WO2012053379A1 - 太陽電池モジュールおよび太陽光発電装置 - Google Patents

太陽電池モジュールおよび太陽光発電装置 Download PDF

Info

Publication number
WO2012053379A1
WO2012053379A1 PCT/JP2011/073210 JP2011073210W WO2012053379A1 WO 2012053379 A1 WO2012053379 A1 WO 2012053379A1 JP 2011073210 W JP2011073210 W JP 2011073210W WO 2012053379 A1 WO2012053379 A1 WO 2012053379A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light guide
solar cell
guide member
cell module
Prior art date
Application number
PCT/JP2011/073210
Other languages
English (en)
French (fr)
Inventor
内田 秀樹
吉田 秀史
恭子 東田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012053379A1 publication Critical patent/WO2012053379A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4298Coupling light guides with opto-electronic elements coupling with non-coherent light sources and/or radiation detectors, e.g. lamps, incandescent bulbs, scintillation chambers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar cell module and a solar power generation device.
  • This application claims priority based on Japanese Patent Application No. 2010-233760 filed in Japan on October 18, 2010, the contents of which are incorporated herein by reference.
  • Conventional solar power generation apparatuses generally have a form in which a plurality of solar battery panels are spread over the entire surface facing the sun.
  • a solar cell is made of an opaque semiconductor and cannot be installed in a stacked state. Therefore, a large-area solar cell panel is required to secure a certain amount of power.
  • large-area solar cell panels are expensive, which is a factor that increases the cost of solar power generation devices.
  • the solar cell module described in Patent Document 1 includes a light-transmitting member having a substantially right triangle shape as a light collecting member, and a solar cell is installed on an end surface orthogonal to the light incident surface of the light-transmitting member.
  • the inclined surface of the translucent member is a reflective surface, and sunlight incident from the incident surface of the translucent member is reflected by the reflective surface, changes its traveling direction, and is condensed on the solar cell on the end surface.
  • a solar cell is disposed on the end face of the light guide, and an incident light control plate having a convex portion in contact with the light guide on the light incident side of the light guide. Has been placed. Light incident on the inside of the incident light control plate is totally reflected by the inner wall surface of the convex part, enters the light guide from the top of the convex part, propagates through the light guide, and is introduced into the solar cell. Is done.
  • the inclination of the reflecting surface with respect to the incident surface of the translucent member is set to 45 °, for example, the light incident from the vertical direction with respect to the incident surface is reflected by the reflecting surface, and the traveling direction is changed to the horizontal direction. It is described that sunlight can be efficiently converted into electromotive force when incident on a solar cell. According to this description, in the case of the solar cell of Patent Document 1, if the area of the light incident surface is sufficiently ensured, the thickness of the light transmissive member is also increased. As a result, the entire module is bulky and unusable. Moreover, since the large-sized solar cell will be needed when the thickness of a translucent member becomes thick, manufacturing cost will rise.
  • Patent Document 1 in addition to the above-described form having a flat reflecting surface, a solar cell having a form in which a plurality of V-shaped grooves are provided on an inclined surface and one wall surface of the V-shaped groove is used as a reflecting surface. Modules are also disclosed. Patent Document 1 describes that in this solar cell module, by increasing the arrangement density of the V-shaped grooves, the amount of light incident on the solar cell can be increased and the battery output can be increased. However, in this configuration, the light reflected by the wall surface of one V-shaped groove is incident on the other V-shaped groove while being guided through the translucent member, reflected again by the wall surface, and the traveling direction.
  • the total reflection condition in the translucent member is broken, and there is a risk of leakage to the outside of the translucent member.
  • the configuration in which a plurality of V-shaped grooves are provided on the inclined surface even if the thickness of the translucent member can be reduced as compared with the configuration having a flat reflecting surface, the light collection efficiency is lowered.
  • Patent Document 2 describes that, depending on the shape of the incident light control plate, the light once incident in the light guide is again incident on the convex portion and emitted to the outside, so that the light use efficiency is reduced. Further, in Patent Document 2, in order to improve the above phenomenon, the convex portion of the incident light control plate has a parabolic shape, the area of the top of the convex portion is reduced, and the focal position of the parabolic surface is convex. It is described that it is set at the top of the part. However, it is difficult to actually form the convex part in the shape as described above, and if the convex part cannot be formed in the above-described shape, the light utilization efficiency is lowered.
  • An aspect of the present invention has been made to solve the above-described problem, and a solar cell module having a low-cost and thin configuration in which high power generation efficiency is obtained by ensuring the light collection efficiency and the thin-type configuration is used.
  • the purpose is to realize a solar power generation device.
  • a solar cell module includes at least one first main surface that allows light from the outside to enter and a reflecting surface that reflects light incident from the first main surface.
  • a plurality of condensing members each having a second main surface including the light, and the light incident on each of the plurality of condensing members is propagated toward the first end surface while being totally reflected by the surface, and the first end surface
  • a first solar cell element that receives light emitted from the first end surface of the light guide member, and the first main surface of each of the plurality of light collecting members is The light guide member is disposed in different positions as viewed from the direction perpendicular to the first main surface, and the light propagates through the light guide member from each of the plurality of light collecting members to the first solar cell element. The total reflection condition of the light is maintained in the propagation path.
  • light propagates in the light guide member from one of the plurality of light collecting members to the first solar cell element, and the light is collected in another light collecting member.
  • You may be comprised so that it may not enter in the interface of an optical member and the said light guide member.
  • two main surfaces of the light guide member that generate total reflection when light propagates in the light guide member are both flat and parallel to each other. Also good.
  • the light guide member includes the same number of sub light guide members as the plurality of light collector members provided corresponding to each of the plurality of light collector members. Also good.
  • the light collecting member is disposed on a second end surface side facing the first end surface of the sub light guide member, and the light collecting member and the sub light guide member are integrated. You may be comprised with the member of.
  • the light guide member may be one light guide member provided in common to the plurality of light collecting members.
  • each of the plurality of light condensing members may be bonded to a position where the distance from the first end surface of the light guide member is different.
  • the second end surface side of the light guide member facing the first end surface has a step, and the plurality of the light guide members are positioned at different distances from the first end surface.
  • the same number of the second end surfaces as the light collecting members may be formed, and each of the plurality of light collecting members may be joined to each of the plurality of second end surfaces of the light guide member.
  • a joint between one of the plurality of light collecting members and the light guide member is positioned on a surface side where light is totally reflected in the light guide member.
  • the said junction part may be arrange
  • the solar cell module according to an aspect of the present invention further includes a second solar cell element that receives light emitted from the second end surface of the light guide member, and at least one of the plurality of light collecting members.
  • the two light-condensing members emit light in two different directions, and the light-guiding member that propagates the light emitted from the light-condensing member is a second that opposes the light to the first end face side and the first end face. You may propagate in two directions with an end surface side.
  • a light guide body in which an area of an emission end surface from which light is emitted is smaller than an area of an incident end surface to which light emitted from the light guide member is incident is tapered.
  • the solar cell element may be provided on an exit end face of the light guide.
  • the material constituting the light collecting member and the light guide member may be transmissive to light having a wavelength of 400 nm or less.
  • the solar power generation device may include the solar cell module.
  • the aspect of the present invention it is possible to provide a solar cell module having a thin and low-cost configuration and a solar power generation apparatus using the solar cell module, which can obtain high power generation efficiency by ensuring the light collection efficiency.
  • FIG. 1 is a perspective view showing a solar cell module 1 of the present embodiment.
  • FIG. 2A is a side view of the solar cell module 1
  • FIG. 2B is an enlarged view of a circle A in FIG. 2A.
  • 3A to 3C are diagrams for explaining various light traveling direction changing units in the solar cell module 1.
  • FIG. 4A is a side view showing a conventional light guide plate
  • FIG. 4B is a diagram for explaining the shape and dimensions of a light traveling direction changing portion of the light guide plate.
  • FIG. 5 is a graph showing the relationship between the size of the light guide plate and the arrival rate of light to the end face of the light guide plate.
  • FIG. 6 is a side view showing one condensing light guide unit of the solar cell module of the present embodiment.
  • 7A and 7B are graphs showing the transmittance characteristics of the condensing light guide unit material.
  • the scale of dimensions may be changed depending on the component.
  • the solar cell module 1 of the present embodiment includes a plurality of condensing light guide units 2 and solar cell elements 3 as shown in FIG.
  • This solar cell module 1 has a function of guiding light taken from a plurality of condensing light guide units 2 to the solar cell element 3, photoelectrically converting it in the solar cell element 3, and taking it out as electric energy.
  • ten condensing light guide units are used as an example, but only a part of them is shown in FIG. 1, and the remaining illustrations are omitted.
  • the condensing light guide unit 2 is for condensing part 4 (condensing member) for taking in sunlight from the outside, and for guiding the light taken in by the condensing part 4 to the solar cell element 3.
  • the light guide part 5 (light guide member).
  • the condensing part 4 and the light guide part 5 are comprised as an integrated plate-shaped member.
  • a planar shape of the plate-like member constituting the condensing light-guiding unit 2 is rectangular when viewed from the thickness direction (z-axis direction in FIG. 1).
  • the condensing light guide unit 2 is defined as a condensing unit 4 up to a portion where a light traveling direction changing unit 7 described later is formed, and the remaining flat plate portion is defined as a light guiding unit 5.
  • a surface on which light is incident (a surface parallel to the xy plane in FIG. 1) is a surface facing the first main surface 4a and the first main surface 4a.
  • the surface on which the light traveling direction changing portion is provided is referred to as a second main surface 4b.
  • the surface located on the light incident side (the surface continuous with the first main surface 4 a of the light collector 4) faces the first main surface 5 a and the first main surface 5 a.
  • a surface (a surface continuous with the second main surface 4b of the light collecting unit 4) is referred to as a second main surface 5b.
  • the end surface of the light guide part 5 on the side where the solar cell element 3 is provided is referred to as a first end surface 5c.
  • the condensing part 4 and the light guide part 5 are united, the surface which opposes the 1st end surface 5c in the light guide part 5 does not actually exist, However,
  • the condensing part 4 A virtual plane serving as a boundary between the light guide unit 5 and the light guide unit 5 may be referred to as a second end surface.
  • a highly transparent organic material or inorganic material such as acrylic resin, polycarbonate resin, or glass can be used, but is not limited thereto.
  • a highly transparent organic material or inorganic material such as acrylic resin, polycarbonate resin, or glass
  • PMMA polymethyl methacrylate
  • the refractive index of the condensing light guide unit 2 is about 1.5.
  • the condensing light guide unit 2 can be manufactured by hot extrusion molding of a resin using a mold.
  • FIG. 7A is a graph showing the transmittance characteristics of a general acrylic resin
  • FIG. 7B is a graph showing the transmittance characteristics of a preferable material in the present embodiment.
  • the horizontal axis of each graph is wavelength [nm], and the vertical axis is transmittance [%]. More specifically, as shown in FIG. 7B, it is desirable that the wavelength at which the transmittance starts to decrease on the low wavelength side in the transmittance curve of the light collecting and guiding unit 2 is 360 nm to 370 nm or less.
  • the material include PMMA resin such as XY-0159, XY-0284 (trade name) manufactured by Mitsubishi Rayon Co., Ltd., silicon resin (basically no absorption in ultraviolet light), and a quartz substrate.
  • ultraviolet light occupies about 10% of the total amount of light.
  • a resin material such as PMMA (acrylic resin) or PC (polycarbonate) or glass is used.
  • PMMA acrylic resin
  • PC polycarbonate
  • FIG. 7A many resins and glass absorb ultraviolet rays. Recently, in order to improve light resistance, some of these materials are mixed with an ultraviolet absorber to absorb ultraviolet light.
  • 10% of sunlight hitting the ultraviolet rays is absorbed in the condensing light guide unit 2 and cannot reach the end face.
  • Such a loss of the member becomes a large loss in effectively using sunlight. Therefore, it is useful to increase the efficiency of end face condensing by using a material that absorbs less in the ultraviolet region.
  • the plurality of light collecting and guiding units 2 are stacked in the thickness direction.
  • the plurality of condensing light guide units 2 are drawn with a predetermined interval in order to make the drawing easy to see, but it is actually desirable to arrange them in close contact with each other.
  • the solar cell module 1 can be made thinner if a plurality of the light collecting and guiding units 2 are arranged in close contact with each other. In addition, dust and the like can be prevented from entering the gap between the adjacent light collecting and guiding units 2.
  • the 1st end surface 5c of the light guide part 5 of the some condensing light guide unit 2 is arrange
  • Each condensing light-guiding unit 2 and solar cell element 3 are drawn with a slight gap in order to make the drawing easier to see in FIG.
  • the condensing light guide unit 2 and the solar cell element 3 may be directly fixed by an optical adhesive or the like.
  • the condensing light guide unit 2 and the solar cell element 3 may not be directly fixed, but may be configured such that their positions are fixed by accommodating both in a frame or the like.
  • the plurality of condensing light-guiding units 2 have smaller dimensions in the light propagation direction (y-axis direction) from the back side (lower side in FIG. 2A) to the front side (upper side in FIG. 2A) as viewed from the light incident side. It has become. However, the shape and dimensions of the light collecting unit 4 are the same over the plurality of light collecting light guide units 2. The dimensions of the light guide 5 in the light propagation direction (y-axis direction) are gradually reduced from the back side (lower side in FIG. 2A) to the near side (upper side in FIG. 2A) when viewed from the light incident side.
  • the plate thickness (dimension in the z-axis direction) of the light guide portion 5 is formed thinner than the plate thickness (dimension in the z-axis direction) of the light collection portion 4.
  • the portion near 5 is a tapered portion 6 in which the plate thickness gradually decreases toward the light guide portion 5.
  • the dimension La in the light propagation direction of the light collecting part 4 is 10 cm
  • the plate thickness ta of the light collecting part 4 is 10 mm
  • the plate thickness tb of the light guide part 5 is 3 mm
  • the light propagation direction of the tapered part 6 The dimension Lt in the (y-axis direction) is 1 cm.
  • a plurality of light-condensing light-guiding units 2 are viewed from the light incident side such that the dimension Lb2 in the light propagation direction of the light-guiding unit 5 in the light-condensing light-guiding unit 2 in the second stage from the bottom in FIG. From the back side toward the front side, the light propagation direction dimension of the light guide 5 is shortened by 10 cm (by the dimension La of the light collection part 4 in the light propagation direction). Therefore, only the condensing light-guiding unit 2 on the foremost side (the uppermost stage in FIG.
  • the condensing unit 4 when viewed from the light incident side does not have the light guide unit 5, and the condensing unit 4 is directly joined to the solar cell element 3. It becomes the composition.
  • the first main surfaces 4a of the plurality of light collecting portions 4 are arranged at different positions, and the plurality of light collecting units 4 of the plurality of light collecting portions 4 are arranged.
  • the light irradiation surface of the solar cell module 1 is constituted by the 1 main surface 4a.
  • a light traveling direction changing portion 7 is formed on the second main surface 4 b of the light collecting portion 4.
  • the light incident on the first main surface 4 a of the light collecting unit 4 is reflected by the light traveling direction changing unit 7 provided on the second main surface 4 b to change the traveling direction, and toward the light guide unit 5. proceed.
  • the light traveling direction changing unit 7 is composed of a plurality of grooves 8 having a triangular cross-sectional shape formed on the second main surface 4 b of the light collecting unit 4. Each groove 8 extends from one end of the light collecting section 4 to the other end along a direction orthogonal to the light propagation direction (x-axis direction in FIG. 2A).
  • the light traveling direction changing unit 7 is formed integrally with the light collecting unit 4 by processing the surface of the plate member constituting the light collecting and guiding unit 2.
  • the light traveling direction changing unit 7 is provided with a convex shape obtained by reversing the shape of the groove 8 in a mold used when the light collecting and guiding unit 2 is manufactured. They can be formed simultaneously.
  • the second main surface of the flat condensing light guide unit 2 may be formed by cutting.
  • the plurality of grooves 8 have the same shape, dimensions, pitch, etc., and are formed continuously. That is, there is no flat surface on the second main surface 4 b of the light collecting unit 4.
  • a plurality of grooves 8 are formed with a predetermined interval between them, It is good also as a structure which provided the flat surface. With this configuration, light is transmitted through the flat surface, so that the object on the side opposite to the observer can be seen through the condensing light guide unit 2.
  • the shape, dimensions, pitch, and the like of the plurality of grooves 8 may be intentionally different.
  • each groove 8 has been described as a triangular shape, but more specifically, as shown in FIG. 2B, each groove when the condensing light-guiding unit 2 is cut along the yz plane that is the longitudinal direction thereof.
  • the cross-sectional shape of 8 is a right triangle. That is, each groove 8 constituting the light traveling direction changing unit 7 includes a vertical plane V perpendicular to a virtual plane X (a plane parallel to the first main surface 4a) passing through the opening end of each groove 8, and a virtual plane. And an inclined surface T inclined with respect to X.
  • the inclined surface T forms a predetermined inclination angle ⁇ 2 with respect to the virtual plane X, and functions as a reflecting surface that reflects (totally reflects) light incident from the first main surface 4a. Therefore, the light incident on the light traveling direction changing unit 7 is reflected by the plurality of inclined surfaces T and propagates toward the light guide unit 5 side.
  • the depth of the groove 8 (dimension in the plate thickness direction (z-axis direction)) h. Is 90 ⁇ m
  • the inclination angle ⁇ 2 of the inclined surface T is 42 degrees.
  • the critical angle at the interface between the condensing light guiding unit 2 and air is about 41 degrees according to Snell's law.
  • the incident angle of the light to the inclined surface T is 42 degrees, so that the incident angle is equal to or greater than the critical angle, The light is totally reflected by the inclined surface T.
  • no light is incident on the vertical plane V. Accordingly, all of the light incident perpendicularly to the light traveling direction changing unit 7 is totally reflected by the inclined surface T.
  • the inclination angle ⁇ 2 of the inclined surface T may be set so as to satisfy the angle condition that the light is totally reflected by the inclined surface T.
  • the second main surface 4b of the light collecting unit 4 is formed with the light traveling direction changing unit 7 including a plurality of grooves 8, whereas the first main surface 5a and the second main surface 5a of the light guide unit 5 are formed.
  • the main surface 5b is not subjected to shape processing. That is, the first main surface 5a and the second main surface 5b of the light guide 5 are both flat and parallel to each other.
  • the light that has entered the light guide unit 5 from the light collecting unit 4 is directed toward the first end surface 5c provided with the solar cell element 3 while repeating total reflection between the first main surface 5a and the second main surface 5b. And proceed.
  • the first light guide unit 5 since the first main surface 5a and the second main surface 5b of the light guide unit 5 are both flat and parallel to each other, the first light guide unit 5 has the first reflection regardless of how many times the light is totally reflected.
  • the incident angle with respect to the main surface 5a and the second main surface 5b does not change. That is, while light propagates through the light guide 5 from the second end surface 5d to the first end surface 5c, the total light reflection condition on the first main surface 5a and the second main surface 5b of the light guide 5 is maintained. Yes.
  • the solar cell element 3 As the solar cell element 3, a known one can be used, and for example, an amorphous silicon solar cell, a polycrystalline silicon solar cell, a single crystal silicon solar cell, a compound solar cell, or the like can be used. In particular, in the case of this embodiment, it is desirable to use a compound solar cell.
  • a silicon-based solar cell can provide only a conversion efficiency of about 10 to 20%, whereas a compound-based solar cell can provide a conversion efficiency of 40%, for example.
  • the shape and size of the solar cell element 3 are not particularly limited as long as the shape and size are within the plane formed by the first end faces 5c of the plurality of light guide portions 5 in the plurality of light collecting and guiding units 2.
  • ten light-collecting light-guiding units 2 having a light guide portion 5 with a plate thickness of 3 mm are laminated, so The size of the solar cell element 3 may be about 3 cm.
  • the size of the solar cell element 3 in the direction orthogonal to the light propagation direction (x-axis direction in FIG. 2A) is 1 m.
  • each condensing light guide unit 2 has a condensing unit 4 and a light guiding unit 5, and the dimension in the light propagation direction is collected by the longest condensing light guiding unit 2.
  • the light guide 5 is sufficiently long relative to the light collector 4 such that the part 4 is 10 cm and the light guide 5 is 90 cm. Therefore, the light taken into the condensing light guide unit 2 by the condensing unit 4 is propagated through the light guiding unit 5 for a long distance.
  • the light collecting unit 4 is provided with a light traveling direction changing unit 7 for taking sunlight inside.
  • the incident angle of light from the light collecting part 4 to the solar cell element 3 does not change, and the total reflection condition is maintained. Therefore, even if light is taken into the light collecting unit 4 and then propagated through the light guiding unit 5 for a long distance, the amount of light leaking outside the light collecting light guiding unit 2 during propagation is minimized. Can be reduced.
  • the traveling direction changes while light is propagated in the light guide as in the conventional solar cells described in Patent Documents 1 and 2, breaking the total reflection condition in the light guide, The probability of leaking outside the light guide unit can be reduced. As a result, it is possible to realize a solar cell module that has sufficient light collection efficiency and excellent power generation efficiency.
  • the condensing light guide unit 2 is provided. Even with a structure in which a plurality of layers are laminated, the thin solar cell module 1 as a whole can be realized. Further, the light irradiation area as a whole of the plurality of light condensing light guide units 2 can be secured to 1 m 2 , whereas the size of the solar cell element 3 may be the area of the end face portion of the light condensing light guiding unit 2, for example, 3 cm ⁇ 1 m. .
  • the solar cell element 3 can be sufficiently reduced in size as compared with the conventional solar cell module in which the solar cells are spread all over, and the manufacturing cost can be reduced.
  • the size of the light collecting and guiding unit 2 can be appropriately changed without changing the size of the solar cell element 3, it is easy to realize an increase in size of the solar cell module 1.
  • the solar cell element 3 can be reduced in size compared to the conventional one, for example, a compound solar cell element can be used as the solar cell element 3, and the power generation efficiency can be further improved.
  • the light traveling direction changing unit 10 may have the following shape, for example.
  • one light traveling direction changing unit 10 has a plurality of grooves 11 whose cross-sectional shape is an unequal triangular shape.
  • the first inclined surface T1 having a large inclination angle ⁇ 2 with respect to the virtual plane X on the second main surface 12b side of the light guide plate 12 reflects the incident light L1 and guides it to the solar cell element 3 side.
  • the second inclined surface T2 having an inclination angle ⁇ 1 smaller than the first inclined surface T1 does not satisfy the total reflection condition, and the light L2 incident on the second inclined surface T2 is transmitted.
  • a plurality of grooves 15 whose cross-sectional shape is a right triangle are continuously formed as in the present embodiment.
  • substantially all of the light L1 incident from the first main surface 16a of the light guide plate 16 can be contributed to the light guide.
  • Still another light traveling direction changing unit 18 shown in FIG. 3C includes a plurality of grooves 15 having a right-angled triangular cross section formed on the second main surface 19b of the light guide plate 19 at a predetermined interval, and between adjacent grooves. Is a flat surface F. In this case, the light L2 incident on the flat surface F is transmitted as it is.
  • the light traveling direction changing units 10 and 18 shown in FIGS. 3A and 3C may be applied to this embodiment.
  • a light incident area of approximately 1 m 2 or more is required in order to obtain a practical amount of power. is there.
  • a solar cell module of a type that concentrates on the solar cell element 3 provided on the end faces of the light guide plates 12, 16, and 19 has a conversion efficiency in order to realize high-efficiency power generation. It is conceivable to use a high compound solar cell element. However, since the price of the compound solar cell element is 100 times or more the price of the silicon solar cell element, in order to reduce the cost, the collected light is efficiently collected in the solar cell element. It is required to reduce the installation area. From the above, a light guide plate that assumes that incident light is guided by about 1 m is required.
  • the light guide angle may change again by entering the groove portion at the subsequent stage. . Then, the incident angles to the first main surface and the second main surface of the light guide plate are smaller than the critical angle and the light total reflection condition is not satisfied, and the light Lo is outside the light guide plate 16 as shown in FIG. 3B. Leaks out. The light Lo no longer reaches the solar cell element 3 on the end face. For example, comparing the light guide plate 16 of FIG. 3B with the light guide plate 19 of FIG. 3C, in the light guide plate 19 of FIG.
  • the light re-enters the groove 15 in the subsequent stage by the distance between the grooves 15 and 15.
  • the ratio of the light guide is reduced, and the light guideable distance until the total reflection condition is broken becomes slightly longer than the light guide plate 16 of FIG. 3B. Still, when light travels about several tens of centimeters in the light guide plate, almost all light cannot reach the end face.
  • the present inventors assumed a light guide plate having a square planar shape, and performed a simulation to obtain the light arrival rate to the end face of the light guide plate when the size of one side of the light guide plate was changed.
  • the thickness t of the light guide plate 21 is 3 mm
  • the width l of the grooves 22 is 119 ⁇ m
  • the interval s between the grooves 22 is 0 ⁇ m
  • the depth h of the grooves 22 is 111 ⁇ m
  • the conditions of the simulation are as shown in FIG.
  • the angle ⁇ 1 formed by the vertical plane V and the virtual plane X on the second main surface side is 90 degrees
  • the angle ⁇ 2 formed by the inclined plane T of the groove 22 and the virtual plane X is 43 degrees.
  • the light guide plate 21 to be simulated has a space between the groove 22 and the groove 22, that is, the groove 22 is formed on the entire surface, and is flat on the second main surface 21b. There are no faces. The light is incident on the first main surface 21a of the light guide plate 21 perpendicularly.
  • FIG. 5 is a graph showing the relationship between the size L of one side of the light guide plate 21 shown in FIG. 4A and the arrival rate of light to the end face of the light guide plate.
  • the horizontal axis in FIG. 5 is the size (mm) of one side of the light guide plate, and the vertical axis is the arrival rate (%) of light to the end face of the light guide plate.
  • the “light arrival rate at the end face of the light guide plate (hereinafter abbreviated as end face arrival rate)” is the amount of light reaching the end face of the light guide plate relative to the total amount of light irradiated on the first main surface of the light guide plate. It is a ratio. As can be seen from FIG.
  • the value of the end face arrival rate varies depending on the shape of the groove constituting the light traveling direction changing unit 10.
  • the groove width l is 100 ⁇ m
  • the interval s between the grooves is 0 ⁇ m
  • the groove depth h is 90 ⁇ m
  • the angle ⁇ 2 formed by the inclined surface T and the virtual plane X is changed to 42 degrees.
  • the end face arrival rate when the size of the light guide plate is 1 m is about 4%.
  • the solar cell module 1 as a whole includes ten condensing light-guiding units 2, and each condensing light-guiding unit 2 can cause approximately 35% of light to reach the first end surface 5 c of the light guide unit 5. . Therefore, about 35% of the light irradiated to the solar cell module 1 having the irradiation area of 1 m 2 reaches the solar cell element 3 as a whole of the ten light collecting and guiding units 2.
  • the light guide plate 21 see FIG.
  • the size of the solar cell element 3 may be the area of the end face of the ten condensing light guide units 2 and may be, for example, 3 cm ⁇ 1 m. Therefore, the size of the solar cell element 3 can be reduced to about 1/33 compared to the case where the solar cell element is spread over the irradiation area of 1 m 2 . If the conversion efficiency of 13% of the crystalline silicon solar cell used as a general-purpose products of comparative examples paved on the entire surface of the irradiation area of 1 m 2, it is possible to power the 130W in footprint 1 m 2.
  • a compound solar cell is spread over the entire surface of the 1 m 2 irradiation region, a power generation amount of 4000 W can be obtained.
  • the compound solar cell is expensive, the compound solar cell is disposed over the entire surface of the 1 m 2 irradiation region. It is difficult to spread the film in consideration of the manufacturing cost. Therefore, according to the present embodiment, although it is expensive, a solar cell module that achieves both a manufacturing cost and a power generation amount can be realized by using a small amount of a compound solar cell element that boasts high conversion efficiency. .
  • FIG. 8 is a side view showing the solar cell module 25 of the present embodiment.
  • the same components as those in FIG. 2A used in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • a homogenizer 26 (light guide) is inserted between the plurality of condensing light guide units 2 and the solar cell elements 3.
  • the area of the exit end face 26b for emitting light is smaller than the area of the entrance end face 26a for entering light.
  • the homogenizer 26 is a tapered light guide having side surfaces 26c that are inclined with respect to the incident end surface 26a and the exit end surface 26b.
  • the incident end surface 26 a faces the first end surface 5 c of the light guide unit 5 of the plurality of light collecting and guiding units 2, and the emission end surface 26 b faces the light receiving surface of the solar cell element 3.
  • the homogenizer 26 is disposed between the plurality of light collecting and guiding units 2 and the solar cell element 3. With this configuration, the light incident on each condensing light guide unit 2 enters the homogenizer 26 from the first end surface 5 c of the light guide unit 5, and reaches the solar cell element 3 through the inside of the homogenizer 26.
  • the homogenizer 26 further focuses the light incident from the incident end face 26a while propagating the light incident on the side face 26c to guide the light to the solar cell element 3, and makes the light intensity on the light receiving surface of the solar cell element 3 uniform. It has a function to convert.
  • the dimension of the plurality of condensing light guide units 2 on the incident end face 26a side in the stacking direction is 3 cm, and the plurality of condensing light guide units 2 on the exit end face 26b side is.
  • the dimension in the stacking direction is 5 mm. Therefore, a solar cell having a size of 5 mm ⁇ 1 m may be used as the solar cell element 3 of the present embodiment, and the size can be further reduced as compared with the first embodiment.
  • the homogenizer 26 is made of a resin material such as PMMA. Further, the side surface 26c of the homogenizer 26 may be in a state where the resin material is exposed to the outer surface, or may be provided with a reflector.
  • high power generation efficiency can be obtained by securing the light collection efficiency, and the same effects as those of the first embodiment can be obtained such that a solar cell module having a low-cost and thin configuration can be realized.
  • the size of the solar cell element 3 can be made smaller than that of the first embodiment, and the manufacturing cost can be reduced. Further reduction can be achieved. Further, since the intensity is uniformed while the light emitted from the condensing light guide unit 2 propagates inside the homogenizer 26, the light having a uniform intensity is generated at any position within the light receiving surface of the solar cell element 3. Incident. Thereby, the electric power generation amount of the solar cell element 3 can be stabilized. If light is incident non-uniformly on the light receiving surface of the solar cell element 3, a distribution of power generation occurs, and a desired power generation may not be obtained. Therefore, the homogenizer 26 is effective to stably obtain a desired power generation amount.
  • FIG. 9 is a side view showing the solar cell module 30 of the present embodiment.
  • the same components as those used in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the light condensing part and the light guiding part that constitute the light condensing light guiding unit are formed of an integral plate member.
  • the condensing member and light guide member which comprise a condensing light guide unit are comprised by the separate plate-shaped member. That is, as shown in FIG. 9, the solar cell module 30 of the present embodiment includes a light collecting light guide unit 33 including a plurality of light collecting members 31 and one light guide member 32, and the solar cell element 3. ing.
  • the condensing member 31 is different from the first embodiment in that the condensing unit 4 of the first embodiment is separated from the light guiding unit 5, and the configuration itself including the light traveling direction changing unit 7 is the condensing of the first embodiment. Same as part 4.
  • ten light collecting members 31 are used as an example, but only a part of them is shown in FIG. 9, and the remaining illustration is omitted.
  • the plurality of grooves 8 constituting the light traveling direction changing portion 7 of the light collecting member 31 are not formed from one end to the other end of the second main surface 31b of the light collecting member 31, It is not formed in the edge part by the side joined to the light guide member 32 among 2 main surfaces 31b.
  • the first main surface 34a and the second main surface 34b of the portion where the plurality of grooves 8 are not formed are both flat and parallel to each other.
  • the light collecting member 31 of the present embodiment is considered to be the light collecting unit 4 of the first embodiment separated from the light guide unit 5, the light collecting member 31 of the present embodiment is the same as that of the first embodiment.
  • the light condensing part 4 is cut off leaving a slight light guiding part 5 at one end.
  • the end surface 34 c of the neck portion 34 is a light emitting end surface, It is also a joint surface.
  • the light guide member 32 is composed of one plate-like member provided in common for the plurality of light collecting members 31.
  • the 1st end surface 32c in which the solar cell element 3 is provided is a flat surface, and the level
  • the same number of second end faces 32d as the plurality of light collecting members 31 are formed at positions where the distances from the first end face 32c are different. Then, each of the plurality of light collecting members 31 is joined to each of the plurality of second end faces 32 d of the light guide member 32 via the joining material 35.
  • Constituent materials for the light collecting member 31 and the light guide member 32 can be the same as those in the first embodiment.
  • the constituent materials of the light collecting member 31 and the light guide member 32 may be different, but are preferably the same, and for example, PMMA can be used.
  • the bonding material 35 for example, an ultraviolet curable resin or the like can be used. It is desirable that the light collecting member 31, the light guide member 32, and the bonding material 35 have the same refractive index.
  • the light guide member 32 is composed of one plate-like member provided in common to the plurality of light collecting members 31, but the configuration of the light guide member 32 is not limited to this. .
  • a plurality of light collecting members 31 may be divided into several groups, and a light guide member 32 provided in common for each group may be provided. Specifically, when nine light collecting members 31 are provided, three light guide members 32 provided in common to the three light collecting members 31 may be provided.
  • the shape of the light guide member 32 has a step on the second end surface 32d side, but the second main surface 32b of the light guide member 32 and the first main surface 32a of each step are all. Flat surfaces that are parallel to each other. Further, the joint surface of the light guide member 32 with each light collecting member 31 is a second end surface 32d perpendicular to the first main surface 32a and the second main surface 32b.
  • the light guide member 32 while light propagates in the light guide member 32 from one light collecting member 31 to the solar cell element 3, the light is incident on the joint surface between the other light collecting member 31 and the light guide member 32. Absent.
  • high power generation efficiency can be obtained by securing the light collection efficiency, and the same effects as those of the first and second embodiments can be obtained such that a solar cell module having a low-cost and thin configuration can be realized.
  • the light incident on the light collecting member 31 is emitted from the end surface 34c of the neck 34 that is orthogonal to the first main surface 31a and the second main surface 31b.
  • the plurality of grooves 8 constituting the light traveling direction changing portion 7 are not formed at one end of the second main surface 41 b of the light collecting member 41.
  • a region 41z may be provided, and light may be emitted from the region 41z.
  • the region 41z on the second main surface 41b side of the light collecting member 41 becomes the light emission end surface, and becomes a joint surface with the light guide member.
  • the light guide member 42 is provided with a step, but unlike the third embodiment, the light collecting member 41 is joined to the second end surface 42d orthogonal to the first main surface 42a and the second main surface 42b. Instead, the light collecting member 41 is bonded to the first main surface 42a side of the stepped portion 42x via the bonding material 35.
  • a cut 42 f is formed in the light guide member 42 at a position overlapping the joint between the light collecting member 41 and the light guide member 42.
  • the lower first main surface 42a exists at a position overlapping the joint between the light collecting member 41 and the light guide member 42, and the light guide path in which total reflection occurs.
  • the joint is not facing. Therefore, the vicinity of the junction between the light collecting member 41 and the light guide member 42 near the solar cell element 3 is taken from the light collecting member 41 located farther from the solar cell element 3 than the light collecting member 41. This is a region where light does not enter and does not contribute to the propagation of the light.
  • the solar cell element 3 when the light taken in from the light collecting member 41 located far from the solar cell element 3 is propagated inside the light guide member 42, the solar cell element 3. Light does not enter the joint between the light collecting member 41 and the light guide member 42 closer to each other. Therefore, a solar cell module with high light collection efficiency can be realized.
  • FIG. 12 is a perspective view showing the solar cell module of the present embodiment.
  • FIG. 13A is a side view of the solar cell module
  • FIG. 13B is an enlarged view in a circle indicated by reference signs A1 and A2 in FIG. 13A.
  • FIG. 12 FIG. 13A, and FIG. 13B, the same components as those used in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the solar cell module 50 of the present embodiment includes a plurality (nine in this embodiment) of light collecting and guiding units 2 and 51 and two solar cell elements 3. ing.
  • the point using the condensing light guide unit which the condensing part and the light guide part integrated is the same as that of 1st Embodiment.
  • inner side (lower side of FIG. 12, FIG. 13A) from the light incident side among the several condensing light guide units 2 and 51 differs from 1st Embodiment.
  • the lowermost light collecting and guiding unit 51 is provided with a light collecting part 52 at the center, and light guide parts 5 are provided on both sides of the light collecting part 52 so that light incident on the light collecting part 52 is obtained. Is propagated to both light guides 5. Of the condensing unit 52, light incident on the right half region in FIG. 13A is propagated to the right light guide unit 5, and light incident on the left half region in FIG. 13A is propagated to the left light guide unit 5.
  • the lowermost condensing light-guiding unit 51 has a symmetrical shape with respect to the center in the light propagation direction (y-axis direction in FIG. 13A). Therefore, the plurality of grooves 54 a and 54 b constituting the light traveling direction changing unit 53 are also symmetrical with respect to the center of the light collecting unit 52.
  • the groove 54a formed in the left half region of FIG. 13A in the light condensing part 52 is a virtual plane X (a plane parallel to the first main surface 52a) passing through the open end of each groove 54a. ) Perpendicular to the imaginary plane X and an inclined plane T1 inclined downward to the left with respect to the virtual plane X.
  • FIG. 13B the groove 54a formed in the left half region of FIG. 13A in the light condensing part 52 is a virtual plane X (a plane parallel to the first main surface 52a) passing through the open end of each groove 54a. ) Perpendicular to the imaginary plane X and an inclined plane T1 inclined downward to the left
  • the groove 54b formed in the right half region of FIG. 13A is perpendicular to a virtual plane X (a plane parallel to the first main surface 52a) passing through the open end of each groove 54b.
  • the configuration of the light collecting and guiding unit 2 other than the lowermost light collecting and guiding unit 51 is the same as that of the first embodiment. That is, the condensing light-guiding unit 2 in which the light-guiding unit 5 is provided only on one end side of the condensing unit 4 has three right and left above the lower-most condensing light-guiding unit 51, and only the condensing unit 4 on the uppermost stage Condensed light guide units 2 made up of left and right are stacked one by one.
  • the plurality of light-condensing light-guiding units 2 have smaller dimensions in the light propagation direction (y-axis direction) from the back side (lower side in FIG. 13A) to the front side (upper side in FIG. 13A) as viewed from the light incident side.
  • the shape and size of the light collecting unit 4 are the same over the plurality of light collecting light guide units 2, and the light propagation direction (y-axis direction) size of the light guide unit 5 is sequentially reduced. Further, the plate thickness (dimension in the z-axis direction) of the light guide portion 5 is formed thinner than the plate thickness (dimension in the z-axis direction) of the light collection portion 4, and the portion of the light collection portion 4 near the light guide portion 5.
  • the taper part 6 is formed in.
  • the dimension La in the light propagation direction of the light condensing part 52 in the light condensing light guiding unit 51 in the lowermost stage in FIG. 13A is 10 cm on each side, for a total of 20 cm.
  • the light propagation direction dimension Lb1 of the light guide unit 5 in the lowermost light collecting and guiding unit 51 is 40 cm, and the second light collecting and guiding light from the back side (second stage from the bottom in FIG. 13A) when viewed from the light incident side.
  • the light guide unit 5 has a light propagation direction dimension Lb2 of 30 cm,..., So that the plurality of light converging light guide units 2 and 51 transmit light from the back side toward the front side as viewed from the light incident side.
  • the dimension in the direction is reduced by 10 cm (by the dimension La in the light propagation direction of the light collecting portion 4). Therefore, the condensing light-guiding unit 2 on the foremost side (the uppermost stage in FIG. 13A) when viewed from the light incident side does not have the light guiding part 5, and the condensing part 4 is directly joined to the solar cell element 3. It has a configuration. Other dimensions are the same as in the first embodiment.
  • the first main surfaces 4a and 52a of the plurality of light collecting portions 4 and 52 are disposed at different positions when viewed from the light incident side.
  • the light irradiation surface of the solar cell module 50 is configured by the plurality of first main surfaces 4a and 52a of the plurality of light collecting portions 4 and 52.
  • high power generation efficiency can be obtained by ensuring the light collection efficiency, and the same effects as those in the first to third embodiments can be obtained such that a solar cell module having a low-cost and thin configuration can be realized.
  • the solar cell modules of the first to third embodiments also have no factor that breaks the total reflection condition as the configuration of the light guide unit, but the light guide unit increases the length of the light guide unit. There is a high probability that the portion will be scratched or soiled, and such a scratch or soiling may break the total reflection condition. From this viewpoint, in order to suppress light leakage, it is preferable that the light guide is short, and the configuration of the present embodiment is suitable.
  • FIG. 14 is a block diagram showing the solar power generation device 100 of the present embodiment.
  • the photovoltaic power generation apparatus 100 of the present embodiment includes a solar cell module 103 composed of the condensing light-guiding unit 101 and the solar cell element 102 of the first to fourth embodiments, an inverter 104, Storage battery 105.
  • the electric power obtained by the solar cell module 103 is DC-AC converted by the inverter 104 and output to the external load 106. Further, another power source 107 is connected to the external load 106.
  • the electric power obtained by the solar cell module 103 is charged in the storage battery 105 and discharged from the storage battery 105 as necessary.
  • the solar cell module 103 of the first to fourth embodiments since the solar cell module 103 of the first to fourth embodiments is provided, it is possible to obtain a photovoltaic power generation apparatus 100 having high power generation efficiency, low cost and a thin configuration. it can.
  • each light guide unit is made to correspond to each light collection unit, and these are configured by an integrated plate-like member.
  • the light guide unit may be separate members.
  • channel which comprises a light advancing direction change part was demonstrated as what directly shape-processed the surface of the structural member of a condensing part, for example, the film which formed the groove shape was prepared separately, and this film It is good also as what is bonded to the plate-shaped member which consists of PMMA etc. as a condensing part.
  • the specific description of the shape, size, number, arrangement, constituent material, manufacturing method, and the like of various components in the above embodiment is merely an example, and is not limited to that illustrated in the above embodiment, and can be changed as appropriate. It is.
  • the present invention can be used for a solar cell module or a solar power generation device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 太陽電池モジュールは、外部からの光を入射させる少なくとも一つの第1主面と前記第1主面から入射した光を反射させる反射面を含む第2主面とを各々が有する複数の集光部材と、前記複数の集光部材の各々に入射された光を表面で全反射させつつ第1端面に向けて伝播させ、前記第1端面から射出させる導光部材と、前記導光部材の前記第1端面から射出された光を受光する第1太陽電池素子と、を備え、前記複数の集光部材のそれぞれの前記第1主面は、第1主面と垂直な方向から見て互いに異なる位置に配置され、前記複数の集光部材の各々から前記第1太陽電池素子まで前記導光部材内を光が伝播する前記導光部材内の伝播路において、前記光の全反射条件が維持される。

Description

太陽電池モジュールおよび太陽光発電装置
 本発明は、太陽電池モジュールおよび太陽光発電装置に関する。
 本願は、2010年10月18日に、日本に出願された特願2010-233760号に基づき優先権を主張し、その内容をここに援用する。
 従来の太陽光発電装置は、複数の太陽電池パネルを太陽に向けて一面に敷き詰めた形態のものが一般的であった。通常、太陽電池は不透明な半導体で構成されており、積層した状態で設置することができない。そのため、ある程度の電力量を確保するためには大面積の太陽電池パネルが必要となる。ところが、大面積の太陽電池パネルは高価であり、太陽光発電装置のコストを高騰させる要因となっている。
 そこで、入射した太陽光を太陽電池に導くための集光用部材を備えた太陽電池モジュールが提案されている(下記の特許文献1、特許文献2参照)。
 特許文献1に記載の太陽電池モジュールは、集光部材として側面形状が略直角三角形状の透光部材を備えており、透光部材の光入射面と直交する端面に太陽電池が設置されている。透光部材の傾斜面は反射面となっており、透光部材の入射面から入射した太陽光は反射面で反射してその進行方向を変え、端面の太陽電池に集光される。
 また、特許文献2に記載の太陽光発電装置は、導光体の端面に太陽電池セルが配置され、導光体の光入射側には導光体に接する凸部を有する入射光制御板が配置されている。入射光制御板の内部に入射した光は、凸部の内壁面で全反射して凸部の頂部から導光体の内部に入射し、導光体の内部を伝播して太陽電池セルに導入される。
特開2004-47752号公報 特開2005-19587号公報
 特許文献1には、透光部材の入射面に対する反射面の傾きを例えば45°とし、入射面に対して垂直方向から入射した光を反射面で反射させてその進行方向を水平方向に変え、太陽電池に入射させると、太陽光を効率良く起電力に変換できる、と記載されている。この記載によれば、特許文献1の太陽電池の場合、光入射面の面積を十分に確保しようとすると、透光部材の厚みも厚くなってしまう。そのため、モジュール全体がかさばって使い勝手が悪くなる。また、透光部材の厚みが厚くなると、大型の太陽電池が必要になるため、製造コストが高騰する。
 さらに、特許文献1には、上記の平坦な反射面を有する形態の他、傾斜面に複数のV字状の溝を設け、V字状溝の一方の壁面を反射面とした形態の太陽電池モジュールも開示されている。特許文献1には、この太陽電池モジュールにおいては、V字状溝の配置密度を高めることで太陽電池への入射光量を高め、電池出力を高めることができる、と記載されている。しかしながら、この構成の場合、一つのV字状溝の壁面で反射した光が、透光部材内を導光する間に他のV字状溝に入射し、その壁面で再度反射して進行方向を変え、透光部材内の全反射条件を破ってしまい、透光部材の外部に漏れる虞がある。その結果、傾斜面に複数のV字状溝を設ける構成では、平坦な反射面を有する構成に比べて透光部材の厚みが薄くできたとしても、今度は集光効率が低下する。
 特許文献2には、入射光制御板の形状によっては、導光体内に一旦入射した光が再度凸部に入射して外部に射出され、光の利用効率が低下することが記載されている。さらに、特許文献2には、上記の現象を改善するために、入射光制御板の凸部を放物面状とし、凸部の頂部の面積を小さくした上で放物面の焦点位置を凸部の頂部に設定することが記載されている。しかしながら、実際に凸部を上記のような設計通りの形状に形成するのは難しく、凸部が上記の形状に形成できなかった場合は、やはり光の利用効率が低下することになる。
 本発明の態様は、上記の課題を解決するためになされたものであって、集光効率を確保することで高い発電効率が得られ、安価で薄型の構成を有する太陽電池モジュールとこれを用いた太陽光発電装置の実現を目的とする。
 上記の目的を達成するために、本発明の一態様における太陽電池モジュールは、外部からの光を入射させる少なくとも一つの第1主面と前記第1主面から入射した光を反射させる反射面を含む第2主面とを各々が有する複数の集光部材と、前記複数の集光部材の各々に入射された光を表面で全反射させつつ第1端面に向けて伝播させ、前記第1端面から射出させる導光部材と、前記導光部材の前記第1端面から射出された光を受光する第1太陽電池素子と、を備え、前記複数の集光部材のそれぞれの前記第1主面は、第1主面と垂直な方向から見て互いに異なる位置に配置され、前記複数の集光部材の各々から前記第1太陽電池素子まで前記導光部材内を光が伝播する前記導光部材内の伝播路において、前記光の全反射条件が維持される。
 本発明の一態様における太陽電池モジュールは、前記複数の集光部材のうちの一つの集光部材から前記第1太陽電池素子まで前記導光部材内を光が伝播し、前記光が他の集光部材と前記導光部材との界面に入射しないよう構成されていてもよい。
 本発明の一態様における太陽電池モジュールは、前記導光部材内を光が伝播する際に全反射を生じる前記導光部材の2つの主面が、ともに平坦であって互いに平行な面であってもよい。
 本発明の一態様における太陽電池モジュールは、前記導光部材が、前記複数の集光部材の各々に対応して設けられた、前記複数の集光部材と同数のサブ導光部材からなっていてもよい。
 本発明の一態様における太陽電池モジュールは、前記集光部材が前記サブ導光部材の前記第1端面と対向する第2端面側に配置され、前記集光部材と前記サブ導光部材とが一体の部材で構成されていてもよい。
 本発明の一態様における太陽電池モジュールは、前記導光部材が、前記複数の集光部材に対して共通に設けられた1つの導光部材であってもよい。
 本発明の一態様における太陽電池モジュールは、前記複数の集光部材の各々が、前記導光部材の前記第1端面からの距離が異なる位置に接合されていてもよい。
 本発明の一態様における太陽電池モジュールは、前記導光部材の前記第1端面と対向する第2端面側が段差を有し、前記導光部材の前記第1端面からの距離が異なる位置に前記複数の集光部材と同数の前記第2端面が形成され、前記複数の集光部材の各々が前記導光部材の前記複数の第2端面の各々に接合されていてもよい。
 本発明の一態様における太陽電池モジュールは、前記複数の集光部材のうちの一つの集光部材と前記導光部材との接合部が、前記導光部材において光が全反射する面側に位置し、前記接合部は他の集光部材から射出された光が入射しない位置に配置されていてもよい。
 本発明の一態様における太陽電池モジュールは、前記導光部材の前記第2端面から射出された光を受光する第2太陽電池素子と、をさらに備え、前記複数の集光部材のうちの少なくとも一つの集光部材が異なる2方向に光を射出し、前記集光部材から射出される光を伝播させる前記導光部材が、前記光を前記第1端面側と前記第1端面に対向する第2端面側との2方向に伝播させてもよい。
 本発明の一態様における太陽電池モジュールは、前記導光部材から射出される光が入射される入射端面の面積よりも光が射出する射出端面の面積が小さく、側面がテーパ状の導光体を備え、前記導光体の射出端面に前記太陽電池素子が設けられていてもよい。
 本発明の一態様における太陽電池モジュールは、前記集光部材および前記導光部材を構成する材料が400nm以下の波長の光に対して透過性を有してもよい。
 本発明の一態様における太陽光発電装置は、上記太陽電池モジュールを備えていてもよい。
 本発明の態様によれば、集光効率を確保することで高い発電効率が得られ、安価で薄型の構成を有する太陽電池モジュールとこれを用いた太陽光発電装置を提供することができる。
本発明の第1の実施形態の太陽電池モジュールを示す斜視図である。 本発明の第1の実施形態の太陽電池モジュールを示す側面図である。 本発明の第1の実施形態の太陽電池モジュールの要部の拡大図である。 太陽電池モジュールにおける各種の光進行方向変更部を説明するための図である。 太陽電池モジュールにおける各種の光進行方向変更部を説明するための図である。 太陽電池モジュールにおける各種の光進行方向変更部を説明するための図である。 従来の導光板を示す側面図である。 従来の導光板の光進行方向変更部の形状および寸法を説明するための図である。 導光板のサイズと導光板端面への光の到達率との関係を示すグラフである。 1つの集光導光ユニットを示す側面図である。 集光導光ユニット材料の透過率特性を示すグラフである。 集光導光ユニット材料の透過率特性を示すグラフである。 本発明の第2の実施形態の太陽電池モジュールを示す側面図である。 本発明の第3の実施形態の太陽電池モジュールを示す側面図である。 本発明の第3の実施形態の変形例の太陽電池モジュールを示す側面図である。 本発明の第3の変形例の比較例となる太陽電池モジュールの側面図である。 本発明の第4の実施形態の太陽電池モジュールの斜視図である。 本発明の第4の実施形態の太陽電池モジュールの側面図である。 本発明の第4の実施形態の太陽電池モジュールの要部の拡大図である。 本発明の第4の実施形態の太陽電池モジュールの要部の拡大図である。 本発明の一実施形態の太陽光発電装置を示すブロック図である。
[第1実施形態]
 以下、本発明の第1実施形態について、図1~図7Bを用いて説明する。
 図1は、本実施形態の太陽電池モジュール1を示す斜視図である。図2Aは太陽電池モジュール1の側面図、図2Bは図2Aの符号Aの円内の拡大図である。図3A~図3Cは、太陽電池モジュール1における各種の光進行方向変更部を説明するための図である。図4Aは従来の導光板を示す側面図、図4Bは導光板の光進行方向変更部の形状および寸法を説明するための図である。図5は、導光板のサイズと導光板端面への光の到達率との関係を示すグラフである。図6は、本実施形態の太陽電池モジュールの1つの集光導光ユニットを示す側面図である。図7Aおよび図7Bは、集光導光ユニット材料の透過率特性を示すグラフである。
 なお、以下の図面においては各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがある。
 本実施形態の太陽電池モジュール1は、図1に示すように、複数の集光導光ユニット2と、太陽電池素子3と、を備えている。この太陽電池モジュール1は、複数の集光導光ユニット2から採り入れた光を太陽電池素子3に導き、太陽電池素子3において光電変換し、電気エネルギーとして取り出す機能を有している。本実施形態では、一例として10個の集光導光ユニットを用いているが、図1ではその一部のみを図示し、残りの図示は省略している。
 本実施形態の場合、集光導光ユニット2は、外部から太陽光を採り込むための集光部4(集光部材)と、集光部4により取り込まれた光を太陽電池素子3に導くための導光部5(導光部材)とを有している。集光部4と導光部5は、一体となった板状部材として構成されている。集光導光ユニット2を構成する板状部材は、その板厚方向(図1のz軸方向)から見たときの平面形状が矩形状である。1つの集光導光ユニット2を板厚方向から見たとき、集光導光ユニット2の輪郭をなす矩形の対向する2辺のうち、一方の辺に沿う帯状の領域が集光部4を構成し、その他の領域が導光部5を構成し、他方の辺に沿って太陽電池素子3が配置されている。なお、集光導光ユニット2のうち、後述する光進行方向変更部7が形成された部分までを集光部4と定義し、残りの平板部分を導光部5と定義する。
 以下、説明の便宜上、集光部4の外面のうち、光を入射させる面(図1におけるxy平面に平行な面)を第1主面4a、第1主面4aと対向する面であって光進行方向変更部が設けられた面を第2主面4b、と称する。同様に、導光部5の外面のうち、光入射側に位置する面(集光部4の第1主面4aと連続する面)を第1主面5a、第1主面5aと対向する面(集光部4の第2主面4bと連続する面)を第2主面5b、と称する。また、太陽電池素子3が設けられた側の導光部5の端面を第1端面5cと称する。本実施形態では、集光部4と導光部5とが一体となっているため、導光部5において第1端面5cと対向する面は実在しないが、説明の都合によっては集光部4と導光部5との境界となる仮想的な平面のことを第2端面と称することもある。
 集光導光ユニット2を構成する板状部材の材料としては、例えばアクリル樹脂、ポリカーボネート樹脂、ガラスなどの透明性の高い有機材料や無機材料を用いることができるが、これらに限定されるものではない。より具体的には、例えばアクリル樹脂の一種であるポリメチルメタクリレート(Poly-methyl methacrylate、以下、PMMAと略記する)を用いることができる。この場合、集光導光ユニット2の屈折率は約1.5となる。このような樹脂材料を用いる場合、例えば金型を用いた樹脂の熱間押し出し成型によって集光導光ユニット2を作製することができる。
 集光導光ユニット2を構成する板状部材の材料は、400nm以下の波長の光に対して透過性を有することが望ましい。
 図7Aは、一般のアクリル樹脂の透過率特性を示したグラフであり、図7Bは、本実施形態で好ましい材料の透過率特性を示したグラフである。各グラフの横軸は波長[nm]、縦軸は透過率[%]である。
 より具体的には、図7Bに示すように、集光導光ユニット2の透過率曲線において低波長側で透過率が低下し始める波長が360nm~370nm以下であることが望ましい。
 具体的な材料としては、PMMA樹脂のうち、例えば、三菱レイヨン社製XY-0159、XY-0284(商品名)、シリコン樹脂(基本的に紫外光に吸収なし)、石英基板などが挙げられる。
 太陽光スペクトルにおいて紫外光(特に400nm以下)は全体の光量の10%程度を占める。集光導光ユニット2に用いる材料としては、PMMA(アクリル樹脂)やPC(ポリカーボネート)などの樹脂材料やガラスが用いられる。しかしながら、図7Aに示すように、樹脂やガラスの中には紫外線を吸収してしまうものも多い。また、最近では耐光性の向上のためにこれらの材料の中に紫外線吸収剤を混入させ、紫外光を吸収させているものもある。この種の材料を用いた場合、紫外線に当たる10%の太陽光は集光導光ユニット2内で吸収され、端面に到達させることはできない。このような部材のロスは太陽光を有効利用するに当たっては大きなロスになる。そこで、紫外領域に対して吸収の少ない材料を用いることが端面集光の高効率化に有用である。
 図2Aに示すように、複数の集光導光ユニット2は板厚方向に積層されて配置されている。複数の集光導光ユニット2は、図2Aでは図面を見易くするため、所定の間隔を開けて描いてあるが、実際には密着させて配置することが望ましい。複数の集光導光ユニット2を密着させて配置すれば、太陽電池モジュール1をより薄型化できる。また、隣接する集光導光ユニット2間の隙間に塵埃等が入り込むことを防止できる。複数の集光導光ユニット2の導光部5の第1端面5cは同一平面上に揃うように配置されており、これらの第1端面5cに接するように太陽電池素子3が設置されている。各集光導光ユニット2と太陽電池素子3とは、図2Aでは図面を見易くするため、僅かな間隔を開けて描いてあるが、実際には密着させて配置することが望ましい。その場合、集光導光ユニット2と太陽電池素子3とは、光学接着剤等により直接固定されていても良い。また、集光導光ユニット2と太陽電池素子3とは、直接固定されておらず、双方をフレーム等に収容することで位置が固定される構成であっても良い。
 複数の集光導光ユニット2は、光入射側から見て奥側(図2Aの下側)から手前側(図2Aの上側)に向けて、光伝播方向(y軸方向)の寸法が順次小さくなっている。ただし、集光部4の形状および寸法は複数の集光導光ユニット2にわたって全て同一である。導光部5の光伝播方向(y軸方向)の寸法は、光入射側から見て奥側(図2Aの下側)から手前側(図2Aの上側)に向けて順次小さくなっている。また、集光部4の板厚(z軸方向の寸法)に対して導光部5の板厚(z軸方向の寸法)が薄く形成されており、集光部4のうち、導光部5寄りの部分は導光部5に向けて板厚が徐々に薄くなるテーパ部6となっている。
 各部の寸法の一例として、集光部4の光伝播方向の寸法Laが10cm、集光部4の板厚taが10mm、導光部5の板厚tbが3mm、テーパ部6の光伝播方向(y軸方向)の寸法Ltが1cm、である。また、光入射側から見て最も奥側(図2Aの最下段)の集光導光ユニット2における導光部5の光伝播方向の寸法Lb1が90cm、光入射側から見て奥から2番目(図2Aの下から2段目)の集光導光ユニット2における導光部5の光伝播方向の寸法Lb2が80cm、…というように、複数の集光導光ユニット2は、光入射側から見て奥側から手前側に向けて、導光部5の光伝播方向の寸法が10cm(集光部4の光伝播方向の寸法La分)ずつ短くなっている。そのため、光入射側から見て最も手前側(図2Aの最上段)の集光導光ユニット2だけは導光部5を有しておらず、集光部4が太陽電池素子3に直接接合された構成となっている。以上の構成により、複数の集光導光ユニット2を光入射側から見たとき、複数の集光部4の第1主面4aが異なる位置に配置され、複数の集光部4の複数の第1主面4aによって太陽電池モジュール1の光照射面が構成されることになる。
 集光部4の第2主面4bには光進行方向変更部7が形成されている。集光部4の第1主面4aに入射した光は、第2主面4bに設けられた光進行方向変更部7で反射してその進行方向を変え、導光部5の方向に向けて進行する。光進行方向変更部7は、集光部4の第2主面4bに形成された断面形状が三角形の複数の溝8から構成されている。各溝8は光伝播方向と直交する方向(図2Aのx軸方向)に沿って集光部4の一端から他端まで延びている。光進行方向変更部7は、集光導光ユニット2を構成する板状部材の表面が加工され、集光部4と一体に形成されている。光進行方向変更部7は、例えば集光導光ユニット2を作製する際の金型に溝8の形状を反転させた凸形状を予め設けておくことにより、集光導光ユニット2を作製する際に同時に形成することができる。あるいは、集光導光ユニット2を作製した後、平坦な集光導光ユニット2の第2主面を切削加工して形成しても良い。
 本実施形態の場合、複数の溝8は、図2Bに示すように、形状、寸法、ピッチ等が全て同一であり、連続して形成されている。すなわち、集光部4の第2主面4bには平坦面は存在しない。しかしながら、例えば集光導光ユニット2を介して観察者と反対側にあるものを見たいという要求があるような場合には、所定の間隔を空けて複数の溝8を形成し、溝8間に平坦面を設けた構成としても良い。その構成とすれば、平坦面では光が透過するため、集光導光ユニット2を介して観察者と反対側にあるものを見ることができる。また、複数の溝8の形状、寸法、ピッチ等は意図的に異ならせても良い。
 各溝8の断面形状は三角形状であると説明したが、より詳細には、図2Bに示すように、集光導光ユニット2をその長手方向であるyz平面に沿って切断したときの各溝8の断面形状は直角三角形である。すなわち、光進行方向変更部7を構成する各溝8は、各溝8の開口端を通る仮想平面X(第1主面4aに平行な平面)に対して垂直な垂直面Vと、仮想平面Xに対して傾斜した傾斜面Tと、からなっている。傾斜面Tは、仮想平面Xに対して所定の傾斜角θ2をなしており、第1主面4aから入射した光を反射(全反射)させる反射面として機能する。したがって、光進行方向変更部7に入射した光は、複数の傾斜面Tで反射し、導光部5側に向けて伝播される。
 具体的には、一例として、溝8の幅(光伝播方向(y軸方向)の寸法(=ピッチ))lを100μm、溝8の深さ(板厚方向(z軸方向)の寸法)hを90μm、傾斜面Tの傾斜角θ2を42度、とする。集光導光ユニット2の屈折率を1.5、空気の屈折率を1.0、とすると、Snellの法則より、集光導光ユニット2と空気との界面における臨界角は約41度となる。ここで、集光部4の第1主面4aに対して太陽光が垂直に入射したとすると、傾斜面Tへの光の入射角は42度となるため、入射角が臨界角以上となり、光は傾斜面Tで全反射する。一方、垂直面Vには光は入射しない。したがって、光進行方向変更部7に垂直に入射した光の全てが傾斜面Tで全反射する。ここでは、集光部4の第1主面4aに対して太陽光が垂直に入射すると想定し、傾斜面Tの傾斜角θ2を42度としたが、集光導光ユニット2に入射する太陽光の入射角範囲内において、光が傾斜面Tで全反射する角度条件を満たすように傾斜面Tの傾斜角θ2を設定すれば良い。
 上述した通り、集光部4の第2主面4bには複数の溝8からなる光進行方向変更部7が形成されているのに対し、導光部5の第1主面5aおよび第2主面5bには形状加工が施されていない。すなわち、導光部5の第1主面5aおよび第2主面5bは、ともに平坦であって互いに平行な面である。集光部4から導光部5に入ってきた光は、第1主面5aと第2主面5bとの間で全反射を繰り返しながら太陽電池素子3が設けられた第1端面5cに向けて進行する。このとき、導光部5の第1主面5aと第2主面5bとはともに平坦で互いに平行な面であるから、光が全反射を何回繰り返しても、導光部5の第1主面5aおよび第2主面5bに対する入射角は変わらない。すなわち、第2端面5dから第1端面5cまで導光部5内を光が伝播する間、導光部5の第1主面5aおよび第2主面5bにおける光の全反射条件が維持されている。
 太陽電池素子3としては、公知のものを使用することができ、例えばアモルファスシリコン太陽電池、多結晶シリコン太陽電池、単結晶シリコン太陽電池、化合物系太陽電池等を用いることができる。特に本実施形態の場合、化合物系太陽電池を用いることが望ましい。シリコン系太陽電池では10~20%程度の変換効率しか得られないのに対し、化合物系太陽電池を用いると例えば40%の変換効率が得られる。太陽電池素子3の形状および寸法は、複数の集光導光ユニット2における複数の導光部5の第1端面5cからなる平面内に収まる形状および寸法であれば特に限定されることはない。本実施形態の場合、一例として、導光部5の板厚が3mmの集光導光ユニット2を10枚積層しているため、集光導光ユニット2の積層方向(図2Aのz軸方向)の太陽電池素子3の寸法は3cm程度で良い。光伝播方向と直交する方向(図2Aのx軸方向)の太陽電池素子3の寸法は1mである。
 本実施形態の太陽電池モジュール1は、各集光導光ユニット2が集光部4と導光部5とを有しており、光伝播方向の寸法は、最も長い集光導光ユニット2で集光部4が10cm、導光部5が90cmというように、集光部4に対して導光部5が十分に長い。したがって、集光部4によって集光導光ユニット2の内部に採り込まれた光は、導光部5の内部を長い距離伝播される。また、集光部4には太陽光を内部に採り込むための光進行方向変更部7が設けられる。一方、導光部5においては集光部4から太陽電池素子3に到るまでの光の入射角が変化せず、全反射条件が維持されている。したがって、光が集光部4の内部に採り込まれた後、導光部5の内部を長い距離伝播されたとしても、伝播中に集光導光ユニット2の外部に漏れ出る光の量を極力減らすことができる。
 すなわち、本実施形態の場合、特許文献1,2に記載された従来の太陽電池のように光が導光部内を伝播される間に進行方向が変わり、導光部内の全反射条件を破り、導光部の外部に漏れ出る確率を低くできる。これにより、集光効率が十分に確保され、発電効率に優れた太陽電池モジュールを実現することができる。
 また、本実施形態によれば、導光部5の板厚を薄くできるとともに、各集光導光ユニット2の集光部4が平面的に異なる位置に配置されるため、集光導光ユニット2を複数枚積層した構造であっても、全体として薄型の太陽電池モジュール1を実現することができる。また、複数の集光導光ユニット2全体としての光照射面積は1mを確保できるのに対し、太陽電池素子3の大きさは集光導光ユニット2の端面部分の面積、例えば3cm×1mで済む。そのため、一面に太陽電池を敷き詰めた従来の太陽電池モジュールに比べて太陽電池素子3を十分に小型化でき、製造コストの削減を図ることができる。また、太陽電池素子3の大きさを変えることなく、集光導光ユニット2の大きさを適宜設計変更できるため、太陽電池モジュール1の大型化を実現し易い。逆に言えば、太陽電池素子3を従来に比べて小型化できるため、例えば化合物系太陽電池素子を太陽電池素子3として使用でき、発電効率をより向上させることができる。
 ところで、光進行方向変更部10は、例えば以下のような形状のものが考えられる。一つの光進行方向変更部10は、図3Aに示すように、断面形状が不等辺三角形状の複数の溝11を有している。この場合、導光板12の第2主面12b側の仮想平面Xに対して大きい傾斜角θ2を有する第1傾斜面T1が、入射した光L1を反射させて太陽電池素子3側に導く反射面として機能する。第1傾斜面T1よりも傾斜角θ1が小さい第2傾斜面T2は全反射条件を満たしておらず、第2傾斜面T2に入射した光L2は透過する。図3Bに示す他の光進行方向変更部14は、本実施形態と同様、断面形状が直角三角形状の複数の溝15が連続して形成されている。この場合、導光板16の第1主面16aから入射した光L1の略全てを導光に寄与させることができる。図3Cに示すさらに他の光進行方向変更部18は、断面形状が直角三角形状の複数の溝15が導光板19の第2主面19bに所定の間隔をおいて形成され、隣接する溝間は平坦面Fとなっている。この場合、平坦面Fに入射した光L2はそのまま透過する。図3A、図3Cに示した光進行方向変更部10,18を本実施形態に適用しても良い。
 太陽電池モジュールにおいて、建物の屋根への設置、平地への設置等、設置形態に係わらず、実用的な電力量を得るためには概略1m以上の光入射面積が必要となるのが実情である。図3A~図3Cに示すように、導光板12,16,19の端面に設けた太陽電池素子3に集光するタイプの太陽電池モジュールでは、高効率の発電を実現するために、変換効率の高い化合物系太陽電池素子を用いることが考えられる。ところが、化合物系太陽電池素子の価格はシリコン系太陽電池素子の価格の100倍以上であるため、コスト低減のためには、採り込んだ光を効率良く太陽電池素子に集めること、太陽電池素子の設置面積を小さくすることが求められる。以上のことから、入射光を1m程度導光させることを想定した導光板が必要になる。
 しかしながら、図3A~図3Cに示す導光板12,16,19の場合、導光板内で光が全反射を繰り返すうちに、後段の溝部に再度入射して導光の角度が変化する場合がある。すると、導光板の第1主面および第2主面への入射角が臨界角よりも小さくなって光の全反射条件を満たさなくなり、図3Bに示すように、光Loが導光板16の外部に漏れ出てしまう。その光Loはもはや端面の太陽電池素子3には到達しない。例えば図3Bの導光板16と図3Cの導光板19とを比べると、図3Cの導光板19では、溝15と溝15との間隔が空いている分だけ光が後段の溝15に再入射する割合が減り、全反射条件が破れるまでの導光可能距離が図3Bの導光板16よりも多少長くなる。それでも、光が導光板内を数十cm程度進むと、略全ての光が端面まで到達できない。
 ここで、本発明者らは、平面形状が正方形の導光板を想定し、導光板の1辺のサイズを変えたときの導光板端面への光の到達率を求めるシミュレーションを行った。シミュレーションの条件として、図4Bに示すように、導光板21の板厚tを3mm、溝22の幅lを119μm、溝22間の間隔sを0μm、溝22の深さhを111μm、溝22の垂直面Vと第2主面側の仮想平面Xとのなす角度θ1を90度、溝22の傾斜面Tと仮想平面Xとのなす角度θ2を43度、とした。すなわち、シミュレーションの対象とした導光板21は、図4Aに示すように、溝22と溝22との間隔が0、すなわち全面に溝22が形成されたものであり、第2主面21bに平坦面が存在しない。また、光は導光板21の第1主面21aに対して垂直に入射するものとした。
 図5は、図4Aに示す導光板21の1辺のサイズLと導光板端面への光の到達率との関係を示すグラフである。図5の横軸は導光板の1辺のサイズ(mm)であり、縦軸は導光板端面への光の到達率(%)である。なお、「導光板端面への光の到達率(以下、端面到達率と略記する)」とは、導光板の第1主面に照射した光の全量に対する導光板端面に到達した光の量の割合である。図5から判るように、導光板のサイズを10cm(100mm)とすると、入射光のうちの略15%の光が導光板端面に到達するが、導光板のサイズを1m(1000mm)とすると、入射光のうちの僅か2%程度の光しか導光板端面に到達しない。これでは効率の良い集光、発電を実現することができない。
 光進行方向変更部10を構成する溝の形状に応じて上記の端面到達率の値は変化する。上記実施形態の具体例に合わせて、溝の幅lを100μm、溝間の間隔sを0μm、溝の深さhを90μm、傾斜面Tと仮想平面Xとのなす角度θ2を42度に代えてシミュレーションを行うと、導光板のサイズが1mのときの端面到達率は約4%となる。このように、到達率の絶対値は条件によって変わるものの、導光距離が長くなるにつれて到達率が急激に低下するという傾向は変わらない。
 これに対して、図6に示すような本実施形態の1つの集光導光ユニット2を取り出して同様のシミュレーションを行った結果、集光部4の第1主面4aに照射した光のうちの略35%の光が、集光部4を経て導光部5の第1端面5cに到達することが判った。本実施形態の場合、光が一旦導光部5に入射すると、導光部5内では全反射条件を乱す要因がないため、外部に漏れ出る光はなく、導光部5の第2端面5dに到達した略35%の光がそのまま導光部5の第1端面5cに到達することが判った。
 上述したように、本実施形態の場合、1つの集光導光ユニット2において集光部4に入射させた光のうちの略35%の光が導光部5の第1端面5cに到達する。ここで、太陽電池モジュール1全体では10枚の集光導光ユニット2を備えており、各集光導光ユニット2が略35%の光を導光部5の第1端面5cまで到達させることができる。したがって、10枚の集光導光ユニット2全体としても、1mの照射面積を有する太陽電池モジュール1に照射された光のうちの略35%の光が太陽電池素子3まで到達する。これに対し、光進行方向変更部を構成する溝22を全面に形成した比較例の導光板21(図4A参照)においては端面到達率が4%であるから、本実施形態の構成を採用することで比較例の略9倍の集光効率を実現することができる。
 さらに本実施形態の場合、太陽電池素子3の大きさが10枚の集光導光ユニット2の端面の面積分で済み、例えば3cm×1mの大きさで良い。したがって、1mの照射領域に太陽電池素子を敷き詰める場合に比べて、太陽電池素子3の大きさを約1/33に低減できる。汎用品として用いられる変換効率13%の結晶シリコン太陽電池を1mの照射領域の全面に敷き詰めた比較例の場合、1mの設置面積で130Wの発電が可能である。これに対して、本実施形態の場合、変換効率40%の化合物系太陽電池を3cm×1mの領域に設置したとすると、設置面積が比較例の1/33と小さいながらも135Wの発電が可能である。このように、本実施形態の構成では、小型の太陽電池素子を用いても比較例と比べて同等以上の発電量を得ることができる。
 一方、1mの照射領域の全面に化合物系太陽電池を敷き詰めたとすると、4000Wの発電量が得られるが、化合物系太陽電池は高価であるため、1mの照射領域の全面に化合物系太陽電池を敷き詰めることは製造コストを考慮すると困難である。したがって、本実施形態によれば、高価である反面、高い変換効率を誇る化合物系太陽電池素子を少量使用することによって、製造コストと発電量とを両立させた太陽電池モジュールを実現することができる。
[第2実施形態]
 以下、本発明の第2実施形態について、図8を用いて説明する。
 本実施形態の太陽電池モジュールの基本構成は第1実施形態と同様であり、ホモジナイザー26を付加した点が第1の実施形態と異なる。
 図8は本実施形態の太陽電池モジュール25を示す側面図である。
 なお、図8において、第1の実施形態で用いた図2Aと共通の構成要素には同一の符号を付し、その説明は省略する。
 本実施形態の太陽電池モジュール25においては、図8に示すように、複数の集光導光ユニット2と太陽電池素子3との間にホモジナイザー26(導光体)が装入されている。
 ホモジナイザー26は、光を入射させる入射端面26aの面積よりも光を射出させる射出端面26bの面積が小さい。ホモジナイザー26は、入射端面26aおよび射出端面26bに対して傾斜した側面26cを有するテーパ状の導光体である。ホモジナイザー26は、入射端面26aが複数の集光導光ユニット2の導光部5の第1端面5cと対向し、射出端面26bが太陽電池素子3の受光面と対向する。ホモジナイザー26は、複数の集光導光ユニット2と太陽電池素子3との間に配置されている。この構成により、各集光導光ユニット2に入射した光は、導光部5の第1端面5cからホモジナイザー26に入射され、ホモジナイザー26の内部を通って太陽電池素子3に到達する。ホモジナイザー26は、入射端面26aから入射した光を側面26cで全反射させつつ伝播させることで光をさらに集束させて太陽電池素子3に導くとともに、太陽電池素子3の受光面における光の強度を均一化する機能を有している。
 ホモジナイザー26の寸法の一例としては、入射端面26a側の複数の集光導光ユニット2の積層方向(図8のz軸方向)の寸法が3cm、射出端面26b側の複数の集光導光ユニット2の積層方向の寸法が5mm、である。したがって、本実施形態の太陽電池素子3として、5mm×1mの大きさの太陽電池を用いれば良く、第1の実施形態よりも更に小型化できる。ホモジナイザー26は例えばPMMA等の樹脂材料から構成されている。
 また、ホモジナイザー26の側面26cは樹脂材料が外面に露出した状態でも良いし、反射板が設けられていても良い。
 本実施形態においても、集光効率を確保することで高い発電効率が得られ、安価で薄型の構成を有する太陽電池モジュールを実現できるといった第1の実施形態と同様の効果が得られる。
 また、本実施形態の場合、ホモジナイザー26によって各集光導光ユニット2から射出された光が集光されるため、太陽電池素子3の大きさを第1実施形態よりもさらに小さくでき、製造コストの更なる低減が図れる。また、集光導光ユニット2から射出された光がホモジナイザー26の内部を伝播する間に強度が均一化されるため、太陽電池素子3の受光面内のいずれの位置にも強度が均一な光が入射される。これにより、太陽電池素子3の発電量を安定化させることができる。仮に太陽電池素子3の受光面に光が不均一に入射すると、発電量の分布が生じ、所望の発電量が得られない虞がある。そこで、所望の発電量を安定して得るためにホモジナイザー26が有効である。
[第3実施形態]
 以下、本発明の第3実施形態について、図9を用いて説明する。
 本実施形態の太陽電池モジュール30の基本構成は第1の実施形態と同様であるが、集光部と導光部とが別体に構成されている点と導光部の形態とが第1の実施形態と異なっている。
 図9は本実施形態の太陽電池モジュール30を示す側面図である。
 なお、図9において、第1の実施形態で用いた図面と共通の構成要素には同一の符号を付し、その説明は省略する。
 第1実施形態の太陽電池モジュール1においては、集光導光ユニットを構成する集光部と導光部とが一体の板状部材で構成されている。これに対して、本実施形態の太陽電池モジュール30においては、集光導光ユニットを構成する集光部材と導光部材とが別体の板状部材で構成されている。すなわち、本実施形態の太陽電池モジュール30は、図9に示すように、複数の集光部材31と1つの導光部材32とからなる集光導光ユニット33と、太陽電池素子3と、を備えている。集光部材31は第1実施形態の集光部4が導光部5から切り離された点が第1実施形態と異なり、光進行方向変更部7を含む構成自体は第1実施形態の集光部4と変わらない。本実施形態では、一例として10個の集光部材31を用いているが、図9ではその一部のみを図示し、残りの図示は省略している。
 より詳細には、集光部材31の光進行方向変更部7を構成する複数の溝8は、集光部材31の第2主面31bの一端から他端まで形成されているのではなく、第2主面31bのうち、導光部材32に接合される側の端部には形成されていない。複数の溝8が形成されていない部分(以下、首部34と称する)の第1主面34aと第2主面34bはともに平坦で互いに平行な面である。言い換えると、本実施形態の集光部材31を、第1実施形態の集光部4を導光部5から切り離したものと考えると、本実施形態の集光部材31は、第1実施形態の集光部4の一端に僅かな導光部5を残して切り離したものと言うことができる。この場合、集光部材31の第1主面31aから採り込まれた光は首部34の端面34cから射出されるため、首部34の端面34cは光の射出端面であり、導光部材32との接合面でもある。集光部材31の一端にこのような首部34を設けたことにより、集光導光ユニット33の作製時に集光部材31と導光部材32との接合作業が行い易くなる。しかしながら、必ずしも首部34を設けなくても良い。
 一方、導光部材32は、複数の集光部材31に対して共通に設けられた1つの板状部材から構成されている。導光部材32は、太陽電池素子3が設けられる第1端面32cは平坦面であり、第2端面側には段差が形成されている。第2端面側には、第1端面32cからの距離が異なる位置に複数の集光部材31と同数の第2端面32dが形成されている。そして、複数の集光部材31の各々が導光部材32の複数の第2端面32dの各々に接合材35を介して接合されている。集光部材31や導光部材32の構成材料は第1実施形態と同様のものが使用可能である。集光部材31と導光部材32の構成材料は異なっていても良いが、同じであることが望ましく、例えばPMMAを用いることができる。また、接合材35としては例えば紫外線硬化樹脂等を用いることができる。集光部材31、導光部材32、接合材35の屈折率は揃えることが望ましい。
 なお、本実施形態では、導光部材32は、複数の集光部材31に対して共通に設けられた1つの板状部材から構成されているが、導光部材32の構成はこれに限定されない。例えば、複数の集光部材31をいくつかのグループに分け、そのグループ毎に共通に設けられた導光部材32が設けられていてもよい。具体的には、集光部材31が9個の場合、3個の集光部材31に対して共通に設けられた導光部材32が3個設けられていてもよい。
 本実施形態の場合、導光部材32が複数の集光部材31で共有されているため、全ての集光部材31から採り込まれた光が同じ導光部材32の内部を伝播することになる。導光部材32の形状は、第1実施形態と異なり、第2端面32d側に段差を有しているが、導光部材32の第2主面32bと各段の第1主面32aは全て平坦な面であって互いに平行な面である。また、導光部材32の各集光部材31との接合面は第1主面32aおよび第2主面32bに垂直な第2端面32dである。したがって、1つの集光部材31から太陽電池素子3まで導光部材32の内部を光が伝播する間、当該光が他の集光部材31と導光部材32との接合面に入射することはない。以上により、第1実施形態と同様、各第2端面32dから第1端面32cまで導光部材32の内部を光が伝播する間、第1主面32aおよび第2主面32bに対する光の入射角は変化せず、導光部材32の第1主面32aおよび第2主面32bにおける光の全反射条件が維持されている。
 本実施形態においても、集光効率を確保することで高い発電効率が得られ、安価で薄型の構成を有する太陽電池モジュールを実現できるといった第1、第2の実施形態と同様の効果が得られる。
 本発明者らがシミュレーションを行った結果、本実施形態の構成においても、集光部材31の第1主面31aに入射させた光のうちの略35%の光が導光部材32の第1端面32cに到達することが判った。本実施形態の場合も、光が一旦導光部材32に入射すると、導光部材32の内部に全反射条件を破る要因を有していないため、外部に漏れ出る光はなく、導光部材32の各第2端面32dに到達した略35%の光がそのまま第1端面32cに到達し、太陽電池素子3に導かれることが判った。これに対し、光進行方向変更部を構成する溝22を全面に形成した比較例の導光板21(図4A参照)においては端面到達率が4%であるから、本実施形態の構成を採用することで比較例の略9倍の集光効率を実現することができた。
[第3実施形態の変形例]
 第3実施形態の場合、集光部材31に入射した光が、第1主面31aおよび第2主面31bに直交する首部34の端面34cから射出される構成となっていた。これに対して、図10に示す本変形例の太陽電池モジュール40のように、集光部材41の第2主面41bの一端に光進行方向変更部7を構成する複数の溝8を形成しない領域41zを設け、この領域41zから光が射出される構成としてもよい。この場合、集光部材41の第2主面41b側の領域41zが光の射出端面となり、導光部材42との接合面となる。導光部材42には段差が設けられているが、第3実施形態と異なり、第1主面42aおよび第2主面42bに直交する第2端面42dに集光部材41が接合されているのではなく、段差部42xの第1主面42a側に接合材35を介して集光部材41が接合されている。
 また、集光導光ユニット43を光入射側から見たとき、太陽電池素子3から最も遠い位置にある集光部材41と導光部材42との接合部を除いて、太陽電池素子3寄りの他の集光部材41と導光部材42との接合部と重なる位置では導光部材42に切り込み42fが形成されている。このような切り込み42fが形成されたことにより、集光部材41と導光部材42との接合部と重なる位置にはその下段の第1主面42aが存在しており、全反射が生じる導光路に接合部が面していない。したがって、太陽電池素子3寄りの集光部材41と導光部材42との接合部の近傍は、その集光部材41よりも太陽電池素子3から遠い位置にある集光部材41から採り込まれた光が入射せず、当該光の伝播には寄与しない領域となっている。
 このように、集光部材41の第2主面41bの一部を導光部材42との接合面とした場合、例えば図11に示すように、導光部材45を単なる平板とし、導光部材45の一面に集光部材41を接合する構成も考えられる。しかしながら、この構成では、太陽電池素子3から遠い位置にある集光部材41から採り込まれた光が導光部材45の内部で伝播される際、太陽電池素子3寄りの他の集光部材41と導光部材45との接合部に光が入射することが十分考えられる。すると、この接合部に入射した光Lは全反射することなく、集光導光ユニット46の外部に漏れ出てしまい、導光部材45の端面まで到達できない。
 これに対して、本変形例の構成によれば、太陽電池素子3から遠い位置にある集光部材41から採り込まれた光が導光部材42の内部で伝播される際、太陽電池素子3寄りの集光部材41と導光部材42との接合部に光が入射することがない。よって、集光効率の高い太陽電池モジュールを実現することができる。
[第4実施形態]
 以下、本発明の第4の実施形態について、図12、図13A~図13Cを用いて説明する。
 本実施形態の太陽電池モジュール50の基本構成は第1の実施形態と同様であるが、集光導光ユニットの両端に光を伝播させ、その両端に太陽電池素子3を設けた点が第1の実施形態と異なっている。
 図12は本実施形態の太陽電池モジュールを示す斜視図である。図13Aは太陽電池モジュールの側面図であり、図13Bは図13Aの符号A1、A2の円内の拡大図である。
 なお、図12、図13A、図13Bにおいて、第1の実施形態で用いた図面と共通の構成要素には同一の符号を付し、その説明は省略する。
 本実施形態の太陽電池モジュール50は、図12、図13Aに示すように、複数(本実施形態では9個)の集光導光ユニット2,51と、2個の太陽電池素子3と、を備えている。集光部と導光部が一体化した集光導光ユニットが用いられている点は第1の実施形態と同様である。複数の集光導光ユニット2,51のうち、光入射側から最も奥側(図12、図13Aの下側)に位置する集光導光ユニット51の構成が第1の実施形態と異なっている。
 図12、図13Aにおける最下段の集光導光ユニット51は、中央に集光部52が設けられるとともに、集光部52の両側に導光部5が設けられ、集光部52に入射した光を双方の導光部5に伝播させる構成となっている。集光部52のうち、図13Aにおける右側半分の領域に入射した光は右側の導光部5に伝播され、図13Aにおける左側半分の領域に入射した光は左側の導光部5に伝播される。
 最下段の集光導光ユニット51は光伝播方向(図13Aのy軸方向)の中心に対して左右対称な形状を有している。したがって、光進行方向変更部53を構成する複数の溝54a,54bも集光部52の中心に対して対称な形状を有している。図13Bに示すように、集光部52のうち、図13Aの左側半分の領域に形成された溝54aは、各溝54aの開口端を通る仮想平面X(第1主面52aに平行な平面)に対して垂直な垂直面Vと、仮想平面Xに対して左下がりに傾斜した傾斜面T1と、からなっている。一方、図13Cに示すように、図13Aの右側半分の領域に形成された溝54bは、各溝54bの開口端を通る仮想平面X(第1主面52aに平行な平面)に対して垂直な垂直面Vと、仮想平面Xに対して右下がりに傾斜した傾斜面T2と、からなっている。この構成により、集光部52のうち、図13Aの左側半分の領域に入射した光は左下がりの傾斜面T1で反射して左側に進み、図13Aの右側半分の領域に入射した光は右下がりの傾斜面T2で反射して右側に進む。
 最下段の集光導光ユニット51以外の集光導光ユニット2の構成は第1実施形態と同様である。すなわち、集光部4の一端側のみに導光部5が設けられた集光導光ユニット2が最下段の集光導光ユニット51の上方に左右3枚ずつ、さらに最上段に集光部4のみからなる集光導光ユニット2が左右1枚ずつ積層されている。複数の集光導光ユニット2は、光入射側から見て奥側(図13Aの下側)から手前側(図13Aの上側)に向けて、光伝播方向(y軸方向)の寸法が順次小さくなっている。集光部4の形状および寸法は複数の集光導光ユニット2にわたって同一であり、導光部5の光伝播方向(y軸方向)の寸法が順次小さくなっている。また、集光部4の板厚(z軸方向の寸法)に対して導光部5の板厚(z軸方向の寸法)が薄く形成され、集光部4の導光部5寄りの部分にはテーパ部6が形成されている。
 各部の寸法の一例として、図13Aの最下段の集光導光ユニット51における集光部52の光伝播方向の寸法Laが片側で10cmずつ、合計20cmである。また、最下段の集光導光ユニット51における導光部5の光伝播方向の寸法Lb1が40cm、光入射側から見て奥側から2番目(図13Aの下から2段目)の集光導光ユニット2における導光部5の光伝播方向の寸法Lb2が30cm、…というように、複数の集光導光ユニット2,51は、光入射側から見て奥側から手前側に向けて、光伝播方向の寸法が10cm(集光部4の光伝播方向の寸法La分)ずつ短くなっている。そのため、光入射側から見て最も手前側(図13Aの最上段)の集光導光ユニット2は導光部5を有しておらず、集光部4が太陽電池素子3に直接接合された構成となっている。その他の寸法は第1実施形態と同一である。以上の構成により、複数の集光導光ユニット2,51を光入射側から見たとき、複数の集光部4,52の第1主面4a,52aが光入射側から見て異なる位置に配置され、複数の集光部4,52の複数の第1主面4a,52aによって太陽電池モジュール50の光照射面が構成されることになる。
 本実施形態においても、集光効率を確保することで高い発電効率が得られ、安価で薄型の構成を有する太陽電池モジュールを実現できるといった第1~第3実施形態と同様の効果が得られる。
 1mの照射面積を有する太陽電池モジュールを構成する場合、第1実施形態では10枚の集光導光ユニット2を積層していたのに対し、本実施形態の場合、集光部に入射する光を左右に振り分ける構成としたため、使用する集光導光ユニット2,51は9枚必要であるが、積層する集光導光ユニット2,51の数としては5枚で済む。したがって、複数の集光導光ユニット2,51全体の端面の板厚方向の寸法は、第1の実施形態が3cmであったのに対し、本実施形態では1.5cmで済む。したがって、太陽電池モジュール50の全体の厚みが第1の実施形態に比べて薄くなるので、太陽電池モジュールの設置場所の選択の自由度が広がる。
 また、本実施形態の場合、集光部4,52に入射する光を左右に振り分ける構成としたため、各集光導光ユニット2,51における導光部5の光伝播方向の寸法(導光距離)が第1~第3実施形態に比べて短くできる。今まで述べたように、第1~第3の実施形態の太陽電池モジュールにおいても導光部の構成としては全反射条件を破る要因を有していないが、導光部が長くなるとそれだけ導光部に傷や汚れが付く確率が高くなり、このような傷や汚れが全反射条件を破る要因となる虞がある。その観点から、光の漏れを抑えるためには導光部が短い方が好ましく、本実施形態の構成は好適である。
[第5実施形態]
 以下、本発明の一実施形態である太陽光発電装置100について、図14を用いて説明する。
 図14は本実施形態の太陽光発電装置100を示すブロック図である。
 本実施形態の太陽光発電装置100は、図14に示すように、上記第1~第4実施形態の集光導光ユニット101と太陽電池素子102とからなる太陽電池モジュール103と、インバータ104と、蓄電池105と、を有している。太陽電池モジュール103によって得られた電力はインバータ104によって直流-交流変換され、外部の負荷106に出力される。また、他の電力源107が外部の負荷106に接続されている。太陽電池モジュール103によって得られた電力は蓄電池105に充電され、必要に応じて蓄電池105から放電される構成となっている。
 本実施形態によれば、上記第1~第4実施形態の太陽電池モジュール103を備えているので、高い発電効率が得られ、安価で薄型の構成を有する太陽光発電装置100を実現することができる。
 なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば第1の実施形態では、個々の集光部に対して個々の導光部を対応させ、これらを一体の板状部材で構成したものであったが、この構成に代えて、集光部と導光部とを別体の部材としても良い。また、上記実施形態では、光進行方向変更部を構成する溝は集光部の構成部材の表面を直接形状加工したものとして説明したが、例えば溝形状を形成したフィルムを別途用意し、このフィルムをPMMA等からなる板状部材に貼り合わせたものを集光部としても良い。その他、上記実施形態における各種構成要素の形状、寸法、数、配置、構成材料、製造方法等の具体的な記載は一例であって、上記実施形態で例示したものに限らず、適宜変更が可能である。
 本発明は、太陽電池モジュール、もしくは太陽光発電装置に利用可能である。
 1,25,30,40,50,103…太陽電池モジュール、2,33,43,51,101…集光導光ユニット、3,102…太陽電池素子、4,52…集光部(集光部材)、5…導光部(導光部材)、26…ホモジナイザー(導光体)、31,41…集光部材、32,42…導光部材、100…太陽光発電装置。

Claims (13)

  1.  外部からの光を入射させる少なくとも一つの第1主面と前記第1主面から入射した光を反射させる反射面を含む第2主面とを各々が有する複数の集光部材と、
     前記複数の集光部材の各々に入射された光を表面で全反射させつつ第1端面に向けて伝播させ、前記第1端面から射出させる少なくとも一つの導光部材と、
     前記導光部材の前記第1端面から射出された光を受光する第1太陽電池素子と、を備え、
     前記複数の集光部材のそれぞれの前記第1主面は、第1主面と垂直な方向から見て互いに異なる位置に配置され、
     前記複数の集光部材の各々から前記第1太陽電池素子まで前記導光部材内を光が伝播する前記複数の導光部材内の伝播路において、前記光の全反射条件が維持される太陽電池モジュール。
  2.  前記複数の集光部材のうちの一つの集光部材から前記第1太陽電池素子まで前記導光部材内を光が伝播し、前記光は、他の集光部材と前記導光部材との界面に入射しないよう構成されている請求項1に記載の太陽電池モジュール。
  3.  前記導光部材内を光が伝播する際に全反射を生じる前記導光部材の2つの主面が、ともに平坦であって互いに平行な面である請求項1に記載の太陽電池モジュール。
  4.  前記導光部材は、前記複数の集光部材の各々に対応して設けられた、前記複数の集光部材と同数のサブ導光部材からなる請求項1に記載の太陽電池モジュール。
  5.  前記集光部材が前記サブ導光部材の前記第1端面と対向する第2端面側に配置され、
     前記集光部材と前記サブ導光部材とが一体の部材で構成されている請求項4に記載の太陽電池モジュール。
  6.  前記導光部材が、前記複数の集光部材に対して共通に設けられた1つの導光部材である請求項1に記載の太陽電池モジュール。
  7.  前記複数の集光部材の各々が、前記導光部材の前記第1端面からの距離が異なる位置に接合されている請求項6に記載の太陽電池モジュール。
  8.  前記導光部材の前記第1端面と対向する第2端面側が段差を有し、前記導光部材の前記第1端面からの距離が異なる位置に前記複数の集光部材と同数の前記第2端面が形成され、
     前記複数の集光部材の各々が前記導光部材の前記複数の第2端面の各々に接合されている請求項7に記載の太陽電池モジュール。
  9.  前記複数の集光部材のうちの一つの集光部材と前記導光部材との接合部が、前記導光部材において光が全反射する面側に位置し、前記接合部は他の集光部材から射出された光が入射しない位置に配置されている請求項7に記載の太陽電池モジュール。
  10.  前記導光部材の前記第2端面から射出された光を受光する第2太陽電池素子と、をさらに備え、
     前記複数の集光部材のうちの少なくとも一つの集光部材が異なる2方向に光を射出し、前記集光部材から射出される光を伝播させる前記導光部材が、前記光を前記第1端面側と前記第1端面に対向する第2端面側との2方向に伝播させる請求項1に記載の太陽電池モジュール。
  11.  前記導光部材から射出される光が入射される入射端面の面積よりも光が射出する射出端面の面積が小さく、側面がテーパ状の導光体を備え、前記導光体の射出端面に前記第1太陽電池素子が設けられている請求項1に記載の太陽電池モジュール。
  12.  前記集光部材および前記導光部材を構成する材料が400nm以下の波長の光に対して透過性を有する請求項1に記載の太陽電池モジュール。
  13.  請求項1に記載の太陽電池モジュールを備える太陽光発電装置。
PCT/JP2011/073210 2010-10-18 2011-10-07 太陽電池モジュールおよび太陽光発電装置 WO2012053379A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010233760 2010-10-18
JP2010-233760 2010-10-18

Publications (1)

Publication Number Publication Date
WO2012053379A1 true WO2012053379A1 (ja) 2012-04-26

Family

ID=45975096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073210 WO2012053379A1 (ja) 2010-10-18 2011-10-07 太陽電池モジュールおよび太陽光発電装置

Country Status (1)

Country Link
WO (1) WO2012053379A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004114418A1 (ja) * 2003-06-23 2004-12-29 Hitachi Chemical Co., Ltd. 集光型光発電システム
WO2007034397A2 (en) * 2005-09-19 2007-03-29 Koninklijke Philips Electronics N.V. Luminaire with stack of flat panel light guides
WO2009064701A1 (en) * 2007-11-16 2009-05-22 Qualcomm Mems Technologies, Inc. Thin film solar concentrator/collector
WO2010095305A1 (ja) * 2009-02-23 2010-08-26 シャープ株式会社 照明装置、面光源装置、および、液晶表示装置
JP2010230933A (ja) * 2009-03-26 2010-10-14 Leiz Advanced Technology Corp 集光光学素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004114418A1 (ja) * 2003-06-23 2004-12-29 Hitachi Chemical Co., Ltd. 集光型光発電システム
WO2007034397A2 (en) * 2005-09-19 2007-03-29 Koninklijke Philips Electronics N.V. Luminaire with stack of flat panel light guides
WO2009064701A1 (en) * 2007-11-16 2009-05-22 Qualcomm Mems Technologies, Inc. Thin film solar concentrator/collector
WO2010095305A1 (ja) * 2009-02-23 2010-08-26 シャープ株式会社 照明装置、面光源装置、および、液晶表示装置
JP2010230933A (ja) * 2009-03-26 2010-10-14 Leiz Advanced Technology Corp 集光光学素子

Similar Documents

Publication Publication Date Title
KR101902377B1 (ko) 광섬유사를 이용한 태양광 발전 유니트 및 이를 적용한 발전 시스템
JP5891381B2 (ja) 太陽電池モジュール
WO2012070533A1 (ja) 太陽電池モジュールおよび太陽光発電装置
JP2010525582A5 (ja)
US20210173141A1 (en) Light guide apparatus and fabrication method thereof
WO2011062020A1 (ja) 太陽電池モジュール、太陽光発電装置、及び窓
US8919987B2 (en) LED display unit with solar panels and LED display device including same
JP5929578B2 (ja) 太陽電池モジュール及び太陽電池モジュール集合体
WO2012011307A1 (ja) 太陽電池モジュールおよび太陽光発電装置
JP6146627B2 (ja) 太陽電池モジュール
WO2012128339A1 (ja) 太陽電池モジュール、太陽光発電装置および太陽電池モジュールの設置方法
WO2012014539A1 (ja) 太陽電池モジュールおよび太陽光発電装置
WO2012053379A1 (ja) 太陽電池モジュールおよび太陽光発電装置
CN114400265B (zh) 用于太阳能光伏发电的光电转换装置
JP2010212280A (ja) 太陽電池の導光構造、太陽電池ユニット及び太陽電池モジュール
JP2008311408A (ja) 集光型太陽電池モジュール
JP2012156445A (ja) 太陽電池モジュールおよび太陽光発電装置
JPH06511602A (ja) 光電池のための光学的装置
WO2012066954A1 (ja) 太陽電池モジュールおよび太陽光発電装置
KR101898593B1 (ko) 태양전지 모듈
WO2012066935A1 (ja) 太陽電池モジュールおよび太陽光発電装置
WO2014010080A1 (ja) 太陽電池モジュールおよび太陽光発電装置
TWI814224B (zh) 具有導光結構的太陽能模組
WO2018213292A1 (en) Light guide apparatus and fabrication method thereof
JP2012222030A (ja) 太陽電池モジュールおよび太陽光発電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11834219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP