de stabilisation de la figure 1, augmenté de 100.
Tel que représenté sur les figures 3 à 7, un dispositif de stabilisation 110 comporte un pied stabilisateur 112 et un système de commande du pied stabilisateur. Ce système de commande du pied stabilisateur comporte un vérin hydraulique 116, le pied stabilisateur 112 étant fixé à l'extrémité de la tige 114 du vérin 116 de manière articulée. Généralement, le fluide hydraulique mis en œuvre est de l'huile.
Dans cette application, on préfère utiliser un vérin hydraulique car ce type de vérin peut développer des efforts plus importants et être mu à des vitesses plus précises et plus facilement réglables qu'un vérin pneumatique, notamment. En outre, bien qu'on puisse mettre en œuvre un vérin simple effet, on préfère mettre en œuvre un vérin double effet pour commander le déplacement du pied stabilisateur 112 dans deux directions opposées.
Le vérin hydraulique 116, double effet, comporte une première chambre hydraulique 118 et une deuxième chambre hydraulique 120 séparées par un piston 122 solidaire de la tige 114. Un joint de piston est prévu au niveau du piston 122 pour assurer l'étanchéité au fluide hydraulique entre les deux chambres 118, 120.
Le système de commande comporte encore un circuit 124 d'alimentation en fluide hydraulique de chacune des chambres hydraulique 118, 120 du vérin hydraulique 116. Ce circuit d'alimentation 124 peut être sélectivement relié à une source de fluide hydraulique sous pression P et/ou à un réservoir de fluide hydraulique R. Le circuit d'alimentation comporte une première branche 126 et une deuxième branche 128. La première branche 126 est munie d'un premier clapet anti-retour 130 et la deuxième branche 128 est munie d'un deuxième clapet anti-retour 132. Les deux clapets anti-retours 130, 132 sont du type commandé et sont adaptés à empêcher un écoulement du fluide hydraulique depuis l'une ou l'autre des deux chambres 118, 120 du vérin hydraulique 116, respectivement. Chaque clapet anti-retour 130, 132 peut être formé d'un élément obturateur contraint élastiquement dans une position d'obturation d'un orifice de passage pour le fluide hydraulique.
Par ailleurs, le circuit d'alimentation 124 est muni d'une vanne de commande 134 à trois positions 134h 1342, 1343.
Dans une première position 134l s la vanne 134 permet l'alimentation en fluide hydraulique de la première chambre hydraulique 118. Pour ce faire, la première chambre hydraulique est mise en communication de fluide avec la source de fluide hydraulique sous pression P. Toujours dans cette première position 134l s la vanne 134 permet le vidage de la deuxième chambre hydraulique 120, la deuxième chambre hydraulique 120 étant en communication de fluide avec le réservoir de fluide hydraulique R. Par suite, cette première position 134i de la vanne de commande 134 commande la sortie de la tige de vérin 114 hors du corps de vérin 115.
Dans une deuxième position 1342, la vanne 134 commande un isolement de la source de fluide hydraulique de pression P par rapport au circuit d'alimentation 124. Toujours dans cette deuxième position 1342 de la vanne 134, les deux branches 126, 128 du circuit d'alimentation sont en communication de fluide avec le réservoir de fluide hydraulique R. Ceci permet de réduire la pression du fluide hydraulique dans les branches 126, 128 du circuit hydraulique. Suite à cette réduction de pression, les clapets anti-retours 130, 132 se ferment et empêchent donc l'évacuation de fluide hydrauliques depuis les deux chambres hydrauliques 118, 120 vers le circuit d'alimentation 124 et le réservoir de fluide hydraulique R.
Dans sa troisième position 1343, la vanne 134 permet l'alimentation en fluide hydraulique de la deuxième chambre hydraulique 120. Pour se faire, la deuxième chambre hydraulique 120 est mise en communication de fluide avec la source de fluide hydraulique sous pression P. Toujours dans cette troisième position 1343, la vanne 134 permet le vidage de la première chambre hydraulique 118, la première chambre hydraulique 118 étant en communication de fluide avec le réservoir de fluide hydraulique R. Par suite, cette troisième position 1343 de la vanne de commande 134 commande la rentrée de la tige de vérin 114 dans le corps de vérin 115.
En parallèle du premier clapet anti-retour 130, la branche 126 du circuit d'alimentation
124 est munie d'une valve d'équilibrage 136. Cette valve d'équilibrage 136 empêche un écoulement du fluide hydraulique depuis le vérin hydraulique tant que la pression du fluide hydraulique est inférieure à une valeur de seuil prédéterminée. Il est connu qu'une telle valve d'équilibrage 136 permet le passage du fluide hydraulique uniquement dans un sens. C'est pourquoi elle est montée en parallèle du premier clapet anti-retour 130, lequel autorise une circulation de fluide hydraulique sous pression dans la direction opposée à l'écoulement permis par la valve d'équilibrage 136.
La première branche 126 du circuit d'alimentation 124 est également munie d'une électro vanne de sécurité 138. Cette électro vanne de sécurité 138 est sélectivement commandée électriquement entre deux positions. Dans une première position 138i, F électrovanne de sécurité 138 se comporte comme un conduit simple et permet le passage de fluide hydraulique dans les deux sens. Dans une deuxième position 1382, l'électrovanne de sécurité 138 se comporte comme un clapet anti-retour 139. Lorsque l'électrovanne de sécurité 138 est commandée dans cette deuxième position 1382, elle empêche un écoulement du fluide hydraulique depuis le vérin hydraulique.
Il est à noter ici que l'ensemble constitué par le premier clapet anti-retour 130 et la valve d'équilibrage 136 est disposé en série entre la première chambre hydraulique 118 du vérin hydraulique 116 et l'électrovanne de sécurité 138.
Le dispositif de stabilisation 110 comporte en outre des moyens de commande de l'électrovanne de commande 138, des moyens de détermination de la position de la tige de vérin hydraulique et une mémoire de stockage de l'information relative à la position de la tige de vérin hydraulique, non représentés. Ainsi, il est notamment possible de mesurer la position de la tige de vérin à un instant donné, notamment de mesurer la longueur dont la tige de vérin est sortie hors du corps de vérin.
Le fonctionnement du dispositif de stabilisation 110 est décrit par la suite.
Tel qu'illustré sur la figure 3, le dispositif de stabilisation 110 est dans sa position de transport. Dans cette position de transport, la tige de vérin 114 est complètement rentrée dans le corps de vérin 115. En d'autres termes, la chambre hydraulique 120 est remplie de fluide hydraulique tandis que la chambre 118 est elle pratiquement vide. La vanne 134 est dans sa deuxième position 1342, dans laquelle le circuit d'alimentation 124 est coupé de la source d'alimentation en fluide hydraulique sous pression P, les deux branches 126, 128 du circuit d'alimentation étant en communication de fluide avec le réservoir de fluide hydraulique R. Par suite, la pression du fluide hydraulique dans les branches 126, 128 étant faible, les clapets anti-retours 130, 132 et 139 sont dans leur position d'obturation, position précontrainte, et empêchent ainsi toute fuite de fluide hydraulique hors des chambres hydrauliques 118, 120.
La figure 4 illustre la mise en position du dispositif de stabilisation 110. Sur cette figure, la vanne 134 est dans sa position 134i qui permet le remplissage de la première chambre 118 avec du fluide hydraulique provenant de la source de fluide hydraulique sous pression P, et le vidage de la chambre 120 dans le réservoir de fluide hydraulique R. L'électrovanne de sécurité 138 est dans sa position 1382 où elle se comporte comme un clapet anti-retour 139. L'électro vanne de sécurité 138 est ainsi également dans sa position de repos qui correspond à une position où elle autorise le remplissage de la première chambre 118.
En outre, dans cette position 134i de la vanne 134, la deuxième chambre hydraulique 120 du vérin hydraulique est en communication de fluide avec le réservoir de fluide hydraulique R, via le deuxième clapet anti-retour 132. Pour que le deuxième clapet anti-retour 132 autorise le passage de fluide hydraulique depuis la deuxième chambre hydraulique 120 vers le réservoir de fluide hydraulique R, une quantité de fluide hydraulique provenant de la source de fluide hydraulique sous pression P est dérivée depuis la première branche 126 du circuit d'alimentation. Cette quantité de fluide est destinée à assurer une pression suffisante au niveau du deuxième clapet anti-retour 132 pour que l'élément obturateur soit maintenu à distance de sa position d'obturation, empêchant l'écoulement de fluide hydraulique. La position d'obturation de l'élément obturateur correspond à l'état du deuxième clapet antiretour 132 dans lequel il empêche un écoulement de fluide hydraulique depuis la deuxième chambre hydraulique 120, dans la deuxième branche 128 du circuit d'alimentation 124.
L'alimentation de la première chambre hydraulique 118 et le vidage de la deuxième chambre hydraulique provoquent la sortie de la tige de vérin 114 hors du corps de vérin, jusqu'à ce que le pied stabilisateur 112 atteigne le sol 140 (visible sur la figure 5). La sortie de la tige de vérin 114 hors du corps de vérin peut être continuée pour atteindre une position de stabilité du véhicule sur lequel est monté le dispositif stabilisateur.
La figure 5 illustre le dispositif de stabilisation dans sa position de stabilisation. Le pied stabilisateur 112 repose sur le sol 140. La vanne 134 est dans sa position 1342 dans laquelle le circuit d'alimentation est séparé de la source de fluide hydraulique sous pression P, les deux branches 126, 128 du circuit hydraulique étant en communication de fluide avec le réservoir de fluide hydraulique R. Par suite, la pression dans les branches 126, 128 entre le réservoir de fluide hydraulique et les premiers et deuxièmes clapets anti-retours 130, 132 est réduite. Par suite, les clapets anti-retours 130 et 132 sont fermés, du fait du montage précontraint de l'élément obturateur, dans une position où ils empêchent que du fluide hydraulique s'échappe hors des chambres hydrauliques 118, 120. La valve d'équilibrage 136 est réglée pour empêcher une fuite de fluide hydraulique au niveau de pression du fluide hydraulique dans cette position. L'électro vanne de sécurité 138 est quant à elle commandée dans sa première position 138i dans laquelle elle se comporte comme un tronçon de conduit, permettant l'écoulement de fluide hydraulique dans les deux sens.
On mesure alors la position de la tige de vérin et on enregistre cette information dans la mémoire de stockage.
La figure 6 illustre l'apparition d'une défaillance du vérin hydraulique du dispositif de stabilisation, par exemple due à une surcharge. Cette surcharge se traduit par une augmentation de la force appliquée par le sol 140 sur le pied stabilisateur 112 et donc sur le piston de vérin 122 via la tige de vérin 114. Cette augmentation de la réaction du sol provoque donc une augmentation de la pression du fluide hydraulique dans la première chambre hydraulique 118. Quand la pression du fluide hydraulique dans cette première chambre devient supérieure à une valeur de seuil prédéterminée comme étant critique pour l'intégrité du vérin hydraulique, la valve d'équilibrage, calibrée sur cette valeur de seuil prédéterminée, autorise une fuite de fluide hydraulique depuis la première chambre hydraulique 118.
Ainsi, comme du fluide hydraulique s'échappe depuis la première chambre hydraulique via la valve d'équilibrage 136, la tige de vérin 114 rentre dans le corps de vérin 115, cela malgré la position des clapets anti-retours 130 et 132.
Quand la tige du piston a atteint une position limite (repérée par exemple par sa hauteur) prédéterminée comme étant critique, notamment pour la stabilité du véhicule sur lequel le dispositif de stabilisation est monté, cette hauteur étant mesurée à l'aide des moyens de mesure de la position de la tige de vérin hydraulique, par exemple, Γ électrovanne de sécurité 138 est commandée dans sa position 1382 dans laquelle elle se comporte comme un clapet anti-retour, empêchant que l'écoulement de fluide hydraulique depuis la première chambre hydraulique ne continue. Cette commande de l'électrovanne de sécurité 138 intervient ainsi après que la valve d'équilibrage ait permet l'écoulement d'une quantité de fluide hydraulique hors de la première chambre hydraulique 118.
La tige de vérin 114 se stabilise alors dans cette nouvelle position d'équilibre.
Entre l'instant où du fluide hydraulique à commencer à s'écouler à travers la valve d'équilibrage et l'instant où la tige 114 se stabilise, l'électrovanne de sécurité 138 étant commandée dans sa deuxième position 1382, il est possible d'avertir l'utilisateur que le dispositif de stabilisation est défaillant ou tout du moins pas parfaitement fonctionnel. Ceci permet à l'utilisateur de prendre les mesures nécessaires pour éviter une défaillance totale du dispositif de stabilisation, ce qui n'est pas possible dans le cas du montage de la figure 1, avec deux clapets anti-retours, par exemple.
En outre, dans le cas où la valve d'équilibrage est réglée à une valeur de pression trop faible - c'est-à-dire dans le cas où la valve d'équilibrage devient passante déjà pour une pression de fluide trop faible, que le vérin est susceptible de supporter - alors le dispositif de stabilisation selon l'invention permet d'empêcher que la première chambre hydraulique 118 ne se vide complètement, rendant le dispositif d'équilibrage non fonctionnel. Il est à noter que dans ce cas, le vidage total de la première chambre d'équilibrage n'est a priori pas souhaité puisque la pression dans la première chambre hydraulique 118 n'est pas alors de nature à remettre en cause l'intégrité du vérin hydraulique.
II est également possible d'analyser après stabilisation de la tige de vérin 114 le ou les défauts apparus. Après cette analyse du ou des défauts, seules les manœuvres qui n'aggravent pas la stabilité ou les manœuvres les plus appropriées peuvent être permises. Des dispositifs annexes comme des enregistrements du défaut ou de la situation l'ayant provoqué, peuvent être installés afin de faciliter une recherche ultérieure.
Enfin, des acquittements de défaut sous contrôle peuvent également être mis en place.
Il est à noter que le dispositif de stabilisation peut être monté sur tout type de véhicule nécessitant d'être stabilisé, qu'il soit automobile ou non. Cependant, ce dispositif de stabilisation est particulièrement intéressant lorsqu'il est monté sur un engin de chantier, un engin de levage ou un camion de pompier comprenant une échelle ou un bras élévateur, par exemple. Le dispositif de stabilisation trouve donc une application particulièrement intéressante lorsqu'il est mis en œuvre sur un véhicule nécessitant une position stabilisée sur le sol pour assurer la sécurité de ses utilisateurs.
Bien entendu, la présente invention n'est pas limitée au mode de réalisation décrit et représenté, mais elle est susceptible de nombreuses variantes accessibles à l'homme de l'art.
Ainsi, il est possible de remplacer l'électro vanne de sécurité par un clapet anti-retour sélectivement activable, c'est-à-dire, en fait, par tout élément obturateur sélectivement activable permettant d'interrompre l'écoulement de fluide hydraulique depuis la chambre hydraulique 118 vers le réservoir de fluide hydraulique.
Les deux branches du circuit hydraulique peuvent également être identiques et présenter la même combinaison d'une électrovanne de sécurité (ou d'un clapet anti-retour sélectivement activable) avec une valve d'équilibrage montée en parallèle d'un clapet anti-retour. Ainsi, on protège le vérin hydraulique contre les surpressions du fluide hydraulique qui peuvent apparaître dans chacune des deux chambres hydrauliques du vérin hydraulique.
Selon une autre variante, le vérin hydraulique peut être un vérin simple effet, le circuit d'alimentation du dispositif de stabilisation comprenant alors une unique branche sur laquelle est montée la combinaison d'une électrovanne de sécurité et d'une valve d'équilibrage en parallèle d'un clapet anti-retour.
Enfin, au lieu de mesurer directement la position de la tige de vérin, cette position peut être déduite d'une mesure d'un débit ou d'un volume de fluide hydraulique fourni à l'une ou l'autre des chambres hydrauliques, ou qui s'écoule vers ou depuis cette chambre hydraulique.

Claims

REVENDICATIONS
Système de commande d'un pied stabilisateur (112) comportant un vérin hydraulique (116) et un circuit hydraulique (124) d'alimentation en fluide hydraulique du vérin hydraulique, le vérin hydraulique (116) comportant une tige de vérin (114), à l'extrémité de laquelle peut être fixé le pied stabilisateur (112), et au moins une chambre hydraulique (118) commandant la position de la tige de vérin (114), le circuit hydraulique d'alimentation (124) comportant une branche d'alimentation (126) de la chambre hydraulique (118) comprenant :
- des premiers moyens (138) sélectivement activables pour empêcher un écoulement du fluide hydraulique depuis le vérin hydraulique, et
- des seconds moyens (130, 136) pour empêcher un écoulement du fluide hydraulique depuis le vérin hydraulique tant que la pression du fluide hydraulique dans la chambre hydraulique est inférieure à une valeur de seuil prédéterminée, les seconds moyens (136) étant disposés entre les premiers moyens (138) et la chambre hydraulique (118).
Système de commande selon la revendication 1, dans lequel les premiers moyens (138) sont activés après que les seconds moyens (130, 136) ont permis l'écoulement d'une quantité de fluide hydraulique hors de la chambre hydraulique (118).
Système de commande selon la revendication 1 ou 2, comprenant en outre des moyens de détermination de la position de la tige du vérin hydraulique.
Système de commande selon la revendication 3, dans lequel les premiers moyens (138) sont activés lorsque la tige du vérin hydraulique a atteint une position limite prédéterminée.
Système de commande selon l'une quelconque des revendications précédentes, dans lequel les premiers moyens (138) comportent un premier clapet anti-retour (139) sélectivement activable.
Système de commande selon l'une quelconque des revendications précédentes, dans lequel les seconds moyens comportent une valve d'équilibrage (130, 136) et, de préférence, un second clapet anti-retour (130) monté en parallèle de la valve d'équilibrage (136).
7. Système de commande selon l'une quelconque des revendications précédentes, dans lequel le vérin (116) est un vérin double effet, le circuit d'alimentation comportant en outre une deuxième branche d'alimentation en fluide hydraulique d'une deuxième chambre du vérin double effet.
8. Système de commande selon la revendication 7, dans lequel un troisième clapet antiretour (132) est ménagé sur la deuxième branche d'alimentation en fluide hydraulique du vérin double, le troisième clapet anti-retour (132) étant commandé en fonction des seconds moyens (130, 136).
9. Dispositif de stabilisation comprenant au moins un pied stabilisateur (112) et un système de commande dudit pied stabilisateur selon l'une quelconque des revendications précédentes, le pied stabilisateur (112) étant fixé de manière articulée à l'extrémité de la tige (114) du vérin (116).
10. Véhicule, notamment engin de levage, comprenant un dispositif de stabilisation selon la revendication 9.
PCT/IB2011/054873 2010-11-03 2011-11-02 Systeme de commande d'un pied stabilisateur, dispositif de stabilisation et vehicule comprenant un dispositif de stabilisation WO2012059872A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DK11799822.9T DK2635518T3 (en) 2010-11-03 2011-11-02 System for controlling a stabiliseringsfod, the stabilization device and the vehicle comprising a stabilizer device
EP20110799822 EP2635518B1 (fr) 2010-11-03 2011-11-02 Systeme de commande d'un pied stabilisateur, dispositif de stabilisation et vehicule comprenant un dispositif de stabilisation
ES11799822.9T ES2546252T3 (es) 2010-11-03 2011-11-02 Sistema de control de un pie estabilizador, dispositivo de estabilización y vehículo que comprende un dispositivo de estabilización
CA2816431A CA2816431A1 (fr) 2010-11-03 2011-11-02 Systeme de commande d'un pied stabilisateur, dispositif de stabilisation et vehicule comprenant un dispositif de stabilisation
US13/883,174 US20130213216A1 (en) 2010-11-03 2011-11-02 System For Controlling a Stabilizing Foot, Stabilization Device, and Vehicle Including a Stabilization Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1059053A FR2966790B1 (fr) 2010-11-03 2010-11-03 Systeme de commande d’un pied stabilisateur, dispositif de stabilisation et vehicule comprenant un dispositif de stabilisation
FR1059053 2010-11-03

Publications (1)

Publication Number Publication Date
WO2012059872A1 true WO2012059872A1 (fr) 2012-05-10

Family

ID=44123344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2011/054873 WO2012059872A1 (fr) 2010-11-03 2011-11-02 Systeme de commande d'un pied stabilisateur, dispositif de stabilisation et vehicule comprenant un dispositif de stabilisation

Country Status (8)

Country Link
US (1) US20130213216A1 (fr)
EP (1) EP2635518B1 (fr)
CA (1) CA2816431A1 (fr)
CL (1) CL2013001214A1 (fr)
DK (1) DK2635518T3 (fr)
ES (1) ES2546252T3 (fr)
FR (1) FR2966790B1 (fr)
WO (1) WO2012059872A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3101591A1 (fr) * 2019-10-07 2021-04-09 Manitou Bf Engin roulant, tel qu'un engin de manutention de charge
WO2021120235A1 (fr) * 2019-12-16 2021-06-24 中联重科股份有限公司 Procédé et appareil de commande de grue, grue, processeur et support d'enregistrement

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102039791B (zh) * 2010-06-13 2012-07-25 中联重科股份有限公司 车身倾角调整单元、油气悬架机构以及流动式起重机
CN108443268B (zh) * 2018-03-06 2019-04-05 吉林大学 桥梁检测车支腿机构的过载保护液压系统及过载保护方法
CN110594212B (zh) * 2019-09-06 2024-06-07 浙江鼎力机械股份有限公司 一种控制阀、变幅油缸及其工作方法、高空作业平台

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142710A (en) * 1976-12-01 1979-03-06 Tadano Ltd. Automatic extension control system for jacking device
US4273244A (en) * 1979-01-29 1981-06-16 Fmc Corporation Crane upperstructure self-transferring system
US4679489A (en) * 1985-11-04 1987-07-14 Becor Western Inc. Automatic leveling system for blast hole drills and the like
US20040131458A1 (en) * 2002-12-18 2004-07-08 Litchfield Simon C. Method for controlling a raise/extend function of a work machine
WO2007044711A1 (fr) 2005-10-07 2007-04-19 University Of Florida Research Foundation, Inc. Nanoparticules a composants multiples pour signalisation multiplexee et codage optique
WO2010013136A2 (fr) 2008-07-31 2010-02-04 Alma Mater Studiorum - Universita' Di Bologna Particules actives destinées à des applications bio-analytiques et procédés de préparation de celles-ci
WO2010013137A1 (fr) 2008-07-31 2010-02-04 Alma Mater Studiorum - Universita' Di Bologna Particules actives pour applications bioanalytiques et leurs procédés de préparation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4068773A (en) * 1975-04-03 1978-01-17 Allis-Chalmers Corporation Lift vehicle with fail-safe overload protective system
US4124226A (en) * 1977-10-06 1978-11-07 Harnischfeger Corporation Electrohydraulic outrigger control system
AU743652B2 (en) * 1998-08-04 2002-01-31 Ingersoll-Rand Company System for frame leveling and stabilizing a forklift
US20010015129A1 (en) * 1998-09-24 2001-08-23 Eugene Altman Hydraulic leveling control system for a loader type vehicle
US6712587B2 (en) * 2001-12-21 2004-03-30 Waters Investments Limited Hydraulic amplifier pump for use in ultrahigh pressure liquid chromatography
US6640986B2 (en) * 2002-03-07 2003-11-04 Mi-Jack Products, Inc. Anti-sway hydraulic system for grappler
WO2009133956A1 (fr) * 2008-05-02 2009-11-05 国立大学法人筑波大学 Actionneur, procédé de commande d’actionneur et programme de commande d’actionneur

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142710A (en) * 1976-12-01 1979-03-06 Tadano Ltd. Automatic extension control system for jacking device
US4273244A (en) * 1979-01-29 1981-06-16 Fmc Corporation Crane upperstructure self-transferring system
US4679489A (en) * 1985-11-04 1987-07-14 Becor Western Inc. Automatic leveling system for blast hole drills and the like
US20040131458A1 (en) * 2002-12-18 2004-07-08 Litchfield Simon C. Method for controlling a raise/extend function of a work machine
WO2007044711A1 (fr) 2005-10-07 2007-04-19 University Of Florida Research Foundation, Inc. Nanoparticules a composants multiples pour signalisation multiplexee et codage optique
WO2010013136A2 (fr) 2008-07-31 2010-02-04 Alma Mater Studiorum - Universita' Di Bologna Particules actives destinées à des applications bio-analytiques et procédés de préparation de celles-ci
WO2010013137A1 (fr) 2008-07-31 2010-02-04 Alma Mater Studiorum - Universita' Di Bologna Particules actives pour applications bioanalytiques et leurs procédés de préparation

Non-Patent Citations (36)

* Cited by examiner, † Cited by third party
Title
0. S. WOLFBEIS, ANAL. CHEM., vol. 78, 2006, pages 3859 - 3873
BONACCHI, S.; GENOVESE, D.; JURIS, R.; MONTALTI, M.; PRODI, L.; RAMPAZZO, E.; ZACCHERONI, N., ANGEW. CHEM. INT. ED., vol. 50, 2011, pages 4056
BRUCHEZ, M.; MORONNE, M.; GIN, P.; WEISS, S.; ALIVISATOS, A. P., SCIENCE, vol. 281, 1998, pages 2013
BURNS, A. A.; VIDER, J.; OW, H.; HERZ, E.; PENATE-MEDINA, 0.; BAUMGART, M.; LARSON, S. M.; WIESNER, U.; BRADBURY, M., NANO LETTERS, vol. 9, 2009, pages 442
C. WU; J. HONG; X. GUO; C. HUANG; J. LAI; J. ZHENG; J. CHEN; X. MU; Y. ZHAO, CHEM. COMMUN., 2008, pages 750 - 752
D. SHI, ADV. FUNCT. MAT., vol. 19, 2009, pages 3356 - 3373
DOSHI, N.; MITRAGOTRI, S., ADV. FUNCT. MATER., vol. 19, 2009, pages 3843
E. HERZ; A. BURNS; D. BONNER; U. WIESNER, MACROMOL. RAPID COMMUN., vol. 30, 2009, pages 1907 - 1910
GUNASEKERA, U. A.; PANKHURST, Q. A.; DOUEK, M., TARGETED ONCOLOGY, vol. 4, 2009, pages 169
GUNASEKERA, U. A.; PANKHURST, Q. A; DOUEK, M., TARGETED ONCOLOGY, vol. 4, 2009, pages 169
HULSPAS, R.; DOMBKOWSKI, D.; PREFFER, F.; DOUGLAS, D.; KILDEW-SHAH, B.; GILBERT, J., CYTOM. PART A, vol. 75A, 2009, pages 966
KIM, D. K.; DOBSON, J., JOURNAL OF MATERIALS CHEMISTRY, vol. 19, 2009, pages 6294
L. PRODI, NEW J. OF CHEM., vol. 29, 2005, pages 20 - 31
L. WANG; C. Y. YANG; W. H. TAN, NANO LETT., vol. 5, 2005, pages 37 - 43
L. WANG; W. H. TAN, NANO LETT., vol. 6, 2006, pages 84 - 88
L. WANG; W. TAN, NANO LETT., vol. 6, 2006, pages 84 - 88
L. WANG; W. ZHAO; W. TAN, NANO RES., vol. 1, 2008, pages 99 - 115
LAKOWICZ, J. R.: "Principles of Fluorescence Spectroscopy", 2006, SPRINGER
LIU, Y. Y.; MIYOSHI, H.; NAKAMURA, M., INTERNATIONAL JOURNAL OF CANCER, vol. 120, 2007, pages 2527
LIU, Y.; LOU, C.; YANG, H.; SHI, M.; MIYOSHI, H., CURR. CANCER DRUG TARGETS, vol. 11, 2011, pages 156
M. MONTALTI; L PRODI; N. ZACCHERONI; A. ZATTONI; P. RESCHIGLIAN; G. FALINI, LANGMUIR, vol. 20, 2008, pages 2989 - 2991
MEDINTZ, . L.; UYEDA, H. T.; GOLDMAN, E. R.; MATTOUSSI, H., NATURE MATERIALS, vol. 4, 2005, pages 435
MONTALTI, M.; PRODI, L.; ZACCHERONI, N.; ZATTONI, A.; RESCHIGLIAN, P.; FALINI, G., LANGMUIR, vol. 20, 2004, pages 2989
Q. HUO; J. LIU; L. Q. WANG; Y. JIANG; T. N. LAMBERT; E. FANG, J. AM. CHEM. SOC., vol. 128, 2006, pages 6447 - 6453
RIEHEMANN, K.; SCHNEIDER, S. W.; LUGER, T. A.; GODIN, B.; FERRARI, M.; FUCHS, H., ANGEW CHEM INT EDIT, vol. 48, 2009, pages 872
ROEDERER, M.; KANTOR, A. B.; PARKS, D. R.; HERZENBERG, L. A., CYTOMETRY, vol. 24, 1996, pages 191
S. V. FEDORENKO; O. D. BOCHKOVA; A. R. MUSTAFINA; V. A. BURILOV; M. K. KADIROV; C. V. HOLIN; R. NIZAMEEV; V. V. SKRIPACHEVA; A. YU, J. PHYS. CHEM. C, vol. 114, 2010, pages 6350 - 6355
SHI, D. L., ADV. FUNCT. MATER., vol. 19, 2009, pages 3356
STRASSERT, C. A.; OTTER, M.; ALBUQUERQUE, R. Q.; HONE, A.; VIDA, Y.; MAIER, B.; DE COLA, L., ANGEW CHEM INT EDIT, vol. 48, 2009, pages 7928
SUKHANOVA, A.; NABIEV, ., CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY, vol. 68, 2008, pages 39
WANG, L.; TAN, W. H., NANO LETTERS, vol. 6, 2006, pages 84
WANG, L.; WANG, K. M.; SANTRA, S.; ZHAO, X. J.; HILLIARD, L. R.; SMITH, J. E.; WU, J. R.; TAN, W. H., ANALYTICAL CHEMISTRY, vol. 78, 2006, pages 646
WOLFBEIS, O. S., ANALYTICAL CHEMISTRY, vol. 78, 2006, pages 3859
X. L. CHEN; M. C. ESTEVEZ; Z. ZHU; Y. F. HUANG; Y. CHEN; L. WANG; W. H. TAN, ANAL. CHEM., vol. 81, 2009, pages 7009 - 7014
YAO, G.; WANG, L.; WU, Y. R.; SMITH, J.; XU, J. S.; ZHAO, W. J.; LEE, E. J.; TAN, W. H., ANALYTICAL AND BIOANALYTICAL CHEMISTRY, vol. 385, 2006, pages 518
YONG, K. T.; ROY, I.; SWIHART, M. T.; PRASAD, P. N., JOURNAL OF MATERIALS CHEMISTRY, vol. 19, 2009, pages 4655

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3101591A1 (fr) * 2019-10-07 2021-04-09 Manitou Bf Engin roulant, tel qu'un engin de manutention de charge
WO2021069826A1 (fr) * 2019-10-07 2021-04-15 Manitou Bf Engin roulant, tel qu'un engin de manutention de charge
WO2021120235A1 (fr) * 2019-12-16 2021-06-24 中联重科股份有限公司 Procédé et appareil de commande de grue, grue, processeur et support d'enregistrement

Also Published As

Publication number Publication date
US20130213216A1 (en) 2013-08-22
FR2966790B1 (fr) 2012-12-21
DK2635518T3 (en) 2015-08-10
ES2546252T3 (es) 2015-09-22
EP2635518A1 (fr) 2013-09-11
CA2816431A1 (fr) 2012-05-10
FR2966790A1 (fr) 2012-05-04
CL2013001214A1 (es) 2014-01-10
EP2635518B1 (fr) 2015-05-06

Similar Documents

Publication Publication Date Title
EP2635518B1 (fr) Systeme de commande d'un pied stabilisateur, dispositif de stabilisation et vehicule comprenant un dispositif de stabilisation
EP0935715B1 (fr) Dispositif de maintien en position de la tige d'un verin hydraulique
FR3100240A1 (fr) Essieu oscillant pour un engin de levage, engin de levage comprenant un tel essieu et procédé de contrôle
FR2819565A1 (fr) Amortisseur telescopique
FR2567830A1 (fr) Systeme de freinage pour vehicule automobile
FR2509831A1 (fr) Commande de remise en position pour soutenement a etancons hydrauliques, ainsi qu'une vanne de non-retour a commande hydraulique
FR2567825A1 (fr) Dispositif de commande de la pression hydraulique de freinage de vehicules muni d'un dispositif anti-blocage
EP0237456A1 (fr) Amortisseur hydraulique de battements et son application aux soupapes et analogues
FR2695925A1 (fr) Procédé et dispositif pour empêcher une grue ou un véhicule élévateur de secours de se renverser.
EP0332509B1 (fr) Amortisseur à étanchéité dynamique améliorée
EP1800983B1 (fr) Commande du freinage hydraulique d'une remorque
FR3024757B1 (fr) Systeme de pompe a source d'alimentation distante
FR2566352A1 (fr) Amplificateur hydraulique d'effort de freinage
CH616116A5 (en) Pneumatic directional control valve for railway braking
FR3098561A1 (fr) Butée hydraulique pour amortisseur
FR2757223A1 (fr) Installation hydraulique a au moins un circuit d'utilisation du type a centre ferme
FR2479358A1 (fr) Dispositif de securite pour des verins hydrauliques, notamment pour des pelles hydrauliques
FR2503055A1 (fr) Suspension pour vehicule
WO2021069826A1 (fr) Engin roulant, tel qu'un engin de manutention de charge
FR2938401A1 (fr) Machine agricole destinee a etre rapportee sur un tracteur et comportant un verin de levage et un verin de delestage d'une unite de travail
FR2807119A1 (fr) Dispositif de branchement pour conduites hydrauliques
FR2709519A1 (fr) Vérin simple effet, en particulier, vérin de levage notamment pour véhicule.
FR2897580A1 (fr) Dispositif de commande du freinage hydraulique d'une remorque attelee a un tracteur
FR2777058A1 (fr) Dispositif de suspension et d'amortissement a deux combines suspension-amortisseur
FR2704813A1 (fr) Système de commande d'une ridelle de benne de véhicule articulée par le bas.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11799822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2816431

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13883174

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013001214

Country of ref document: CL

WWE Wipo information: entry into national phase

Ref document number: 2011799822

Country of ref document: EP