WO2012051863A1 - 一种多点协作的方法及装置 - Google Patents

一种多点协作的方法及装置 Download PDF

Info

Publication number
WO2012051863A1
WO2012051863A1 PCT/CN2011/075778 CN2011075778W WO2012051863A1 WO 2012051863 A1 WO2012051863 A1 WO 2012051863A1 CN 2011075778 W CN2011075778 W CN 2011075778W WO 2012051863 A1 WO2012051863 A1 WO 2012051863A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
user
virtual cell
coordinated
virtual
Prior art date
Application number
PCT/CN2011/075778
Other languages
English (en)
French (fr)
Inventor
王文焕
贺抗生
姚珂
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012051863A1 publication Critical patent/WO2012051863A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]

Definitions

  • the present invention relates to the field of digital communications, and more particularly to a method and apparatus for multipoint coordination in the evolution of broadband wireless communication systems. Background technique
  • IMT-Advanced represents the main development direction of information technology.
  • the demand for wireless mobile communication market will continue to grow rapidly in the next 10-15 years.
  • IMT-Advanced will achieve higher data rate and larger system capacity than existing systems.
  • the designed peak rate is: low-speed mobile, hotspot coverage scenario lGbit/s or higher, 100 Mbit/s in high-speed mobile and wide-area coverage scenarios.
  • CoMP Coordinated Multipoint transmission/reception
  • OFDM Orthogonal Frequency Division Multiplex
  • ICI inter-carrier interference
  • 3GPP has accepted CoMP as one of the LTE-Advanced technologies.
  • CoMP can theoretically be used for cell edge user equipment (UE) and cell center UE, but the signal to interference plus noise ratio (SINR) of the cell center UE is not high when using non-CoMP, and CoMP is used. After that, the throughput improvement is small and the information interaction is wasted. CoMP for cell edge users can significantly reduce inter-cell interference and improve Received power of the cell edge user. Therefore, most companies believe that CoMP should be used only for cell edge UEs.
  • SINR signal to interference plus noise ratio
  • CoMP is divided into the following two categories:
  • JP Joint processing
  • CS/CB Coordinatd Scheduling/Beamforming
  • the cell selected into the CoMP set should have several characteristics:
  • the CoMP cell uses the same frequency band
  • the cells in the CoMP set can communicate through the X2 interface or other means for message transmission.
  • the base station has been divided into JP, CS/CB mode according to user sharing, and the concepts of cooperation set, measurement set, and service cell have been clarified, but no specific implementation method and device have been provided. Summary of the invention
  • the following problems are mainly solved by the present invention:
  • the present invention provides a method for multi-point collaboration, including: negotiating and determining a resource in which a coordinated cell set participates in collaboration, and determining according to the resource participating in the collaboration Establishing the virtual cell by using parameters and pilot modes of the virtual cell;
  • the serving cell determines to participate in the coordinated user, and centrally schedules the collaborative user in the virtual cell according to the parameter of the virtual cell.
  • the negotiation determines a resource in which the coordinated cell set participates in the cooperation, determines a parameter and a pilot mode of the virtual cell according to the resource that participates in the cooperation, and establishes the virtual cell.
  • the step includes: determining, by the negotiation, the resource that the coordinated cell set participates in the collaboration includes: The number of the statistical edge users of the coordinated cell set, the number of antennas of the requested bandwidth and the coordinated cell set; the resources that participate in the cooperative cell set cooperation are divided, and some of the coordinated resources are allocated to the virtual cell, and the parameters of the virtual cell are determined. a pilot mode; wherein the virtual cell only includes a traffic channel.
  • the resource for configuring the virtual cell includes: a time domain resource, a frequency domain resource, and an air domain resource; dynamically adjusting the time domain resource and the frequency domain resource of the virtual cell according to the edge user participating in the cooperation and the requested bandwidth in the T time;
  • the frequency domain resource is a resource block that is an integer multiple of the frequency domain, the minimum is one physical resource block, and the maximum is the full bandwidth, and the frequency domain resource is an independent carrier configured in the frequency domain multi-carrier;
  • the time domain resource is an integer in the time domain.
  • the multiple subframes are resources other than the control channel occupied symbols or frequency domain locations; the spatial domain resources are from the coordinated cell set, are all antennas of the coordinated cell set, or are part of antennas participating in cooperation.
  • the parameter of the virtual cell includes a bandwidth of the virtual cell, an antenna configuration, and a virtual cell ID, where the virtual cell ID is a logical combination form of the coordinated cell IDs or a new sequence identifier.
  • the virtual cell pilot is distributed in a symbol area other than the common downlink control channel, and is specifically any one of the following modes:
  • the pilot of the virtual cell is compatible with pilots of R8, R9, and R10;
  • the pilot of the virtual cell is not compatible with pilots of R8, R9, and R10;
  • the pilot of the virtual cell is only compatible with the R10 modulation pilot DMRS and the measurement pilot CSI-RS;
  • the serving cell determines to participate in the coordinated user, and the step of centrally scheduling the collaborative user in the virtual cell according to the parameter of the virtual cell includes:
  • Step 1 Send, by using a broadcast message of the coordinated cell set, a parameter of the virtual cell to an enhanced user UE in the coordinated cell set;
  • Step 2 The enhanced user UE detects a signal strength parameter of the serving cell and the neighboring cell in the serving cell, and reports the measurement report to the enhancement when one or several events in the coordinated cell set meet the trigger criterion.
  • a serving cell of a type user UE
  • Step 3 The serving cell of the enhanced user UE receives the measurement report, and determines to participate in the cooperative user UE according to the cooperative cell criterion;
  • Step 4 The coordinated cell set collects the participating cooperative user UEs into the virtual cell, and centrally schedules the coordinated users in the virtual cell, completes pairing of the collaborative users, and generates control information.
  • the coordinated user UEs When the coordinated user UEs are centrally scheduled, the users that need to cooperate belong to different service virtual cells, and are classified into MU-MIMO and SU-MIMO scheduling according to existing protocols;
  • the centralized scheduling of the virtual cell is independent of the coordinated cell set, and the codebook set of the virtual cell multi-antenna is independent of the codebook set of the coordinated cell set serving cell, and the resources allocated to the virtual cell are The cells in the coordinated cell are allocated according to the allocated processing.
  • the method further includes: interacting the control information between a base station and a serving cell of the enhanced user UE, and forming a control channel together with other users of the serving cell;
  • the coding, modulation, weighting, IFFT, and transmission of the collaborative users are completed.
  • the coding, modulation, weighting, IFFT, and transmission of the coordinated user are completed in the serving cell of the user according to the scheduling result;
  • JP mode The scheduled user sends some or all of the user data to other collaboration points in the user service cell according to the scheduling result, and performs coding, debugging, weighting, IFFT, and transmission of the coordinated user at the cooperation point of the user data and the serving cell.
  • the present invention provides a multi-point cooperation apparatus, including: a virtual cell establishment module, configured to establish a virtual cell;
  • the virtual cell scheduling module is configured to centrally schedule users participating in the collaboration in the virtual cell.
  • the virtual cell establishment module includes:
  • a resource configuration unit configured to configure a time domain resource, a frequency domain resource, and an airspace resource of the virtual cell
  • a pilot configuration unit configured to configure a pilot mode of the virtual cell, where the specific mode is any one of the following:
  • the pilot of the virtual cell is compatible with pilots of R8, R9, and R10;
  • the pilot of the virtual cell is not compatible with pilots of R8, R9, and R10;
  • the pilot of the virtual cell is only compatible with the R10 modulation pilot DMRS and the measurement pilot CSI-RS;
  • the virtual cell ID generating unit is configured to generate a virtual cell ID, where the virtual cell ID is a logical combination form participating in the coordinated cell ID or a new sequence identifier.
  • the virtual cell scheduling module includes:
  • a sending unit configured to send, by using a broadcast message of the coordinated cell set, a parameter of the virtual cell, where the parameter includes a bandwidth, an antenna configuration, and a virtual cell ID of the virtual cell;
  • a receiving unit configured to receive a measurement report reported by the user UE
  • the cooperative user determining unit is configured to determine, according to the measurement report reported by the user UE received by the receiving unit, that the UE is finally participating in the coordinated user UE.
  • the collaborative user scheduling execution unit is configured to complete physical layer execution processes such as data encoding, modulation, user data weighting, mapping, and IFFT of the collaborative user.
  • the collaborative user scheduling execution unit includes:
  • a CS/CB mode execution unit configured for a user in which the user data is scheduled only in the CS/CB mode available to the serving base station, and performs coding, modulation, weighting, IFFT, and transmission of the coordinated user in the serving cell of the user according to the scheduling result;
  • a JP mode execution unit configured for a JP mode scheduled user whose user data can be used in each transmission point or cell in the cooperation set, and sends part or all of the user data to other cooperation points in the user service cell according to the scheduling result. Coding, debugging, weighting, IFFT, and transmission of collaborative users are completed at the collaboration point of the user data and the serving base station.
  • the cooperative set design and execution complexity are simplified by configuring the resources of the coordinated cell set as the virtual cell; for the mobile station, the spatial resource quantization can be performed according to the virtual cell space.
  • the virtual cell centrally schedules the resources of the coordinated cell set, and the virtual cell can adopt the updated design to meet the requirements of the future IMT-A. Since the virtual cell pilots can be configured, it is possible to redesign the pilots without having to consider the pilot designs compatible with R8, R9, and R10. It is also possible to use compatible R8, R9, and R10 designs to make the system design more flexible. Provide better quality of service and user throughput for users at the edge of the cell.
  • FIG. 1 is a flowchart of a multipoint cooperation method in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of forming a virtual cell coverage by two cells in an embodiment of the present invention
  • FIG. 3 is a schematic diagram of resources of a two-cell cooperative set virtual cell in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a control channel design in an embodiment of the present invention.
  • 5 is a pilot design when a virtual cell has 1 RB in the embodiment of the present invention.
  • FIG. 6 is a flowchart of scheduling a virtual cell in an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a 5M bandwidth resource block and a subframe in the embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a multi-point cooperation device module in an embodiment of the present invention. detailed description
  • serving cell A cell that transmits a control channel to the terminal. In the process of communication between the terminal and the base station, there is only one serving cell.
  • Measurement Cell Set A set of cells in which the terminal performs periodic channel condition information measurement. The set is semi-statically configured by the terminal serving cell.
  • Cooperative Cell Set is a small set of cells that directly or indirectly participate in sending service data to a terminal.
  • a method for multi-point collaboration includes:
  • Step 101 Negotiating to determine a resource in which the coordinated cell set participates in the cooperation, and determining a parameter and a pilot mode of the virtual cell according to the resource participating in the cooperation, and establishing the virtual cell;
  • Step 102 The serving cell determines to participate in the coordinated user, and centrally schedules the cooperative user in the virtual cell according to the parameter of the virtual cell.
  • a virtual cell identifier (ID) and a virtual cell pilot pattern are designed by concentrating resources of the cooperative transmission point to establish a virtual cell.
  • the virtual cell user is centrally scheduled to transmit the service information of the coordinated user through the antenna configuration of each coordinated cell, so that the interference of the edge UE is reduced, and the throughput rate of the edge UE is improved.
  • Step 101 may be implemented as follows:
  • the foregoing negotiation determines a resource in which the coordinated cell set participates in the cooperation, and determines a parameter and a pilot mode of the virtual cell according to the resource that participates in the cooperation, and establishes the virtual cell.
  • the step includes: determining, by using the foregoing negotiation, the coordinated cell
  • the resources participating in the cooperation include the number of statistical edge users of the foregoing coordinated cell set, the number of antennas requesting the bandwidth and the coordinated cell set, the resources of the cooperative cells participating in the coordinated cell group, and the allocation of some cooperative resources to the virtual
  • the pseudo cell, the parameter and the pilot mode of the virtual cell are determined; wherein the virtual cell only includes a traffic channel.
  • the resources for configuring the virtual cell include: a time domain resource, a frequency domain resource, and an air domain resource; and dynamically adjusting the time domain resource and the frequency domain resource of the virtual cell in a T time according to the edge user participating in the cooperation and the requested bandwidth; 7 is a schematic diagram of a 5M bandwidth resource block and a subframe.
  • the frequency domain resource is a resource block that is an integer multiple of the frequency domain, and the minimum is a physical resource block, that is, 12x7 of FIG.
  • the frequency domain resource is a separate carrier in a frequency domain multi-carrier configuration
  • the time domain resource is an integer multiple of a time domain subframe, and is a resource other than a control channel occupied symbol or a frequency domain location
  • the coordinated cell set is all antennas of the above coordinated cell set, or part of the antennas participating in the cooperation.
  • the parameter of the virtual cell includes a bandwidth of the virtual cell, an antenna configuration, and a virtual cell ID, where the virtual cell ID is a logical combination form of the coordinated cell IDs or a new sequence identifier.
  • the new sequence can be one of the Zadoff-chu sequences or an M sequence.
  • the virtual cell pilot is distributed in a symbol area other than the common downlink control channel, and is specifically any one of the following modes:
  • the pilot of the virtual cell is compatible with pilots of R8, R9, and R10;
  • the pilot of the virtual cell is not compatible with the pilots of R8, R9, and R10;
  • the pilot of the virtual cell is only compatible with the R10 modulation pilot DMRS and the measurement pilot CSI-RS.
  • Step 102 can be implemented as follows:
  • Step 1 Send, by using the broadcast message of the coordinated cell set, the parameters of the virtual cell to the enhanced user UE in the coordinated cell set;
  • Step 2 The enhanced user UE detects the serving cell and the neighboring cell in the serving cell. a signal strength parameter, and reporting the measurement report to the serving cell of the enhanced user UE when one or several events in the coordinated cell set meet the triggering criterion;
  • Step 3 The serving cell of the enhanced user UE receives the foregoing measurement report, and determines to participate in the cooperative user UE according to the cooperative cell criterion;
  • Step 4 The coordinated cell set concentrates the participating cooperative user UEs into the virtual cell, and centrally schedules the coordinated users in the virtual cell, and completes matching of the coordinated users and generation of control information.
  • the users that need to cooperate belong to different service virtual cells, and are classified into multi-user multiple input multiple output according to an existing protocol (MU-MIMO, Multi-User Multiple-Input Multiple-Output). ), single-user multiple-input multiple-output (SU-MIMO) scheduling; centralized scheduling of the virtual cell is independent of the coordinated cell set of its serving cell, and the virtual cell multi-antenna codebook set is independent
  • the code set of the serving cell is set in the coordinated cell, and the resource allocated to the virtual cell is allocated for the cell in the coordinated cell set.
  • the method further includes: interacting the control information between the base station and the serving cell of the enhanced user UE, and forming a control channel together with other users of the serving cell;
  • a control channel together with other users of the serving cell;
  • IFFT inverse fast Fourier transform
  • the present invention relates to using the same-frequency resources of each coordinated cell in the collaborative set as the virtual cell frequency bandwidth resource, and the spatial resource in the cooperative set is the sum of the number of cell antennas participating in the cooperation, or the sum of the virtual numbers, or a sum of parts, such as participation in cooperation.
  • the cell 1 contains two antennas
  • the cell 2 contains 2 antennas
  • the cell 3 contains 2 antennas.
  • the number of antennas of the virtual cell is 6 antennas.
  • the number of virtual antennas refers to the antenna array of the coordinated cell being virtualized by beamforming into an antenna.
  • the virtual cell configures the virtual cell ID, the virtual cell pilot, the virtual bandwidth, and the virtual cell antenna number, and allocates some resources of the coordinated cell to the virtual cell.
  • the virtual cell is a simplified cell model, using the virtual time-frequency resources from the coordinated cell, the antenna configuration of the virtual cell from the coordinated cell, and the UE entering the coordinated cell set is centrally scheduled by the virtual cell, and the virtual cell has its own pilot configuration and ID.
  • the resource configuration in the present invention is statically and dynamically combined.
  • the cell bandwidth is divided into a cooperative resource and a non-coordinated resource according to the number of edge UEs and a pre-scheduling request.
  • the cell center user allocates the non-coordinating resource
  • the cell edge user allocates the cooperation resource, and dynamically adjusts the resource allocation according to the statistical result of the coordinated cell set edge user and the central user; wherein the virtual cell resource configuration supports the distributed resource block or the centralized resource block
  • the virtual cell may occupy a part of the time domain resource of the independent carrier or the independent carrier, and the coordinated cell set resource area does not include the resource block occupied by the broadcast channel (BCH) and the shared channel (SCH) frequency segment, and cooperates.
  • the cell set resource area does not include the control symbol area occupied by the serving cell.
  • the coordinated cell set resource region does not occupy the region with the largest coordinated
  • the static resource distribution only considers the result of the statistical probability.
  • the virtual cell resource allocation can be dynamically adjusted, wherein the demand of the central bandwidth is maintained for a period of time and resources are reserved.
  • the T time period is consistent with the long-term statistical law of the community.
  • the reference symbol design of the pilot of the virtual cell can retain the design of R8 and R9; it can also be incompatible with the design of R8 and R9, and only the measurement pilot (CSI-RS) and the demodulation pilot (DM-RS) are reserved. Specifically as shown in Figure 5; can also be a new design.
  • the virtual cell ID may be a combined form of participating cooperative cell IDs, for example, IDi of the cell 1 participating in the cooperation and the ID 2 of the cell 2 are logically operated in bits: ID!&ID 2 ; may also be a new type
  • the sequence identifier, the new sequence can be one of the Zadoff-chu sequences or the M sequence.
  • Step 1 Establish a virtual cell by negotiation resource
  • each antenna has two antennas.
  • the pilot design is 2 ports, and the system bandwidth is 20M.
  • the statistical edge users account for 5%, and the users participating in CoMP account for 30% according to statistics. Press N*20M*30% integer.
  • the resource blocks (RBs) are rounded down, and N is set to 1.
  • the virtual cell system bandwidth is 6M, and the available resource blocks are 33, that is, the central users of the respective coordinated cells are occupied by 14M resources, and the remaining resources are composed of Virtual cell scheduling, virtual cell four antenna configuration.
  • the execution device of the virtual cell may be an independent execution device or may be attached to an execution unit in a certain base station;
  • Virtual cell ID CELL0&CELL1;
  • the pilot design of the virtual cell It can be compatible with R8, R9, R10 design pilots, or it is not compatible with R8, R9, R10. However, the pilot cost of the incompatible design is small, and the system utilization is high, which is the optimal choice;
  • Step 2 Informing the local cell to enhance the parameters of the UE virtual cell by using the broadcast message of the cell;
  • Step 3 The UE continuously detects and measures the signal strength of the serving cell and the neighboring cell in the coordinated cell set, and once measuring one or several of the cell sets If the cell meets the event triggering criterion, the UE reports to the monthly service community;
  • Step 4 The serving cell of the UE receives the measurement report sent by the UE, and determines to finally participate in the collaborative user according to the coordinated cell standard;
  • Step 5 The coordinated cell aggregates the UEs participating in the coordinated cell into the virtual cell for user matching, and the user schedules and generates control information.
  • the sixth step the control information is communicated to the user's serving cell through the interconnection between the base stations and other users to form a control channel;
  • Step 7 Completing the coding, modulation, and coordination of the coordinated users in the user's serving cell according to the scheduling result Weighting, IFFT and sending.
  • Step 7 Send some or all user data to other collaboration points in the user service cell according to the scheduling result, and the cooperation point with the user data and the serving base station complete the coding, debugging, weighting, and IFFT transmission of the coordinated user.
  • a device for multi-point cooperation includes: a virtual cell establishment module 2, and a virtual cell scheduling module 4.
  • a virtual cell establishment module 2 includes: a virtual cell establishment module 2, and a virtual cell scheduling module 4.
  • the virtual cell establishment module 2 is configured to establish a virtual cell according to the resource of the coordinated cell set.
  • the virtual cell scheduling module 4 is connected to the virtual cell establishment module 2, and is configured to centrally schedule the users participating in the collaboration in the virtual cell.
  • the virtual cell establishment module 2 includes: a resource configuration unit 21, a pilot configuration unit 22, and a virtual cell ID generation unit 23, where
  • a resource configuration unit 21 configured to configure a time domain resource, a frequency domain resource, and an airspace resource of the foregoing virtual cell;
  • the pilot configuration unit 22 is configured to configure a pilot mode of the virtual cell, and the specific mode is any one of the following:
  • the pilot of the virtual cell is compatible with pilots of R8, R9, and R10;
  • the pilot of the virtual cell is not compatible with the pilots of R8, R9, and R10; mode 3, the pilot of the virtual cell is only compatible with the R10 modulated pilot DMRS and the measurement pilot CSI-RS.
  • the virtual cell ID generating unit 23 is configured to generate a virtual cell ID, where the virtual cell ID is a logical combination form of the participating coordinated cell ID or a new sequence identifier, which may be one of the Zadoff-chu sequence or the M sequence.
  • the virtual cell scheduling module 4 includes: a sending unit 41, a receiving unit 42, and a cooperative user determination. Unit 43 and the collaborative user schedule execution unit 44.
  • the cooperative user schedule execution unit 44 includes: a CS/CB mode execution unit 441 and a JP mode execution unit 442. among them,
  • the sending unit 41 is configured to send, by using the broadcast message of the coordinated cell, a parameter of the virtual cell, where the parameter includes a bandwidth, an antenna configuration, and a virtual cell ID of the virtual cell;
  • the receiving unit 42 is configured to receive a measurement report reported by the user UE.
  • the cooperative user determining unit 43 is configured to determine, according to the reporting, that the user UE received by the receiving unit reports the measurement, and finally determines to participate in the coordinated user UE;
  • the coordinated user scheduling execution unit 44 is configured to complete data encoding, modulation, user data weighting, mapping, and IFFT physical layer execution of the collaborative user.
  • Further cooperative user scheduling execution unit 44 includes a CS/CB mode execution unit 441 and a JP mode execution unit 442;
  • the CS/CB mode execution unit 441 is configured to: the user scheduled in the CS/CB mode that is only available to the serving base station, and complete the coding, modulation, weighting, IFFT, and transmission of the coordinated user in the serving cell of the user according to the foregoing scheduling result;
  • the JP mode execution unit 442 for the user of the JP mode scheduled for each transmission point or cell in which the user data is used in the cooperation set, sends some or all user data to other collaboration points in the user service cell according to the foregoing scheduling result. Coding, debugging, weighting, IFFT, and transmission of collaborative users are completed at the collaboration point of the user data and the serving base station.
  • the virtual cell is established by the virtual cell establishment module 2 according to the resource situation of the coordinated cell set, and the resource configuration unit 21 in the virtual cell establishment module 2 completes the configuration of the virtual cell time domain resource, the frequency domain resource and the airspace resource, and is virtualized.
  • the pilot configuration unit 22 in the cell establishment module 2 completes the selection of the virtual cell pilot mode, and the virtual cell ID generation unit 23 in the virtual cell establishment module 2 generates the virtual cell ID.
  • the virtual cell scheduling module 4 completes Users participating in the collaboration are collectively scheduled in the virtual cell.
  • the scheduling process of a specific virtual cell is shown in Figure 6: First, a bitmap of RB allocation is established according to the allocated resources, and RBs for physical broadcast channel (PBCH), broadcast control channel (BCCH), common control channel (CCCH), physical control channel (PCCH), and central scheduling area allocation are removed. RB; then check into the coordinated UE buffer, exclude the UE without data, read the priority of the UE logical channel, the UE throughput rate, the UE pairing information, and read the channel quality indicator (CQI)/coding matrix indication of each UE.
  • PBCH physical broadcast channel
  • BCCH broadcast control channel
  • CCCH common control channel
  • PCCH physical control channel
  • CQI channel quality indicator
  • the RB is allocated to the UE according to the allocation principle, and information such as the RB position, the number, the allocation parameter, the process number, and the like are given, and the RB bitmap is updated.
  • the transmitting unit 41 transmits the parameters of the virtual cell
  • the receiving unit 42 receives the measurement information of the user
  • the cooperative user determining unit 43 determines that the final participating cooperative user UE is in the coordinated user scheduling executing unit 44.
  • the CS/CB mode execution unit 441 performs coding, modulation, weighting, IFFT, and transmission of the coordinated user in the serving cell of the user according to the foregoing scheduling result; If it is JP, the JP mode execution unit 442 sends some or all user data to other collaboration points in the user service cell according to the foregoing scheduling result, and performs coding, debugging, weighting, IFFT of the coordinated user at the cooperation point of the user data and the serving base station. And send.

Abstract

本发明公开了一种多点协作的方法及装置,方法包括:协商确定协作小区集参与协作的资源,根据所述参与协作的资源确定虚拟小区的参数和导频模式,建立所述虚拟小区;服务小区确定参与协作用户,根据所述虚拟小区的参数,在所述虚拟小区中集中调度所述协作用户。通过本发明,简化了协作集设计及执行复杂度;对于移动台而言,可以按虚拟小区空间进行空间资源量化。由于虚拟小区导频可配置,可以不必考虑兼容R8、R9、R10的导频设计,重新设计优化导频,也可以采用兼容与R8、R9、R10的设计,使系统设计更灵活。为小区边缘的用户提供更好的服务质量和用户吞吐率。

Description

一种多点协作的方法及装置 技术领域
本发明涉及数字通信领域, 特别是涉及宽带无线通信系统的演进中一 种多点协作的方法及装置。 背景技术
从 20世纪末 3G技术完成标准化后已开始研究下一代宽带无线通信 IMT- Advanced关键技术和概念, IMT- Advanced代表了信息技术的主要发展 方向, 未来 10 ~ 15 年无线移动通信市场需求将持续快速增长。 根据 IMT- Advanced制定的技术需要和目标, IMT- Advanced与现有的系统相比, 将实现更高的数据率和更大的系统容量, 设计的目标峰值速率为: 低速移 动、 热点覆盖场景下 lGbit/s以上, 高速移动、 广域覆盖场景下 100Mbit/s。
引 入 多 点 协 作 传 输 ( CoMP , Coordinated Multipoint transmission/reception ) 的初衷为了解决正交频分复用 ( OFDM, Orthogonal Frequency Division Multiplex ) 系统中小区间干扰问题, 提高小区边缘移动 用户的吞吐量, 如多个 eNB ( Evovlved Node Base )协作消除子载波间干扰 ( ICI, InterCarrier Interference ), 甚至将干扰信号变成期望信号。 随着研究 的深入, 发现在宽带无线通讯系统中应用 CoMP, 可以提高数据传输速率、 小区边缘移动用户吞吐量、 和系统吞吐量, 成为提高系统频谱利用率的重 要技术。 3GPP已经接受 CoMP为 LTE- Advanced技术之一。
CoMP理论上可以用于小区边缘用户设备( UE )和小区中心 UE, 但非 CoMP时小区中心 UE的信号与干扰加噪声比( SINR, Signal to Interference plus Noise Ratio )本身就很高, 釆用 CoMP后对吞吐量提高很小, 并且浪费 信息交互。 而 CoMP用于小区边缘用户则可以明显降低小区间干扰和提高 小区边缘用户的接收功率。因此多数公司都认为应该只对小区边缘 UE釆用 CoMP。
在目前 36.814框架描述中, 将 CoMP分为以下两类:
JP ( Joint processing ): 用户数据在协作集中的每个发送点或小区都可 以被使用。
CS/CB ( Coordinated Scheduling/Beamforming ): 用户数据仅在服务基站 可用。
根据 CoMP的特点 , 选入 CoMP集合的小区应具有这样几个特点:
1 ) CoMP小区使用相同频带;
2 ) CoMP小区空中接口的子帧、 符号基本对齐;
3 ) CoMP集合内的小区可以通过 X2接口或其它方式互联进行消息传 递。
目前涉及的相关提案中, 已根据用户共享情况将基站分为 JP、 CS/CB 模式, 并澄清了协作集、 测量集, 服务小区等概念, 但是并没有提供具体 的实施方法和装置。 发明内容
本发明的目的是提供一种多点协作的方法及装置, 以弥补现有技术中 关于多点协作方法及装置的空缺。 通过本发明主要解决以下问题:
边缘用户的 QoS、 吞吐率由于邻区干扰而性能下降;
没有具体关于 CoMP的执行方法和装置;
没有独立的 CoMP导频设计, 兼容 R8的设计导致导频开销较大, 同时 要考虑不同小区导频的 shift, 限制了 CoMP技术的更合理应用;
CoMP用户的小区 ID如何设计。
为解决上述的问题, 本发明提供了一种多点协作的方法, 包括: 协商确定协作小区集参与协作的资源, 根据所述参与协作的资源确定 虚拟小区的参数和导频模式, 建立所述虚拟小区;
服务小区确定参与协作用户, 根据所述虚拟小区的参数, 在所述虚拟 小区中集中调度所述协作用户。
所述协商确定协作小区集参与协作的资源, 根据所述参与协作的资源 确定虚拟小区的参数和导频模式, 建立所述虚拟小区; 步骤包括: 所述协 商确定协作小区集参与协作的资源包括所述协作小区集的统计边缘用户数 目, 请求带宽和协作小区集的天线数目; 划分所述参与协作小区集协作的 资源, 并将部分协作资源配置给虚拟小区, 确定所述虚拟小区的参数和导 频模式; 其中, 所述虚拟小区仅包含业务信道。
所述配置虚拟小区的资源包括: 时域资源、 频域资源和空域资源; 根 据参与协作的边缘用户和请求的带宽在 T时间内动态调整所述虚拟小区的 时域资源、 频域资源; 所述频域资源为频域整数倍的资源块, 最小是一个 物理资源块, 最大是全带宽, 所述频域资源是频域多载波配置的独立载波; 所述时域资源是时域的整数倍子帧, 是除控制信道占用符号或频域位置以 外的资源; 所述空域资源来自所述协作小区集, 是所述协作小区集的所有 天线, 或是, 参与协作的部分天线。
所述虚拟小区的参数包括所述虚拟小区的带宽、 天线配置、 及虚拟小 区 ID, 其中 , 所述虚拟小区 ID是所述各协作小区 ID的逻辑组合形式或者 是一种新的序列标识。
所述虚拟小区导频分布在除公共下行控制信道外的符号区域, 具体为 下述任意一种模式:
模式一, 所述虚拟小区的导频兼容 R8、 R9、 R10的导频;
模式二, 所述虚拟小区的导频不兼容 R8、 R9、 R10的导频;
模式三, 所述虚拟小区的导频仅兼容 R10的调制导频 DMRS、 测量导 频 CSI-RS; 所述服务小区确定参与协作用户, 根据所述虚拟小区的参数, 在所述 虚拟小区中集中调度所述协作用户步骤包括:
步骤一, 通过所述协作小区集的广播消息, 向所述协作小区集中的增 强型用户 UE发送所述虚拟小区的参数;
步骤二,所述增强型用户 UE在所述服务小区检测服务小区和邻小区的 信号强度参数, 并在所述协作小区集中的一个或几个事件满足触发准则时 将测量报告上报给所述增强型用户 UE的服务小区;
步骤三,所述增强型用户 UE的服务小区接收所述测量报告,按照协作 小区准则, 确定参与协作用户 UE;
步骤四, 所述协作小区集将所述参与协作用户 UE 集中到所述虚拟小 区 ,并在所述虚拟小区中集中调度所述协作用户,完成所述协作用户的配对、 和控制信息生成。
所述协作用户 UE集中调度时,需要协作的用户属于不同的服务虚拟小 区, 并且按已有的协议分为 MU-MIMO、 SU-MIMO调度;
所述虚拟小区的集中调度独立于协作小区集其服务小区, 所述虚拟小 区多天线的码本集独立于所述协作小区集服务小区的码本集, 并且配置给 所述虚拟小区的资源对于协作小区集中的小区按已分配处理。
在完成所述协作用户的集中调度后还包括: 将所述控制信息在基站与 所述增强型用户 UE的服务小区间进行交互,并和所述服务小区的其它用户 一起组成控制信道; 按照所述协作用户集中调度的结果, 完成所述协作用 户的编码、 调制、 加权、 IFFT和发送。
若是用户数据仅在服务基站可用的 CS/CB模式调度的用户, 根据所述 调度结果在用户的服务小区完成协作用户的编码、 调制、 加权、 IFFT和发 送;
若是用户数据在协作集中的每个发送点或小区都可以被使用的 JP模式 调度的用户, 根据所述调度结果在用户服务小区将部分或全部用户数据发 到其它协作点, 在用户数据的协作点和服务小区完成协作用户的编码、 调 试、 加权、 IFFT和发送。
为解决上述的问题, 本发明提供了一种多点协作的装置, 包括: 虚拟小区建立模块, 用于建立虚拟小区;
虚拟小区调度模块, 用于在所述虚拟小区中集中调度参与协作的用户。 所述虚拟小区建立模块包括:
资源配置单元, 用于配置所述虚拟小区的时域资源, 频域资源和空域 资源;
导频配置单元, 用于配置所述虚拟小区的导频模式, 具体模式为下述 的任意一种:
模式一, 所述虚拟小区的导频兼容 R8、 R9、 R10的导频;
模式二, 所述虚拟小区的导频不兼容 R8、 R9、 R10的导频;
模式三, 所述虚拟小区的导频仅兼容 R10的调制导频 DMRS、 测量导 频 CSI-RS;
虚拟小区 ID生成单元, 用于生成虚拟小区 ID, 所述虚拟小区 ID是参 与协作小区 ID的逻辑组合形式或者是一种新的序列标识。
所述虚拟小区调度模块包括:
发送单元, 用于通过协作小区集的广播消息发送所述虚拟小区的参数, 所述参数包括所述虚拟小区的带宽、 天线配置、 及虚拟小区 ID;
接收单元, 用于接收用户 UE上报的测量报告;
协作用户确定单元,用于根据所述接收单元接收的用户 UE上报测量报 告, 确定最终参与协作用户 UE。
协作用户调度执行单元, 用于完成协作用户的数据编码、 调制、 用户 数据加权、 映射、 IFFT等物理层执行过程。 所述协作用户调度执行单元包括:
CS/CB模式执行单元, 用于用户数据仅在服务基站可用的 CS/CB模式 调度的用户, 根据所述调度结果在用户的服务小区完成协作用户的编码、 调制、 加权、 IFFT和发送;
JP模式执行单元, 用于用户数据在协作集中的每个发送点或小区都可 以被使用的 JP模式调度的用户, 根据所述调度结果在用户服务小区将部分 或全部用户数据发到其它协作点, 在用户数据的协作点和服务基站完成协 作用户的编码、 调试、 加权、 IFFT和发送。
根据本发明提供的方法和装置, 通过将协作小区集的资源配置为虚拟 小区, 简化了协作集设计及执行复杂度; 对于移动台而言, 可以按虚拟小 区空间进行空间资源量化。 虚拟小区集中调度协作小区集的资源, 在虚拟 小区可以釆用更新的设计以满足未来 IMT-A的需求。 由于虚拟小区导频可 配置, 可以不必考虑兼容 R8、 R9、 R10的导频设计, 重新设计优化导频, 也可以釆用兼容与 R8、 R9、 R10的设计, 使系统设计更灵活。 为小区边缘 的用户提供更好的服务质量和用户吞吐率。 附图说明
图 1是本发明实施例中多点协作方法流程图;
图 2是本发明实施例中两个小区形成虚拟小区覆盖示意图;
图 3是本发明实施例中两小区协作集虚拟小区资源示意图;
图 4是本发明实施例中控制信道设计示意图;
图 5是本发明实施例中虚拟小区 1个 RB时的导频设计;
图 6是本发明实施例中虚拟小区的调度流程图;
图 7是本发明实施例中 5M带宽资源块和子帧示意图;
图 8是本发明实施例中多点协作装置模块示意图。 具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。
提案中澄清的服务小区、 测量小区集合和协作小区集的概念如下: 服务小区: 向终端发送控制信道的小区。 在终端与基站的通讯过程中, 只有一个服务小区。
测量小区集合: 终端进行周期性的信道状况信息测量的小区集合。 该 集合由终端服务小区半静态配置。
协作小区集: 协作小区集是直接或间接参与向终端发送业务数据的小 区集。
根据本发明的实施例, 提供了一种多点协作的方法, 如图 1 所示, 该 方法包括:
步骤 101 : 协商确定协作小区集参与协作的资源, 根据上述参与协作的 资源确定虚拟小区的参数和导频模式, 建立上述虚拟小区;
步骤 102: 服务小区确定参与协作用户, 根据上述虚拟小区的参数, 在 上述虚拟小区中集中调度上述协作用户。
通过该实施例, 通过将协作发送点的资源集中, 建立一个虚拟小区, 设计虚拟小区标识(ID )、 虚拟小区导频模式。 对虚拟小区用户集中调度, 通过各协作小区的天线配置发送协作用户的业务信息,使得边缘的 UE的干 扰降低, 提高边缘 UE的吞吐率。
步骤 101 可以通过如下的方式来实现: 上述协商确定协作小区集参与 协作的资源, 根据上述参与协作的资源确定虚拟小区的参数和导频模式, 建立上述虚拟小区; 步骤包括: 上述协商确定协作小区集参与协作的资源 包括上述协作小区集的统计边缘用户数目, 请求带宽和协作小区集的天线 数目; 划分上述参与协作小区集协作的资源, 并将部分协作资源配置给虚 拟小区, 确定上述虚拟小区的参数和导频模式; 其中, 上述虚拟小区仅包 含业务信道。
进一步地, 上述配置虚拟小区的资源包括: 时域资源、 频域资源和空 域资源; 根据参与协作的边缘用户和请求的带宽在 T时间内动态调整上述 虚拟小区的时域资源、频域资源; 图 7是 5M带宽资源块和子帧示意图, 上 述频域资源为频域整数倍的资源块, 最小是一个物理资源块、 即图 7 的 12x7, 最大是全带宽如 5M系统的 25x12个子载波, 14个 OFDM符号, 上 述频域资源是频域多载波配置的独立载波; 上述时域资源是时域的整数倍 子帧, 是除控制信道占用符号或频域位置以外的资源; 上述空域资源来自 上述协作小区集, 是上述协作小区集的所有天线, 或是, 参与协作的部分 天线。
进一步地, 上述虚拟小区的参数包括上述虚拟小区的带宽、 天线配置、 及虚拟小区 ID, 其中, 上述虚拟小区 ID是上述各协作小区 ID的逻辑组合 形式或者是一种新的序列标识,
新的序列可以是 Zadoff-chu序列之一或 M序列。
进一步地, 上述虚拟小区导频分布在除公共下行控制信道外的符号区 域, 具体为下述任意一种模式:
模式一, 上述虚拟小区的导频兼容 R8、 R9、 R10的导频;
模式二, 上述虚拟小区的导频不兼容 R8、 R9、 R10的导频;
模式三, 上述虚拟小区的导频仅兼容 R10的调制导频 DMRS、 测量导 频 CSI-RS。
步骤 102可以通过如下的方式来实现:
步骤一, 通过上述协作小区集的广播消息, 向上述协作小区集中的增 强型用户 UE发送上述虚拟小区的参数;
步骤二,上述增强型用户 UE在上述服务小区检测服务小区和邻小区的 信号强度参数, 并在上述协作小区集中的一个或几个事件满足触发准则时 将测量报告上报给上述增强型用户 UE的服务小区;
步骤三,上述增强型用户 UE的服务小区接收上述测量报告,按照协作 小区准则, 确定参与协作用户 UE;
步骤四, 上述协作小区集将上述参与协作用户 UE 集中到上述虚拟小 区, 并在上述虚拟小区中集中调度上述协作用户, 完成上述协作用户的配 对、 和控制信息生成。
进一步地,上述协作用户 UE集中调度时,需要协作的用户属于不同的 服务虚拟小区, 并且按已有的协议分为多用户多输入多输出 ( MU-MIMO , Multi-User Multiple-Input Multiple-Output )、 单用户 多输入多输出 ( SU-MIMO, Single-User Multiple-Input Multiple-Output )调度; 上述虚拟 小区的集中调度独立于协作小区集其服务小区, 上述虚拟小区多天线的码 本集独立于上述协作小区集服务小区的码本集, 并且配置给上述虚拟小区 的资源对于协作小区集中的小区按已分配处理。
进一步地, 在完成上述协作用户的集中调度后还包括: 将上述控制信 息在基站与上述增强型用户 UE的服务小区间进行交互,并和上述服务小区 的其它用户一起组成控制信道; 按照上述协作用户集中调度的结果, 完成 上述协作用户的编码、 调制、 加权、 反向快速傅立叶变换(IFFT )和发送。
本发明涉及将协作集中的各个协作小区的同频资源作为虚拟小区频率 带宽资源, 协作集中的空间资源是参与协作的小区天线数目之和、 或虚拟 数目之和、 或部分之和, 如参与协作的小区一含有两个天线, 小区二含有 2 个天线, 小区三含有 2个天线, 则虚拟小区的天线数目为 6天线, 虚拟天 线数是指协作小区的天线阵列以波束赋形虚拟为一个天线形式, 虚拟小区 配置虚拟小区 ID、 虚拟小区导频、 虚拟带宽、 虚拟小区天线数, 并将协作 小区的部分资源配置给虚拟小区。 虚拟小区是一个简化的小区模型, 使用来自协作小区的虚拟时频资源, 来自协作小区的虚拟小区的天线配置,进入协作小区集的 UE由虚拟小区集 中调度, 虚拟小区有自身的导频配置和 ID。
本发明中资源配置是静态与动态结合的, 如图 3 所示, 根据边缘 UE 的数目和预调度请求, 将小区带宽分为协作资源和不协作资源。 为小区中 心用户分配不协作资源, 小区边缘用户分配协作资源, 并根据协作小区集 边缘用户和中心用户的统计结果动态调整资源分配; 其中 虚拟小区资源配 置支持分布式资源块或集中式资源块, 在多载波系统中, 根据协商虚拟小 区可占用独立载波或独立载波的部分时域资源, 并且协作小区集资源区域 不含有广播信道(BCH )、 共享信道(SCH )频率段占用的资源块, 协作小 区集资源区域不含服务小区所占用的控制符号区域。 如图 4所示, 在多个 小区的控制符号占不同的符号数目时, 协作小区集资源区域不占用协作小 区控制符号最大的区域。
本发明中由于用户的移动性, 静态资源分布仅考虑统计概率的结果, 在小区边缘用户需求增加时, 可以动态调整虚拟小区资源分配, 其中, 中 心带宽的需求维持一段 T时间有资源剩余, 所述 T时间段符合小区长期统 计规律。
本发明中虚拟小区导频的参考符号设计可以保留 R8、 R9的设计; 也可 以不兼容 R8、 R9的设计,仅保留测量导频( CSI-RS ) ,解调导频( DM-RS ), 具体如图 5所示; 也可以是全新的设计图样。
本发明中虚拟小区 ID可以是参与协作小区 ID的组合形式, 例如, 将 参与协作的小区 1的 IDi和小区 2的 ID2按位进行逻辑与操作: ID!&ID2; 也可以是一种新的序列标识, 新的序列可以是 Zadoff-chu序列之一或 M序 列。
为使本发明的目的、 技术方案和优点更加清楚, 下面结合附图和具体 实施例对本发明进行详细描述。
第一步: 按协商资源建立虚拟小区
如图 2所示, 每个小区两天线, 导频设计为 2端口, 系统带宽 20M, 其中统计的边缘用户占 5% , 按统计参与 CoMP 的用户占 30% , 按 N*20M*30%整数个资源块(RB )向下取整, 设定 N为 1 , 则虚拟小区系统 带宽占 6M, 可供分配的资源块是 33个, 即各自协作小区调度的中心用户 占资源 14M, 其余资源由虚拟小区调度, 虚拟小区四天线配置。 虚拟小区 的执行装置可以作为一个独立执行装置, 也可以附着在某一基站内的执行 单元;
虚拟小区 ID=CELL0&CELL1 ;
虚拟小区的导频设计: 可以兼容 R8、 R9、 R10设计导频, 也可不兼容 R8、 R9、 R10, 然而不兼容设计的导频开销较小, 系统利用率高, 为最优 选择;
第二步: 通过小区的广播消息, 通知本小区增强 UE虚拟小区的参数; 第三步: UE持续检测测量协作小区集中的服务小区和邻小区的信号强 度,一旦测量小区集合中的一个或几个小区满足事件触发准则,则 UE向月良 务小区报告;
第四步: UE的服务小区接收到 UE发出的测量报告, 根据协作小区准 则, 确定最终参与协作用户;
第五步: 协作小区将参与协作小区的 UE 集中到虚拟小区进行用户配 对, 用户调度、 生成控制信息;
第六步: 将控制信息通过基站之间互连交给用户的服务小区和其它用 户一起组成控制信道;
对于 CS/CB调度的用户
第七步: 根据调度结果在用户的服务小区完成协作用户的编码、 调制、 加权、 IFFT和发送。
对于 JP调度的用户
第七步: 根据调度结果在用户服务小区将部分或全部用户数据发到其 它协作点, 有用户数据的协作点和服务基站完成协作用户的编码、 调试、 加权、 IFFT合发送。
根据本发明的实施例, 提供一种多点协作的装置, 如图 8所示, 该装 置包括: 虚拟小区建立模块 2、 虚拟小区调度模块 4。 下面对上述结果进行 详细描述。
虚拟小区建立模块 2, 用于根据协作小区集的资源建立虚拟小区; 虚拟 小区调度模块 4连接至虚拟小区建立模块 2,用于在所述虚拟小区中集中调 度参与协作的用户。
具体的, 虚拟小区建立模块 2包括: 资源配置单元 21、 导频配置单元 22和虚拟小区 ID生成单元 23 , 其中,
资源配置单元 21 , 用于配置上述虚拟小区的时域资源, 频域资源和空 域资源;
导频配置单元 22, 用于配置上述虚拟小区的导频模式, 具体模式为下 述的任意一种:
模式一, 上述虚拟小区的导频兼容 R8、 R9、 R10的导频;
模式二, 上述虚拟小区的导频不兼容 R8、 R9、 R10的导频; 模式三, 上述虚拟小区的导频仅兼容 R10的调制导频 DMRS、 测量导 频 CSI-RS。
虚拟小区 ID生成单元 23 , 用于生成虚拟小区 ID, 上述虚拟小区 ID是 参与协作小区 ID 的逻辑组合形式或者是一种新的序列标识, 可以是 Zadoff-chu序列之一或 M序列。
虚拟小区调度模块 4包括: 发送单元 41、 接收单元 42、 协作用户确定 单元 43 和协作用户调度执行单元 44。 协作用户调度执行单元 44 包括: CS/CB模式执行单元 441和 JP模式执行单元 442。 其中,
发送单元 41 , 用于协作小区的广播消息, 发送上述虚拟小区的参数, 上述参数包括上述虚拟小区的带宽、 天线配置、 及虚拟小区 ID;
接收单元 42 , 用于接收用户 UE上报的测量报告;
协作用户确定单元 43 , 用于根据上述接收单元接收的用户 UE上报测 量才艮告, 确定最终参与协作用户 UE;
协作用户调度执行单元 44, 用于完成协作用户的数据编码、 调制、 用 户数据加权、 映射、 IFFT物理层执行过程。
进一步的协作用户调度执行单元 44包括 CS/CB模式执行单元 441和 JP模式执行单元 442; 其中
CS/CB模式执行单元 441 , 用于用户数据仅在服务基站可用的 CS/CB 模式调度的用户, 根据上述调度结果在用户的服务小区完成协作用户的编 码、 调制、 加权、 IFFT和发送;
JP模式执行单元 442, 用于用户数据在协作集中的每个发送点或小区 都可以被使用的 JP模式调度的用户, 根据上述调度结果在用户服务小区将 部分或全部用户数据发到其它协作点, 在用户数据的协作点和服务基站完 成协作用户的编码、 调试、 加权、 IFFT和发送。
下面通过实施例对该多点协作装置的工作过程具体描述。 首先根据协 作小区集的资源情况, 由虚拟小区建立模块 2建立虚拟小区, 具体的由虚 拟小区建立模块 2中资源配置单元 21完成虚拟小区时域资源, 频域资源和 空域资源的配置, 由虚拟小区建立模块 2中导频配置单元 22完成虚拟小区 导频模式的选择, 由虚拟小区建立模块 2中虚拟小区 ID生成单元 23生成 虚拟小区 ID; 虚拟小区建立完成后在虚拟小区调度模块 4中完成在所述虚 拟小区中集中调度参与协作的用户。 具体虚拟小区的调度流程如图 6所示: 首先根据分配的资源建立 RB分配的位图,去除用于物理广播信道( PBCH )、 广播控制信道(BCCH )、 公共控制信道(CCCH )、 物理控制信道(PCCH ) 的 RB及中心调度区域分配的 RB; 然后检查进入协作的 UE緩冲区, 排除 没有数据的 UE, 读取 UE逻辑信道的优先级、 UE吞吐率、 UE配对信息, 读取各个 UE 的信道质量指示( CQI ) /编码矩阵指示( PMI ) /秩 ( RANK ) 等信息; 再根据 CQI表映射为时间块(TB ) 大小、 RB个数、 调试方式、 编码速率等信息, 根据 UE的优先级及开始分配 RB , 配对 UE的优先级为 配对用户优先级的平均; 最后根据分配原则给 UE分配 RB, 给出 RB位置、 数量、 分配参数、 进程号等信息, 更新 RB位图。
具体是在发送单元 41发送上述虚拟小区的参数, 接收单元 42接收用 户 1^上>¾的测量 ^艮告,在协作用户确定单元 43确定最终参与协作用户 UE, 在协作用户调度执行单元 44中完成协作用户的数据编码、 调制、 用户数据 加权、映射、 IFFT的集中调度过程。进一步的,若用户调度的模式是 CS/CB, 则由 CS/CB模式执行单元 441根据上述调度结果在用户的服务小区完成协 作用户的编码、 调制、 加权、 IFFT和发送; 若户调度的模式是 JP, 则由 JP 模式执行单元 442根据上述调度结果在用户服务小区将部分或全部用户数 据发到其它协作点, 在用户数据的协作点和服务基站完成协作用户的编码、 调试、 加权、 IFFT和发送。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种多点协作的方法, 其特征在于, 包括:
协商确定协作小区集参与协作的资源, 根据所述参与协作的资源确定 虚拟小区的参数和导频模式, 建立所述虚拟小区;
服务小区确定参与协作用户, 根据所述虚拟小区的参数, 在所述虚拟 小区中集中调度所述协作用户。
2、 如权利要求 1所述的方法, 其特征在于, 所述协商确定协作小区集 参与协作的资源 , 根据所述参与协作的资源确定虚拟小区的参数和导频模 式, 建立所述虚拟小区步骤包括: 所述协商确定协作小区集参与协作的资 源包括所述协作小区集的统计边缘用户数目, 请求带宽和协作小区集的天 线数目; 划分所述参与协作小区集协作的资源, 并将部分协作资源配置给 虚拟小区, 确定所述虚拟小区的参数和导频模式;
其中, 所述虚拟小区仅包含业务信道。
3、 如权利要求 2所述的方法, 其特征在于, 所述配置虚拟小区的资源 包括: 时域资源、 频域资源和空域资源;
根据参与协作的边缘用户和请求的带宽在 T时间内动态调整所述虚拟 小区的时域资源、 频域资源;
所述频域资源为频域整数倍的资源块, 最小是一个物理资源块, 最大 是全带宽, 所述频域资源是频域多载波配置的独立载波;
所述时域资源是时域的整数倍子帧, 是除控制信道占用符号或频域位 置以外的资源;
所述空域资源来自所述协作小区集, 是所述协作小区集的所有天线, 或是, 参与协作的部分天线。
4、 如权利要求 2所述的方法, 其特征在于, 所述虚拟小区的参数包括 所述虚拟小区的带宽、 天线配置、 及虚拟小区 ID, 其中, 所述虚拟小区 ID 是所述各协作小区 ID的逻辑组合形式或者是一种新的序列标识。
5、 如权利要求 2所述的方法, 其特征在于, 所述虚拟小区导频分布在 除公共下行控制信道外的符号区域, 具体为下述任意一种模式:
模式一, 所述虚拟小区的导频兼容 R8、 R9、 R10的导频;
模式二, 所述虚拟小区的导频不兼容 R8、 R9、 R10的导频;
模式三, 所述虚拟小区的导频仅兼容 R10的调制导频(DMRS )、 测量 导频 ( CSI-RS )。
6、 如权利要求 1所述的方法, 其特征在于, 所述服务小区确定参与协 作用户, 根据所述虚拟小区的参数, 在所述虚拟小区中集中调度所述协作 用户步骤包括:
步骤一, 通过所述协作小区集的广播消息, 向所述协作小区集中的增 强型用户 UE发送所述虚拟小区的参数;
步骤二,所述增强型用户 UE在所述服务小区检测服务小区和邻小区的 信号强度参数, 并在所述协作小区集中的一个或几个事件满足触发准则时 将测量报告上报给所述增强型用户 UE的服务小区;
步骤三,所述增强型用户 UE的服务小区接收所述测量报告,按照协作 小区准则, 确定参与协作用户 UE;
步骤四, 所述协作小区集将所述参与协作用户 UE 集中到所述虚拟小 区 ,并在所述虚拟小区中集中调度所述协作用户,完成所述协作用户的配对、 和控制信息生成。
7、 如权利要求 6所述的方法, 其特征在于, 包括:
所述协作用户 UE集中调度时,需要协作的用户属于不同的服务虚拟小 区, 并且按已有的协议分为多用户多输入多输出 (MU-MIMO )、 单用户多 输入多输出 (SU-MIMO )调度;
所述虚拟小区的集中调度独立于协作小区集其服务小区, 所述虚拟小 区多天线的码本集独立于所述协作小区集服务小区的码本集, 并且配置给 所述虚拟小区的资源对于协作小区集中的小区按已分配处理。
8、 如权利要求 5所述的方法, 其特征在于, 在完成所述协作用户的集 中调度后还包括:
将所述控制信息在基站与所述增强型用户 UE的服务小区间进行交互, 并和所述服务小区的其它用户一起组成控制信道;
按照所述协作用户集中调度的结果, 完成所述协作用户的编码、 调制、 加权、 反向快速傅立叶变换(IFFT )和发送。
9、 如权利要求 8所述的方法, 其特征在于, 包括:
若是用户数据仅在服务基站可用的 CS/CB模式调度的用户, 根据所述 调度结果在用户的服务小区完成协作用户的编码、 调制、 加权、 IFFT和发 送;
若是用户数据在协作集中的每个发送点或小区都可以被使用的 JP模式 调度的用户, 根据所述调度结果在用户服务小区将部分或全部用户数据发 到其它协作点, 在用户数据的协作点和服务小区完成协作用户的编码、 调 试、 加权、 IFFT和发送。
10、 一种多点协作的装置, 其特征在于, 包括:
虚拟小区建立模块, 用于根据所述参与协作的资源确定虚拟小区的参 数和导频模式, 建立虚拟小区;
虚拟小区调度模块, 用于在所述虚拟小区中集中调度参与协作的用户。
11、 如权利要求 9 所述的装置, 其特征在于, 所述虚拟小区建立模块 还包括:
资源配置单元, 用于配置所述虚拟小区的时域资源, 频域资源和空域 资源;
导频配置单元, 用于配置所述虚拟小区的导频模式, 具体模式为下述 的任意一种:
模式一, 所述虚拟小区的导频兼容 R8、 R9、 R10的导频;
模式二, 所述虚拟小区的导频不兼容 R8、 R9、 R10的导频;
模式三, 所述虚拟小区的导频仅兼容 R10的调制导频(DMRS )、 测量 导频 ( CSI-RS );
虚拟小区 ID生成单元, 用于生成虚拟小区 ID, 所述虚拟小区 ID是参 与协作小区 ID的逻辑组合形式或者是一种新的序列标识。
12、 如权利要求 9所述的装置, 其特征在于, 所述虚拟小区调度模块 还包括:
发送单元, 用于通过协作小区集的广播消息发送所述虚拟小区的参数, 所述参数包括所述虚拟小区的带宽、 天线配置、 及虚拟小区 ID;
接收单元, 用于接收用户 UE上报的测量报告;
协作用户确定单元,用于根据所述接收单元接收的用户 UE上报测量报 告, 确定最终参与协作用户 UE;
协作用户调度执行单元, 用于完成协作用户的数据编码、 调制、 用户 数据加权、 映射、 IFFT的集中调度过程。
13、 如权利要求 12所述的装置, 其特征在于, 所述协作用户调度执行 单元还包括:
CS/CB模式执行单元, 用于用户数据仅在服务基站可用的 CS/CB模式 调度的用户, 根据所述调度结果在用户的服务小区完成协作用户的编码、 调制、 加权、 IFFT和发送;
JP模式执行单元, 用于用户数据在协作集中的每个发送点或小区都可 以被使用的 JP模式调度的用户, 根据所述调度结果在用户服务小区将部分 或全部用户数据发到其它协作点, 在用户数据的协作点和服务基站完成协 作用户的编码、 调试、 加权、 IFFT和发送。
PCT/CN2011/075778 2010-10-20 2011-06-15 一种多点协作的方法及装置 WO2012051863A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010105151813A CN102457964A (zh) 2010-10-20 2010-10-20 一种多点协作的方法及装置
CN201010515181.3 2010-10-20

Publications (1)

Publication Number Publication Date
WO2012051863A1 true WO2012051863A1 (zh) 2012-04-26

Family

ID=45974663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075778 WO2012051863A1 (zh) 2010-10-20 2011-06-15 一种多点协作的方法及装置

Country Status (2)

Country Link
CN (1) CN102457964A (zh)
WO (1) WO2012051863A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015010286A1 (zh) * 2013-07-24 2015-01-29 华为技术有限公司 对频谱资源进行频分复用的方法、装置及系统
WO2017167296A1 (en) * 2016-04-01 2017-10-05 Huawei Technologies Co., Ltd. Mechanisms for multi-tier distributed co-operative multi-point technology

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103476045B (zh) * 2012-06-06 2016-10-05 华为技术有限公司 小区测量方法、设备及系统
WO2014012248A1 (zh) * 2012-07-20 2014-01-23 华为技术有限公司 一种业务传输方法、设备及系统
CN102821476B (zh) * 2012-07-26 2014-12-31 新邮通信设备有限公司 基于加权和度量的多小区联合处理方法
US9374719B2 (en) * 2013-04-03 2016-06-21 Qualcomm Incorporated Channel state information reference signal (CSI-RS) handling for network assisted interference cancellation
CN105376748A (zh) * 2014-08-27 2016-03-02 中兴通讯股份有限公司 虚拟小区的构建、协作节点的选择方法及装置
CN112512123A (zh) * 2014-09-04 2021-03-16 北京三星通信技术研究有限公司 一种资源管理方法及基站
CN104980938B (zh) * 2015-05-12 2018-04-27 同济大学 一种基于基站间协作的上行干扰消除方法
CN107864511B (zh) * 2016-09-22 2023-05-16 中兴通讯股份有限公司 一种添加多点协作传输协同小区的方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1962536A1 (en) * 2007-02-21 2008-08-27 Samsung Electronics Co., Ltd. System and method for forming cell by using distributed antennas in WiMAX mobile communication system
CN101668295A (zh) * 2009-05-31 2010-03-10 北京邮电大学 通信系统中支持协作传输的资源复用方法及系统
CN101772038A (zh) * 2009-01-06 2010-07-07 上海贝尔阿尔卡特股份有限公司 一种多小区分簇方法及其通信网络和资源调度系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1962536A1 (en) * 2007-02-21 2008-08-27 Samsung Electronics Co., Ltd. System and method for forming cell by using distributed antennas in WiMAX mobile communication system
CN101772038A (zh) * 2009-01-06 2010-07-07 上海贝尔阿尔卡特股份有限公司 一种多小区分簇方法及其通信网络和资源调度系统
CN101668295A (zh) * 2009-05-31 2010-03-10 北京邮电大学 通信系统中支持协作传输的资源复用方法及系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015010286A1 (zh) * 2013-07-24 2015-01-29 华为技术有限公司 对频谱资源进行频分复用的方法、装置及系统
WO2017167296A1 (en) * 2016-04-01 2017-10-05 Huawei Technologies Co., Ltd. Mechanisms for multi-tier distributed co-operative multi-point technology
US10499381B2 (en) 2016-04-01 2019-12-03 Huawei Technologies Co., Ltd. Systems and methods for distributed open-loop multi-user co-operative multi-point (CoMP) scheduling and transmission
US10517082B2 (en) 2016-04-01 2019-12-24 Huawei Technologies Co., Ltd. Mechanisms for multi-tier distributed co-operative multi-point technology

Also Published As

Publication number Publication date
CN102457964A (zh) 2012-05-16

Similar Documents

Publication Publication Date Title
WO2012051863A1 (zh) 一种多点协作的方法及装置
JP5800980B2 (ja) Ofdmaシステムにおけるue特定動的ダウンリンクスケジューラーのシグナリング方法
CN102792621B (zh) 无线通信系统中用于处理csi-rs的方法
TW201808051A (zh) 設備到設備通訊系統中基於優先順序的資源選擇
CN112385171B (zh) 针对协调多点通信的探测参考信号和信道状态信息参考信号增强
US20140161056A1 (en) Wireless communication with co-operating cells
WO2010078854A1 (zh) 上行信息的传输方法、装置及系统
CN104272846A (zh) ePDCCH中分布式以及集中式传输的资源复用方法
WO2013007088A1 (zh) 一种信道状态信息的处理方法、装置及系统
WO2010121538A1 (zh) 一种用于多点协同传输的上行参考信号的配置方法和装置
TW201739290A (zh) 用於解調變參考信號傳輸之下行鏈路控制
CN108512786A (zh) 蜂窝移动通信系统中用于协作通信的信道估计方法和装置
WO2013000253A1 (zh) 协作多点传输系统中信息的交互方法及协作多点传输系统
JP2012510764A (ja) 基準信号を送信するための方法及び通信ネットワーク要素
WO2014177094A2 (zh) 干扰处理方法、装置、网络控制单元及终端
CN114450911A (zh) 具有减少的开销的解调参考信号
WO2014019550A1 (zh) 控制信息处理方法及装置
KR20130122201A (ko) 멀티 포인트 전송 환경에서의 무선 데이터 송수신 방법
JP2015070442A (ja) ユーザ端末、基地局、及びプロセッサ
WO2014183660A1 (zh) 干扰协调的参数传输方法及装置、干扰协调方法及装置
KR20140107956A (ko) 새로운 반송파 형식에서의 간섭 측정 방법 및 장치
WO2014063355A1 (zh) 传输参考信号的方法和装置
US11723039B2 (en) Directional grant for sidelink communication
TWI465062B (zh) Coordinated Multipoint Data Transmission Method Based on Orthogonal Overlay Codes
WO2010133034A1 (zh) 协调多点通信的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11833769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11833769

Country of ref document: EP

Kind code of ref document: A1