WO2014000475A1 - 一种上行数据传输方法及通信设备、移动台 - Google Patents

一种上行数据传输方法及通信设备、移动台 Download PDF

Info

Publication number
WO2014000475A1
WO2014000475A1 PCT/CN2013/073103 CN2013073103W WO2014000475A1 WO 2014000475 A1 WO2014000475 A1 WO 2014000475A1 CN 2013073103 W CN2013073103 W CN 2013073103W WO 2014000475 A1 WO2014000475 A1 WO 2014000475A1
Authority
WO
WIPO (PCT)
Prior art keywords
data block
mobile station
message
data
communication device
Prior art date
Application number
PCT/CN2013/073103
Other languages
English (en)
French (fr)
Inventor
张凡
陈亮
房明
舒兵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2014000475A1 publication Critical patent/WO2014000475A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems

Definitions

  • the invention relates to an uplink data transmission method, a communication device and a mobile station.
  • the application is submitted to the Chinese Patent Office on June 27, 2012, the application number is 201210215569.0, and the invention name is "an uplink data transmission method and communication equipment, mobile station" in China. Priority of the patent application, the entire contents of which is incorporated herein by reference.
  • the present invention relates to the field of communications technologies, and in particular, to an uplink data transmission method, a communication device, and a mobile station.
  • Data Umt, LLC data transmission unit A physical connection consisting of PDCH (Packet Data Channel), which can be composed of one or more PDCHs, and since the TBF is temporary, that is, if there is no new data transmission, Release the TBF immediately; if there is new data to transfer, you will need to re-establish the TBF.
  • PDCH Packet Data Channel
  • the MS wants to send an uplink RLC data block to the network side, such as a Basic Service Set (BSS), it needs to establish an uplink TBF through the acket access procedure; if the network side wants to go to the MS To send a downlink RLC data block, you need to establish a downlink TBF first.
  • the establishment of the uplink TBF can use the short access, that is, the allocation of fixed uplink transmission resources; the one-step access, using the method of dynamically allocating resources; the two-phase packet access, the fixed allocation resource method can also be used.
  • a dynamic allocation method can be used.
  • the network side immediately returns the message IMMEDIATE ASSIGNMENT to the MS.
  • the TFI and the allocated fixed resources are allocated for the TBF corresponding to the MS.
  • the MS can transmit data blocks on the allocated resources. After the data block is sent, the allocated resources need to be released, and the release of the uplink resources is implemented by the "countdown" process. That is, the MS has a Countdown Value (CV) in the transmitted RLC uplink data block to indicate the data block that has not been transmitted in the current uplink TBF.
  • CV Countdown Value
  • PACKET UPLINK ACK/NACK uplink packet acknowledgment/non-acknowledgement message
  • the MS After receiving the uplink packet acknowledgment message, the MS will transmit the packet control acknowledgement message PACKET CONTROL ACKNOWLEDGE, and release the resources such as TBF and TFI; and the temporary data block stream identifier occupied by the uplink TBF after the network side receives the packet control acknowledgement message.
  • the TFI resource is also released and can be reassigned to other MSs.
  • the TFI is allocated to the TBF when the TBF is established.
  • the MS and the network side need to simultaneously release the TFI and other resources. Therefore, during the resource release process, the data block is sent by using the countdown, and the last one is sent. After the data block, the network side needs to receive the packet control acknowledgement message PACKET CONTROL ACKNOWLEDGE sent by the MS to release resources such as TFI, so that the control message is more in the data transmission process, and the transmission efficiency of the valid data of the data service is reduced.
  • an embodiment of the present invention provides an uplink data transmission method including:
  • the communication device allocates a fixed resource to the MS, and returns an assignment message indicating that the temporary data block flow indication field is blanked to the mobile station, where the assignment message includes the allocated fixed resource;
  • An uplink data transmission method includes:
  • a communication device comprising:
  • An allocation module configured to allocate a fixed resource to the mobile station, and return an assignment message to the mobile station that the temporary data block flow indication field is blanked, where the assignment message includes the allocated fixed resource;
  • a data receiving module configured to receive at least one data block that is sent by the mobile station on the allocated fixed resource
  • a determining module configured to determine whether the at least one data block sent by the mobile station is all received correctly
  • a resource release module configured to: when the determining module determines that the at least one data block is all received correctly, releasing the temporary data block stream;
  • a feedback module configured to return a retransmission message to the mobile station when it is determined that the at least one data block of the determining module is incorrectly received
  • a retransmission data receiving module configured to receive a data block that is retransmitted by the mobile station according to the retransmission message.
  • a mobile station comprising:
  • a resource receiving module configured to receive an assignment message sent by the communication device, where the assignment message includes a fixed resource allocated to the mobile station, and the temporary data block flow indication field in the assignment message is blanked;
  • a data sending module configured to send at least one data block to the communication device on the allocated fixed resource
  • a resource release module configured to release the temporary data block stream when the at least one data block is all correctly received
  • a retransmission data module configured to: when the at least one data block is received incorrectly, receive a retransmission message returned by the communication device, and retransmit the data block according to the retransmission message.
  • the uplink data transmission method and the communication device and the mobile station use the fixed resource allocation manner in the embodiment of the present invention to allocate a fixed resource to the MS, but do not allocate a TFI for identifying the MS, so that when the data block is all received correctly, the TBF is directly released. Thereby improving the effective data transmission efficiency of the data service.
  • the uplink data transmission method and the communication device and the mobile station embodying the present invention since each data block sent by the MS carries the TLLI, it is possible to determine whether an access collision occurs according to the TLLI of each data block, and when there is no conflict After the communication device correctly receives all the data blocks, it directly returns the MS-ACK message to release the TBF. The communication device does not need to return an ACK message when receiving the first data block, and then returns after receiving the complete data block. An ACK message, thereby reducing control command messages during data transmission, and improving data transmission efficiency.
  • FIG. 1 is a flow chart of a first embodiment of an uplink data transmission method of the present invention
  • FIG. 2 is a flow chart of a second embodiment of an uplink data transmission method of the present invention
  • FIG. 4 is a flow chart of a fourth embodiment of an uplink data transmission method of the present invention.
  • Figure 5 is a functional block diagram of an embodiment of a communication device of the present invention
  • FIG. 6 is a functional block diagram of an embodiment of a mobile station of the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. example. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • the uplink data transmission method in the embodiment of the present invention allocates a fixed resource to the MS by using a fixed resource allocation manner, and does not allocate a TFI, but distinguishes the user by using the TLLI carried in each data block, that is, when the MS sends the data block.
  • the fixed resource allocation is completed.
  • the TBF resource can be released, and the TBF resource is not required to be simultaneously released by the MS and the network side. Therefore, the counting process is not required, and The network side returns a packet control acknowledgement message, thereby reducing control messages during data transmission and improving data transmission efficiency.
  • FIG. 1 a flowchart of a first embodiment of an uplink data transmission method according to the present invention is shown.
  • the implementation process of the uplink data transmission method in this embodiment is as follows: 511.
  • the communications device allocates a fixed resource to the MS, and returns an assignment message that the TFI is blanked to the MS, where the assignment message includes the allocated fixed resource.
  • the MS needs to calculate the required number of resource blocks according to the state of the radio link and the number of data blocks to be sent according to the fixed coding mode CS-1 or the initial default coding mode, thereby determining the uplink access mode.
  • the MS uses the two-step access mode for uplink access.
  • the MS uses the default minimum priority.
  • the access mode performs uplink access.
  • the assignment message returned by the communication device to the MS includes the allocated fixed resource, and preferably, the access frame number and the random number of the MS.
  • the communication device is a device that can communicate with the MS, such as a network element, a subscriber unit, a server, and the like.
  • the specific implementation process in the step S11 is as follows:
  • the packet channel request message PACKET CHANNEL REQUEST sent by the MS is received, and the packet channel request message includes the number of resource blocks required for transmitting the data block and the extended random number.
  • the MS generates a random number randomly generated when the packet channel request message PACKET CHANNEL REQUEST is generated.
  • the packet channel request message includes a priority indication field. Since the short access mode is the default lowest priority, the MS extends the priority indication field. If the number is random, the number of random numbers is increased, and the value of the generated random number is larger, which reduces the probability of generating the same random number, thereby reducing the probability of access collision.
  • Step S14 determines whether all data blocks are correctly received. If all data blocks are received correctly, then Step S14 is performed, otherwise step S15 is performed.
  • the communication device receives each data block, it determines whether each data block is transmitted incorrectly or is decoded incorrectly, and records the reception status of each data block, for example, receiving the correct or receiving error, the serial number of the data block. And if there is no transmission error or compilation error, that is, each data block is received correctly, step S14 is performed, otherwise step S15 is performed.
  • step S11 release TBF.
  • the communication device since the TFI is not allocated in step S11, the communication device will directly release the TBF when all the data blocks are correctly received.
  • the TBF when the short access mode is used, when the communication device determines that each data block is correctly received, the TBF is directly released, and an ACK message is returned to the MS while releasing the TBF, and the ACK message carries the foregoing TLLI.
  • the TBF when the two-step access mode is used, when the communication device determines that each data block is correctly received, the TBF is directly released, and there is no need to return an ACK message to the MS.
  • the countdown process is not required, but the TBF is directly released, thereby simplifying the release process and improving data transmission efficiency.
  • the communication device determines in step S13 that at least one of the received data blocks is incorrectly received.
  • the ALLOCATION_BITMAP_LENGTH in the retransmission message is set according to the number of data blocks sent by the MS, that is, the retransmission message includes information about each block received, for example, each data block is received correctly. / Incorrect reception.
  • the retransmission message further includes a retransmission resource block and a retransmission coding scheme.
  • the retransmission message can be up to 67 bits and can carry retransmission information of two users.
  • the retransmission message may further include the same TLLI as the TLLI carried by the received data block.
  • the MS performs coding according to the retransmission message according to the retransmission coding scheme, and retransmits the retransmission resource block. Receive incorrect data blocks.
  • the communication device receives the retransmitted data block, it also determines whether the received retransmitted data block is correct. If it is correct, it returns ACK (without carrying TLLI) and releases the TBF; otherwise, it returns to the retransmission again. The message (without TLLI) is used for data retransmission.
  • the uplink data transmission method of the embodiment is implemented, and the fixed resource is allocated to the MS by using a fixed resource allocation manner, but the TFI is not allocated, and the MS is identified by the TLLI, and the allocated data is directly released after all the data blocks are correctly received.
  • Fixed resources That is, since the TFI is not allocated when the TBF is established in this embodiment, the MS does not need to release resources simultaneously with the network side. Therefore, when the communication device correctly receives all the data blocks, the allocated fixed resources are directly released, and thus The resources need to be counted down to release the resources, thereby reducing the control messages in the data transmission process and improving the data transmission efficiency.
  • the network side needs to return an ACK/NACK message to the MS twice after receiving the data block carrying the TLLI for the first time, and after all the data is received, so that the control message is compared during the data transmission process. More, reducing the efficiency of data transmission of valid data.
  • the present invention also provides a second embodiment of the uplink data transmission method.
  • the uplink data transmission method in this embodiment may further include the following steps:
  • each data block carries a TLLI that uniquely identifies the MS that sends the data block.
  • the communication device when the communication device receives the data block carrying the TLLI for the first time, it identifies which user the fixed resource is allocated according to the TLLI of the data block, but does not return the ACK/NACK message, but continues to receive the subsequent transmission of the MS. Both carry TLLI data blocks.
  • step S131 Determine, according to the TLLI of each data block, whether an access conflict occurs. If an access conflict occurs, step S13 is performed; otherwise, step S151 is performed. In a specific implementation, it is determined whether the TLLI of the first received data block is the same as the TLLI of each of the subsequently received data blocks. If they are the same, no access conflict occurs.
  • step S13 it is further determined that all the data blocks are correctly received; otherwise, That is, if the TLLI carried by a subsequently received data block is different from the TLLI of the first received data block, an access collision occurs, and it is determined that each data block is not correctly received, and it is not necessary to decode the data block or determine whether it is A transmission error or the like is performed, and after all the data blocks have been received, step S151 is performed.
  • step S131 it can be determined whether the access conflict occurs by comparing whether the TLLI of the received data block is the same.
  • step S13 it can be determined whether the data block is correctly received by determining whether the data block is transmitted or decoded incorrectly. And it can be further determined after step S131 that the data block reception is correct.
  • a retransmission message carrying the TLLI In the specific implementation, the premise of performing this step is that the data is received incorrectly, that is, the TLLI of each subsequent data block is the same as the TLLI of the first data block, but at least one data block is transmitted with an error/decoding error; or an access conflict occurs. That is, the TLLI of at least one of the subsequent data blocks is different from the TLLI of the first data block.
  • the embodiment further includes a step S16 which is the same as the step S16 of the above embodiment, that is, receiving the retransmitted data block.
  • the communication device when it is determined that all the data blocks are correctly received, the communication device returns an ACK message including the TLLI to the MS, or all data is required when it is determined that an access conflict occurs or each data block is not completely received. After the block is received, it returns a retransmission message. It does not need to return an ACK message to the MS when the data block is received for the first time, and then returns an ACK message at the end, that is, there is no need to return two ACK messages, thereby further reducing the data. Control messages during transmission improve efficient data transmission efficiency.
  • the ACK message including the TLLI is used to inform the MS to release the uplink TBF, so that after receiving the ACK message, the MS compares the TLLI in the ACK message with its own TLLI. If the same, the communication device receives the same.
  • the data block is sent by the MS, that is, no access conflict occurs, and the MS is connected. After receiving the ACK message, the allocated fixed resource is directly released; otherwise, the data block received by the communication device is not sent by the MS, but is sent by another MS, and the data transmission is unsuccessful.
  • the uplink transmission data method of this embodiment may further include the following steps: in the mobile station, according to the retransmission, in order to prevent the data transmission from being unsuccessful, but the data transmission has been unsuccessful, but the user continues to occupy the network resources.
  • the maximum number of retransmissions is dynamically adjusted according to the state of the uplink wireless link.
  • the retransmission message includes a maximum number of retransmissions. The premise of performing this step is that it is determined in step S13 that the data block sent by the MS is incorrectly received or an access conflict occurs.
  • the communication device monitors the status of the uplink radio link in real time, and obtains a corresponding status report of the uplink radio link, etc., thereby dynamically adjusting the number of times the retransmission message is returned to the mobile station according to the state of the uplink radio link. That is, the maximum number of retransmissions is dynamically adjusted. For example, when the quality of the uplink radio link is good, the maximum number of transmissions is small. When the quality of the uplink radio link is poor, the maximum number of retransmissions is appropriately increased to avoid a certain user. Continue to occupy network resources, further improve the efficiency of effective data transmission, and improve channel utilization.
  • the maximum number of retransmissions can be set to 2, that is, when the data block retransmitted by the mobile station according to the first feedback retransmission message is still received incorrectly,
  • the communication device can also send a retransmission message. If the retransmitted data block is still received correctly, the data transmission is successful. If the reception is still incorrect, the retransmission message is sent, that is, the data block is not retransmitted, so that the data transmission is performed.
  • the probability of success is 93.06%; if the bit error rate is 20%, the maximum number of retransmissions can be set to 3, and the retransmission message can be sent twice to the mobile station, and the data transmission success rate is 76.16%.
  • the uplink data transmission method in this embodiment specifically includes the following steps:
  • the MS receives an assignment message sent by the communications device, where the assignment message includes a fixed resource allocated to the mobile station, and the TFI field in the assignment message is blank.
  • the MS first calculates the required number of resource blocks according to the state of the radio link and the number of data blocks to be transmitted according to the fixed coding mode CS-1, or the initial default coding mode, thereby confirming the uplink access party. If the number of required resource blocks is greater than eight, the two-step access mode will be used for uplink access; if the required resource block data is less than or equal to eight, the shortest connection with the lowest priority will be used. Incoming mode for uplink access.
  • the assignment message includes a fixed resource allocated by the communication device according to the required number of resource blocks, an access frame number of the MS, and a random number.
  • step S31 when the short access mode is used, the specific implementation process of the step S31 is as follows:
  • a packet channel request message is transmitted to the communication device, the packet channel request message including the expanded random number and the number of resource blocks required to transmit the data block.
  • the short access mode defaults to the lowest priority. Therefore, the MS expands the priority indication field in the generated packet channel request message to a random number, and increases the random number bit, thereby correspondingly generating the random number. The value of the value is larger, and the probability of generating the same random number is reduced, thereby reducing the probability of access collision.
  • the communication device After receiving the packet channel request message, the communication device immediately allocates a fixed resource to the MS according to the required number of resource blocks, and returns an immediate assignment message that the TFI field is blanked, and the immediate assignment message further includes an access frame of the MS. Number, the above-mentioned extended random number, and the fixed resource allocated.
  • the allocated fixed resource is determined to be allocated to the MS according to the extended random number and the access frame number in the assignment message. Otherwise, the MS may resend the packet channel request message to the communication device to re-establish the TBF.
  • the MS sends at least one data block to the communication device on the allocated fixed resource.
  • the MS first determines whether an access conflict occurs according to the TLLI (in the short access mode) or the TLLI in the packet uplink assignment message (in the two-step access mode) in the ACK message returned by the communication device, if not, if not, The access conflict, the MS sends at least one data block to the communication device according to the fixed resource allocated by the communication device in the assignment message; if an access conflict occurs, the data transmission fails.
  • the timer is started to be timed immediately after the data block is transmitted.
  • the MS may resend the packet channel request to establish a TBF.
  • the TBF is released.
  • communication When the device receives the data block, it will judge whether the data block is all received correctly, that is, whether it is transmitted incorrectly or decoded error, etc., and records the receiving status of each data block, such as receiving the correct or receiving error, the serial number of the data block, etc. .
  • step S33 when the short access mode is used, and the communication device correctly receives the data block sent by the MS, the specific implementation process of the step S33 is as follows:
  • the ACK message carrying the TLLI.
  • step S33 when the two-step access mode is used, and the communication device correctly receives the data block sent by the MS, the specific implementation process of the step S33 is as follows:
  • the timer continues, and the TBF is released until the timing reaches the preset time.
  • the retransmission message includes a receiving condition of each data block, a retransmission coding scheme, a retransmission resource block, and the like, that is, the communication device indicates the data reception status and the retransmission resource block by using the retransmission message, and the MS may Which data blocks are obtained, and the retransmitted resource blocks, etc., are directly encoded according to the retransmission coding scheme, and the retransmission resource block retransmission communication device receives the incorrect data block, thereby improving the data transmission efficiency.
  • the retransmission message when the short-access mode is used, the retransmission message carries the TLLI, and the step S34 is specifically implemented as follows: determining whether the TLLI in the retransmission message is the same as the TLLI of the MS itself. And if yes, retransmitting the data block according to the retransmission message; if not, resending the packet channel request message to the communication device.
  • the timeout is stopped after receiving the retransmission message, and the retransmission message is coded according to the retransmission message, and retransmitted by retransmission resource block. Incorrect data block; and when the data block is retransmitted, the timer starts again, and the timer stops counting until the retransmission message is received again or the timer reaches the preset time.
  • the uplink data transmission method in the embodiment of the present invention adopts a method of allocating fixed resources by
  • the MS allocates a fixed resource, but does not allocate the TFI, but identifies the MS through the TLLI, and when the communication device correctly receives all the data blocks, the MS directly releases the allocated fixed resource after receiving the ACK message returned by the communication device, or after the timing is reached. Directly release the allocated fixed resources. That is, since the TFI is not allocated when the TBF is established in this embodiment, the MS does not need to release resources simultaneously with the network side. Therefore, the allocated fixed resources can be directly released, thereby eliminating the need for counting down, thereby reducing data transmission. Control messages to improve data transfer efficiency.
  • the uplink data transmission method in this embodiment further includes the following steps:
  • the communication device When all the data is received correctly, the ACK message carrying the same TLLI returned by the communication device is received.
  • the communication device receives each data block sent by the MS, it is required to determine whether an access conflict occurs according to the TLLI of the data block, and determine whether each data block is received correctly, when no access conflict occurs and all receptions are correct. The communication device will return the MS - an ACK message carrying the TLLI.
  • step S333 Determine whether the TLLI in the ACK message is the same as the TLLI of the MS itself. If yes, execute step S333 to release the TBF, otherwise resend the packet channel request message.
  • the uplink data transmission method in this embodiment further includes the following steps:
  • the MS directly occupies resources.
  • the communication device After the data is sent by the MS, the communication device returns a corresponding ACK message or a retransmission message, thereby avoiding returning two ACK/NACK messages, that is, further reducing control messages during data transmission. , further improve the efficiency of small data transmission.
  • the embodiment of the present invention further provides a communication device, a mobile station, and an uplink data transmission system.
  • the communication device in the embodiment of the present invention will be described below with reference to FIGS. 5 and 6.
  • the mobile station and the uplink data transmission system are described in detail.
  • FIG. 5 is a functional block diagram of an embodiment of a communication device according to an embodiment of the present invention.
  • the specific implementation process of the communication device 1 of this embodiment is as follows:
  • the allocation module 11 is configured to allocate a fixed resource to the MS, and return an assignment message that the TFI field of the fixed resource is blanked to the MS.
  • the allocation module 11 specifically includes: a request receiving submodule and a resource allocation submodule .
  • the request receiving sub-module is configured to receive a packet channel request message sent by the MS.
  • the coding mode calculates the number of resource blocks required to determine the uplink access mode. If the number of required resource blocks is less than or equal to 8, the MS will use the short access mode for uplink access.
  • the uplink access is performed by using the two-step access mode.
  • the packet channel request message received by the request receiving submodule includes the MS.
  • the number of required resource blocks and the extended random number are calculated.
  • the priority indication field in the generated packet channel request message is expanded to a random number; the resource allocation sub-module is used according to the required number of resource blocks.
  • the assignment message includes the allocated fixed resource, the access frame number of the MS, and the random number, and when the short access mode is used, the random number is an extended random number;
  • the data receiving module 12 is configured to receive at least one data block sent by the MS on the allocated fixed resource
  • the determining module 13 is configured to determine whether the at least one data block sent by the MS is all received correctly. In a specific implementation, when the data receiving module 12 receives the data block, it determines whether each data block is transmitted or is incorrectly decoded. Waiting and recording the reception status of each data block, such as receiving the correct or receiving error, the serial number of the data block, etc., if there is no transmission error or compilation error, that is, each data block is received correctly;
  • the resource release module 14 is configured to release the TBF when the determining module 13 determines that all the data blocks are correctly received. In the specific implementation, since no TFI is allocated, when all the data blocks are correctly received, the data release module 14 is directly released. TBF, no more counting down process;
  • the resource release module 15 of this embodiment is specifically implemented as follows:
  • a second feedback sub-module configured to: when the determining module 13 determines that all the data blocks are correctly received, return an ACK message carrying the TLLI to the MS;
  • the resource release submodule is configured to directly release the TBF while the second feedback submodule returns an ACK message to the MS.
  • the resource release module 14 when the two-step access mode is used, and the determining module 13 determines that all the data is correctly received, the resource release module 14 directly releases the TBF, and does not need to return an ACK message;
  • the feedback module 15 is configured to: when the determining module 13 determines that at least one of the data blocks sent by the MS is incorrectly received, return a retransmission message to the MS; in a specific implementation, when determining that at least one data block is transmitted incorrectly or is decoded incorrectly
  • the feedback module 16 returns a retransmission message to the MS, and the ALLOCATION_BITMAP_LENGTH of the retransmission message is set according to the number of data blocks sent by the MS, that is, the retransmission message includes Received individual blocks
  • the information such as the correct/incorrect reception of each data block or the correct/incorrect decoding, etc.; the retransmission message is up to 67 bits, and can carry retransmission information of two users; in a specific embodiment, when In the short access mode, the retransmission message further includes the foregoing TLLI;
  • the retransmission data receiving module 16 is configured to receive a data block that is retransmitted by the MS according to the retransmission message.
  • the retransmission message includes a retransmission coding scheme, a retransmission resource block, and each data block receiving condition.
  • the retransmission data block module 16 will receive an incorrectly received data block that the MS retransmits based on the reception of each data block in the retransmitted message.
  • the determining module 13 further determines whether the received retransmitted data blocks are all correctly received, and returns ACK if all receiving is correct (not carrying TLLI) and release the TBF; otherwise return the retransmission message again (without carrying TLLI) for data retransmission.
  • the uplink data transmission method of the embodiment is implemented, and the fixed resource is allocated to the MS by using a fixed resource allocation manner, but the TFI is not allocated, and the MS is identified by the TLLI, and the allocated data is directly released after all the data blocks are correctly received.
  • Fixed resources That is, since the TFI is not allocated when the TBF is established in this embodiment, the MS does not need to release resources simultaneously with the network side. Therefore, when the communication device correctly receives all the data blocks, the allocated fixed resources are directly released, and thus The resources need to be counted down to release the resources, thereby reducing the control messages in the data transmission process and improving the data transmission efficiency.
  • the present invention further provides a further embodiment of the communication device, in which the communication device of the embodiment also includes the distribution module 11 to the retransmission data receiving module in the foregoing embodiment. 17 .
  • the communication device of the embodiment also includes the distribution module 11 to the retransmission data receiving module in the foregoing embodiment. 17 .
  • each data block received by the data receiving module 13 in this embodiment carries a TLLI that uniquely identifies the MS that sends the data block, and receives the first time.
  • the ACK message carrying the TLLI is not returned to the MS;
  • the determining module 14 in the embodiment determines whether an access conflict occurs according to the TLLI of each data block when determining whether the data block is received correctly.
  • the determining module 14 has Body includes:
  • the conflict judging sub-module is configured to determine whether an access conflict occurs according to the temporary logical link identifier of each data block.
  • the conflict judging sub-module obtains the TLLI of each data block, and determines whether the TLLI of the first received data block is Same as the TLLI of each data block received subsequently;
  • the data judging sub-module is configured to determine, when the conflict judging sub-module determines that no access conflict occurs, whether each data block is received correctly. In the specific implementation, if the conflict judging sub-module determines that the TLLI of the subsequently received data block is the first time If the TLLI of the received data block is the same, the data judgment sub-module determines whether each data block is transmitted incorrectly or decodes an error, etc.; if each data block is not transmitted with an error/decoding error, the data block is received correctly, otherwise the data block The reception is incorrect, that is, at least one of the subsequently received data blocks is transmitted with an error/decoded error;
  • a first feedback sub-module configured to: when the conflict determination sub-module determines that an access conflict occurs, return a retransmission message carrying the TLLI to the MS; in a specific implementation, when the conflict determination sub-module determines that at least one data is subsequently received The TLLI of the block is different from the TLLI of the first received data block, and will not judge whether the data block is received correctly, and after all the data blocks are received, the first feedback sub-module returns a retransmission message carrying the TLLI;
  • the communication device of this embodiment immediately returns a retransmission message when it is determined that at least one data block is received incorrectly, that is, when the first data block is not received, immediately Returning an ACK message, and sending an ACK after the data block is received, thereby reducing control signaling; and the retransmission message returned in this embodiment includes receiving status of each data block, retransmitting resource block, and retransmitting The coding scheme and the like, so that when the MS receives the retransmission information, it can know which data blocks are correctly received/incorrect, and can directly retransmit according to the retransmission coding scheme and the retransmission resource block.
  • the communication device in this embodiment may further include:
  • a retransmission setting module configured to: when the at least one data block is received incorrectly, according to the uplink The status of the line link, dynamically adjusting the maximum retransmission at this time.
  • the retransmission message includes a maximum number of retransmissions.
  • the number of times the retransmission message is sent to the MS is dynamically adjusted according to the status of the uplink radio link in real time, for example, when the uplink quality is good, the maximum number of retransmissions Smaller, when the quality of the uplink radio link is poor, increase the maximum number of retransmissions.
  • FIG. 6 is a functional block diagram of an embodiment of a mobile station according to an embodiment of the present invention.
  • the mobile station 2 of this embodiment specifically includes:
  • the resource receiving module 21 is configured to receive an assignment message sent by the communication device, where the assignment message includes a fixed resource allocated to the mobile station, and the TFI field in the assignment message is blanked;
  • the number of data blocks to be transmitted is calculated according to the initial default coding mode or the fixed CS-1 coding mode to determine the number of resource blocks required to determine the uplink access mode: when the number of required resource blocks is less than or equal to At 8 o'clock, the short access mode with the lowest priority is used for uplink access; when the number of required resource blocks is greater than 8, the two-step access mode is used for uplink access; the temporary data block
  • the specific implementation process of the stream module 21 is as follows:
  • a requesting sub-module configured to send a packet channel request message to the communication device; in a specific embodiment, when the short access mode is used, the requesting sub-module sends the generated packet channel request message to the communication device, and
  • the priority indication bit in the packet channel request message is extended to a random number, that is, the packet channel request message includes the number of required resource blocks and the extended random number; the assignment message includes the access frame number and the random number described above. And the allocated fixed resource; and when the short access mode is used, the random number is an extended random number;
  • a determining sub-module configured to determine, according to the assignment message, whether the allocated fixed resource is allocated to the MS; in a specific implementation, the determining sub-module determines the allocated fixed resource according to the random number and the access frame number in the assignment message Whether it is allocated to the MS; in this embodiment, if the allocated fixed resource is not allocated to the MS, the requesting submodule may directly resend the packet channel request message to the communication device;
  • the data sending module 22 is configured to send at least one data block to the communication device on the allocated fixed resource.
  • the data sending module 22 first uses the TLLI in the ACK message returned by the communication device (short access mode) When the TLLI (in the two-step access mode) in the packet uplink assignment message determines whether an access collision occurs, if no access conflict occurs, the data block is sent; otherwise, the data block is no longer sent, that is, the data transmission fails.
  • the packet channel request message may be retransmitted to the communication device by the allocating module 11;
  • the resource release module 23 is configured to release the TBF when the communication device correctly receives the full data block.
  • the resource release module 23 includes:
  • a message receiving submodule configured to: when the short access mode is used, after all the data blocks are correctly received, receive an ACK message carrying the TLLI returned by the communication device;
  • An identifier determining submodule configured to determine whether the TLLI in the ACK message is the same as the TLLI of the MS;
  • a timer configured to start timing immediately after the data sending module sends the data block, and stop counting when the retransmission module receives the retransmission message or the message receiving submodule receives the ACK message;
  • the release submodule is configured to directly release the TBF when the short access mode is used, and the judgment result is yes; or when the two-step access mode is used, the retransmission data module does not receive the heavy weight within a preset time. When the message is transmitted and the time reaches the preset time, the TBF is directly released;
  • the request sub-module of the notification allocation module 11 resends the packet channel request message to the communication device;
  • the retransmission data module 24 is configured to: when the at least one data block sent by the MS is received incorrectly, receive a retransmission message returned by the communication device, and retransmit the received incorrect data block according to the retransmission message.
  • the retransmission message includes a receiving condition of each data block, a retransmission coding scheme, a retransmission resource block, and the like, that is, the communication device indicates the data reception status and the retransmission resource block by using the retransmission message, and the MS may Which data blocks are obtained, and the retransmitted resource blocks, etc., are directly encoded according to the retransmission coding scheme, and are retransmitted by the retransmission resource block to retransmit the communication device.
  • the correct data block improves data transmission efficiency.
  • the retransmission message when the short access mode is used, the retransmission message further includes a TLLI.
  • the retransmission data block module 24 receives the retransmission message, it first determines whether the TLLI is the same as its own TLLI. If yes, retransmit the data block, otherwise the retransmission fails. If the retransmission fails, the requesting sub-module may re-send the packet channel request message.
  • the timer after receiving the retransmission message, the timer stops counting, and when the data block is retransmitted, the start timer starts counting again.
  • the timer of this embodiment starts timing when all data blocks are transmitted or when the retransmitted data block is transmitted, and stops timing when receiving an uplink packet acknowledgement message or a retransmission message sent by the communication device, thereby avoiding data transmission.
  • the MS always consumes resources.
  • the present invention provides a further embodiment of the mobile station, which has a data block module 24, except that when the short access mode is used, in this embodiment,
  • Each data sent by the data sending module 22 carries a TLLI that uniquely identifies the MS.
  • the TLLI is carried in each data block, so that the communication device can identify the transmitted data block according to the TLLI of each data block.
  • MS and the communication device does not need to return an ACK/NACK message when receiving the first data block, that is, the data sending module 221 will not receive the ACK/NACK message returned by the communication device after transmitting the first data block, but
  • the resource release module 23 receives the ACK message returned by the communication device, or the retransmission data module 24 receives the retransmission message returned by the communication device.
  • the uplink data transmission method of this embodiment carries the TLLI in each data block that is transmitted, so that the communication device can identify the MS according to the TLLI of each data block, so that it does not need to receive the first data block, and then immediately returns.
  • An ACK/N ACK message that is, in this embodiment, only after the MS sends the complete data block, the communication device returns a corresponding uplink packet acknowledgment message or a retransmission message, thereby avoiding returning two uplink packet acknowledgment messages, that is,
  • the control message in the data transmission process is further reduced, and the efficiency of small data transmission is further improved.
  • the communication device determines that all the data blocks are correctly received, it returns an uplink packet acknowledgement message to the MS, so that the mobile station confirms whether the data block correctly received by the communication device is sent by the MS according to the uplink packet acknowledgement message, and avoids Access conflict.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种上行数据传输方法及通信设备、MS,所述方法包括:一种上行数据传输方法,其特征在于,包括:通信设备为MS分配固定资源,并向所述移动台返回临时数据块流指示字段置空的指派消息,所述指派消息中包括分配的固定资源;接收所述移动台在所述分配的固定资源上发送的至少一个数据块;判断所述至少一个数据块是否全部接收正确,若所述至少一个数据块全部接收正确,则释放临时数据块流;否则向所述移动台返回重传消息并接收所述移动台根据所述重传消息重传来的数据块,从而减少了释放流程的控制消息,进而提高了数据业务的有效数据传输效率。

Description

一种上行数据传输方法及通信设备、 移动台 本申请要求于 2012 年 6 月 27 日提交中国专利局、 申请号为 201210215569.0、 发明名称为"一种上行数据传输方法及通信设备、 移动台" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及通信技术领域, 尤其涉及一种上行数据传输方法及通信设 备、 移动台。 背景技术 在通用分组无线业务( General Packet Radio System, GPRS ) 中, 进行 分组数据传输之前, 需要先建立临时数据块流(Temporary Block Flow, TBF ), 并通过网络分配的分组资源, 移动台 (Moblie Station, MS )和网络 之间才能够进行无线链路控制 (Radio Link Control, RLC )数据块的传输。
Data Umt, LLC数据传输单元)的由 PDCH ( Packet Data Channel , 分组数据信道) 组成的一个物理连接,可由一条或多条 PDCH组成,且由于 TBF是临时性, 即如果没有新的数据传输, 则立即释放 TBF; 如果再有新的数据要传输, 则需要重新建立 TBF。
如果 MS要向网络侧, 如向通信设备子系统(Basic Service Set, BSS ) 发送上行 RLC数据块,则需要先通过分组接入过程( acket access procedure ) 建立一个上行 TBF; 如果网络侧要向 MS发送下行 RLC数据块, 则需要先 建立下行 TBF。 目前, 上行 TBF的建立可以使用短接入, 即分配固定上行 传输资源;一步接入,使用动态分配资源的方法;两步接入( Two phase packet access ), 即可使用固定分配资源方法, 也可使用动态分配方法。 建立 TBF 过程中, 网络侧在向 MS返回的立即指派消息 IMMEDIATE ASSIGNMENT 中为对应于该 MS的 TBF分配 TFI和所分配的固定资源。
TBF建立成功后, MS即可在分配的资源上传输数据块。 当发送完数据 块后, 需要释放所分配的资源, 上行资源的释放通过 "倒计数"过程实现。 即 MS在所发送的 RLC上行数据块中存在一个倒计数值 ( Countdown Value, CV ), 以表明当前上行 TBF 中尚未传送的数据块。 当未发送的 RLC/MAC 数据块等于系统所设定的 BS— CV— MAX值, 系统将执行倒计数过程。 MS 将再传送 BS—CV— MAX个 RLC/MAC数据块, 直到 CV = 0, 即发送最后一 个数据块, 当网络侧接收到该包含 CV = 0的 RLC/MAC数据块, 并且所有 的 RLC/MAC数据块都已经被确认完成后, 向 MS返回包含终结应答指示 符( Final Ack Indicator )为 1的上行分组确认 /非确认消息( PACKET UPLINK ACK/NACK ), 告知 MS释放上行 TBF、 TFI等资源。 MS接收到此上行分 组确认消息后, 将传送分组控制确认消息 PACKET CONTROL ACKNOWLEDGE, 并释放 TBF、 TFI等资源; 同时网络侧接收到分组控制 确认消息后, 该上行 TBF所占用的临时数据块流标识符( TFI )资源也被释 放, 可重新分配给其他 MS使用。
综上, 由于建立 TBF时为该 TBF分配了 TFI, 释放资源时需要 MS和 网络侧同时释放该 TFI等资源, 因此, 在资源释放过程中釆用倒计数发送 数据块, 并且在发送完最后一个数据块后, 网络侧需要接收到 MS发送的 分组控制确认消息 PACKET CONTROL ACKNOWLEDGE才能释放 TFI等 资源, 从而使得数据传输过程中控制消息较多, 降低了数据业务有效数据 的传输效率较低。 发明内容 本发明实施例所要解决的技术问题在于, 提供一种上行数据传输方法 及通信设备、 移动台, 通过减少数据传输过程中的控制消息, 从而有效提 高数据业务有效数据的传输效率。 为了解决上述技术问题, 本发明实施例提供了一种上行数据传输方法 包括:
通信设备为 MS 分配固定资源, 并向所述移动台返回临时数据块流指 示字段置空的指派消息, 所述指派消息中包括分配的固定资源;
接收所述移动台在所述分配的固定资源上发送的至少一个数据块; 判断所述至少一个数据块是否全部接收正确, 若所述至少一个数据块 全部接收正确, 则释放临时数据块流; 否则向所述移动台返回重传消息并 接收所述移动台根据所述重传消息重传来的数据块。
一种上行数据传输方法, 包括:
移动台接收通信设备发送的指派消息, 所述指派消息包括为所述移动 台分配的固定资源, 所述指派消息中的临时数据块流指示字段置空;
在所述分配的固定资源上向所述通信设备发送至少一个数据块; 当所述至少一个数据块全部被正确接收时, 释放临时数据块流; 否则, 接收所述通信设备返回来的重传消息, 并根据该重传消息重传数据块。
一种通信设备, 包括:
分配模块, 用于为所述移动台分配固定资源, 并向所述移动台返回临 时数据块流指示字段置空的指派消息, 所述指派消息中包括分配的固定资 源;
数据接收模块, 用于接收所述移动台在所述分配的固定资源上发送的 至少一个数据块;
判断模块, 用于判断所述移动台发送的所述至少一个数据块是否全部 接收正确;
资源释放模块, 用于当所述判断模块判断出所述至少一个数据块接收 全部正确时, 释放临时数据块流;
反馈模块, 用于当判断出所述判断模块至少一个数据块接收不正确时, 向所述移动台返回重传消息; 重传数据接收模块, 用于接收所述移动台根据所述重传消息重传来的 数据块。
一种移动台, 包括:
资源接收模块, 用于接收通信设备发送的指派消息, 所述指派消息包 括为所述移动台分配的固定资源, 所述指派消息中的临时数据块流指示字 段置空;
数据发送模块, 用于在所述分配的固定资源上向所述通信设备发送至 少一个数据块;
资源释放模块, 用于当所述至少一个数据块全部被正确接收时, 释放 所述临时数据块流;
重传数据模块, 用于当所述至少一个数据块接收不正确时, 接收通信 设备返回的重传消息, 并根据该重传消息重传数据块。 本发明实施例的上行数据传输方法及通信设备、 移动台釆用固定资源 分配方式为 MS分配固定资源, 但不分配用来识别 MS的 TFI, 从而当数据 块全部接收正确时, 直接释放 TBF, 从而提高了数据业务的有效数据传输 效率。
实施本发明的上行数据传输方法及通信设备、 移动台, 由于 MS发送 的每个数据块均携带了 TLLI, 因此, 可根据每个数据块的 TLLI判断是否 发生接入冲突, 且当没有冲突时, 通信设备在全部数据块正确接收后, 直 接返回 MS—个 ACK消息即可释放 TBF,不需要通信设备在接收第一个数 据块时, 返回一个 ACK消息, 在接收完全部数据块后又返回一个 ACK消 息, 从而减小了数据传输过程中的控制指令消息, 提高了数据传输效率。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附 图。
图 1是本发明的一种上行数据传输方法的第一种实施例的流程图; 图 2是本发明的一种上行数据传输方法的第二种实施例的流程图; 图 3是本发明的一种上行数据传输方法的第三种实施例的流程图; 图 4是本发明的一种上行数据传输方法的第四种实施例的流程图。 图 5是本发明的一种通信设备的一实施例的功能模块图;
图 6是本发明的一种移动台的一实施例的功能模块图。 具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有作出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
本发明实施例的上行数据传输方法通过釆用固定资源分配的方式为 MS分配固定资源, 且不分配 TFI, 而通过每个数据块中携带的 TLLI来区 分用户, 即当 MS发送完数据块时, 固定资源分配完毕, 与现有技术的方 案相比, 当数据块全部接收正确时, 就可以释放 TBF资源, 不需要 MS和 网络侧同时释放 TBF资源, 因此, 不需要倒计数过程, 不需要网络侧返回 分组控制确认消息, 从而减少了数据传输过程中的控制消息, 提高数据传 输的效率。
参见图 1 , 为本发明的一种上行数据传输方法的第一种实施例的流程 图。 具体实施时, 本实施例的上行数据传输方法的实施过程如下: 511 , 通信设备为 MS分配固定资源, 并向 MS返回 TFI置空的指派消 息, 所述指派消息中包括分配的固定资源。
具体实施时, MS需要先根据无线链路的状态和将要发送的数据块的数 目, 按照固定编码方式 CS-1或者初始默认编码方式计算所需要的资源块数 目, 从而来决定上行接入的方式: 当计算得到需要的资源块数目大于 8, 则 MS釆用两步接入方式进行上行接入; 当计算得到需要的资源块数目小于或 者等于 8, 则 MS釆用默认为最低优先级的短接入方式进行上行接入。 通信 设备向 MS返回的指派消息包含了所分配的固定资源, 优选地, 还可以包 括该 MS的接入帧号和随机数。其中所述通信设备为可以与 MS通信的设备, 例如为网元、 用户单元、 服务器等设备。
在一具体实施例中, 则当釆用短接入方式时, 在该步骤 S11 具体实施 过程如下:
接收 MS发送来的分组信道请求消息 PACKET CHANNEL REQUEST, 该分组信道请求消息中包含了发送数据块所需要的资源块的数目、 扩展后 的随机数。 MS生成分组信道请求消息 PACKET CHANNEL REQUEST时会 随机产生的一个随机数, 该分组信道请求消息中包括优先级指示字段, 由 于短接入方式为默认最低优先级, 因此 MS将该优先级指示字段扩展为随 机数, 从而增长了随机数的比特位, 则对应生成的随机数的值较大, 降低 产生相同随机数的概率, 进而降低了接入冲突概率。
根据所需要的资源块数目和扩展后的随机数为 MS 分配固定资源, 并 返回 TFI字段置空的立即指派消息, 该立即指派消息包括该 MS的接入帧 号、 上述的扩展后的随机数, 以及所分配的固定资源。
512, 接收 MS在所述分配的固定资源上发送的至少一个数据块。 具体 实施时, 由于该指派消息中包含了所分配的固定资源, MS将根据该指派消 息中的固定资源向通信设备发送数据块。
513 , 判断是否全部数据块均接收正确, 若全部数据块均接收正确, 则 执行步骤 S14, 否则执行步骤 S15。 具体实施时, 当通信设备接收到各个数 据块后, 会判断各个数据块是否被传输错误或者被解码错误等, 并记录各 个数据块的接收情况, 例如接收正确或者接收错误、 数据块的序列号等, 若未被传输错误或者编译错误, 即各个数据块接收正确, 则执行步骤 S14, 否则执行步骤 S15。
514, 释放 TBF。 具体实施时, 由于在步骤 S11中没有分配 TFI, 因此 当数据块全部接收正确后, 通信设备将直接释放 TBF。
在一具体实施例中, 当釆用短接入方式时, 当通信设备判断出各个数 据块接收正确, 则直接释放 TBF, 且在释放 TBF的同时向 MS返回 ACK 消息, 该 ACK消息携带上述的 TLLI。
在另一具体实施例中, 当釆用两步接入方式时, 当通信设备判断出各 个数据块接收正确时, 直接释放 TBF, 不需要向 MS返回 ACK消息。
本实施例中, 由于在步骤 S11中没有分配 TFI, 因此, 不需要倒计数过 程, 而是直接释放 TBF, 从而精简了释放流程, 提高了数据传输效率。
515 ,向 MS返回重传消息 Packet Uplink Retransmission。执行本步骤的 前提是步骤 S13 中通信设备判断出所接收的数据块中至少有一个数据块接 收不正确。具体实施时 ,该重传消息中的 ALLOCATION— BITMAP— LENGTH 是根据该 MS发送的数据块的数目进行设置, 即该重传消息中包含了接收 的各个块的信息, 例如各个数据块被接收正确 /不正确的接收情况。 该重传 消息还包括了重传资源块、 重传编码方案。 该重传消息最多 67bits, 可携带 两个用户的重传信息。 在一具体实施例中, 当釆用短接入方式时, 该重传 消息还可以包含与上述接收到的数据块携带的 TLLI相同的 TLLI。
516, 接收 MS根据重传消息重传来的数据块。 具体实施时, 由于重传 消息中包含了重传编码方案、 重传资源块和各个数据块接收情况, 则 MS 根据该重传消息按照重传编码方案进行编码, 并通过重传资源块重传接收 不正确的数据块。 本实施例中, 当通信设备接收到重传的数据块之后, 还将判断所接收 的各个重传数据块是否正确, 若正确则返回 ACK (不携带 TLLI ) 并释放 TBF; 否则再次返回重传消息 (不携带 TLLI )进行数据重传。
实施本实施例的上行数据传输方法, 通过釆用固定资源分配的方式为 MS分配固定资源, 但不分配 TFI, 而通过 TLLI来识别 MS, 并且当正确接 收完所有数据块后直接释放所分配的固定资源。 即由于本实施例中在建立 TBF时没有分配 TFI, 因此, 不需要 MS与网络侧同时释放资源, 因此, 当 通信设备正确接收完所有的数据块后, 直接释放所分配的固定资源, 从而 不需要倒计数后才释放资源, 进而减少了数据传输过程中的控制消息, 提 高数据传输效率。
通常, 在数据块传输过程中, 网络侧需要在首次接收到携带 TLLI的数 据块后, 以及全部数据接收完后, 分两次向 MS返回 ACK/NACK消息, 从 而使得数据传输过程中控制消息较多, 降低了数据业务有效数据的传输效 率。 为了提升数据业务有效数据的传输效率, 本发明还提供了上行数据传 输方法的第二种实施例。
参见图 2, 为本发明的上行数据传输方法的第二种实施例的流程图, 具 当釆用短接入方式时, 本实施例的上行数据传输方法还可以在步骤 S11 之 后, 包括步骤:
S121 , 接收 MS根据指派消息发送来的至少一个数据块, 且每一个数 据块均携带有唯一标识发送该数据块的 MS的 TLLI。
具体实施时, 当通信设备接收首次接收到携带 TLLI的数据块时, 根据 该数据块的 TLLI识别固定资源分配给了哪个用户,但不会返回 ACK/NACK 消息, 而是继续接收 MS后续发送来的均携带 TLLI的数据块。
S131 , 根据各个数据块的 TLLI判断是否发生接入冲突, 若发生接入冲 突, 则执行步骤 S13 , 否则执行步骤 S151。 具体实施时,判断首次接收的数据块的 TLLI与后续接收的各个数据块 的 TLLI是否相同, 若相同, 则未发生接入冲突, 在步骤 S13中, 进一步判 断各个数据块全部接收正确; 否则, 即若后续接收的某一个数据块携带的 TLLI与首次接收的数据块的 TLLI不同, 则发生了接入冲突, 判断各个数 据块未被全部正确接收, 不需要解码该数据块或者判断其是否被传输错误 等, 且在全部数据块接收完之后, 执行步骤 S151。 其中在步骤 S131中可以 通过比较接收到的数据块的 TLLI是否相同来判断是否发生接入冲突,在步 骤 S13中可以通过判断数据块是否被传输错误 /解码错误等方法来判断数据 块是否接收正确,并且可以在步骤 S131之后再进一步确定数据块接收正确。
S14 , 直接释放 TBF , 并向 MS返回携带相同 TLLI的 ACK消息。
S151 , 向 MS返回携带 TLLI的重传消息。 具体实施时, 执行该步骤的 前提为数据接收不正确, 即后续各个数据块的 TLLI与第一数据块的 TLLI 相同, 但至少有一个数据块被传输错误 /解码错误; 或者发生了接入冲突, 即后续各个数据块中至少有一个数据块的 TLLI与第一个数据块的 TLLI不 相同。
本实施例中还包括步骤 S16,其与上述实施例的步骤 S16相同, 即接收 重传数据块。
本实施例中, 当判断全部数据块接收正确时, 通信设备才向 MS返回 一个包含 TLLI的 ACK消息, 或者当判断发生了接入冲突或者各个数据块 未被全部接收正确时, 也需要全部数据块接收完之后才返回一个重传消息, 不需要在首次接收到数据块时就向 MS返回一次 ACK消息, 再在最后返回 一次 ACK消息, 即不需要返回两次 ACK消息, 从而进一步减少了数据传 输过程中的控制消息, 提高了有效数据传输效率。 同时本实施例中通过该 包含 TLLI的 ACK消息告知 MS释放上行 TBF,从而使得 MS收到该 ACK 消息后, 将该 ACK消息中的 TLLI与自身的 TLLI比较, 若相同, 则通信 设备所接收的数据块均为该 MS发送的, 即说明没有发生接入冲突, MS接 收到该 ACK消息后直接释放所分配的固定资源; 否则, 通信设备所接收的 数据块不为该 MS发送的, 而是其他 MS发送的, 数据传输不成功。
为了避免无线链路突然恶化时, 数据传输一直不成功, 但某一用户持 续占用网络资源的情况, 本实施例的上行传输数据方法, 还可包括步骤: 在所述移动台根据所述重传消息向通信设备重传数据块的过程中, 根 据上行无线链路的状态, 动态调整最大重传次数。 所述重传消息包括最大 重传次数。 执行该步骤的前提为步骤 S13中判断出该 MS发送的数据块接 收不正确或者发生了接入冲突。 具体实施时, 通信设备会实时监测上行无 线链路的状态, 并得到该上行无线链路相应的状态报告等, 从而根据该上 行无线链路的状态动态调整向移动台返回重传消息的次数, 即动态调整最 大重传次数, 例如当上行无线链路的质量较好时, 最大传输次数较小, 当 上行无线链路的质量较差时, 适当增大最大重传次数, 避免了某一用户持 续占用网络资源, 进一步提高了有效数据的传输效率, 同时提高信道利用 率。 例如, 当 MS要发送 4个数据块, 误码率为 10%时, 可设置最大重传 次数为 2,即当移动台根据首次反馈的重传消息重传的数据块仍接收不正确 时, 通信设备还可发送一次重传消息, 如果再次重传的数据块仍接收正确, 则数据传输成功, 若仍接收不正确, 则发送重传消息, 即不再重传数据块 了, 这样数据传输成功的概率是 93.06%; 若误码率为 20%, 则可设置最大 重传次数为 3 , 即可向移动台发送两次重传消息, 其数据传输成功率为 76.16%。
参见图 3 , 为本发明的上行数据传输方法的第三种实施例的流程图, 具 体实施时, 本实施例的上行数据传输方法具体包括如下步骤:
S31 , MS接收通信设备发送的指派消息, 所述指派消息包括为所述移 动台分配的固定资源, 所述指派消息中 TFI字段置空。 具体实施时, MS首 先根据无线链路的状态和将要发送的数据块数目,按照固定编码方式 CS-1, 或者初始默认编码方式计算所需要的资源块数目, 从而确认上行接入的方 式: 若所需要的资源块数目大于八时, 将釆用两步接入方式进行上行接入; 若所需要的资源块数据小于或者等于八时, 将釆用默认为最低优先级的短 接入方式进行上行接入。 该指派消息包括了通信设备根据需要资源块数目 分配的固定资源、 该 MS的接入帧号和随机数。
在一具体实施例中, 当釆用短接入方式时, 则该步骤 S31 具体实施过 程如下:
向通信设备发送分组信道请求消息, 该分组信道请求消息包括扩展后 的随机数以及发送数据块所需要资源块的数目。 具体实施时, 由于短接入 方式默认为最低优先级, 因此, MS会将生成分组信道请求消息中的优先级 指示字段扩展为随机数, 增长了随机数的比特位, 从而对应生成的随机数 的值较大, 降低产生相同随机数的概率, 进而降低了接入冲突概率。 当通 信设备接收到该分组信道请求消息后,将立即根据所需资源块数目为该 MS 分配固定资源, 并返回 TFI字段置空的立即指派消息, 该立即指派消息还 包括了 MS的接入帧号、 上述扩展后的随机数, 以及所分配的固定资源。
根据该指派消息中扩展后的随机数和接入帧号判断所分配的固定资源 是否为分配给本 MS的,否则,该 MS可重新向通信设备发送分组信道请求 消息以重新建立 TBF。
532, 在所述分配的固定资源上向通信设备发送至少一个数据块。 具体 实施时, MS会先根据通信设备返回的 ACK消息中的 TLLI(短接入方式时 ) 或者分组上行指派消息中的 TLLI (两步接入方式时)判断是否发生接入冲 突, 若没有发生接入冲突, 则 MS根据该指派消息中的通信设备为其所分 配的固定资源向通信设备发送至少一个数据块; 若发生了接入冲突, 则数 据传输失败。 在一具体实施例中, 当釆用两步接入方式时, 当发送完数据 块之后, 立即启动定时器进行计时。 本实施例中当数据传输失败时, 该 MS 可重新发送分组信道请求以建立 TBF。
533 , 当各个数据块全部被正确接收时, 释放 TBF。 具体实施时, 通信 设备接收到数据块时, 会判断该数据块是否全部接收正确, 即是否被传输 错误或者被解码错误等, 并记录各个数据块的接收情况, 例如接收正确或 者接收错误、 数据块的序列号等。
在一具体实施例中, 当釆用短接入方式, 且通信设备正确接收到该 MS 发送来的数据块时, 则该步骤 S33具体实施过程如下:
接收通信设备返回的 ACK消息, 该 ACK消息携带有 TLLI。
判断该 TLLI与该 MS自身的 TLLI是否相同,若是则释放 TBF; 否则, 重新向通信设备发送分组接入请求消息。
在另一具体实施例中, 当釆用两步接入方式, 且通信设备正确接收到 该 MS发送来的数据块时, 则该步骤 S33具体实施过程如下:
若在预设的时间内该 MS 没有收到通信设备返回来的重传消息, 则继 续计时, 直到计时达到预设的时间则释放 TBF。
S34, 当所述至少一个数据块接收不正确时, 接收通信设备返回来的重 传消息, 并根据该重传消息重传数据块。 具体实施时, 由于该重传消息包 括了各个数据块的接收情况和重传编码方案、 重传资源块等, 即通信设备 通过该重传消息指示数据的接收情况和重传资源块, MS可得到的哪些数据 块出错, 以及重传的资源块等, 从而直接按照重传编码方案进行编码, 并 通过重传资源块重传通信设备接收不正确的数据块, 提高了数据传输效率。
在一具体实施例中, 当釆用短接入方式时,该重传消息还携带有 TLLI, 则该步骤 S34具体实施过程如下:判断该重传消息中的 TLLI与该 MS自身 的 TLLI是否相同, 若是, 则根据该重传消息重传数据块; 若不相同, 则重 新向通信设备发送分组信道请求消息。
在另一具体实施例中, 当釆用两步接入方式时, 接收到重传消息后停 止计时, 并根据该重传消息按照重传编码方案进行编码, 并通过重传资源 块重传接收不正确的数据块; 且当重传完数据块之后又开始计时, 直到再 次接收到重传消息或者计时到达预设时间时, 定时器停止计时。 本发明实施例的上行数据传输方法通过釆用固定资源分配的方式为
MS分配固定资源, 但不分配 TFI, 而通过 TLLI来识别 MS, 并且当通信设 备正确接收完所有数据块, MS接收到通信设备返回的 ACK消息后直接释 放所分配的固定资源, 或者定时达到后直接释放所分配的固定资源。 即由 于本实施例中在建立 TBF时没有分配 TFI, 因此, 不需要 MS与网络侧同 时释放资源, 因此, 可直接释放所分配的固定资源, 从而不需要倒计数, 进而减少了数据传输过程中的控制消息, 提高数据传输效率。
参见图 4, 为本发明的上行数据传输方法的第四种实施例的流程图。 具 釆用短接入方式时, 本实施例的上行数据传输方法还包括步骤:
S321 , 在所述分配的固定资源上向通信设备发送至少一个数据块, 且 每个数据块均携带有唯一标志有该 MS的 TLLI。
5331 , 当全部数据接收正确时, 接收通信设备返回的携带相同 TLLI 的 ACK消息。具体实施时,由于通信设备接收到 MS发送的各个数据块时, 需要根据数据块的 TLLI判断是否发生接入冲突,并判断各个数据块接收是 否正确, 当未发生接入冲突且全部接收正确时, 通信设备将返回 MS —个 携带 TLLI的 ACK消息。
5332 , 判断该 ACK消息中的 TLLI与该 MS 自身的 TLLI是否相同, 若是, 则执行步骤 S333 , 即释放 TBF, 否则重新发送分组信道请求消息。
当通信设备判断出未发生接入冲突, 但不是全部数据块均接收正确, 或者发生接入冲突时, 本实施例的上行数据传输方法还包括步骤:
S341 ,接收携带 TLLI的重传消息, 并根据该重传消息重传接收不正确 的数据块。 具体实施时, 首先判断该重传消息中的 TLLI与该 MS 自身的 TLLI是否相同, 若是, 则根据该重传消息重传数据块; 否则重新向通信设 备发送分组信道请求消息。
本实施例中, 在发送完所有的数据块或者发送完重传数据块时, 还可 启动计时器进行计时, 以及在接收到通信设备发送来的上行分组确认消息 或者重传消息时停止计时, 从而避免数据传输不正确时, 该 MS —直占用 资源。
本实施例的上行数据传输方法通过在 MS发送完数据后, 通信设备才 返回相应的 ACK消息或者重传消息,从而避免返回两次 ACK/NACK消息, 即进一步减少了数据传输过程中的控制消息, 进一步提高小数据传输的效 率。
基于上述的上行数据传输方法, 本发明实施例还提供了一种通信设备、 一种移动台和一种上行数据传输系统, 下面将结合附图 5和 6来对本发明 实施例中的通信设备、 移动台和上行数据传输系统进行详细的说明。
参见图 5, 为本发明实施例的一种通信设备的一实施例的功能模块图。 具体实施时, 本实施例的通信设备 1的具体实施过程如下:
分配模块 11 , 用于为 MS分配固定资源, 并向该 MS返回包含该固定 资源的 TFI字段置空的指派消息; 具体实施时, 该分配模块 11具体包括: 请求接收子模块和资源分配子模块。 请求接收子模块用于接收 MS发送来 的分组信道请求消息; 具体实施时, 当 MS发送该分组信道请求消息之前 会先根据将要发送的数据块数目, 按照初始默认编码方案或者固定的 CS-1 编码方式计算所需要的资源块数目, 从而确定上行接入的方式: 若计算得 到需要的资源块数目小于或者等于 8, MS将釆用短接入方式进行上行接入; 若计算得到需要的资源块数目大于 8 时, 将釆用两步接入方式进行上行接 入; 在一具体实施例中, 当釆用短接入方式时, 该请求接收子模块所接收 的分组信道请求消息包含该 MS计算得到的需要资源块的数目和扩展后的 随机数, 本实施例中是将生成的分组信道请求消息中的优先级指示字段扩 展为随机数; 资源分配子模块用于根据需要的资源块数目为该 MS 分配固 定资源, 并将生成的 TFI字段置空的指派消息返回给该 MS; 具体实施时, 该资源分配子模块根据需要的资源块数目为 MS 分配固定资源后, 返回的 指派消息包含了所分配的固定资源、 MS的接入帧号, 以及随机数, 且当釆 用短接入方式时, 该随机数为扩展后的随机数;
数据接收模块 12, 用于接收该 MS在所述分配的固定资源上发送的至 少一个数据块;
判断模块 13 , 用于判断该 MS发送的至少一个数据块是否全部接收正 确; 具体实施时, 当上述的数据接收模块 12接收到数据块时, 会判断各个 数据块是否被传输处错误或者解码错误等并记录各个数据块的接收情况, 例如接收正确或者接收错误、 数据块的序列号等, 若未被传输错误或者编 译错误, 即各个数据块接收正确;
资源释放模块 14,用于在所述判断模块 13判断出上述各个数据块全部 接收正确时, 释放 TBF; 具体实施时, 由于没有分配 TFI, 因此, 当各个数 据块全部接收正确时, 将直接释放 TBF, 不再执行倒计数流程;
在一具体实施例中, 当釆用短接入方式, 本实施例的资源释放模块 15 具体实施过程如下:
第二反馈子模块,用于当判断模块 13判断出全部数据块均接收正确时, 向 MS返回携带 TLLI的 ACK消息;
资源释放子模块,用于当第二反馈子模块向 MS返回 ACK消息的同时, 直接释放 TBF。
在另一具体实施例中, 当釆用两步接入方式, 判断模块 13判断出全部 数据均接收正确时, 则该资源释放模块 14 将直接释放 TBF, 不需要返回 ACK消息;
反馈模块 15, 用于当判断模块 13判断出 MS发送的数据块中至少有 一个接收不正确时, 向 MS返回重传消息; 具体实施时, 当判断出至少一 个数据块被传输错误或者解码错误时, 则该反馈模块 16会向 MS返回一个 重传消息, 且该重传消息的 ALLOCATION— BITMAP— LENGTH是才艮据该 MS发送的数据块的数目进行设置,即该重传传消息中包含了接收的各个块 的信息, 例如各个数据块的接收正确 /不正确或者解码正确 /不正确等接收情 况; 该重传消息最多 67bits, 可携带两个用户的重传信息; 在一具体实施例 中, 当釆用短接入方式时, 该重传消息还包含了上述的 TLLI;
重传数据接收模块 16, 用于接收 MS根据重传消息重传来的数据块; 具体实施时, 由于重传消息中包含了重传编码方案、 重传资源块和各个数 据块接收情况, 则重传数据块模块 16将接收到 MS根据该重传消息中各个 数据块的接收情况重传来的接收不正确的数据块。
本实施例中, 当重传数据接收模块 16接收到重传的数据块之后, 判断 模块 13还将判断所接收的各个重传数据块是否全部接收正确, 若全部接收 正确则返回 ACK (不携带 TLLI )并释放 TBF; 否则再次返回重传消息(不 携带 TLLI )进行数据重传。
实施本实施例的上行数据传输方法, 通过釆用固定资源分配的方式为 MS分配固定资源, 但不分配 TFI, 而通过 TLLI来识别 MS, 并且当正确接 收完所有数据块后直接释放所分配的固定资源。 即由于本实施例中在建立 TBF时没有分配 TFI, 因此, 不需要 MS与网络侧同时释放资源, 因此, 当 通信设备正确接收完所有的数据块后, 直接释放所分配的固定资源, 从而 不需要倒计数后才释放资源, 进而减少了数据传输过程中的控制消息, 提 高数据传输效率。
为了提升数据业务有效数据的传输效率, 本发明还提供了该通信设备 的又一实施例, 具体实施时, 本实施例的通信设备也包括上述实施例中的 分配模块 11至重传数据接收模块 17 , 不同的是, 当釆用短接入方式时, 本实施例中的该数据接收模块 13所接收的每一个数据块均携带唯一标 识发送该数据块的 MS的 TLLI, 且首次接收到该携带 TLLI的数据块时, 不向 MS返回携带 TLLI的 ACK消息;
本实施例中的判断模块 14在判断各个数据块接收是否正确时先根据各 个数据块的 TLLI来判断是否发生接入冲突; 具体实施时, 判断模块 14具 体包括:
冲突判断子模块, 用于根据各个数据块的临时逻辑链路标识判断是否 发生接入冲突; 具体实施时, 该冲突判断子模块获取各个数据块的 TLLI, 并判断首次接收的数据块的 TLLI是否与后续接收的各个数据块的 TLLI均 相同;
数据判断子模块, 用于当冲突判断子模块判断出未发生接入冲突时, 判断各个数据块是否接收正确; 具体实施时, 若冲突判断子模块判断出后 续接收的数据块的 TLLI均与首次接收的数据块的 TLLI同, 则该数据判断 子模块判断各个数据块是否被传输错误或者解码错误等; 若各个数据块均 未被传输错误 /解码错误时, 则数据块接收正确, 否则数据块接收不正确, 即后续接收的数据块中至少有一个数据块被传输错误 /被解码错误;
第一反馈子模块 , 用于当冲突判断子模块判断出发生了接入冲突时 , 向 MS返回携带 TLLI的重传消息; 具体实施时, 当冲突判断子模块判断出 后续接收的至少有一个数据块的 TLLI与首次接收的数据块的 TLLI不同, 将不再判断该数据块是否接收正确, 且当所有数据块接收完之后, 由该第 一反馈子模块返回一个携带 TLLI的重传消息;
本实施例的通信设备通过当判断出至少一个数据块接收不正确时, 即 是说当判断完所有的数据块后才返回一个重传消息, 不需要接收到第一个 数据块时, 便立即返回一个 ACK消息, 以及在数据块接收完后又发送一个 ACK, 从而减少了控制信令; 并且本实施例中返回的该重传消息包括各个 数据块的接收情况、 重传资源块和重传编码方案等, 从而当 MS接收到该 重传信息后, 即可知道哪些数据块接收正确 /不正确, 从而可直接根据重传 编码方案、 重传资源块进行重传。
为了避免无线链路突然恶化时, 数据传输一直不成功, 但某一用户持 续占用网络资源的情况, 本实施例的通信设备还可包括:
重传设置模块, 用于当该至少一个数据块接收不正确时, 根据上行无 线链路的状态, 动态调整最大重传此时。 所述重传消息包括最大重传次数。 具体实施时, 当至少有一个数据块接收不正确时, 根据实时监测上行无线 链路的状态情况, 动态调整向 MS发送重传消息的次数, 例如当上行链路 质量好时, 最大重传次数较小, 上行无线链路质量较差时, 增大最大重传 次数。
参见图 6, 为本发明实施例的一种移动台的一实施例的功能模块图。 具 体实施时, 本实施例的移动台 2具体包括:
资源接收模块 21 , 用于接收通信设备发送的指派消息, 所述指派消息 包括为所述移动台分配的固定资源, 所述指派消息中的 TFI字段置空; 具 体实施时, 该 MS 需要先根据所要发送的数据块的数目, 按照初始默认编 码方式或者固定的 CS-1编码方式计算所需要的资源块的数目, 从而确定上 行接入的方式: 当计算得到需要的资源块的数目小于或者等于 8 时, 将釆 用默认为最低优先级的短接入方式进行上行接入; 当计算得到需要的资源 块数目大于 8 时, 将釆用两步接入方式进行上行接入; 该临时数据块流模 块 21具体实施过程如下:
请求子模块, 用于向通信设备发送分组信道请求消息; 在一具体实施 例中, 当釆用短接入方式时, 该请求子模块将生成的分组信道请求消息发 送给通信设备, 且将该分组信道请求消息中的优先级指示比特位扩展为随 机数, 即该分组信道请求消息包括了需要资源块的数目和扩展后的随机数; 所述指派消息包括上述的接入帧号、 随机数, 以及所分配的固定资源; 且 当釆用短接入方式时, 该随机数为扩展后的随机数;
判断子模块, 用于根据指派消息判断所分配的固定资源是否为分配给 该 MS 的; 具体实施时, 该判断子模块根据该指派消息中的随机数和接入 帧号判断所分配的固定资源是否为分配给该 MS; 本实施例中, 若分配的固 定资源不是分配给所述 MS 的, 则请求子模块可直接向通信设备重新发送 分组信道请求消息; 数据发送模块 22, 用于在所述分配的固定资源上向通信设备发送至少 一个数据块; 具体实施时, 该数据发送模块 22 会先根据通信设备返回的 ACK消息中的 TLLI (短接入方式时)或者分组上行指派消息中的 TLLI (两 步接入方式时)判断是否发生接入冲突, 若没有发生接入冲突, 则发送数 据块, 否则, 则不再发送数据块, 即数据传输失败; 本实施例中当数据传 输失败时, 可由分配模块 11重新向通信设备发送分组信道请求消息;
资源释放模块 23 , 用于当通信设备正确接收完全部数据块时, 释放 TBF; 具体实施时, 该资源释放模块 23包括:
消息接收子模块, 用于当釆用短接入方式时, 全部数据块被正确接收 之后, 接收通信设备返回来的携带 TLLI的 ACK消息;
标识判断子模块,用于判断该 ACK消息中的 TLLI是否与本 MS的 TLLI 相同;
定时器, 用于数据发送模块发送完数据块之后立即开始计时, 以及当 重传模块接收到重传消息或者消息接收子模块接收到 ACK 消息时停止计 时;
释放子模块, 用于当釆用短接入方式, 且判断结果为是时, 直接释放 TBF; 或者当釆用两步接入方式, 在预设的时间内, 重传数据模块没有接收 到重传消息且计时到达预设时间时, 直接释放 TBF;
当本实施例中的标识判断子模块的判断结果为否时, 通知分配模块 11 的请求子模块向通信设备重新发送分组信道请求消息;
重传数据模块 24 , 用于当 MS发送的至少一个数据块接收不正确时, 接收通信设备返回来的重传消息, 并根据该重传消息重传接收不正确的数 据块。 具体实施例时, 该重传消息包括了各个数据块的接收情况和重传编 码方案、 重传资源块等, 即通信设备通过该重传消息指示数据的接收情况 和重传资源块, MS可得到的哪些数据块出错, 以及重传的资源块等, 从而 直接按照重传编码方案进行编码, 并通过重传资源块重传通信设备接收不 正确的数据块, 提高了数据传输效率。
在一具体实施例中, 当釆用短接入方式时,该重传消息还包含了 TLLI, 当重传数据块模块 24接收到该重传消息后, 首先判断该 TLLI是否与自身 的 TLLI相同, 若是, 则重传数据块, 否则重传失败。 若重传失败, 则可通 知请求子模块重新发送分组信道请求消息。
本实施例中当接收到重传消息后, 定时器停止计时, 且当重传完数据 块时启动定时器又开始计时。 本实施例的定时器在发送完所有的数据块或 者发送完重传数据块时开始计时, 以及在接收到通信设备发送来的上行分 组确认消息或者重传消息时停止计时, 从而避免数据传输不正确时, 该 MS 一直占用资源。
为提高上行数据传输的效率, 本发明提供了移动台的又一实施例, 具 传数据块模块 24, 不同的是, 当釆用短接入方式时, 本实施例中,
数据发送模块 22 所发送的每一个数据均携带了唯一标识该 MS 的 TLLI; 本实施例通过在每一个数据块中携带 TLLI, 从而使得通信设备可根 据各个数据块的 TLLI来识别发送来数据块的 MS, 并且通信设备接收到第 一数据块时不需要返回 ACK/NACK消息,即该数据发送模块 221发送第一 个数据块后将不会收到通信设备返回的 ACK/NACK消息,而是在数据块发 送完后, 才由资源释放模块 23接收通信设备返回来的 ACK消息, 或者由 重传数据模块 24接收通信设备返回来的重传消息。
本实施例的上行数据传输方法通过在所发送的每个数据块中携带 TLLI, 使得通信设备可根据各个数据块的 TLLI来识别 MS, 从而不需要接 收到第一个数据块后, 便立即返回一个 ACK/N ACK消息, 即本实施例中 只需要当 MS发送完全部的数据块之后, 通信设备才返回相应的上行分组 确认消息或者重传消息, 从而避免返回两次上行分组确认消息, 即进一步 减少了数据传输过程中的控制消息, 进一步提高小数据传输的效率。 且当 通信设备判断出所有的数据块接收正确时, 向该 MS返回一个上行分组确 认消息, 从而该移动台根据该上行分组确认消息确认通信设备所正确接收 的数据块是否为该 MS发送的, 避免了接入冲突。
以上所揭露的仅为本发明较佳实施例而已, 当然不能以此来限定本发 明之权利范围, 本领域普通技术人员可以理解实现上述实施例的全部或部 分流程, 并依本发明权利要求所作的等同变化, 仍属于发明所涵盖的范围。

Claims

权利要求
1、 一种上行数据传输方法, 其特征在于, 包括:
通信设备为 MS 分配固定资源, 并向所述移动台返回临时数据块流指 示字段置空的指派消息, 所述指派消息中包括分配的固定资源;
接收所述移动台在所述分配的固定资源上发送的至少一个数据块; 判断所述至少一个数据块是否全部接收正确, 若所述至少一个数据块 全部接收正确, 则释放临时数据块流; 否则向所述移动台返回重传消息并 接收所述移动台根据所述重传消息重传来的数据块。
2、 如权利要求 1所述的上行数据传输方法, 其特征在于, 当所述移动 台根据将要发送的数据块计算得到需要的资源块数目大于八时, 若所述至 少一个数据块接收正确, 则释放所述临时数据块流的步骤具体为:
直接释放所述临时数据块流。
3、 如权利要求 1所述的上行数据传输方法, 其特征在于, 当所述移动 台根据将要发送的数据块计算得到需要的资源块数据小于或者等于八时, 还包括:
接收所述移动台发送来的分组信道请求消息, 所述分组信道请求消息 包括所需要的资源块的数目和扩展后的随机数;
通信设备为 MS 分配固定资源的步骤具体为: 根据所需要的资源块数 目和扩展后的随机数为所述移动台分配固定资源; 所述指派消息还包括接 入帧号、 所述扩展后的随机数。
4、 如权利要求 3所述的上行数据传输方法, 其特征在于, 所述扩展后 的随机数中包括优先级指示字段。
5、 如权利要求 3所述的上行数据传输方法, 其特征在于, 每个所述数 据块携带有唯一标识所述移动台的临时逻辑链路标识; 所述判断所述至少 一个数据块是否接收正确的步骤具体包括:
根据所述数据块的临时逻辑链路标识判断是否发生接入冲突; 若未发生接入冲突, 则判断所述至少一个数据块是否全部接收正确, 若发生接入冲突, 则向移动台返回携带所述临时逻辑链路标识的重传消息。
6、 如权利要求 5所述的上行数据传输方法, 其特征在于, 所述若所述 至少一个数据块全部接收正确, 则释放临时数据块流的步骤具体包括: 向所述移动台发送上行分组确认消息, 所述上行分组确认消息包括所 述临时逻辑链路标识;
释放所述临时数据块流。
7、 如权利要求 1至 5中任意一项所述的上行传数据输方法, 其特征在 于, 所述重传消息包括最大重传次数, 所述方法还包括:
根据上行无线链路的状态, 动态调整最大重传次数。
8、 一种上行数据传输方法, 其特征在于, 包括:
移动台接收通信设备发送的指派消息, 所述指派消息包括为所述移动 台分配的固定资源, 所述指派消息中的临时数据块流指示字段置空;
在所述分配的固定资源上向所述通信设备发送至少一个数据块; 当所述至少一个数据块全部被正确接收时, 释放临时数据块流; 否则, 接收所述通信设备返回来的重传消息, 并根据该重传消息重传数据块。
9、 如权利要求 8所述的上行数据传输方法, 其特征在于, 所述方法还 包括: 当所述移动台根据将要发送的数据块计算得到需要的资源块数目大 于八时, 所述移动台发送完所有的数据块之后, 启动定时器进行计时; 所述当所述至少一个数据块全部被正确接收时, 释放所述临时数据块 流的步骤具体包括:
若在定时器预设的时间内没有接收到所述通信设备返回的重传消息, 则计时到达预设的时间时直接释放所述临时数据块流。
10、 如权利要求 8所述的上行数据传输方法, 其特征在于, 当所述移 动台根据将要发送的数据块计算得到需要的资源块数据小于或者等于八 时, 还包括:
向所述通信设备发送分组信道请求消息, 所述分组信道请求消息包括 所需要的资源块的数目和扩展后的随机数; 所述指派消息还包括接入帧号、 所述扩展后的随机数;
根据所述扩展后的随机数和所述接入帧号判断所分配的固定资源是否 为分配给该移动台的固定资源。
11、 如权利要求 10所述的上行数据传输方法, 其特征在于, 每一个所 述数据块携带有唯一标识该移动台的临时逻辑链路标识;
所述当所述至少一个数据块被正确接收时, 释放临时数据块流, 具体 包括:
接收所述通信设备发送来的上行分组确认消息; 所述上行分组确认消 息包括所述临时逻辑链路标识;
判断所述上行分组确认消息的临时逻辑链路标识与该移动台本身的临 时逻辑链路标识是否相同, 若相同, 则释放所述临时数据块流, 否则重新 发送分组信道请求消息。
12、 如权利要求 8-11中任意一项所述的上行数据传输方法, 其特征在 于, 还包括:
当发送完所有数据块或者发送完重传数据块, 启动定时器进行计时; 当接收到所述上行分组确认消息或者所述重传消息, 停止所述定时器。
13、 一种通信设备, 其特征在于, 包括:
分配模块, 用于为所述移动台分配固定资源, 并向所述移动台返回临 时数据块流指示字段置空的指派消息, 所述指派消息中包括分配的固定资 源;
数据接收模块, 用于接收所述移动台在所述分配的固定资源上发送的 至少一个数据块;
判断模块, 用于判断所述移动台发送的所述至少一个数据块是否全部 接收正确;
资源释放模块, 用于当所述判断模块判断出所述至少一个数据块全部 接收正确时, 释放临时数据块流;
反馈模块, 用于当判断出所述判断模块至少一个数据块接收不正确时, 向所述移动台返回重传消息;
重传数据接收模块, 用于接收所述移动台根据所述重传消息重传来的 数据块。
14、 如权利要求 13所述的通信设备, 其特征在于, 当所述移动台根据 将要发送的数据块计算得到需要的资源块数目大于八, 且当判断模块判断 出所述至少一个数据块接收正确时, 所述资源释放模块直接释放所述临时 数据块流。
15、 如权利要求 13所述的通信设备, 其特征在于, 当所述移动台根据 将要发送的数据块计算得到需要的资源块数目小于或者等于八时, 所述分配模块包括:
请求接收子模块, 用于接收所述移动台发送来的分组信道请求消息, 所述分组信道请求消息包括所需要的资源块的数目和扩展后的随机数; 资源分配子模块, 用于根据所述分组信道请求消息中的所需要资源块 的数目和随机数为所述移动台分配固定资源; 所述指派消息还包括所述扩 展后的随机数、 移动台的接入帧号。
16、 如权利要求 15所述的通信设备, 其特征在于, 所述扩展后的随机 数中包括优先级指示字段。
17、 如权利要求 15所述的通信设备, 其特征在于, 每个数据块携带有 唯一标识所述移动台的临时逻辑链路标识;
所述判断模块包括:
冲突判断子模块, 用于根据各个数据块的临时逻辑链路标识判断是否 发生接入冲突;
数据判断子模块, 用于当所述冲突判断子模块判断出未发生接入冲突 时, 判断各个数据块是否接收正确;
第一反馈子模块, 用于当所述冲突判断子模块判断出发生了接入冲突 时, 向移动台返回携带所述临时逻辑链路标识的重传消息。
18、 如权利要求 17所述的通信设备, 其特征在于, 所述资源释放模块 包括:
第二反馈子模块, 用于当所述至少一个数据块全部接收正确时, 向所 述移动台返回上行分组确认消息, 所述上行分组确认消息包括所述临时逻 辑链路标识;
释放子模块, 用于当所述反馈子模块向移动台返回上行分组确认消息 时, 直接释放所述临时数据块流。
19、 如权利要求 13至 18中任意一项所述的通信设备, 其特征在于, 所述重传消息包括最大重传次数, 所述通信设备还包括:
重传设置模块, 用于在向所述移动台返回重传消息之前, 根据上行无 线链路的状态, 动态调整最大重传次数。
20、 一种移动台, 其特征在于, 包括:
资源接收模块, 用于接收通信设备发送的指派消息, 所述指派消息包 括为所述移动台分配的固定资源, 所述指派消息中的临时数据块流指示字 段置空;
数据发送模块, 用于在所述分配的固定资源上向所述通信设备发送至 少一个数据块;
资源释放模块, 用于当所述至少一个数据块全部被正确接收时, 释放 所述临时数据块流;
重传数据模块, 用于当所述至少一个数据块接收不正确时, 接收通信 设备返回的重传消息, 并根据该重传消息重传数据块。
21、 如权利要求 20所述的移动台, 其特征在于, 所述移动台还包括: 定时器, 当所述移动台根据将要发送的数据块计算得到需要的资源块数目 大于八时, 所述定时器用于当所述移动台发送完所有的数据块之后, 进行 计时;
所述资源释放模块用于若在定时器预设的时间内没有接收到所述通信 设备返回的重传消息, 则所述定时器的计时到达预设的时间时直接释放所 述临时数据块流。
22、 如权利要求 20所述的移动台, 其特征在于, 当所述移动台根据将 要发送的数据块计算得到需要的资源块数据小于或者等于八时, 所述资源 接收模块包括:
请求子模块, 用于向所述通信设备发送分组信道请求消息, 所述分组 信道请求消息包含所需要的资源块的数目和扩展后的随机数; 所述指派消 息包括接入帧号、 所述扩展后的随机数;
判断子模块, 用于根据所述扩展后的随机数和所述接入帧号判断所分 配的资源是否为分配给该移动台的固定资源。
23、 如权利要求 22所述的移动台, 其特征在于, 每一个所述数据块携 带有唯一标识该移动台的临时逻辑链路标识;
所述资源释放模块包括:
消息接收子模块, 用于接收所述通信设备发送来的上行分组确认消息, 所述上行分组确认消息包含所述临时逻辑链路标识;
标识判断子模块, 用于判断所述上行分组确认消息中的所述临时逻辑 链路标识是否与所述移动台本身的临时逻辑链路标识相同;
释放子模块, 用于当判断结果为是时, 释放所述临时数据块流; 当判断结果为否时, 所述请求子模块还用于向所述通信设备重新发送 分组信道请求消息。
24、 如权利要求 20至 23所述的移动台, 其特征在于, 所述定时器还 用于在发送完所有的数据块, 或者重传完所有接收不正确的数据块时开始 计时, 以及在接收到所述通信设备发送来的上行分组确认消息或者重传消 息时停止计时。
PCT/CN2013/073103 2012-06-27 2013-03-25 一种上行数据传输方法及通信设备、移动台 WO2014000475A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210215569.0A CN103516472B (zh) 2012-06-27 2012-06-27 一种上行数据传输方法及通信设备、移动台
CN201210215569.0 2012-06-27

Publications (1)

Publication Number Publication Date
WO2014000475A1 true WO2014000475A1 (zh) 2014-01-03

Family

ID=49782180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073103 WO2014000475A1 (zh) 2012-06-27 2013-03-25 一种上行数据传输方法及通信设备、移动台

Country Status (2)

Country Link
CN (1) CN103516472B (zh)
WO (1) WO2014000475A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210176786A1 (en) * 2018-08-24 2021-06-10 Huawei Technologies Co., Ltd. Method And Apparatus For Implementing Collision Detection In Data Transmission
US12028901B2 (en) 2018-08-24 2024-07-02 Huawei Technologies Co., Ltd. Method and apparatus for implementing collision detection in data transmission

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102319698B1 (ko) * 2015-05-29 2021-11-01 삼성전자 주식회사 무선 통신 시스템에서 데이터 송수신 방법 및 장치
CN109089225A (zh) 2017-06-14 2018-12-25 维沃移动通信有限公司 一种系统信息传输方法、终端及网络设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1325644A1 (en) * 2000-10-10 2003-07-09 Nokia Corporation Method and apparatus for sharing uplink state flag (usf) with multiple uplink temporary block flows (tbfs)
CN1878396A (zh) * 2005-06-10 2006-12-13 中兴通讯股份有限公司 一种通用分组无线业务传输链路控制方法
CN101154992A (zh) * 2006-09-30 2008-04-02 华为技术有限公司 一种分组数据传输的实现方法和系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6920121B2 (en) * 2003-03-17 2005-07-19 Qprs Limited Quality packet radio service for a general packet radio system
RU2469502C2 (ru) * 2007-11-06 2012-12-10 Нокиа Сименс Нетуоркс Ой Система и способ однофазного доступа в системе связи
CN101547433B (zh) * 2008-03-25 2013-02-13 华为技术有限公司 上报终端能力信息的方法、时隙资源分配方法、装置及系统
CN101959161B (zh) * 2009-07-16 2014-12-10 中兴通讯股份有限公司 上行固定资源分配信令的发送及接收方法
EP3179809B1 (en) * 2010-03-03 2019-07-10 BlackBerry Limited Method and apparatus to signal use-specific capabilities of mobile stations to establish data transfer sessions
CN101827397B (zh) * 2010-03-04 2012-09-05 华为技术有限公司 建立临时块流的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1325644A1 (en) * 2000-10-10 2003-07-09 Nokia Corporation Method and apparatus for sharing uplink state flag (usf) with multiple uplink temporary block flows (tbfs)
CN1878396A (zh) * 2005-06-10 2006-12-13 中兴通讯股份有限公司 一种通用分组无线业务传输链路控制方法
CN101154992A (zh) * 2006-09-30 2008-04-02 华为技术有限公司 一种分组数据传输的实现方法和系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210176786A1 (en) * 2018-08-24 2021-06-10 Huawei Technologies Co., Ltd. Method And Apparatus For Implementing Collision Detection In Data Transmission
US11589389B2 (en) * 2018-08-24 2023-02-21 Huawei Technologies Co., Ltd. Method and apparatus for implementing collision detection in data transmission
US12028901B2 (en) 2018-08-24 2024-07-02 Huawei Technologies Co., Ltd. Method and apparatus for implementing collision detection in data transmission

Also Published As

Publication number Publication date
CN103516472B (zh) 2017-04-05
CN103516472A (zh) 2014-01-15

Similar Documents

Publication Publication Date Title
US11012196B2 (en) Base stations, user equipments and a system for wireless communication, as well as the corresponding methods
JP6339549B2 (ja) データ伝送パラメータを動的に調整しh−arq処理を制御する方法および装置
JP6337040B2 (ja) Ttiバンドリングによるアップリンク送信の強化
WO2021063133A1 (zh) Harq进程管理方法、装置、终端及存储介质
US8254333B2 (en) Method for improving buffer status triggering mechanism in wireless communications system and related communication device
US20200021402A1 (en) Data transmission method and related device
JP5357295B2 (ja) 無線通信システムにおけるエラー制御メッセージを処理するための方法及び装置
TWI486019B (zh) 無線傳輸接收單元(wtru)及在無線傳輸接收單元決定混合自動重複請求(harq)的方法
KR20120125975A (ko) 중복 eu 할당 요청들 및 장애-고립형 eu 전송 실패들을 최소화하는 방법 및 장치
WO2013120458A1 (zh) 数据传输方法、基站及用户设备
CN104735805A (zh) 在移动通信系统中启动共用信道上的通信的方法和设备
WO2009085628A1 (en) Techniques for maintaining quality of service for connections in wireless communication systems
WO2012083624A1 (zh) 一种半静态调度业务资源释放方法及系统
WO2013037299A1 (zh) 传输数据的方法、物联网设备和网络侧设备
KR20160036458A (ko) 단말간 통신의 harq 처리 방법 및 장치
WO2014000475A1 (zh) 一种上行数据传输方法及通信设备、移动台
KR101224538B1 (ko) 이동통신 시스템에서 랜덤액세스 절차시 상위 메시지가 적응적 재전송 명령에 의해 인터럽트 되는 경우에 대한 처리 방법 및 장치
US20160242154A1 (en) Method of error recovery in transmitting and receiving voice service in packet based mobile communication systems
KR20070113090A (ko) 이동통신 시스템에서 제어 메시지를 재전송하는 방법 및장치
KR20120010022A (ko) 무선 통신 시스템에서 상향링크 자원 할당 정보의 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13808910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13808910

Country of ref document: EP

Kind code of ref document: A1