WO2012058829A1 - 光源模块以及背光装置 - Google Patents

光源模块以及背光装置 Download PDF

Info

Publication number
WO2012058829A1
WO2012058829A1 PCT/CN2010/079152 CN2010079152W WO2012058829A1 WO 2012058829 A1 WO2012058829 A1 WO 2012058829A1 CN 2010079152 W CN2010079152 W CN 2010079152W WO 2012058829 A1 WO2012058829 A1 WO 2012058829A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting diode
light source
chromaticity
source module
Prior art date
Application number
PCT/CN2010/079152
Other languages
English (en)
French (fr)
Inventor
郑巍巍
林博瑛
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US12/997,904 priority Critical patent/US20120113681A1/en
Publication of WO2012058829A1 publication Critical patent/WO2012058829A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133609Direct backlight including means for improving the color mixing, e.g. white
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs

Definitions

  • the present invention relates to a light source module and a backlight device, and more particularly to a light source module and a backlight device that can improve the usage rate of the light emitting diode.
  • Liquid crystal display device Liquid Crystal The display (LCD) includes a backlight device including a backlight source, a plastic frame, and a diffusion plate, and a liquid crystal module in which the liquid crystal panel and the front frame are assembled. Due to the low power consumption and mercury-free characteristics of light-emitting diodes, cold cathode fluorescent tubes (Colds) are often used in backlights of liquid crystal display devices. Cathode Fluorescent Lamps, CCFLs are rapidly being replaced by light-emitting diodes (LEDs).
  • LEDs light-emitting diodes
  • a display using a light-emitting diode as a light source is disposed on a PCB or a flexible circuit board to form a light bar.
  • the finished light-emitting diodes are screened in a predetermined specification to classify the mass-produced light-emitting diodes.
  • the performance indicators for classifying the light-emitting diodes include: brightness and chromaticity of the light-emitting diodes. , wavelength or forward voltage, etc., and then the LEDs are graded. Panel manufacturers typically choose LEDs that are classified in a major color bin (bin). Previously only light-emitting diodes that met the chromaticity specification could be used. Light-emitting diodes of the remaining chromaticity levels could not be used. Therefore, it will inevitably lead to the proportion of the number of light-emitting diodes selected for use being too small.
  • FIG. 1 is a sorting chroma level diagram of a light emitting diode.
  • A3 is the white light chromaticity level of demand
  • the colors of A1 and A2 are more blue than the demand
  • the colors of A4 and A5 are yellower than the required white light.
  • light-emitting diodes with complementary chromaticity at the chromaticity level are selected and mixedly disposed on the same light source module to mix an expected overall chromaticity of light.
  • the adjacent LEDs will select the LEDs with the chromaticity level A1 and the chromaticity level A5, respectively, or the chromaticity level A2 and color respectively.
  • the light-emitting diode of degree A4 is such that the chromaticity level of the adjacent two light-emitting diodes is A3.
  • the chromaticity level produced is not symmetrical, that is, the illuminance level of the chrominance level A1 and the illuminance level of the chromaticity level A5 are not equal, the chromaticity level.
  • the output of the A2 LED and the chrominance level A4 LED are not equal, so the LEDs produced each time cannot be fully utilized.
  • One of the objects of the present invention is to provide a light source module that utilizes a chromaticity level for a light emitting diode (COLOR) Configure with BIN).
  • a second object of the present invention is to provide a strip and comprising a plurality of light source groups, the light source group comprising at least one first light emitting diode of a first chromaticity in a first wavelength range and at least one second wavelength range A second color light emitting diode.
  • a third object of the present invention is to provide a backlight device including a light source module.
  • the present invention provides a light source module including a plurality of light source groups including at least one first light emitting diode of a first chromaticity in a first wavelength range and at least one a second light-emitting diode of a second chromaticity in a second wavelength range, wherein the light emitted by the first light-emitting diode and the light emitted by the second light-emitting diode are mixed with a chromaticity and a first wavelength range after passing through an optical glass element group
  • the light emitted by the lower intermediate chromatic light emitting diode or the light emitted by the intermediate chromatic light emitting diode in the second wavelength range passes through the optical glass element group with the same chromaticity.
  • a second object of the present invention is to provide a strip and comprising a plurality of light source groups, the light source group comprising at least one first light emitting diode of a first chromaticity in a first wavelength range and at least one second wavelength range a second color light emitting diode, wherein the light emitted by the first light emitting diode and the light emitted by the second light emitting diode are mixed through a chromaticity of the optical glass element group and the intermediate chromaticity of the first wavelength range
  • the light of the diode, or the light of the intermediate chromatic light-emitting diode of the second wavelength range passes through the optical glass element with the same chromaticity, and the light emitted by the plurality of light source groups passes through the optical glass element group.
  • the chromaticity produced by the chromaticity of the light-emitting diode of the intermediate chromaticity after passing through the optical glass element group is the same.
  • a third object of the present invention is to provide a backlight device including a light source module
  • the light source module includes a plurality of light source groups, the light source group includes at least one first light emitting diode of a first chromaticity in a first wavelength range and a second light emitting diode of a second chromaticity in at least one second wavelength range,
  • the light emitted by the first light emitting diode is mixed with the light emitted by the second light emitting diode through a chromaticity of the optical glass element group and the light emitted by the light emitting diode of the intermediate chromaticity in the first wavelength range, or the second
  • the light emitted by the light-emitting diodes of the intermediate chromaticity in the wavelength range is the same after the chromaticity of the optical glass element group.
  • the light source module manufactured by the invention and the backlight device using the light source module of the invention can not only improve the use rate of the light-emitting diodes to be used in the backlight device, but are not limited to the same level (bin) as in the prior art.
  • a set of light-emitting diodes can effectively improve the utilization rate of the light-emitting diodes used in the manufacture of the backlight device and the light source module, thereby reducing the cost.
  • FIG. 1 is a sorting chroma level diagram of a conventional light emitting diode.
  • FIG. 2 is a sorting chroma level diagram of a light emitting diode of the present invention.
  • Fig. 3 is a schematic view of a light source module according to a first embodiment of the present invention.
  • FIG. 4 is a schematic view of a light source module according to a second embodiment of the present invention.
  • Fig. 5 is a schematic view of a light source module according to a third embodiment of the present invention.
  • Fig. 6 is a schematic view of a light source module according to a fourth embodiment of the present invention.
  • Fig. 7 is a schematic view of a light source module according to a fifth embodiment of the present invention.
  • Figure 8 is a schematic view of a light source module of a sixth embodiment of the present invention.
  • Figure 9 is a schematic illustration of a side-lit backlight device of the present invention.
  • Figure 10 is a schematic illustration of a direct type backlight device of the present invention.
  • FIG. 2 is a diagram showing the sorting chroma level of the LED of the present invention.
  • Any of the mass-produced LEDs can be sorted by the chromaticity value specification to distinguish the gradation levels of various levels.
  • the first wavelength range Wp1 of the first group of LEDs is about 440-445 nm
  • the second wavelength range Wp2 of the second group of LEDs is about 445-451 nm
  • A1_A5 is the chromaticity in the wavelength range Wp1.
  • the level distribution, B1 - B5 is the chromaticity level distribution in the wavelength range Wp2. Due to the metamerism phenomenon, even at the same color, the wavelength spectrum of the light emitted by the LED is slightly different.
  • the light-emitting diode needs a white point chromaticity A3 at the first wavelength range Wp1 and a white point chromaticity B3 at the second wavelength range Wp2.
  • the chrominance levels eg, A3 and B3
  • the chromaticity exhibited by the intermediate chromaticity is substantially white light.
  • the chromaticity in the direction indicated by the arrow C on A3 or B3 is more and more biased toward blue light (cold light), and the chromaticity in the direction indicated by the arrow D is more and more biased toward red light (warm light).
  • FIG. 3 is a schematic diagram of a light source module 30a according to the first embodiment of the present invention.
  • the light source module 30a is composed of a plurality of light source groups 301 and a plurality of light source groups 301 are disposed on the circuit substrate 40.
  • the first group of light-emitting diodes has a first wavelength range of Wp1 (for example, 440- 445 nm) and the chromaticity level distribution in the wavelength range Wp1 is A1 - A5; the second wavelength range Wp2 (for example, 445 - 451 nm) of the second group of light emitting diodes and the chromaticity level distribution in the wavelength range Wp2 is B1 - B5.
  • Wp1 for example, 440- 445 nm
  • the chromaticity level distribution in the wavelength range Wp1 is A1 - A5
  • the second wavelength range Wp2 for example, 445 - 451 nm
  • Each light source group 301 includes two light emitting diodes 321 and 322, and the light emitting diodes 321 and 322 are alternately arranged one on another.
  • the first group of LEDs (wavelength range Wp1) are selected for the LEDs 321 and 322 respectively.
  • the light-emitting diode of medium-chromaticity level A1 and the light-emitting diode of color level B5 of the second group of light-emitting diodes (wavelength range Wp2), or the first group of light-emitting diodes respectively (wavelength range Wp1)
  • Light-emitting diodes of medium-chrominance level A2 and light-emitting diodes of chromaticity level B4 of the second group of light-emitting diodes (wavelength range Wp2) or respectively select the first group of light-emitting diodes (wavelength range Wp1)
  • the light emitted by the combined light-emitting diodes 321, 322 is mixed with the chromaticity of an optical glass element group and the light of the intermediate chromatic light-emitting diode A3 in the first wavelength range, or the intermediate chromaticity B3 of the second wavelength range.
  • the light of the light-emitting diodes passes through the optical glass element with the same chromaticity.
  • the chromaticity produced by the light emitted by the plurality of light source groups 301 after passing through the optical glass element group and the light emitted by the intermediate chromatic light-emitting diodes A3, B3 passing through the optical glass element group is identical.
  • FIG. 4 is a schematic diagram of a light source module 30b according to a second embodiment of the present invention.
  • the light source module 30b is composed of a plurality of light source groups 302 and a plurality of light source groups 302 are disposed on the circuit substrate 40.
  • Each light source group 302 includes two light emitting diodes 321 and two light emitting diodes 322, and the two light emitting diodes 321 and the two light emitting diodes 322 are two-to-two staggered.
  • the LED 321 and the LED 322 are respectively selected from the first group of LEDs (wavelength range Wp1)
  • Light-emitting diodes of medium-chrominance level A2 and light-emitting diodes of chromaticity level B4 of the second group of light-emitting diodes (wavelength range Wp2) or respectively select the first group of light-emitting diodes (wavelength range Wp1)
  • the light emitted by the combined light-emitting diodes 321, 322 is mixed with the chromaticity of an optical glass element group and the light of the intermediate chromatic light-emitting diode A3 in the first wavelength range, or the intermediate chromaticity B3 of the second wavelength range.
  • the light of the light-emitting diodes passes through the optical glass element with the same chromaticity.
  • the chromaticity produced by the light emitted by the plurality of light source groups 302 after passing through the optical glass element group and the light emitted by the intermediate chromatic light-emitting diodes A3, B3 passing through the optical glass element group is identical.
  • FIG. 5 is a schematic diagram of a light source module 30c according to a third embodiment of the present invention.
  • the light source module 30c is composed of a plurality of light source groups 303 and a plurality of light source groups 303 are disposed on the circuit substrate 40.
  • Each light source group 303 includes a first LED 321 , a second LED 322 , and a third LED 323 .
  • the manner in which the LED 321 and the LED 322 are selected is the same as that of the previous embodiment, and will not be further described herein.
  • the third LED 323 is selected from the first group of LEDs (wavelength range Wp1).
  • LED with medium chroma level A3 or second group of LEDs Light-emitting diode with medium chromaticity level B3.
  • the light emitted by the combined light-emitting diodes 321, 322, and 323 is mixed and passed through a chromaticity of the optical glass element group and the light of the intermediate chromatic light-emitting diode A3 in the first wavelength range, or the second wavelength.
  • the light of the light-emitting diode of the intermediate chromaticity B3 in the range passes through the optical glass element with the same chromaticity.
  • the arrangement order of the LEDs 321, 322, 323 is not limited to that shown in FIG. 5.
  • the LED 323 may be disposed between the LEDs 321, 322.
  • the chromaticity generated by the chromaticity generated by the plurality of light source groups 303 after passing through the optical glass element group and the light emitted by the intermediate chromaticity light-emitting diodes A3, B3 passing through the optical glass element group is identical.
  • Fig. 6 is a schematic view of a light source module 30d according to a fourth embodiment of the present invention.
  • the light source module 30d is composed of a plurality of light source groups 501 and a plurality of light source groups 501 are disposed on the circuit substrate 50.
  • the light source group 501 includes a first light-emitting diode 321 and a second light-emitting diode 322.
  • the light-emitting diodes 321 and 322 are selected and arranged in the same manner as the embodiment shown in FIG. 3, and are not described herein.
  • Fig. 7 is a schematic view of a light source module 30e according to a fifth embodiment of the present invention.
  • the light source module 30e is composed of a plurality of light source groups 502 and a plurality of light source groups 502 are disposed on the circuit substrate 50.
  • the light source group 502 includes two first light-emitting diodes 321 and two second light-emitting diodes 322.
  • the light-emitting diodes 321 and 322 are selected and arranged in the same manner as the embodiment shown in FIG. 4, and are not described herein.
  • Fig. 8 is a schematic view of a light source module 30f according to a sixth embodiment of the present invention.
  • the light source module 30f of FIG. 8 is composed of a plurality of light source groups 503 and a plurality of light source groups 503 are disposed on the circuit substrate 50.
  • the light source group 503 includes a first light-emitting diode 321 , a second light-emitting diode 322 , and a third light-emitting diode 323 .
  • the light-emitting diodes 321 , 322 , and 323 are selected and arranged in the same manner as the embodiment shown in FIG. 5 , and details are not described herein.
  • the light source modules 30d, 30e, and 30f shown in Figs. 6-8 can also be combined by a plurality of 30a, 30b, and 30c shown in Figs. Further, the light-emitting diodes 321, 322, and 323 shown in FIGS. 3 to 8 are provided on a circuit board 40, 50 such as a flexible printed circuit board or a hard printed circuit board or a metal substrate.
  • the chromaticity of the target light is white light as an explanation.
  • light of different wavelengths such as blue light, red light, green light, or the like may be used as the light of the target chromaticity as needed.
  • the mass-produced light-emitting diodes are divided into two or more light-emitting diodes of different wavelength ranges according to their corresponding wavelength ranges, and finally one light-emitting diode is selected from two or more light-emitting diodes to be mixed into light of a target chromaticity.
  • FIG. 9 is a schematic diagram of the light source module 30 of the present invention applied to the edge-lit backlight device 100.
  • the light source module 30 is one selected from the light source modules 30a-30f.
  • the side-lit backlight device 100 includes a light guide plate 20 and a light source module 30.
  • the light source module 30 is disposed on four sides of the light guide plate 20 for emitting light of a specific target chromaticity. In this embodiment, the light source module 30 is disposed on four sides of the light guide plate 20. In other embodiments, the light source module 30 may be disposed beside either side of the light guide plate 20, beside any two sides, or beside any three sides. .
  • the light incident surface 201 of the light guide plate 20 facing the light source module 30 may be a flat surface, a sawtooth structure surface, or have a plurality of concave surfaces or a plurality of convex surfaces.
  • FIG. 10 is a schematic diagram of the light source module 30 of the present invention applied to a direct type backlight device 200.
  • the LED backlight device 200 includes a light guide plate 20 and a light source module 30.
  • the light source module 30 is one selected from the light source modules 30a-30f.
  • the light source module 30 is disposed at the bottom of the LED backlight device 200, and the light guide plate 20 is disposed on the light source module 30 in an overlapping manner.
  • the light incident surface of the light guide plate 20 facing the light source module 30 may be a flat surface, a sawtooth structure surface, or have a plurality of concave surfaces or a plurality of convex surfaces.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

光源模块以及背光装置 技术领域
本发明是有关于一种光源模块以及背光装置,特别是有关于一种可提高发光二极管使用率的光源模块以及背光装置。
背景技术
液晶显示装置(Liquid Crystal Display,LCD)包括背光光源、胶框及扩散板等构成的背光装置与液晶面板及前框组装而构成的液晶模块。由于发光二极管的低功耗、不含汞的特性,以往液晶显示装置的背光光源多采用的冷阴极荧光灯管(Cold Cathode Fluorescent Lamp, CCFL)正在迅速地被发光二极管(LED)所取代。
目前,采用发光二极管作为光源的显示器,均将发光二极管设置在PCB或柔性电路板上形成一光源模块(Lightbar)。而对于光源模块中的发光二极管,会以一预定的规格对发光二极管成品进行筛选用以对量产的发光二极管进行分类,通常对发光二极管进行分类的性能指标包括:发光二极管的亮度、色度、波长或正向电压等,进而将发光二极管进行分级。面板生产商通常会选择被分类在某一主要色度级别(bin)中的发光二极管,先前只有符合色度规格的发光二极管才可应用于的光源,其余色度级别的发光二极管便无法被采用,因此,必然会导致被选使用的发光二极管数量占量产总量的比例过小。
如图1所示,图1为发光二极管的分选色度级别图。其中A3为需求的白光色度级别,A1和A2呈现的颜色较需求白光偏蓝,A4和A5呈现的颜色较需求的白光偏黄。为了提高发光二极管的利用率,挑选色度级别所呈现色度相互补的发光二极管,并使其混合地设置于同一光源模块上,以混合出一预期的整体发光色度。举例来说,为了更有效率应用每一批量生产出来的发光二极管32,相邻发光二极管会分别选用色度级别A1与色度级别为A5的发光二极管,或是分别选用色度级别A2与色度级别A4的发光二极管,使得相邻两发光二极管混合后的色度级别为A3。但是,由于每一次量产的发光二极管,产出的色度级别并不是对称的,也就是说色度级别A1的发光二极管和色度级别A5的发光二极管的产出数量不相等,色度级别A2的发光二极管和色度级别A4的发光二极管的产出数量不相等,因此造成每一次生产的发光二极管无法得到充分利用。
因此,有必要提供一种光源模块以及背光装置,以解决现有技术所存在的问题。
技术问题
本发明的目的之一在于提供一种光源模块,其利用针对发光二极管的色度级别(COLOR BIN)而进行配置。
本发明的目的之二在于提供一种呈条状且包含多个光源组,所述光源组包含至少一个第一波长范围下第一色度的第一发光二极管和至少一个第二波长范围下第二色度的第二发光二极管。
本发明的目的之三在于提供一种背光装置,该背光装置包括一光源模块 。
技术解决方案
为达成本发明的前述目的,本发明提供一种光源模块,所述光源模块包含多个光源组,所述光源组包含至少一个第一波长范围下第一色度的第一发光二极管和至少一个第二波长范围下第二色度的第二发光二极管,所述第一发光二极管发出的光线与所述第二发光二极管发出的光线混合经过一光学玻璃元件组后的色度与第一波长范围下的中间色度的发光二极管发出的光线、或第二波长范围下的中间色度的发光二极管发出的光线经过所述光学玻璃元件组后的色度相同。
本发明的目的之二在于提供一种呈条状且包含多个光源组,所述光源组包含至少一个第一波长范围下第一色度的第一发光二极管和至少一个第二波长范围下第二色度的第二发光二极管,所述第一发光二极管发出的光线与所述第二发光二极管发出的光线混合经过一光学玻璃元件组后的色度与第一波长范围下的中间色度发光二极管的光线、或第二波长范围下的中间色度的发光二极管的光线经过所述光学玻璃元件后的色度相同,所述多个光源组发出的光线经所述光学玻璃元件组后产生的色度与所述中间色度的发光二极管发出的光线经过所述光学玻璃元件组后产生的色度是相同的。
本发明的目的之三在于提供一种背光装置,该背光装置包括一光源模块 ,所述光源模块包含多个光源组,所述光源组包含至少一个第一波长范围下第一色度的第一发光二极管和至少一个第二波长范围下第二色度的第二发光二极管,所述第一发光二极管发出的光线与所述第二发光二极管发出的光线混合经过一光学玻璃元件组后的色度与第一波长范围下的中间色度的发光二极管发出的光线、或第二波长范围下的中间色度的发光二极管发出的光线经过所述光学玻璃元件组后的色度后相同。
有益效果
依据本发明所制作的光源模块以及采用本发明光源模块的背光装置,不仅可提高背光装置需采用的发光二极管的使用率,而不再受限于如现有技术,必须选用同一级别(bin)的一组发光二极管,能有效地提高制作背光装置及光源模块时,所采用发光二极管的使用率,降低成本。
附图说明
图1为传统发光二极管的分选色度级别图。
图2为本发明发光二极管的分选色度级别图。
图3是本发明第一实施例的光源模块的示意图。
图4是本发明第二实施例的光源模块的示意图。
图5是本发明第三实施例的光源模块的示意图。
图6是本发明第四实施例的光源模块的示意图。
图7是本发明第五实施例的光源模块的示意图。
图8是本发明第六实施例的光源模块的示意图。
图9是本发明侧入式背光裝置的示意图。
图10是本发明直下式背光装置的示意图。
本发明的最佳实施方式
为让本发明上述目的、特征及优点更明显易懂,下文特举本发明较佳实施例,并配合附图,作详细说明如下:
请参照图2,图2为本发明发光二极管的分选色度级别图。任一批量生产的发光二极管经色度值规格分选后,可区分出各种等级的色度级别。举例来说,第一组发光二极管的第一波长范围Wp1约为440-445nm,第二组发光二极管的第二波长范围Wp2约为445-451nm,其中A1—A5为波长范围Wp1下的色度级别分布,B1—B5为波长范围为Wp2下的色度级别分布。由于同色异谱现象,即使同一色度下,发光二极管的发出光线的波长谱线仍稍有差异。举例来说,为使液晶显示装置最终表现出相同的色度,发光二极管需要在第一波长范围Wp1下的白点色度为A3;第二波长范围Wp2下的白点色度为B3。一般而言,每一波长范围Wp1、Wp2在中间位置的色度级别(例如A3和B3)为中间色度,该中间色度所呈现的发光色度实质上为白光。以A3或B3为准朝箭头C所示方向的色度则越来越偏向蓝光(冷色光),朝箭头D所示方向的色度则越来越偏向红光(暖色光)。
请参阅图2和图3,图3是本发明第一实施例的光源模块30a的示意图。光源模块30a由多个光源组301组成且多个光源组301设置于电路基板40上。为了更有效率应用每一批量生产出来的发光二极管,当批量生产的发光二极管分别为第一组发光二极管和第二组发光二极管,其中第一组发光二极管为第一波长范围Wp1(例如440-445nm)而且在波长范围Wp1下的色度级别分布为A1—A5;第二组发光二极管的第二波长范围Wp2(例如445-451nm)而且波长范围Wp2下的色度级别分布为B1—B5。每一光源组301包含两发光二极管321、322,发光二极管321、322一对一交错排列。发光二极管321、322分别选用第一组发光二极管(波长范围Wp1) 中色度级别A1的发光二极管与第二组发光二极管(波长范围Wp2)中色度级别B5的发光二极管,或是分别选用第一组发光二极管(波长范围Wp1) 中色度级别A2的发光二极管与第二组发光二极管(波长范围Wp2) 中色度级别B4的发光二极管,或是分别选用第一组发光二极管(波长范围Wp1) 中色度级别A4的发光二极管与第二组发光二极管(波长范围Wp2) 中色度级别B2的发光二极管,或是分别选用第一组发光二极管(波长范围Wp1) 中色度级别A5的发光二极管与第二组发光二极管(波长范围Wp2) 中色度级别B1的发光二极管。上述组合后的发光二极管321、322发出的光线混合经过一光学玻璃元件组后的色度与第一波长范围下的中间色度发光二极管A3的光线、或第二波长范围下的中间色度B3的发光二极管的光线经过所述光学玻璃元件后的色度相同。所述多个光源组301发出的光线经所述光学玻璃元件组后产生的色度与所述中间色度的发光二极管A3、B3发出的光线经过所述光学玻璃元件组后产生的色度是相同的。
请参阅图2和图4,图4是本发明第二实施例的光源模块30b的示意图。不同于前述实施例,光源模块30b由多个光源组302组成且多个光源组302设置于电路基板40上。每一光源组302包含两发光二极管321和两发光二极管322,且两发光二极管321和两发光二极管322是二对二交错排列。发光二极管321和发光二极管322分别选用第一组发光二极管(波长范围Wp1) 中色度级别A1的发光二极管与第二组发光二极管(波长范围Wp2)中色度级别B5的发光二极管,或是分别选用第一组发光二极管(波长范围Wp1) 中色度级别A2的发光二极管与第二组发光二极管(波长范围Wp2) 中色度级别B4的发光二极管,或是分别选用第一组发光二极管(波长范围Wp1) 中色度级别A4的发光二极管与第二组发光二极管(波长范围Wp2) 中色度级别B2的发光二极管,或是分别选用第一组发光二极管(波长范围Wp1) 中色度级别A5的发光二极管与第二组发光二极管(波长范围Wp2) 中色度级别B1的发光二极管。上述组合后的发光二极管321、322发出的光线混合经过一光学玻璃元件组后的色度与第一波长范围下的中间色度发光二极管A3的光线、或第二波长范围下的中间色度B3的发光二极管的光线经过所述光学玻璃元件后的色度相同。所述多个光源组302发出的光线经所述光学玻璃元件组后产生的色度与所述中间色度的发光二极管A3、B3发出的光线经过所述光学玻璃元件组后产生的色度是相同的。
请参阅图2和图5,图5是本发明第三实施例的光源模块30c的示意图。光源模块30c由多个光源组303组成且多个光源组303设置于电路基板40上。每一光源组303包含一第一发光二极管321、一第二发光二极管322和一第三发光二极管323。发光二极管321和发光二极管322选用的方式与前述实施例相同,在此不另赘述。而第三发光二极管323则是选用第一组发光二极管(波长范围Wp1) 中色度级别A3的发光二极管或是第二组发光二极管(波长范围Wp2) 中色度级别B3的发光二极管。如此一来,上述组合后的发光二极管321、322、323发出的光线混合后经过一光学玻璃元件组后的色度与第一波长范围下的中间色度发光二极管A3的光线、或第二波长范围下的中间色度B3的发光二极管的光线经过所述光学玻璃元件后的色度相同。发光二极管321、322、323的排列次序不以图5所示为限,例如,发光二极管323也可以排在发光二极管321、322之间。所述多个光源组303发出的光线经所述光学玻璃元件组后产生的色度与所述中间色度的发光二极管A3、B3发出的光线经过所述光学玻璃元件组后产生的色度是相同的。
图6是本发明第四实施例的光源模块30d的示意图。光源模块30d是由多个光源组501组成且多个光源组501设置于电路基板50上。光源组501包含第一发光二极管321和第二发光二极管322,发光二极管321、322选择与排列方式与图3所示的实施例相同,在此不另赘述。
图7是本发明第五实施例的光源模块30e的示意图。光源模块30e是由多个光源组502组成且多个光源组502设置于电路基板50上。光源组502包含两第一发光二极管321和两第二发光二极管322,发光二极管321、322选择与排列方式与图4所示的实施例相同,在此不另赘述。
图8是本发明第六实施例的光源模块30f的示意图。图8的光源模块30f是由多个光源组503组成且多个光源组503设置于电路基板50上。光源组503包含第一发光二极管321、第二发光二极管322和第三发光二极管323,发光二极管321、322、323选择与排列方式与图5所示的实施例相同,在此不另赘述。
图6-图8所示的光源模块30d、30e、30f亦可以由多个图3-图5所示的30a、30b、30c合并组成。另外,图3-图8所示的发光二极管321、322、323是设置在软式印刷电路板或是硬式印刷电路板或是金属基板等电路基板40、50上。
上述实施例,是以目标光的色度为白光作为说明。在其它实施例中,也可以视需要以不同波长的光线例如蓝光、红光、绿光等作为目标色度的光线。接着再将量产的发光二极管依其对应波长范围分成两组以上的不同波长范围的发光二极管,最后在从两组以上的发光二极管中各选一个发光二极管以混合成符合目标色度的光线的光源组。
请参照图9,图9是本发明光源模块30应用于侧入式背光装置100的示意图。光源模块30是选自光源模块30a-30f的其中之一。侧入式背光装置100包含导光板20及光源模块30。光源模块30设置在导光板20的四侧面,用来发出特定的目标色度的光线。在本实施例中,光源模块30设置在导光板20的四个侧面,在其它实施例中,光源模块30也可以设置导光板20的任一侧面旁、任两侧面旁或是任三侧面旁。导光板20面对光源模块30的入光面201可以是平面、锯齿结构面,或是具有多个凹面或多个凸面。
请参照图10,图10是本发明光源模块30应用于直下式背光装置200的示意图。发光二极管背光装置200包含导光板20及光源模块30。光源模块30是选自光源模块30a-30f的其中之一。光源模块30设置在发光二极管背光装置200的底部,导光板20重叠设置在光源模块30上。导光板20面对光源模块30的入光面可以是平面、锯齿结构面,或是具有多个凹面或多个凸面。
本发明已由上述相关实施例加以描述,然而上述实施例仅为实施本发明的范例。必需指出的是,已公开的实施例并未限制本发明的范围。相反地,包含于权利要求书的精神及范围的修改及均等设置均包括于本发明的范围内。
本发明的实施方式
工业实用性
序列表自由内容

Claims (20)

  1. 一种光源模块,其特征在于,所述光源模块呈条状且包含多个光源组,所述光源组包含至少一个第一波长范围下第一色度的第一发光二极管和至少一个第二波长范围下第二色度的第二发光二极管,所述第一发光二极管发出的光线与所述第二发光二极管发出的光线混合经过一光学玻璃元件组后的色度与第一波长范围下的中间色度发光二极管的光线、或第二波长范围下的中间色度的发光二极管的光线经过所述光学玻璃元件后的色度相同,所述多个光源组发出的光线经所述光学玻璃元件组后产生的色度与所述中间色度的发光二极管发出的光线经过所述光学玻璃元件组后产生的色度是相同的。
  2. 如权利要求1所述的光源模块,其特征在于:每一光源组的所述第一发光二极管和所述第二发光二极管是一对一交错排列。
  3. 如权利要求1所述的光源模块,其特征在于:每一光源组包含两个第一发光二极管和两个第二发光二极管,且所述第一发光二极管和所述第二发光二极管是二对二交错排列。
  4. 如权利要求1所述的光源模块,其特征在于:每一光源组进一步包含一第三发光二极管,所述第三发光二极管是选自于所述第一波长范围下符合所述中间色度的发光二极管,或是选自于所述第二波长范围下符合所述中间色度的发光二极管。
  5. 一种光源模块,其特征在于,所述光源模块包含多个光源组,所述光源组包含至少一个第一波长范围下第一色度的第一发光二极管和至少一个第二波长范围下第二色度的第二发光二极管,所述第一发光二极管发出的光线与所述第二发光二极管发出的光线混合经过一光学玻璃元件组后的色度与第一波长范围下的中间色度发光二极管的光线、或第二波长范围下的中间色度的发光二极管的光线经过所述光学玻璃元件后的色度相同。
  6. 如权利要求5所述的光源模块,其特征在于:每一光源组的所述第一发光二极管和所述第二发光二极管是一对一交错排列。
  7. 如权利要求5所述的光源模块,其特征在于:每一光源组包含两个第一发光二极管和两个第二发光二极管,且所述第一发光二极管和所述第二发光二极管是二对二交错排列。
  8. 如权利要求5所述的光源模块,其特征在于:每一光源组进一步包含一第三发光二极管,所述第三发光二极管是选自于所述第一波长范围下符合所述中间色度的发光二极管,或是选自于所述第二波长范围下符合所述中间色度的发光二极管。
  9. 如权利要求5所述的光源模块,其特征在于:所述光源模块呈条状。
  10. 如权利要求5所述的光源模块,其特征在于:所述光源模块呈块状。
  11. 如权利要求5所述的光源模块,其特征在于:所述中间色度的光线是白光。
  12. 一种背光装置,其特征在于:所述背光装置包含如权利要求5所述光源模块。
  13. 如权利要求12所述个背光装置,其特征在于:所述背光装置的光源模块的每一光源组的所述第一发光二极管和所述第二发光二极管是一对一交错排列。
  14. 如权利要求12所述个背光装置,其特征在于:所述背光装置的光源模块的每一光源组包含两个第一发光二极管和两个第二发光二极管,且所述第一发光二极管和所述第二发光二极管是二对二交错排列。
  15. 如权利要求12所述个背光装置,其特征在于:所述背光装置的光源模块的每一光源组进一步包含一第三发光二极管,所述第三发光二极管是选自于所述第一波长范围下符合所述中间色度的发光二极管,或是选自于所述第二波长范围下符合所述中间色度的发光二极管。
  16. 如权利要求12所述个背光装置,其特征在于:所述光源模块呈条状。
  17. 如权利要求12所述的背光装置,其特征在于:所述光源模块呈块状。
  18. 如权利要求12所述的背光装置,其特征在于:所述背光装置的多个光源组发出的光线经光学玻璃元件组后产生的色度与所述中间色度的发光二极管发出的光线经过光学玻璃元件组后产生的色度是相同的。
  19. 如权利要求12所述的背光装置,其特征在于:所述背光装置为直下式背光装置。
  20. 如权利要求12所述的背光装置,其特征在于:所述背光装置为侧入式背光装置。
PCT/CN2010/079152 2010-11-05 2010-11-26 光源模块以及背光装置 WO2012058829A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/997,904 US20120113681A1 (en) 2010-11-05 2010-11-26 Lightbar module and backlight device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010105368261A CN102072439B (zh) 2010-11-05 2010-11-05 光源模块以及背光装置
CN201010536826.1 2010-11-05

Publications (1)

Publication Number Publication Date
WO2012058829A1 true WO2012058829A1 (zh) 2012-05-10

Family

ID=44031095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/079152 WO2012058829A1 (zh) 2010-11-05 2010-11-26 光源模块以及背光装置

Country Status (2)

Country Link
CN (1) CN102072439B (zh)
WO (1) WO2012058829A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103133939B (zh) * 2011-11-30 2015-02-04 展晶科技(深圳)有限公司 背光模块的光源结构
CN104081546B (zh) * 2012-01-31 2016-12-21 夏普株式会社 Led分类方法、led分类装置
CN104914623A (zh) 2015-06-19 2015-09-16 深圳市华星光电技术有限公司 发光单元及具有该发光单元的背光光源
CN110308589B (zh) * 2019-06-28 2023-05-05 上海天马微电子有限公司 发光装置的制作方法、发光装置、背光模组和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101206345A (zh) * 2007-12-13 2008-06-25 友达光电股份有限公司 具有互补同色光源的背光模块及其制造方法
JP2008281976A (ja) * 2007-04-09 2008-11-20 M & S Fine Tec Kk 液晶表示装置用バックライト
CN101363577A (zh) * 2008-09-25 2009-02-11 友达光电股份有限公司 使用混光光源模块的背光模块及其制造方法
CN101433129A (zh) * 2006-04-28 2009-05-13 夏普株式会社 照明装置和包括该照明装置的液晶显示装置
CN101464593A (zh) * 2007-12-19 2009-06-24 上海天马微电子有限公司 光源器件以及使用该光源器件的液晶显示装置
CN101806415A (zh) * 2010-03-08 2010-08-18 友达光电股份有限公司 光电装置、显示器及背光模块

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4201167B2 (ja) * 2002-09-26 2008-12-24 シチズン電子株式会社 白色発光装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101433129A (zh) * 2006-04-28 2009-05-13 夏普株式会社 照明装置和包括该照明装置的液晶显示装置
JP2008281976A (ja) * 2007-04-09 2008-11-20 M & S Fine Tec Kk 液晶表示装置用バックライト
CN101206345A (zh) * 2007-12-13 2008-06-25 友达光电股份有限公司 具有互补同色光源的背光模块及其制造方法
CN101464593A (zh) * 2007-12-19 2009-06-24 上海天马微电子有限公司 光源器件以及使用该光源器件的液晶显示装置
CN101363577A (zh) * 2008-09-25 2009-02-11 友达光电股份有限公司 使用混光光源模块的背光模块及其制造方法
CN101806415A (zh) * 2010-03-08 2010-08-18 友达光电股份有限公司 光电装置、显示器及背光模块

Also Published As

Publication number Publication date
CN102072439B (zh) 2012-11-21
CN102072439A (zh) 2011-05-25

Similar Documents

Publication Publication Date Title
KR101109377B1 (ko) 디스플레이 시스템들을 위한 led 백라이트
CN1954250B (zh) 背照光装置及彩色液晶显示装置
US7270461B2 (en) Backlight unit and liquid crystal display utilizing the same
US8267542B2 (en) Apparatus and methods for selecting light emitters
US7309152B2 (en) Light source structure of backlight module
US20070274093A1 (en) LED backlight system for LCD displays
CN203686775U (zh) 一种ld补光背光装置
US20090196017A1 (en) Backlight module
US20060203484A1 (en) Light emitting diode, light emitting diode module, and related backlight system
CN105700230A (zh) 背光源、背光模组及显示装置
WO2012058829A1 (zh) 光源模块以及背光装置
US20120057102A1 (en) Backlight module
US8118443B2 (en) Display apparatus and light source device used in the display apparatus
CN101435947A (zh) 一种led背光模组的排布方式及led液晶背光屏
CN101338877B (zh) 发光二极管阵列及背光模组
US8610843B2 (en) Backlight module and liquid crystal display apparatus
US20120113681A1 (en) Lightbar module and backlight device
US7300174B2 (en) Multicolor light source and backlight module using the same
TWI407196B (zh) 發光二極體背光模組及其應用
CN100458528C (zh) 背光模组
CN201314530Y (zh) 混色良好、光强均衡的led背光板
CN201314531Y (zh) 混色良好、光强均衡的led灯板
CN103728773A (zh) 四基色led背光的发光单元排布方法
CN217767722U (zh) 一种显示面板及显示模组
CN101364005A (zh) 四基色led背光的led排布方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 12997904

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10859177

Country of ref document: EP

Kind code of ref document: A1