WO2012051954A1 - 一种数据调度方法及系统以及相关设备 - Google Patents

一种数据调度方法及系统以及相关设备 Download PDF

Info

Publication number
WO2012051954A1
WO2012051954A1 PCT/CN2011/081045 CN2011081045W WO2012051954A1 WO 2012051954 A1 WO2012051954 A1 WO 2012051954A1 CN 2011081045 W CN2011081045 W CN 2011081045W WO 2012051954 A1 WO2012051954 A1 WO 2012051954A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
uplink radio
dtr mode
radio block
instruction
Prior art date
Application number
PCT/CN2011/081045
Other languages
English (en)
French (fr)
Inventor
赵旸
房明
秦钧
张崇铭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2012051954A1 publication Critical patent/WO2012051954A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications, and in particular, to a data scheduling method and system, and related devices.
  • the terminal In the data transmission mode, in the direction of the Temporary Block Flow (TBF), the terminal needs to monitor all the allocated downlink time slots to ensure that all data sent by the receiving network is received. In the uplink TBF direction, the terminal needs to monitor all allocated uplinks.
  • the downlink time slot corresponding to the time slot is used to ensure that the uplink state identifier (USF, Uplink State Flag) sent by the network is received in time, thereby completing the uplink data transmission.
  • USF Uplink State Flag
  • the TBF When the data transfer is over, the TBF can remain connected for a certain period of time to cope with bursty data streams. At this time, the data transmission can enter the delayed downlink TBF release in the downlink direction; the extended uplink TBF mode can be entered in the uplink direction. In these two modes, although there is no obvious For data transmission, the terminal still needs to monitor the downlink time slot.
  • a dynamic time slot reduction (DTR) function is proposed in the prior art, and the function is to extend the uplink TBF mode or delay release the downlink TBF mode. Then, the network sends a series of commands including the DTR message, so that the terminal supporting the function reduces the monitored downlink time slot to achieve the purpose of power saving of the terminal.
  • DTR dynamic time slot reduction
  • the network side After the network side receives the last uplink radio block sent by the terminal, in the uplink TBF direction, the network side sends a DTR message to the terminal through the packet uplink acknowledgement/negative acknowledgement (PUAN, PACKET UPLINK ACK/NACK) message to indicate the terminal. Enter DTR mode.
  • PAN packet uplink acknowledgement/negative acknowledgement
  • PACKET UPLINK ACK/NACK packet uplink acknowledgement/negative acknowledgement
  • the terminal After receiving, the terminal needs to monitor the downlink time slot before entering the DTR mode, and retransmit the uplink radio block that is not correctly received by the network side in the uplink time slot. After all the uplink radio blocks are correctly received by the network side, the terminal enters. DTR mode.
  • the terminal After the terminal transmits the last uplink radio block, if it is found that some uplink radio blocks in the previously transmitted uplink radio block are not correctly received by the network side, the terminal needs to retransmit the uplink radio blocks. Until all the uplink radio blocks are correctly received by the network side, then the DTR mode can be entered. Therefore, if the individual uplink radio blocks are not correctly received by the network side, the terminal cannot enter the DTR mode in time, thereby effectively reducing the capability of the terminal. Consumption. Summary of the invention
  • the embodiments of the present invention provide a data scheduling method and system, and related devices, which enable the terminal to enter the DTR mode in time, thereby effectively reducing the power consumption of the terminal.
  • the data scheduling method provided by the embodiment of the present invention includes: receiving an uplink radio block sent by the terminal; determining whether the uplink radio block sent by the terminal has been correctly received, and if not all received correctly, and the number of uplink radio blocks not correctly received If the threshold is less than the preset threshold, the terminal sends an instruction to retransmit the data after entering the dynamic slot to reduce the DTR mode; and the instruction for retransmitting the data after entering the DTR mode is used to instruct the terminal to retransmit the DTR mode. Uplink radio block not received correctly.
  • the data scheduling method provided by the embodiment of the present invention includes: sending an uplink radio block to a network side device; when the uplink radio block is not all correctly received by the network side device, and the number of uplink radio blocks not correctly received is less than a preset gate When the limit value is received, the instruction for retransmitting the data after the dynamic time slot is reduced in the DTR mode sent by the network side device is received; the instruction for retransmitting the data after entering the DTR mode enters the DTR mode and then retransmits the incorrectly received uplink wireless Piece.
  • the network side device includes: a receiving unit, configured to receive an uplink radio block sent by the terminal, and a determining unit, configured to determine whether the uplink radio block sent by the terminal has been correctly received; If the uplink radio blocks sent by the terminal are not all correctly received, and the number of uplink radio blocks that are not correctly received is less than the preset threshold, the terminal sends an instruction to retransmit the data after entering the dynamic slot reduction DTR mode; the entering the DTR The instruction to retransmit data after the mode is used to instruct the terminal to retransmit the incorrectly received uplink radio block after entering the DTR mode.
  • the terminal provided by the embodiment of the present invention includes: an uplink sending unit, configured to be sent to a network side device Sending an uplink radio block; the instruction receiving unit, configured to: when the uplink radio block is not all correctly received by the network side device, and the number of uplink radio blocks that are not correctly received is less than a preset threshold, the receiving network side device sends And the processing unit is configured to retransmit the incorrectly received uplink radio block after entering the DTR mode according to the instruction to retransmit data after entering the DTR mode.
  • the embodiments of the present invention have the following advantages:
  • the network side device may notify the terminal to enter the DTR mode. And let the terminal retransmit the uplink radio block that is not correctly received after entering the DTR mode. Therefore, if there are only a small number of uplink radio blocks that are not correctly received, the terminal can also enter the DTR mode for retransmission in time, thereby effectively reducing The energy consumption of the terminal.
  • FIG. 1 is a schematic diagram of an embodiment of a data scheduling method according to the present invention.
  • FIG. 2 is a schematic diagram of another embodiment of a data scheduling method according to the present invention.
  • FIG. 3 is a schematic diagram of another embodiment of a data scheduling method according to the present invention.
  • FIG. 4 is a schematic diagram of an embodiment of a network side device according to the present invention.
  • FIG. 5 is a schematic diagram of an embodiment of a terminal according to the present invention.
  • FIG. 6 is a schematic diagram of an embodiment of a data scheduling system according to the present invention.
  • the embodiments of the present invention provide a data scheduling method and system, and related devices, which enable the terminal to enter the DTR mode in time, thereby effectively reducing the power consumption of the terminal.
  • the network side device may notify the terminal to enter the DTR mode.
  • the method of the embodiment of the present invention can be made in the manner that the terminal can retransmit the uplink radio block that is not correctly received after entering the DTR mode, and the method in the prior art is required to retransmit the entire uplink radio block to enter the DTR mode. The terminal enters the DTR mode more timely.
  • an embodiment of the data scheduling method of the present invention includes:
  • the network side device can receive the uplink wireless sent by the terminal on the uplink channel. Piece.
  • the network side device After the network side device receives all the uplink radio blocks sent by the terminal, the network side device determines whether the uplink radio blocks sent by the terminal in the TBF period have been correctly received, if not all received correctly, and the uplink wireless is not correctly received. If the number of the blocks is less than the preset threshold, the terminal sends an instruction to retransmit the data after entering the DTR mode, where the instruction is used to instruct the terminal to retransmit the uplink radio block that is not correctly received after entering the DTR mode.
  • the network side device may notify the terminal to enter the DTR mode, and After the terminal enters the DTR mode, the terminal retransmits the uplink radio block that is not correctly received. Therefore, if there are only a small number of uplink radio blocks that are not correctly received, the terminal can also enter the DTR mode for retransmission in time, thereby effectively reducing the terminal. Energy consumption.
  • another embodiment of the data scheduling method of the present invention includes:
  • the network side device may receive the uplink radio block sent by the terminal on the uplink channel, where the network side device may be a packet control unit (PCU, Packet Cont ro l Uni t ), and the packet control unit may
  • PCU packet control unit
  • the packet control unit may be implemented in the base station, or the base station controller, and can also be implemented independently, which is not limited herein.
  • step 202 determining whether the uplink radio block has been correctly received, and if so, executing step 203, if not, executing step 204;
  • the network side device when the network side device receives the last uplink radio block sent by the terminal, or the network side device receives the indication that the DTR mode is requested to be received from the terminal, the network side device performs step 202. .
  • the uplink radio block sent by the terminal will contain a reciprocal value (CV, Countdown Va lue). Since the terminal can know how much data to send in this TBF cycle before sending the data, it also knows each uplink. The size of the radio block, so the terminal can know how many uplink radio blocks need to be sent in this TBF period, and each uplink radio block is assigned its own CV. Starting from the first uplink radio block, the CV is continuously reduced by one, when the CV is 0, it means The uplink radio block is the last radio block in the TBF period.
  • CV reciprocal value
  • the network side device may analyze each uplink radio block sent by the terminal. When it is found that the CV of the currently received uplink radio block is 0, it indicates that the last uplink radio block sent by the terminal is received; or, the terminal may actively request. When the DTR mode is entered, the terminal carries an indication to request to enter the DTR mode in the last uplink radio block, and the network side device detects that the currently received uplink radio block carries an indication to enter the DTR mode; If no, the process proceeds to step 204. It should be noted that the process of determining whether the uplink radio block has been correctly received is a common knowledge of those skilled in the art, which is not limited herein.
  • the network side device may send an instruction to enter the DTR mode by sending a PUAN message, specifically:
  • the network side device sends a PUAN message to the terminal, where the PUAN message indicates that the terminal enters the DTR mode, and the downlink time slot that needs to be monitored after entering the DTR mode.
  • the Ack/Nack Description IE includes a 64-bit bitmap, where the bitmap carries the state of the uplink radio block sent by the terminal. For example, the uplink radio block may be received incorrectly by 0, and retransmission is required. Indicates that the uplink radio block has been received correctly.
  • the following set of fields may also be included in the PUAN message:
  • bit ( 1 ) is used to indicate on which carrier the DTR mode is entered.
  • TN_PDCH_pair_DTR bit (3) indicates which downlinks the terminal needs to monitor after entering the DTR mode.
  • the PTU message sent by the network side device carries the "DTR information" field group, and the Ack/Nack Descr ip ion IE indicates retransmission.
  • the bits can all be 1, which means that all uplink radio blocks have been received correctly.
  • step 204 Determine whether the number of uplink radio blocks that are not correctly received is less than a preset threshold. If yes, go to step 206. If no, go to step 205. Continue to determine whether the number of uplink radio blocks that are not correctly received is less than the preset. The threshold value, if yes, step 206 is performed, and if no, step 205 is performed.
  • the preset threshold value in this embodiment may be determined according to an actual situation or a network experience value, for example, 10°/ of the total number of uplink radio blocks transmitted by the terminal. , or 20%, which is not limited here.
  • the terminal may send an instruction that does not enter the DTR mode, and the instruction that does not enter the DTR mode is used. The terminal is instructed not to enter the DTR mode, and continues to monitor the downlink time slot.
  • the network side device may send an instruction that does not enter the DTR mode by sending a PUAN message, specifically:
  • the network side device sends a PUAN message to the terminal, and the PUAN message does not carry information that allows to enter the DTR mode.
  • the PTU message sent by the network side device to the terminal does not carry the "DTR information" field group, and is in the Ack/Nack Descr iption IE.
  • the bits corresponding to the uplink radio blocks may be 0 to indicate that the terminal performs retransmission.
  • the network side device determines that the number of uplink radio blocks that are not correctly received is less than the preset threshold, it indicates that the current transmission quality is good, and only a small number of uplink radio blocks are not correctly received, and then the terminal may be sent to the DTR mode and then retransmitted.
  • the instruction is used to instruct the terminal to retransmit the uplink radio block that is not correctly received after entering the DTR mode.
  • the network side device may send an PUAN message to implement an instruction to retransmit data after entering the DTR mode, specifically:
  • the network side device sends a PUAN message to the terminal, where the PUAN message indicates that the terminal enters the DTR mode, and the downlink time slot to be monitored after entering the DTR mode and the identifier of the uplink radio block to be retransmitted.
  • the network side device sends an instruction to retransmit data after entering the DTR mode to the terminal, and the PTU message sent by the network side device carries the "DTR information" field group:
  • the uplink radio blocks that need to be retransmitted are indicated in the Ack/Nack Descr i ping IE, and the bits corresponding to the uplink radio blocks may be 0 to indicate that the terminal performs retransmission.
  • the downlink radio block corresponding to the downlink time slot identifier to be monitored carries the same USF as the uplink status flag USF allocated to the terminal.
  • the specified downlink time slot needs to be monitored, and the network side device carries the same USF as the uplink state flag USF allocated to the terminal in the downlink radio block on the downlink time slot, so that the terminal When the same USF is allocated to the USF allocated to the downlink radio block, the uplink radio block that is not correctly received may be retransmitted in the subsequent uplink time slot of the uplink time slot corresponding to the downlink time slot, and the specific retransmission is performed.
  • the process is common knowledge of those skilled in the art and is not limited herein.
  • the network side device may notify the terminal to enter the DTR mode, and After the terminal enters the DTR mode, the terminal retransmits the uplink radio block that is not correctly received. Therefore, if there are only a small number of uplink radio blocks that are not correctly received, the terminal can also enter the DTR mode for retransmission in time, thereby effectively reducing the terminal. Energy consumption;
  • the network side device may start to determine whether the uplink radio block has been correctly received after receiving the last uplink radio block of the terminal, or determine whether the uplink radio block has been correctly determined according to the indication of the terminal. Receiving, so it can adapt to more situations, thus improving the flexibility of the solution.
  • the data scheduling method of the present invention is described above from the perspective of the network side device.
  • the data scheduling method of the present invention is described from the perspective of the terminal.
  • another embodiment of the data scheduling method of the present invention includes:
  • the terminal may send an uplink wireless block to the network side device through the uplink channel.
  • the network side device After the terminal sends the complete uplink radio block to the network side device, the network side device determines whether the uplink radio block has been correctly received, if the uplink radio block is received. If all the uplink radio blocks that are not correctly received and are not correctly received are less than the preset threshold, the network side device sends an instruction to the terminal to retransmit the data after entering the DTR mode.
  • the terminal When the terminal receives the instruction to retransmit the data after entering the DTR mode, it immediately enters the DTR mode, starts monitoring the specified downlink time slot, and retransmits the uplink radio block that was not correctly received.
  • the specific retransmission process can be:
  • the terminal monitors the downlink radio block corresponding to the downlink time slot identifier to be monitored.
  • the uplink time slot corresponding to the downlink time slot is The subsequent uplink time slot retransmits the uplink radio block that is not correctly received.
  • the specific retransmission process is common knowledge of those skilled in the art, and is not limited herein.
  • the terminal receives an instruction to enter the DTR mode from the network side device, and the terminal monitors after entering the DTR mode according to the instruction to enter the DTR mode. Specify a downlink time slot;
  • the terminal receives an instruction from the network side device not to enter the DTR mode, The terminal does not enter the DTR mode according to the instruction that does not enter the DTR mode. And continue to monitor the downlink time slot.
  • the instruction to retransmit data after entering the DTR mode, the instruction to enter the DTR mode, and the instruction not to enter the DTR mode can be implemented by the PUAN message sent by the network side device to the terminal, and the specific implementation manner is as shown in FIG. 1 above.
  • the implementations described in the illustrated embodiments are the same and will not be described again here.
  • the terminal may also carry the request to enter the DTR mode in the block header or the message body of the last uplink radio block when the last uplink radio block is sent.
  • the indication is to trigger the network side device to determine whether the uplink radio block has been correctly received.
  • the terminal may enter the DTR mode according to the indication of the network side device. And after re-transmitting the uplink radio block that is not correctly received after entering the DTR mode, if there are only a small number of uplink radio blocks that are not correctly received, the terminal can also enter the DTR mode for retransmission in time, thereby effectively reducing the terminal. Energy consumption.
  • the terminal actively requests to enter the DTR mode as an example, and the base station is used as an example of the network side device.
  • the uplink radio block sent by the terminal will contain a CV. Since the terminal can know how much data to send in the current TBF period before transmitting the data, and know the size of each uplink radio block, the terminal can It is known how many uplink radio blocks need to be sent in this TBF cycle, and each uplink radio block is assigned its own CV. Assuming that a total of 10 uplink radio blocks are to be transmitted, the CV of the first transmitted uplink radio block is 9. And so on, the last CV is 0.
  • the terminal When the terminal sends an uplink radio block and detects that the CV of the uplink radio block is 0, it indicates that this is the last uplink radio block, and the terminal sets the value of the "DTR Reques t" of the uplink radio block to 1. Used to indicate that the terminal requests to enter the DTR mode.
  • all uplink radio blocks may be extended, and a 1-bit field "DTR Reques t" is extended in the block header or block.
  • the default value of the field is 0, which means meaningless.
  • the base station extracts the value of the "DTR Request" of the uplink radio block. If the value is 1, it indicates that the terminal requests to enter the DTR mode, and the base station sends all the information sent by the terminal in the TBF period.
  • the 10 uplink radio blocks are detected to determine whether all the uplink radio blocks have been correctly received. After the detection is completed, there are three cases as follows:
  • the total number of uplink radio blocks that are not correctly received is greater than or equal to the preset threshold value (the preset threshold value in this embodiment is 4);
  • the specific preset threshold value may be determined according to the actual situation or the network experience value. In this embodiment, only 4 is taken as an example for description.
  • the base station may send a PUAN message to the terminal.
  • the PUAN message in this embodiment includes the following fields:
  • the Ack/Nack Description IE includes a 64-bit bitmap, where the bitmap carries the state of the uplink radio block sent by the terminal. For example, the uplink radio block may be received incorrectly by 0, and retransmission is required. Indicates that the uplink radio block has been received correctly.
  • the following set of fields may also be included in the PUAN message:
  • CI-DTR bit (1) is used to indicate which carrier enters DTR mode
  • TN_PDCH_pair_DTR bit (3) indicates which downlink time slots need to be monitored after the terminal enters DTR mode
  • DTR Blks bit (2) indicates that the terminal enters The block period of the downlink slot is monitored after the DTR mode.
  • the "DTR information" field group will not be carried in the PUAN message.
  • the above case (1) indicates that the terminal can enter the DTR mode, and the base station can send a PUAN message to the terminal, where the PUAN message is:
  • the value of the retransmitted bit in the IE can be "1111111...,,, all 1 means no retransmission of any upstream radio block.
  • CI-DTR The value of bit ( 1 ) is 0, indicating that the terminal enters DTR mode on carrier 1.
  • TN_PDCH_pair_DTR The value of bit ( 3) is 001, which means that the terminal needs to monitor the downlink time slot 001 after entering the DTR mode;
  • DTR Blks The value of bit (2) is 01, which means that the block period of the terminal monitoring downlink time slot is odd block.
  • the above situation (2) indicates that the terminal cannot enter the DTR mode, and the base station can send a PUAN message to the terminal, where the PUAN message is:
  • Ack/Nack Description The value of the bit in the IE for retransmission can be "1010000", where 0 means that the uplink radio block corresponding to the bit needs to be retransmitted.
  • the "DTR information" field group is not included in the PUAN message to indicate that the terminal is not allowed to enter the DTR mode.
  • the above situation (3) indicates that the terminal can enter the DTR mode, but after re-transmitting part of the data after entering the DTR mode, the base station can send a PUAN message to the terminal, where the PUAN message:
  • the value of the retransmitted bit in the IE can be "1011111", where 0 means that the uplink radio block corresponding to the bit needs to be retransmitted.
  • CI-DTR The value of bit ( 1 ) is 1, indicating that the terminal enters DTR mode on carrier 2.
  • TN_PDCH_pair_DTR The value of bit (3) is 011, indicating that the terminal needs to monitor the downlink time slot 011 after entering the DTR mode;
  • DTR Blks The value of bit (2) is 02, indicating that the block period of the terminal monitoring downlink time slot is an even block.
  • the terminal can analyze the PUAN message to determine subsequent processing, and analyze the different situations separately:
  • the terminal After receiving the PUAN message sent by the base station, the terminal parses, and knows that the PUAN message includes the "DTR information" field group, and the value of CI-DTR: bit (1) is 0, TN_PDCH_pair_DTR: bit ( 3) The value is 001, DTR Blks: The value of bit (2) is 01, and the value of the bit about retransmission in the Ack/Nack Description IE is "1111111". Then, the terminal immediately enters the DTR mode on the carrier 1, monitors the downlink slot 001 according to the odd block period, and does not retransmit any uplink radio block.
  • the terminal After receiving the PUAN message sent by the base station, the terminal parses the PUAN message and does not include the "DTR information" field group, and the value of the retransmission bit in the Ack/Nack Description IE is "1010000". Hence,,, then the terminal does not enter the DTR mode, and retransmits the uplink radio block corresponding to the bit of value 0 according to the retransmitted bit in the Ack/Nack Description IE.
  • the terminal parses, and knows that the PUAN message includes the "DTR information" field group, and the value of CI_DTR: bit (1) is 1, TN_PDCH_pair_DTR: bit ( 3) The value is Oil, DTR Blks: The value of bit (2) is 02, and the value of the bit about retransmission in Ack/Nack Description IE is "1011111".
  • the terminal immediately enters the DTR mode on the carrier 2, monitors the downlink slot 011 according to the even block period, and retransmits the uplink radio block corresponding to the bit with the value of 0 according to the retransmission bit in the Ack/Nack Description IE.
  • the retransmission of the uplink radio block may be implemented in the following manner: Assume that the USF allocated by the base station to the terminal is 001, and if the terminal monitors the downlink time slot 011 according to the even block period, it is found in a downlink radio block. If the USF is 001, the terminal can be in the radio block. In this way, the terminal can retransmit all the uplink radio blocks that are not correctly received to the network side device.
  • the base station may notify the terminal to enter the DTR mode, and let the terminal retransmit the incorrectly received after entering the DTR mode.
  • the uplink radio block so if there are only a small number of uplink radio blocks that are not correctly received, the terminal can also enter the DTR mode for retransmission in time, thereby effectively reducing the power consumption of the terminal.
  • an embodiment of the network side device of the present invention includes:
  • the receiving unit 401 is configured to receive an uplink radio block sent by the terminal, and the sending unit 403 is configured to: when the uplink radio block sent by the terminal is not all correctly received, When the number of received uplink radio blocks is less than the preset threshold, the terminal sends an instruction to retransmit the data after entering the dynamic slot to reduce the DTR mode;
  • the instruction to retransmit data after entering the DTR mode is used to instruct the terminal to retransmit the uplink radio block that was not correctly received after entering the DTR mode.
  • the specific retransmission process may be:
  • the terminal monitors the downlink radio block corresponding to the downlink time slot identifier to be monitored.
  • the uplink time slot corresponding to the downlink time slot is The subsequent uplink time slot retransmits the uplink radio block that is not correctly received.
  • the specific retransmission process is common knowledge of those skilled in the art, and is not limited herein.
  • the sending unit 403 is further configured to send an instruction to enter the DTR mode, where the instruction to enter the DTR mode is used to instruct the terminal to enter the DTR. Monitor the specified downlink time slot after the mode;
  • the sending unit 403 is further configured to send an instruction to the terminal not to enter the DTR mode, where the The instruction to enter the DTR mode is used to indicate that the terminal does not enter the DTR mode and continues to monitor the downlink time slot.
  • the receiving unit 401 when the receiving unit 401 receives the last uplink radio block sent by the terminal,
  • the receiving unit 401 When the receiving unit 401 receives an uplink radio block from the terminal, an operation for requesting reception into the DTR mode is included.
  • the network side device in this embodiment may be a packet control unit in an actual application, and the packet control unit may be implemented in a base station or a base station controller, or may be implemented independently, and is not limited herein.
  • the receiving unit 401 can receive the uplink radio block sent by the terminal on the uplink channel.
  • the determining unit 402 determines whether the uplink radio blocks have been correctly received.
  • the determining unit 402 receives the last uplink radio block sent by the terminal at the receiving unit 401, or performs a determining operation when the receiving unit 401 receives an indication that the DTR mode is requested to be received from the terminal.
  • the uplink radio block sent by the terminal will contain a CV. Since the terminal can know how much data to send in the current TBF period before transmitting the data, and know the size of each uplink radio block, the terminal can It is known how many uplink radio blocks need to be sent in this TBF cycle, and each uplink radio block is assigned its own CV. Starting from the first uplink radio block, the CV is continuously reduced by one. When the CV is 0, it indicates the uplink wireless. The block is the last radio block in the TBF period.
  • the network side device can analyze each uplink radio block sent by the terminal. When it is found that the CV of the currently received uplink radio block is 0, it indicates that the last uplink radio block sent by the terminal is received, and the determining operation can be performed.
  • the terminal may actively request to enter the DTR mode, and the terminal may carry an instruction to enter the DTR mode in the last uplink radio block, and the network side device detects that the currently received uplink radio block carries the request to enter the DTR mode. At the time, the judgment operation can be performed.
  • the sending unit 403 may send an instruction to the terminal to enter the DTR mode, where the instruction to enter the DTR mode is used to indicate that the terminal monitors the specified downlink after entering the DTR mode. Gap.
  • the sending unit 403 can send an instruction to enter the DTR mode by sending a PUAN message, specifically:
  • the sending unit 403 sends a PUAN message to the terminal, where the PUAN message indicates that the terminal enters the DTR mode and the downlink time slot that needs to be monitored after entering the DTR mode.
  • the determining unit 402 determines that all the uplink radio blocks sent by the terminal are not correctly received, it continues to determine whether the number of uplink radio blocks that are not correctly received is less than a preset threshold.
  • the preset threshold value in this embodiment may be determined according to an actual situation or a network experience value, for example, 10°/ of the total number of uplink radio blocks transmitted by the terminal. , or 20%, which is not limited here.
  • the sending unit 403 may send the terminal to the terminal.
  • the instruction to enter the DTR mode, the instruction not entering the DTR mode is used to indicate that the terminal does not enter the DTR mode, and continues to monitor the downlink time slot.
  • the sending unit 403 can send an instruction not to enter the DTR mode by sending a PUAN message, specifically:
  • the sending unit 403 sends a PUAN message to the terminal, and the PUAN message does not carry information that allows entry into the DTR mode.
  • the sending unit 403 may send the terminal to the DTR mode after entering the DTR mode.
  • An instruction to retransmit data the instruction is used to instruct the terminal to retransmit the uplink radio block that is not correctly received after entering the DTR mode.
  • the sending unit 403 may send an PUAN message to implement an instruction to retransmit data after entering the DTR mode. Specifically:
  • the sending unit 403 sends a PUAN message to the terminal, where the PUAN message indicates that the terminal enters the DTR mode, and needs to monitor the downlink time slot and the identifier of the uplink radio block to be retransmitted after entering the DTR mode.
  • the specified downlink time slot needs to be monitored, and the network side device carries the same USF as the uplink state flag USF allocated to the terminal in the downlink radio block on the downlink time slot, so that the terminal The uplink radio block that is not correctly received may be retransmitted in the next uplink time slot of the uplink time slot corresponding to the downlink time slot.
  • the sending unit 403 may notify the terminal to enter the DTR mode, and After the terminal enters the DTR mode, the terminal retransmits the uplink radio block that is not correctly received. Therefore, if there are only a small number of uplink radio blocks that are not correctly received, the terminal can also enter the DTR mode for retransmission in time, thereby effectively reducing the terminal. Energy consumption;
  • the determining unit 402 may start to determine whether the uplink radio block has been correctly received after receiving the last uplink radio block of the terminal, or determine whether the uplink radio block has been correctly determined according to the indication of the terminal. Receiving, so it can adapt to more situations, thus improving the flexibility of the solution.
  • an embodiment of the terminal of the present invention includes: The uplink sending unit 501 is configured to send an uplink radio block to the network side device.
  • the instruction receiving unit 502 is configured to: when the uplink radio block is not all correctly received by the network side device, and the number of uplink radio blocks that are not correctly received is less than a preset threshold, the receiving dynamic slot decreases DTR sent by the network side device. An instruction to retransmit data after the mode;
  • the processing unit 503 is configured to retransmit the uplink radio block that is not correctly received after entering the DTR mode according to the instruction to retransmit the data after entering the DTR mode.
  • the specific retransmission process may be:
  • the terminal monitors the downlink radio block corresponding to the downlink time slot identifier to be monitored.
  • the uplink time slot corresponding to the downlink time slot is The subsequent uplink time slot retransmits the uplink radio block that is not correctly received.
  • the specific retransmission process is common knowledge of those skilled in the art, and is not limited herein.
  • the command receiving unit 502 is further configured to receive an instruction sent by the network side device to enter the DTR mode;
  • the processing unit 503 is further configured to monitor the designated downlink time slot after entering the DTR mode according to the instruction entering the DTR mode;
  • the command receiving unit 502 is further configured to receive the non-entry DTR mode sent by the network side device.
  • the processing unit 503 is further configured to continue monitoring the downlink time slot according to an instruction not to enter the DTR mode.
  • the last uplink wireless block sent by the uplink sending unit 501 to the network side device may carry an instruction to enter the DTR mode.
  • the uplink transmitting unit 501 can send an uplink radio block to the network side device through the uplink channel.
  • the network side device determines whether the uplink radio block has been correctly received. If the uplink radio block is not all correctly received, and the number of uplink radio blocks that are not correctly received is less than When the preset threshold is used, the network side device sends an instruction to the instruction receiving unit 502 to retransmit the data after entering the DTR mode.
  • the instruction receiving unit 502 When the instruction receiving unit 502 receives the instruction to retransmit the data after entering the DTR mode, immediately Enter DTR mode, start monitoring the specified downlink time slot, and retransmit the uplink radio block that was not correctly received.
  • the terminal monitors the downlink radio block corresponding to the downlink time slot identifier to be monitored.
  • the uplink time slot corresponding to the downlink time slot is The latter uplink time slot retransmits the uplink radio block that was not correctly received.
  • the command receiving unit 502 receives an instruction to enter the DTR mode from the network side device, and the processing unit 503 according to the instruction to enter the DTR mode. After entering the DTR mode, the specified downlink time slot is monitored; if the uplink radio block is not all correctly received by the network side device, and the number of the incorrectly received uplink radio block is greater than or equal to the preset threshold, the command receiving unit 502 will When the network side device receives an instruction not to enter the DTR mode, the processing unit 503 continues to monitor the downlink time slot according to the instruction not entering the DTR mode.
  • the instruction to retransmit data after entering the DTR mode, the instruction to enter the DTR mode, and the instruction not to enter the DTR mode can be implemented by the PUAN message sent by the network side device to the instruction receiving unit 502, and the specific implementation manner is The implementations described in the foregoing embodiment shown in FIG. 2 are the same, and are not described herein again.
  • the terminal may also carry the request to enter the DTR mode in the block header or the message body of the last uplink radio block when the last uplink radio block is sent.
  • the indication is to trigger the network side device to determine whether the uplink radio block has been correctly received.
  • the processing unit 503 may be configured according to the network side device.
  • the indication enters the DTR mode, and retransmits the uplink radio block that is not correctly received after entering the DTR mode, so if there are only a small number of uplink radio blocks that are not correctly received, the terminal can also enter the DTR mode for retransmission in time, so Can effectively reduce the energy consumption of the terminal.
  • an embodiment of the data scheduling system of the present invention includes:
  • the network side device 601 is configured to receive the uplink radio block sent by the terminal 602, and determine whether the uplink radio block sent by the terminal 602 has been correctly received, if not all received correctly, and is not correctly received. If the number of received uplink radio blocks is less than a preset threshold, the terminal 602 sends an instruction to retransmit the data after entering the dynamic slot reduction DTR mode;
  • the terminal 602 is configured to send an uplink radio block to the network side device 601, and receive an instruction for retransmitting data after entering the dynamic time slot to reduce the DTR mode sent by the network side device 601, and enter the DTR mode according to the instruction for retransmitting data after entering the DTR mode. Monitors the specified downlink time slot and retransmits the uplink radio block that was not correctly received.
  • the network side device 601 in this embodiment refer to the function of the network side device shown in FIG. 4, and the terminal 602 in this embodiment may refer to the function of the terminal shown in FIG. 5, and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种数据调度方法及系统以及相关设备,能够使得终端及时进入DTR模式,从而有效的减少终端的能耗。本发明实施例方法包括:接收终端发送的上行无线块;判断终端发送的上行无线块是否都已被正确接收,若未全部正确接收,且未正确接收的上行无线块的数目小于预置门限值,则向终端发送进入动态时隙减少DTR模式后重传数据的指令;该指令用于指示终端进入DTR模式之后重传未正确接收的上行无线块。本发明实施例还提供一种数据调度系统以及相关设备。本发明实施例能够使得终端及时进入DTR模式,从而有效的减少终端的能耗。

Description

一种数据调度方法及系统以 目关 i殳备 本申请要求于 2010 年 10 月 20 日提交中国专利局、 申请号为 201010516264. 4 , 发明名称为 "一种数据调度方法及系统以及相关设备" 的中国专利申请的优先权, 全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域, 尤其涉及一种数据调度方法及系统以及相关设 备。
背景技术
在数据传输模式中, 下行临时块流(TBF, Temporary Block Flow )方 向, 终端需要监视所有分配的下行时隙, 以保证接收网络下发的所有数据; 上行 TBF方向, 终端需要监视所有分配的上行时隙对应的下行时隙, 以保 证及时收到网络下发的上行链路状态标识(USF, Uplink State Flag ), 从而 完成上行数据的发送。
当数据传输结束, TBF可在一定时间内继续保持连接, 以应对突发的 数据流。 此时, 数据传输在下行方向上可进入延迟释放下行 TBF模式 ( delayed downlink TBF release ); 在上行方向上可进入扩展上行 TBF模式 ( extended uplink TBF mode )„在这两种模式下,尽管没有明显的数据传输, 终端仍然需要监视下行时隙。
为了减少终端在这两种模式下的能耗, 现有技术中提出了一种动态时 隙减少( DTR , Dynamic Timeslot Reduction )功能, 该功能则是指在扩展上 行 TBF模式或延迟释放下行 TBF模式下, 网络通过发送一系列包含 DTR 消息的命令, 使得支持该功能的终端减少监视的下行时隙, 以达到终端节 电的目的。
现有技术中的一种基于 DTR功能的数据调度方法为:
当网络侧收到终端发送的最后一个上行无线块后, 在上行 TBF方向, 网络侧通过分组上行链路应答 /否定应答 ( PUAN , PACKET UPLINK ACK/NACK ) 消息向终端下发 DTR消息, 指示终端进入 DTR模式。
如果终端之前发送的上行无线块中有某些上行无线块未被网络侧正确 接收, 则终端在进入 DTR模式之前, 需要监视下行时隙, 并在上行时隙重 传未被网络侧正确接收的上行无线块, 当全部的上行无线块都被网络侧正 确接收之后, 终端进入 DTR模式。
但是, 上述现有技术中, 终端在发送完最后一个上行无线块之后, 若 发现之前发送的上行无线块中有某些上行无线块未被网络侧正确接收, 则 需要重传这些上行无线块, 直至全部的上行无线块都被网络侧正确接收, 之后才能进入 DTR模式, 所以若个别上行无线块未被网络侧正确接收, 则 会使得终端不能及时进入 DTR模式, 从而不能有效的减少终端的能耗。 发明内容
本发明实施例提供了一种数据调度方法及系统以及相关设备, 能够使 得终端及时进入 DTR模式, 从而有效的减少终端的能耗。
本发明实施例提供的数据调度方法, 包括: 接收终端发送的上行无线 块; 判断终端发送的上行无线块是否都已被正确接收, 若未全部正确接收, 且未正确接收的上行无线块的数目小于预置门限值, 则向终端发送进入动 态时隙减少 DTR模式后重传数据的指令; 所述进入 DTR模式后重传数据 的指令用于指示所述终端进入 DTR模式之后重传所述未正确接收的上行无 线块。
本发明实施例提供的数据调度方法, 包括: 向网络侧设备发送上行无 线块; 当所述上行无线块未全部被网络侧设备正确接收, 且未正确接收的 上行无线块的数目小于预置门限值时, 接收网络侧设备发送的进入动态时 隙减少 DTR模式后重传数据的指令; 根据所述进入 DTR模式后重传数据 的指令进入 DTR模式之后重传所述未正确接收的上行无线块。
本发明实施例提供的网络侧设备, 包括: 接收单元, 用于接收终端发 送的上行无线块; 判断单元, 用于判断终端发送的上行无线块是否都已被 正确接收; 发送单元, 用于当终端发送的上行无线块未全部正确接收, 且 未正确接收的上行无线块的数目小于预置门限值时, 向终端发送进入动态 时隙减少 DTR模式后重传数据的指令; 所述进入 DTR模式后重传数据的 指令用于指示所述终端进入 DTR模式之后重传所述未正确接收的上行无线 块。
本发明实施例提供的终端, 包括: 上行发送单元, 用于向网络侧设备 发送上行无线块; 指令接收单元, 用于当所述上行无线块未全部被网络侧 设备正确接收, 且未正确接收的上行无线块的数目小于预置门限值时, 接 收网络侧设备发送的进入动态时隙减少 DTR模式后重传数据的指令; 处理 单元, 用于根据所述进入 DTR模式后重传数据的指令进入 DTR模式之后 重传所述未正确接收的上行无线块。
从以上技术方案可以看出, 本发明实施例具有以下优点:
本发明实施例中, 当终端发送完全部上行无线块之后, 若网络侧设备 发现终端发送的上行无线块中只有少部分上行无线块没有正确接收到, 则 网络侧设备可以通知终端进入 DTR模式, 并且让终端在进入 DTR模式之 后再重传未正确接收的上行无线块, 所以若只存在少量未被正确接收的上 行无线块, 终端也能够及时的进入 DTR模式进行重传, 因此能够有效的减 少终端的能耗。
附图说明
图 1为本发明数据调度方法一个实施例示意图;
图 2为本发明数据调度方法另一实施例示意图;
图 3为本发明数据调度方法另一实施例示意图;
图 4为本发明网络侧设备实施例示意图;
图 5为本发明终端实施例示意图;
图 6为本发明数据调度系统实施例示意图。
具体实施方式
本发明实施例提供了一种数据调度方法及系统以及相关设备, 能够使 得终端及时进入 DTR模式, 从而有效的减少终端的能耗。
本发明实施例中, 当终端发送完全部上行无线块之后, 若网络侧设备 发现终端发送的上行无线块中只有少部分上行无线块没有正确接收到, 则 网络侧设备可以通知终端进入 DTR模式, 并且让终端在进入 DTR模式之后 再重传未正确接收的上行无线块, 相比现有技术中必须重传完全部上行无 线块才能进入 DTR模式的方式而言, 本发明实施例的方案可以使得终端更 加及时的进入 DTR模式。
请参阅图 1 , 本发明数据调度方法一个实施例包括:
1 01、 接收终端发送的上行无线块;
本实施例中, 网络侧设备可以在上行信道上接收终端发送的上行无线 块。
1 02、 判断终端发送的上行无线块是否都已被正确接收, 若未全部正确 接收, 且未正确接收的上行无线块的数目小于预置门限值, 则向终端发送 进入 DTR模式后重传数据的指令。
网络侧设备在接收了终端发送的全部上行无线块后, 网络侧设备判断 终端在本 TBF周期内发送的上行无线块是否都已被正确接收, 若未全部正 确接收, 且未正确接收的上行无线块的数目小于预置门限值, 则向终端发 送进入 DTR模式后重传数据的指令, 该指令用于指示终端进入 DTR模式之 后重传未正确接收的上行无线块。
本实施例中, 当终端发送完全部上行无线块之后, 若网络侧设备发现 终端发送的上行无线块中只有少部分上行无线块没有正确接收到, 则网络 侧设备可以通知终端进入 DTR模式, 并且让终端在进入 DTR模式之后再重 传未正确接收的上行无线块, 所以若只存在少量未被正确接收的上行无线 块, 终端也能够及时的进入 DTR模式进行重传, 因此能够有效的减少终端 的能耗。
请参阅图 2 , 本发明数据调度方法另一实施例包括:
201、 接收终端发送的上行无线块;
本实施例中, 网络侧设备可以在上行信道上接收终端发送的上行无线 块,该网络侧设备在实际应用中可以为分组控制单元(PCU, Packet Cont ro l Uni t ), 该分组控制单元可以集成在基站, 或基站控制器中实现, 也可以独 立实现, 具体此处不作限定。
202、 判断上行无线块是否都已被正确接收, 若是, 则执行步骤 203 , 若否, 则执行步骤 204 ;
本实施例中, 当网络侧设备接收到终端发送的最后一个上行无线块, 或者是网络侧设备从终端接收到的上行无线块中包含请求进入 DTR模式的 指示时, 网络侧设备会执行步骤 202。
在数据传输过程中, 终端发送的上行无线块会包含一个倒数值 ( CV , Countdown Va lue ), 由于终端在发送数据之前就能够获知本次 TBF周期一 共要发送多少数据, 同时又知道每个上行无线块的大小, 所以终端能够获 知本次 TBF周期需要发送多少个上行无线块, 每个上行无线块都分配有各 自的 CV, 从第一个上行无线块开始, CV不断减一, 当 CV为 0时, 则表示 该上行无线块为本 TBF周期内的最后一个无线块。
网络侧设备可以分析终端发送的每一个上行无线块, 当发现当前接收 到的上行无线块的 CV为 0时, 则表示接收到终端发送的最后一个上行无线 块; 或者, 也可以由终端主动请求进入 DTR模式, 则终端会在最后一个上 行无线块中携带请求进入 DTR模式的指示, 网络侧设备在检测到当前接收 的上行无线块中携带请求进入 DTR模式的指示时; 是, 则执行步骤 203, 若否, 则执行步骤 204, 需要说明的是, 具体判断上 行无线块是否都已被正确接收的过程为本领域技术人员的公知常识, 此处 不作限定。
203、 向终端发送进入 DTR模式的指令; 向终端发送进入 DTR模式的指令, 该进入 DTR模式的指令用于指示终端进 入 DTR模式之后监视指定下行时隙。
本实施例中, 网络侧设备可以通过发送 PUAN消息的方式以实现发送进 入 DTR模式的指令, 具体的:
网络侧设备向终端发送 PUAN消息, 该 PUAN消息中指示终端进入 DTR 模式, 以及进入 DTR模式后需要监视的下行时隙。
本实施例中的 PUAN消息中可以包含如下一些字段:
< Ack/Nack Description : < Ack/Nack Description IE > >;
其中, Ack/Nack Description IE中包含一个 64比特的位图, 该位图 中携带有终端发送的上行无线块的状态, 例如可以用 0表示该上行无线块 未正确接收, 需要重传, 用 1表示该上行无线块已经正确接收。
此外, 如果网络侧设备允许终端进入 DTR模式, 则在 PUAN消息中还可 以包括如下一组字段:
{ 0 I 1 ― DTR Information
< CI-DTR : bit ( 1 ) >
< TN_PDCH_pair_DTR : bit ( 3 ) >
< DTR Blks : bit ( 2 ) > }
其中, CI-DTR : bit ( 1 ) 用以表示在哪个载波上进入 DTR 模式,
TN_PDCH_pair_DTR: bit ( 3)表示终端进入 DTR模式后需要监视哪些下行 时隙, DTR Blks : b i t ( 2 )表示终端进入 DTR模式后监视下行时隙的块周 期。
需要说明的是, 上述字段组的名称为 "DTR信息", 具体内容以及含义 为本领域技术人员的公知尝试, 此处不作限定。
可以理解的是,若网络侧设备不允许终端进入 DTR模式,则不会在 PUAN 消息中携带该 "DTR信息" 字段组。
本实施例中, 网络侧设备向终端发送进入 DTR模式的指令, 则在网络 侧设备发送的 PUAN 消息中携带该 " DTR 信息" 字段组, 且 Ack/Nack Descr ip t ion I E 中指示重传的比特均可以为 1 , 即表示全部上行无线块都 已经正确接收。
204、判断未正确接收的上行无线块的数目是否小于预置门限值,若是, 则执行步骤 206 , 若否, 则执行步骤 205 ; 续判断未正确接收的上行无线块的数目是否小于预置门限值, 若是, 则执 行步骤 206 , 若否, 则执行步骤 205。
需要说明的是, 本实施例中的预置门限值可以根据实际情况或者采用 网络经验值进行确定, 例如可以为终端发送的全部上行无线块数目的 10°/。, 或 20%, 具体此处不作限定。
205、 向终端发送不进入 DTR模式的指令;
当网络侧设备确定未正确接收的上行无线块的数目大于或等于预置门 限时, 则表示当前传输质量较差, 则可以向终端发送不进入 DTR模式的指 令, 该不进入 DTR模式的指令用于指示终端不进入 DTR模式, 并继续监视 下行时隙。
本实施例中, 网络侧设备可以通过发送 PUAN消息的方式以实现发送不 进入 DTR模式的指令, 具体的:
网络侧设备向终端发送 PUAN消息,该 PUAN消息中不携带允许进入 DTR 模式的信息。
本实施例中, 由于网络侧设备向终端发送不进入 DTR模式的指令, 因 此在网络侧设备发送给终端的 PUAN消息中不携带 "DTR信息" 字段组, 并 且在 Ack/Nack Descr ipt ion IE 中指示需要重传的上行无线块, 这些上行 无线块对应的比特可以为 0 , 以指示终端进行重传。 206、 向终端发送进入 DTR模式后重传数据的指令;
当网络侧设备确定未正确接收的上行无线块的数目小于预置门限时, 则表示当前传输质量较好, 只有少量上行无线块未被正确接收, 则可以向 终端发送进入 DTR模式后重传数据的指令, 该指令用于指示终端进入 DTR 模式之后重传未正确接收的上行无线块。
本实施例中, 网络侧设备可以通过发送 PUAN消息的方式以实现发送进 入 DTR模式后重传数据的指令, 具体的:
网络侧设备向终端发送 PUAN消息, 该 PUAN消息中指示终端进入 DTR 模式, 进入 DTR模式后需要监视的下行时隙以及待重传的上行无线块的标 识。
本实施例中, 网络侧设备向终端发送进入 DTR模式后重传数据的指令, 则在网络侧设备发送的 PUAN消息中携带该 "DTR信息" 字段组:
{ 0 I 1 ― DTR Informat ion
< CI -DTR : bi t ( 1 ) >
< TN_PDCH_pa i r_DTR : bi t ( 3 ) >
< DTR Blks : bi t ( 2 ) > }
且在 Ack/Nack Descr ipt ion IE 中指示需要重传的上行无线块, 这些 上行无线块对应的比特可以为 0, 以指示终端进行重传。
207、 在需要监视的下行时隙标识对应的下行无线块中携带与分配给终 端的上行链路状态标记 USF相同的 USF。
当终端进入 DTR模式之后, 需要对指定的下行时隙进行监视, 则网络 侧设备在这些下行时隙上的下行无线块中携带与分配给终端的上行链路状 态标记 USF相同的 USF,使得终端在该下行无线块中检测到与分配给自身的 USF相同的 USF时,可以在该下行时隙对应的上行时隙的后一个上行时隙重 传未正确接收的上行无线块, 具体的重传过程为本领域技术人员的公知常 识, 此处不做限定。
本实施例中, 当终端发送完全部上行无线块之后, 若网络侧设备发现 终端发送的上行无线块中只有少部分上行无线块没有正确接收到, 则网络 侧设备可以通知终端进入 DTR模式, 并且让终端在进入 DTR模式之后再重 传未正确接收的上行无线块, 所以若只存在少量未被正确接收的上行无线 块, 终端也能够及时的进入 DTR模式进行重传, 因此能够有效的减少终端 的能耗;
此外, 本实施例中, 网络侧设备可以在接收到终端的最后一个上行无 线块之后自行开始判断上行无线块是否都已被正确接收, 也可以根据终端 的指示判断上行无线块是否都已被正确接收, 所以能够适应更多种情况, 从而提高方案灵活性。
上面从网络侧设备的角度对本发明数据调度方法进行了说明, 下面从 终端的角度对本发明数据调度方法进行说明,请参阅图 3 , 本发明数据调度 方法另一实施例包括:
301、 向网络侧设备发送上行无线块;
当进行数据传输时, 终端可以通过上行信道向网络侧设备发送上行无 线块。
302、 接收网络侧设备发送的进入 DTR模式后重传数据的指令; 终端向网络侧设备发送完全部上行无线块之后, 网络侧设备会判断上 行无线块是否都已被正确接收, 若上行无线块未全部被正确接收, 且未正 确接收的上行无线块的数目小于预置的门限值时, 则网络侧设备会向终端 发送进入 DTR模式后重传数据的指令。
303、 根据进入 DTR模式后重传数据的指令进入 DTR模式之后重传未正 确接收的上行无线块。
当终端收到进入 DTR模式后重传数据的指令之后, 立即进入 DTR模式, 开始监视指定的下行时隙, 并重传未正确接收的上行无线块。
具体的重传过程在实际应用中可以为:
终端对需要监视的下行时隙标识对应的下行无线块进行监视, 当该下 行无线块中包含的 USF与网络侧设备分配给终端的 USF相同时, 则在该下 行时隙对应的上行时隙的后一个上行时隙重传未正确接收的上行无线块, 具体的重传过程为本领域技术人员的公知常识, 此处不做限定。
需要说明的是, 本实施例中, 若上行无线块已全部被正确接收时, 则 终端会从网络侧设备接收到进入 DTR模式的指令, 则终端根据该进入 DTR 模式的指令进入 DTR模式之后监视指定下行时隙;
若上行无线块未全部被网络侧设备正确接收, 且未正确接收的上行无 线块的数目大于或等于预置门限值时, 则终端会从网络侧设备接收到不进 入 DTR模式的指令, 则终端根据该不进入 DTR模式的指令不进入 DTR模式, 并继续监视下行时隙。
本实施例中, 进入 DTR模式后重传数据的指令, 进入 DTR模式的指令 以及不进入 DTR模式的指令都可以通过网络侧设备向终端发送的 PUAN消息 进行实现, 具体的实现方式与前述图 1 所示的实施例中描述的实现方式相 同, 此处不再赘述。
本实施例中, 若采用终端主动向网络侧设备请求进入 DTR模式的方案, 则终端还可以当发送最后一个上行无线块时, 在该最后一个上行无线块的 块头或消息体内携带请求进入 DTR模式的指示, 以触发网络侧设备判断上 行无线块是否都已被正确接收。
本实施例中, 当终端发送完全部上行无线块之后, 若网络侧设备发现 终端发送的上行无线块中只有少部分上行无线块没有正确接收到, 则终端 可以根据网络侧设备的指示进入 DTR模式, 并且在进入 DTR模式之后再重 传未正确接收的上行无线块, 所以若只存在少量未被正确接收的上行无线 块, 终端也能够及时的进入 DTR模式进行重传, 因此能够有效的减少终端 的能耗。
为便于理解, 下面以一具体应用场景对本发明数据调度方法中网络侧 设备与终端之间的交互进行详细说明:
本实施例中, 以终端主动请求进入 DTR模式为例进行说明, 同时, 以 基站作为网络侧设备的例子进行说明。
在数据传输过程中, 终端发送的上行无线块会包含一个 CV , 由于终端 在发送数据之前就能够获知本次 TBF周期一共要发送多少数据, 同时又知 道每个上行无线块的大小, 所以终端能够获知本次 TBF周期需要发送多少 个上行无线块,每个上行无线块都分配有各自的 CV ,假设一共要发送 1 0个 上行无线块, 则第一个发送的上行无线块的 CV为 9 , 以此类推, 最后一个 的 CV为 0。
当终端在发送某上行无线块时, 检测到该上行无线块的 CV为 0 , 则表 示这是最后一个上行无线块, 则终端将该上行无线块的 "DTR Reques t " 的 数值设置为 1 , 用以表示终端请求进入 DTR模式。
需要说明的是, 在实际应用中, 可以对全部的上行无线块进行扩展, 在块头或块内扩展一个 1比特的字段" DTR Reques t " ,该字段的缺省值为 0 , 即表示无意义, 当其被修改为 1之后, 则表示终端请求进入 DTR模式。 当该上行无线块被传输至基站时, 基站提取该上行无线块的 "DTR Request" 的数值, 该数值为 1, 则表示终端请求进入 DTR模式, 基站对该 终端在本 TBF周期内发送的所有的 10个上行无线块进行检测, 判断是否全 部的上行无线块都已经被正确接收, 检测完成后会有如下三种情况:
( 1 )全部的 10个上行无线块都已经被正确接收;
(2) 未正确接收全部的 10个上行无线块, 且未正确接收的上行无线 块的数目大于或等于预置门限值(本实施例中的预置门限值为 4);
( 3) 未正确接收全部的 10个上行无线块, 且未正确接收的上行无线 块的数目小于预置门限值 (本实施例中的预置门限值为 4 )。
需要说明的是, 具体的预置门限值可以根据实际情况或者采用网络经 验值进行确定, 本实施例中仅以 4为例进行说明。
确定了当前的具体情况之后, 基站可以向终端发送 PUAN消息, 本实施 例中的 PUAN消息包含如下一些字段:
< Ack/Nack Description : < Ack/Nack Description IE > >;
其中, Ack/Nack Description IE中包含一个 64比特的位图, 该位图 中携带有终端发送的上行无线块的状态, 例如可以用 0表示该上行无线块 未正确接收, 需要重传, 用 1表示该上行无线块已经正确接收。
此外, 如果网络侧设备允许终端进入 DTR模式, 则在 PUAN消息中还可 以包括如下一组字段:
{ 0 I 1 ― DTR Information
< CI-DTR : bit ( 1 ) >
< TN_PDCH_pair_DTR : bit ( 3 ) >
< DTR Blks : bit ( 2 ) > }
其中, CI-DTR : bit ( 1 ) 用以表示在哪个载波上进入 DTR 模式, TN_PDCH_pair_DTR: bit ( 3)表示终端进入 DTR模式后需要监视哪些下行 时隙, DTR Blks : bit (2)表示终端进入 DTR模式后监视下行时隙的块周 期。
需要说明的是, 上述字段组的名称为 "DTR信息", 具体内容以及含义 为本领域技术人员的公知尝试, 此处不作限定。
可以理解的是,若网络侧设备不允许终端进入 DTR模式,则不会在 PUAN 消息中携带该 "DTR信息" 字段组。 上述情况( 1 )表示终端可以进入 DTR模式,则基站可以向终端发送 PUAN 消息, 该 PUAN消息中:
Ack/Nack Description IE 中有关重传的比特的数值可以为 "1111111......,,, 全为 1即表示无需重传任何上行无线块。
CI-DTR : bit ( 1 ) 的数值为 0, 表示终端在载波 1上进入 DTR模式;
TN_PDCH_pair_DTR : bit ( 3) 的数值为 001, 表示终端进入 DTR模式 后需要监视下行时隙 001;
DTR Blks: bit (2) 的数值为 01, 表示终端监视下行时隙的块周期为 奇数块。
上述情况( 2 )表示终端不能进入 DTR模式,则基站可以向终端发送 PUAN 消息, 该 PUAN消息中:
Ack/Nack Description IE 中有关重传的比特的数值可以为 "1010000...... ", 其中的 0即表示需要重传该比特对应的上行无线块。
且该 PUAN消息中不包含 "DTR信息" 字段组, 以指示不允许终端进入 DTR模式。
上述情况( 3 )表示终端可以进入 DTR模式, 但在进入 DTR模式后需要 重传部分数据, 则基站可以向终端发送 PUAN消息, 该 PUAN消息中:
Ack/Nack Description IE 中有关重传的比特的数值可以为 "1011111...... ", 其中的 0即表示需要重传该比特对应的上行无线块。
CI-DTR : bit ( 1 ) 的数值为 1, 表示终端在载波 2上进入 DTR模式;
TN_PDCH_pair_DTR : bit ( 3) 的数值为 011, 表示终端进入 DTR模式 后需要监视下行时隙 011;
DTR Blks: bit (2) 的数值为 02, 表示终端监视下行时隙的块周期为 偶数块。
基站在将 PUAN消息发送给终端之后, 终端可以对该 PUAN消息进行分 析, 从而决定后续的处理, 下面分别针对不同的情况进行分析:
针对上述情况(1), 终端收到基站发送的 PUAN消息后, 进行解析, 获 知 PUAN消息中包含 "DTR信息" 字段组, 且 CI-DTR: bit (1 )的数值为 0, TN_PDCH_pair_DTR: bit ( 3) 的数值为 001, DTR Blks : bit (2) 的数值 为 01, 此夕卜 Ack/Nack Description IE 中有关重传的比特的数值为 "1111111 "。 则终端立即在载波 1进入 DTR模式, 按照奇数块周期对下行时隙 001 进行监视, 并且不重传任何上行无线块。
针对上述情况(2), 终端收到基站发送的 PUAN消息后, 进行解析, 获 知 PUAN消息中不包含 "DTR信息" 字段组, 且 Ack/Nack Description IE 中有关重传的比特的数值为 "1010000......,,, 则终端不进入 DTR模式, 并 且根据 Ack/Nack Description IE中有关重传的比特重传数值为 0的比特 对应的上行无线块。
针对上述情况(3), 终端收到基站发送的 PUAN消息后, 进行解析, 获 知 PUAN消息中包含 "DTR信息" 字段组, 且 CI— DTR: bit (1 )的数值为 1, TN_PDCH_pair_DTR: bit ( 3) 的数值为 Oil, DTR Blks : bit (2) 的数值 为 02, 此外 Ack/Nack Description IE 中有关重传的比特的数值为 "1011111 "。
则终端立即在载波 2进入 DTR模式, 按照偶数块周期对下行时隙 011 进行监视, 并且根据 Ack/Nack Description IE 中有关重传的比特重传数 值为 0的比特对应的上行无线块。
本实施例中, 具体可以通过如下方式实现上行无线块的重传: 假设基站分配给终端的 USF为 001,若终端按照偶数块周期对下行时隙 011进行监视过程中发现某下行无线块中的 USF为 001, 则表示终端可以在 行无线块, 终端可以通过该方式将未正确接收的上行无线块全部重传至网 络侧设备。
通过上述的方式, 当终端发送的上行无线块中只有少部分上行无线块 没有被基站正确接收到时, 基站可以通知终端进入 DTR模式, 并且让终端 在进入 DTR模式之后再重传未正确接收的上行无线块, 所以若只存在少量 未被正确接收的上行无线块, 终端也能够及时的进入 DTR模式进行重传, 因此能够有效的减少终端的能耗。
下面对本发明实施例的网络侧设备进行描述,请参阅图 4, 本发明网络 侧设备一个实施例包括:
接收单元 401 , 用于接收终端发送的上行无线块; 发送单元 403, 用于当终端发送的上行无线块未全部正确接收, 且未正 确接收的上行无线块的数目小于预置门限值时, 向终端发送进入动态时隙 减少 DTR模式后重传数据的指令;
该进入 DTR模式后重传数据的指令用于指示终端进入 DTR模式之后重 传未正确接收的上行无线块。
本实施例中, 具体的重传过程在实际应用中可以为:
终端对需要监视的下行时隙标识对应的下行无线块进行监视, 当该下 行无线块中包含的 USF与网络侧设备分配给终端的 USF相同时, 则在该下 行时隙对应的上行时隙的后一个上行时隙重传未正确接收的上行无线块, 具体的重传过程为本领域技术人员的公知常识, 此处不做限定。
可选的, 本实施例中, 当终端发送的上行无线块已全部被正确接收时, 发送单元 403还用于向终端发送进入 DTR模式的指令, 该进入 DTR模式的 指令用于指示终端进入 DTR模式之后监视指定下行时隙;
或,
当终端发送的上行无线块未全部正确接收, 且未正确接收的上行无线 块的数目大于或等于预置门限值时, 发送单元 403还用于向终端发送不进 入 DTR模式的指令, 该不进入 DTR模式的指令用于指示终端不进入 DTR模 式, 并继续监视下行时隙。
本实施例中当接收单元 401接收到终端发送的最后一个上行无线块时, 作;
或者,
当接收单元 401从终端接收到的上行无线块中包含请求进入 DTR模式 接收的操作。
本实施例中的网络侧设备在实际应用中可以为分组控制单元, 该分组 控制单元可以集成在基站, 或基站控制器中实现, 也可以独立实现, 具体 此处不作限定。
为便于理解, 下面以一具体应用场景对本发明网络侧设备中各单元之 间的交互过程进行描述:
本实施例中, 接收单元 401 可以在上行信道上接收终端发送的上行无 线块。 判断单元 402判断上行无线块是否都已被正确接收。
本实施例中, 判断单元 402在接收单元 401接收到终端发送的最后一 个上行无线块, 或者是当接收单元 401 从终端接收到的上行无线块中包含 请求进入 DTR模式的指示时执行判断操作。
在数据传输过程中, 终端发送的上行无线块会包含一个 CV, 由于终端 在发送数据之前就能够获知本次 TBF周期一共要发送多少数据, 同时又知 道每个上行无线块的大小, 所以终端能够获知本次 TBF周期需要发送多少 个上行无线块, 每个上行无线块都分配有各自的 CV, 从第一个上行无线块 开始, CV不断减一, 当 CV为 0时, 则表示该上行无线块为本 TBF周期内的 最后一个无线块。
网络侧设备可以分析终端发送的每一个上行无线块, 当发现当前接收 到的上行无线块的 CV为 0时, 则表示接收到终端发送的最后一个上行无线 块, 则可执行判断操作。
或者, 也可以由终端主动请求进入 DTR模式, 则终端会在最后一个上 行无线块中携带请求进入 DTR模式的指示, 网络侧设备在检测到当前接收 的上行无线块中携带请求进入 DTR模式的指示时, 则可执行判断操作。 当判断单元 402确定终端发送的上行无线块都已被正确接收时, 则发 送单元 403可以向终端发送进入 DTR模式的指令, 该进入 DTR模式的指令 用于指示终端进入 DTR模式之后监视指定下行时隙。
本实施例中, 发送单元 403可以通过发送 PUAN消息的方式以实现发送 进入 DTR模式的指令, 具体的:
发送单元 403向终端发送 PUAN消息,该 PUAN消息中指示终端进入 DTR 模式, 以及进入 DTR模式后需要监视的下行时隙。
当判断单元 402确定终端发送的上行无线块未全部被正确接收时, 则 继续判断未正确接收的上行无线块的数目是否小于预置门限值。
需要说明的是, 本实施例中的预置门限值可以根据实际情况或者采用 网络经验值进行确定, 例如可以为终端发送的全部上行无线块数目的 10°/。, 或 20%, 具体此处不作限定。
当判断单元 402确定未正确接收的上行无线块的数目大于或等于预置 门限时, 则表示当前传输质量较差, 则发送单元 403可以向终端发送不进 入 DTR模式的指令, 该不进入 DTR模式的指令用于指示终端不进入 DTR模 式, 并继续监视下行时隙。
本实施例中, 发送单元 403可以通过发送 PUAN消息的方式以实现发送 不进入 DTR模式的指令, 具体的:
发送单元 403向终端发送 PUAN消息, 该 PUAN消息中不携带允许进入 DTR模式的信息。
当判断单元 402确定未正确接收的上行无线块的数目小于预置门限时, 则表示当前传输质量较好, 只有少量上行无线块未被正确接收, 则发送单 元 403可以向终端发送进入 DTR模式后重传数据的指令, 该指令用于指示 终端进入 DTR模式之后重传未正确接收的上行无线块。
本实施例中, 发送单元 403可以通过发送 PUAN消息的方式以实现发送 进入 DTR模式后重传数据的指令, 具体的:
发送单元 403向终端发送 PUAN消息,该 PUAN消息中指示终端进入 DTR 模式, 进入 DTR模式后需要监视的下行时隙以及待重传的上行无线块的标 识。
当终端进入 DTR模式之后, 需要对指定的下行时隙进行监视, 则网络 侧设备在这些下行时隙上的下行无线块中携带与分配给终端的上行链路状 态标记 USF相同的 USF,使得终端可以在该下行时隙对应的上行时隙的后一 个上行时隙重传未正确接收的上行无线块。
本实施例中, 当终端发送完全部上行无线块之后, 若判断单元 402发 现终端发送的上行无线块中只有少部分上行无线块没有正确接收到, 则发 送单元 403可以通知终端进入 DTR模式, 并且让终端在进入 DTR模式之后 再重传未正确接收的上行无线块, 所以若只存在少量未被正确接收的上行 无线块, 终端也能够及时的进入 DTR模式进行重传, 因此能够有效的减少 终端的能耗;
此外, 本实施例中, 判断单元 402 可以在接收到终端的最后一个上行 无线块之后自行开始判断上行无线块是否都已被正确接收, 也可以根据终 端的指示判断上行无线块是否都已被正确接收, 所以能够适应更多种情况, 从而提高方案灵活性。
下面对本发明的终端进行描述,请参阅图 5 , 本发明终端一个实施例包 括: 上行发送单元 501 , 用于向网络侧设备发送上行无线块;
指令接收单元 502 , 用于当上行无线块未全部被网络侧设备正确接收, 且未正确接收的上行无线块的数目小于预置门限值时, 接收网络侧设备发 送的进入动态时隙减少 DTR模式后重传数据的指令;
处理单元 503 ,用于根据进入 DTR模式后重传数据的指令进入 DTR模式 之后重传未正确接收的上行无线块。
本实施例中, 具体的重传过程在实际应用中可以为:
终端对需要监视的下行时隙标识对应的下行无线块进行监视, 当该下 行无线块中包含的 USF与网络侧设备分配给终端的 USF相同时, 则在该下 行时隙对应的上行时隙的后一个上行时隙重传未正确接收的上行无线块, 具体的重传过程为本领域技术人员的公知常识, 此处不做限定。
可选的, 本实施例中, 当上行无线块已全部被正确接收时, 指令接收 单元 502还用于接收网络侧设备发送的进入 DTR模式的指令;
则处理单元 503还用于根据进入 DTR模式的指令进入 DTR模式之后监 视指定下行时隙;
或,
当上行无线块未全部被网络侧设备正确接收, 且未正确接收的上行无 线块的数目大于或等于预置门限值时, 指令接收单元 502还用于接收网络 侧设备发送的不进入 DTR模式的指令;
则处理单元 503还用于根据不进入 DTR模式的指令继续监视下行时隙。 本实施例中, 上行发送单元 501 向网络侧设备发送的最后一个上行无 线块中可以携带请求进入 DTR模式的指示。
为便于理解, 下面以一具体应用场景对本发明终端中各单元之间的交 互过程进行描述:
当进行数据传输时, 上行发送单元 501 可以通过上行信道向网络侧设 备发送上行无线块。
上行发送单元 501 向网络侧设备发送上行无线块之后, 网络侧设备会 判断上行无线块是否都已被正确接收, 若上行无线块未全部被正确接收, 且未正确接收的上行无线块的数目小于预置的门限值时, 则网络侧设备会 向指令接收单元 502发送进入 DTR模式后重传数据的指令。
当指令接收单元 502收到进入 DTR模式后重传数据的指令之后, 立即 进入 DTR模式, 开始监视指定的下行时隙, 并重传未正确接收的上行无线 块。
本实施例中具体的重传过程在实际应用中可以为:
终端对需要监视的下行时隙标识对应的下行无线块进行监视, 当该下 行无线块中包含的 USF与网络侧设备分配给终端的 USF相同时, 则在该下 行时隙对应的上行时隙的后一个上行时隙重传未正确接收的上行无线块。
需要说明的是, 本实施例中, 若上行无线块已全部被正确接收时, 则 指令接收单元 502会从网络侧设备接收到进入 DTR模式的指令, 则处理单 元 503根据该进入 DTR模式的指令进入 DTR模式之后监视指定下行时隙; 若上行无线块未全部被网络侧设备正确接收, 且未正确接收的上行无 线块的数目大于或等于预置门限值时, 则指令接收单元 502会从网络侧设 备接收到不进入 DTR模式的指令, 则处理单元 503根据该不进入 DTR模式 的指令继续监视下行时隙。
本实施例中, 进入 DTR模式后重传数据的指令, 进入 DTR模式的指令 以及不进入 DTR模式的指令都可以通过网络侧设备向指令接收单元 502发 送的 PUAN消息进行实现, 具体的实现方式与前述图 2所示的实施例中描述 的实现方式相同, 此处不再赘述。
本实施例中, 若采用终端主动向网络侧设备请求进入 DTR模式的方案, 则终端还可以当发送最后一个上行无线块时, 在该最后一个上行无线块的 块头或消息体内携带请求进入 DTR模式的指示, 以触发网络侧设备判断上 行无线块是否都已被正确接收。
本实施例中, 当上行发送单元 501 发送完全部上行无线块之后, 若网 络侧设备发现终端发送的上行无线块中只有少部分上行无线块没有正确接 收到, 则处理单元 503可以根据网络侧设备的指示进入 DTR模式, 并且在 进入 DTR模式之后再重传未正确接收的上行无线块, 所以若只存在少量未 被正确接收的上行无线块, 终端也能够及时的进入 DTR模式进行重传, 因 此能够有效的减少终端的能耗。
下面对本发明的终端进行描述,请参阅图 6 , 本发明数据调度系统一个 实施例包括:
网络侧设备 601 , 用于接收终端 602发送的上行无线块, 判断终端 602 发送的上行无线块是否都已被正确接收, 若未全部正确接收, 且未正确接 收的上行无线块的数目小于预置门限值, 则向终端 602发送进入动态时隙 减少 DTR模式后重传数据的指令;
终端 602 , 用于向网络侧设备 601 发送上行无线块, 接收网络侧设备 601发送的进入动态时隙减少 DTR模式后重传数据的指令,根据进入 DTR模 式后重传数据的指令进入 DTR模式之后监视指定下行时隙, 并重传未正确 接收的上行无线块。
本实施例中的网络侧设备 601可参见前述图 4所示的网络侧设备的功 能, 本实施例中的终端 602可参见前述图 5所示的终端的功能, 具体此处 不再赘述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步 骤是可以通过程序来指令相关的硬件完成, 该程序可以存储于一种计算机 可读存储介质中, 上述提到的存储介质可以是只读存储器, 磁盘或光盘等。
以上对本发明所提供的一种数据调度方法及系统以及相关设备进行了 详细介绍, 对于本领域的一般技术人员, 依据本发明实施例的思想, 在具 体实施方式及应用范围上均会有改变之处, 综上所述, 本说明书内容不应 理解为对本发明的限制。

Claims

权 利 要 求
1、 一种数据调度方法, 其特征在于, 包括:
接收终端发送的上行无线块;
判断终端发送的上行无线块是否都已被正确接收, 若未全部正确接收, 且未正确接收的上行无线块的数目小于预置门限值, 则向终端发送进入动 态时隙减少 DTR模式后重传数据的指令;
所述进入 DTR模式后重传数据的指令用于指示所述终端进入 DTR模 式之后重传所述未正确接收的上行无线块。
2、 根据权利要求 1 所述的方法, 其特征在于, 所述向终端发送进入 DTR模式后重传数据的指令包括:
向终端发送分组上行链路应答 /否定应答 PUAN消息,所述 PUAN消息 中包含需要监视的下行时隙标识以及待重传的上行无线块的标识。
3、 根据权利要求 1所述的方法, 其特征在于,
若终端发送的上行无线块已全部被正确接收, 则向所述终端发送进入 DTR模式的指令, 所述进入 DTR模式的指令用于指示所述终端进入 DTR 模式之后监视指定下行时隙;
或,
若终端发送的上行无线块未全部正确接收, 且未正确接收的上行无线 块的数目大于或等于预置门限值, 则向所述终端发送不进入 DTR模式的指 令, 所述不进入 DTR模式的指令用于指示所述终端继续监视下行时隙。
4、 根据权利要求 3所述的方法, 其特征在于, 所述向所述终端发送进 入 DTR模式的指令包括:
向终端发送 PUAN消息, 所述 PUAN消息中包含需要监视的下行时隙 标识;
所述向所述终端发送不进入 DTR模式的指令包括:
向终端发送 PUAN消息, 所述 PUAN消息中不携带允许进入 DTR模 式的信息。
5、 根据权利要求 1至 4中任一项所述的方法, 其特征在于, 所述方法 还包括:
当接收到终端发送的最后一个上行无线块时, 执行所述判断终端发送 的上行无线块是否都已被正确接收的步骤;
或,
当从终端接收到的上行无线块中包含请求进入 DTR模式的指示时, 执
6、 根据权利要求 2所述的方法, 其特征在于, 所述向终端发送 PUAN 消息之后包括:
在所述需要监视的下行时隙标识对应的下行无线块中携带与分配给所 述终端的上行链路状态标记 USF相同的 USF, 使得所述终端在所述下行时 隙对应的上行时隙的后一个上行时隙重传所述未正确接收的上行无线块。
7、 一种数据调度方法, 其特征在于, 包括:
向网络侧设备发送上行无线块;
当所述上行无线块未全部被网络侧设备正确接收, 且未正确接收的上 行无线块的数目小于预置门限值时, 接收网络侧设备发送的进入动态时隙 减少 DTR模式后重传数据的指令;
根据所述进入 DTR模式后重传数据的指令进入 DTR模式之后重传所 述未正确接收的上行无线块。
8、 根据权利要求 7所述的方法, 其特征在于, 所述接收网络侧设备发 送的进入 DTR模式后重传数据的指令包括:
PUAN 消息中包含需要监视的下行时隙标识以及待重传的上行无线块的标 识。
9、 根据权利要求 7所述的方法, 其特征在于, 所述方法还包括: 当所述上行无线块已全部被正确接收时, 则接收网络侧设备发送的进 入 DTR模式的指令, 根据所述进入 DTR模式的指令进入 DTR模式之后监 视指定下行时隙;
或,
当所述上行无线块未全部被网络侧设备正确接收, 且未正确接收的上 行无线块的数目大于或等于预置门限值时, 则接收网络侧设备发送的不进 入 DTR模式的指令, 根据所述不进入 DTR模式的指令继续监视下行时隙。
10、 根据权利要求 9所述的方法, 其特征在于, 所述接收网络侧设备 发送的进入 DTR模式的指令包括: 接收网络侧设备发送的 PUAN消息, 所述 PUAN消息中包含需要监视 的下行时隙标识;
所述接收网络侧设备发送的不进入 DTR模式的指令包括:
接收网络侧设备发送的 PUAN消息, 所述 PUAN消息中不携带允许进 入 DTR模式的信息。
11、 根据权利要求 7至 10中任一项所述的方法, 其特征在于, 所述方 法还包括:
当发送最后一个上行无线块时, 在所述最后一个上行无线块的块头或 消息体内携带请求进入 DTR模式的指示。
12、 根据权利要求 7至 10中任一项所述的方法, 其特征在于, 所述根 据所述进入 DTR模式后重传数据的指令进入 DTR模式之后重传所述未正 确接收的上行无线块包括:
对所述需要监视的下行时隙标识对应的下行无线块进行监视; 当所述下行无线块中包含的上行链路状态标记 USF与网络侧设备分配 给终端的 USF相同时, 则在所述下行时隙对应的上行时隙的后一个上行时 隙重传所述未正确接收的上行无线块。
13、 一种网络侧设备, 其特征在于, 包括:
接收单元, 用于接收终端发送的上行无线块; 发送单元, 用于当终端发送的上行无线块未全部正确接收, 且未正确 接收的上行无线块的数目小于预置门限值时, 向终端发送进入动态时隙减 少 DTR模式后重传数据的指令;
所述进入 DTR模式后重传数据的指令用于指示所述终端进入 DTR模 式之后重传所述未正确接收的上行无线块。
14、 根据权利要求 13所述的网络侧设备, 其特征在于,
当终端发送的上行无线块已全部被正确接收时, 所述发送单元还用于 向所述终端发送进入 DTR模式的指令, 所述进入 DTR模式的指令用于指 示所述终端进入 DTR模式之后监视指定下行时隙;
或,
当终端发送的上行无线块未全部正确接收, 且未正确接收的上行无线 块的数目大于或等于预置门限值时, 所述发送单元还用于向所述终端发送 不进入 DTR模式的指令, 所述不进入 DTR模式的指令用于指示所述终端 继续监视下行时隙。
15、 根据权利要求 13或 14所述的网络侧设备, 其特征在于, 当所述 接收单元接收到终端发送的最后一个上行无线块时, 所述判断单元执行所 述判断终端发送的上行无线块是否都已被正确接收的操作;
或者,
当所述接收单元从终端接收到的上行无线块中包含请求进入 DTR模式 正确接收的操作。
16、 一种终端, 其特征在于, 包括:
上行发送单元, 用于向网络侧设备发送上行无线块;
指令接收单元, 用于当所述上行无线块未全部被网络侧设备正确接收, 且未正确接收的上行无线块的数目小于预置门限值时, 接收网络侧设备发 送的进入动态时隙减少 DTR模式后重传数据的指令;
处理单元, 用于根据所述进入 DTR模式后重传数据的指令进入 DTR 模式之后重传所述未正确接收的上行无线块。
17、 根据权利要求 16所述的终端, 其特征在于,
当所述上行无线块已全部被正确接收时, 所述指令接收单元还用于接 收网络侧设备发送的进入 DTR模式的指令, 所述处理单元还用于根据所述 进入 DTR模式的指令进入 DTR模式之后监视指定下行时隙;
或,
当所述上行无线块未全部被网络侧设备正确接收, 且未正确接收的上 行无线块的数目大于或等于预置门限值时, 所述指令接收单元还用于接收 网络侧设备发送的不进入 DTR模式的指令, 所述处理单元还用于根据所述 不进入 DTR模式的指令继续监视下行时隙。
18、 根据权利要求 16或 17所述的终端, 其特征在于,
所述上行发送单元向网络侧设备发送的最后一个上行无线块中携带请求进 入 DTR模式的指示。
PCT/CN2011/081045 2010-10-20 2011-10-20 一种数据调度方法及系统以及相关设备 WO2012051954A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010516264.4A CN102457975B (zh) 2010-10-20 2010-10-20 一种数据调度方法及系统以及相关设备
CN201010516264.4 2010-10-20

Publications (1)

Publication Number Publication Date
WO2012051954A1 true WO2012051954A1 (zh) 2012-04-26

Family

ID=45974709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081045 WO2012051954A1 (zh) 2010-10-20 2011-10-20 一种数据调度方法及系统以及相关设备

Country Status (2)

Country Link
CN (1) CN102457975B (zh)
WO (1) WO2012051954A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107409355A (zh) * 2015-04-14 2017-11-28 华为技术有限公司 一种监听下行控制信息的方法、装置和系统
WO2018072180A1 (zh) * 2016-10-20 2018-04-26 广东欧珀移动通信有限公司 传输上行数据的方法、网络侧设备和终端设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020087231A1 (zh) * 2018-10-29 2020-05-07 Oppo广东移动通信有限公司 一种降低终端能耗的方法及装置、终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101175021A (zh) * 2006-11-01 2008-05-07 华为技术有限公司 分组业务中上行临时块流的处理方法及相关系统和设备
CN101568168A (zh) * 2008-04-22 2009-10-28 华为技术有限公司 分组不连续传输方法及装置
CN101606412A (zh) * 2007-02-09 2009-12-16 艾利森电话股份有限公司 用于区分控制消息与语音净荷的方法和设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092545A1 (en) * 2009-02-11 2010-08-19 Nokia Corporation Method and apparatus for reducing power consumption during data transfer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101175021A (zh) * 2006-11-01 2008-05-07 华为技术有限公司 分组业务中上行临时块流的处理方法及相关系统和设备
CN101606412A (zh) * 2007-02-09 2009-12-16 艾利森电话股份有限公司 用于区分控制消息与语音净荷的方法和设备
CN101568168A (zh) * 2008-04-22 2009-10-28 华为技术有限公司 分组不连续传输方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107409355A (zh) * 2015-04-14 2017-11-28 华为技术有限公司 一种监听下行控制信息的方法、装置和系统
WO2018072180A1 (zh) * 2016-10-20 2018-04-26 广东欧珀移动通信有限公司 传输上行数据的方法、网络侧设备和终端设备

Also Published As

Publication number Publication date
CN102457975A (zh) 2012-05-16
CN102457975B (zh) 2014-06-04

Similar Documents

Publication Publication Date Title
US20210006968A1 (en) System and method for user equipment identification and communications
WO2018171540A1 (zh) 信息传输的方法、装置、系统及存储介质
EP2166691B1 (en) Methods and apparatuses for improving buffer status triggering mechanism in wireless communictions system
US8830944B1 (en) Method for acknowledging RLC data packet transmission and RLC AM entity sender
EP2521323B1 (en) Information feedback method and device
US10660082B2 (en) GSM evolution packet data traffic channel resource transmission management—flexible downlink allocation technique
TWI538436B (zh) A method of determining the location of the response information for the hybrid automatic retransmission request (HARQ) in the physical uplink control channel (PUCCH)
WO2012083624A1 (zh) 一种半静态调度业务资源释放方法及系统
CN104579602A (zh) 一种lte中的广播组播重传方法
WO2013181808A1 (zh) 一种消息的重传方法及终端、基站
TW201519680A (zh) 用於傳輸控制資訊的方法和設備
WO2020143755A1 (zh) 控制信息发送方法、接收方法、终端及网络侧设备
EP2925044A1 (en) Data transmission method, forwarding method, reception method, device, and system
CN106470467B (zh) 一种监听控制方法、终端、基站和系统
WO2020143661A1 (zh) 用于组播通信的harq反馈方法及装置、存储介质、终端
WO2008034374A1 (fr) Procédé, système et appareil de transmission de commande de liaison radio
WO2008135238A1 (en) Robust acknowledgement handling
EP3402107A1 (en) Transmission optimization method and apparatus for internet of things, and device
WO2012051954A1 (zh) 一种数据调度方法及系统以及相关设备
WO2013120318A1 (zh) 一种子帧捆绑时实现上行子帧调度的方法和系统
CN105681001B (zh) 一种实现rlc层重传的方法和装置
WO2014000475A1 (zh) 一种上行数据传输方法及通信设备、移动台
WO2022161608A1 (en) Dynamic selection of transmission scheme
WO2015018366A1 (zh) 调度方法及装置
WO2017117800A1 (zh) 数据发送和接收装置、方法以及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11833860

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11833860

Country of ref document: EP

Kind code of ref document: A1