WO2012055641A2 - Sensorvorrichtung, insbesondere metallsensor, mit feldkompensiertem magnetfeldsensor - Google Patents

Sensorvorrichtung, insbesondere metallsensor, mit feldkompensiertem magnetfeldsensor Download PDF

Info

Publication number
WO2012055641A2
WO2012055641A2 PCT/EP2011/066378 EP2011066378W WO2012055641A2 WO 2012055641 A2 WO2012055641 A2 WO 2012055641A2 EP 2011066378 W EP2011066378 W EP 2011066378W WO 2012055641 A2 WO2012055641 A2 WO 2012055641A2
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
magnetic field
coils
coil
sensor device
Prior art date
Application number
PCT/EP2011/066378
Other languages
English (en)
French (fr)
Other versions
WO2012055641A3 (de
Inventor
Reiner Krapf
Tobias Zibold
Andrej Albrecht
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US13/881,659 priority Critical patent/US20130300401A1/en
Priority to EP11761560.9A priority patent/EP2633340A2/de
Priority to CN2011800520000A priority patent/CN103154775A/zh
Publication of WO2012055641A2 publication Critical patent/WO2012055641A2/de
Publication of WO2012055641A3 publication Critical patent/WO2012055641A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0005Geometrical arrangement of magnetic sensor elements; Apparatus combining different magnetic sensor types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/10Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils
    • G01V3/104Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils using several coupled or uncoupled coils
    • G01V3/105Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils using several coupled or uncoupled coils forming directly coupled primary and secondary coils or loops
    • G01V3/107Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils using several coupled or uncoupled coils forming directly coupled primary and secondary coils or loops using compensating coil or loop arrangements

Definitions

  • the invention relates to a sensor device and a method for localization of objects enclosed in a medium, in particular metallic objects, according to the preamble of claim 1 and claim 15.
  • the invention describes a tool device, in particular a measuring device, for example a hand-held locating device with Such a sensor device for carrying out the method according to claim 15.
  • locating devices For detection of objects enclosed in a medium, such as, for example, a wall, a ceiling or a floor, such as, for example, electrical lines, water pipes, pipes, metal stands, locating devices have been used for some time.
  • inductive devices i. Devices that one
  • the object of the invention is the improvement of metal sensors for finding metallic objects in walls and floors in terms of miniaturization, integration and performance.
  • a core of the invention is a metal sensor for detecting metallic objects in walls and floors, which combines the advantages of field compensated, differential, coil-based sensors and the additional advantages of special magnetic field sensors, especially low-cost Hall sensors, but also AMR / GMR based magnetometers and SQU IDS, makes use of.
  • AMR sensor anisotropic magneto-resistive sensor
  • GMR sensor giant magneto-resistive sensor
  • SQUID superconducting quantum interference device
  • Magnetic field sensors are the compact size, high sensitivity, in particular a sensitivity to local magnetic field changes instead of changes in the magnetic flux through larger areas.
  • the invention proposes a system of transmitting coils and magnetic field sensors.
  • the sensor device according to the invention for the localization of objects enclosed in a medium, in particular for the detection of metallic objects, has an arrangement with at least two coils and a magnetic field sensor, wherein the arrangement of coils and magnetic sensor to each other and / or the number of coil turns and / or the sense of winding the coil and / or the coil current is / are selected such that the magnetic field generated by the coils at the location of the magnetic field sensor approximately disappears.
  • This secondary field can then according to the invention be measured by a magnetic field sensor.
  • the compensation of the primary field at the location of the magnetic field sensor achievable in this arrangement is very advantageous for the use of magnetic field sensors for the detection of metallic / magnetizable objects) since too high magnetic fields would bring the magnetic field sensor out of its working range.
  • high magnetic fields are necessary in the measurement in order to generate sufficiently high magnetic fields at the location of the object, so that the resulting secondary fields at the location of the sensor are still sufficiently high.
  • the device according to the invention makes it possible advantageously to minimize the primary field or even to make it disappear, but that induced by the primary field
  • Secondary field of an object to be detected is sufficiently large to be detected with a magnetic field sensor.
  • Another advantage of the compensation of the primary field is that the ratio of object-conditioned signal (signal resulting from secondary field) to basic signal
  • the described system of transmitting coils and magnetic field sensor can be realized in an advantageous manner with a drive according to the push-pull regulator principle.
  • Advantages of the push-pull controller are the high dynamics over a large field range and the high signal-to-noise ratio due to the advantageous use of a synchronous demodulator.
  • the secondary fields are very small (typically a few 10 nT). Therefore, the high-sensitivity AMR / GMR magnetic sensors are particularly suitable for such an embodiment while Hall sensors are less suitable in this case.
  • Figure 1 shows a typical arrangement of an inventive
  • 4a, 4b show the calculated z component of the primary magnetic field of two coils of the sensor device, as well as the secondary magnetic field generated by an object, in an overview (2a), as well as in a detailed representation (2b),
  • FIG. 5 control of the sensor device according to the invention by means of a push-pull controller
  • Figure 6 shows an embodiment of an inventive tool in the form of a tracking device. Description of an embodiment
  • FIG. 1 shows a possible embodiment of a device according to the invention
  • FIG. 1 The arrangement of a sensor device according to the invention shown by way of example in FIG. 1 has two coils ("outer coil 12", “inner coil 14"), which are used in space for a periodically changing quasi-stationary one
  • Magnetic field in particular a dipole field to produce (see also, for example, Figure 2).
  • a magnetic field sensor 16 which may be formed, for example, as a Hall sensor, an AMR or GMR sensor or else as a SQUID, is used to measure a magnetic field, which is generated in particular by an object to be detected.
  • Coils and the sensor to each other, and number of turns, sense of winding, and coil current of the coils are inventively chosen such that the magnetic field generated by the coils at the location of the magnetic field sensor (and ideally only there) approximately (and ideally exactly) disappears, i. becomes zero, so at the location of the magnetic field sensor field compensation takes place.
  • An ideal field compensation in which the magnetic field of the coils in the mathematical sense to zero, is hardly realizable from a practical point of view. This is to be expressed by the term "approximate" disappears, the rest and so-called “dirt effects", the absolute
  • the two coils 12, 14 of the sensor device in the embodiment of Figure 1 are concentric with each other in a common plane, in particular on a common circuit board 18 is formed.
  • N number of turns of the outer coil
  • d diameter of the outer coil
  • N ' number of turns of the inner coil
  • d' diameter of the inner coil
  • the respective coil diameter must be large relative to the pitch of the individual coil turns in the coil.
  • An advantage of using two coils with opposite sense of winding is in particular that one can connect the coils in series.
  • the coils are formed as a print coil on the circuit board 18.
  • the transmitter coils are adjacent to each other and / or overlap, for example.
  • a core of the invention is always to mount the magnetic field sensor in a range disappearing coil magnetic field.
  • a magnetic field sensor 16 in the embodiment of a GMR sensor is arranged in the embodiment of FIG.
  • Alternative magnetic field sensors are also possible.
  • the preferred direction of the sensor that is, the direction to the magnetic fields must be parallel to be measured by the sensor with maximum sensitivity, in a planar, concentric coil assembly with magnetic field sensor in the coil center, as shown in Figure 1, in the normal direction of the coil plane demonstrate.
  • the compensation of the primary field at the location of the magnetic field sensor 16 is advantageous for the use of a magnetic field sensor in this application (detection of metallic / magnetizable objects), since too high magnetic fields bring the sensor 16 out of its working range. However, high magnetic fields are necessary to generate sufficiently high magnetic fields at the location of the object, so that the resulting secondary fields at the location of the sensor 16 are still sufficiently high.
  • Another advantage of the compensation of the primary field is that the ratio of object-related signal (signal resulting from secondary field) to basic signal (signal resulting from primary field) is improved by several orders of magnitude.
  • the diameter of the inner coil is substantially limited by the size of the magnetic field sensor and is thus at a minimum value of about 5 mm
  • Figures 2a and 2b show the calculated magnetic field of two print coils (outer coil with 4 turns, radius 2 cm), inner coil (1 turn, radius 0.5 cm) in the x-z plane.
  • the magnetic field is rotationally symmetric about the z-axis.
  • the left-hand figure 2a shows the dipole-shaped field in the outer region
  • the right-hand figure 2b shows the compensation of the fields generated by the two coils in the region of the inner coil.
  • Figures 3a and 3b show calculated magnitudes of the magnetic field of the outer coil (A), the outer and inner coils (B).
  • the curves show that the magnetic field of the outer and inner coil disappears together at the origin (so-called "field compensation") .
  • the outdoor field is almost unaffected by the compensation, which is important to ensure the same sensor range without the additional compensation coil in Shape of the inner coil would be achieved.
  • Figure 4 shows the z-component of the primary (C) and secondary magnetic field (D) along the z-axis.
  • Figure 4b shows a detail in the immediate vicinity of the zero point, compare the respective scales).
  • the described system of transmitting coil and magnetic field sensor can be controlled very well and advantageously with a push-pull controller 20.
  • Advantages of the push-pull controller are the high dynamics over a large field range as well as the high signal-to-noise ratio by using a synchronous demodulator.
  • FIG. 5 shows an exemplary connection of the coils and of the magnetic sensor in push-pull operation.
  • the push-pull regulator 20 consists of a signal source 24, controllable amplifiers 26, 28, synchronous demodulator 22 and integrating comparator 30.
  • the controllable amplifiers 26, 28 energize the two transmitting coils 12, 14 with 180 ° phase-shifted, periodically changing Currents of independent amplitude.
  • the transmitting coils (for example outer and inner coils according to FIG. 1) are now wound in such a way that, at least in the absence of metallic / magnetizable objects in the region of the transmitting coil field, they produce - at least at one time - oppositely directed magnetic fields which cancel out at the location of the sensor.
  • the sensor 16 is optionally connected to the synchronous demodulator 22 via an optional amplifier 32.
  • the push-pull control via the integrating comparator 30 controls the amplitudes of the transmitting coil currents by means of the controllable amplifiers 26, 28 in such a way that the magnetic field disappears at the location of the sensor even if a metallic / magnetizable object is present in the region of the transmitting coil field at least at one point in time.
  • This control value changes in the presence of a metallic / magnetizable object and can therefore be used to detect such.
  • the use of multiple magnetic field sensors at each of the locations that are held by the respective compensation coil field-free is an advantageous Variant of the sensor device according to the invention.
  • the advantage of this is that you can measure the secondary field (ie, the field generated by an object to be measured) at different locations and thus at least in principle conclusions about object properties, such as the lateral position, the Ein gleichtiefe or orientation can draw
  • FIG. 6 shows a possible exemplary embodiment of a tool device according to the invention as a measuring device, in the form of a hand-held locating device 86g, which has a sensor device according to the invention.
  • the hand-held device 86g has a locating device 24g with a sensor device 26g according to the invention.
  • the sensor device 26g comprises in the manner already described at least two coils and at least one magnetic field sensor, which are arranged in accordance with the invention and operate according to the inventive method.
  • the locating device 24g further comprises a drive unit 28g, in particular with a push-pull control 20, and an evaluation unit 30g for processing and processing the measurement signals.
  • the control signal 32 of the push-pull control 20 can be used by the evaluation unit 30g in order to characterize an object as detected or not detected. That is, the control signal 32 of the differential mode control of the sensor device according to the invention is used to detect the objects.
  • the manual positioning device 86g also has rollers 88g with distance measuring means, not shown in more detail, by means of which an operator can move the hand-held device 86g along the medium.
  • the hand-held location device 86g displays detected objects as a function of the traveled path.
  • the displacement sensor allows the assignment of a detection value of the sensor device according to the invention to a spatial position of the measuring device.
  • the measuring device according to the invention enables the correlated representation of the detection signal and position of enclosed objects via a corresponding output unit, 90g, in particular a graphic display.
  • the displacement sensor can be dispensed with and the detection of an object, for example, only by a light signal and (/ or an acoustic signal to be transmitted.
  • the method according to the invention or a tool device operating according to this method is not limited to the exemplary embodiments illustrated in the figures. In particular, the inventive method is not limited to the
  • a core of the invention is to attach the magnetic field sensor in a range disappearing coil magnetic field.
  • the use of multiple magnetic field sensors at each of the locations that are kept free of field by the respective compensation coil is an advantageous variant of the sensor device according to the invention.
  • the advantage of this is that you can measure the secondary field (ie, the field generated by an object to be measured) at different locations and thus at least in principle conclusions about object properties, such as the lateral position, the Ein gleichtiefe or orientation can draw
  • the magnetic field could be brought to zero by a shielding device and the magnetic sensor be mounted in the appropriate place.
  • the tool according to the invention is not limited to a measuring device, in particular a tracking device. Also sawing, grinding or drilling
  • Tool devices can with the sensor device according to the invention be equipped as it is integrated as in the tool device measuring system or as a tool to be attached to the accessory.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Geophysics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

Die Erfindung betrifft eine Sensorvorrichtung, insbesondere einen Metallsensor, mit zumindest zwei Spulen und einem Magnetfeldsensor, bei der die Anordnung von Spulen und Magnetsensor zueinander und/oder die Anzahl der Spulenwindungen und/oder der Wicklungssinn der Spulen und/oder der Spulenstrom derart gewählt ist/sind, dass das von den Spulen erzeugte Magnetfeld am Ort des Magnetfeldsensors näherungsweise verschwindet. Des weiteren betrifft die Erfindung ein Verfahren zur Detektion von Objekten, insbesondere ein Verfahren zum Auffinden metallischer Objekte, unter Verwendung zumindest zweier Spulen und eines Magnetfeldsensors, insbesondere eines AMR-, GMR- oder Hall-Sensors, bei dem die Anordnung der Spulen und des Magnetsensors zueinander und/oder die Anzahl der Spulenwindungen und/oder der Wicklungssinn der Spulen und/oder der Spulenstrom derart gewählt ist/sind, dass das von den Spulen erzeugte Magnetfeld am Ort des Magnetfeldsensors näherungsweise verschwindet.

Description

Beschreibung Titel
Sensorvorrichtung, insbesondere Metallsensor, mit feldkompensiertem Magnetfeldsensor
Die Erfindung betrifft eine Sensorvorrichtung und ein Verfahren zur Lokalisierung von in einem Medium eingeschlossenen Objekten, insbesondere metallischen Objekten, nach dem Oberbegriff des Anspruchs 1 bzw. Anspruch 15. Darüber hinaus beschreibt die Erfindung ein Werkzeuggerät, insbesondere ein Messgerät, beispielsweise ein handhaltbares Ortungsgerät, mit einer solchen Sensorvorrichtung zur Durchführung des Verfahrens nach Anspruch 15.
Stand der Technik
Zur Detektion von in einem Medium, wie bspw. einer Wand, einer Decke oder einem Boden eingeschlossenen Objekten, wie bspw. elektrischen Leitungen, Wasserleitungen, Rohren, Metallständern werden seit längerer Zeit Ortungsgeräte eingesetzt. Dabei finden unter anderem induktive Geräte, d.h. Geräte, die ein
Magnetfeld erzeugen, welches durch die in einem Medium eingeschlossenen, metallischen Gegenstände gestört wird, Verwendung.
Ein derartiges System ist aus der DE 10 2004 011 285 AI bekannt.
Stand der Technik im Bereich der Metallsensoren zum Auffinden metallischer Objekte, wie beispielsweise Armierungseisen, Rohre oder Kabel, in Wänden oder Böden sind spulenbasierte Metallsensoren. Diese gibt es in verschiedenen Ausführungen: (i) feldkompensiert, (ii) differentiell, (iii) feldkompensiert und differentiell. Aufgabe der Erfindung ist die Verbesserung von Metallsensoren zum Auffinden metallischer Objekte in Wänden und Böden unter dem Aspekt der Miniaturisierung, Integration sowie der Leistungsfähigkeit.
Offenbarung der Erfindung
Ein Kern der Erfindung ist ein Metallsensor zum Auffinden metallischer Objekte in Wänden und Böden, der die Vorteile feldkompensierter, differentieller, spulenbasierter Sensoren vereint und sich die zusätzlichen Vorteile von speziellen Magnetfeldsensoren, insbesondere preisgünstige Hallsensoren, aber auch AMR/GMR basierte Magnetometer sowie SQU IDS, zunutze macht. (AMR-Sensor: anisotropic magneto-resistive Sensor; GMR-Sensor: giant magneto-resistive Sensor; SQUID: superconducting quantum interference device)
Vorteile dieser o.g. Magnetfeldsensoren sind die kompakte Baugröße, eine hohe Sensitivität, insbesondere eine Sensitivität auf lokale Magnetfeldänderungen anstelle von Änderungen des magnetischen Flusses durch größere Bereiche. Hieraus ergeben sich unmittelbare Vorteile für den Metallsensor: kompakte Größe, da die Sensoren selbst klein sind und beispielsweise kleine (Print-)Spulen ausreichen um hinreichend große Felder zu erzeugen (wegen der großen Sensitivität), Integration mehrerer Einzelsensoren, daraus resultieren vorteilhafte Eigenschaften wie die Möglichkeit zur Positions-/Tiefenschätzung bis hin zu einer bildhaften Auflösung der zu detektierenden Objekte.
Die Erfindung schlägt hierzu ein System aus Sendespulen und Magnetfeldsensoren vor. Die erfindungsgemäße Sensorvorrichtung zur Lokalisierung von in einem Medium eingeschlossenen Objekten, insbesondere zur Detektion von metallischen Gegenständen, besitzt eine Anordnung mit zumindest zwei Spulen und einem Magnetfeldsensor, wobei die Anordnung von Spulen und Magnetsensor zueinander und/oder die Anzahl der Spulenwindungen und/oder der Wicklungssinn der Spulen und/oder der Spulenstrom derart gewählt ist/sind, dass das von den Spulen erzeugte Magnetfeld am Ort des Magnetfeldsensors näherungsweise verschwindet.
Ein Objekt im Bereich des von den Spulen erzeugten Magnetfeldes (=„Primärfeld") erzeugt ein „Sekundärfeld". Dieses Sekundärfeld kann dann erfindungsgemäß mittels eines Magnetfeldsensors gemessen werden. Die in dieser Anordnung erreichbare Kompensation des Primärfeldes am Ort des Magnetfeldsensors ist für die Verwendung von Magnetfeldsensoren zur Detektion von metallischen / magnetisierbaren Objekten) sehr vorteilhaft, da zu hohe Magnetfelder den Magnetfeldsensor aus seinem Arbeitsbereich bringen würden. Hohe Magnetfelder sind aber bei der Messung notwendig um am Ort des Objektes ausreichend hohe Magnetfelder zu erzeugen, so dass die daraus resultierenden Sekundärfelder am Ort des Sensors noch hinreichend hoch sind. Die erfindungsgemäße Vorrichtung ermöglicht es in vorteilhafter Weise das Primärfeld zu minimieren oder gar zum verschwinden zu bringen, wobei aber das durch das Primärfeld induzierte
Sekundärfeld eines zu detektierenden Objektes hinreichend groß wird, um mit einem Magnetfeldsensor detektiert zu werden.
Ein weiterer Vorteil der Kompensation des Primärfeldes ist es, dass das Verhältnis aus objektbedingtem Signal (Signal resultierend aus Sekundärfeld) zu Grundsignal
(Signal resultierend aus Primärfeld) um mehrere Größenordnungen verbessert wird.
Das beschriebene System aus Sendespulen und Magnetfeldsensor lässt sich dabei in vorteilhafter weise mit einer Ansteuerung nach dem Gegentakt- Regler Prinzip realisieren. Vorteile des Gegentaktreglers sind hierbei die hohe Dynamik über einen großen Feldbereich sowie der hohe Signal- Rausch- Abstand durch die vorteilhafte Verwendung eines Synchrondemodulators.
Bei Verwendung von Printspulen sind die Sekundärfelder sehr klein (typischerweise wenige 10 nT). Daher eignen sich für eine solche Ausführungsform insbesondere die hochempfindlichen AMR/GMR Magnetsensoren während Hall-Sensoren in diesem Fall weniger geeignet sind.
Die Verwendung von periodischen Anregungsfeldern ist vorteilhaft, da sich der objektbedingte Anteil des Empfangssignal aufgrund seiner Frequenz dann sehr gut von Störungen und Rauschen trennen lässt (z.B. mit einem Synchrondemodulator).
Weitere Vorteile der erfindungsgemäßen Sensorvorrichtung ergeben sich aus den abhängigen Ansprüchen, dem nachfolgenden Ausführungsbeispiel, sowie den Zeichnungen und der zugehörigen Beschreibung. Zeichnung
In der Zeichnung ist ein Ausführungsbeispiel für die erfindungsgemäße Sensorvorrichtung dargestellt, das in der nachfolgenden Beschreibung näher erläutert werden soll. Die Figuren der Zeichnung, deren Beschreibung sowie die Ansprüche enthalten zahlreiche Merkmale in Kombination. Ein Fachmann wird diese Merkmale auch einzeln betrachten und zu anderen, bzw. weiteren sinnvollen Kombinationen zusammenfassen.
Es zeigt:
Figur 1 eine typische Anordnung einer erfindungsgemäßen
Sensorvorrichtung in einer stark schematisierten Darstellung,
Figur 2a, 2b das berechnete Magnetfeld zweier Spulen der Sensorvorrichtung in einer graphischen Darstellung,
Figur 3a, 3b das berechnete Magnetfeld der Spulen der erfindungsgemäßen
Sensorvorrichtung in zwei orthogonalen Richtungen,
Figur 4a, 4b die berechnete z- Komponente des Primärmagnetfeld zweier Spulen der Sensorvorrichtung, sowie das durch ein Objekt erzeugte Sekundärmagnetfeld, in einer Übersichts- (2a), sowie in einer Detaildarstellung (2b),
Figur 5 Ansteuerung der erfindungsgemäßen Sensorvorrichtung mittels eines Gegentaktreglers,
Figur 6 ein Ausführungsbeispiel für ein erfindungsgemäßes Werkzeuggerät in Form eines Ortungsgerätes. Beschreibung eines Ausführungsbeispiels
Figur 1 zeigt eine mögliche Ausführungsform einer erfindungsgemäßen
Sensorvorrichtung 10 in einer schematisierten Darstellung.
Die in der Figur 1 beispielhaft gezeigte Anordnung einer erfindungsgemäßen Sensorvorrichtung weist zwei Spulen („outer coil 12",„inner coil 14") auf, die dazu verwendet werden, im Raum ein sich periodisch änderndes quasi-stationäres
Magnetfeld (hier insbesondere ein Dipolfeld) zu erzeugen (Siehe hierzu auch beispielsweise Figuren 2). Ein Magnetfeldsensor 16, der beispielsweise als ein Hallsensor, ein AMR- oder auch GMR- Sensor oder aber auch als SQUID ausgebildet sein kann, wird dazu verwendet, ein Magnetfeld zu messen, welches insbesondere durch ein zu detektierendes Objekt erzeugt wird. Die Anordnung der
Spulen und des Sensors zueinander, sowie Anzahl der Windungen, Wicklungssinn, und Spulenstrom der Spulen sind dabei erfindungsgemäß derart gewählt, dass das von den Spulen erzeugte Magnetfeld am Ort des Magnetfeldsensors (und idealerweise nur dort) näherungsweise (und idealerweise exakt) verschwindet, d.h. zu Null wird, also an der Stelle des Magnetfeldsensors eine Feldkompensation stattfindet. (Siehe hierzu beispielsweise auch die berechneten Felder in Figur 3). Eine ideale Feldkompensation, bei der das Magnetfeld der Spulen im mathematischen Sinne zu Null wird, ist unter praktischen Gesichtspunkten kaum zu realisieren. Dies soll durch die Bezeichnung„näherungsweise" verschwindet zum Ausdruck gebracht sein. Rest und sogenannte "Schmutzeffekte", die die absolute
Eliminierung des Magnetfeldes in letzter Konsequenz verhindern, fallen unter die näherungsweise Kompensation.
Die zwei Spulen 12, 14 der Sensorvorrichtung im Ausführungsbeispiel der Figur 1 sind konzentrisch zueinander in einer gemeinsamen Ebene, insbesondere auf einer gemeinsamen Leiterplatte 18 ausgebildet.
Für zwei in einer Ebene angeordnete, konzentrische Spulen mit entgegen gesetztem Windungssinn verschwindet das Magnetfeld am Mittelpunkt der beiden Spulen - wenn diese vom selben Strom durchflössen werden - unter der
Bedingung:. N / d = N' / d' (I)
N: Windungszahl der äußeren Spule, d: Durchmesser der äußeren Spule,
N': Windungszahl der inneren Spule, d': Durchmesser der inneren Spule.
Streng genommen muss für die obige Beziehung (I) der jeweilige Spulendurchmesser groß sein gegenüber dem Abstand der einzelnen Spulenwindungen in der Spule.
Ein Vorteil der Verwendung von zwei Spulen mit entgegen gesetztem Windungssinn ist es insbesondere, dass man die Spulen in Reihe verschalten kann.
Im Ausführungsbeispiel der Figur 1 sind die Spulen als Printspulen auf der Leiterplatte 18 ausgebildet. In alternativen Ausführungsformen können auch konventionelle Spulen, auch mehr als zwei Spulen und insbesondere auch nicht konzentrisch angeordnete Spulen genutzt werden.
So ist es auch möglich, dass sich die Sendespulen nebeneinander befinden und / oder beispielsweise überlappen. Ein Kern der Erfindung ist es jedoch, den Magnetfeldsensor stets in einen Bereich verschwindenden Spulen Magnetfeldes anzubringen.
Bei geeigneter Spulenanordnung, Windungszahlen und Wicklungssinn ist es möglich die Spulen elektrisch seriell zu verschalten. Sie werden dann vom selben Strom durchflössen und Änderungen dieses Stroms, die beispielsweise durch Temperatur- oder auch andere Umgebungseinflüsse erzeugt werden, wirken sich in vorteilhafter Weise nicht auf die Feldkompensation am Ort des Magnetfeldsensors aus.
Im Zentrum, d.h. im Mittelpunkt der kreisförmigen Spulen 12, 14 ist im Ausführungsbeispiel der Figur 1 ein Magnetfeldsensor 16 in der Ausführungsform eine GMR- Sensors angeordnet. Alternative Magnetfeldsensoren sind aber ebenso möglich. Ein Objekt im Bereich des von den Spulen 12, 14 erzeugten Magnetfeldes (=„Primärfeld") erzeugt ein „Sekundärfeld". Dieses Sekundärfeld wird dann erfindungsgemäß vom Magnetfeldsensor 16 gemessen. Auf diese Art kann ein Objekt detektiert werden. (Vgl. hierzu auch Figur 4.)
Die Vorzugsrichtung des Sensors, also diejenige Richtung zu der Magnetfelder parallel sein müssen, um vom Sensor mit maximaler Empfindlichkeit gemessen zu werden, sollte bei einer planaren, konzentrischen Spulenanordnung mit Magnetfeldsensor in der Spulenmitte, wie sie in Figur 1 dargestellt ist, in Normalrichtung der Spulenebene zeigen.
Die Kompensation des Primärfeldes am Ort des Magnetfeldsensors 16 ist für die Verwendung eines Magnetfeldsensors in dieser Anwendung (Detektion von metallischen/magnetisierbaren Objekten) vorteilhaft, da zu hohe Magnetfelder den Sensor 16 aus seinem Arbeitsbereich bringen. Hohe Magnetfelder sind aber notwendig um am Ort des Objektes ausreichend hohe Magnetfelder zu erzeugen, so dass die daraus resultierenden Sekundärfelder am Ort des Sensors 16 noch hinreichend hoch sind. Weiterer Vorteil der Kompensation des Primärfeldes ist, dass das Verhältnis aus objektbedingtem Signal (Signal resultierend aus Sekundärfeld) zu Grundsignal (Signal resultierend aus Primärfeld) um mehrere Größenordnungen verbessert wird.
Bei der Optimierung der Durchmesser der Spulen der erfindungsgemäßen Sensoranordnung sind zwei gegenläufige Effekt zu berücksichtigen:
(1) Der Dipolcharakter des Gesamtfeldes ist umso ausgeprägter, wenn die innere Spule einen möglichst kleinen Durchmesser im Verhältnis zur äußeren Spule hat.
Der Durchmesser der inneren Spule ist dabei im Wesentlichen begrenzt durch die Größe des Magnetfelssensors und liegt damit bei einem Minimalwert von ca. 5 mm
(2) Allerdings ist der Magnetfeldgradient im Bereich der Nullstelle des Feldes umso kleiner je weniger sich das Verhältnis der Spulendurchmesser von dem Wert eins unterscheidet. Dies verringert die Anforderungen an die Positionierungsgenauigkeit des Magnetfeldsensors.
Figur 2a und 2b zeigen das berechnete Magnetfeld zweier Printspulen (äußere Spule mit 4 Windungen, Radius 2 cm), innere Spule (1 Windung, Radius 0.5 cm) in der x-z-Ebene. Das Magnetfeld ist rotationssymmetrisch um die z-Achse. Die linke Figur 2a zeigt das dipolförmige Feld im Außenbereich, die rechte Figur 2b zeigt die Kompensation der von den beiden Spulen erzeugten Felder im Bereich der inneren Spule.
Neben den hier beschriebenen Dipolanordnungen sind auch Quadrupol- Anordnungen denkbar, die nach dem gleichen Prinzip arbeiten.
Figur 3a und 3b zeigen errechnete Beträge des Magnetfeldes der äußeren Spule (A), der äußeren und inneren Spule (B). Die Kurven zeigen, dass das Magnetfeld von äußerer und innerer Spule zusammen am Ursprung verschwindet (sogenannte „Feldkompensation"). Das Feld im Außenbereich wird von der Kompensation nahezu nicht beeinflusst. Dies ist wichtig um dieselbe Sensorreichweite zu gewährleisten, die ohne die zusätzliche Kompensationsspule in Form der inneren Spule erreicht würde.
Figur 4 zeigt die z- Komponente des primären (C) und sekundären Magnetfeldes (D) entlang der z-Achse. (Figur 4b stellt dabei einen Detailausschnitt in unmittelbarer Nähe des Nullpunktes dar, vergleiche hierzu die jeweiligen Skalen). Quelle des Sekundärfeldes ist in dieser Simulation eine Eisenkugel (mit relativer magnetischer Permeabilität μ = 1000 und Durchmesser 1 cm), die sich 5 cm vom Sensor entfernt auf der z-Achse befindet. Berechnet ist der Fall für kleine Frequenzen des Anregungsfeldes (ω 0). Zu beachten ist, dass ohne die innere Kompensationsspule das Sensorfeld im Ursprung/Nullpunkt den wert 1 hätte, also einen Faktor 10.000 größer wäre als das Objektfeld.
Das beschriebene System aus Sendespulen und Magnetfeldsensor lässt sich sehr gut und vorteilhaft mit einem Gegentakt- Regler 20 ansteuern. Vorteile des Gegentaktreglers sind die hohe Dynamik über einen großen Feldbereich sowie der hohe Signal- Rausch- Abstand durch Verwendung eines Synchrondemodulators. Figur 5 zeigt eine beispielhafte Verschaltung der Spulen und des Magnetsensors im Gegentaktbetrieb.
Der Gegentaktregler 20 besteht dabei in der Ausführungsform nach Figur 5 aus einer Signalquelle 24, regelbaren Verstärkern 26, 28, Synchrondemodulator 22 und integrierendem Komparator 30. Die regelbaren Verstärker 26, 28 bestromen die beiden Sendespulen 12, 14 mit 180° phasenverschobenen, sich periodisch ändernden Strömen unabhängiger Amplitude. Die Sendespulen (beispielsweise äußere und innere Spule entsprechend Figur 1) sind nun so gewickelt, dass sie zumindest in Abwesenheit von metallischen/magnetisierbaren Objekten im Bereich des Sendespulenfeldes - zumindest zu einem Zeitpunkt - entgegengesetzt gerichtete Magnetfelder erzeugen, die sich am Ort des Sensors aufheben. Der Sensor 16 ist gegebenenfalls über einen optionalen Verstärker 32 mit dem Synchrondemodulator 22 verbunden. Die Gegentaktregelung über den integrierenden Komparator 30 regelt die Amplituden der Sendespulenströme mittels der regelbaren Verstärker 26, 28 nun derart, dass am Ort des Sensors auch bei Anwesenheit eines metallischen / magnetisierbaren Objektes im Bereich des Sendespulenfeldes zumindest zu einem Zeitpunkt das Magnetfeld verschwindet. Dieser Regelwert ändert sich bei Anwesenheit eines metallischen/magnetisierbaren Objektes und kann daher dazu verwendet werden ein solches zu detektieren.
Neben dem hier gezeigten System einer Sensorvorrichtung mit zwei Spulen und einem Magnetfeldsensor sind jedoch auch Systeme mit mehr als zwei Spulen und/oder mehreren Magnetfelssensoren denkbar und auch sinnvoll.
So ist insbesondere auch die Verwendung mehrerer "Kompensationsspulen" (Im Ausführungsbeispiel die innere Spule 14 zur Aufhebung des Primärfeldes) an unterschiedlichen Orten möglich. Möglich sind hierbei Sensorsysteme, bei denen die Positionen der mehreren Kompensationsspulen sowohl innerhalb als auch außerhalb der "äußeren" Sendespule angeordnet sind.
Auch kann es vorteilhaft sein, die Sendespulen in unterschiedlichen Ebenen anzuordnen.
Auch die Verwendung mehrerer Magnetfeldsensoren an jeweils den Orten, die von der jeweiligen Kompensationsspule feldfrei gehalten werden ist eine vorteilhafte Variante der erfindungsgemäßen Sensorvorrichtung. Vorteil hiervon ist, dass man das Sekundärfeld (also das von einem zu messenden Objekt erzeugte Feld) an unterschiedlichen Orten ausmessen und damit zumindest im Prinzip Rückschlüsse auf Objekteigenschaften, wie beispielsweise die laterale Position, die Einschlusstiefe oder auch die Orientierung, ziehen kann
Fig. 6 zeigt ein mögliches Ausführungsbeispiel für ein erfindungsgemäßes Werkzeuggerät als Messgerät, in Form eines handhaltbaren Ortungsgeräts 86g, welches eine erfindungsgemäße Sensorvorrichtung aufweist. Das Handortungsgerät 86g weist eine Ortungsvorrichtung 24g mit einer erfindungsgemäßen Sensorvorrichtung 26g auf. Die Sensorvorrichtung 26g umfasst in bereits beschriebener Weise zumindest zwei Spulen und zumindest einen Magnetfeldsensor, die in erfindungsgemäßer Weise angeordnet sind und nach dem erfindungsgemäßen Verfahren arbeiten. Die Ortungsvorrichtung 24g umfasst des Weiteren eine Ansteuereinheit 28g, insbesondere mit einer Gegentaktregelung 20, sowie eine Auswerteeinheit 30g zur Verarbeitung und Aufarbeitung der Messsignale auf. So kann insbesondere das Regelsignal 32 der Gegentaktregelung 20 (siehe hierzu auch Figur 5) von der Auswerteeinheit 30g genutzt werden, um ein Objekt als detektiert oder nicht detektiert zu charakterisieren. Das heißt, das Regelsignal 32 der Gegentaktregelung der erfindungsgemäßen Sensorvorrichtung wird zur Detektion der Objekte verwendet.
Das Handortungsgerät 86g weist zudem Rollen 88g mit nicht näher dargestellten Wegmessmitteln auf, mittels denen ein Bediener das Handortungsgerät 86g an dem Medium entlang verfahren kann. Auf einem Display 90g des Handortungsgerät 86g stellt das Handortungsgerät 86g detektierte Objekte in Abhängigkeit von dem verfahrenen Weg dar. Die Wegsensorik ermöglicht die Zuordnung eines Detektionswertes der erfindungsgemäßen Sensorvorrichtung zu einer Ortsposition des Messgerätes. Insbesondere ermöglicht das erfindungsgemäße Messgerät die korrelierte Darstellung von Detektionssignal und Position von eingeschlossenen Objekten über eine entsprechende Ausgabeeinheit, 90g, insbesondere ein graphisches Display. In einfacheren Ausführungsformen kann auch die Wegsensorik verzichtet werden und die Detektion eines Objektes beispielsweise lediglich durch ein Lichtsignal und(/oder ein akustisches Signal übermittel werden. Das erfindungsgemäße Verfahren bzw. ein nach diesem Verfahren arbeitendes Werkzeuggerät ist nicht auf die in den Figuren dargestellten Ausführungsbeispiele beschränkt. Insbesondere ist das erfindungsgemäße Verfahren nicht beschränkt auf die
Verwendung zweier Sendespule, insbesondere zweiter konzentrisch angeordneter Sendespulen. So ist es auch möglich, dass sich die Sendespulen nebeneinander befinden und / oder beispielsweise überlappen. Ein Kern der Erfindung ist es, den Magnetfeldsensor in einen Bereich verschwindenden Spulen Magnetfeldes anzubringen.
Neben den hier gezeigten System mit zwei Spulen sind jedoch auch Systeme mit mehr als zwei Spulen denkbar und auch sinnvoll. So ist insbesondere auch die Verwendung mehrerer "Kompensationsspulen" (innere
Spulen) an unterschiedlichen Orten möglich. Möglich sind hierbei Sensorsysteme bei denen die Positionen der mehreren Kompensationsspulen sowohl innerhalb als auch außerhalb der "äußeren" Sendespule angeordnet sind. Auch kann es vorteilhaft sein, die Sendespulen in unterschiedlichen Ebenen anzuordnen.
Auch die Verwendung mehrerer Magnetfeldsensoren an jeweils den Orten, die von der jeweiligen Kompensationsspule feldfrei gehalten werden ist eine vorteilhafte Variante der erfindungsgemäßen Sensorvorrichtung. Vorteil hiervon ist, dass man das Sekundärfeld (also das von einem zu messenden Objekt erzeugte Feld) an unterschiedlichen Orten ausmessen und damit zumindest im Prinzip Rückschlüsse auf Objekteigenschaften, wie beispielsweise die laterale Position, die Einschlusstiefe oder auch die Orientierung, ziehen kann
Auch könnte das Magnetfeld durch ein Abschirmvorrichtung zu Null gebracht werden und der Magnetsensor an entsprechender Stelle angebracht sein.
Das erfindungsgemäße Werkzeuggerät ist nicht auf ein Messgerät, insbesondere eine Ortungsgerät beschränkt. Auch sägende, schleifende oder bohrende
Werkzeuggeräte können mit der erfindungsgemäßen Sensorvorrichtung ausgestattet sein, sei es als in das Werkzeuggerät integriertes Messsystem oder aber auch als ein am Werkzeuggerät anzubringendes Zubehör.

Claims

Ansprüche
1. Sensorvorrichtung (10,26g), insbesondere Metallsensor, mit zumindest zwei Spulen (12,14) und einem Magnetfeldsensor (16), dadurch gekennzeichnet, dass die Anordnung von Spulen (12,14) und Magnetsensor (16) zueinander und/oder die Anzahl der Spulenwindungen und/oder der Wicklungssinn der Spulen und/oder der Spulenstrom derart gewählt ist sind, dass das von den Spulen (12,14) erzeugte Magnetfeld am Ort des Magnetfeldsensors (16) näherungsweise verschwindet, insbesondere vollständig kompensiert ist.
2. Sensorvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass eine erste, äußere Spule (12) und eine zweite inneren Spule (14) vorgesehen sind, die insbesondere konzentrisch zueinander angeordnet sind.
3. Sensorvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Magnetfeldsensor (16) von den Windungen zumindest einer Spule (14) umschlossen ist.
4. Sensorvorrichtung nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass der Magnetfeldsensor (16) im Mittelpunkt zumindest einer, im Wesentlichen kreisrunden Spule (14) angeordnet ist.
5. Sensorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest zwei Spulen (12,14) und ein Magnetfeldsensor (16) in einer Ebene angeordnet sind.
6. Sensorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest zwei Spulen(12,14) und ein Magnetfeldsensor (16) auf einer gemeinsamen Leiterplatte (18) angeordnet sind.
7. Sensorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest eine Spule (12,14) als Printspule ausgebildet ist.
8. Sensorvorrichtung nach einem der vorhergehenden Ansprüche, insbesondere nach Anspruch 6 und/oder 7, dadurch gekennzeichnet, dass der Magnetfeldsensor (16) ein AMR-Sensor ist.
9. Sensorvorrichtung nach einem der vorhergehenden Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Magnetfeldsensor (16) ein GM R Sensor ist.
10. Sensorvorrichtung nach einem der vorhergehenden Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Magnetfeldsensor ein Hall- Sensor ist.
11. Sensorvorrichtung nach einem der vorhergehenden Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Magnetfeldsensor (16) ein SQUID ist.
12. Sensorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest zwei Spulen (12, 14) elektrisch seriell verschaltet sind.
13. Sensorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass dieser einen Gegentaktregler (20) zur Ansteuerung der Spulen (12, 14) aufweist.
14. Werkzeuggerät, insbesondere ein Messgerät (86g) zur Detektion von Objekten, insbesondere metallischen Objekten, mit zumindest einer Sensorvorrichtung (10,26g) nach zumindest einem der vorhergehenden Ansprüche.
15. Verfahren zur Detektion von Objekten, insbesondere ein Verfahren zum Auffinden metallischer Objekte, unter Verwendung zumindest zweier Spulen (12, 14) und eines Magnetfeldsensors (16), insbesondere eines AMR-, GMR- oder Hall-Sensors, bei dem die Anordnung der Spulen (12, 14) und des Magnetsensors (16) zueinander und/oder die Anzahl der Spulenwindungen und/oder der Wicklungssinn der Spulen und/oder der Spulenstrom derart gewählt ist sind, dass das von den Spulen (12, 14) erzeugte Magnetfeld am Ort des Magnetfeldsensors (16) näherungsweise verschwindet, insbesondere vollständig kompensiert wird.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass ein Gegentaktregler (20) die Amplituden der Spulenströme der zumindest zwei Spulen mittels regelbarer Verstärker (26, 28) derart regelt, dass am Ort des Magnetsensors (16) - zumindest zu einem Zeitpunkt - das Magnetfeld verschwindet.
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass ein Regelwert (34) des Gegentaktreglers (20) genutzt wird, um ein Objekt, insbesondere ein metallisches Objekt, zu detektieren.
PCT/EP2011/066378 2010-10-28 2011-09-21 Sensorvorrichtung, insbesondere metallsensor, mit feldkompensiertem magnetfeldsensor WO2012055641A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/881,659 US20130300401A1 (en) 2010-10-28 2011-09-21 Sensor Apparatus, in Particular Metal Sensor, with a Field-Compensated Magnetic Field Sensor
EP11761560.9A EP2633340A2 (de) 2010-10-28 2011-09-21 Sensorvorrichtung, insbesondere metallsensor, mit feldkompensiertem magnetfeldsensor
CN2011800520000A CN103154775A (zh) 2010-10-28 2011-09-21 具有场补偿的磁场传感器的传感器装置、尤其是金属传感器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010043078.1 2010-10-28
DE102010043078A DE102010043078A1 (de) 2010-10-28 2010-10-28 Sensorvorrichtung, insbesondere Metallsensor, mit feldkompensiertem Magnetfeldsensor

Publications (2)

Publication Number Publication Date
WO2012055641A2 true WO2012055641A2 (de) 2012-05-03
WO2012055641A3 WO2012055641A3 (de) 2012-10-18

Family

ID=44719898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/066378 WO2012055641A2 (de) 2010-10-28 2011-09-21 Sensorvorrichtung, insbesondere metallsensor, mit feldkompensiertem magnetfeldsensor

Country Status (5)

Country Link
US (1) US20130300401A1 (de)
EP (1) EP2633340A2 (de)
CN (1) CN103154775A (de)
DE (1) DE102010043078A1 (de)
WO (1) WO2012055641A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012084329A3 (de) * 2010-12-20 2012-12-20 Robert Bosch Gmbh Leitungssucher
US9638825B2 (en) 2011-11-22 2017-05-02 Robert Bosch Gmbh Metal sensor

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010133501A1 (de) * 2009-05-18 2010-11-25 Sick Ag Sensor zum detektieren metallischer objekte
DE102011088406A1 (de) 2011-12-13 2013-06-13 Robert Bosch Gmbh Metallsensor
DE102011088394A1 (de) 2011-12-13 2013-06-13 Robert Bosch Gmbh Metallsensor
US9817078B2 (en) 2012-05-10 2017-11-14 Allegro Microsystems Llc Methods and apparatus for magnetic sensor having integrated coil
DE102012019329A1 (de) 2012-10-02 2014-04-03 Gerd Reime Verfahren und Sensoreinheit zur Ortung und/oder Erkennung metallischer oder Metall enthaltender Objekte und Materalien
US9664494B2 (en) 2013-05-10 2017-05-30 Allegro Microsystems, Llc Magnetic field sensor with immunity to external magnetic influences
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
KR102030189B1 (ko) * 2013-07-29 2019-11-11 매그나칩 반도체 유한회사 웨이퍼 상의 자기 센서 테스트 장치 및 방법
US9927498B2 (en) 2014-06-06 2018-03-27 Infineon Technologies Ag Magnetic sensor device comprising a ring-shaped magnet and a sensor chip in a common package
CN107003258B (zh) * 2014-10-17 2019-11-05 皇家飞利浦有限公司 空间分辨的金属探测器
US9823092B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
CN104390893A (zh) * 2014-11-24 2015-03-04 电子科技大学 一种基于印制线圈的油磨粒传感器
CN105182428B (zh) * 2015-07-29 2019-01-01 金华马卡科技有限公司 一种传感器、用于分析传感器的测量信号的方法以及检测物体的方法
CN105182427B (zh) * 2015-07-29 2018-12-18 金华马卡科技有限公司 一种金属传感器
WO2017114109A1 (zh) * 2015-12-28 2017-07-06 深圳市澳亚迪电子设备有限公司 一种自平衡降噪金属探测双线圈
DE102016110187B4 (de) 2016-06-02 2017-12-14 Westsächsische Hochschule Zwickau Messvorrichtung und Messverfahren zur Strommessung
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
DE102016112524B4 (de) * 2016-07-07 2020-08-06 Heinrich Hirdes Gmbh Verfahren und System zum elektro-magnetischen Auffinden und zur Untersuchung einer Fläche auf metallische Störkörper
US11428755B2 (en) 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US10324141B2 (en) 2017-05-26 2019-06-18 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10310028B2 (en) 2017-05-26 2019-06-04 Allegro Microsystems, Llc Coil actuated pressure sensor
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
US10641842B2 (en) 2017-05-26 2020-05-05 Allegro Microsystems, Llc Targets for coil actuated position sensors
CN109212614A (zh) * 2017-06-30 2019-01-15 北京至感传感器技术研究院有限公司 适用于开阔地的隐形安检系统及安检组件
DE102018111011A1 (de) 2018-05-08 2019-11-14 Infineon Technologies Ag Magnetfeldsensorvorrichtung
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US11061084B2 (en) 2019-03-07 2021-07-13 Allegro Microsystems, Llc Coil actuated pressure sensor and deflectable substrate
US10955306B2 (en) 2019-04-22 2021-03-23 Allegro Microsystems, Llc Coil actuated pressure sensor and deformable substrate
KR20200142877A (ko) 2019-06-13 2020-12-23 엘지이노텍 주식회사 카메라 장치
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004011285A1 (de) 2004-03-09 2005-09-29 Robert Bosch Gmbh Ortungsgerät

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4266190A (en) * 1978-12-18 1981-05-05 United Technologies Corporation Dual core magnetic amplifier sensor
US4486712A (en) * 1981-09-25 1984-12-04 Weber Harold J Frequency dependent pulsed gain modulated metallic object detector
US4623877A (en) * 1983-06-30 1986-11-18 Knogo Corporation Method and apparatus for detection of targets in an interrogation zone
US5414356A (en) * 1987-09-21 1995-05-09 Hitachi, Ltd. Fluxmeter including squid and pickup coil with flux guiding core and method for sensing degree of deterioration of an object
DE4141264C1 (en) * 1991-12-14 1993-03-18 Werner Turck Gmbh & Co Kg, 5884 Halver, De Inductive proximity sensor - has oscillator in bridge circuit in branch of current source and continuously restores bridge balance
US5557206A (en) * 1995-02-23 1996-09-17 Geophex Ltd. Apparatus and method for detecting a weak induced magnetic field by means of two concentric transmitter loops
JP3896489B2 (ja) * 2004-07-16 2007-03-22 国立大学法人 岡山大学 磁気検知装置及び物質判定装置
DE102004047188B4 (de) * 2004-09-29 2022-10-27 Robert Bosch Gmbh Vorrichtung zur Ortung metallischer Objekte
DE102004047189A1 (de) * 2004-09-29 2006-04-06 Robert Bosch Gmbh Sensor zur Ortung metallischer Objekte sowie Verfahren zur Auswertung von Messsignalen eines solchen Sensors
DE102004047190A1 (de) * 2004-09-29 2006-04-06 Robert Bosch Gmbh Detektor zur Ortung metallischer Objekte
DE102005007803A1 (de) * 2005-02-21 2006-08-24 Robert Bosch Gmbh Verfahren zur Detektion von in einem Medium eingeschlossenen Objekten sowie Messgerät zur Durchführung des Verfahrens
ES2414955T3 (es) * 2005-07-29 2013-07-23 Gerd Reime Procedimiento y dispositivo para la medición de la distancia por medio de sensores capacitivos o inductivos
US8063631B2 (en) * 2006-02-24 2011-11-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method and device for non destructive evaluation of defects in a metallic object
DE102010031147A1 (de) * 2010-05-07 2011-11-10 Robert Bosch Gmbh Erfassung eines metallischen oder magnetischen Objekts

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004011285A1 (de) 2004-03-09 2005-09-29 Robert Bosch Gmbh Ortungsgerät

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012084329A3 (de) * 2010-12-20 2012-12-20 Robert Bosch Gmbh Leitungssucher
US9372217B2 (en) 2010-12-20 2016-06-21 Robert Bosch Gmbh Cable detector
US9638825B2 (en) 2011-11-22 2017-05-02 Robert Bosch Gmbh Metal sensor

Also Published As

Publication number Publication date
DE102010043078A1 (de) 2012-05-03
US20130300401A1 (en) 2013-11-14
CN103154775A (zh) 2013-06-12
WO2012055641A3 (de) 2012-10-18
EP2633340A2 (de) 2013-09-04

Similar Documents

Publication Publication Date Title
EP2633340A2 (de) Sensorvorrichtung, insbesondere metallsensor, mit feldkompensiertem magnetfeldsensor
EP1797462B1 (de) Sensor zur ortung metallischer objekte sowie verfahren zur auswertung von messsignalen eines solchen sensors
EP2567265B1 (de) Erfassung eines metallischen oder magnetischen objekts
EP1797463B1 (de) Vorrichtung zur ortung metallischer objekte sowie verfahren zum abgleich einer solchen vorrichtung
DE69936262T2 (de) Induktiver Messkopf für Metalldetektoren
EP1842085A1 (de) Sensor zur ortung metallischer objekte sowie messger[t mit einem solchen sensor
EP2699973B1 (de) System, insbesondere anlage, mit auf einem boden verfahrbaren fahrzeug
DE102009024268B4 (de) Magnetfeldkompensation
DE102011088406A1 (de) Metallsensor
DE102006058848A1 (de) Magnetresonanzanlage mit einem Grundkörper und einer Patientenliege
EP1869505A1 (de) Verfahren zur lokalisierung von in einem medium eingeschlossenen objekten, sowie messgerät zur durchführung des verfahrens
DE10044839B4 (de) Induktiver Positionssensor
DE60312565T2 (de) Vorrichtung zur erfassung eines rf-feldes
EP1873543A1 (de) Magnetfeldkompensationssystem mit erhöhter Bandbreite
DE102014207427A1 (de) Vorrichtung und Verfahren zur Detektion eines Störkörpers in einem System zur induktiven Energieübertragung sowie System zur induktiven Energieübertragung
DE102013226203A1 (de) Offsetkompensierte Positionsmessvorrichtung
DE10026313A1 (de) Magnetisches zerstörungsfreies Verfahren und Prüfvorrichtung zum Erfassen eines Metallflächenverlustes sowie lokalen Defekten in länglichen ferromagnetischen Gegenständen
DE4424842C1 (de) Kompensation von Störfeldern bei NMR-Messungen im Erdmagnetfeld
DE102011121028B4 (de) "Messanordnung zur Bestimmung des Abstands zu einer magnetischen Wechselfeldquelle und Verfahren zur Messung des Abstands zwischen einer Magnetsensoranordnung und einer magnetischen Wechselfeldquelle"
EP1723393B1 (de) Berührungslos arbeitendes wegmesssystem
EP3314310B1 (de) Vorrichtung und verfahren zur erfassung eines gegenstandes
CH696859A5 (de) Stromsensor mit mehreren Magnetfeldsensoren.
EP0024307A1 (de) Einrichtung zur Kompensation des magnetischen Störfeldes eines Objektes mittels einer magnetischen Eigenschutzanlage
DE102012015200A1 (de) Induktiver Näherungsschalter
EP3569467B1 (de) Sensor zum erfassen von metallteilen, sowie verfahren zum abschwächen eines magnetischen feldes

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180052000.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11761560

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2011761560

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13881659

Country of ref document: US