WO2017117800A1 - 数据发送和接收装置、方法以及通信系统 - Google Patents

数据发送和接收装置、方法以及通信系统 Download PDF

Info

Publication number
WO2017117800A1
WO2017117800A1 PCT/CN2016/070478 CN2016070478W WO2017117800A1 WO 2017117800 A1 WO2017117800 A1 WO 2017117800A1 CN 2016070478 W CN2016070478 W CN 2016070478W WO 2017117800 A1 WO2017117800 A1 WO 2017117800A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
unit
control layer
transmitted
radio link
Prior art date
Application number
PCT/CN2016/070478
Other languages
English (en)
French (fr)
Inventor
徐海博
史玉龙
周华
贾美艺
Original Assignee
富士通株式会社
徐海博
史玉龙
周华
贾美艺
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 徐海博, 史玉龙, 周华, 贾美艺 filed Critical 富士通株式会社
Priority to PCT/CN2016/070478 priority Critical patent/WO2017117800A1/zh
Publication of WO2017117800A1 publication Critical patent/WO2017117800A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data transmitting and receiving apparatus, method, and communication system.
  • a terminal also referred to as a user equipment
  • the battery of the terminal needs to be used for a long time, for example, it needs to be able to be used for more than 10 years;
  • applications for the Internet of Things have the following business characteristics: (1) low throughput; (2) infrequent arrival of data; (3) relatively small data packets.
  • the 3GPP Access Network Standards Development Group has decided to design a narrowband physical layer access technology based on the Long Term Evolution (LTE) system architecture to support the Internet of Things.
  • LTE Long Term Evolution
  • the 3GPP core network standards development group has also proposed a new network architecture and two more efficient solutions that support infrequent small packet transmission.
  • the corresponding working group has reached a lot of consensus on the high-level protocols of the access network.
  • the basic direction is to design high-level protocols for the Internet of Things based on the relatively mature LTE/LTE-A high-level protocols.
  • IoT application requirements and features can be considered for further optimization or simplification.
  • the terminal of the Internet of Things can support only one hybrid automatic repeat request (HARQ) process for the transmission of dedicated data/signaling, without having to adopt multi-process HARQ; in addition, there are many functions, such as multimedia.
  • HARQ hybrid automatic repeat request
  • MBMS Broadcast Multicast Service
  • Multimedia Broadcast/Multicast Service IoT terminals can be used without support.
  • the inventor has found that in order to provide more reliable data transmission to the network layer, the HARQ retransmission mechanism and radio link control (RLC, Radio Link Control) capable of simultaneously supporting Media Access Control (MAC) in the LTE access network can be simultaneously supported.
  • RLC Radio Link Control
  • MAC Media Access Control
  • ARQ retransmission mechanism In order to maintain high-reliability data transmission in the wireless access network oriented to the Internet of Things, the RLC layer still adopts the ARQ retransmission mechanism, that is, the RLC layer acknowledgement mode (AM, Acknowledgement Mode) will still be used. However, this mode can be considered for further simplification to reduce terminal complexity, power consumption, and number of transmissions.
  • Embodiments of the present invention provide a data transmitting and receiving apparatus, method, and communication system; and simplifying an AM-based data transmitting and receiving mechanism of an RLC layer.
  • a data sending method including:
  • the data to be transmitted is data that needs to be delivered by the RLC layer
  • an indication is sent to the RLC layer to notify the RLC layer to transmit new data or retransmit the last transmitted data.
  • a data transmitting apparatus including:
  • a MAC layer unit which determines data to be transmitted sent to the receiving end according to feedback indication information for the transmitted data and/or data in the HARQ buffer submitted by the physical layer; and when the data to be transmitted needs to be submitted by the RLC layer
  • the data is sent to the RLC layer to inform the RLC layer to transmit new data or to retransmit the last transmitted data.
  • a data receiving method including:
  • the RLC layer receives data transmitted by the transmitting end
  • the RLC layer determines whether to trigger a status feedback report based on the sequence information of the data completely received in order and the highest sequence information in the received data.
  • a data receiving apparatus including:
  • An RLC layer unit that receives data transmitted by the transmitting end; and determines whether to trigger a status feedback report based on sequence information of the data received in sequence and the highest sequence information in the received data.
  • a communication system including:
  • the MAC layer of the sending end determines, according to the feedback indication information of the transmitted data and/or the presence or absence of data in the HARQ buffer, the data to be transmitted sent to the receiving end; and when the data to be transmitted is When data submitted by the RLC layer is required, an indication is sent to the RLC layer to notify the RLC layer to transmit new data or retransmit the last transmitted data;
  • the receiving end receives the data transmitted by the transmitting end; and determines whether to trigger the status feedback report according to the sequence information of the data completely received in order and the highest sequence information in the received data.
  • the MAC layer of the transmitting end determines the data to be transmitted according to the feedback indication information for the transmitted data and/or the data in the HARQ buffer submitted by the physical layer, thereby being capable of supporting a HARQ process.
  • the RLC layer AM-based data transmission and reception mechanism can be simplified, and the complexity, power consumption and transmission times of the Internet of Things terminal are reduced.
  • FIG. 1 is a schematic diagram of a data transmission method according to Embodiment 1 of the present invention.
  • FIG. 2 is another schematic diagram of a data transmitting method according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram of a high layer protocol stack of a radio access network interface according to Embodiment 1 of the present invention.
  • FIG. 4 is another schematic diagram of a data transmitting method according to Embodiment 1 of the present invention.
  • FIG. 5 is another schematic diagram of a data transmitting method according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of a data receiving method according to Embodiment 2 of the present invention.
  • FIG. 7 is another schematic diagram of a data receiving method according to Embodiment 2 of the present invention.
  • Figure 8 is a schematic diagram of a data transmitting apparatus according to Embodiment 7 of the present invention.
  • FIG. 9 is a schematic diagram of a MAC layer unit according to Embodiment 7 of the present invention.
  • FIG. 10 is a schematic diagram of an RLC layer unit according to Embodiment 7 of the present invention.
  • FIG. 11 is a schematic diagram of a user equipment according to Embodiment 7 of the present invention.
  • Figure 12 is a schematic diagram of a base station according to Embodiment 7 of the present invention.
  • Figure 13 is a schematic diagram of a data receiving apparatus according to Embodiment 8 of the present invention.
  • FIG. 14 is a schematic diagram of an RLC layer unit according to Embodiment 8 of the present invention.
  • Figure 15 is a diagram showing a communication system of a ninth embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a data sending method according to an embodiment of the present invention, which is described from a sending end. As shown in FIG. 1, the data sending method includes:
  • Step 101 The MAC layer determines the data to be transmitted sent to the receiving end according to the feedback indication information for the transmitted data and/or the presence or absence of the data in the HARQ buffer submitted by the physical layer.
  • Step 102 When the data to be transmitted is data that needs to be submitted by the RLC layer, the MAC layer sends an indication to the RLC layer to notify the RLC layer to transmit new data or retransmit the last transmitted data.
  • the transmitting end when transmitting uplink data, the transmitting end may be a user equipment (UE, User Equipment) of the IoT system, and the receiving end is a base station (for example, an eNB) of the IoT system; when transmitting downlink data, the transmitting end may be The base station (for example, eNB) of the IoT system, and the receiving end is a user equipment of the IoT system.
  • the present invention is not limited thereto, and may be, for example, other communication systems. That is, the embodiment of the present invention is described by taking only the IOT system as an example, but is not limited thereto, and can be applied to any communication system that adopts an AM-based data transmission and reception mechanism.
  • the base station may be a macro base station (for example, an eNB), and the macro generated by the user equipment by the macro base station A cell (for example, a Macro cell) provides a service; or a base station may also be a micro base station, and a user equipment is served by a micro cell (for example, a Pico cell) generated by the micro base station.
  • a macro base station for example, an eNB
  • a cell for example, a Macro cell
  • a base station may also be a micro base station, and a user equipment is served by a micro cell (for example, a Pico cell) generated by the micro base station.
  • the present invention is not limited thereto, and a specific scenario can be determined according to actual needs.
  • the feedback indication information for the transmitted data may be referred to as HARQ feedback indication information.
  • the HARQ feedback indication information may include: ACK/NACK information fed back by a physical hybrid automatic repeat request indication channel (PHICH, Physical HARQ Indicator Channel), and an uplink grant transmitted through a physical downlink control channel (PDCCH) (Physical Downlink Control Channel) Information and new data indicator (NDI, New Data Indicator) information; or the HARQ feedback indication information may include: uplink grant information and new data indication information transmitted through the PDCCH.
  • PHICH Physical hybrid automatic repeat request indication Channel
  • PDCCH Physical Downlink control channel
  • NDI New Data Indicator
  • the HARQ buffer is a buffer corresponding to the MAC layer of the sender.
  • the HARQ buffer is a buffer corresponding to the MAC layer of the sender.
  • FIG. 2 is another schematic diagram of a data sending method according to an embodiment of the present invention. As shown in FIG. 2, the method includes:
  • Step 201 The MAC layer receives the HARQ feedback indication information that is delivered by the physical layer for the transmitted data.
  • TTI_X Transmission Time Interval
  • the physical layer of the transmitting end receives the HARQ feedback indication information from the receiving end for the last transmitted data, and the indication information is Submit to the MAC layer.
  • Step 202 the MAC layer obtains a transmission opportunity
  • TTI_Y the sender gets an opportunity to transfer data.
  • TTI_X and TTI_Y can be the same TTI or different TTIs.
  • Step 203 The MAC layer determines, according to the HARQ feedback indication information and/or the presence or absence of data in the HARQ buffer, the data to be transmitted sent to the receiving end.
  • Step 204 When the data to be transmitted is data that needs to be delivered by the RLC layer, the MAC layer sends an indication to the RLC layer to notify the RLC layer to transmit new data or retransmit the last transmitted data.
  • the data to be transmitted may be data in the HARQ buffer, or may be data submitted by the RLC layer, and specifically, which data may be as described in the following embodiments.
  • Step 205 The MAC layer sends the to-be-transmitted data on the transmission opportunity.
  • the MAC layer may determine whether the new data is transmitted to the receiving end or the data transmitted last time according to the feedback indication information for the transmitted data and/or the presence of the data in the HARQ buffer submitted by the physical layer. It is still necessary to retransmit the data, thereby simplifying the AM-based data transmission and reception mechanism of the RLC layer.
  • layer 2 is a schematic structural diagram of layer 2 (layer 2) of a radio access network interface (for example, an interface between a UE and an eNB) according to an embodiment of the present invention.
  • layer 2 may include a packet data collection protocol (PDCP, Packet Data Convergence Protocol layer, Radio Link Control (RLC) layer, and Media Access Control (MAC) layer.
  • PDCP packet data collection protocol
  • RLC Radio Link Control
  • MAC Media Access Control
  • the RLC layer generates a data packet that is handed over to the MAC layer, which is called a RLC Protocol Data Unit (PDU).
  • PDU RLC Protocol Data Unit
  • Two packets ie two PDUs are generated at the RLC layer.
  • a PDU generated after the data received by the RLC layer from the upper layer (ie, the PDCP layer) is processed may be referred to as a data PDU; and the data PDU corresponding to the data transmitted through the AM mode may be defined as an AMD PDU.
  • the other is a PDU generated by the RLC layer itself for feeding back to the transmitting end whether the data sent by the transmitting end has been successfully received at the receiving end, and may be referred to as a STATUS PDU.
  • the data received from the upper layer is processed.
  • the data received from the upper layer may be referred to as an RLC Service Data Unit (SDU).
  • SDU RLC Service Data Unit
  • SN sequence number
  • sequence number is associated with the sender, and the SN will be included in the header of the AMD PDU.
  • the RLC layer of the transmitting end generates a new PDU and delivers the new PDU to the MAC layer, or delivers the previously transmitted PDU to the MAC layer only when the MAC layer of the transmitting end notifies the transmission opportunity.
  • the data packet received by the MAC layer from the RLC layer is called a MAC SDU.
  • the MAC SDU will get the MAC PDU after being processed at the MAC layer.
  • the MAC layer transfers the corresponding MAC PDU to the physical layer for transmission according to whether the transmission opportunity is used to transmit a new MAC PDU or to retransmit the previous MAC PDU.
  • the MAC layer hands over a newly generated MAC PDU to the physical layer, it also stores the MAC PDU in the corresponding HARQ buffer.
  • the MAC PDU is taken out from the HARQ buffer and handed over to the physical layer.
  • the present invention will be further described below in conjunction with the MAC layer and the RLC layer.
  • FIG. 4 is another schematic diagram of a data transmitting method according to an embodiment of the present invention, showing a case of a MAC layer at a transmitting end. As shown in FIG. 4, the method includes:
  • Step 401 The MAC layer receives the HARQ feedback indication information that is delivered by the physical layer for the transmitted data.
  • Step 402 the MAC layer obtains a transmission opportunity
  • Step 403 The MAC layer determines whether the HARQ feedback indication information indicates to perform new data transmission; performs step 404 if it is not instructed to perform new data transmission (ie, performs data retransmission), and performs steps in the case of instructing to perform new data transmission. 408;
  • Step 404 the MAC layer determines whether the HARQ buffer is empty (ie, whether there is data), in the case that the HARQ buffer is not empty, step 405 is performed, and if the HARQ buffer is empty, step 406 is performed;
  • Step 405 Determine data in the HARQ buffer as data to be transmitted.
  • the MAC layer may add a variable for recording the number of data retransmissions (initial value is 0); when the variable is equal to the data When the maximum number of transmissions allowed is decremented by 1, the HARQ buffer is cleared.
  • Step 406 notifying the RLC layer to submit the last transmission data
  • step 407 the data submitted by the RLC layer is used as data to be transmitted.
  • Step 408 notifying the RLC layer to submit new data
  • Step 409 The MAC layer sends the to-be-transmitted data on the transmission opportunity.
  • the HARQ buffer is determined by first determining the HARQ feedback indication information as an example.
  • the present invention is not limited thereto.
  • the HARQ feedback indication information may be determined after the HARQ buffer is first determined, or may be performed simultaneously. These two judgments.
  • FIG. 5 is another schematic diagram of a data transmitting method according to an embodiment of the present invention, showing a case of an RLC layer at a transmitting end. As shown in FIG. 5, the method includes:
  • Step 501 The RLC layer receives a status feedback report sent by the receiving end, where the status feedback report includes sequence information of the data that is not correctly received by the RLC layer of the receiving end.
  • the status feedback report may include one or more serial numbers.
  • Step 502 The RLC layer determines, according to the status feedback report, data that needs to be retransmitted.
  • the RLC layer can determine that the data with sequence number 9 needs to be retransmitted; in addition, one or more data that needs to be retransmitted can be determined, and the data that needs to be retransmitted can be put into the retransmission buffer.
  • Step 503 The RLC layer receives an indication of a MAC layer.
  • Step 504 the RLC layer determines whether the MAC layer indicates the delivery of the last transmitted data; in the case of indicating the delivery of the last transmitted data, step 505 is performed, without indicating the submission of the last transmitted data (ie, indicating the submission of new data). Step 506 is performed;
  • Step 505 submit the last transmitted data to the MAC layer.
  • Step 506 the RLC layer determines whether there is data that needs to be retransmitted; if there is data that needs to be retransmitted, step 507 is performed, and if there is no data that needs to be retransmitted, step 508 is performed;
  • the data in which retransmission is required is determined by steps 501 and 502.
  • Step 507 submit data to the MAC layer that needs to be retransmitted.
  • Step 508 the RLC layer generates new data
  • step 509 the new data is submitted to the MAC layer.
  • FIG. 5 only shows the case where the RLC layer responds to the MAC layer indication once, after step 505, 507 or 509, the RLC layer may perform step 503 to receive the indication of the MAC layer again. Furthermore, steps 501 through 502 and steps 503 through 509 can be performed independently in parallel.
  • FIG. 4 or FIG. 5 only schematically illustrates an embodiment of the present invention, but the present invention is not limited thereto.
  • the order of execution between the various steps can be appropriately adjusted, and other steps can be added or some of the steps can be reduced.
  • Those skilled in the art can appropriately modify the above based on the above contents, and are not limited to the description of the above drawings.
  • the MAC layer of the transmitting end obtains an opportunity to perform uplink data transmission at TTI #1.
  • the MAC will inform the RLC layer to generate a new RLC PDU.
  • the sequence number of the RLC PDU is, for example, three.
  • the MAC layer then encapsulates the RLC PDU into a MAC PDU A and transmits it, and stores the MAC PDU A in a HARQ buffer.
  • the physical layer of the UE receives the PDCCH, and the PDCCH schedules an uplink data transmission opportunity while carrying the NDI bit value.
  • the physical layer notifies the MAC layer of the transmission opportunity and the NDI value.
  • the MAC layer determines that a new RLC PDU needs to be transmitted at the data transmission opportunity next.
  • the MAC sends an indication to the RLC layer to inform it to submit a new RLC PDU.
  • the RLC layer will generate a new RLC PDU #4 And submitted to the MAC layer.
  • the RLC layer If the RLC layer receives a status feedback report sent by the receiver before this, indicating that the RLC PDU #2 is not received, the RLC layer will deliver the previously transmitted RLC PDU #2 to the MAC layer.
  • the MAC layer determines that the data transmission opportunity needs to be retransmitted next.
  • the MAC PDU A Assuming that the maximum number of retransmissions configured by the base station for the UE is one, the MAC layer clears the HARQ buffer while the MAC PDU A is handed over to the physical layer.
  • the physical layer of the UE receives the PDCCH, and the PDCCH schedules an uplink data transmission opportunity while carrying the NDI bit value.
  • the physical layer notifies the MAC layer of the transmission opportunity and the NDI value.
  • the MAC layer determines that a new RLC PDU needs to be transmitted at the data transmission opportunity next. .
  • the MAC sends an indication to the RLC layer to inform it to submit a new RLC PDU.
  • the RLC layer will generate a new RLC PDU #4 and submit it to the MAC layer.
  • the RLC layer If the RLC layer receives a status feedback report sent by the receiver before this, indicating that the RLC PDU #2 is not received, the RLC layer will deliver the previously transmitted RLC PDU #2 to the MAC layer.
  • the MAC layer determines that the data transmission opportunity transmission needs to be retransmitted last transmission. RLC PDU.
  • the MAC sends an indication to the RLC layer to inform it of the RLC PDU that was last transmitted. Thereafter, the RLC layer will resubmit the RLC PDU #3 to the MAC layer.
  • the MAC layer determines, in the case that the HARQ feedback indication information indicates that data retransmission is performed and data exists in the HARQ buffer, the data in the HARQ buffer is determined as data to be transmitted; and the HARQ feedback indication information indicates that data retransmission is performed. And if there is no data in the HARQ buffer, the RLC layer is notified to submit the last transmitted data.
  • the data transmission and reception can be realized while supporting one HARQ process, and the RLC layer AM-based data transmission and reception mechanism is simplified.
  • the MAC layer notifies the RLC layer to submit new data if the HARQ feedback indication information indicates that the new data transmission is performed; the RLC layer determines the data that needs to be retransmitted according to the status feedback report, and indicates that the new data is submitted and required by the MAC layer.
  • data to be retransmitted is delivered to the MAC layer. Not only can the transmission of the status feedback report be reduced, but also the transmission and reception of data can be reliably implemented.
  • the embodiment of the present invention provides a data receiving method, which corresponds to the data sending method of Embodiment 1, and the same content as Embodiment 1 is not described herein.
  • FIG. 6 is a schematic diagram of a data receiving method according to an embodiment of the present invention, which is described from the receiving end. As shown in FIG. 6, the data receiving method includes:
  • Step 601 The RLC layer at the receiving end receives data transmitted by the transmitting end;
  • Step 602 The RLC layer of the receiving end determines whether to trigger the status feedback report according to the sequence information of the data completely received in order and the highest sequence information in the received data.
  • the receiving end may also send a status feedback report to the transmitting end, and notify the sending end of the sequence information of the data that is not correctly received, so that the transmitting end can retransmit the data.
  • the status feedback report includes sequence information of data that is not correctly received by the RLC layer.
  • the sequence information of the data completely received in order may be, for example, the next sequence number (ie, x+1) of the sequence number (for example, x) of the data completely received in order; the received data.
  • the highest sequence information in the middle may be, for example, the next sequence number (i.e., y+1) of the highest sequence number (e.g., y) in the received data.
  • the present invention is not limited thereto, and for example, it may be appropriately modified.
  • FIG. 7 is another schematic diagram of a data receiving method according to an embodiment of the present invention, which is described from the receiving end. As shown in FIG. 7, the data receiving method includes:
  • Step 701 the RLC layer maintains state variables V1 and V2;
  • V1 records the next serial number of the serial number corresponding to the data completely received in order
  • V2 records the next serial number of the highest serial number in the received data; both V1 and V2 are initialized to zero.
  • Step 702 Receive a data transmitted by the sending end.
  • Step 703 updating V1 and V2 according to the serial number of the data
  • V2 is further New is X+1.
  • V1 is updated to the sequence number corresponding to the next data that has not been correctly received (for example, X+1); in addition, the data may be reassembled and submitted. Give the upper layer of the RLC layer.
  • Step 704 it is determined whether V2 is greater than V1; if V2 is greater than V1, step 705 is performed, otherwise step 702 may be continued.
  • Step 705 triggering a status feedback report.
  • Step 706 generating and transmitting a status feedback report at the first transmission opportunity.
  • both V1 and V2 are initialized to 0.
  • V1 When data with sequence number 0 is received, V1 is updated to 1, and V2 is also updated to 1.
  • V1 is Updated to 2
  • V2 when receiving data with sequence number 2
  • V1 is updated to 3
  • V2 is also updated to 3.
  • both V1 and V2 are still 3, and the receiver can indicate the retransmission of the last transmitted data through the HARQ feedback indication information.
  • the receiving end correctly receives the retransmitted data of sequence number 3, and both V1 and V2 are updated to 4.
  • the transmitting end has sent the data with sequence number 4, but the receiving end does not correctly receive the data.
  • both V1 and V2 are still 4, and the receiving end can indicate the retransmission of the last transmission through the HARQ feedback indication information.
  • the data but the HARQ feedback indication message has a transmission error, that is, the sender considers that the receiver has correctly received the data with sequence number 4, and the sender continues to transmit the data with sequence number 5.
  • the receiving end correctly receives the data with sequence number 5
  • V1 will not be updated but will still be 4
  • the sender receives the status feedback report, the data with sequence number 4 can be retransmitted.
  • FIG. 7 shows a case where no timer is set.
  • a timer T can also be maintained for controlling the frequency of the transmission status feedback report. This can further reduce the status feedback report and reduce communication overhead.
  • a status feedback report can be set up and sent in the first transmission opportunity after the status report is triggered, and the timer T is started at the same time; If the timer T is running, the first transmission opportunity after the timer T expires sets up a status feedback report and sends it, and restarts the timer T at the same time.
  • the MAC layer of the transmitting end determines the data to be transmitted according to the feedback indication information for the transmitted data and/or the presence of the data in the HARQ buffer submitted by the physical layer; the data can be implemented under the condition of supporting one HARQ process. Transmission and reception, thereby simplifying the RLC layer AM-based data transmission and reception mechanism, reducing the complexity, power consumption and transmission times of the IoT terminal.
  • the receiving end determines whether to trigger the state feedback report according to the sequence information of the data completely received in order and the highest sequence information in the received data; the reliability of the data transmission can be improved in the case of reducing the state feedback report.
  • the embodiment of the present invention is based on the first embodiment, and the above data transmission is taken as an example.
  • the sending end is a user equipment, and the same content as that of the first embodiment is not described again.
  • the user equipment receives the first uplink grant after transitioning from the idle (IDLE) state to the connected state.
  • the data in the HARQ cache is cleared.
  • the MAC layer determines that the uplink grant is the first one received after the user equipment establishes a radio resource control (RRC) connection or restarts the RRC connection.
  • RRC radio resource control
  • the RLC layer is notified to generate a new AMD PDU to be submitted to the MAC layer.
  • the MAC layer clears the HARQ buffer where the MAC PDU x is located.
  • the MAC layer receives the uplink grant and NDI submitted by the physical layer again, the MAC layer checks the reverse of the NDI received by the NDI from the physical layer when the data was last transmitted.
  • the MAC layer submits an indication to the RLC layer to inform the RLC layer to generate a new AMD PDU. And submitted to the MAC layer. Otherwise, the MAC layer submits an indication to the RLC layer to inform the RLC layer that it will be the previous time.
  • the transmitted AMD PDU is delivered to the MAC layer.
  • the physical layer feeds back ACK/NACK through the PHICH channel, and schedules data transmission through the PDCCH.
  • the MAC PDU x when the MAC layer transmits one MAC PDU x, and the MAC PDU x has not reached the maximum number of retransmissions at the MAC layer, the MAC PDU x continues to be stored in the HARQ buffer.
  • the state variable HARQ_FEEDBACK is set to the feedback value.
  • the MAC layer submits an indication to the RLC layer to inform the RLC layer to generate a new AMD PDU and submit it to the MAC layer;
  • the MAC layer retransmits the MAC PDU x stored in the HARQ buffer.
  • the value of the variable recording the number of times of MAC PDU x retransmission is incremented by one. If the number of retransmissions of the MAC PDU x has reached the maximum number of retransmissions, the HARQ cache storing the MAC PDU x is cleared.
  • the MAC layer When the MAC layer receives the ACK/NACK feedback for the MAC PDU x from the physical layer and receives the uplink grant and NDI submitted by the physical layer:
  • the MAC layer submits an indication to the RLC layer to inform the RLC layer to generate a new AMD PDU and submit it to the MAC layer;
  • the MAC layer retransmits the MAC PDU x stored in the HARQ buffer.
  • the value of the variable recording the number of times of MAC PDU x retransmission is incremented by one. If the number of retransmissions of the MAC PDU x has been After the maximum number of retransmissions is reached, the HARQ cache storing the MAC PDU x is cleared.
  • the MAC layer submits an indication to the RLC layer to inform the RLC layer to generate a new AMD PDU and submit it to the MAC layer;
  • the MAC layer submits an indication to the RLC layer to inform the RLC layer to deliver the previously transmitted AMD PDU to the MAC layer.
  • the physical layer does not feed back ACK/NACK through the PHICH channel, and only schedules data transmission through the PDCCH.
  • the MAC PDU x continues to be stored in the HARQ buffer.
  • the MAC layer checks the reverse of the NDI received by the NDI from the physical layer when the data was last transmitted:
  • the MAC layer submits an indication to the RLC layer to inform the RLC layer to generate a new AMD PDU and submit it to the MAC layer;
  • the MAC layer retransmits the MAC PDU x stored in the HARQ buffer.
  • the retransmission buffer of the RLC layer is empty.
  • the RLC layer does not currently have an AMD PDU that needs to be retransmitted. If the RLC layer receives an indication from the MAC layer that the RLC layer is required to generate a new AMD PDU, the RLC layer generates a new AMD PDU, and associates the AMD PDU with a new sequence number and delivers the new AMD PDU to the MAC layer;
  • the RLC layer receives an indication from the MAC layer and requests the RLC layer to retransmit the AMD PDU, the RLC layer considers that the previously transmitted AMD PDU needs to be retransmitted, and delivers the previously transmitted AMD PDU to the MAC layer. Thereafter, the AMD PDU will no longer be considered an AMD PDU that needs to be retransmitted.
  • Another equivalent operation is that the RLC layer considers that the previously transmitted AMD PDU needs to be retransmitted, and puts the previously transmitted AMD PDU into the retransmission buffer of the RLC layer, and delivers it to the MAC layer. The previously transmitted AMD PDU is then removed from the retransmission buffer.
  • the RLC layer currently has an AMD PDU that needs to be retransmitted.
  • the RLC layer receives an indication of the MAC layer, whether the indication requires the RLC layer to generate a new AMD PDU or the RLC layer to retransmit the AMD PDU, the RLC layer will have the smallest sequence number in the AMD PDU that needs to be retransmitted.
  • the AMD PDU is delivered to the MAC layer; thereafter, the AMD PDU will no longer be considered an AMD PDU that needs to be retransmitted.
  • Another equivalent operation is that the RLC layer finds the AMD PDU with the smallest sequence number from the retransmission buffer and submits it to the MAC layer, and then removes the AMD PDU from the retransmission buffer.
  • the RLC layer may consider that the previously transmitted AMD PDU corresponding to the sequence number indicated in the STATUS PDU needs to be retransmitted.
  • Another equivalent operation is that the RLC layer puts the previously transmitted AMD PDU corresponding to the sequence number indicated in the STATUS PDU into the retransmission buffer.
  • the embodiment of the present invention is based on the embodiment 2, and the foregoing data transmission is taken as an example.
  • the receiving end is a base station, and the same content as that of the second embodiment is not described again.
  • the AMD PDU whose sequence number is smaller than the updated V1 is reassembled and handed over to the PDCP layer.
  • the first transmission opportunity after the status feedback report is triggered to form a status feedback report and send the status feedback report.
  • the AMD PDU whose sequence number is smaller than the updated V1 is reassembled and handed over to the PDCP layer.
  • the timer T is not running, the first transmission opportunity after the status feedback report is triggered to form a status feedback report and send the status feedback report, and start the timer T;
  • the first transmission opportunity after the timer expires sets up a status feedback report and sends the status feedback report, and restarts the timer T.
  • the receiving end (base station) in the uplink data transmission is schematically illustrated by the foregoing embodiments on the basis of the second embodiment.
  • the present invention is not limited thereto, and may be appropriately configured according to the above example. Ground adjustment or deformation.
  • the embodiment of the present invention is based on the first embodiment, and the following data transmission is taken as an example.
  • the transmitting end is a base station, and the same content as that of Embodiment 1 is not described again.
  • the base station has transmitted the MAC PDU to the user equipment and the current HARQ buffer is empty.
  • the MAC layer clears the HARQ buffer where the MAC PDU x is located.
  • the MAC layer schedules downlink data transmission for the user equipment again based on the result of the scheduling algorithm, the MAC layer submits an indication to the RLC layer to notify the RLC layer to generate a new AMD PDU to be delivered to the MAC layer.
  • the MAC layer schedules downlink data transmission for the user equipment again based on the result of the scheduling algorithm, the MAC layer submits an indication to the RLC layer to inform the RLC layer to deliver the previously transmitted AMD PDU to the MAC layer.
  • the base station has transmitted the MAC PDU to the user equipment and the current HARQ buffer still stores the most recently transmitted MAC PDU.
  • the MAC PDU x when the MAC layer transmits one MAC PDU x, and the MAC PDU x has not reached the maximum number of retransmissions at the MAC layer, the MAC PDU x continues to be stored in the HARQ buffer.
  • the state variable HARQ_FEEDBACK is set to the feedback value.
  • the MAC layer When the MAC layer schedules downlink data transmission for the user equipment again based on the result of the scheduling algorithm, the MAC layer retransmits the MAC PDU x stored in the HARQ buffer; and adds the variable value of the number of retransmissions of the MAC PDU x to 1 . If the number of retransmissions of the MAC PDU x has reached the maximum number of retransmissions, the HARQ cache storing the MAC PDU x is cleared.
  • the MAC layer schedules downlink data transmission for the user equipment again based on the result of the scheduling algorithm, the MAC layer submits an indication to the RLC layer to inform the RLC layer to generate a new AMD PDU and submit it to the MAC layer.
  • the foregoing describes the transmitting end (base station) in the downlink data transmission by using the foregoing embodiments only on the basis of the embodiment 1.
  • the present invention is not limited thereto, and may be appropriately configured according to the above example. Ground adjustment or deformation.
  • the embodiment of the present invention is based on the first embodiment, and the following data transmission is taken as an example.
  • the receiving end is a user equipment.
  • the operation or the step may be the same as the operation or the step of the receiving end (base station) of the uplink data transmission in Embodiment 4.
  • the operation or the step may be the same as the operation or the step of the receiving end (base station) of the uplink data transmission in Embodiment 4.
  • this embodiment The description will not be repeated.
  • the embodiment of the present invention provides a data transmitting apparatus, which corresponds to the data sending method in Embodiment 1, and the same content is not described herein again.
  • FIG. 8 is a schematic diagram of a data transmitting apparatus according to an embodiment of the present invention. As shown in FIG. 8, the data transmitting apparatus 800 includes:
  • a MAC layer unit 801 which determines, according to the feedback indication information of the transmitted data and/or the presence or absence of data in the HARQ buffer, the data to be transmitted sent to the receiving end; and when the data to be transmitted needs the RLC layer Sending an indication to the RLC layer to notify the RLC layer to transmit new data when the data is submitted Data or retransmit the last transmitted data.
  • the data transmitting apparatus 800 may further include:
  • the RLC layer unit 802 delivers corresponding data to the MAC layer unit 801 according to the indication of the MAC layer unit 801 or according to the indication of the MAC layer unit 801 and the status feedback report sent by the receiving end.
  • FIG. 8 only shows the units related to the present invention.
  • units for example, physical layer units, PDCP layer units
  • the feedback indication information for the transmitted data may include: ACK/NACK information fed back through the PHICH, and uplink grant information and new data indication information transmitted through the PDCCH; or: uplink grant information transmitted through the PDCCH And new data indication information.
  • ACK/NACK information fed back through the PHICH and uplink grant information and new data indication information transmitted through the PDCCH
  • uplink grant information transmitted through the PDCCH And new data indication information may include: ACK/NACK information fed back through the PHICH, and uplink grant information and new data indication information transmitted through the PDCCH.
  • the MAC layer unit is used to implement the function of the MAC layer, for example, may be a MAC layer entity;
  • the RLC layer unit is used to implement the function of the RLC layer, for example, may be an RLC layer entity.
  • the MAC layer unit and the RLC layer unit may refer to a software module, for example, by control of a CPU and storage of a memory. It can also refer to a hardware device, such as a circuit that cures the MAC layer functionality on a chip.
  • the present invention is not limited to the specific form of these units, and may be any manner of implementing the protocol layer functions such as the MAC layer and the RLC layer.
  • FIG. 9 is a schematic diagram of a MAC layer unit according to an embodiment of the present invention.
  • the MAC layer unit 801 may include:
  • An information determining unit 901 which determines whether the feedback indication information for the transmitted data indicates whether to perform data retransmission or to instruct new data transmission;
  • a cache judging unit 902 which determines whether the HARQ buffer is empty
  • the data determining unit 903 determines the data in the HARQ buffer as data to be transmitted if the feedback indication information indicates that data retransmission is performed and the HARQ buffer is not empty.
  • the data determining unit 903 is further configured to: when the feedback indication information indicates that data retransmission is performed and the HARQ buffer is empty, determining that the to-be-transmitted data is required to be submitted by the RLC layer. The last data transferred.
  • the MAC layer unit 801 may further include:
  • the indication transmitting unit 904 instructs the RLC layer unit 802 to retransmit the last transmitted data.
  • the data determining unit 903 is further configured to: when the feedback indication information indicates that a new data transmission is performed, determine that the data to be transmitted is new data that needs to be submitted by the RLC layer.
  • Indication The sending unit 904 is further configured to: instruct the RLC layer unit 802 to transmit new data.
  • FIG. 10 is a schematic diagram of an RLC layer unit according to an embodiment of the present invention.
  • the RLC layer unit 802 may include:
  • the data delivery unit 1002 when the MAC layer unit 801 instructs retransmission of the last transmission data, delivers the last transmission data to the MAC layer unit 801.
  • the RLC layer unit 802 may further include:
  • the report receiving unit 1003 receives the status feedback report sent by the receiving end, where the status feedback report includes sequence information of the data that is not correctly received by the RLC layer of the receiving end;
  • the retransmission determination unit 1004 determines data that needs to be retransmitted based on the status feedback report.
  • the data delivery unit 1002 may be further configured to: when the MAC layer unit 801 indicates that the new data is submitted and there is data that needs to be retransmitted, submit the data that needs to be retransmitted to the MAC layer unit 801. .
  • the RLC layer unit 802 may further include:
  • a data generating unit 1005 that generates new data if it is instructed by the MAC layer unit 801 to submit new data and there is no data that needs to be retransmitted;
  • the data delivery unit 1002 can also be configured to: submit the new data to the MAC layer unit 801.
  • the above merely shows a partial configuration of a MAC layer unit or an RLC layer unit related to the present invention, but the present invention is not limited thereto.
  • the MAC layer unit or the RLC layer unit may also include a portion not shown in the present invention, and reference may be made to related art.
  • the transmitting end when transmitting uplink data, the transmitting end may be a user equipment, and the receiving end is a base station; and the data sending apparatus 800 may be configured in a user equipment as a transmitting end.
  • the embodiment further provides a user equipment configured with the data transmitting apparatus 800 as described above.
  • FIG. 11 is a schematic diagram of a user equipment according to an embodiment of the present invention.
  • the user device 1100 can include a central processing unit 100 and a memory 140; the memory 140 is coupled to the central processing unit 100.
  • the figure is exemplary; other types of structures may be used in addition to or in place of the structure to implement telecommunications functions or other functions.
  • the functionality of data transmitting device 800 can be integrated into central processor 100.
  • the central processing unit 100 may be configured to implement the data transmission method described in Embodiment 1.
  • the central processing unit 100 may be configured to perform the following control: the MAC layer determines the data to be transmitted sent to the receiving end according to the feedback indication information for the transmitted data and/or the presence or absence of the data in the HARQ buffer submitted by the physical layer; And when the data to be transmitted is data that needs to be delivered by the RLC layer, an indication is sent to the RLC layer to notify the RLC layer to transmit new data or retransmit the last transmitted data.
  • the data transmitting device 800 can be configured separately from the central processing unit 100.
  • the data transmitting device 800 can be configured as a chip connected to the central processing unit 100, and the data transmitting device can be implemented by the control of the central processing unit 100. 800 features.
  • the user equipment 1100 may further include: a communication module 110, an input unit 120, an audio processing unit 130, a memory 140, a camera 150, a display 160, and a power source 170.
  • the functions of the above components are similar to those of the prior art, and are not described herein again. It should be noted that the user equipment 1100 does not have to include all the components shown in FIG. 11, and the above components are not required; in addition, the user equipment 1100 may further include components not shown in FIG. There are technologies.
  • the transmitting end when transmitting downlink data, the transmitting end may be a base station, and the receiving end is a user equipment.
  • the data transmitting device 800 can be configured in a base station as a transmitting end.
  • the embodiment further provides a base station configured with the data transmitting apparatus 800 as described above.
  • FIG. 12 is a schematic diagram of a structure of a base station according to an embodiment of the present invention.
  • base station 1200 can include a central processing unit (CPU) 200 and memory 210; and memory 210 is coupled to central processing unit 200.
  • the memory 210 can store various data; in addition, a program for information processing is stored, and the program is executed under the control of the central processing unit 200.
  • the data transmitting apparatus 800 can implement the data transmitting method as described in Embodiment 2.
  • the central processing unit 200 can be configured to implement the functions of the data transmitting device 800.
  • the central processing unit 200 may be configured to perform control such that the MAC layer determines the data to be transmitted transmitted to the receiving end according to the feedback indication information for the transmitted data and/or the presence or absence of data in the HARQ buffer delivered by the physical layer;
  • the data to be transmitted is data that needs to be delivered by the RLC layer
  • an indication is sent to the RLC layer to notify the RLC layer to transmit new data or retransmit the last transmitted data.
  • the base station 1200 may further include: a transceiver 220, an antenna 230, and the like; wherein the functions of the foregoing components are similar to those of the prior art, and details are not described herein again. It should be noted that the base station 1200 does not have to include all the components shown in FIG. 12; in addition, the base station 1200 may further include components not shown in FIG. 12, and reference may be made to the prior art.
  • the MAC layer determines, in the case that the HARQ feedback indication information indicates that data retransmission is performed and data exists in the HARQ buffer, the data in the HARQ buffer is determined as data to be transmitted; and the HARQ feedback indication information indicates that data retransmission is performed. And if there is no data in the HARQ buffer, the RLC layer is notified to submit the last transmitted data.
  • the data transmission and reception can be realized while supporting one HARQ process, and the RLC layer AM-based data transmission and reception mechanism is simplified.
  • the MAC layer notifies the RLC layer to submit new data if the HARQ feedback indication information indicates that the new data transmission is performed; the RLC layer determines the data that needs to be retransmitted according to the status feedback report, and indicates that the new data is submitted and required by the MAC layer.
  • data to be retransmitted is delivered to the MAC layer. Not only can the transmission of the status feedback report be reduced, but also the transmission and reception of data can be reliably implemented.
  • the embodiment of the present invention provides a data receiving apparatus, which corresponds to the data receiving method in Embodiment 2, and the same content is not described herein again.
  • FIG. 13 is a schematic diagram of a data receiving apparatus according to an embodiment of the present invention. As shown in FIG. 13, the data receiving apparatus 1300 includes:
  • the RLC layer unit 1301 receives the data transmitted by the transmitting end; and determines whether to trigger the status feedback report based on the sequence information of the data completely received in order and the highest sequence information in the received data.
  • the status feedback report includes sequence information of data that is not correctly received by the RLC layer.
  • FIG. 14 is a schematic diagram of an RLC layer unit according to an embodiment of the present invention.
  • the RLC layer unit 1301 may include:
  • the variable maintenance unit 1401 maintains state variables V1 and V2; wherein the V1 records the next serial number of the serial number corresponding to the data completely received in order, and the V2 records the highest serial number in the received data. a serial number;
  • variable updating unit 1402 updates the V2 to X+1 if the sequence number X of the received data is greater than or equal to the V2; and the case where the sequence number X of the received data is equal to the V1 Next, updating the V1 to a sequence number corresponding to the next data that has not been correctly received;
  • the RLC layer unit 1301 may further include: a report sending unit 1404, where the first transmission opportunity after the status feedback report is triggered sends the status feedback report.
  • the RLC layer unit 1301 may further include: a timer maintenance unit (not shown) that maintains the timer T and starts or restarts after the report sending unit 1404 sends the status feedback report.
  • a timer maintenance unit (not shown) that maintains the timer T and starts or restarts after the report sending unit 1404 sends the status feedback report.
  • Timer T The report sending unit 1404 is further configured to: if the status feedback report is triggered, if the timer T is running, send the status feedback report by the first transmission opportunity after the timer T expires If the timer T is not running, the first transmission opportunity after the status feedback report is triggered sends the status feedback report.
  • the above merely shows a partial configuration of the RLC layer unit related to the present invention, but the present invention is not limited thereto.
  • the RLC layer unit may also include a portion not shown in the present invention, and reference may be made to related art.
  • the transmitting end when transmitting uplink data, the transmitting end may be a user equipment, the receiving end is a base station, and the data receiving apparatus 1300 may be configured in a base station as a receiving end.
  • the embodiment further provides a base station configured with the data receiving apparatus 1300 as described above.
  • the composition of the base station can be referred to FIG.
  • the transmitting end when transmitting downlink data, the transmitting end may be a base station, and the receiving end is a user equipment.
  • the data receiving device 1300 can be configured in a user equipment as a receiving end.
  • the embodiment further provides a user equipment, which is configured with the data receiving apparatus 1300 as described above.
  • the configuration of the user equipment can be referred to FIG.
  • the MAC layer of the transmitting end determines the data to be transmitted according to the feedback indication information for the transmitted data and/or the presence of the data in the HARQ buffer submitted by the physical layer; the data can be implemented under the condition of supporting one HARQ process. Transmitting and receiving, thereby simplifying the RLC layer based on the AM mode of data transmission and reception mechanisms, reducing the complexity, power consumption and number of transmissions of the IoT terminal.
  • the receiving end determines whether to trigger the state feedback report according to the sequence information of the data completely received in order and the highest sequence information in the received data; the reliability of the data transmission can be improved in the case of reducing the state feedback report.
  • the embodiment of the present invention further provides a communication system, and the same content as Embodiments 1 to 8 is not described again.
  • the communication system 1500 can include a base station 1501 and a user equipment 1502.
  • the user equipment 1502 when transmitting uplink data, the user equipment 1502 functions as a transmitting end, and the base station 1501 functions as a receiving end.
  • the MAC layer of the user equipment 1502 determines the data to be transmitted sent to the base station 1501 according to the feedback indication information for the transmitted data and/or the data in the HARQ buffer submitted by the physical layer; and when the data to be transmitted is needed When the data is submitted by the RLC layer, an indication is sent to the RLC layer to notify the RLC layer to transmit new data or to retransmit the last transmitted data.
  • the base station 1501 receives the data transmitted by the user equipment 1502; and determines whether to trigger the status feedback report based on the sequence information of the data completely received in order and the highest sequence information in the received data.
  • the user equipment 1502 when transmitting downlink data, functions as a receiving end, and the base station 1501 functions as a transmitting end.
  • the MAC layer of the base station 1501 determines the data to be transmitted sent to the user equipment 1502 according to the feedback indication information for the transmitted data and/or the data in the HARQ buffer submitted by the physical layer; and when the data to be transmitted is needed
  • an indication is sent to the RLC layer to notify the RLC layer to transmit new data or to retransmit the last transmitted data.
  • the user equipment 1502 receives the data transmitted by the base station 1501; and determines whether to trigger the status feedback report based on the sequence information of the data completely received in order and the highest sequence information in the received data.
  • the embodiment of the present invention further provides a computer readable program, wherein when the program is executed in a transmitting end, the program causes a computer to execute the data transmitting method described in Embodiment 1 in the transmitting end.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes the computer to execute the data transmission method described in Embodiment 1 in a transmitting end.
  • the embodiment of the present invention further provides a computer readable program, wherein when the program is executed in a receiving end, the program causes a computer to execute the data receiving method described in Embodiment 2 in the receiving end.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes the computer to execute the data receiving method described in Embodiment 2 in a receiving end.
  • the above apparatus and method of the present invention may be implemented by hardware or by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.
  • the method of transmitting/receiving data in the data transmitting/receiving apparatus described in connection with the embodiment of the present invention may be directly embodied as hardware, a software module executed by the processor, or a combination of both.
  • one or more of the functional block diagrams shown in FIG. 8 and/or one or more combinations of functional block diagrams may correspond to
  • the various software modules of the computer program flow may also correspond to the respective hardware modules. These software modules may correspond to the respective steps shown in FIG. 1, respectively.
  • These hardware modules can be implemented, for example, by curing these software modules using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • the software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor to enable the processor to read information from, and write information to, the storage medium; or the storage medium can be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • One or more of the functional blocks described in the figures and/or one or more combinations of functional blocks may be implemented as a general purpose processor, digital signal processor (DSP) for performing the functions described herein.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described with respect to the figures and/or one or more combinations of functional blocks may also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors One or more microprocessors in conjunction with DSP communication or any other such configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

一种数据发送和接收装置、方法以及通信系统。该数据发送方法包括:MAC层根据物理层递交的针对已传输数据的反馈指示信息和/或HARQ缓存中是否存在数据,确定向接收端发送的待传输数据;以及当所述待传输数据为需要RLC层递交的数据时,向RLC层发送指示来通知RLC层传输新数据或者重传上次传输的数据。由此,可以在支持一个HARQ进程的情况下实现数据的发送和接收,可以简化RLC层基于AM的数据发送和接收机制。

Description

数据发送和接收装置、方法以及通信系统 技术领域
本发明涉及通信技术领域,特别涉及一种数据发送和接收装置、方法以及通信系统。
背景技术
随着物联网(IoT,Internet of Things)的普及以及运营商对物联网的关注,3GPP组织已经开始了专门面向物联网技术的标准化工作。面向物联网的应用具有如下几方面的需求:
(1)终端(也可称为用户设备)具有超低的实现复杂度;
(2)终端的电池需要长时间使用,例如需要能使用10年以上;
(3)要支持大量的终端同时接入系统。
另外,面向物联网的应用具有如下业务特性:(1)低吞吐量;(2)数据的到达不频繁;(3)数据包比较小。
为了满足物联网应用的需求,目前3GPP的接入网标准制定组已经决定设计一种基于长期演进(LTE,Long Term Evolution)系统架构的窄带物理层接入技术来支持物联网。另外,针对物联网应用的业务特性,3GPP的核心网标准制定组也已经提出了新的网络架构以及两种支持不频繁的小数据包传输的更高效的解决方案。
除了上述进展,在接入网的高层协议方面,相应的工作组也已经达成很多共识。首先,基本方向是基于目前已经比较成熟的LTE/LTE-A的高层协议来设计面向物联网的高层协议。其次,在某些方面针对物联网应用需求以及特性可以考虑进一步地优化或者简化。
例如,物联网的终端可以针对专用数据/信令的传输,只支持一个混合自动重传请求(HARQ,Hybrid Automatic Repeat Request)进程,而不必再采用多进程的HARQ;此外有许多功能,例如多媒体广播多播业务(MBMS,Multimedia Broadcast/Multicast Service),物联网的终端可以不用支持。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发 明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
发明人发现:为了能够给网络层提供更可靠的数据传输,LTE接入网中能够同时支持介质访问控制(MAC,Media Access Control)的HARQ重传机制和无线链路控制(RLC,Radio Link Control)的ARQ重传机制。为了在面向物联网的无线接入网中继续保持高可靠的数据传输,RLC层仍然会采用ARQ重传机制,即RLC层的确认模式(AM,Acknowledgement Mode)仍然会被使用。但是,该模式可以考虑进一步简化以减少终端的复杂度、功耗和传输次数。
本发明实施例提供一种数据发送和接收装置、方法以及通信系统;对RLC层基于AM的数据发送和接收机制进行简化。
根据本发明实施例的第一个方面,提供一种数据发送方法,包括:
MAC层根据物理层递交的针对已传输数据的反馈指示信息和/或HARQ缓存中是否存在数据,确定向接收端发送的待传输数据;以及
当所述待传输数据为需要RLC层递交的数据时,向所述RLC层发送指示来通知所述RLC层传输新数据或者重传上次传输的数据。
根据本发明实施例的第二个方面,提供一种数据发送装置,包括:
MAC层单元,其根据物理层递交的针对已传输数据的反馈指示信息和/或HARQ缓存中是否存在数据,确定向接收端发送的待传输数据;以及当所述待传输数据为需要RLC层递交的数据时,向所述RLC层发送指示来通知所述RLC层传输新数据或者重传上次传输的数据。
根据本发明实施例的第三个方面,提供一种数据接收方法,包括:
RLC层接收发送端传输的数据;以及
所述RLC层根据按顺序完整接收到的数据的序列信息以及接收到的数据中的最高序列信息,确定是否触发状态反馈报告。
根据本发明实施例的第四个方面,提供一种数据接收装置,包括:
RLC层单元,其接收发送端传输的数据;以及根据按顺序完整接收到的数据的序列信息以及接收到的数据中的最高序列信息,确定是否触发状态反馈报告。
根据本发明实施例的第五个方面,提供一种通信系统,包括:
发送端,所述发送端的MAC层根据物理层递交的针对已传输数据的反馈指示信息和/或HARQ缓存中是否存在数据,确定向接收端发送的待传输数据;以及当所述待传输数据为需要RLC层递交的数据时,向所述RLC层发送指示来通知所述RLC层传输新数据或者重传上次传输的数据;
接收端,所述接收端的RLC层接收所述发送端传输的数据;并且根据按顺序完整接收到的数据的序列信息以及接收到的数据中的最高序列信息,确定是否触发状态反馈报告。
本发明实施例的有益效果在于:发送端的MAC层根据物理层递交的针对已传输数据的反馈指示信息和/或HARQ缓存中是否存在数据来确定待传输数据,由此可以在支持一个HARQ进程的情况下实现数据的发送和接收,可以简化RLC层基于AM的数据发送和接收机制,减少物联网终端的复杂度、功耗和传输次数。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本发明实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是本发明实施例1的数据发送方法的一示意图;
图2是本发明实施例1的数据发送方法的另一示意图;
图3是本发明实施例1的无线接入网接口的高层协议栈的一示意图;
图4是本发明实施例1的数据发送方法的另一示意图;
图5是本发明实施例1的数据发送方法的另一示意图;
图6是本发明实施例2的数据接收方法的一示意图;
图7是本发明实施例2的数据接收方法的另一示意图;
图8是本发明实施例7的数据发送装置的一示意图;
图9是本发明实施例7的MAC层单元的一示意图;
图10是本发明实施例7的RLC层单元的一示意图;
图11是本发明实施例7的用户设备的一示意图;
图12是本发明实施例7的基站的一示意图;
图13是本发明实施例8的数据接收装置的一示意图;
图14是本发明实施例8的RLC层单元的一示意图;
图15是本发明实施例9的通信系统的一示意图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。
实施例1
本发明实施例提供一种数据发送方法,图1是本发明实施例的数据发送方法的一示意图,从发送端进行说明。如图1所示,该数据发送方法包括:
步骤101,MAC层根据物理层递交的针对已传输数据的反馈指示信息和/或HARQ缓存中是否存在数据,确定向接收端发送的待传输数据。
步骤102,当该待传输数据为需要RLC层递交的数据时,MAC层向RLC层发送指示来通知RLC层传输新数据或者重传上次传输的数据。
在本实施例中,在传输上行数据时,发送端可以是IoT系统的用户设备(UE,User Equipment),接收端是IoT系统的基站(例如eNB);在传输下行数据时,发送端可以是IoT系统的基站(例如eNB),接收端是IoT系统的用户设备。但本发明不限于此,例如还可以是其他的通信系统。即,本发明实施例仅以IOT系统为例进行说明,但并不限于此,可以适用于任何采用基于AM的数据发送和接收机制的通信系统。
在本实施例中,基站可以为宏基站(例如eNB),用户设备由该宏基站产生的宏 小区(例如Macro cell)提供服务;或者基站也可以为微基站,用户设备由该微基站产生的微小区(例如Pico cell)提供服务。本发明不限于此,可以根据实际的需要确定具体的场景。
在本实施例中,针对已传输数据的反馈指示信息可以称为HARQ反馈指示信息。该HARQ反馈指示信息可以包括:通过物理混合自动重传请求指示信道(PHICH,Physical HARQ Indicator Channel)反馈的ACK/NACK信息,以及通过物理下行控制信道(PDCCH,Physical Downlink Control Channel)传输的上行授权信息和新数据指示(NDI,New Data Indicator)信息;或者该HARQ反馈指示信息可以包括:通过PDCCH传输的上行授权信息和新数据指示信息。HARQ反馈指示信息的具体内容可以参考后述的实施例3。
在本实施例中,HARQ缓存(buffer)是发送端的MAC层所对应的缓存,具体内容可以参考现有技术。
图2是本发明实施例的数据发送方法的另一示意图,如图2所示,所述方法包括:
步骤201,MAC层接收物理层递交的针对已传输数据的HARQ反馈指示信息;
例如,假设在某个传输时间间隔(TTI,Transmission Time Interval)X(可记为TTI_X),发送端的物理层接收到来自接收端的针对上次传输的数据的HARQ反馈指示信息,并将该指示信息递交给MAC层。
步骤202,MAC层获得一个传输机会;
例如,在TTI_Y,发送端得到一个传输数据的机会。TTI_X和TTI_Y可以是同一个TTI,也可以是不同的TTI。
步骤203,MAC层根据该HARQ反馈指示信息和/或HARQ缓存中是否存在数据,确定向接收端发送的待传输数据;
步骤204,当待传输数据为需要RLC层递交的数据时,MAC层向RLC层发送指示来通知RLC层传输新数据或者重传上次传输的数据。
其中,待传输数据可以是HARQ缓存中的数据,或者也可以是RLC层递交的数据,具体为哪种数据可以如后面的实施例所述。
步骤205,MAC层在该传输机会上发送该待传输数据。
在本实施例中,MAC层根据物理层递交的针对已传输数据的反馈指示信息和/或HARQ缓存中是否存在数据,可以确定向接收端发送的是新数据还是上次传输的数据 还是需要重传的数据,由此可以简化RLC层基于AM的数据发送和接收机制。
以下对于涉及本发明的各个层进行简要说明。
图3是本发明实施例的无线接入网接口(例如UE和eNB之间的接口)的层2(layer2)的结构示意图,如图3所示,层2可以包括分组数据汇集协议(PDCP,Packet Data Convergence Protocol)层,无线链路控制(RLC,Radio Link Control)层以及介质访问控制(MAC,Media Access Control)层。
其中,RLC层产生交给MAC层的数据包称为RLC协议数据单元(PDU,Protocol Data Unit)。在RLC层会产生两种数据包(即两种PDU)。一种为RLC层从上层(即PDCP层)收到的数据经过处理后生成的PDU,可称为数据PDU;对应于通过AM方式传递的数据PDU,可定义为AMD PDU。另外一种是RLC层自己产生的用于向发送端反馈该发送端所发送的数据是否已经在接收端被成功接收的PDU,可称为状态PDU(STATUS PDU)。
对于AMD PDU,从上层收到的数据经过处理后得到。其中从上层收到的数据可称为RLC服务数据单元(SDU,Service Data Unit)。对于每个AMD PDU,在发送端发送时都会关联一个序列号(SN,sequence number),该SN将包含在AMD PDU的包头中。
其中,只有在发送端的MAC层通知有传输机会时,发送端的RLC层才会生成一个新的PDU并将该新PDU递交给MAC层,或者将之前传输过的PDU递交给MAC层。
而MAC层从RLC层收到的数据包称为MAC SDU。MAC SDU在MAC层经过处理后会得到MAC PDU。当有传输机会时,MAC层根据该传输机会是用来传输新的MAC PDU还是用来重传之前的MAC PDU,来将相应的MAC PDU交给物理层进行传输。
当MAC层将一个新产生的MAC PDU交给物理层后,同时会将该MAC PDU存储到对应的HARQ缓存中。当MAC层需要重传该MAC PDU时,会从HARQ缓存中将该MAC PDU取出并交给物理层。
以上仅示意性说明了本发明的各个层,关于各层的具体构成以及各层之间如何传递数据等具体内容可以参考现有技术。
以下结合MAC层和RLC层,对于本发明进行进一步说明。
图4是本发明实施例的数据发送方法的另一示意图,示出了发送端的MAC层的情况。如图4所示,所述方法包括:
步骤401,MAC层接收物理层递交的针对已传输数据的HARQ反馈指示信息;
步骤402,MAC层获得一个传输机会;
步骤403,MAC层确定该HARQ反馈指示信息是否指示进行新数据传输;在不是指示进行新数据传输(即进行数据重传)的情况下执行步骤404,在指示进行新数据传输的情况下执行步骤408;
步骤404,MAC层确定HARQ缓存中是否为空(即,是否存在数据),在HARQ缓存不为空的情况下执行步骤405,在HARQ缓存为空的情况下执行步骤406;
步骤405,将HARQ缓存中的数据确定为待传输数据。
在本实施例中,MAC层每执行一次HARQ buffer中的数据的重传后,可以将记录该数据重传次数(初始值为0)的变量进行加1的操作;当该变量等于该数据所允许的最大传输次数减1时,将该HARQ buffer清空。
步骤406,通知RLC层递交上次传输数据;
步骤407,将RLC层递交的数据作为待传输数据。
步骤408,通知RLC层递交新数据;
步骤409,MAC层在该传输机会上发送该待传输数据。
值得注意的是,图4中仅以先判断HARQ反馈指示信息后判断HARQ缓存为例进行了说明,但本发明不限于此,例如还可以先判断HARQ缓存后判断HARQ反馈指示信息,或者同时执行这两个判断。
图5是本发明实施例的数据发送方法的另一示意图,示出了发送端的RLC层的情况。如图5所示,所述方法包括:
步骤501,RLC层接收该接收端发送的状态反馈报告;其中该状态反馈报告中包括接收端的RLC层没有正确接收到的数据的序列信息;
例如,该状态反馈报告中包括“NACK-SN=9”,表示序列号为9的数据没有被接收端的RLC层正确接收到。其中,该状态反馈报告可以包括一个或多个序列号。
步骤502,RLC层根据该状态反馈报告确定需要重传的数据。
例如,RLC层可以确定序列号为9的数据需要重传;此外,可以确定一个或多个需要重传的数据,可以将这些需要重传的数据放入重传缓存中。
步骤503,RLC层接收MAC层的指示;
步骤504,RLC层确定MAC层是否指示递交上次传输的数据;在指示递交上次传输的数据的情况下执行步骤505,在没有指示递交上次传输的数据(即指示递交新数据)的情况下执行步骤506;
步骤505,向MAC层递交上次传输的数据。
步骤506,RLC层确定是否存在需要重传的数据;在存在需要重传的数据的情况下执行步骤507,在不存在需要重传的数据的情况下执行步骤508;
其中需要重传的数据由步骤501和步骤502确定。
步骤507,向MAC层递交需要重传的数据。
步骤508,RLC层生成新数据;
步骤509,向MAC层递交该新数据。
图5仅示出了RLC层响应MAC层指示一次的情况,在步骤505、507或509之后,RLC层可以执行步骤503来再次接收MAC层的指示。此外,步骤501至502与步骤503至509之间可以独立地并行执行。
值得注意的是,图4或图5仅示意性地对本发明实施例进行了说明,但本发明不限于此。例如可以适当地调整各个步骤之间的执行顺序,此外还可以增加其他的一些步骤或者减少其中的某些步骤。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图的记载。
以下通过一个实例进行示意性说明,但本发明不限于此。
例如,发送端(UE)的MAC层获得了在TTI#1进行上行数据传输的机会。MAC会通知RLC层生成一个新的RLC PDU。该RLC PDU的序列号例如为3。然后MAC层将该RLC PDU封装组成一个MAC PDU A并发送,同时会将该MAC PDU A存储在一个HARQ buffer中。
此后UE的物理层接收到PDCCH,该PDCCH调度了一个上行数据传输机会同时携带了NDI比特值。物理层将所述传输机会和NDI值通知MAC层。
如果该NDI比特值与上次调度上行数据传输机会的PDCCH中携带的NDI比特值相比已经反转,MAC层确定接下来需要在所述数据传输机会传输一个新的RLC PDU。MAC发送一个指示给RLC层通知其递交一个新的RLC PDU。
■如果RLC层没有需要重传的数据,那么RLC层会生成一个新的RLC PDU#4 并递交给MAC层。
■如果RLC层在此之前收到了一个接收端发送的状态反馈报告,该报告指示RLC PDU#2没有收到,那么RLC层会将之前传输过的RLC PDU#2递交给MAC层。
如果该NDI比特值与上次调度上行数据传输机会的PDCCH中携带的NDI比特值相比没有反转,由于HARQ buffer中有MAC PDU A,MAC层确定接下来需要在所述数据传输机会重传该MAC PDU A。假设基站为该UE配置的最大重传次数为1次,那么MAC层在所述MAC PDU A递交给物理层的同时把所述HARQ buffer清空。
此后UE的物理层接收到PDCCH,该PDCCH调度了一个上行数据传输机会同时携带了NDI比特值。物理层将所述传输机会和NDI值通知MAC层。
■如果该PDCCH中携带的NDI比特值与上次调度上行数据传输机会的PDCCH中携带的NDI比特值相比已经反转,MAC层确定接下来需要在所述数据传输机会传输一个新的RLC PDU。MAC发送一个指示给RLC层通知其递交一个新的RLC PDU。
Figure PCTCN2016070478-appb-000001
如果RLC层没有需要重传的数据,那么RLC层会生成一个新的RLC PDU#4并递交给MAC层。
Figure PCTCN2016070478-appb-000002
如果RLC层在此之前收到了一个接收端发送的状态反馈报告,该报告指示RLC PDU#2没有收到,那么RLC层会将之前传输过的RLC PDU#2递交给MAC层。
■如果PDCCH中携带的NDI比特值与上次调度上行数据传输机会的PDCCH中携带的NDI比特值相比没有反转,MAC层确定接下来需要在所述数据传输机会传输重传上次传输的RLC PDU。MAC发送一个指示给RLC层通知其递交上次传输的RLC PDU。此后RLC层会将RLC PDU#3再次递交给MAC层。
由上述实施例可知,MAC层在HARQ反馈指示信息指示进行数据重传并且HARQ缓存中存在数据的情况下,将HARQ缓存中的数据确定为待传输数据;在HARQ反馈指示信息指示进行数据重传并且HARQ缓存中不存在数据的情况下,通知RLC层递交上次传输数据。可以在支持一个HARQ进程的情况下实现数据的发送和接收,简化RLC层基于AM的数据发送和接收机制。
此外,MAC层在HARQ反馈指示信息指示进行新数据传输的情况下,通知RLC层递交新数据;RLC层根据状态反馈报告确定需要重传的数据,以及在被MAC层指示递交新数据且存在需要重传的数据的情况下,向MAC层递交需要重传的数据。不仅可以减少状态反馈报告的发送,而且可以可靠地实现数据的发送和接收。
实施例2
本发明实施例提供一种数据接收方法,对应于实施例1的数据发送方法,与实施例1相同的内容不再赘述。
图6是本发明实施例的数据接收方法的一示意图,从接收端进行说明。如图6所示,该数据接收方法包括:
步骤601,接收端的RLC层接收发送端传输的数据;以及
步骤602,接收端的RLC层根据按顺序完整接收到的数据的序列信息以及接收到的数据中的最高序列信息,确定是否触发状态反馈报告。
在本实施例中,为了提高数据传输的可靠性,接收端还可以向发送端发送状态反馈报告,将没有正确接收到的数据的序列信息通知给发送端,使得发送端可以重传这些数据。其中所述状态反馈报告中包括RLC层没有正确接收到的数据的序列信息。
在本实施例中,按顺序完整接收到的数据的序列信息例如可以是按顺序完整接收到的数据的序列号(例如为x)的下一序列号(即x+1);接收到的数据中的最高序列信息例如可以是接收到的数据中的最高序列号(例如为y)的下一序列号(即y+1)。但本发明不限于此,例如还可以进行适当地变型。
图7是本发明实施例的数据接收方法的另一示意图,从接收端进行说明。如图7所示,该数据接收方法包括:
步骤701,RLC层维护状态变量V1和V2;
其中,V1记录按顺序完整接收到的数据所对应序列号的下一序列号,V2记录接收到的数据中的最高序列号的下一序列号;V1和V2均被初始化为0。
步骤702,接收到发送端传输的一数据;
假定该数据的序列号为X。
步骤703,根据该数据的序列号对V1和V2进行更新;
在本实施例中,在接收到的数据的序列号X大于或等于V2的情况下,将V2更 新为X+1。在接收到的数据的序列号X等于V1的情况下,将V1更新为下一个还没有正确收到的数据对应的序列号(例如为X+1);此外,还可以将该数据重组之后递交给RLC层的上一层。
步骤704,确定V2是否大于V1;在V2大于V1的情况下执行步骤705,否则可以继续执行步骤702。
步骤705,触发状态反馈报告。
步骤706,在第一个传输机会生成并发送状态反馈报告。
以下通过一个实例进行示意性说明,但本发明不限于此。
例如,V1和V2均被初始化为0,在接收到序列号为0的数据时,V1被更新为1,V2也被更新为1;然后,在接收到序列号为1的数据时,V1被更新为2,V2也被更新为2;在接收到序列号为2的数据时,V1被更新为3,V2也被更新为3。
假定发送端已经发送了序列号为3的数据,但是接收端没有正确接收到该数据,此时V1和V2均仍然为3,接收端可以通过HARQ反馈指示信息指示重传上次传输的数据。此外,假定接收端正确接收到了重传的序列号为3的数据,此时V1和V2均被更新为4。
由此通过简单的结构,在支持一个HARQ进程的情况下实现数据的发送和接收。
再例如,假定发送端已经发送了序列号为4的数据,但是接收端没有正确接收到该数据,此时V1和V2均仍然为4,接收端可以通过HARQ反馈指示信息指示重传上次传输的数据,但该HARQ反馈指示信息出现传输错误,即发送端认为接收端已经正确接收到了序列号为4的数据,发送端继续传输序列号为5的数据。
此时,在接收端正确接收到序列号为5的数据时,V1不会被更新而仍然为4,而V2会被更新为6;此时V2大于V1,触发状态反馈报告,该状态反馈报告中可以包括“NACK-CN=4”。发送端接收到该状态反馈报告之后,可以重新传输该序列号为4的数据。
由此可以在减少状态反馈报告的情况下提高数据传输的可靠性。
图7示出了不设置定时器的情况,在本实施例中还可以维护一个定时器T,用于控制发送状态反馈报告的频率。由此可以进一步减少状态反馈报告,降低通信开销。
例如,在状态反馈报告被触发的情况下,如果计时器T没有运行,可以在状态报告触发后的第一个传输机会组建一个状态反馈报告并发送,同时启动该计时器T;如 果计时器T正在运行,在该计时器T超时后的第一个传输机会组建一个状态反馈报告并发送,同时重启该计时器T。
由上述实施例可知,发送端的MAC层根据物理层递交的针对已传输数据的反馈指示信息和/或HARQ缓存中是否存在数据来确定待传输数据;可以在支持一个HARQ进程的情况下实现数据的发送和接收,由此简化RLC层基于AM的数据发送和接收机制,减少物联网终端的复杂度、功耗和传输次数。
此外,接收端根据按顺序完整接收到的数据的序列信息以及接收到的数据中的最高序列信息,确定是否触发状态反馈报告;可以在减少状态反馈报告的情况下提高数据传输的可靠性。
实施例3
本发明实施例在实施例1的基础上,以上行数据传输为例进行说明,其中发送端为用户设备,与实施例1相同的内容不再赘述。
在第1实施方式中,对用户设备收到从空闲(IDLE)状态转入连接(Connected)状态后的第一个上行授权的情况进行说明。
在本实施方式中,用户设备进入IDEL状态时,清空HARQ缓存中的数据。在用户设备进入Connected状态后,当收到一个上行授权时,如果MAC层判断该上行授权是用户设备建立无线资源控制(RRC,Radio Resource Control)连接或者重新开始RRC连接后收到的第一个上行授权,那么通知RLC层产生一个新的AMD PDU递交给MAC层。
在第2实施方式中,对用户设备在Connected状态已经传输过MAC PDU并且当前HARQ缓存为空的情况进行说明。
在本实施方式中,当MAC层传输完一个MAC PDU x,并且该MAC PDU x已经达到在MAC层的最大重传次数后,MAC层清空该MAC PDU x所在的HARQ缓存。当MAC层再次收到物理层递交的上行授权和NDI时,MAC层检查该NDI相比于上次传输数据时从物理层收到的对应的NDI的反转情况。
即,如果NDI的值相比上次传输时所用的NDI值已经反转(0→1或者1→0的情况),那么MAC层给RLC层递交一个指示,通知RLC层产生一个新的AMD PDU并递交给MAC层。否则,MAC层给RLC层递交一个指示,通知RLC层将前一次 传输的AMD PDU递交给MAC层。
值得注意的是,关于上行授权以及NDI的具体定义或内容可以参考现有协议。
在第3实施方式中,对用户设备在Connected状态已经传输过MAC PDU并且当前的HARQ缓存中仍然存储着最近一次传输的MAC PDU的情况进行说明。其中在本实施方式中,物理层通过PHICH信道反馈ACK/NACK,通过PDCCH来调度数据传输。
在本实施方式中,当MAC层传输完一个MAC PDU x,并且该MAC PDU x还没有达到在MAC层的最大重传次数时,该MAC PDU x继续被存储在HARQ缓存中。
当MAC层从物理层收到针对MAC PDU x的ACK/NACK反馈时:
Figure PCTCN2016070478-appb-000003
将状态变量HARQ_FEEDBACK设为所述反馈值。
Figure PCTCN2016070478-appb-000004
如果没有同时收到物理层递交的上行授权和NDI,
■如果HARQ_FEEDBACK=NACK,那么MAC层重传存储在HARQ缓存中的MAC PDU x;
■否则,不进行任何操作
Figure PCTCN2016070478-appb-000005
如果同时收到物理层递交的上行授权和NDI,
■如果NDI的值相比上次传输时所用的NDI值已经反转,那么MAC层给RLC层递交一个指示,通知RLC层产生一个新的AMD PDU并递交给MAC层;
■否则,MAC层重传存储在HARQ缓存中的MAC PDU x。并将记录该MAC PDU x重传次数的变量值加1。如果该MAC PDU x的重传次数已经达到最大重传次数,清空存储该MAC PDU x的HARQ缓存。
当MAC层从物理层收到针对MAC PDU x的ACK/NACK反馈后,又收到物理层递交的上行授权和NDI时:
Figure PCTCN2016070478-appb-000006
如果HARQ缓存中仍然存储着MAC PDU x,
■如果NDI的值相比上次传输时所用的NDI值已经反转,那么MAC层给RLC层递交一个指示,通知RLC层产生一个新的AMD PDU并递交给MAC层;
■否则,MAC层重传存储在HARQ缓存中的MAC PDU x。并将记录该MAC PDU x重传次数的变量值加1。如果该MAC PDU x的重传次数已 经达到最大重传次数,清空存储该MAC PDU x的HARQ缓存。
Figure PCTCN2016070478-appb-000007
如果HARQ缓存为空
■如果NDI的值相比上次传输时所用的NDI值已经反转,那么MAC层给RLC层递交一个指示,通知RLC层产生一个新的AMD PDU并递交给MAC层;
■否则,MAC层给RLC层递交一个指示,通知RLC层将前一次传输的AMD PDU递交给MAC层。
在第4实施方式中,对用户设备在Connected状态已经传输过MAC PDU并且当前的HARQ缓存中仍然存储着最近一次传输的MAC PDU的情况进行说明。其中在本实施方式中,物理层不通过PHICH信道反馈ACK/NACK,仅通过PDCCH来调度数据传输。
在本实施方式中,当MAC层传输完一个MAC PDU x,并且该MAC PDU还没有达到在MAC层的最大重传次数时,该MAC PDU x继续被存储在HARQ缓存中。
当MAC层再次收到物理层递交的上行授权和NDI时,MAC层检查该NDI相比于上次传输数据时从物理层收到的对应的NDI的反转情况:
Figure PCTCN2016070478-appb-000008
如果NDI的值相比上次传输时所用的NDI值已经反转,那么MAC层给RLC层递交一个指示,通知RLC层产生一个新的AMD PDU并递交给MAC层;
Figure PCTCN2016070478-appb-000009
否则,MAC层重传存储在HARQ缓存中的MAC PDU x。
在第5实施方式中,对用户设备的RLC层当前没有需要重传的AMD PDU的情况进行说明。本实施方式的另外一种等效判断是:RLC层的重传缓存为空。
在本实施方式中,RLC层当前没有需要重传的AMD PDU。如果RLC层收到一个MAC层的指示,要求RLC层产生一个新的AMD PDU,则RLC层生成一个新的AMD PDU,并为该AMD PDU关联一个新序列号后递交给MAC层;
如果RLC层收到一个MAC层的指示,要求RLC层重传AMD PDU,则RLC层认为前一次传输的AMD PDU需要重传,并将该前一次传输的AMD PDU递交给MAC层。此后,该AMD PDU将不再被认为是需要重传的AMD PDU。另外一种等效操作是:RLC层认为前一次传输的AMD PDU需要重传,将该前一次传输的AMD PDU放到RLC层的重传缓存中,并递交给MAC层。然后将该前一次传输的AMD PDU从重传缓存中移除。
在第6实施方式中,对用户设备的RLC层当前有需要重传的AMD PDU的情况进行说明。本实施方式的另外一种等效判断是:RLC层的重传缓存不为空。
在本实施方式中,RLC层当前有需要重传的AMD PDU。当RLC层收到一个MAC层的指示时,无论该指示是要求RLC层产生一个新的AMD PDU还是要求RLC层重传AMD PDU,RLC层会将需要重传的AMD PDU中具有最小序列号的AMD PDU递交给MAC层;此后,该AMD PDU将不再被认为是需要重传的AMD PDU。另外一种等效操作是:RLC层从重传缓存中找出具有最小序列号的AMD PDU,并递交给MAC层,然后将该AMD PDU从重传缓存中移除。
在第7实施方式中,对用户设备的RLC层收到接收端发来的状态反馈报告的情况进行说明。
在本实施方式中,RLC层收到状态反馈报告即STATUS PDU后,RLC层可以认为该STATUS PDU中指示的序列号所对应的之前已经传输过的AMD PDU需要重传。另外一种等效操作是:RLC层将STATUS PDU中指示的序列号所对应的之前已经传输过的AMD PDU放入重传缓存中。
值得注意的是,以上仅在实施例1的基础上,通过各实施方式对上行数据传输时的发送端(用户设备)进行了示意性说明,但本发明不限于此,还可以根据上述实例进行适当地调整或变形。
实施例4
本发明实施例在实施例2的基础上,以上行数据传输为例进行说明,其中接收端为基站,与实施例2相同的内容不再赘述。
在第1实施方式中,对基站的RLC层接收到乱序的AMD PDU并且没有配置计时器T的情况进行说明。
在本实施方式中,RLC层已经按顺序接收到的完整的AMD PDU的序列号为y,并且接收到的AMD PDU中最高的序列号为z,则当前的状态变量V1=y+1,V2=z+1,y<=z。
当RLC层再次接收到序列号为x的RLC SDU时,
-如果V1<x<V2,则将该AMD PDU丢弃;
-如果x>=V2:
Figure PCTCN2016070478-appb-000010
将V2更新为V2=x+1;
-如果x=V1:
Figure PCTCN2016070478-appb-000011
将V1更新为第一个还没有完整收到的AMD PDU对应的序列号的值;例如本实施方式中V1=x+1;
Figure PCTCN2016070478-appb-000012
将序列号小于更新后的V1的AMD PDU重组后交给PDCP层。
-如果V2>V1:
Figure PCTCN2016070478-appb-000013
触发状态反馈报告。
-如果有状态反馈报告已经被触发,在状态反馈报告触发后的第一个传输机会组建一个状态反馈报告并发送该状态反馈报告。
Figure PCTCN2016070478-appb-000014
组建的状态反馈报告中将包含满足条件V1<=SN<V2的所有序列号SN,用于通知发送端这些序列号对应的AMD PDU需要重传。
在第2实施方式中,对基站的RLC层接收到乱序的AMD PDU并且配置了计时器T的情况进行说明。
在本实施方式中,RLC层已经按顺序接收到的完整的AMD PDU的序列号为y,并且接收到的AMD PDU中最高的序列号为z,则当前的状态变量V1=y+1,V2=z+1,y<=z。
当RLC再次接收到序列号为x的RLC SDU时,
-如果V1<x<V2,则将该AMD PDU丢弃;
-如果x>=V2:
Figure PCTCN2016070478-appb-000015
将V2更新为V2=x+1;
-如果x=V1:
Figure PCTCN2016070478-appb-000016
将V1更新为第一个还没有完整收到的AMD PDU对应的序列号的值;例如在本实施方式中V1=x+1;
Figure PCTCN2016070478-appb-000017
将序列号小于更新后的V1的AMD PDU重组后交给PDCP层。
-如果V2>V1:
Figure PCTCN2016070478-appb-000018
触发状态反馈报告。
-如果有状态反馈报告已经被触发,
Figure PCTCN2016070478-appb-000019
如果计时器T没有运行,在状态反馈报告触发后的第一个传输机会组建一个状态反馈报告并发送该状态反馈报告,并启动该计时器T;
Figure PCTCN2016070478-appb-000020
如果计时器T正在运行,在该计时器超时后的第一个传输机会组建一个状态反馈报告并发送所述状态反馈报告,并重启该计时器T。
Figure PCTCN2016070478-appb-000021
组建的状态反馈报告中将包含满足条件V1<=SN<V2的所有序列号SN,用于通知发送端这些序列号对应的AMD PDU需要重传。
值得注意的是,以上仅在实施例2的基础上,通过各实施方式对上行数据传输时的接收端(基站)进行了示意性说明,但本发明不限于此,还可以根据上述实例进行适当地调整或变形。
实施例5
本发明实施例在实施例1的基础上,以下行数据传输为例进行说明,其中发送端为基站,与实施例1相同的内容不再赘述。
在第1实施方式中,对基站已经给用户设备传输过MAC PDU并且当前HARQ缓存为空的情况进行说明。
在本实施方式中,当MAC层传输完一个MAC PDU x,并且该MAC PDU x已经达到在MAC层的最大重传次数后,MAC层清空该MAC PDU x所在的HARQ缓存。
当MAC层收到物理层递交的针对MAC PDU x的ACK/NACK反馈时,
Figure PCTCN2016070478-appb-000022
如果该反馈为ACK,
■当MAC层基于调度算法的结果要再次为该用户设备调度下行数据传输时,MAC层给RLC层递交一个指示,通知RLC层产生一个新的AMDPDU递交给MAC层。
Figure PCTCN2016070478-appb-000023
如果该反馈为NACK,
■当MAC层基于调度算法的结果要再次为该用户设备调度下行数据传输时,MAC层给RLC层递交一个指示,通知RLC层将前一次传输的AMD PDU递交给MAC层。
在第2实施方式中,对基站已经给用户设备传输过MAC PDU并且当前的HARQ缓存中仍然存储着最近一次传输的MAC PDU的情况进行说明。
在本实施方式中,当MAC层传输完一个MAC PDU x,并且该MAC PDU x还没有达到在MAC层的最大重传次数时,该MAC PDU x继续被存储在HARQ缓存中。
当MAC层从物理层收到针对MAC PDU x的ACK/NACK反馈时
Figure PCTCN2016070478-appb-000024
将状态变量HARQ_FEEDBACK设为所述反馈值。
Figure PCTCN2016070478-appb-000025
如果HARQ_FEEDBACK=NACK:
■当MAC层基于调度算法的结果要再次为该用户设备调度下行数据传输时,MAC层重传存储在HARQ缓存中的MAC PDU x;并将记录该MAC PDU x重传次数的变量值加1。如果该MAC PDU x的重传次数已经达到最大重传次数,清空存储该MAC PDU x的HARQ缓存。
Figure PCTCN2016070478-appb-000026
如果HARQ_FEEDBACK=ACK:
■当MAC层基于调度算法的结果要再次为该用户设备调度下行数据传输时,MAC层给RLC层递交一个指示,通知RLC层产生一个新的AMD PDU并递交给MAC层。
值得注意的是,以上仅在实施例1的基础上,通过各实施方式对下行数据传输时的发送端(基站)进行了示意性说明,但本发明不限于此,还可以根据上述实例进行适当地调整或变形。
实施例6
本发明实施例在实施例1的基础上,以下行数据传输为例进行说明,其中接收端为用户设备。
对于下行数据传输的接收端(用户设备),操作或步骤可以与实施例4中上行数据传输的接收端(基站)的操作或步骤相同,具体可以参考实施例4和实施例1,本实施例不再重复说明。
实施例7
本发明实施例提供一种数据发送装置,对应于实施例1中的数据发送方法,相同的内容不再赘述。
图8是本发明实施例的数据发送装置的一示意图,如图8所示,数据发送装置800包括:
MAC层单元801,其根据物理层递交的针对已传输数据的反馈指示信息和/或HARQ缓存中是否存在数据,确定向接收端发送的待传输数据;以及当所述待传输数据为需要RLC层递交的数据时,向所述RLC层发送指示来通知所述RLC层传输新 数据或者重传上次传输的数据。
如图8所示,数据发送装置800还可以包括:
RLC层单元802,其根据MAC层单元801的指示,或者根据MAC层单元801的指示和接收端发送的状态反馈报告,向MAC层单元801递交相应的数据。
值得注意的是,图8仅示出了与本发明相关的各单元,对于其他各单元(例如物理层单元、PDCP层单元)等可以参考现有技术,此处不再赘述。
在本实施例中,针对已传输数据的反馈指示信息可以包括:通过PHICH反馈的ACK/NACK信息,以及通过PDCCH传输的上行授权信息和新数据指示信息;或者包括:通过PDCCH传输的上行授权信息和新数据指示信息。具体内容可以参考实施例3所述。
在本实施例中,MAC层单元用于实现MAC层的功能,例如可以为MAC层实体;RLC层单元用于实现RLC层的功能,例如可以为RLC层实体。MAC层单元和RLC层单元可以是指软件模块,例如通过CPU的控制和存储器的存储实现。也可以是指硬件设备,例如将MAC层功能固化在芯片上的电路。本发明对于这些单元的具体形式并不进行限制,可以是实现MAC层和RLC层等协议层功能的任意方式。
图9是本发明实施例的MAC层单元的一示意图。
在一个实施方式中,如图9所示,MAC层单元801可以包括:
信息确定单元901,其确定针对已传输数据的反馈指示信息是指示进行数据重传还是指示进行新数据传输;
缓存判断单元902,其判断HARQ缓存中是否为空;以及
数据确定单元903,其在该反馈指示信息指示进行数据重传并且该HARQ缓存中不为空的情况下,将该HARQ缓存中的数据确定为待传输数据。
在另一个实施方式中,数据确定单元903还可以用于:在所述反馈指示信息指示进行数据重传并且所述HARQ缓存为空的情况下,确定所述待传输数据为需要RLC层递交的上次传输的数据。
MAC层单元801还可以包括:
指示发送单元904,其指示RLC层单元802重传上次传输的数据。
在另一个实施方式中,数据确定单元903还可以用于:在所述反馈指示信息指示进行新数据传输的情况下,确定所述待传输数据为需要RLC层递交的新数据。指示 发送单元904还可以用于:指示RLC层单元802传输新数据。
图10是本发明实施例的RLC层单元的一示意图。
在一个实施方式中,如图10所示,RLC层单元802可以包括:
指示接收单元1001,接收MAC层单元801的指示;
数据递交单元1002,其在被MAC层单元801指示重传上次传输数据的情况下,向MAC层单元801递交上次传输数据。
在另一个实施方式中,RLC层单元802还可以包括:
报告接收单元1003,其接收该接收端发送的状态反馈报告;其中该状态反馈报告中包括该接收端的RLC层没有正确接收到的数据的序列信息;以及
重传确定单元1004,其根据该状态反馈报告确定需要重传的数据。
在另一个实施方式中,数据递交单元1002还可以用于:在被MAC层单元801指示递交新数据且存在需要重传的数据的情况下,向MAC层单元801递交所述需要重传的数据。
在另一个实施方式中,RLC层单元802还可以包括:
数据生成单元1005,其在被MAC层单元801指示递交新数据且不存在需要重传的数据的情况下,生成新数据;
数据递交单元1002还可以用于:向MAC层单元801递交所述新数据。
值得注意的是,以上仅示意性示出了本发明相关的MAC层单元或RLC层单元的部分构成,但本发明不限于此。例如MAC层单元或RLC层单元还可以包括本发明没有示出的部分,可以参考相关技术。
在本实施例中,在传输上行数据时,发送端可以是用户设备,接收端是基站;数据发送装置800可以配置在作为发送端的用户设备中。
本实施例还提供一种用户设备,配置有如上所述的数据发送装置800。
图11是本发明实施例的用户设备的一示意图。如图11所示,该用户设备1100可以包括中央处理器100和存储器140;存储器140耦合到中央处理器100。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
在一个实施方式中,数据发送装置800的功能可以被集成到中央处理器100中。其中,中央处理器100可以被配置为实现实施例1中所述的数据发送方法。
例如,中央处理器100可以被配置为进行如下的控制:MAC层根据物理层递交的针对已传输数据的反馈指示信息和/或HARQ缓存中是否存在数据,确定向接收端发送的待传输数据;以及当待传输数据为需要RLC层递交的数据时,向RLC层发送指示来通知RLC层传输新数据或者重传上次传输的数据。
在另一个实施方式中,数据发送装置800可以与中央处理器100分开配置,例如可以将数据发送装置800配置为与中央处理器100连接的芯片,通过中央处理器100的控制来实现数据发送装置800的功能。
如图11所示,该用户设备1100还可以包括:通信模块110、输入单元120、音频处理单元130、存储器140、照相机150、显示器160、电源170。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,用户设备1100也并不是必须要包括图11中所示的所有部件,上述部件并不是必需的;此外,用户设备1100还可以包括图11中没有示出的部件,可以参考现有技术。
在本实施例中,在传输下行数据时,发送端可以是基站,接收端是用户设备。数据发送装置800可以配置在作为发送端的基站中。
本实施例还提供一种基站,配置有如上所述的数据发送装置800。
图12是本发明实施例的基站的一构成示意图。如图12所示,基站1200可以包括:中央处理器(CPU)200和存储器210;存储器210耦合到中央处理器200。其中该存储器210可存储各种数据;此外还存储信息处理的程序,并且在中央处理器200的控制下执行该程序。
其中,数据发送装置800可以实现如实施例2所述的数据发送方法。中央处理器200可以被配置为实现数据发送装置800的功能。
例如,中央处理器200可以被配置为进行如下控制:MAC层根据物理层递交的针对已传输数据的反馈指示信息和/或HARQ缓存中是否存在数据,确定向接收端发送的待传输数据;以及当待传输数据为需要RLC层递交的数据时,向RLC层发送指示来通知RLC层传输新数据或者重传上次传输的数据。
此外,如图12所示,基站1200还可以包括:收发机220和天线230等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,基站1200也并不是必须要包括图12中所示的所有部件;此外,基站1200还可以包括图12中没有示出的部件,可以参考现有技术。
由上述实施例可知,MAC层在HARQ反馈指示信息指示进行数据重传并且HARQ缓存中存在数据的情况下,将HARQ缓存中的数据确定为待传输数据;在HARQ反馈指示信息指示进行数据重传并且HARQ缓存中不存在数据的情况下,通知RLC层递交上次传输数据。可以在支持一个HARQ进程的情况下实现数据的发送和接收,简化RLC层基于AM的数据发送和接收机制。
此外,MAC层在HARQ反馈指示信息指示进行新数据传输的情况下,通知RLC层递交新数据;RLC层根据状态反馈报告确定需要重传的数据,以及在被MAC层指示递交新数据且存在需要重传的数据的情况下,向MAC层递交需要重传的数据。不仅可以减少状态反馈报告的发送,而且可以可靠地实现数据的发送和接收。
实施例8
本发明实施例提供一种数据接收装置,对应于实施例2中的数据接收方法,相同的内容不再赘述。
图13是本发明实施例的数据接收装置的一示意图,如图13所示,数据接收装置1300包括:
RLC层单元1301,其接收发送端传输的数据;并且根据按顺序完整接收到的数据的序列信息以及接收到的数据中的最高序列信息,确定是否触发状态反馈报告。
在本实施例中,所述状态反馈报告中包括RLC层没有正确接收到的数据的序列信息。
图14是本发明实施例的RLC层单元的一示意图,如图14所示,RLC层单元1301可以包括:
变量维护单元1401,其维护状态变量V1和V2;其中所述V1记录按顺序完整接收到的数据所对应序列号的下一序列号,所述V2记录接收到的数据中的最高序列号的下一序列号;
变量更新单元1402,其在接收到的数据的序列号X大于或等于所述V2的情况下,将所述V2更新为X+1;在接收到的数据的序列号X等于所述V1的情况下,将所述V1更新为下一个还没有正确收到的数据所对应的序列号;以及
报告触发单元1403,其在变量更新单元1402执行V1和V2的更新后,在所述V2大于所述V1的情况下触发状态反馈报告。
如图14所示,在一个实施方式中,RLC层单元1301还可以包括:报告发送单元1404,在所述状态反馈报告被触发后的第一个传输机会发送所述状态反馈报告。
在另一个实施方式中,RLC层单元1301还可以包括:计时器维护单元(图中未示出),其维护计时器T,以及在报告发送单元1404发送所述状态反馈报告后启动或重启所述计时器T。报告发送单元1404还用于:在所述状态反馈报告被触发的情况下,如果所述计时器T正在运行,则在所述计时器T超时后的第一个传输机会发送所述状态反馈报告;如果所述计时器T没有运行,在所述状态反馈报告被触发后的第一个传输机会发送所述状态反馈报告。
值得注意的是,以上仅示意性示出了本发明相关的RLC层单元的部分构成,但本发明不限于此。例如RLC层单元还可以包括本发明没有示出的部分,可以参考相关技术。
在本实施例中,在传输上行数据时,发送端可以是用户设备,接收端是基站;数据接收装置1300可以配置在作为接收端的基站中。本实施例还提供一种基站,配置有如上所述的数据接收装置1300。该基站的构成可以参考附图12。
在本实施例中,在传输下行数据时,发送端可以是基站,接收端是用户设备。数据接收装置1300可以配置在作为接收端的用户设备中。本实施例还提供一种用户设备,配置有如上所述的数据接收装置1300。该用户设备的构成可以参考附图11。
由上述实施例可知,发送端的MAC层根据物理层递交的针对已传输数据的反馈指示信息和/或HARQ缓存中是否存在数据来确定待传输数据;可以在支持一个HARQ进程的情况下实现数据的发送和接收,由此简化RLC层基于AM模式的数据发送和接收机制,减少物联网终端的复杂度、功耗和传输次数。
此外,接收端根据按顺序完整接收到的数据的序列信息以及接收到的数据中的最高序列信息,确定是否触发状态反馈报告;可以在减少状态反馈报告的情况下提高数据传输的可靠性。
实施例9
本发明实施例还提供一种通信系统,与实施例1至8相同的内容不再赘述。
图15是本发明实施例的通信系统的一示意图,如图15所示,通信系统1500可以包括基站1501和用户设备1502。
在一个实施方式中,在传输上行数据时,用户设备1502作为发送端,基站1501作为接收端。其中,用户设备1502的MAC层根据物理层递交的针对已传输数据的反馈指示信息和/或HARQ缓存中是否存在数据,确定向基站1501发送的待传输数据;以及当所述待传输数据为需要RLC层递交的数据时,向所述RLC层发送指示来通知所述RLC层传输新数据或者重传上次传输的数据。
基站1501接收用户设备1502传输的数据;并且根据按顺序完整接收到的数据的序列信息以及接收到的数据中的最高序列信息,确定是否触发状态反馈报告。
在另一个实施方式中,在传输下行数据时,用户设备1502作为接收端,基站1501作为发送端。其中,基站1501的MAC层根据物理层递交的针对已传输数据的反馈指示信息和/或HARQ缓存中是否存在数据,确定向用户设备1502发送的待传输数据;以及当所述待传输数据为需要RLC层递交的数据时,向所述RLC层发送指示来通知所述RLC层传输新数据或者重传上次传输的数据。
用户设备1502接收基站1501传输的数据;并且根据按顺序完整接收到的数据的序列信息以及接收到的数据中的最高序列信息,确定是否触发状态反馈报告。
本发明实施例还提供一种计算机可读程序,其中当在发送端中执行所述程序时,所述程序使得计算机在所述发送端中执行实施例1所述的数据发送方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在发送端中执行实施例1所述的数据发送方法。
本发明实施例还提供一种计算机可读程序,其中当在接收端中执行所述程序时,所述程序使得计算机在所述接收端中执行实施例2所述的数据接收方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在接收端中执行实施例2所述的数据接收方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本发明实施例描述的在数据发送/接收装置中数据发送/接收的方法可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图8中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合(例如,MAC层单元等),既可以对应 于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图1所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。

Claims (16)

  1. 一种数据发送装置,其中,所述数据发送装置包括:
    介质访问控制层单元,其根据物理层递交的针对已传输数据的反馈指示信息和/或混合自动重传请求缓存中是否存在数据,确定向接收端发送的待传输数据;以及
    当所述待传输数据为需要无线链路控制层递交的数据时,向所述无线链路控制层发送指示来通知所述无线链路控制层传输新数据或者重传上次传输的数据。
  2. 根据权利要求1所述的数据发送装置,其中,所述数据发送装置还包括:
    无线链路控制层单元,其根据所述介质访问控制层单元的指示,或者根据所述介质访问控制层单元的指示和接收端发送的状态反馈报告,向所述介质访问控制层单元递交相应的数据。
  3. 根据权利要求1所述的数据发送装置,其中,所述介质访问控制层单元包括:
    信息确定单元,其确定所述针对已传输数据的反馈指示信息是指示进行数据重传还是指示进行新数据传输;
    缓存判断单元,其判断所述混合自动重传请求缓存中是否为空;以及
    数据确定单元,其在所述反馈指示信息指示进行数据重传并且所述混合自动重传请求缓存不为空的情况下,将所述混合自动重传请求缓存中的数据确定为所述待传输数据。
  4. 根据权利要求1所述的数据发送装置,其中,所述介质访问控制层单元包括:
    信息确定单元,其确定所述针对已传输数据的反馈指示信息是指示进行数据重传还是指示进行新数据传输;
    缓存判断单元,其判断所述混合自动重传请求缓存中是否为空;
    数据确定单元,其在所述反馈指示信息指示进行数据重传并且所述混合自动重传请求缓存为空的情况下,确定所述待传输数据为需要无线链路控制层递交的上次传输的数据;以及
    指示发送单元,其指示所述无线链路控制层重传上次传输的数据。
  5. 根据权利要求1所述的数据发送装置,其中,所述介质访问控制层单元包括:
    信息确定单元,其确定所述针对已传输数据的反馈指示信息是指示进行数据重传还是指示进行新数据传输;
    数据确定单元,其在所述反馈指示信息指示进行新数据传输的情况下,确定所述 待传输数据为需要无线链路控制层递交的新数据;以及
    指示发送单元,其指示所述无线链路控制层传输新数据。
  6. 根据权利要求2所述的数据发送装置,其中,所述无线链路控制层单元包括:
    指示接收单元,其接收所述介质访问控制层单元的指示;
    数据递交单元,其在被所述介质访问控制层单元指示重传上次传输的数据的情况下,向所述介质访问控制层单元递交所述上次传输的数据。
  7. 根据权利要求2所述的数据发送装置,其中,所述无线链路控制层单元包括:
    报告接收单元,其接收所述接收端发送的状态反馈报告;其中所述状态反馈报告中包括所述接收端的无线链路控制层没有正确接收到的数据的序列信息;以及
    重传确定单元,其根据所述状态反馈报告确定需要重传的数据。
  8. 根据权利要求2所述的数据发送装置,其中,所述无线链路控制层单元包括:
    指示接收单元,其接收所述介质访问控制层单元的指示;
    数据递交单元,其在被所述介质访问控制层单元指示传输新数据且存在需要重传的数据的情况下,向所述介质访问控制层单元递交所述需要重传的数据。
  9. 根据权利要求2所述的数据发送装置,其中,所述无线链路控制层单元包括:
    指示接收单元,其接收所述介质访问控制层单元的指示;
    数据生成单元,其在被所述介质访问控制层单元指示传输新数据且不存在需要重传的数据的情况下,生成新数据;
    数据递交单元,其向所述介质访问控制层单元递交所述新数据。
  10. 根据权利要求1所述的数据发送装置,其中,所述针对已传输数据的反馈指示信息包括:通过物理混合自动重传请求指示信道反馈的ACK/NACK信息,以及通过物理下行控制信道传输的上行授权信息和新数据指示信息;
    或者所述针对已传输数据的反馈指示信息包括:通过物理下行控制信道传输的上行授权信息和新数据指示信息。
  11. 一种数据接收装置,其中,所述数据接收装置包括:
    无线链路控制层单元,其接收发送端传输的数据;并且根据按顺序完整接收到的数据的序列信息以及接收到的数据中的最高序列信息,确定是否触发状态反馈报告。
  12. 根据权利要求11所述的数据接收装置,其中,所述状态反馈报告中包括无线链路控制层没有正确接收到的数据的序列信息。
  13. 根据权利要求11所述的数据接收装置,其中,所述无线链路控制层单元包 括:
    变量维护单元,其维护状态变量V1和V2;其中所述V1记录按顺序完整接收到的数据所对应序列号的下一序列号,所述V2记录接收到的数据中的最高序列号的下一序列号;
    变量更新单元,其在接收到的数据的序列号X大于或等于所述V2的情况下,将所述V2更新为X+1;在接收到的数据的序列号X等于所述V1的情况下,将所述V1更新为下一个还没有正确收到的数据所对应的序列号;以及
    报告触发单元,其在所述变量更新单元执行V1和V2的更新后,在所述V2大于所述V1的情况下触发状态反馈报告。
  14. 根据权利要求13所述的数据接收装置,其中,所述无线链路控制层单元还包括:
    报告发送单元,其在所述状态反馈报告被触发后的第一个传输机会发送所述状态反馈报告。
  15. 根据权利要求14所述的数据接收装置,其中,所述无线链路控制层单元还包括:
    计时器维护单元,其维护计时器T,以及在所述报告发送单元发送所述状态反馈报告后启动或重启所述计时器T;
    所述报告发送单元还用于:在所述状态反馈报告被触发的情况下,如果所述计时器T正在运行,则在所述计时器T超时后的第一个传输机会发送所述状态反馈报告;如果所述计时器T没有运行,在所述状态反馈报告被触发后的第一个传输机会发送所述状态反馈报告。
  16. 一种通信系统,其中,所述通信系统包括:
    发送端,所述发送端的介质访问控制层根据物理层递交的针对已传输数据的反馈指示信息和/或混合自动重传请求缓存中是否存在数据,确定向接收端发送的待传输数据;以及当所述待传输数据为需要无线链路控制层递交的数据时,向所述无线链路控制层发送指示来通知所述无线链路控制层传输新数据或者重传上次传输的数据;
    接收端,所述接收端的无线链路控制层接收所述发送端传输的数据;并且根据按顺序完整接收到的数据的序列信息以及接收到的数据中的最高序列信息,确定是否触发状态反馈报告。
PCT/CN2016/070478 2016-01-08 2016-01-08 数据发送和接收装置、方法以及通信系统 WO2017117800A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/070478 WO2017117800A1 (zh) 2016-01-08 2016-01-08 数据发送和接收装置、方法以及通信系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/070478 WO2017117800A1 (zh) 2016-01-08 2016-01-08 数据发送和接收装置、方法以及通信系统

Publications (1)

Publication Number Publication Date
WO2017117800A1 true WO2017117800A1 (zh) 2017-07-13

Family

ID=59273341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070478 WO2017117800A1 (zh) 2016-01-08 2016-01-08 数据发送和接收装置、方法以及通信系统

Country Status (1)

Country Link
WO (1) WO2017117800A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112272928A (zh) * 2018-06-20 2021-01-26 华为技术有限公司 一种数据包重传方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101277250A (zh) * 2007-03-29 2008-10-01 上海宇梦通信科技有限公司 减少hsupa数据重传时延的方法
CN101779408A (zh) * 2008-01-31 2010-07-14 Lg电子株式会社 在移动通信系统中发送状态信息的方法及移动通信的接收机
US20100257423A1 (en) * 2007-10-16 2010-10-07 Jin Ju Kim Method of performing arq procedure for transmitting high rate data

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101277250A (zh) * 2007-03-29 2008-10-01 上海宇梦通信科技有限公司 减少hsupa数据重传时延的方法
US20100257423A1 (en) * 2007-10-16 2010-10-07 Jin Ju Kim Method of performing arq procedure for transmitting high rate data
CN101779408A (zh) * 2008-01-31 2010-07-14 Lg电子株式会社 在移动通信系统中发送状态信息的方法及移动通信的接收机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112272928A (zh) * 2018-06-20 2021-01-26 华为技术有限公司 一种数据包重传方法及装置
CN112272928B (zh) * 2018-06-20 2022-08-09 华为技术有限公司 一种数据包重传方法及装置
US11424864B2 (en) 2018-06-20 2022-08-23 Huawei Technologies Co., Ltd. Data packet retransmission method and apparatus

Similar Documents

Publication Publication Date Title
US8369865B2 (en) Data transmission method and data re-transmission method
US7706405B2 (en) System for efficient recovery of Node-B buffered data following MAC layer reset
US20220368467A1 (en) Harq process management method and apparatus, terminal, and storage medium
JP5351329B2 (ja) 無線通信システムにおいて1対多サービスを受信する方法及び端末
US8830944B1 (en) Method for acknowledging RLC data packet transmission and RLC AM entity sender
TWI415414B (zh) 傳輸時間間隔集束機制轉換時之混合式自動重傳請求程序的方法及裝置
JP2012165420A (ja) 無線通信システムにおけるエラー制御メッセージを処理するための方法及び装置
EP2761802A1 (en) Interruptions in wireless communications
US10433205B2 (en) Network node, method therein, computer program, and carrier comprising the computer program for retransmitting an RLC PDU
WO2021000783A1 (zh) 指示数据传输情况的方法和装置
EP4044480A1 (en) Ntn-based data transmission method and apparatus, and storage medium
RU2392752C2 (ru) Способ передачи данных и способ повторной передачи данных
WO2021056154A1 (zh) 一种窗口调整方法及装置、网络设备、终端设备
WO2021146865A1 (zh) 通信方法、装置、设备及存储介质
CN101404566A (zh) 一种lte系统中混合自动重传请求机制的实现方法及系统
WO2015018009A1 (zh) 用于自动重传的方法、用户设备和基站
WO2020107220A1 (zh) 无线通信方法、终端设备和网络设备
WO2017117800A1 (zh) 数据发送和接收装置、方法以及通信系统
WO2022121876A1 (zh) 多播业务的确认模式传输方法、装置、设备及存储介质
US20230396368A1 (en) Methods, apparatuses, and media for operating point-to-multipoint radio bearer
US11563524B2 (en) Wireless communication method and device
WO2021051284A1 (zh) 一种上行重传处理方法、电子设备及存储介质
EP2521398B1 (en) Method, device and system for processing user equipment handover in long term evolution (lte) system
AU2009245823B2 (en) System for efficient recovery of node-b buffered data following Mac layer reset

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16882945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16882945

Country of ref document: EP

Kind code of ref document: A1